1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 33 #include "gem/i915_gem_context.h" 34 #include "gt/intel_context.h" 35 #include "gt/intel_ring.h" 36 #include "gt/intel_rps.h" 37 38 #include "i915_active.h" 39 #include "i915_drv.h" 40 #include "i915_globals.h" 41 #include "i915_trace.h" 42 #include "intel_pm.h" 43 44 struct execute_cb { 45 struct list_head link; 46 struct irq_work work; 47 struct i915_sw_fence *fence; 48 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 49 struct i915_request *signal; 50 }; 51 52 static struct i915_global_request { 53 struct i915_global base; 54 struct kmem_cache *slab_requests; 55 struct kmem_cache *slab_execute_cbs; 56 } global; 57 58 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 59 { 60 return dev_name(to_request(fence)->i915->drm.dev); 61 } 62 63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 64 { 65 const struct i915_gem_context *ctx; 66 67 /* 68 * The timeline struct (as part of the ppgtt underneath a context) 69 * may be freed when the request is no longer in use by the GPU. 70 * We could extend the life of a context to beyond that of all 71 * fences, possibly keeping the hw resource around indefinitely, 72 * or we just give them a false name. Since 73 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 74 * lie seems justifiable. 75 */ 76 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 77 return "signaled"; 78 79 ctx = i915_request_gem_context(to_request(fence)); 80 if (!ctx) 81 return "[" DRIVER_NAME "]"; 82 83 return ctx->name; 84 } 85 86 static bool i915_fence_signaled(struct dma_fence *fence) 87 { 88 return i915_request_completed(to_request(fence)); 89 } 90 91 static bool i915_fence_enable_signaling(struct dma_fence *fence) 92 { 93 return i915_request_enable_breadcrumb(to_request(fence)); 94 } 95 96 static signed long i915_fence_wait(struct dma_fence *fence, 97 bool interruptible, 98 signed long timeout) 99 { 100 return i915_request_wait(to_request(fence), 101 interruptible | I915_WAIT_PRIORITY, 102 timeout); 103 } 104 105 struct kmem_cache *i915_request_slab_cache(void) 106 { 107 return global.slab_requests; 108 } 109 110 static void i915_fence_release(struct dma_fence *fence) 111 { 112 struct i915_request *rq = to_request(fence); 113 114 /* 115 * The request is put onto a RCU freelist (i.e. the address 116 * is immediately reused), mark the fences as being freed now. 117 * Otherwise the debugobjects for the fences are only marked as 118 * freed when the slab cache itself is freed, and so we would get 119 * caught trying to reuse dead objects. 120 */ 121 i915_sw_fence_fini(&rq->submit); 122 i915_sw_fence_fini(&rq->semaphore); 123 124 /* Keep one request on each engine for reserved use under mempressure */ 125 if (!cmpxchg(&rq->engine->request_pool, NULL, rq)) 126 return; 127 128 kmem_cache_free(global.slab_requests, rq); 129 } 130 131 const struct dma_fence_ops i915_fence_ops = { 132 .get_driver_name = i915_fence_get_driver_name, 133 .get_timeline_name = i915_fence_get_timeline_name, 134 .enable_signaling = i915_fence_enable_signaling, 135 .signaled = i915_fence_signaled, 136 .wait = i915_fence_wait, 137 .release = i915_fence_release, 138 }; 139 140 static void irq_execute_cb(struct irq_work *wrk) 141 { 142 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 143 144 i915_sw_fence_complete(cb->fence); 145 kmem_cache_free(global.slab_execute_cbs, cb); 146 } 147 148 static void irq_execute_cb_hook(struct irq_work *wrk) 149 { 150 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 151 152 cb->hook(container_of(cb->fence, struct i915_request, submit), 153 &cb->signal->fence); 154 i915_request_put(cb->signal); 155 156 irq_execute_cb(wrk); 157 } 158 159 static void __notify_execute_cb(struct i915_request *rq) 160 { 161 struct execute_cb *cb; 162 163 lockdep_assert_held(&rq->lock); 164 165 if (list_empty(&rq->execute_cb)) 166 return; 167 168 list_for_each_entry(cb, &rq->execute_cb, link) 169 irq_work_queue(&cb->work); 170 171 /* 172 * XXX Rollback on __i915_request_unsubmit() 173 * 174 * In the future, perhaps when we have an active time-slicing scheduler, 175 * it will be interesting to unsubmit parallel execution and remove 176 * busywaits from the GPU until their master is restarted. This is 177 * quite hairy, we have to carefully rollback the fence and do a 178 * preempt-to-idle cycle on the target engine, all the while the 179 * master execute_cb may refire. 180 */ 181 INIT_LIST_HEAD(&rq->execute_cb); 182 } 183 184 static inline void 185 remove_from_client(struct i915_request *request) 186 { 187 struct drm_i915_file_private *file_priv; 188 189 if (!READ_ONCE(request->file_priv)) 190 return; 191 192 rcu_read_lock(); 193 file_priv = xchg(&request->file_priv, NULL); 194 if (file_priv) { 195 spin_lock(&file_priv->mm.lock); 196 list_del(&request->client_link); 197 spin_unlock(&file_priv->mm.lock); 198 } 199 rcu_read_unlock(); 200 } 201 202 static void free_capture_list(struct i915_request *request) 203 { 204 struct i915_capture_list *capture; 205 206 capture = fetch_and_zero(&request->capture_list); 207 while (capture) { 208 struct i915_capture_list *next = capture->next; 209 210 kfree(capture); 211 capture = next; 212 } 213 } 214 215 static void __i915_request_fill(struct i915_request *rq, u8 val) 216 { 217 void *vaddr = rq->ring->vaddr; 218 u32 head; 219 220 head = rq->infix; 221 if (rq->postfix < head) { 222 memset(vaddr + head, val, rq->ring->size - head); 223 head = 0; 224 } 225 memset(vaddr + head, val, rq->postfix - head); 226 } 227 228 static void remove_from_engine(struct i915_request *rq) 229 { 230 struct intel_engine_cs *engine, *locked; 231 232 /* 233 * Virtual engines complicate acquiring the engine timeline lock, 234 * as their rq->engine pointer is not stable until under that 235 * engine lock. The simple ploy we use is to take the lock then 236 * check that the rq still belongs to the newly locked engine. 237 */ 238 locked = READ_ONCE(rq->engine); 239 spin_lock_irq(&locked->active.lock); 240 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 241 spin_unlock(&locked->active.lock); 242 spin_lock(&engine->active.lock); 243 locked = engine; 244 } 245 list_del_init(&rq->sched.link); 246 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 247 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 248 spin_unlock_irq(&locked->active.lock); 249 } 250 251 bool i915_request_retire(struct i915_request *rq) 252 { 253 if (!i915_request_completed(rq)) 254 return false; 255 256 RQ_TRACE(rq, "\n"); 257 258 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 259 trace_i915_request_retire(rq); 260 261 /* 262 * We know the GPU must have read the request to have 263 * sent us the seqno + interrupt, so use the position 264 * of tail of the request to update the last known position 265 * of the GPU head. 266 * 267 * Note this requires that we are always called in request 268 * completion order. 