1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/irq_work.h> 27 #include <linux/prefetch.h> 28 #include <linux/sched.h> 29 #include <linux/sched/clock.h> 30 #include <linux/sched/signal.h> 31 32 #include "i915_active.h" 33 #include "i915_drv.h" 34 #include "i915_globals.h" 35 #include "i915_reset.h" 36 #include "intel_pm.h" 37 38 struct execute_cb { 39 struct list_head link; 40 struct irq_work work; 41 struct i915_sw_fence *fence; 42 }; 43 44 static struct i915_global_request { 45 struct i915_global base; 46 struct kmem_cache *slab_requests; 47 struct kmem_cache *slab_dependencies; 48 struct kmem_cache *slab_execute_cbs; 49 } global; 50 51 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 52 { 53 return "i915"; 54 } 55 56 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 57 { 58 /* 59 * The timeline struct (as part of the ppgtt underneath a context) 60 * may be freed when the request is no longer in use by the GPU. 61 * We could extend the life of a context to beyond that of all 62 * fences, possibly keeping the hw resource around indefinitely, 63 * or we just give them a false name. Since 64 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 65 * lie seems justifiable. 66 */ 67 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 68 return "signaled"; 69 70 return to_request(fence)->gem_context->name ?: "[i915]"; 71 } 72 73 static bool i915_fence_signaled(struct dma_fence *fence) 74 { 75 return i915_request_completed(to_request(fence)); 76 } 77 78 static bool i915_fence_enable_signaling(struct dma_fence *fence) 79 { 80 return i915_request_enable_breadcrumb(to_request(fence)); 81 } 82 83 static signed long i915_fence_wait(struct dma_fence *fence, 84 bool interruptible, 85 signed long timeout) 86 { 87 return i915_request_wait(to_request(fence), 88 interruptible | I915_WAIT_PRIORITY, 89 timeout); 90 } 91 92 static void i915_fence_release(struct dma_fence *fence) 93 { 94 struct i915_request *rq = to_request(fence); 95 96 /* 97 * The request is put onto a RCU freelist (i.e. the address 98 * is immediately reused), mark the fences as being freed now. 99 * Otherwise the debugobjects for the fences are only marked as 100 * freed when the slab cache itself is freed, and so we would get 101 * caught trying to reuse dead objects. 102 */ 103 i915_sw_fence_fini(&rq->submit); 104 i915_sw_fence_fini(&rq->semaphore); 105 106 kmem_cache_free(global.slab_requests, rq); 107 } 108 109 const struct dma_fence_ops i915_fence_ops = { 110 .get_driver_name = i915_fence_get_driver_name, 111 .get_timeline_name = i915_fence_get_timeline_name, 112 .enable_signaling = i915_fence_enable_signaling, 113 .signaled = i915_fence_signaled, 114 .wait = i915_fence_wait, 115 .release = i915_fence_release, 116 }; 117 118 static inline void 119 i915_request_remove_from_client(struct i915_request *request) 120 { 121 struct drm_i915_file_private *file_priv; 122 123 file_priv = request->file_priv; 124 if (!file_priv) 125 return; 126 127 spin_lock(&file_priv->mm.lock); 128 if (request->file_priv) { 129 list_del(&request->client_link); 130 request->file_priv = NULL; 131 } 132 spin_unlock(&file_priv->mm.lock); 133 } 134 135 static void reserve_gt(struct drm_i915_private *i915) 136 { 137 if (!i915->gt.active_requests++) 138 i915_gem_unpark(i915); 139 } 140 141 static void unreserve_gt(struct drm_i915_private *i915) 142 { 143 GEM_BUG_ON(!i915->gt.active_requests); 144 if (!--i915->gt.active_requests) 145 i915_gem_park(i915); 146 } 147 148 static void advance_ring(struct i915_request *request) 149 { 150 struct intel_ring *ring = request->ring; 151 unsigned int tail; 152 153 /* 154 * We know the GPU must have read the request to have 155 * sent us the seqno + interrupt, so use the position 156 * of tail of the request to update the last known position 157 * of the GPU head. 158 * 159 * Note this requires that we are always called in request 160 * completion order. 161 */ 162 GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list)); 163 if (list_is_last(&request->ring_link, &ring->request_list)) { 164 /* 165 * We may race here with execlists resubmitting this request 166 * as we retire it. The resubmission will move the ring->tail 167 * forwards (to request->wa_tail). We either read the 168 * current value that was written to hw, or the value that 169 * is just about to be. Either works, if we miss the last two 170 * noops - they are safe to be replayed on a reset. 171 */ 172 tail = READ_ONCE(request->tail); 173 list_del(&ring->active_link); 174 } else { 175 tail = request->postfix; 176 } 177 list_del_init(&request->ring_link); 178 179 ring->head = tail; 180 } 181 182 static void free_capture_list(struct i915_request *request) 183 { 184 struct i915_capture_list *capture; 185 186 capture = request->capture_list; 187 while (capture) { 188 struct i915_capture_list *next = capture->next; 189 190 kfree(capture); 191 capture = next; 192 } 193 } 194 195 static void __retire_engine_request(struct intel_engine_cs *engine, 196 struct i915_request *rq) 197 { 198 GEM_TRACE("%s(%s) fence %llx:%lld, current %d\n", 199 __func__, engine->name, 200 rq->fence.context, rq->fence.seqno, 201 hwsp_seqno(rq)); 202 203 GEM_BUG_ON(!i915_request_completed(rq)); 204 205 local_irq_disable(); 206 207 spin_lock(&engine->timeline.lock); 208 GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests)); 209 list_del_init(&rq->link); 210 spin_unlock(&engine->timeline.lock); 211 212 spin_lock(&rq->lock); 213 i915_request_mark_complete(rq); 214 if (!i915_request_signaled(rq)) 215 dma_fence_signal_locked(&rq->fence); 216 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 217 i915_request_cancel_breadcrumb(rq); 218 if (rq->waitboost) { 219 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters)); 220 atomic_dec(&rq->i915->gt_pm.rps.num_waiters); 221 } 222 spin_unlock(&rq->lock); 223 224 local_irq_enable(); 225 226 /* 227 * The backing object for the context is done after switching to the 228 * *next* context. Therefore we cannot retire the previous context until 229 * the next context has already started running. However, since we 230 * cannot take the required locks at i915_request_submit() we 231 * defer the unpinning of the active context to now, retirement of 232 * the subsequent request. 