1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 33 #include "gem/i915_gem_context.h" 34 #include "gt/intel_breadcrumbs.h" 35 #include "gt/intel_context.h" 36 #include "gt/intel_ring.h" 37 #include "gt/intel_rps.h" 38 39 #include "i915_active.h" 40 #include "i915_drv.h" 41 #include "i915_globals.h" 42 #include "i915_trace.h" 43 #include "intel_pm.h" 44 45 struct execute_cb { 46 struct irq_work work; 47 struct i915_sw_fence *fence; 48 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 49 struct i915_request *signal; 50 }; 51 52 static struct i915_global_request { 53 struct i915_global base; 54 struct kmem_cache *slab_requests; 55 struct kmem_cache *slab_execute_cbs; 56 } global; 57 58 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 59 { 60 return dev_name(to_request(fence)->engine->i915->drm.dev); 61 } 62 63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 64 { 65 const struct i915_gem_context *ctx; 66 67 /* 68 * The timeline struct (as part of the ppgtt underneath a context) 69 * may be freed when the request is no longer in use by the GPU. 70 * We could extend the life of a context to beyond that of all 71 * fences, possibly keeping the hw resource around indefinitely, 72 * or we just give them a false name. Since 73 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 74 * lie seems justifiable. 75 */ 76 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 77 return "signaled"; 78 79 ctx = i915_request_gem_context(to_request(fence)); 80 if (!ctx) 81 return "[" DRIVER_NAME "]"; 82 83 return ctx->name; 84 } 85 86 static bool i915_fence_signaled(struct dma_fence *fence) 87 { 88 return i915_request_completed(to_request(fence)); 89 } 90 91 static bool i915_fence_enable_signaling(struct dma_fence *fence) 92 { 93 return i915_request_enable_breadcrumb(to_request(fence)); 94 } 95 96 static signed long i915_fence_wait(struct dma_fence *fence, 97 bool interruptible, 98 signed long timeout) 99 { 100 return i915_request_wait(to_request(fence), 101 interruptible | I915_WAIT_PRIORITY, 102 timeout); 103 } 104 105 struct kmem_cache *i915_request_slab_cache(void) 106 { 107 return global.slab_requests; 108 } 109 110 static void i915_fence_release(struct dma_fence *fence) 111 { 112 struct i915_request *rq = to_request(fence); 113 114 /* 115 * The request is put onto a RCU freelist (i.e. the address 116 * is immediately reused), mark the fences as being freed now. 117 * Otherwise the debugobjects for the fences are only marked as 118 * freed when the slab cache itself is freed, and so we would get 119 * caught trying to reuse dead objects. 120 */ 121 i915_sw_fence_fini(&rq->submit); 122 i915_sw_fence_fini(&rq->semaphore); 123 124 /* 125 * Keep one request on each engine for reserved use under mempressure 126 * 127 * We do not hold a reference to the engine here and so have to be 128 * very careful in what rq->engine we poke. The virtual engine is 129 * referenced via the rq->context and we released that ref during 130 * i915_request_retire(), ergo we must not dereference a virtual 131 * engine here. Not that we would want to, as the only consumer of 132 * the reserved engine->request_pool is the power management parking, 133 * which must-not-fail, and that is only run on the physical engines. 134 * 135 * Since the request must have been executed to be have completed, 136 * we know that it will have been processed by the HW and will 137 * not be unsubmitted again, so rq->engine and rq->execution_mask 138 * at this point is stable. rq->execution_mask will be a single 139 * bit if the last and _only_ engine it could execution on was a 140 * physical engine, if it's multiple bits then it started on and 141 * could still be on a virtual engine. Thus if the mask is not a 142 * power-of-two we assume that rq->engine may still be a virtual 143 * engine and so a dangling invalid pointer that we cannot dereference 144 * 145 * For example, consider the flow of a bonded request through a virtual 146 * engine. The request is created with a wide engine mask (all engines 147 * that we might execute on). On processing the bond, the request mask 148 * is reduced to one or more engines. If the request is subsequently 149 * bound to a single engine, it will then be constrained to only 150 * execute on that engine and never returned to the virtual engine 151 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 152 * know that if the rq->execution_mask is a single bit, rq->engine 153 * can be a physical engine with the exact corresponding mask. 154 */ 155 if (is_power_of_2(rq->execution_mask) && 156 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 157 return; 158 159 kmem_cache_free(global.slab_requests, rq); 160 } 161 162 const struct dma_fence_ops i915_fence_ops = { 163 .get_driver_name = i915_fence_get_driver_name, 164 .get_timeline_name = i915_fence_get_timeline_name, 165 .enable_signaling = i915_fence_enable_signaling, 166 .signaled = i915_fence_signaled, 167 .wait = i915_fence_wait, 168 .release = i915_fence_release, 169 }; 170 171 static void irq_execute_cb(struct irq_work *wrk) 172 { 173 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 174 175 i915_sw_fence_complete(cb->fence); 176 kmem_cache_free(global.slab_execute_cbs, cb); 177 } 178 179 static void irq_execute_cb_hook(struct irq_work *wrk) 180 { 181 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 182 183 cb->hook(container_of(cb->fence, struct i915_request, submit), 184 &cb->signal->fence); 185 i915_request_put(cb->signal); 186 187 irq_execute_cb(wrk); 188 } 189 190 static __always_inline void 191 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 192 { 193 struct execute_cb *cb, *cn; 194 195 if (llist_empty(&rq->execute_cb)) 196 return; 197 198 llist_for_each_entry_safe(cb, cn, 199 llist_del_all(&rq->execute_cb), 200 work.node.llist) 201 fn(&cb->work); 202 } 203 204 static void __notify_execute_cb_irq(struct i915_request *rq) 205 { 206 __notify_execute_cb(rq, irq_work_queue); 207 } 208 209 static bool irq_work_imm(struct irq_work *wrk) 210 { 211 wrk->func(wrk); 212 return false; 213 } 214 215 static void __notify_execute_cb_imm(struct i915_request *rq) 216 { 217 __notify_execute_cb(rq, irq_work_imm); 218 } 219 220 static void free_capture_list(struct i915_request *request) 221 { 222 struct i915_capture_list *capture; 223 224 capture = fetch_and_zero(&request->capture_list); 225 while (capture) { 226 struct i915_capture_list *next = capture->next; 227 228 kfree(capture); 229 capture = next; 230 } 231 } 232 233 static void __i915_request_fill(struct i915_request *rq, u8 val) 234 { 235 void *vaddr = rq->ring->vaddr; 236 u32 head; 237 238 head = rq->infix; 239 if (rq->postfix < head) { 240 memset(vaddr + head, val, rq->ring->size - head); 241 head = 0; 242 } 243 memset(vaddr + head, val, rq->postfix - head); 244 } 245 246 static void remove_from_engine(struct i915_request *rq) 247 { 248 struct intel_engine_cs *engine, *locked; 249 250 /* 251 * Virtual engines complicate acquiring the engine timeline lock, 252 * as their rq->engine pointer is not stable until under that 253 * engine lock. The simple ploy we use is to take the lock then 254 * check that the rq still belongs to the newly locked engine. 