269 */ 270 GEM_BUG_ON(!list_is_first(&rq->link, 271 &i915_request_timeline(rq)->requests)); 272 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 273 /* Poison before we release our space in the ring */ 274 __i915_request_fill(rq, POISON_FREE); 275 rq->ring->head = rq->postfix; 276 277 /* 278 * We only loosely track inflight requests across preemption, 279 * and so we may find ourselves attempting to retire a _completed_ 280 * request that we have removed from the HW and put back on a run 281 * queue. 282 */ 283 remove_from_engine(rq); 284 285 spin_lock_irq(&rq->lock); 286 i915_request_mark_complete(rq); 287 if (!i915_request_signaled(rq)) 288 dma_fence_signal_locked(&rq->fence); 289 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 290 i915_request_cancel_breadcrumb(rq); 291 if (i915_request_has_waitboost(rq)) { 292 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters)); 293 atomic_dec(&rq->engine->gt->rps.num_waiters); 294 } 295 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) { 296 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 297 __notify_execute_cb(rq); 298 } 299 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 300 spin_unlock_irq(&rq->lock); 301 302 remove_from_client(rq); 303 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 304 305 intel_context_exit(rq->context); 306 intel_context_unpin(rq->context); 307 308 free_capture_list(rq); 309 i915_sched_node_fini(&rq->sched); 310 i915_request_put(rq); 311 312 return true; 313 } 314 315 void i915_request_retire_upto(struct i915_request *rq) 316 { 317 struct intel_timeline * const tl = i915_request_timeline(rq); 318 struct i915_request *tmp; 319 320 RQ_TRACE(rq, "\n"); 321 322 GEM_BUG_ON(!i915_request_completed(rq)); 323 324 do { 325 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 326 } while (i915_request_retire(tmp) && tmp != rq); 327 } 328 329 static int 330 __await_execution(struct i915_request *rq, 331 struct i915_request *signal, 332 void (*hook)(struct i915_request *rq, 333 struct dma_fence *signal), 334 gfp_t gfp) 335 { 336 struct execute_cb *cb; 337 338 if (i915_request_is_active(signal)) { 339 if (hook) 340 hook(rq, &signal->fence); 341 return 0; 342 } 343 344 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 345 if (!cb) 346 return -ENOMEM; 347 348 cb->fence = &rq->submit; 349 i915_sw_fence_await(cb->fence); 350 init_irq_work(&cb->work, irq_execute_cb); 351 352 if (hook) { 353 cb->hook = hook; 354 cb->signal = i915_request_get(signal); 355 cb->work.func = irq_execute_cb_hook; 356 } 357 358 spin_lock_irq(&signal->lock); 359 if (i915_request_is_active(signal)) { 360 if (hook) { 361 hook(rq, &signal->fence); 362 i915_request_put(signal); 363 } 364 i915_sw_fence_complete(cb->fence); 365 kmem_cache_free(global.slab_execute_cbs, cb); 366 } else { 367 list_add_tail(&cb->link, &signal->execute_cb); 368 } 369 spin_unlock_irq(&signal->lock); 370 371 return 0; 372 } 373 374 static bool fatal_error(int error) 375 { 376 switch (error) { 377 case 0: /* not an error! */ 378 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 379 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 380 return false; 381 default: 382 return true; 383 } 384 } 385 386 void __i915_request_skip(struct i915_request *rq) 387 { 388 GEM_BUG_ON(!fatal_error(rq->fence.error)); 389 390 if (rq->infix == rq->postfix) 391 return; 392 393 /* 394 * As this request likely depends on state from the lost 395 * context, clear out all the user operations leaving the 396 * breadcrumb at the end (so we get the fence notifications). 397 */ 398 __i915_request_fill(rq, 0); 399 rq->infix = rq->postfix; 400 } 401 402 void i915_request_set_error_once(struct i915_request *rq, int error) 403 { 404 int old; 405 406 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 407 408 if (i915_request_signaled(rq)) 409 return; 410 411 old = READ_ONCE(rq->fence.error); 412 do { 413 if (fatal_error(old)) 414 return; 415 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 416 } 417 418 bool __i915_request_submit(struct i915_request *request) 419 { 420 struct intel_engine_cs *engine = request->engine; 421 bool result = false; 422 423 RQ_TRACE(request, "\n"); 424 425 GEM_BUG_ON(!irqs_disabled()); 426 lockdep_assert_held(&engine->active.lock); 427 428 /* 429 * With the advent of preempt-to-busy, we frequently encounter 430 * requests that we have unsubmitted from HW, but left running 431 * until the next ack and so have completed in the meantime. On 432 * resubmission of that completed request, we can skip 433 * updating the payload, and execlists can even skip submitting 434 * the request. 435 * 436 * We must remove the request from the caller's priority queue, 437 * and the caller must only call us when the request is in their 438 * priority queue, under the active.lock. This ensures that the 439 * request has *not* yet been retired and we can safely move 440 * the request into the engine->active.list where it will be 441 * dropped upon retiring. (Otherwise if resubmit a *retired* 442 * request, this would be a horrible use-after-free.) 443 */ 444 if (i915_request_completed(request)) 445 goto xfer; 446 447 if (unlikely(intel_context_is_banned(request->context))) 448 i915_request_set_error_once(request, -EIO); 449 if (unlikely(fatal_error(request->fence.error))) 450 __i915_request_skip(request); 451 452 /* 453 * Are we using semaphores when the gpu is already saturated? 454 * 455 * Using semaphores incurs a cost in having the GPU poll a 456 * memory location, busywaiting for it to change. The continual 457 * memory reads can have a noticeable impact on the rest of the 458 * system with the extra bus traffic, stalling the cpu as it too 459 * tries to access memory across the bus (perf stat -e bus-cycles). 460 * 461 * If we installed a semaphore on this request and we only submit 462 * the request after the signaler completed, that indicates the 463 * system is overloaded and using semaphores at this time only 464 * increases the amount of work we are doing. If so, we disable 465 * further use of semaphores until we are idle again, whence we 466 * optimistically try again. 