233 */ 234 if (engine->last_retired_context) 235 intel_context_unpin(engine->last_retired_context); 236 engine->last_retired_context = rq->hw_context; 237 } 238 239 static void __retire_engine_upto(struct intel_engine_cs *engine, 240 struct i915_request *rq) 241 { 242 struct i915_request *tmp; 243 244 if (list_empty(&rq->link)) 245 return; 246 247 do { 248 tmp = list_first_entry(&engine->timeline.requests, 249 typeof(*tmp), link); 250 251 GEM_BUG_ON(tmp->engine != engine); 252 __retire_engine_request(engine, tmp); 253 } while (tmp != rq); 254 } 255 256 static void i915_request_retire(struct i915_request *request) 257 { 258 struct i915_active_request *active, *next; 259 260 GEM_TRACE("%s fence %llx:%lld, current %d\n", 261 request->engine->name, 262 request->fence.context, request->fence.seqno, 263 hwsp_seqno(request)); 264 265 lockdep_assert_held(&request->i915->drm.struct_mutex); 266 GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit)); 267 GEM_BUG_ON(!i915_request_completed(request)); 268 269 trace_i915_request_retire(request); 270 271 advance_ring(request); 272 free_capture_list(request); 273 274 /* 275 * Walk through the active list, calling retire on each. This allows 276 * objects to track their GPU activity and mark themselves as idle 277 * when their *last* active request is completed (updating state 278 * tracking lists for eviction, active references for GEM, etc). 279 * 280 * As the ->retire() may free the node, we decouple it first and 281 * pass along the auxiliary information (to avoid dereferencing 282 * the node after the callback). 283 */ 284 list_for_each_entry_safe(active, next, &request->active_list, link) { 285 /* 286 * In microbenchmarks or focusing upon time inside the kernel, 287 * we may spend an inordinate amount of time simply handling 288 * the retirement of requests and processing their callbacks. 289 * Of which, this loop itself is particularly hot due to the 290 * cache misses when jumping around the list of 291 * i915_active_request. So we try to keep this loop as 292 * streamlined as possible and also prefetch the next 293 * i915_active_request to try and hide the likely cache miss. 294 */ 295 prefetchw(next); 296 297 INIT_LIST_HEAD(&active->link); 298 RCU_INIT_POINTER(active->request, NULL); 299 300 active->retire(active, request); 301 } 302 303 i915_request_remove_from_client(request); 304 305 intel_context_unpin(request->hw_context); 306 307 __retire_engine_upto(request->engine, request); 308 309 unreserve_gt(request->i915); 310 311 i915_sched_node_fini(&request->sched); 312 i915_request_put(request); 313 } 314 315 void i915_request_retire_upto(struct i915_request *rq) 316 { 317 struct intel_ring *ring = rq->ring; 318 struct i915_request *tmp; 319 320 GEM_TRACE("%s fence %llx:%lld, current %d\n", 321 rq->engine->name, 322 rq->fence.context, rq->fence.seqno, 323 hwsp_seqno(rq)); 324 325 lockdep_assert_held(&rq->i915->drm.struct_mutex); 326 GEM_BUG_ON(!i915_request_completed(rq)); 327 328 if (list_empty(&rq->ring_link)) 329 return; 330 331 do { 332 tmp = list_first_entry(&ring->request_list, 333 typeof(*tmp), ring_link); 334 335 i915_request_retire(tmp); 336 } while (tmp != rq); 337 } 338 339 static void irq_execute_cb(struct irq_work *wrk) 340 { 341 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 342 343 i915_sw_fence_complete(cb->fence); 344 kmem_cache_free(global.slab_execute_cbs, cb); 345 } 346 347 static void __notify_execute_cb(struct i915_request *rq) 348 { 349 struct execute_cb *cb; 350 351 lockdep_assert_held(&rq->lock); 352 353 if (list_empty(&rq->execute_cb)) 354 return; 355 356 list_for_each_entry(cb, &rq->execute_cb, link) 357 irq_work_queue(&cb->work); 358 359 /* 360 * XXX Rollback on __i915_request_unsubmit() 361 * 362 * In the future, perhaps when we have an active time-slicing scheduler, 363 * it will be interesting to unsubmit parallel execution and remove 364 * busywaits from the GPU until their master is restarted. This is 365 * quite hairy, we have to carefully rollback the fence and do a 366 * preempt-to-idle cycle on the target engine, all the while the 367 * master execute_cb may refire. 368 */ 369 INIT_LIST_HEAD(&rq->execute_cb); 370 } 371 372 static int 373 i915_request_await_execution(struct i915_request *rq, 374 struct i915_request *signal, 375 gfp_t gfp) 376 { 377 struct execute_cb *cb; 378 379 if (i915_request_is_active(signal)) 380 return 0; 381 382 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 383 if (!cb) 384 return -ENOMEM; 385 386 cb->fence = &rq->submit; 387 i915_sw_fence_await(cb->fence); 388 init_irq_work(&cb->work, irq_execute_cb); 389 390 spin_lock_irq(&signal->lock); 391 if (i915_request_is_active(signal)) { 392 i915_sw_fence_complete(cb->fence); 393 kmem_cache_free(global.slab_execute_cbs, cb); 394 } else { 395 list_add_tail(&cb->link, &signal->execute_cb); 396 } 397 spin_unlock_irq(&signal->lock); 398 399 return 0; 400 } 401 402 static void move_to_timeline(struct i915_request *request, 403 struct i915_timeline *timeline) 404 { 405 GEM_BUG_ON(request->timeline == &request->engine->timeline); 406 lockdep_assert_held(&request->engine->timeline.lock); 407 408 spin_lock(&request->timeline->lock); 409 list_move_tail(&request->link, &timeline->requests); 410 spin_unlock(&request->timeline->lock); 411 } 412 413 void __i915_request_submit(struct i915_request *request) 414 { 415 struct intel_engine_cs *engine = request->engine; 416 417 GEM_TRACE("%s fence %llx:%lld -> current %d\n", 418 engine->name, 419 request->fence.context, request->fence.seqno, 420 hwsp_seqno(request)); 421 422 GEM_BUG_ON(!irqs_disabled()); 423 lockdep_assert_held(&engine->timeline.lock); 424 425 if (i915_gem_context_is_banned(request->gem_context)) 426 i915_request_skip(request, -EIO); 427 428 /* 429 * Are we using semaphores when the gpu is already saturated? 