255 */ 256 locked = READ_ONCE(rq->engine); 257 spin_lock_irq(&locked->active.lock); 258 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 259 spin_unlock(&locked->active.lock); 260 spin_lock(&engine->active.lock); 261 locked = engine; 262 } 263 list_del_init(&rq->sched.link); 264 265 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 266 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 267 268 /* Prevent further __await_execution() registering a cb, then flush */ 269 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 270 271 spin_unlock_irq(&locked->active.lock); 272 273 __notify_execute_cb_imm(rq); 274 } 275 276 bool i915_request_retire(struct i915_request *rq) 277 { 278 if (!i915_request_completed(rq)) 279 return false; 280 281 RQ_TRACE(rq, "\n"); 282 283 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 284 trace_i915_request_retire(rq); 285 i915_request_mark_complete(rq); 286 287 /* 288 * We know the GPU must have read the request to have 289 * sent us the seqno + interrupt, so use the position 290 * of tail of the request to update the last known position 291 * of the GPU head. 292 * 293 * Note this requires that we are always called in request 294 * completion order. 295 */ 296 GEM_BUG_ON(!list_is_first(&rq->link, 297 &i915_request_timeline(rq)->requests)); 298 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 299 /* Poison before we release our space in the ring */ 300 __i915_request_fill(rq, POISON_FREE); 301 rq->ring->head = rq->postfix; 302 303 if (!i915_request_signaled(rq)) { 304 spin_lock_irq(&rq->lock); 305 dma_fence_signal_locked(&rq->fence); 306 spin_unlock_irq(&rq->lock); 307 } 308 309 if (i915_request_has_waitboost(rq)) { 310 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters)); 311 atomic_dec(&rq->engine->gt->rps.num_waiters); 312 } 313 314 /* 315 * We only loosely track inflight requests across preemption, 316 * and so we may find ourselves attempting to retire a _completed_ 317 * request that we have removed from the HW and put back on a run 318 * queue. 319 * 320 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 321 * after removing the breadcrumb and signaling it, so that we do not 322 * inadvertently attach the breadcrumb to a completed request. 323 */ 324 remove_from_engine(rq); 325 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 326 327 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 328 329 intel_context_exit(rq->context); 330 intel_context_unpin(rq->context); 331 332 free_capture_list(rq); 333 i915_sched_node_fini(&rq->sched); 334 i915_request_put(rq); 335 336 return true; 337 } 338 339 void i915_request_retire_upto(struct i915_request *rq) 340 { 341 struct intel_timeline * const tl = i915_request_timeline(rq); 342 struct i915_request *tmp; 343 344 RQ_TRACE(rq, "\n"); 345 346 GEM_BUG_ON(!i915_request_completed(rq)); 347 348 do { 349 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 350 } while (i915_request_retire(tmp) && tmp != rq); 351 } 352 353 static struct i915_request * const * 354 __engine_active(struct intel_engine_cs *engine) 355 { 356 return READ_ONCE(engine->execlists.active); 357 } 358 359 static bool __request_in_flight(const struct i915_request *signal) 360 { 361 struct i915_request * const *port, *rq; 362 bool inflight = false; 363 364 if (!i915_request_is_ready(signal)) 365 return false; 366 367 /* 368 * Even if we have unwound the request, it may still be on 369 * the GPU (preempt-to-busy). If that request is inside an 370 * unpreemptible critical section, it will not be removed. Some 371 * GPU functions may even be stuck waiting for the paired request 372 * (__await_execution) to be submitted and cannot be preempted 373 * until the bond is executing. 374 * 375 * As we know that there are always preemption points between 376 * requests, we know that only the currently executing request 377 * may be still active even though we have cleared the flag. 378 * However, we can't rely on our tracking of ELSP[0] to know 379 * which request is currently active and so maybe stuck, as 380 * the tracking maybe an event behind. Instead assume that 381 * if the context is still inflight, then it is still active 382 * even if the active flag has been cleared. 383 * 384 * To further complicate matters, if there a pending promotion, the HW 385 * may either perform a context switch to the second inflight execlists, 386 * or it may switch to the pending set of execlists. In the case of the 387 * latter, it may send the ACK and we process the event copying the 388 * pending[] over top of inflight[], _overwriting_ our *active. Since 389 * this implies the HW is arbitrating and not struck in *active, we do 390 * not worry about complete accuracy, but we do require no read/write 391 * tearing of the pointer [the read of the pointer must be valid, even 392 * as the array is being overwritten, for which we require the writes 393 * to avoid tearing.] 394 * 395 * Note that the read of *execlists->active may race with the promotion 396 * of execlists->pending[] to execlists->inflight[], overwritting 397 * the value at *execlists->active. This is fine. The promotion implies 398 * that we received an ACK from the HW, and so the context is not 399 * stuck -- if we do not see ourselves in *active, the inflight status 400 * is valid. If instead we see ourselves being copied into *active, 401 * we are inflight and may signal the callback. 402 */ 403 if (!intel_context_inflight(signal->context)) 404 return false; 405 406 rcu_read_lock(); 407 for (port = __engine_active(signal->engine); 408 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 409 port++) { 410 if (rq->context == signal->context) { 411 inflight = i915_seqno_passed(rq->fence.seqno, 412 signal->fence.seqno); 413 break; 414 } 415 } 416 rcu_read_unlock(); 417 418 return inflight; 419 } 420 421 static int 422 __await_execution(struct i915_request *rq, 423 struct i915_request *signal, 424 void (*hook)(struct i915_request *rq, 425 struct dma_fence *signal), 426 gfp_t gfp) 427 { 428 struct execute_cb *cb; 429 430 if (i915_request_is_active(signal)) { 431 if (hook) 432 hook(rq, &signal->fence); 433 return 0; 434 } 435 436 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 437 if (!cb) 438 return -ENOMEM; 439 440 cb->fence = &rq->submit; 441 i915_sw_fence_await(cb->fence); 442 init_irq_work(&cb->work, irq_execute_cb); 443 444 if (hook) { 445 cb->hook = hook; 446 cb->signal = i915_request_get(signal); 447 cb->work.func = irq_execute_cb_hook; 448 } 449 450 /* 451 * Register the callback first, then see if the signaler is already 452 * active. This ensures that if we race with the 453 * __notify_execute_cb from i915_request_submit() and we are not 454 * included in that list, we get a second bite of the cherry and 455 * execute it ourselves. After this point, a future 456 * i915_request_submit() will notify us. 457 * 458 * In i915_request_retire() we set the ACTIVE bit on a completed 459 * request (then flush the execute_cb). So by registering the 460 * callback first, then checking the ACTIVE bit, we serialise with 461 * the completed/retired request. 462 */ 463 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) { 464 if (i915_request_is_active(signal) || 465 __request_in_flight(signal)) 466 __notify_execute_cb_imm(signal); 467 } 468 469 return 0; 470 } 471 472 static bool fatal_error(int error) 473 { 474 switch (error) { 475 case 0: /* not an error! */ 476 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 477 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 478 return false; 479 default: 480 return true; 481 } 482 } 483 484 void __i915_request_skip(struct i915_request *rq) 485 { 486 GEM_BUG_ON(!fatal_error(rq->fence.error)); 487 488 if (rq->infix == rq->postfix) 489 return; 490 491 /* 492 * As this request likely depends on state from the lost 493 * context, clear out all the user operations leaving the 494 * breadcrumb at the end (so we get the fence notifications). 