467 */ 468 if (request->sched.semaphores && 469 i915_sw_fence_signaled(&request->semaphore)) 470 engine->saturated |= request->sched.semaphores; 471 472 engine->emit_fini_breadcrumb(request, 473 request->ring->vaddr + request->postfix); 474 475 trace_i915_request_execute(request); 476 engine->serial++; 477 result = true; 478 479 xfer: /* We may be recursing from the signal callback of another i915 fence */ 480 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 481 482 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) { 483 list_move_tail(&request->sched.link, &engine->active.requests); 484 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 485 } 486 487 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 488 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) && 489 !i915_request_enable_breadcrumb(request)) 490 intel_engine_signal_breadcrumbs(engine); 491 492 __notify_execute_cb(request); 493 494 spin_unlock(&request->lock); 495 496 return result; 497 } 498 499 void i915_request_submit(struct i915_request *request) 500 { 501 struct intel_engine_cs *engine = request->engine; 502 unsigned long flags; 503 504 /* Will be called from irq-context when using foreign fences. */ 505 spin_lock_irqsave(&engine->active.lock, flags); 506 507 __i915_request_submit(request); 508 509 spin_unlock_irqrestore(&engine->active.lock, flags); 510 } 511 512 void __i915_request_unsubmit(struct i915_request *request) 513 { 514 struct intel_engine_cs *engine = request->engine; 515 516 RQ_TRACE(request, "\n"); 517 518 GEM_BUG_ON(!irqs_disabled()); 519 lockdep_assert_held(&engine->active.lock); 520 521 /* 522 * Only unwind in reverse order, required so that the per-context list 523 * is kept in seqno/ring order. 524 */ 525 526 /* We may be recursing from the signal callback of another i915 fence */ 527 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 528 529 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 530 i915_request_cancel_breadcrumb(request); 531 532 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 533 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 534 535 spin_unlock(&request->lock); 536 537 /* We've already spun, don't charge on resubmitting. */ 538 if (request->sched.semaphores && i915_request_started(request)) 539 request->sched.semaphores = 0; 540 541 /* 542 * We don't need to wake_up any waiters on request->execute, they 543 * will get woken by any other event or us re-adding this request 544 * to the engine timeline (__i915_request_submit()). The waiters 545 * should be quite adapt at finding that the request now has a new 546 * global_seqno to the one they went to sleep on. 547 */ 548 } 549 550 void i915_request_unsubmit(struct i915_request *request) 551 { 552 struct intel_engine_cs *engine = request->engine; 553 unsigned long flags; 554 555 /* Will be called from irq-context when using foreign fences. */ 556 spin_lock_irqsave(&engine->active.lock, flags); 557 558 __i915_request_unsubmit(request); 559 560 spin_unlock_irqrestore(&engine->active.lock, flags); 561 } 562 563 static int __i915_sw_fence_call 564 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 565 { 566 struct i915_request *request = 567 container_of(fence, typeof(*request), submit); 568 569 switch (state) { 570 case FENCE_COMPLETE: 571 trace_i915_request_submit(request); 572 573 if (unlikely(fence->error)) 574 i915_request_set_error_once(request, fence->error); 575 576 /* 577 * We need to serialize use of the submit_request() callback 578 * with its hotplugging performed during an emergency 579 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 580 * critical section in order to force i915_gem_set_wedged() to 581 * wait until the submit_request() is completed before 582 * proceeding. 583 */ 584 rcu_read_lock(); 585 request->engine->submit_request(request); 586 rcu_read_unlock(); 587 break; 588 589 case FENCE_FREE: 590 i915_request_put(request); 591 break; 592 } 593 594 return NOTIFY_DONE; 595 } 596 597 static int __i915_sw_fence_call 598 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 599 { 600 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 601 602 switch (state) { 603 case FENCE_COMPLETE: 604 break; 605 606 case FENCE_FREE: 607 i915_request_put(rq); 608 break; 609 } 610 611 return NOTIFY_DONE; 612 } 613 614 static void retire_requests(struct intel_timeline *tl) 615 { 616 struct i915_request *rq, *rn; 617 618 list_for_each_entry_safe(rq, rn, &tl->requests, link) 619 if (!i915_request_retire(rq)) 620 break; 621 } 622 623 static noinline struct i915_request * 624 request_alloc_slow(struct intel_timeline *tl, 625 struct i915_request **rsvd, 626 gfp_t gfp) 627 { 628 struct i915_request *rq; 629 630 /* If we cannot wait, dip into our reserves */ 631 if (!gfpflags_allow_blocking(gfp)) { 632 rq = xchg(rsvd, NULL); 633 if (!rq) /* Use the normal failure path for one final WARN */ 634 goto out; 635 636 return rq; 637 } 638 639 if (list_empty(&tl->requests)) 640 goto out; 641 642 /* Move our oldest request to the slab-cache (if not in use!) */ 643 rq = list_first_entry(&tl->requests, typeof(*rq), link); 644 i915_request_retire(rq); 645 646 rq = kmem_cache_alloc(global.slab_requests, 647 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 648 if (rq) 649 return rq; 650 651 /* Ratelimit ourselves to prevent oom from malicious clients */ 652 rq = list_last_entry(&tl->requests, typeof(*rq), link); 653 cond_synchronize_rcu(rq->rcustate); 654 655 /* Retire our old requests in the hope that we free some */ 656 retire_requests(tl); 657 658 out: 659 return kmem_cache_alloc(global.slab_requests, gfp); 660 } 661 662 static void __i915_request_ctor(void *arg) 663 { 664 struct i915_request *rq = arg; 665 666 spin_lock_init(&rq->lock); 667 i915_sched_node_init(&rq->sched); 668 i915_sw_fence_init(&rq->submit, submit_notify); 669 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 670 671 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0); 672 673 rq->file_priv = NULL; 674 rq->capture_list = NULL; 675 676 INIT_LIST_HEAD(&rq->execute_cb); 677 } 678 679 struct i915_request * 680 __i915_request_create(struct intel_context *ce, gfp_t gfp) 681 { 682 struct intel_timeline *tl = ce->timeline; 683 struct i915_request *rq; 684 u32 seqno; 685 int ret; 686 687 might_sleep_if(gfpflags_allow_blocking(gfp)); 688 689 /* Check that the caller provided an already pinned context */ 690 __intel_context_pin(ce); 691 692 /* 693 * Beware: Dragons be flying overhead. 694 * 695 * We use RCU to look up requests in flight. The lookups may 696 * race with the request being allocated from the slab freelist. 697 * That is the request we are writing to here, may be in the process 698 * of being read by __i915_active_request_get_rcu(). As such, 699 * we have to be very careful when overwriting the contents. During 700 * the RCU lookup, we change chase the request->engine pointer, 701 * read the request->global_seqno and increment the reference count. 702 * 703 * The reference count is incremented atomically. If it is zero, 704 * the lookup knows the request is unallocated and complete. Otherwise, 705 * it is either still in use, or has been reallocated and reset 706 * with dma_fence_init(). This increment is safe for release as we 707 * check that the request we have a reference to and matches the active 708 * request. 