430 * 431 * Using semaphores incurs a cost in having the GPU poll a 432 * memory location, busywaiting for it to change. The continual 433 * memory reads can have a noticeable impact on the rest of the 434 * system with the extra bus traffic, stalling the cpu as it too 435 * tries to access memory across the bus (perf stat -e bus-cycles). 436 * 437 * If we installed a semaphore on this request and we only submit 438 * the request after the signaler completed, that indicates the 439 * system is overloaded and using semaphores at this time only 440 * increases the amount of work we are doing. If so, we disable 441 * further use of semaphores until we are idle again, whence we 442 * optimistically try again. 443 */ 444 if (request->sched.semaphores && 445 i915_sw_fence_signaled(&request->semaphore)) 446 request->hw_context->saturated |= request->sched.semaphores; 447 448 /* We may be recursing from the signal callback of another i915 fence */ 449 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 450 451 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 452 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 453 454 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 455 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) && 456 !i915_request_enable_breadcrumb(request)) 457 intel_engine_queue_breadcrumbs(engine); 458 459 __notify_execute_cb(request); 460 461 spin_unlock(&request->lock); 462 463 engine->emit_fini_breadcrumb(request, 464 request->ring->vaddr + request->postfix); 465 466 /* Transfer from per-context onto the global per-engine timeline */ 467 move_to_timeline(request, &engine->timeline); 468 469 trace_i915_request_execute(request); 470 } 471 472 void i915_request_submit(struct i915_request *request) 473 { 474 struct intel_engine_cs *engine = request->engine; 475 unsigned long flags; 476 477 /* Will be called from irq-context when using foreign fences. */ 478 spin_lock_irqsave(&engine->timeline.lock, flags); 479 480 __i915_request_submit(request); 481 482 spin_unlock_irqrestore(&engine->timeline.lock, flags); 483 } 484 485 void __i915_request_unsubmit(struct i915_request *request) 486 { 487 struct intel_engine_cs *engine = request->engine; 488 489 GEM_TRACE("%s fence %llx:%lld, current %d\n", 490 engine->name, 491 request->fence.context, request->fence.seqno, 492 hwsp_seqno(request)); 493 494 GEM_BUG_ON(!irqs_disabled()); 495 lockdep_assert_held(&engine->timeline.lock); 496 497 /* 498 * Only unwind in reverse order, required so that the per-context list 499 * is kept in seqno/ring order. 500 */ 501 502 /* We may be recursing from the signal callback of another i915 fence */ 503 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 504 505 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 506 i915_request_cancel_breadcrumb(request); 507 508 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 509 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 510 511 spin_unlock(&request->lock); 512 513 /* Transfer back from the global per-engine timeline to per-context */ 514 move_to_timeline(request, request->timeline); 515 516 /* 517 * We don't need to wake_up any waiters on request->execute, they 518 * will get woken by any other event or us re-adding this request 519 * to the engine timeline (__i915_request_submit()). The waiters 520 * should be quite adapt at finding that the request now has a new 521 * global_seqno to the one they went to sleep on. 522 */ 523 } 524 525 void i915_request_unsubmit(struct i915_request *request) 526 { 527 struct intel_engine_cs *engine = request->engine; 528 unsigned long flags; 529 530 /* Will be called from irq-context when using foreign fences. */ 531 spin_lock_irqsave(&engine->timeline.lock, flags); 532 533 __i915_request_unsubmit(request); 534 535 spin_unlock_irqrestore(&engine->timeline.lock, flags); 536 } 537 538 static int __i915_sw_fence_call 539 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 540 { 541 struct i915_request *request = 542 container_of(fence, typeof(*request), submit); 543 544 switch (state) { 545 case FENCE_COMPLETE: 546 trace_i915_request_submit(request); 547 /* 548 * We need to serialize use of the submit_request() callback 549 * with its hotplugging performed during an emergency 550 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 551 * critical section in order to force i915_gem_set_wedged() to 552 * wait until the submit_request() is completed before 553 * proceeding. 554 */ 555 rcu_read_lock(); 556 request->engine->submit_request(request); 557 rcu_read_unlock(); 558 break; 559 560 case FENCE_FREE: 561 i915_request_put(request); 562 break; 563 } 564 565 return NOTIFY_DONE; 566 } 567 568 static int __i915_sw_fence_call 569 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 570 { 571 struct i915_request *request = 572 container_of(fence, typeof(*request), semaphore); 573 574 switch (state) { 575 case FENCE_COMPLETE: 576 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE); 577 break; 578 579 case FENCE_FREE: 580 i915_request_put(request); 581 break; 582 } 583 584 return NOTIFY_DONE; 585 } 586 587 static void ring_retire_requests(struct intel_ring *ring) 588 { 589 struct i915_request *rq, *rn; 590 591 list_for_each_entry_safe(rq, rn, &ring->request_list, ring_link) { 592 if (!i915_request_completed(rq)) 593 break; 594 595 i915_request_retire(rq); 596 } 597 } 598 599 static noinline struct i915_request * 600 i915_request_alloc_slow(struct intel_context *ce) 601 { 602 struct intel_ring *ring = ce->ring; 603 struct i915_request *rq; 604 605 if (list_empty(&ring->request_list)) 606 goto out; 607 608 /* Ratelimit ourselves to prevent oom from malicious clients */ 609 rq = list_last_entry(&ring->request_list, typeof(*rq), ring_link); 610 cond_synchronize_rcu(rq->rcustate); 611 612 /* Retire our old requests in the hope that we free some */ 613 ring_retire_requests(ring); 614 615 out: 616 return kmem_cache_alloc(global.slab_requests, GFP_KERNEL); 617 } 618 619 /** 620 * i915_request_alloc - allocate a request structure 621 * 622 * @engine: engine that we wish to issue the request on. 623 * @ctx: context that the request will be associated with. 624 * 625 * Returns a pointer to the allocated request if successful, 626 * or an error code if not. 627 */ 628 struct i915_request * 629 i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx) 630 { 631 struct drm_i915_private *i915 = engine->i915; 632 struct intel_context *ce; 633 struct i915_timeline *tl; 634 struct i915_request *rq; 635 u32 seqno; 636 int ret; 637 638 lockdep_assert_held(&i915->drm.struct_mutex); 639 640 /* 641 * Preempt contexts are reserved for exclusive use to inject a 642 * preemption context switch. They are never to be used for any trivial 643 * request! 