495 */ 496 __i915_request_fill(rq, 0); 497 rq->infix = rq->postfix; 498 } 499 500 void i915_request_set_error_once(struct i915_request *rq, int error) 501 { 502 int old; 503 504 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 505 506 if (i915_request_signaled(rq)) 507 return; 508 509 old = READ_ONCE(rq->fence.error); 510 do { 511 if (fatal_error(old)) 512 return; 513 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 514 } 515 516 bool __i915_request_submit(struct i915_request *request) 517 { 518 struct intel_engine_cs *engine = request->engine; 519 bool result = false; 520 521 RQ_TRACE(request, "\n"); 522 523 GEM_BUG_ON(!irqs_disabled()); 524 lockdep_assert_held(&engine->active.lock); 525 526 /* 527 * With the advent of preempt-to-busy, we frequently encounter 528 * requests that we have unsubmitted from HW, but left running 529 * until the next ack and so have completed in the meantime. On 530 * resubmission of that completed request, we can skip 531 * updating the payload, and execlists can even skip submitting 532 * the request. 533 * 534 * We must remove the request from the caller's priority queue, 535 * and the caller must only call us when the request is in their 536 * priority queue, under the active.lock. This ensures that the 537 * request has *not* yet been retired and we can safely move 538 * the request into the engine->active.list where it will be 539 * dropped upon retiring. (Otherwise if resubmit a *retired* 540 * request, this would be a horrible use-after-free.) 541 */ 542 if (i915_request_completed(request)) 543 goto xfer; 544 545 if (unlikely(intel_context_is_closed(request->context) && 546 !intel_engine_has_heartbeat(engine))) 547 intel_context_set_banned(request->context); 548 549 if (unlikely(intel_context_is_banned(request->context))) 550 i915_request_set_error_once(request, -EIO); 551 552 if (unlikely(fatal_error(request->fence.error))) 553 __i915_request_skip(request); 554 555 /* 556 * Are we using semaphores when the gpu is already saturated? 557 * 558 * Using semaphores incurs a cost in having the GPU poll a 559 * memory location, busywaiting for it to change. The continual 560 * memory reads can have a noticeable impact on the rest of the 561 * system with the extra bus traffic, stalling the cpu as it too 562 * tries to access memory across the bus (perf stat -e bus-cycles). 563 * 564 * If we installed a semaphore on this request and we only submit 565 * the request after the signaler completed, that indicates the 566 * system is overloaded and using semaphores at this time only 567 * increases the amount of work we are doing. If so, we disable 568 * further use of semaphores until we are idle again, whence we 569 * optimistically try again. 570 */ 571 if (request->sched.semaphores && 572 i915_sw_fence_signaled(&request->semaphore)) 573 engine->saturated |= request->sched.semaphores; 574 575 engine->emit_fini_breadcrumb(request, 576 request->ring->vaddr + request->postfix); 577 578 trace_i915_request_execute(request); 579 engine->serial++; 580 result = true; 581 582 xfer: 583 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) { 584 list_move_tail(&request->sched.link, &engine->active.requests); 585 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 586 } 587 588 /* 589 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 590 * 591 * In the future, perhaps when we have an active time-slicing scheduler, 592 * it will be interesting to unsubmit parallel execution and remove 593 * busywaits from the GPU until their master is restarted. This is 594 * quite hairy, we have to carefully rollback the fence and do a 595 * preempt-to-idle cycle on the target engine, all the while the 596 * master execute_cb may refire. 597 */ 598 __notify_execute_cb_irq(request); 599 600 /* We may be recursing from the signal callback of another i915 fence */ 601 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 602 i915_request_enable_breadcrumb(request); 603 604 return result; 605 } 606 607 void i915_request_submit(struct i915_request *request) 608 { 609 struct intel_engine_cs *engine = request->engine; 610 unsigned long flags; 611 612 /* Will be called from irq-context when using foreign fences. */ 613 spin_lock_irqsave(&engine->active.lock, flags); 614 615 __i915_request_submit(request); 616 617 spin_unlock_irqrestore(&engine->active.lock, flags); 618 } 619 620 void __i915_request_unsubmit(struct i915_request *request) 621 { 622 struct intel_engine_cs *engine = request->engine; 623 624 /* 625 * Only unwind in reverse order, required so that the per-context list 626 * is kept in seqno/ring order. 627 */ 628 RQ_TRACE(request, "\n"); 629 630 GEM_BUG_ON(!irqs_disabled()); 631 lockdep_assert_held(&engine->active.lock); 632 633 /* 634 * Before we remove this breadcrumb from the signal list, we have 635 * to ensure that a concurrent dma_fence_enable_signaling() does not 636 * attach itself. We first mark the request as no longer active and 637 * make sure that is visible to other cores, and then remove the 638 * breadcrumb if attached. 639 */ 640 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 641 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 642 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 643 i915_request_cancel_breadcrumb(request); 644 645 /* We've already spun, don't charge on resubmitting. */ 646 if (request->sched.semaphores && i915_request_started(request)) 647 request->sched.semaphores = 0; 648 649 /* 650 * We don't need to wake_up any waiters on request->execute, they 651 * will get woken by any other event or us re-adding this request 652 * to the engine timeline (__i915_request_submit()). The waiters 653 * should be quite adapt at finding that the request now has a new 654 * global_seqno to the one they went to sleep on. 655 */ 656 } 657 658 void i915_request_unsubmit(struct i915_request *request) 659 { 660 struct intel_engine_cs *engine = request->engine; 661 unsigned long flags; 662 663 /* Will be called from irq-context when using foreign fences. */ 664 spin_lock_irqsave(&engine->active.lock, flags); 665 666 __i915_request_unsubmit(request); 667 668 spin_unlock_irqrestore(&engine->active.lock, flags); 669 } 670 671 static int __i915_sw_fence_call 672 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 673 { 674 struct i915_request *request = 675 container_of(fence, typeof(*request), submit); 676 677 switch (state) { 678 case FENCE_COMPLETE: 679 trace_i915_request_submit(request); 680 681 if (unlikely(fence->error)) 682 i915_request_set_error_once(request, fence->error); 683 684 /* 685 * We need to serialize use of the submit_request() callback 686 * with its hotplugging performed during an emergency 687 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 688 * critical section in order to force i915_gem_set_wedged() to 689 * wait until the submit_request() is completed before 690 * proceeding. 