709 * 710 * Before we increment the refcount, we chase the request->engine 711 * pointer. We must not call kmem_cache_zalloc() or else we set 712 * that pointer to NULL and cause a crash during the lookup. If 713 * we see the request is completed (based on the value of the 714 * old engine and seqno), the lookup is complete and reports NULL. 715 * If we decide the request is not completed (new engine or seqno), 716 * then we grab a reference and double check that it is still the 717 * active request - which it won't be and restart the lookup. 718 * 719 * Do not use kmem_cache_zalloc() here! 720 */ 721 rq = kmem_cache_alloc(global.slab_requests, 722 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 723 if (unlikely(!rq)) { 724 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 725 if (!rq) { 726 ret = -ENOMEM; 727 goto err_unreserve; 728 } 729 } 730 731 rq->i915 = ce->engine->i915; 732 rq->context = ce; 733 rq->engine = ce->engine; 734 rq->ring = ce->ring; 735 rq->execution_mask = ce->engine->mask; 736 737 kref_init(&rq->fence.refcount); 738 rq->fence.flags = 0; 739 rq->fence.error = 0; 740 INIT_LIST_HEAD(&rq->fence.cb_list); 741 742 ret = intel_timeline_get_seqno(tl, rq, &seqno); 743 if (ret) 744 goto err_free; 745 746 rq->fence.context = tl->fence_context; 747 rq->fence.seqno = seqno; 748 749 RCU_INIT_POINTER(rq->timeline, tl); 750 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 751 rq->hwsp_seqno = tl->hwsp_seqno; 752 GEM_BUG_ON(i915_request_completed(rq)); 753 754 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 755 756 /* We bump the ref for the fence chain */ 757 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 758 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 759 760 i915_sched_node_reinit(&rq->sched); 761 762 /* No zalloc, everything must be cleared after use */ 763 rq->batch = NULL; 764 GEM_BUG_ON(rq->file_priv); 765 GEM_BUG_ON(rq->capture_list); 766 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 767 768 /* 769 * Reserve space in the ring buffer for all the commands required to 770 * eventually emit this request. This is to guarantee that the 771 * i915_request_add() call can't fail. Note that the reserve may need 772 * to be redone if the request is not actually submitted straight 773 * away, e.g. because a GPU scheduler has deferred it. 774 * 775 * Note that due to how we add reserved_space to intel_ring_begin() 776 * we need to double our request to ensure that if we need to wrap 777 * around inside i915_request_add() there is sufficient space at 778 * the beginning of the ring as well. 779 */ 780 rq->reserved_space = 781 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 782 783 /* 784 * Record the position of the start of the request so that 785 * should we detect the updated seqno part-way through the 786 * GPU processing the request, we never over-estimate the 787 * position of the head. 788 */ 789 rq->head = rq->ring->emit; 790 791 ret = rq->engine->request_alloc(rq); 792 if (ret) 793 goto err_unwind; 794 795 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 796 797 intel_context_mark_active(ce); 798 list_add_tail_rcu(&rq->link, &tl->requests); 799 800 return rq; 801 802 err_unwind: 803 ce->ring->emit = rq->head; 804 805 /* Make sure we didn't add ourselves to external state before freeing */ 806 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 807 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 808 809 err_free: 810 kmem_cache_free(global.slab_requests, rq); 811 err_unreserve: 812 intel_context_unpin(ce); 813 return ERR_PTR(ret); 814 } 815 816 struct i915_request * 817 i915_request_create(struct intel_context *ce) 818 { 819 struct i915_request *rq; 820 struct intel_timeline *tl; 821 822 tl = intel_context_timeline_lock(ce); 823 if (IS_ERR(tl)) 824 return ERR_CAST(tl); 825 826 /* Move our oldest request to the slab-cache (if not in use!) */ 827 rq = list_first_entry(&tl->requests, typeof(*rq), link); 828 if (!list_is_last(&rq->link, &tl->requests)) 829 i915_request_retire(rq); 830 831 intel_context_enter(ce); 832 rq = __i915_request_create(ce, GFP_KERNEL); 833 intel_context_exit(ce); /* active reference transferred to request */ 834 if (IS_ERR(rq)) 835 goto err_unlock; 836 837 /* Check that we do not interrupt ourselves with a new request */ 838 rq->cookie = lockdep_pin_lock(&tl->mutex); 839 840 return rq; 841 842 err_unlock: 843 intel_context_timeline_unlock(tl); 844 return rq; 845 } 846 847 static int 848 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 849 { 850 struct dma_fence *fence; 851 int err; 852 853 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 854 return 0; 855 856 if (i915_request_started(signal)) 857 return 0; 858 859 fence = NULL; 860 rcu_read_lock(); 861 spin_lock_irq(&signal->lock); 862 do { 863 struct list_head *pos = READ_ONCE(signal->link.prev); 864 struct i915_request *prev; 865 866 /* Confirm signal has not been retired, the link is valid */ 867 if (unlikely(i915_request_started(signal))) 868 break; 869 870 /* Is signal the earliest request on its timeline? */ 871 if (pos == &rcu_dereference(signal->timeline)->requests) 872 break; 873 874 /* 875 * Peek at the request before us in the timeline. That 876 * request will only be valid before it is retired, so 877 * after acquiring a reference to it, confirm that it is 878 * still part of the signaler's timeline. 879 */ 880 prev = list_entry(pos, typeof(*prev), link); 881 if (!i915_request_get_rcu(prev)) 882 break; 883 884 /* After the strong barrier, confirm prev is still attached */ 885 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 886 i915_request_put(prev); 887 break; 888 } 889 890 fence = &prev->fence; 891 } while (0); 892 spin_unlock_irq(&signal->lock); 893 rcu_read_unlock(); 894 if (!fence) 895 return 0; 896 897 err = 0; 898 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 899 err = i915_sw_fence_await_dma_fence(&rq->submit, 900 fence, 0, 901 I915_FENCE_GFP); 902 dma_fence_put(fence); 903 904 return err; 905 } 906 907 static intel_engine_mask_t 908 already_busywaiting(struct i915_request *rq) 909 { 910 /* 911 * Polling a semaphore causes bus traffic, delaying other users of 912 * both the GPU and CPU. We want to limit the impact on others, 913 * while taking advantage of early submission to reduce GPU 914 * latency. Therefore we restrict ourselves to not using more 915 * than one semaphore from each source, and not using a semaphore 916 * if we have detected the engine is saturated (i.e. would not be 917 * submitted early and cause bus traffic reading an already passed 918 * semaphore). 