644 */ 645 GEM_BUG_ON(ctx == i915->preempt_context); 646 647 /* 648 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 649 * EIO if the GPU is already wedged. 650 */ 651 ret = i915_terminally_wedged(i915); 652 if (ret) 653 return ERR_PTR(ret); 654 655 /* 656 * Pinning the contexts may generate requests in order to acquire 657 * GGTT space, so do this first before we reserve a seqno for 658 * ourselves. 659 */ 660 ce = intel_context_pin(ctx, engine); 661 if (IS_ERR(ce)) 662 return ERR_CAST(ce); 663 664 reserve_gt(i915); 665 mutex_lock(&ce->ring->timeline->mutex); 666 667 /* Move our oldest request to the slab-cache (if not in use!) */ 668 rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link); 669 if (!list_is_last(&rq->ring_link, &ce->ring->request_list) && 670 i915_request_completed(rq)) 671 i915_request_retire(rq); 672 673 /* 674 * Beware: Dragons be flying overhead. 675 * 676 * We use RCU to look up requests in flight. The lookups may 677 * race with the request being allocated from the slab freelist. 678 * That is the request we are writing to here, may be in the process 679 * of being read by __i915_active_request_get_rcu(). As such, 680 * we have to be very careful when overwriting the contents. During 681 * the RCU lookup, we change chase the request->engine pointer, 682 * read the request->global_seqno and increment the reference count. 683 * 684 * The reference count is incremented atomically. If it is zero, 685 * the lookup knows the request is unallocated and complete. Otherwise, 686 * it is either still in use, or has been reallocated and reset 687 * with dma_fence_init(). This increment is safe for release as we 688 * check that the request we have a reference to and matches the active 689 * request. 690 * 691 * Before we increment the refcount, we chase the request->engine 692 * pointer. We must not call kmem_cache_zalloc() or else we set 693 * that pointer to NULL and cause a crash during the lookup. If 694 * we see the request is completed (based on the value of the 695 * old engine and seqno), the lookup is complete and reports NULL. 696 * If we decide the request is not completed (new engine or seqno), 697 * then we grab a reference and double check that it is still the 698 * active request - which it won't be and restart the lookup. 699 * 700 * Do not use kmem_cache_zalloc() here! 701 */ 702 rq = kmem_cache_alloc(global.slab_requests, 703 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 704 if (unlikely(!rq)) { 705 rq = i915_request_alloc_slow(ce); 706 if (!rq) { 707 ret = -ENOMEM; 708 goto err_unreserve; 709 } 710 } 711 712 INIT_LIST_HEAD(&rq->active_list); 713 INIT_LIST_HEAD(&rq->execute_cb); 714 715 tl = ce->ring->timeline; 716 ret = i915_timeline_get_seqno(tl, rq, &seqno); 717 if (ret) 718 goto err_free; 719 720 rq->i915 = i915; 721 rq->engine = engine; 722 rq->gem_context = ctx; 723 rq->hw_context = ce; 724 rq->ring = ce->ring; 725 rq->timeline = tl; 726 GEM_BUG_ON(rq->timeline == &engine->timeline); 727 rq->hwsp_seqno = tl->hwsp_seqno; 728 rq->hwsp_cacheline = tl->hwsp_cacheline; 729 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 730 731 spin_lock_init(&rq->lock); 732 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 733 tl->fence_context, seqno); 734 735 /* We bump the ref for the fence chain */ 736 i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify); 737 i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify); 738 739 i915_sched_node_init(&rq->sched); 740 741 /* No zalloc, must clear what we need by hand */ 742 rq->file_priv = NULL; 743 rq->batch = NULL; 744 rq->capture_list = NULL; 745 rq->waitboost = false; 746 747 /* 748 * Reserve space in the ring buffer for all the commands required to 749 * eventually emit this request. This is to guarantee that the 750 * i915_request_add() call can't fail. Note that the reserve may need 751 * to be redone if the request is not actually submitted straight 752 * away, e.g. because a GPU scheduler has deferred it. 753 * 754 * Note that due to how we add reserved_space to intel_ring_begin() 755 * we need to double our request to ensure that if we need to wrap 756 * around inside i915_request_add() there is sufficient space at 757 * the beginning of the ring as well. 758 */ 759 rq->reserved_space = 2 * engine->emit_fini_breadcrumb_dw * sizeof(u32); 760 761 /* 762 * Record the position of the start of the request so that 763 * should we detect the updated seqno part-way through the 764 * GPU processing the request, we never over-estimate the 765 * position of the head. 766 */ 767 rq->head = rq->ring->emit; 768 769 ret = engine->request_alloc(rq); 770 if (ret) 771 goto err_unwind; 772 773 /* Keep a second pin for the dual retirement along engine and ring */ 774 __intel_context_pin(ce); 775 776 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 777 778 /* Check that we didn't interrupt ourselves with a new request */ 779 lockdep_assert_held(&rq->timeline->mutex); 780 GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno); 781 rq->cookie = lockdep_pin_lock(&rq->timeline->mutex); 782 783 return rq; 784 785 err_unwind: 786 ce->ring->emit = rq->head; 787 788 /* Make sure we didn't add ourselves to external state before freeing */ 789 GEM_BUG_ON(!list_empty(&rq->active_list)); 