691 */ 692 rcu_read_lock(); 693 request->engine->submit_request(request); 694 rcu_read_unlock(); 695 break; 696 697 case FENCE_FREE: 698 i915_request_put(request); 699 break; 700 } 701 702 return NOTIFY_DONE; 703 } 704 705 static int __i915_sw_fence_call 706 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 707 { 708 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 709 710 switch (state) { 711 case FENCE_COMPLETE: 712 break; 713 714 case FENCE_FREE: 715 i915_request_put(rq); 716 break; 717 } 718 719 return NOTIFY_DONE; 720 } 721 722 static void retire_requests(struct intel_timeline *tl) 723 { 724 struct i915_request *rq, *rn; 725 726 list_for_each_entry_safe(rq, rn, &tl->requests, link) 727 if (!i915_request_retire(rq)) 728 break; 729 } 730 731 static noinline struct i915_request * 732 request_alloc_slow(struct intel_timeline *tl, 733 struct i915_request **rsvd, 734 gfp_t gfp) 735 { 736 struct i915_request *rq; 737 738 /* If we cannot wait, dip into our reserves */ 739 if (!gfpflags_allow_blocking(gfp)) { 740 rq = xchg(rsvd, NULL); 741 if (!rq) /* Use the normal failure path for one final WARN */ 742 goto out; 743 744 return rq; 745 } 746 747 if (list_empty(&tl->requests)) 748 goto out; 749 750 /* Move our oldest request to the slab-cache (if not in use!) */ 751 rq = list_first_entry(&tl->requests, typeof(*rq), link); 752 i915_request_retire(rq); 753 754 rq = kmem_cache_alloc(global.slab_requests, 755 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 756 if (rq) 757 return rq; 758 759 /* Ratelimit ourselves to prevent oom from malicious clients */ 760 rq = list_last_entry(&tl->requests, typeof(*rq), link); 761 cond_synchronize_rcu(rq->rcustate); 762 763 /* Retire our old requests in the hope that we free some */ 764 retire_requests(tl); 765 766 out: 767 return kmem_cache_alloc(global.slab_requests, gfp); 768 } 769 770 static void __i915_request_ctor(void *arg) 771 { 772 struct i915_request *rq = arg; 773 774 spin_lock_init(&rq->lock); 775 i915_sched_node_init(&rq->sched); 776 i915_sw_fence_init(&rq->submit, submit_notify); 777 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 778 779 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0); 780 781 rq->capture_list = NULL; 782 783 init_llist_head(&rq->execute_cb); 784 } 785 786 struct i915_request * 787 __i915_request_create(struct intel_context *ce, gfp_t gfp) 788 { 789 struct intel_timeline *tl = ce->timeline; 790 struct i915_request *rq; 791 u32 seqno; 792 int ret; 793 794 might_sleep_if(gfpflags_allow_blocking(gfp)); 795 796 /* Check that the caller provided an already pinned context */ 797 __intel_context_pin(ce); 798 799 /* 800 * Beware: Dragons be flying overhead. 801 * 802 * We use RCU to look up requests in flight. The lookups may 803 * race with the request being allocated from the slab freelist. 804 * That is the request we are writing to here, may be in the process 805 * of being read by __i915_active_request_get_rcu(). As such, 806 * we have to be very careful when overwriting the contents. During 807 * the RCU lookup, we change chase the request->engine pointer, 808 * read the request->global_seqno and increment the reference count. 809 * 810 * The reference count is incremented atomically. If it is zero, 811 * the lookup knows the request is unallocated and complete. Otherwise, 812 * it is either still in use, or has been reallocated and reset 813 * with dma_fence_init(). This increment is safe for release as we 814 * check that the request we have a reference to and matches the active 815 * request. 816 * 817 * Before we increment the refcount, we chase the request->engine 818 * pointer. We must not call kmem_cache_zalloc() or else we set 819 * that pointer to NULL and cause a crash during the lookup. If 820 * we see the request is completed (based on the value of the 821 * old engine and seqno), the lookup is complete and reports NULL. 822 * If we decide the request is not completed (new engine or seqno), 823 * then we grab a reference and double check that it is still the 824 * active request - which it won't be and restart the lookup. 825 * 826 * Do not use kmem_cache_zalloc() here! 827 */ 828 rq = kmem_cache_alloc(global.slab_requests, 829 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 830 if (unlikely(!rq)) { 831 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 832 if (!rq) { 833 ret = -ENOMEM; 834 goto err_unreserve; 835 } 836 } 837 838 rq->context = ce; 839 rq->engine = ce->engine; 840 rq->ring = ce->ring; 841 rq->execution_mask = ce->engine->mask; 842 843 kref_init(&rq->fence.refcount); 844 rq->fence.flags = 0; 845 rq->fence.error = 0; 846 INIT_LIST_HEAD(&rq->fence.cb_list); 847 848 ret = intel_timeline_get_seqno(tl, rq, &seqno); 849 if (ret) 850 goto err_free; 851 852 rq->fence.context = tl->fence_context; 853 rq->fence.seqno = seqno; 854 855 RCU_INIT_POINTER(rq->timeline, tl); 856 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 857 rq->hwsp_seqno = tl->hwsp_seqno; 858 GEM_BUG_ON(i915_request_completed(rq)); 859 860 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 861 862 /* We bump the ref for the fence chain */ 863 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 864 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 865 866 i915_sched_node_reinit(&rq->sched); 867 868 /* No zalloc, everything must be cleared after use */ 869 rq->batch = NULL; 870 GEM_BUG_ON(rq->capture_list); 871 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 872 873 /* 874 * Reserve space in the ring buffer for all the commands required to 875 * eventually emit this request. This is to guarantee that the 876 * i915_request_add() call can't fail. Note that the reserve may need 877 * to be redone if the request is not actually submitted straight 878 * away, e.g. because a GPU scheduler has deferred it. 879 * 880 * Note that due to how we add reserved_space to intel_ring_begin() 881 * we need to double our request to ensure that if we need to wrap 882 * around inside i915_request_add() there is sufficient space at 883 * the beginning of the ring as well. 884 */ 885 rq->reserved_space = 886 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 887 888 /* 889 * Record the position of the start of the request so that 890 * should we detect the updated seqno part-way through the 891 * GPU processing the request, we never over-estimate the 892 * position of the head. 893 */ 894 rq->head = rq->ring->emit; 895 896 ret = rq->engine->request_alloc(rq); 897 if (ret) 898 goto err_unwind; 899 900 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 901 902 intel_context_mark_active(ce); 903 list_add_tail_rcu(&rq->link, &tl->requests); 904 905 return rq; 906 907 err_unwind: 908 ce->ring->emit = rq->head; 909 910 /* Make sure we didn't add ourselves to external state before freeing */ 911 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 912 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 913 914 err_free: 915 kmem_cache_free(global.slab_requests, rq); 916 err_unreserve: 917 intel_context_unpin(ce); 918 return ERR_PTR(ret); 919 } 920 921 struct i915_request * 922 i915_request_create(struct intel_context *ce) 923 { 924 struct i915_request *rq; 925 struct intel_timeline *tl; 926 927 tl = intel_context_timeline_lock(ce); 928 if (IS_ERR(tl)) 929 return ERR_CAST(tl); 930 931 /* Move our oldest request to the slab-cache (if not in use!) */ 932 rq = list_first_entry(&tl->requests, typeof(*rq), link); 933 if (!list_is_last(&rq->link, &tl->requests)) 934 i915_request_retire(rq); 935 936 intel_context_enter(ce); 937 rq = __i915_request_create(ce, GFP_KERNEL); 938 intel_context_exit(ce); /* active reference transferred to request */ 939 if (IS_ERR(rq)) 940 goto err_unlock; 941 942 /* Check that we do not interrupt ourselves with a new request */ 943 rq->cookie = lockdep_pin_lock(&tl->mutex); 944 945 return rq; 946 947 err_unlock: 948 intel_context_timeline_unlock(tl); 949 return rq; 950 } 951 952 static int 953 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 954 { 955 struct dma_fence *fence; 956 int err; 957 958 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 959 return 0; 960 961 if (i915_request_started(signal)) 962 return 0; 963 964 fence = NULL; 965 rcu_read_lock(); 966 spin_lock_irq(&signal->lock); 967 do { 968 struct list_head *pos = READ_ONCE(signal->link.prev); 969 struct i915_request *prev; 970 971 /* Confirm signal has not been retired, the link is valid */ 972 if (unlikely(i915_request_started(signal))) 973 break; 974 975 /* Is signal the earliest request on its timeline? */ 976 if (pos == &rcu_dereference(signal->timeline)->requests) 977 break; 978 979 /* 980 * Peek at the request before us in the timeline. That 981 * request will only be valid before it is retired, so 982 * after acquiring a reference to it, confirm that it is 983 * still part of the signaler's timeline. 