919 * 920 * See the are-we-too-late? check in __i915_request_submit(). 921 */ 922 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 923 } 924 925 static int 926 __emit_semaphore_wait(struct i915_request *to, 927 struct i915_request *from, 928 u32 seqno) 929 { 930 const int has_token = INTEL_GEN(to->i915) >= 12; 931 u32 hwsp_offset; 932 int len, err; 933 u32 *cs; 934 935 GEM_BUG_ON(INTEL_GEN(to->i915) < 8); 936 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 937 938 /* We need to pin the signaler's HWSP until we are finished reading. */ 939 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 940 if (err) 941 return err; 942 943 len = 4; 944 if (has_token) 945 len += 2; 946 947 cs = intel_ring_begin(to, len); 948 if (IS_ERR(cs)) 949 return PTR_ERR(cs); 950 951 /* 952 * Using greater-than-or-equal here means we have to worry 953 * about seqno wraparound. To side step that issue, we swap 954 * the timeline HWSP upon wrapping, so that everyone listening 955 * for the old (pre-wrap) values do not see the much smaller 956 * (post-wrap) values than they were expecting (and so wait 957 * forever). 958 */ 959 *cs++ = (MI_SEMAPHORE_WAIT | 960 MI_SEMAPHORE_GLOBAL_GTT | 961 MI_SEMAPHORE_POLL | 962 MI_SEMAPHORE_SAD_GTE_SDD) + 963 has_token; 964 *cs++ = seqno; 965 *cs++ = hwsp_offset; 966 *cs++ = 0; 967 if (has_token) { 968 *cs++ = 0; 969 *cs++ = MI_NOOP; 970 } 971 972 intel_ring_advance(to, cs); 973 return 0; 974 } 975 976 static int 977 emit_semaphore_wait(struct i915_request *to, 978 struct i915_request *from, 979 gfp_t gfp) 980 { 981 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 982 struct i915_sw_fence *wait = &to->submit; 983 984 if (!intel_context_use_semaphores(to->context)) 985 goto await_fence; 986 987 if (i915_request_has_initial_breadcrumb(to)) 988 goto await_fence; 989 990 if (!rcu_access_pointer(from->hwsp_cacheline)) 991 goto await_fence; 992 993 /* 994 * If this or its dependents are waiting on an external fence 995 * that may fail catastrophically, then we want to avoid using 996 * sempahores as they bypass the fence signaling metadata, and we 997 * lose the fence->error propagation. 998 */ 999 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1000 goto await_fence; 1001 1002 /* Just emit the first semaphore we see as request space is limited. */ 1003 if (already_busywaiting(to) & mask) 1004 goto await_fence; 1005 1006 if (i915_request_await_start(to, from) < 0) 1007 goto await_fence; 1008 1009 /* Only submit our spinner after the signaler is running! */ 1010 if (__await_execution(to, from, NULL, gfp)) 1011 goto await_fence; 1012 1013 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1014 goto await_fence; 1015 1016 to->sched.semaphores |= mask; 1017 wait = &to->semaphore; 1018 1019 await_fence: 1020 return i915_sw_fence_await_dma_fence(wait, 1021 &from->fence, 0, 1022 I915_FENCE_GFP); 1023 } 1024 1025 static int 1026 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1027 { 1028 int ret; 1029 1030 GEM_BUG_ON(to == from); 1031 GEM_BUG_ON(to->timeline == from->timeline); 1032 1033 if (i915_request_completed(from)) { 1034 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1035 return 0; 1036 } 1037 1038 if (to->engine->schedule) { 1039 ret = i915_sched_node_add_dependency(&to->sched, 1040 &from->sched, 1041 I915_DEPENDENCY_EXTERNAL); 1042 if (ret < 0) 1043 return ret; 1044 } 1045 1046 if (to->engine == from->engine) 1047 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, 1048 &from->submit, 1049 I915_FENCE_GFP); 1050 else 1051 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1052 if (ret < 0) 1053 return ret; 1054 1055 return 0; 1056 } 1057 1058 static void mark_external(struct i915_request *rq) 1059 { 1060 /* 1061 * The downside of using semaphores is that we lose metadata passing 1062 * along the signaling chain. This is particularly nasty when we 1063 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1064 * fatal errors we want to scrub the request before it is executed, 1065 * which means that we cannot preload the request onto HW and have 1066 * it wait upon a semaphore. 1067 */ 1068 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1069 } 1070 1071 static int 1072 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1073 { 1074 mark_external(rq); 1075 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1076 i915_fence_context_timeout(rq->i915, 1077 fence->context), 1078 I915_FENCE_GFP); 1079 } 1080 1081 static int 1082 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1083 { 1084 struct dma_fence *iter; 1085 int err = 0; 1086 1087 if (!to_dma_fence_chain(fence)) 1088 return __i915_request_await_external(rq, fence); 1089 1090 dma_fence_chain_for_each(iter, fence) { 1091 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1092 1093 if (!dma_fence_is_i915(chain->fence)) { 1094 err = __i915_request_await_external(rq, iter); 1095 break; 1096 } 1097 1098 err = i915_request_await_dma_fence(rq, chain->fence); 1099 if (err < 0) 1100 break; 1101 } 1102 1103 dma_fence_put(iter); 1104 return err; 1105 } 1106 1107 int 1108 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1109 { 1110 struct dma_fence **child = &fence; 1111 unsigned int nchild = 1; 1112 int ret; 1113 1114 /* 1115 * Note that if the fence-array was created in signal-on-any mode, 1116 * we should *not* decompose it into its individual fences. However, 1117 * we don't currently store which mode the fence-array is operating 1118 * in. Fortunately, the only user of signal-on-any is private to 1119 * amdgpu and we should not see any incoming fence-array from 1120 * sync-file being in signal-on-any mode. 1121 */ 1122 if (dma_fence_is_array(fence)) { 1123 struct dma_fence_array *array = to_dma_fence_array(fence); 1124 1125 child = array->fences; 1126 nchild = array->num_fences; 1127 GEM_BUG_ON(!nchild); 1128 } 1129 1130 do { 1131 fence = *child++; 1132 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1133 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1134 continue; 1135 } 1136 1137 /* 1138 * Requests on the same timeline are explicitly ordered, along 1139 * with their dependencies, by i915_request_add() which ensures 1140 * that requests are submitted in-order through each ring. 1141 */ 1142 if (fence->context == rq->fence.context) 1143 continue; 1144 1145 /* Squash repeated waits to the same timelines */ 1146 if (fence->context && 1147 intel_timeline_sync_is_later(i915_request_timeline(rq), 1148 fence)) 1149 continue; 1150 1151 if (dma_fence_is_i915(fence)) 1152 ret = i915_request_await_request(rq, to_request(fence)); 1153 else 1154 ret = i915_request_await_external(rq, fence); 1155 if (ret < 0) 1156 return ret; 1157 1158 /* Record the latest fence used against each timeline */ 1159 if (fence->context) 1160 