790 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 791 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 792 793 err_free: 794 kmem_cache_free(global.slab_requests, rq); 795 err_unreserve: 796 mutex_unlock(&ce->ring->timeline->mutex); 797 unreserve_gt(i915); 798 intel_context_unpin(ce); 799 return ERR_PTR(ret); 800 } 801 802 static int 803 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 804 { 805 if (list_is_first(&signal->ring_link, &signal->ring->request_list)) 806 return 0; 807 808 signal = list_prev_entry(signal, ring_link); 809 if (i915_timeline_sync_is_later(rq->timeline, &signal->fence)) 810 return 0; 811 812 return i915_sw_fence_await_dma_fence(&rq->submit, 813 &signal->fence, 0, 814 I915_FENCE_GFP); 815 } 816 817 static intel_engine_mask_t 818 already_busywaiting(struct i915_request *rq) 819 { 820 /* 821 * Polling a semaphore causes bus traffic, delaying other users of 822 * both the GPU and CPU. We want to limit the impact on others, 823 * while taking advantage of early submission to reduce GPU 824 * latency. Therefore we restrict ourselves to not using more 825 * than one semaphore from each source, and not using a semaphore 826 * if we have detected the engine is saturated (i.e. would not be 827 * submitted early and cause bus traffic reading an already passed 828 * semaphore). 829 * 830 * See the are-we-too-late? check in __i915_request_submit(). 831 */ 832 return rq->sched.semaphores | rq->hw_context->saturated; 833 } 834 835 static int 836 emit_semaphore_wait(struct i915_request *to, 837 struct i915_request *from, 838 gfp_t gfp) 839 { 840 u32 hwsp_offset; 841 u32 *cs; 842 int err; 843 844 GEM_BUG_ON(!from->timeline->has_initial_breadcrumb); 845 GEM_BUG_ON(INTEL_GEN(to->i915) < 8); 846 847 /* Just emit the first semaphore we see as request space is limited. */ 848 if (already_busywaiting(to) & from->engine->mask) 849 return i915_sw_fence_await_dma_fence(&to->submit, 850 &from->fence, 0, 851 I915_FENCE_GFP); 852 853 err = i915_request_await_start(to, from); 854 if (err < 0) 855 return err; 856 857 /* We need to pin the signaler's HWSP until we are finished reading. */ 858 err = i915_timeline_read_hwsp(from, to, &hwsp_offset); 859 if (err) 860 return err; 861 862 /* Only submit our spinner after the signaler is running! */ 863 err = i915_request_await_execution(to, from, gfp); 864 if (err) 865 return err; 866 867 cs = intel_ring_begin(to, 4); 868 if (IS_ERR(cs)) 869 return PTR_ERR(cs); 870 871 /* 872 * Using greater-than-or-equal here means we have to worry 873 * about seqno wraparound. To side step that issue, we swap 874 * the timeline HWSP upon wrapping, so that everyone listening 875 * for the old (pre-wrap) values do not see the much smaller 876 * (post-wrap) values than they were expecting (and so wait 877 * forever). 878 */ 879 *cs++ = MI_SEMAPHORE_WAIT | 880 MI_SEMAPHORE_GLOBAL_GTT | 881 MI_SEMAPHORE_POLL | 882 MI_SEMAPHORE_SAD_GTE_SDD; 883 *cs++ = from->fence.seqno; 884 *cs++ = hwsp_offset; 885 *cs++ = 0; 886 887 intel_ring_advance(to, cs); 888 to->sched.semaphores |= from->engine->mask; 889 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; 890 return 0; 891 } 892 893 static int 894 i915_request_await_request(struct i915_request *to, struct i915_request *from) 895 { 896 int ret; 897 898 GEM_BUG_ON(to == from); 899 GEM_BUG_ON(to->timeline == from->timeline); 900 901 if (i915_request_completed(from)) 902 return 0; 903 904 if (to->engine->schedule) { 905 ret = i915_sched_node_add_dependency(&to->sched, &from->sched); 906 if (ret < 0) 907 return ret; 908 } 909 910 if (to->engine == from->engine) { 911 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, 912 &from->submit, 913 I915_FENCE_GFP); 914 } else if (intel_engine_has_semaphores(to->engine) && 915 to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) { 916 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 917 } else { 918 ret = i915_sw_fence_await_dma_fence(&to->submit, 919 &from->fence, 0, 920 I915_FENCE_GFP); 921 } 922 if (ret < 0) 923 return ret; 924 925 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) { 926 ret = i915_sw_fence_await_dma_fence(&to->semaphore, 927 &from->fence, 0, 928 I915_FENCE_GFP); 929 if (ret < 0) 930 return ret; 931 } 932 933 return 0; 934 } 935 936 int 937 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 938 { 939 struct dma_fence **child = &fence; 940 unsigned int nchild = 1; 941 int ret; 942 943 /* 944 * Note that if the fence-array was created in signal-on-any mode, 945 * we should *not* decompose it into its individual fences. However, 946 * we don't currently store which mode the fence-array is operating 947 * in. Fortunately, the only user of signal-on-any is private to 948 * amdgpu and we should not see any incoming fence-array from 949 * sync-file being in signal-on-any mode. 950 */ 951 if (dma_fence_is_array(fence)) { 952 struct dma_fence_array *array = to_dma_fence_array(fence); 953 954 child = array->fences; 955 nchild = array->num_fences; 956 GEM_BUG_ON(!nchild); 957 } 958 959 do { 960 fence = *child++; 961 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 962 continue; 963 964 /* 965 * Requests on the same timeline are explicitly ordered, along 966 * with their dependencies, by i915_request_add() which ensures 967 * that requests are submitted in-order through each ring. 968 */ 969 if (fence->context == rq->fence.context) 970 continue; 971 972 /* Squash repeated waits to the same timelines */ 973 if (fence->context != rq->i915->mm.unordered_timeline && 974 i915_timeline_sync_is_later(rq->timeline, fence)) 975 continue; 976 977 if (dma_fence_is_i915(fence)) 978 ret = i915_request_await_request(rq, to_request(fence)); 979 else 980 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 981 I915_FENCE_TIMEOUT, 982 I915_FENCE_GFP); 983 if (ret < 0) 984 return ret; 985 986 /* Record the latest fence used against each timeline */ 987 if (fence->context != rq->i915->mm.unordered_timeline) 988 i915_timeline_sync_set(rq->timeline, fence); 989 } while (--nchild); 990 991 return 0; 992 } 993 994 /** 995 * i915_request_await_object - set this request to (async) wait upon a bo 996 * @to: request we are wishing to use 997 * @obj: object which may be in use on another ring. 998 * @write: whether the wait is on behalf of a writer 999 * 1000 * This code is meant to abstract object synchronization with the GPU. 1001 * Conceptually we serialise writes between engines inside the GPU. 1002 * We only allow one engine to write into a buffer at any time, but 1003 * multiple readers. To ensure each has a coherent view of memory, we must: 1004 * 1005 * - If there is an outstanding write request to the object, the new 1006 * request must wait for it to complete (either CPU or in hw, requests 1007 * on the same ring will be naturally ordered). 