984 */ 985 prev = list_entry(pos, typeof(*prev), link); 986 if (!i915_request_get_rcu(prev)) 987 break; 988 989 /* After the strong barrier, confirm prev is still attached */ 990 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 991 i915_request_put(prev); 992 break; 993 } 994 995 fence = &prev->fence; 996 } while (0); 997 spin_unlock_irq(&signal->lock); 998 rcu_read_unlock(); 999 if (!fence) 1000 return 0; 1001 1002 err = 0; 1003 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1004 err = i915_sw_fence_await_dma_fence(&rq->submit, 1005 fence, 0, 1006 I915_FENCE_GFP); 1007 dma_fence_put(fence); 1008 1009 return err; 1010 } 1011 1012 static intel_engine_mask_t 1013 already_busywaiting(struct i915_request *rq) 1014 { 1015 /* 1016 * Polling a semaphore causes bus traffic, delaying other users of 1017 * both the GPU and CPU. We want to limit the impact on others, 1018 * while taking advantage of early submission to reduce GPU 1019 * latency. Therefore we restrict ourselves to not using more 1020 * than one semaphore from each source, and not using a semaphore 1021 * if we have detected the engine is saturated (i.e. would not be 1022 * submitted early and cause bus traffic reading an already passed 1023 * semaphore). 1024 * 1025 * See the are-we-too-late? check in __i915_request_submit(). 1026 */ 1027 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1028 } 1029 1030 static int 1031 __emit_semaphore_wait(struct i915_request *to, 1032 struct i915_request *from, 1033 u32 seqno) 1034 { 1035 const int has_token = INTEL_GEN(to->engine->i915) >= 12; 1036 u32 hwsp_offset; 1037 int len, err; 1038 u32 *cs; 1039 1040 GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8); 1041 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1042 1043 /* We need to pin the signaler's HWSP until we are finished reading. */ 1044 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1045 if (err) 1046 return err; 1047 1048 len = 4; 1049 if (has_token) 1050 len += 2; 1051 1052 cs = intel_ring_begin(to, len); 1053 if (IS_ERR(cs)) 1054 return PTR_ERR(cs); 1055 1056 /* 1057 * Using greater-than-or-equal here means we have to worry 1058 * about seqno wraparound. To side step that issue, we swap 1059 * the timeline HWSP upon wrapping, so that everyone listening 1060 * for the old (pre-wrap) values do not see the much smaller 1061 * (post-wrap) values than they were expecting (and so wait 1062 * forever). 1063 */ 1064 *cs++ = (MI_SEMAPHORE_WAIT | 1065 MI_SEMAPHORE_GLOBAL_GTT | 1066 MI_SEMAPHORE_POLL | 1067 MI_SEMAPHORE_SAD_GTE_SDD) + 1068 has_token; 1069 *cs++ = seqno; 1070 *cs++ = hwsp_offset; 1071 *cs++ = 0; 1072 if (has_token) { 1073 *cs++ = 0; 1074 *cs++ = MI_NOOP; 1075 } 1076 1077 intel_ring_advance(to, cs); 1078 return 0; 1079 } 1080 1081 static int 1082 emit_semaphore_wait(struct i915_request *to, 1083 struct i915_request *from, 1084 gfp_t gfp) 1085 { 1086 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1087 struct i915_sw_fence *wait = &to->submit; 1088 1089 if (!intel_context_use_semaphores(to->context)) 1090 goto await_fence; 1091 1092 if (i915_request_has_initial_breadcrumb(to)) 1093 goto await_fence; 1094 1095 if (!rcu_access_pointer(from->hwsp_cacheline)) 1096 goto await_fence; 1097 1098 /* 1099 * If this or its dependents are waiting on an external fence 1100 * that may fail catastrophically, then we want to avoid using 1101 * sempahores as they bypass the fence signaling metadata, and we 1102 * lose the fence->error propagation. 1103 */ 1104 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1105 goto await_fence; 1106 1107 /* Just emit the first semaphore we see as request space is limited. */ 1108 if (already_busywaiting(to) & mask) 1109 goto await_fence; 1110 1111 if (i915_request_await_start(to, from) < 0) 1112 goto await_fence; 1113 1114 /* Only submit our spinner after the signaler is running! */ 1115 if (__await_execution(to, from, NULL, gfp)) 1116 goto await_fence; 1117 1118 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1119 goto await_fence; 1120 1121 to->sched.semaphores |= mask; 1122 wait = &to->semaphore; 1123 1124 await_fence: 1125 return i915_sw_fence_await_dma_fence(wait, 1126 &from->fence, 0, 1127 I915_FENCE_GFP); 1128 } 1129 1130 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1131 struct dma_fence *fence) 1132 { 1133 return __intel_timeline_sync_is_later(tl, 1134 fence->context, 1135 fence->seqno - 1); 1136 } 1137 1138 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1139 const struct dma_fence *fence) 1140 { 1141 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1142 } 1143 1144 static int 1145 __i915_request_await_execution(struct i915_request *to, 1146 struct i915_request *from, 1147 void (*hook)(struct i915_request *rq, 1148 struct dma_fence *signal)) 1149 { 1150 int err; 1151 1152 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1153 1154 /* Submit both requests at the same time */ 1155 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1156 if (err) 1157 return err; 1158 1159 /* Squash repeated depenendices to the same timelines */ 1160 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1161 &from->fence)) 1162 return 0; 1163 1164 /* 1165 * Wait until the start of this request. 1166 * 1167 * The execution cb fires when we submit the request to HW. But in 1168 * many cases this may be long before the request itself is ready to 1169 * run (consider that we submit 2 requests for the same context, where 1170 * the request of interest is behind an indefinite spinner). So we hook 1171 * up to both to reduce our queues and keep the execution lag minimised 1172 * in the worst case, though we hope that the await_start is elided. 1173 */ 1174 err = i915_request_await_start(to, from); 1175 if (err < 0) 1176 return err; 1177 1178 /* 1179 * Ensure both start together [after all semaphores in signal] 1180 * 1181 * Now that we are queued to the HW at roughly the same time (thanks 1182 * to the execute cb) and are ready to run at roughly the same time 1183 * (thanks to the await start), our signaler may still be indefinitely 1184 * delayed by waiting on a semaphore from a remote engine. If our 1185 * signaler depends on a semaphore, so indirectly do we, and we do not 1186 * want to start our payload until our signaler also starts theirs. 1187 * So we wait. 1188 * 1189 * However, there is also a second condition for which we need to wait 1190 * for the precise start of the signaler. Consider that the signaler 1191 * was submitted in a chain of requests following another context 1192 * (with just an ordinary intra-engine fence dependency between the 1193 * two). In this case the signaler is queued to HW, but not for 1194 * immediate execution, and so we must wait until it reaches the 1195 * active slot. 1196 */ 1197 if (intel_engine_has_semaphores(to->engine) && 1198 !i915_request_has_initial_breadcrumb(to)) { 1199 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1200 if (err < 0) 1201 return err; 1202 } 1203 1204 /* Couple the dependency tree for PI on this exposed to->fence */ 1205 if (to->engine->schedule) { 1206 err = i915_sched_node_add_dependency(&to->sched, 1207 &from->sched, 1208 I915_DEPENDENCY_WEAK); 1209 if (err < 0) 1210 return err; 1211 } 1212 1213 return intel_timeline_sync_set_start(i915_request_timeline(to), 1214 &from->fence); 1215 } 1216 1217 static void mark_external(struct i915_request *rq) 1218 { 1219 /* 1220 * The downside of using semaphores is that we lose metadata passing 1221 * along the signaling chain. This is particularly nasty when we 1222 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1223 * fatal errors we want to scrub the request before it is executed, 1224 * which means that we cannot preload the request onto HW and have 1225 * it wait upon a semaphore. 