intel_timeline_sync_set(i915_request_timeline(rq), 1161 fence); 1162 } while (--nchild); 1163 1164 return 0; 1165 } 1166 1167 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1168 struct dma_fence *fence) 1169 { 1170 return __intel_timeline_sync_is_later(tl, 1171 fence->context, 1172 fence->seqno - 1); 1173 } 1174 1175 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1176 const struct dma_fence *fence) 1177 { 1178 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1179 } 1180 1181 static int 1182 __i915_request_await_execution(struct i915_request *to, 1183 struct i915_request *from, 1184 void (*hook)(struct i915_request *rq, 1185 struct dma_fence *signal)) 1186 { 1187 int err; 1188 1189 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1190 1191 /* Submit both requests at the same time */ 1192 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1193 if (err) 1194 return err; 1195 1196 /* Squash repeated depenendices to the same timelines */ 1197 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1198 &from->fence)) 1199 return 0; 1200 1201 /* 1202 * Wait until the start of this request. 1203 * 1204 * The execution cb fires when we submit the request to HW. But in 1205 * many cases this may be long before the request itself is ready to 1206 * run (consider that we submit 2 requests for the same context, where 1207 * the request of interest is behind an indefinite spinner). So we hook 1208 * up to both to reduce our queues and keep the execution lag minimised 1209 * in the worst case, though we hope that the await_start is elided. 1210 */ 1211 err = i915_request_await_start(to, from); 1212 if (err < 0) 1213 return err; 1214 1215 /* 1216 * Ensure both start together [after all semaphores in signal] 1217 * 1218 * Now that we are queued to the HW at roughly the same time (thanks 1219 * to the execute cb) and are ready to run at roughly the same time 1220 * (thanks to the await start), our signaler may still be indefinitely 1221 * delayed by waiting on a semaphore from a remote engine. If our 1222 * signaler depends on a semaphore, so indirectly do we, and we do not 1223 * want to start our payload until our signaler also starts theirs. 1224 * So we wait. 1225 * 1226 * However, there is also a second condition for which we need to wait 1227 * for the precise start of the signaler. Consider that the signaler 1228 * was submitted in a chain of requests following another context 1229 * (with just an ordinary intra-engine fence dependency between the 1230 * two). In this case the signaler is queued to HW, but not for 1231 * immediate execution, and so we must wait until it reaches the 1232 * active slot. 1233 */ 1234 if (intel_engine_has_semaphores(to->engine) && 1235 !i915_request_has_initial_breadcrumb(to)) { 1236 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1237 if (err < 0) 1238 return err; 1239 } 1240 1241 /* Couple the dependency tree for PI on this exposed to->fence */ 1242 if (to->engine->schedule) { 1243 err = i915_sched_node_add_dependency(&to->sched, 1244 &from->sched, 1245 I915_DEPENDENCY_WEAK); 1246 if (err < 0) 1247 return err; 1248 } 1249 1250 return intel_timeline_sync_set_start(i915_request_timeline(to), 1251 &from->fence); 1252 } 1253 1254 int 1255 i915_request_await_execution(struct i915_request *rq, 1256 struct dma_fence *fence, 1257 void (*hook)(struct i915_request *rq, 1258 struct dma_fence *signal)) 1259 { 1260 struct dma_fence **child = &fence; 1261 unsigned int nchild = 1; 1262 int ret; 1263 1264 if (dma_fence_is_array(fence)) { 1265 struct dma_fence_array *array = to_dma_fence_array(fence); 1266 1267 /* XXX Error for signal-on-any fence arrays */ 1268 1269 child = array->fences; 1270 nchild = array->num_fences; 1271 GEM_BUG_ON(!nchild); 1272 } 1273 1274 do { 1275 fence = *child++; 1276 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1277 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1278 continue; 1279 } 1280 1281 if (fence->context == rq->fence.context) 1282 continue; 1283 1284 /* 1285 * We don't squash repeated fence dependencies here as we 1286 * want to run our callback in all cases. 1287 */ 1288 1289 if (dma_fence_is_i915(fence)) 1290 ret = __i915_request_await_execution(rq, 1291 to_request(fence), 1292 hook); 1293 else 1294 ret = i915_request_await_external(rq, fence); 1295 if (ret < 0) 1296 return ret; 1297 } while (--nchild); 1298 1299 return 0; 1300 } 1301 1302 /** 1303 * i915_request_await_object - set this request to (async) wait upon a bo 1304 * @to: request we are wishing to use 1305 * @obj: object which may be in use on another ring. 1306 * @write: whether the wait is on behalf of a writer 1307 * 1308 * This code is meant to abstract object synchronization with the GPU. 1309 * Conceptually we serialise writes between engines inside the GPU. 1310 * We only allow one engine to write into a buffer at any time, but 1311 * multiple readers. To ensure each has a coherent view of memory, we must: 1312 * 1313 * - If there is an outstanding write request to the object, the new 1314 * request must wait for it to complete (either CPU or in hw, requests 1315 * on the same ring will be naturally ordered). 1316 * 1317 * - If we are a write request (pending_write_domain is set), the new 1318 * request must wait for outstanding read requests to complete. 1319 * 1320 * Returns 0 if successful, else propagates up the lower layer error. 1321 */ 1322 int 1323 i915_request_await_object(struct i915_request *to, 1324 struct drm_i915_gem_object *obj, 1325 bool write) 1326 { 1327 struct dma_fence *excl; 1328 int ret = 0; 1329 1330 if (write) { 1331 struct dma_fence **shared; 1332 unsigned int count, i; 1333 1334 ret = dma_resv_get_fences_rcu(obj->base.resv, 1335 &excl, &count, &shared); 1336 if (ret) 1337 return ret; 1338 1339 for (i = 0; i < count; i++) { 1340 ret = i915_request_await_dma_fence(to, shared[i]); 1341 if (ret) 1342 break; 1343 1344 dma_fence_put(shared[i]); 1345 } 1346 1347 for (; i < count; i++) 1348 dma_fence_put(shared[i]); 1349 kfree(shared); 1350 } else { 1351 excl = dma_resv_get_excl_rcu(obj->base.resv); 1352 } 1353 1354 if (excl) { 1355 if (ret == 0) 1356 ret = i915_request_await_dma_fence(to, excl); 1357 1358 dma_fence_put(excl); 1359 } 1360 1361 return ret; 1362 } 1363 1364 static struct i915_request * 1365 __i915_request_add_to_timeline(struct i915_request *rq) 1366 { 1367 struct intel_timeline *timeline = i915_request_timeline(rq); 1368 struct i915_request *prev; 1369 1370 /* 1371 * Dependency tracking and request ordering along the timeline 1372 * is special cased so that we can eliminate redundant ordering 1373 * operations while building the request (we know that the timeline 1374 * itself is ordered, and here we guarantee it). 