1008 * 1009 * - If we are a write request (pending_write_domain is set), the new 1010 * request must wait for outstanding read requests to complete. 1011 * 1012 * Returns 0 if successful, else propagates up the lower layer error. 1013 */ 1014 int 1015 i915_request_await_object(struct i915_request *to, 1016 struct drm_i915_gem_object *obj, 1017 bool write) 1018 { 1019 struct dma_fence *excl; 1020 int ret = 0; 1021 1022 if (write) { 1023 struct dma_fence **shared; 1024 unsigned int count, i; 1025 1026 ret = reservation_object_get_fences_rcu(obj->resv, 1027 &excl, &count, &shared); 1028 if (ret) 1029 return ret; 1030 1031 for (i = 0; i < count; i++) { 1032 ret = i915_request_await_dma_fence(to, shared[i]); 1033 if (ret) 1034 break; 1035 1036 dma_fence_put(shared[i]); 1037 } 1038 1039 for (; i < count; i++) 1040 dma_fence_put(shared[i]); 1041 kfree(shared); 1042 } else { 1043 excl = reservation_object_get_excl_rcu(obj->resv); 1044 } 1045 1046 if (excl) { 1047 if (ret == 0) 1048 ret = i915_request_await_dma_fence(to, excl); 1049 1050 dma_fence_put(excl); 1051 } 1052 1053 return ret; 1054 } 1055 1056 void i915_request_skip(struct i915_request *rq, int error) 1057 { 1058 void *vaddr = rq->ring->vaddr; 1059 u32 head; 1060 1061 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 1062 dma_fence_set_error(&rq->fence, error); 1063 1064 /* 1065 * As this request likely depends on state from the lost 1066 * context, clear out all the user operations leaving the 1067 * breadcrumb at the end (so we get the fence notifications). 1068 */ 1069 head = rq->infix; 1070 if (rq->postfix < head) { 1071 memset(vaddr + head, 0, rq->ring->size - head); 1072 head = 0; 1073 } 1074 memset(vaddr + head, 0, rq->postfix - head); 1075 } 1076 1077 static struct i915_request * 1078 __i915_request_add_to_timeline(struct i915_request *rq) 1079 { 1080 struct i915_timeline *timeline = rq->timeline; 1081 struct i915_request *prev; 1082 1083 /* 1084 * Dependency tracking and request ordering along the timeline 1085 * is special cased so that we can eliminate redundant ordering 1086 * operations while building the request (we know that the timeline 1087 * itself is ordered, and here we guarantee it). 1088 * 1089 * As we know we will need to emit tracking along the timeline, 1090 * we embed the hooks into our request struct -- at the cost of 1091 * having to have specialised no-allocation interfaces (which will 1092 * be beneficial elsewhere). 1093 * 1094 * A second benefit to open-coding i915_request_await_request is 1095 * that we can apply a slight variant of the rules specialised 1096 * for timelines that jump between engines (such as virtual engines). 1097 * If we consider the case of virtual engine, we must emit a dma-fence 1098 * to prevent scheduling of the second request until the first is 1099 * complete (to maximise our greedy late load balancing) and this 1100 * precludes optimising to use semaphores serialisation of a single 1101 * timeline across engines. 1102 */ 1103 prev = i915_active_request_raw(&timeline->last_request, 1104 &rq->i915->drm.struct_mutex); 1105 if (prev && !i915_request_completed(prev)) { 1106 if (is_power_of_2(prev->engine->mask | rq->engine->mask)) 1107 i915_sw_fence_await_sw_fence(&rq->submit, 1108 &prev->submit, 1109 &rq->submitq); 1110 else 1111 __i915_sw_fence_await_dma_fence(&rq->submit, 1112 &prev->fence, 1113 &rq->dmaq); 1114 if (rq->engine->schedule) 1115 __i915_sched_node_add_dependency(&rq->sched, 1116 &prev->sched, 1117 &rq->dep, 1118 0); 1119 } 1120 1121 spin_lock_irq(&timeline->lock); 1122 list_add_tail(&rq->link, &timeline->requests); 1123 spin_unlock_irq(&timeline->lock); 1124 1125 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1126 __i915_active_request_set(&timeline->last_request, rq); 1127 1128 return prev; 1129 } 1130 1131 /* 1132 * NB: This function is not allowed to fail. Doing so would mean the the 1133 * request is not being tracked for completion but the work itself is 1134 * going to happen on the hardware. This would be a Bad Thing(tm). 1135 */ 1136 void i915_request_add(struct i915_request *request) 1137 { 1138 struct intel_engine_cs *engine = request->engine; 1139 struct i915_timeline *timeline = request->timeline; 1140 struct intel_ring *ring = request->ring; 1141 struct i915_request *prev; 1142 u32 *cs; 1143 1144 GEM_TRACE("%s fence %llx:%lld\n", 1145 engine->name, request->fence.context, request->fence.seqno); 1146 1147 lockdep_assert_held(&request->timeline->mutex); 1148 lockdep_unpin_lock(&request->timeline->mutex, request->cookie); 1149 1150 trace_i915_request_add(request); 1151 1152 /* 1153 * Make sure that no request gazumped us - if it was allocated after 1154 * our i915_request_alloc() and called __i915_request_add() before 1155 * us, the timeline will hold its seqno which is later than ours. 1156 */ 1157 GEM_BUG_ON(timeline->seqno != request->fence.seqno); 1158 1159 /* 1160 * To ensure that this call will not fail, space for its emissions 1161 * should already have been reserved in the ring buffer. Let the ring 1162 * know that it is time to use that space up. 1163 */ 1164 GEM_BUG_ON(request->reserved_space > request->ring->space); 1165 request->reserved_space = 0; 1166 1167 /* 1168 * Record the position of the start of the breadcrumb so that 1169 * should we detect the updated seqno part-way through the 1170 * GPU processing the request, we never over-estimate the 1171 * position of the ring's HEAD. 1172 */ 1173 cs = intel_ring_begin(request, engine->emit_fini_breadcrumb_dw); 1174 GEM_BUG_ON(IS_ERR(cs)); 1175 request->postfix = intel_ring_offset(request, cs); 1176 1177 prev = __i915_request_add_to_timeline(request); 1178 1179 list_add_tail(&request->ring_link, &ring->request_list); 1180 if (list_is_first(&request->ring_link, &ring->request_list)) 1181 list_add(&ring->active_link, &request->i915->gt.active_rings); 1182 request->i915->gt.active_engines |= request->engine->mask; 1183 request->emitted_jiffies = jiffies; 1184 1185 /* 1186 * Let the backend know a new request has arrived that may need 1187 * to adjust the existing execution schedule due to a high priority 1188 * request - i.e. we may want to preempt the current request in order 1189 * to run a high priority dependency chain *before* we can execute this 1190 * request. 1191 * 1192 * This is called before the request is ready to run so that we can 1193 * decide whether to preempt the entire chain so that it is ready to 1194 * run at the earliest possible convenience. 1195 */ 1196 local_bh_disable(); 1197 i915_sw_fence_commit(&request->semaphore); 1198 rcu_read_lock(); /* RCU serialisation for set-wedged protection */ 1199 if (engine->schedule) { 1200 struct i915_sched_attr attr = request->gem_context->sched; 1201 1202 /* 1203 * Boost actual workloads past semaphores! 1204 * 1205 * With semaphores we spin on one engine waiting for another, 1206 * simply to reduce the latency of starting our work when 1207 * the signaler completes. However, if there is any other 1208 * work that we could be doing on this engine instead, that 1209 * is better utilisation and will reduce the overall duration 1210 * of the current work. To avoid PI boosting a semaphore 1211 * far in the distance past over useful work, we keep a history 1212 * of any semaphore use along our dependency chain. 1213 */ 1214 if (!(request->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN)) 1215 attr.priority |= I915_PRIORITY_NOSEMAPHORE; 1216 1217 /* 1218 * Boost priorities to new clients (new request flows). 1219 * 1220 * Allow interactive/synchronous clients to jump ahead of 1221 * the bulk clients. (FQ_CODEL) 1222 */ 1223 if (list_empty(&request->sched.signalers_list)) 1224 attr.priority |= I915_PRIORITY_WAIT; 1225 1226 engine->schedule(request, &attr); 1227 } 1228 rcu_read_unlock(); 1229 i915_sw_fence_commit(&request->submit); 1230 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 1231 1232 /* 1233 * In typical scenarios, we do not expect the previous request on 1234 * the timeline to be still tracked by timeline->last_request if it 1235 * has been completed. If the completed request is still here, that 1236 * implies that request retirement is a long way behind submission, 1237 * suggesting that we haven't been retiring frequently enough from 1238 * the combination of retire-before-alloc, waiters and the background 1239 * retirement worker. So if the last request on this timeline was 1240 * already completed, do a catch up pass, flushing the retirement queue 1241 * up to this client. Since we have now moved the heaviest operations 1242 * during retirement onto secondary workers, such as freeing objects 1243 * or contexts, retiring a bunch of requests is mostly list management 1244 * (and cache misses), and so we should not be overly penalizing this 1245 * client by performing excess work, though we may still performing 1246 * work on behalf of others -- but instead we should benefit from 1247 * improved resource management. (Well, that's the theory at least.) 1248 */ 1249 if (prev && i915_request_completed(prev)) 1250 i915_request_retire_upto(prev); 1251 1252 mutex_unlock(&request->timeline->mutex); 1253 } 1254 1255 static unsigned long local_clock_us(unsigned int *cpu) 1256 { 1257 unsigned long t; 1258 1259 /* 1260 * Cheaply and approximately convert from nanoseconds to microseconds. 1261 * The result and subsequent calculations are also defined in the same 1262 * approximate microseconds units. The principal source of timing 1263 * error here is from the simple truncation. 1264 * 1265 * Note that local_clock() is only defined wrt to the current CPU; 1266 * the comparisons are no longer valid if we switch CPUs. Instead of 1267 * blocking preemption for the entire busywait, we can detect the CPU 1268 * switch and use that as indicator of system load and a reason to 1269 * stop busywaiting, see busywait_stop(). 1270 */ 1271 *cpu = get_cpu(); 1272 t = local_clock() >> 10; 1273 put_cpu(); 1274 1275 return t; 1276 } 1277 1278 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1279 { 1280 unsigned int this_cpu; 1281 1282 if (time_after(local_clock_us(&this_cpu), timeout)) 1283 return true; 1284 1285 return this_cpu != cpu; 1286 } 1287 1288 static bool __i915_spin_request(const struct i915_request * const rq, 1289 int state, unsigned long timeout_us) 1290 { 1291 unsigned int cpu; 1292 1293 /* 1294 * Only wait for the request if we know it is likely to complete. 1295 * 1296 * We don't track the timestamps around requests, nor the average 1297 * request length, so we do not have a good indicator that this 1298 * request will complete within the timeout. What we do know is the 1299 * order in which requests are executed by the context and so we can 1300 * tell if the request has been started. If the request is not even 1301 * running yet, it is a fair assumption that it will not complete 1302 * within our relatively short timeout. 1303 */ 1304 if (!i915_request_is_running(rq)) 1305 return false; 1306 1307 /* 1308 * When waiting for high frequency requests, e.g. during synchronous 1309 * rendering split between the CPU and GPU, the finite amount of time 1310 * required to set up the irq and wait upon it limits the response 1311 * rate. By busywaiting on the request completion for a short while we 1312 * can service the high frequency waits as quick as possible. However, 1313 * if it is a slow request, we want to sleep as quickly as possible. 