1226 */ 1227 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1228 } 1229 1230 static int 1231 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1232 { 1233 mark_external(rq); 1234 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1235 i915_fence_context_timeout(rq->engine->i915, 1236 fence->context), 1237 I915_FENCE_GFP); 1238 } 1239 1240 static int 1241 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1242 { 1243 struct dma_fence *iter; 1244 int err = 0; 1245 1246 if (!to_dma_fence_chain(fence)) 1247 return __i915_request_await_external(rq, fence); 1248 1249 dma_fence_chain_for_each(iter, fence) { 1250 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1251 1252 if (!dma_fence_is_i915(chain->fence)) { 1253 err = __i915_request_await_external(rq, iter); 1254 break; 1255 } 1256 1257 err = i915_request_await_dma_fence(rq, chain->fence); 1258 if (err < 0) 1259 break; 1260 } 1261 1262 dma_fence_put(iter); 1263 return err; 1264 } 1265 1266 int 1267 i915_request_await_execution(struct i915_request *rq, 1268 struct dma_fence *fence, 1269 void (*hook)(struct i915_request *rq, 1270 struct dma_fence *signal)) 1271 { 1272 struct dma_fence **child = &fence; 1273 unsigned int nchild = 1; 1274 int ret; 1275 1276 if (dma_fence_is_array(fence)) { 1277 struct dma_fence_array *array = to_dma_fence_array(fence); 1278 1279 /* XXX Error for signal-on-any fence arrays */ 1280 1281 child = array->fences; 1282 nchild = array->num_fences; 1283 GEM_BUG_ON(!nchild); 1284 } 1285 1286 do { 1287 fence = *child++; 1288 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1289 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1290 continue; 1291 } 1292 1293 if (fence->context == rq->fence.context) 1294 continue; 1295 1296 /* 1297 * We don't squash repeated fence dependencies here as we 1298 * want to run our callback in all cases. 1299 */ 1300 1301 if (dma_fence_is_i915(fence)) 1302 ret = __i915_request_await_execution(rq, 1303 to_request(fence), 1304 hook); 1305 else 1306 ret = i915_request_await_external(rq, fence); 1307 if (ret < 0) 1308 return ret; 1309 } while (--nchild); 1310 1311 return 0; 1312 } 1313 1314 static int 1315 await_request_submit(struct i915_request *to, struct i915_request *from) 1316 { 1317 /* 1318 * If we are waiting on a virtual engine, then it may be 1319 * constrained to execute on a single engine *prior* to submission. 1320 * When it is submitted, it will be first submitted to the virtual 1321 * engine and then passed to the physical engine. We cannot allow 1322 * the waiter to be submitted immediately to the physical engine 1323 * as it may then bypass the virtual request. 1324 */ 1325 if (to->engine == READ_ONCE(from->engine)) 1326 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1327 &from->submit, 1328 I915_FENCE_GFP); 1329 else 1330 return __i915_request_await_execution(to, from, NULL); 1331 } 1332 1333 static int 1334 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1335 { 1336 int ret; 1337 1338 GEM_BUG_ON(to == from); 1339 GEM_BUG_ON(to->timeline == from->timeline); 1340 1341 if (i915_request_completed(from)) { 1342 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1343 return 0; 1344 } 1345 1346 if (to->engine->schedule) { 1347 ret = i915_sched_node_add_dependency(&to->sched, 1348 &from->sched, 1349 I915_DEPENDENCY_EXTERNAL); 1350 if (ret < 0) 1351 return ret; 1352 } 1353 1354 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1355 ret = await_request_submit(to, from); 1356 else 1357 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1358 if (ret < 0) 1359 return ret; 1360 1361 return 0; 1362 } 1363 1364 int 1365 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1366 { 1367 struct dma_fence **child = &fence; 1368 unsigned int nchild = 1; 1369 int ret; 1370 1371 /* 1372 * Note that if the fence-array was created in signal-on-any mode, 1373 * we should *not* decompose it into its individual fences. However, 1374 * we don't currently store which mode the fence-array is operating 1375 * in. Fortunately, the only user of signal-on-any is private to 1376 * amdgpu and we should not see any incoming fence-array from 1377 * sync-file being in signal-on-any mode. 1378 */ 1379 if (dma_fence_is_array(fence)) { 1380 struct dma_fence_array *array = to_dma_fence_array(fence); 1381 1382 child = array->fences; 1383 nchild = array->num_fences; 1384 GEM_BUG_ON(!nchild); 1385 } 1386 1387 do { 1388 fence = *child++; 1389 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1390 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1391 continue; 1392 } 1393 1394 /* 1395 * Requests on the same timeline are explicitly ordered, along 1396 * with their dependencies, by i915_request_add() which ensures 1397 * that requests are submitted in-order through each ring. 1398 */ 1399 if (fence->context == rq->fence.context) 1400 continue; 1401 1402 /* Squash repeated waits to the same timelines */ 1403 if (fence->context && 1404 intel_timeline_sync_is_later(i915_request_timeline(rq), 1405 fence)) 1406 continue; 1407 1408 if (dma_fence_is_i915(fence)) 1409 ret = i915_request_await_request(rq, to_request(fence)); 1410 else 1411 ret = i915_request_await_external(rq, fence); 1412 if (ret < 0) 1413 return ret; 1414 1415 /* Record the latest fence used against each timeline */ 1416 if (fence->context) 1417 intel_timeline_sync_set(i915_request_timeline(rq), 1418 fence); 1419 } while (--nchild); 1420 1421 return 0; 1422 } 1423 1424 /** 1425 * i915_request_await_object - set this request to (async) wait upon a bo 1426 * @to: request we are wishing to use 1427 * @obj: object which may be in use on another ring. 1428 * @write: whether the wait is on behalf of a writer 1429 * 1430 * This code is meant to abstract object synchronization with the GPU. 1431 * Conceptually we serialise writes between engines inside the GPU. 1432 * We only allow one engine to write into a buffer at any time, but 1433 * multiple readers. To ensure each has a coherent view of memory, we must: 1434 * 1435 * - If there is an outstanding write request to the object, the new 1436 * request must wait for it to complete (either CPU or in hw, requests 1437 * on the same ring will be naturally ordered). 1438 * 1439 * - If we are a write request (pending_write_domain is set), the new 1440 * request must wait for outstanding read requests to complete. 1441 * 1442 * Returns 0 if successful, else propagates up the lower layer error. 