1375 * 1376 * As we know we will need to emit tracking along the timeline, 1377 * we embed the hooks into our request struct -- at the cost of 1378 * having to have specialised no-allocation interfaces (which will 1379 * be beneficial elsewhere). 1380 * 1381 * A second benefit to open-coding i915_request_await_request is 1382 * that we can apply a slight variant of the rules specialised 1383 * for timelines that jump between engines (such as virtual engines). 1384 * If we consider the case of virtual engine, we must emit a dma-fence 1385 * to prevent scheduling of the second request until the first is 1386 * complete (to maximise our greedy late load balancing) and this 1387 * precludes optimising to use semaphores serialisation of a single 1388 * timeline across engines. 1389 */ 1390 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1391 &rq->fence)); 1392 if (prev && !i915_request_completed(prev)) { 1393 /* 1394 * The requests are supposed to be kept in order. However, 1395 * we need to be wary in case the timeline->last_request 1396 * is used as a barrier for external modification to this 1397 * context. 1398 */ 1399 GEM_BUG_ON(prev->context == rq->context && 1400 i915_seqno_passed(prev->fence.seqno, 1401 rq->fence.seqno)); 1402 1403 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)) 1404 i915_sw_fence_await_sw_fence(&rq->submit, 1405 &prev->submit, 1406 &rq->submitq); 1407 else 1408 __i915_sw_fence_await_dma_fence(&rq->submit, 1409 &prev->fence, 1410 &rq->dmaq); 1411 if (rq->engine->schedule) 1412 __i915_sched_node_add_dependency(&rq->sched, 1413 &prev->sched, 1414 &rq->dep, 1415 0); 1416 } 1417 1418 /* 1419 * Make sure that no request gazumped us - if it was allocated after 1420 * our i915_request_alloc() and called __i915_request_add() before 1421 * us, the timeline will hold its seqno which is later than ours. 1422 */ 1423 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1424 1425 return prev; 1426 } 1427 1428 /* 1429 * NB: This function is not allowed to fail. Doing so would mean the the 1430 * request is not being tracked for completion but the work itself is 1431 * going to happen on the hardware. This would be a Bad Thing(tm). 1432 */ 1433 struct i915_request *__i915_request_commit(struct i915_request *rq) 1434 { 1435 struct intel_engine_cs *engine = rq->engine; 1436 struct intel_ring *ring = rq->ring; 1437 u32 *cs; 1438 1439 RQ_TRACE(rq, "\n"); 1440 1441 /* 1442 * To ensure that this call will not fail, space for its emissions 1443 * should already have been reserved in the ring buffer. Let the ring 1444 * know that it is time to use that space up. 1445 */ 1446 GEM_BUG_ON(rq->reserved_space > ring->space); 1447 rq->reserved_space = 0; 1448 rq->emitted_jiffies = jiffies; 1449 1450 /* 1451 * Record the position of the start of the breadcrumb so that 1452 * should we detect the updated seqno part-way through the 1453 * GPU processing the request, we never over-estimate the 1454 * position of the ring's HEAD. 1455 */ 1456 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1457 GEM_BUG_ON(IS_ERR(cs)); 1458 rq->postfix = intel_ring_offset(rq, cs); 1459 1460 return __i915_request_add_to_timeline(rq); 1461 } 1462 1463 void __i915_request_queue(struct i915_request *rq, 1464 const struct i915_sched_attr *attr) 1465 { 1466 /* 1467 * Let the backend know a new request has arrived that may need 1468 * to adjust the existing execution schedule due to a high priority 1469 * request - i.e. we may want to preempt the current request in order 1470 * to run a high priority dependency chain *before* we can execute this 1471 * request. 1472 * 1473 * This is called before the request is ready to run so that we can 1474 * decide whether to preempt the entire chain so that it is ready to 1475 * run at the earliest possible convenience. 1476 */ 1477 if (attr && rq->engine->schedule) 1478 rq->engine->schedule(rq, attr); 1479 i915_sw_fence_commit(&rq->semaphore); 1480 i915_sw_fence_commit(&rq->submit); 1481 } 1482 1483 void i915_request_add(struct i915_request *rq) 1484 { 1485 struct intel_timeline * const tl = i915_request_timeline(rq); 1486 struct i915_sched_attr attr = {}; 1487 struct i915_gem_context *ctx; 1488 1489 lockdep_assert_held(&tl->mutex); 1490 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1491 1492 trace_i915_request_add(rq); 1493 __i915_request_commit(rq); 1494 1495 /* XXX placeholder for selftests */ 1496 rcu_read_lock(); 1497 ctx = rcu_dereference(rq->context->gem_context); 1498 if (ctx) 1499 attr = ctx->sched; 1500 rcu_read_unlock(); 1501 1502 __i915_request_queue(rq, &attr); 1503 1504 mutex_unlock(&tl->mutex); 1505 } 1506 1507 static unsigned long local_clock_ns(unsigned int *cpu) 1508 { 1509 unsigned long t; 1510 1511 /* 1512 * Cheaply and approximately convert from nanoseconds to microseconds. 1513 * The result and subsequent calculations are also defined in the same 1514 * approximate microseconds units. The principal source of timing 1515 * error here is from the simple truncation. 1516 * 1517 * Note that local_clock() is only defined wrt to the current CPU; 1518 * the comparisons are no longer valid if we switch CPUs. Instead of 1519 * blocking preemption for the entire busywait, we can detect the CPU 1520 * switch and use that as indicator of system load and a reason to 1521 * stop busywaiting, see busywait_stop(). 1522 */ 1523 *cpu = get_cpu(); 1524 t = local_clock(); 1525 put_cpu(); 1526 1527 return t; 1528 } 1529 1530 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1531 { 1532 unsigned int this_cpu; 1533 1534 if (time_after(local_clock_ns(&this_cpu), timeout)) 1535 return true; 1536 1537 return this_cpu != cpu; 1538 } 1539 1540 static bool __i915_spin_request(const struct i915_request * const rq, int state) 1541 { 1542 unsigned long timeout_ns; 1543 unsigned int cpu; 1544 1545 /* 1546 * Only wait for the request if we know it is likely to complete. 1547 * 1548 * We don't track the timestamps around requests, nor the average 1549 * request length, so we do not have a good indicator that this 1550 * request will complete within the timeout. What we do know is the 1551 * order in which requests are executed by the context and so we can 1552 * tell if the request has been started. If the request is not even 1553 * running yet, it is a fair assumption that it will not complete 1554 * within our relatively short timeout. 1555 */ 1556 if (!i915_request_is_running(rq)) 1557 return false; 1558 1559 /* 1560 * When waiting for high frequency requests, e.g. during synchronous 1561 * rendering split between the CPU and GPU, the finite amount of time 1562 * required to set up the irq and wait upon it limits the response 1563 * rate. By busywaiting on the request completion for a short while we 1564 * can service the high frequency waits as quick as possible. However, 1565 * if it is a slow request, we want to sleep as quickly as possible. 