1314 * The tradeoff between waiting and sleeping is roughly the time it 1315 * takes to sleep on a request, on the order of a microsecond. 1316 */ 1317 1318 timeout_us += local_clock_us(&cpu); 1319 do { 1320 if (i915_request_completed(rq)) 1321 return true; 1322 1323 if (signal_pending_state(state, current)) 1324 break; 1325 1326 if (busywait_stop(timeout_us, cpu)) 1327 break; 1328 1329 cpu_relax(); 1330 } while (!need_resched()); 1331 1332 return false; 1333 } 1334 1335 struct request_wait { 1336 struct dma_fence_cb cb; 1337 struct task_struct *tsk; 1338 }; 1339 1340 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1341 { 1342 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1343 1344 wake_up_process(wait->tsk); 1345 } 1346 1347 /** 1348 * i915_request_wait - wait until execution of request has finished 1349 * @rq: the request to wait upon 1350 * @flags: how to wait 1351 * @timeout: how long to wait in jiffies 1352 * 1353 * i915_request_wait() waits for the request to be completed, for a 1354 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1355 * unbounded wait). 1356 * 1357 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED 1358 * in via the flags, and vice versa if the struct_mutex is not held, the caller 1359 * must not specify that the wait is locked. 1360 * 1361 * Returns the remaining time (in jiffies) if the request completed, which may 1362 * be zero or -ETIME if the request is unfinished after the timeout expires. 1363 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1364 * pending before the request completes. 1365 */ 1366 long i915_request_wait(struct i915_request *rq, 1367 unsigned int flags, 1368 long timeout) 1369 { 1370 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1371 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1372 struct request_wait wait; 1373 1374 might_sleep(); 1375 GEM_BUG_ON(timeout < 0); 1376 1377 if (i915_request_completed(rq)) 1378 return timeout; 1379 1380 if (!timeout) 1381 return -ETIME; 1382 1383 trace_i915_request_wait_begin(rq, flags); 1384 1385 /* Optimistic short spin before touching IRQs */ 1386 if (__i915_spin_request(rq, state, 5)) 1387 goto out; 1388 1389 /* 1390 * This client is about to stall waiting for the GPU. In many cases 1391 * this is undesirable and limits the throughput of the system, as 1392 * many clients cannot continue processing user input/output whilst 1393 * blocked. RPS autotuning may take tens of milliseconds to respond 1394 * to the GPU load and thus incurs additional latency for the client. 1395 * We can circumvent that by promoting the GPU frequency to maximum 1396 * before we sleep. This makes the GPU throttle up much more quickly 1397 * (good for benchmarks and user experience, e.g. window animations), 1398 * but at a cost of spending more power processing the workload 1399 * (bad for battery). 1400 */ 1401 if (flags & I915_WAIT_PRIORITY) { 1402 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6) 1403 gen6_rps_boost(rq); 1404 local_bh_disable(); /* suspend tasklets for reprioritisation */ 1405 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT); 1406 local_bh_enable(); /* kick tasklets en masse */ 1407 } 1408 1409 wait.tsk = current; 1410 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1411 goto out; 1412 1413 for (;;) { 1414 set_current_state(state); 1415 1416 if (i915_request_completed(rq)) 1417 break; 1418 1419 if (signal_pending_state(state, current)) { 1420 timeout = -ERESTARTSYS; 1421 break; 1422 } 1423 1424 if (!timeout) { 1425 timeout = -ETIME; 1426 break; 1427 } 1428 1429 timeout = io_schedule_timeout(timeout); 1430 } 1431 __set_current_state(TASK_RUNNING); 1432 1433 dma_fence_remove_callback(&rq->fence, &wait.cb); 1434 1435 out: 1436 trace_i915_request_wait_end(rq); 1437 return timeout; 1438 } 1439 1440 void i915_retire_requests(struct drm_i915_private *i915) 1441 { 1442 struct intel_ring *ring, *tmp; 1443 1444 lockdep_assert_held(&i915->drm.struct_mutex); 1445 1446 if (!i915->gt.active_requests) 1447 return; 1448 1449 list_for_each_entry_safe(ring, tmp, 1450 &i915->gt.active_rings, active_link) { 1451 intel_ring_get(ring); /* last rq holds reference! */ 1452 ring_retire_requests(ring); 1453 intel_ring_put(ring); 1454 } 1455 } 1456 1457 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1458 #include "selftests/mock_request.c" 1459 #include "selftests/i915_request.c" 1460 #endif 1461 1462 static void i915_global_request_shrink(void) 1463 { 1464 kmem_cache_shrink(global.slab_dependencies); 1465 kmem_cache_shrink(global.slab_execute_cbs); 1466 kmem_cache_shrink(global.slab_requests); 1467 } 1468 1469 static void i915_global_request_exit(void) 1470 { 1471 kmem_cache_destroy(global.slab_dependencies); 1472 kmem_cache_destroy(global.slab_execute_cbs); 1473 kmem_cache_destroy(global.slab_requests); 1474 } 1475 1476 static struct i915_global_request global = { { 1477 .shrink = i915_global_request_shrink, 1478 .exit = i915_global_request_exit, 1479 } }; 1480 1481 int __init i915_global_request_init(void) 1482 { 1483 global.slab_requests = KMEM_CACHE(i915_request, 1484 SLAB_HWCACHE_ALIGN | 1485 SLAB_RECLAIM_ACCOUNT | 1486 SLAB_TYPESAFE_BY_RCU); 1487 if (!global.slab_requests) 1488 return -ENOMEM; 1489 1490 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1491 SLAB_HWCACHE_ALIGN | 1492 SLAB_RECLAIM_ACCOUNT | 1493 SLAB_TYPESAFE_BY_RCU); 1494 if (!global.slab_execute_cbs) 1495 goto err_requests; 1496 1497 global.slab_dependencies = KMEM_CACHE(i915_dependency, 1498 SLAB_HWCACHE_ALIGN | 1499 SLAB_RECLAIM_ACCOUNT); 1500 if (!global.slab_dependencies) 1501 goto err_execute_cbs; 1502 1503 i915_global_register(&global.base); 1504 return 0; 1505 1506 err_execute_cbs: 1507 kmem_cache_destroy(global.slab_execute_cbs); 1508 err_requests: 1509 kmem_cache_destroy(global.slab_requests); 1510 return -ENOMEM; 1511 } 1512