1443 */ 1444 int 1445 i915_request_await_object(struct i915_request *to, 1446 struct drm_i915_gem_object *obj, 1447 bool write) 1448 { 1449 struct dma_fence *excl; 1450 int ret = 0; 1451 1452 if (write) { 1453 struct dma_fence **shared; 1454 unsigned int count, i; 1455 1456 ret = dma_resv_get_fences_rcu(obj->base.resv, 1457 &excl, &count, &shared); 1458 if (ret) 1459 return ret; 1460 1461 for (i = 0; i < count; i++) { 1462 ret = i915_request_await_dma_fence(to, shared[i]); 1463 if (ret) 1464 break; 1465 1466 dma_fence_put(shared[i]); 1467 } 1468 1469 for (; i < count; i++) 1470 dma_fence_put(shared[i]); 1471 kfree(shared); 1472 } else { 1473 excl = dma_resv_get_excl_rcu(obj->base.resv); 1474 } 1475 1476 if (excl) { 1477 if (ret == 0) 1478 ret = i915_request_await_dma_fence(to, excl); 1479 1480 dma_fence_put(excl); 1481 } 1482 1483 return ret; 1484 } 1485 1486 static struct i915_request * 1487 __i915_request_add_to_timeline(struct i915_request *rq) 1488 { 1489 struct intel_timeline *timeline = i915_request_timeline(rq); 1490 struct i915_request *prev; 1491 1492 /* 1493 * Dependency tracking and request ordering along the timeline 1494 * is special cased so that we can eliminate redundant ordering 1495 * operations while building the request (we know that the timeline 1496 * itself is ordered, and here we guarantee it). 1497 * 1498 * As we know we will need to emit tracking along the timeline, 1499 * we embed the hooks into our request struct -- at the cost of 1500 * having to have specialised no-allocation interfaces (which will 1501 * be beneficial elsewhere). 1502 * 1503 * A second benefit to open-coding i915_request_await_request is 1504 * that we can apply a slight variant of the rules specialised 1505 * for timelines that jump between engines (such as virtual engines). 1506 * If we consider the case of virtual engine, we must emit a dma-fence 1507 * to prevent scheduling of the second request until the first is 1508 * complete (to maximise our greedy late load balancing) and this 1509 * precludes optimising to use semaphores serialisation of a single 1510 * timeline across engines. 1511 */ 1512 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1513 &rq->fence)); 1514 if (prev && !i915_request_completed(prev)) { 1515 /* 1516 * The requests are supposed to be kept in order. However, 1517 * we need to be wary in case the timeline->last_request 1518 * is used as a barrier for external modification to this 1519 * context. 1520 */ 1521 GEM_BUG_ON(prev->context == rq->context && 1522 i915_seqno_passed(prev->fence.seqno, 1523 rq->fence.seqno)); 1524 1525 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)) 1526 i915_sw_fence_await_sw_fence(&rq->submit, 1527 &prev->submit, 1528 &rq->submitq); 1529 else 1530 __i915_sw_fence_await_dma_fence(&rq->submit, 1531 &prev->fence, 1532 &rq->dmaq); 1533 if (rq->engine->schedule) 1534 __i915_sched_node_add_dependency(&rq->sched, 1535 &prev->sched, 1536 &rq->dep, 1537 0); 1538 } 1539 1540 /* 1541 * Make sure that no request gazumped us - if it was allocated after 1542 * our i915_request_alloc() and called __i915_request_add() before 1543 * us, the timeline will hold its seqno which is later than ours. 1544 */ 1545 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1546 1547 return prev; 1548 } 1549 1550 /* 1551 * NB: This function is not allowed to fail. Doing so would mean the the 1552 * request is not being tracked for completion but the work itself is 1553 * going to happen on the hardware. This would be a Bad Thing(tm). 1554 */ 1555 struct i915_request *__i915_request_commit(struct i915_request *rq) 1556 { 1557 struct intel_engine_cs *engine = rq->engine; 1558 struct intel_ring *ring = rq->ring; 1559 u32 *cs; 1560 1561 RQ_TRACE(rq, "\n"); 1562 1563 /* 1564 * To ensure that this call will not fail, space for its emissions 1565 * should already have been reserved in the ring buffer. Let the ring 1566 * know that it is time to use that space up. 1567 */ 1568 GEM_BUG_ON(rq->reserved_space > ring->space); 1569 rq->reserved_space = 0; 1570 rq->emitted_jiffies = jiffies; 1571 1572 /* 1573 * Record the position of the start of the breadcrumb so that 1574 * should we detect the updated seqno part-way through the 1575 * GPU processing the request, we never over-estimate the 1576 * position of the ring's HEAD. 1577 */ 1578 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1579 GEM_BUG_ON(IS_ERR(cs)); 1580 rq->postfix = intel_ring_offset(rq, cs); 1581 1582 return __i915_request_add_to_timeline(rq); 1583 } 1584 1585 void __i915_request_queue(struct i915_request *rq, 1586 const struct i915_sched_attr *attr) 1587 { 1588 /* 1589 * Let the backend know a new request has arrived that may need 1590 * to adjust the existing execution schedule due to a high priority 1591 * request - i.e. we may want to preempt the current request in order 1592 * to run a high priority dependency chain *before* we can execute this 1593 * request. 1594 * 1595 * This is called before the request is ready to run so that we can 1596 * decide whether to preempt the entire chain so that it is ready to 1597 * run at the earliest possible convenience. 1598 */ 1599 if (attr && rq->engine->schedule) 1600 rq->engine->schedule(rq, attr); 1601 i915_sw_fence_commit(&rq->semaphore); 1602 i915_sw_fence_commit(&rq->submit); 1603 } 1604 1605 void i915_request_add(struct i915_request *rq) 1606 { 1607 struct intel_timeline * const tl = i915_request_timeline(rq); 1608 struct i915_sched_attr attr = {}; 1609 struct i915_gem_context *ctx; 1610 1611 lockdep_assert_held(&tl->mutex); 1612 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1613 1614 trace_i915_request_add(rq); 1615 __i915_request_commit(rq); 1616 1617 /* XXX placeholder for selftests */ 1618 rcu_read_lock(); 1619 ctx = rcu_dereference(rq->context->gem_context); 1620 if (ctx) 1621 attr = ctx->sched; 1622 rcu_read_unlock(); 1623 1624 __i915_request_queue(rq, &attr); 1625 1626 mutex_unlock(&tl->mutex); 1627 } 1628 1629 static unsigned long local_clock_ns(unsigned int *cpu) 1630 { 1631 unsigned long t; 1632 1633 /* 1634 * Cheaply and approximately convert from nanoseconds to microseconds. 1635 * The result and subsequent calculations are also defined in the same 1636 * approximate microseconds units. The principal source of timing 1637 * error here is from the simple truncation. 1638 * 1639 * Note that local_clock() is only defined wrt to the current CPU; 1640 * the comparisons are no longer valid if we switch CPUs. Instead of 1641 * blocking preemption for the entire busywait, we can detect the CPU 1642 * switch and use that as indicator of system load and a reason to 1643 * stop busywaiting, see busywait_stop(). 1644 */ 1645 *cpu = get_cpu(); 1646 t = local_clock(); 1647 put_cpu(); 1648 1649 return t; 1650 } 1651 1652 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1653 { 1654 unsigned int this_cpu; 1655 1656 if (time_after(local_clock_ns(&this_cpu), timeout)) 1657 return true; 1658 1659 return this_cpu != cpu; 1660 } 1661 1662 static bool __i915_spin_request(struct i915_request * const rq, int state) 1663 { 1664 unsigned long timeout_ns; 1665 unsigned int cpu; 1666 1667 /* 1668 * Only wait for the request if we know it is likely to complete. 1669 * 1670 * We don't track the timestamps around requests, nor the average 1671 * request length, so we do not have a good indicator that this 1672 * request will complete within the timeout. What we do know is the 1673 * order in which requests are executed by the context and so we can 1674 * tell if the request has been started. If the request is not even 1675 * running yet, it is a fair assumption that it will not complete 1676 * within our relatively short timeout. 1677 */ 1678 if (!i915_request_is_running(rq)) 1679 return false; 1680 1681 /* 1682 * When waiting for high frequency requests, e.g. during synchronous 1683 * rendering split between the CPU and GPU, the finite amount of time 1684 * required to set up the irq and wait upon it limits the response 1685 * rate. By busywaiting on the request completion for a short while we 1686 * can service the high frequency waits as quick as possible. However, 1687 * if it is a slow request, we want to sleep as quickly as possible. 