1566 * The tradeoff between waiting and sleeping is roughly the time it 1567 * takes to sleep on a request, on the order of a microsecond. 1568 */ 1569 1570 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1571 timeout_ns += local_clock_ns(&cpu); 1572 do { 1573 if (i915_request_completed(rq)) 1574 return true; 1575 1576 if (signal_pending_state(state, current)) 1577 break; 1578 1579 if (busywait_stop(timeout_ns, cpu)) 1580 break; 1581 1582 cpu_relax(); 1583 } while (!need_resched()); 1584 1585 return false; 1586 } 1587 1588 struct request_wait { 1589 struct dma_fence_cb cb; 1590 struct task_struct *tsk; 1591 }; 1592 1593 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1594 { 1595 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1596 1597 wake_up_process(wait->tsk); 1598 } 1599 1600 /** 1601 * i915_request_wait - wait until execution of request has finished 1602 * @rq: the request to wait upon 1603 * @flags: how to wait 1604 * @timeout: how long to wait in jiffies 1605 * 1606 * i915_request_wait() waits for the request to be completed, for a 1607 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1608 * unbounded wait). 1609 * 1610 * Returns the remaining time (in jiffies) if the request completed, which may 1611 * be zero or -ETIME if the request is unfinished after the timeout expires. 1612 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1613 * pending before the request completes. 1614 */ 1615 long i915_request_wait(struct i915_request *rq, 1616 unsigned int flags, 1617 long timeout) 1618 { 1619 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1620 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1621 struct request_wait wait; 1622 1623 might_sleep(); 1624 GEM_BUG_ON(timeout < 0); 1625 1626 if (dma_fence_is_signaled(&rq->fence)) 1627 return timeout; 1628 1629 if (!timeout) 1630 return -ETIME; 1631 1632 trace_i915_request_wait_begin(rq, flags); 1633 1634 /* 1635 * We must never wait on the GPU while holding a lock as we 1636 * may need to perform a GPU reset. So while we don't need to 1637 * serialise wait/reset with an explicit lock, we do want 1638 * lockdep to detect potential dependency cycles. 1639 */ 1640 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1641 1642 /* 1643 * Optimistic spin before touching IRQs. 1644 * 1645 * We may use a rather large value here to offset the penalty of 1646 * switching away from the active task. Frequently, the client will 1647 * wait upon an old swapbuffer to throttle itself to remain within a 1648 * frame of the gpu. If the client is running in lockstep with the gpu, 1649 * then it should not be waiting long at all, and a sleep now will incur 1650 * extra scheduler latency in producing the next frame. To try to 1651 * avoid adding the cost of enabling/disabling the interrupt to the 1652 * short wait, we first spin to see if the request would have completed 1653 * in the time taken to setup the interrupt. 1654 * 1655 * We need upto 5us to enable the irq, and upto 20us to hide the 1656 * scheduler latency of a context switch, ignoring the secondary 1657 * impacts from a context switch such as cache eviction. 1658 * 1659 * The scheme used for low-latency IO is called "hybrid interrupt 1660 * polling". The suggestion there is to sleep until just before you 1661 * expect to be woken by the device interrupt and then poll for its 1662 * completion. That requires having a good predictor for the request 1663 * duration, which we currently lack. 1664 */ 1665 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) && 1666 __i915_spin_request(rq, state)) { 1667 dma_fence_signal(&rq->fence); 1668 goto out; 1669 } 1670 1671 /* 1672 * This client is about to stall waiting for the GPU. In many cases 1673 * this is undesirable and limits the throughput of the system, as 1674 * many clients cannot continue processing user input/output whilst 1675 * blocked. RPS autotuning may take tens of milliseconds to respond 1676 * to the GPU load and thus incurs additional latency for the client. 1677 * We can circumvent that by promoting the GPU frequency to maximum 1678 * before we sleep. This makes the GPU throttle up much more quickly 1679 * (good for benchmarks and user experience, e.g. window animations), 1680 * but at a cost of spending more power processing the workload 1681 * (bad for battery). 1682 */ 1683 if (flags & I915_WAIT_PRIORITY) { 1684 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6) 1685 intel_rps_boost(rq); 1686 } 1687 1688 wait.tsk = current; 1689 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1690 goto out; 1691 1692 for (;;) { 1693 set_current_state(state); 1694 1695 if (i915_request_completed(rq)) { 1696 dma_fence_signal(&rq->fence); 1697 break; 1698 } 1699 1700 intel_engine_flush_submission(rq->engine); 1701 1702 if (signal_pending_state(state, current)) { 1703 timeout = -ERESTARTSYS; 1704 break; 1705 } 1706 1707 if (!timeout) { 1708 timeout = -ETIME; 1709 break; 1710 } 1711 1712 timeout = io_schedule_timeout(timeout); 1713 } 1714 __set_current_state(TASK_RUNNING); 1715 1716 dma_fence_remove_callback(&rq->fence, &wait.cb); 1717 1718 out: 1719 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1720 trace_i915_request_wait_end(rq); 1721 return timeout; 1722 } 1723 1724 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1725 #include "selftests/mock_request.c" 1726 #include "selftests/i915_request.c" 1727 #endif 1728 1729 static void i915_global_request_shrink(void) 1730 { 1731 kmem_cache_shrink(global.slab_execute_cbs); 1732 kmem_cache_shrink(global.slab_requests); 1733 } 1734 1735 static void i915_global_request_exit(void) 1736 { 1737 kmem_cache_destroy(global.slab_execute_cbs); 1738 kmem_cache_destroy(global.slab_requests); 1739 } 1740 1741 static struct i915_global_request global = { { 1742 .shrink = i915_global_request_shrink, 1743 .exit = i915_global_request_exit, 1744 } }; 1745 1746 int __init i915_global_request_init(void) 1747 { 1748 global.slab_requests = 1749 kmem_cache_create("i915_request", 1750 sizeof(struct i915_request), 1751 __alignof__(struct i915_request), 1752 SLAB_HWCACHE_ALIGN | 1753 SLAB_RECLAIM_ACCOUNT | 1754 SLAB_TYPESAFE_BY_RCU, 1755 __i915_request_ctor); 1756 if (!global.slab_requests) 1757 return -ENOMEM; 1758 1759 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1760 SLAB_HWCACHE_ALIGN | 1761 SLAB_RECLAIM_ACCOUNT | 1762 SLAB_TYPESAFE_BY_RCU); 1763 if (!global.slab_execute_cbs) 1764 goto err_requests; 1765 1766 i915_global_register(&global.base); 1767 return 0; 1768 1769 err_requests: 1770 kmem_cache_destroy(global.slab_requests); 1771 return -ENOMEM; 1772 } 1773