1688 * The tradeoff between waiting and sleeping is roughly the time it 1689 * takes to sleep on a request, on the order of a microsecond. 1690 */ 1691 1692 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1693 timeout_ns += local_clock_ns(&cpu); 1694 do { 1695 if (dma_fence_is_signaled(&rq->fence)) 1696 return true; 1697 1698 if (signal_pending_state(state, current)) 1699 break; 1700 1701 if (busywait_stop(timeout_ns, cpu)) 1702 break; 1703 1704 cpu_relax(); 1705 } while (!need_resched()); 1706 1707 return false; 1708 } 1709 1710 struct request_wait { 1711 struct dma_fence_cb cb; 1712 struct task_struct *tsk; 1713 }; 1714 1715 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1716 { 1717 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1718 1719 wake_up_process(fetch_and_zero(&wait->tsk)); 1720 } 1721 1722 /** 1723 * i915_request_wait - wait until execution of request has finished 1724 * @rq: the request to wait upon 1725 * @flags: how to wait 1726 * @timeout: how long to wait in jiffies 1727 * 1728 * i915_request_wait() waits for the request to be completed, for a 1729 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1730 * unbounded wait). 1731 * 1732 * Returns the remaining time (in jiffies) if the request completed, which may 1733 * be zero or -ETIME if the request is unfinished after the timeout expires. 1734 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1735 * pending before the request completes. 1736 */ 1737 long i915_request_wait(struct i915_request *rq, 1738 unsigned int flags, 1739 long timeout) 1740 { 1741 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1742 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1743 struct request_wait wait; 1744 1745 might_sleep(); 1746 GEM_BUG_ON(timeout < 0); 1747 1748 if (dma_fence_is_signaled(&rq->fence)) 1749 return timeout; 1750 1751 if (!timeout) 1752 return -ETIME; 1753 1754 trace_i915_request_wait_begin(rq, flags); 1755 1756 /* 1757 * We must never wait on the GPU while holding a lock as we 1758 * may need to perform a GPU reset. So while we don't need to 1759 * serialise wait/reset with an explicit lock, we do want 1760 * lockdep to detect potential dependency cycles. 1761 */ 1762 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1763 1764 /* 1765 * Optimistic spin before touching IRQs. 1766 * 1767 * We may use a rather large value here to offset the penalty of 1768 * switching away from the active task. Frequently, the client will 1769 * wait upon an old swapbuffer to throttle itself to remain within a 1770 * frame of the gpu. If the client is running in lockstep with the gpu, 1771 * then it should not be waiting long at all, and a sleep now will incur 1772 * extra scheduler latency in producing the next frame. To try to 1773 * avoid adding the cost of enabling/disabling the interrupt to the 1774 * short wait, we first spin to see if the request would have completed 1775 * in the time taken to setup the interrupt. 1776 * 1777 * We need upto 5us to enable the irq, and upto 20us to hide the 1778 * scheduler latency of a context switch, ignoring the secondary 1779 * impacts from a context switch such as cache eviction. 1780 * 1781 * The scheme used for low-latency IO is called "hybrid interrupt 1782 * polling". The suggestion there is to sleep until just before you 1783 * expect to be woken by the device interrupt and then poll for its 1784 * completion. That requires having a good predictor for the request 1785 * duration, which we currently lack. 1786 */ 1787 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) && 1788 __i915_spin_request(rq, state)) 1789 goto out; 1790 1791 /* 1792 * This client is about to stall waiting for the GPU. In many cases 1793 * this is undesirable and limits the throughput of the system, as 1794 * many clients cannot continue processing user input/output whilst 1795 * blocked. RPS autotuning may take tens of milliseconds to respond 1796 * to the GPU load and thus incurs additional latency for the client. 1797 * We can circumvent that by promoting the GPU frequency to maximum 1798 * before we sleep. This makes the GPU throttle up much more quickly 1799 * (good for benchmarks and user experience, e.g. window animations), 1800 * but at a cost of spending more power processing the workload 1801 * (bad for battery). 1802 */ 1803 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 1804 intel_rps_boost(rq); 1805 1806 wait.tsk = current; 1807 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1808 goto out; 1809 1810 /* 1811 * Flush the submission tasklet, but only if it may help this request. 1812 * 1813 * We sometimes experience some latency between the HW interrupts and 1814 * tasklet execution (mostly due to ksoftirqd latency, but it can also 1815 * be due to lazy CS events), so lets run the tasklet manually if there 1816 * is a chance it may submit this request. If the request is not ready 1817 * to run, as it is waiting for other fences to be signaled, flushing 1818 * the tasklet is busy work without any advantage for this client. 1819 * 1820 * If the HW is being lazy, this is the last chance before we go to 1821 * sleep to catch any pending events. We will check periodically in 1822 * the heartbeat to flush the submission tasklets as a last resort 1823 * for unhappy HW. 1824 */ 1825 if (i915_request_is_ready(rq)) 1826 intel_engine_flush_submission(rq->engine); 1827 1828 for (;;) { 1829 set_current_state(state); 1830 1831 if (dma_fence_is_signaled(&rq->fence)) 1832 break; 1833 1834 if (signal_pending_state(state, current)) { 1835 timeout = -ERESTARTSYS; 1836 break; 1837 } 1838 1839 if (!timeout) { 1840 timeout = -ETIME; 1841 break; 1842 } 1843 1844 timeout = io_schedule_timeout(timeout); 1845 } 1846 __set_current_state(TASK_RUNNING); 1847 1848 if (READ_ONCE(wait.tsk)) 1849 dma_fence_remove_callback(&rq->fence, &wait.cb); 1850 GEM_BUG_ON(!list_empty(&wait.cb.node)); 1851 1852 out: 1853 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1854 trace_i915_request_wait_end(rq); 1855 return timeout; 1856 } 1857 1858 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1859 #include "selftests/mock_request.c" 1860 #include "selftests/i915_request.c" 1861 #endif 1862 1863 static void i915_global_request_shrink(void) 1864 { 1865 kmem_cache_shrink(global.slab_execute_cbs); 1866 kmem_cache_shrink(global.slab_requests); 1867 } 1868 1869 static void i915_global_request_exit(void) 1870 { 1871 kmem_cache_destroy(global.slab_execute_cbs); 1872 kmem_cache_destroy(global.slab_requests); 1873 } 1874 1875 static struct i915_global_request global = { { 1876 .shrink = i915_global_request_shrink, 1877 .exit = i915_global_request_exit, 1878 } }; 1879 1880 int __init i915_global_request_init(void) 1881 { 1882 global.slab_requests = 1883 kmem_cache_create("i915_request", 1884 sizeof(struct i915_request), 1885 __alignof__(struct i915_request), 1886 SLAB_HWCACHE_ALIGN | 1887 SLAB_RECLAIM_ACCOUNT | 1888 SLAB_TYPESAFE_BY_RCU, 1889 __i915_request_ctor); 1890 if (!global.slab_requests) 1891 return -ENOMEM; 1892 1893 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1894 SLAB_HWCACHE_ALIGN | 1895 SLAB_RECLAIM_ACCOUNT | 1896 SLAB_TYPESAFE_BY_RCU); 1897 if (!global.slab_execute_cbs) 1898 goto err_requests; 1899 1900 i915_global_register(&global.base); 1901 return 0; 1902 1903 err_requests: 1904 kmem_cache_destroy(global.slab_requests); 1905 return -ENOMEM; 1906 } 1907