1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 
33 #include "gem/i915_gem_context.h"
34 #include "gt/intel_context.h"
35 #include "gt/intel_ring.h"
36 #include "gt/intel_rps.h"
37 
38 #include "i915_active.h"
39 #include "i915_drv.h"
40 #include "i915_globals.h"
41 #include "i915_trace.h"
42 #include "intel_pm.h"
43 
44 struct execute_cb {
45 	struct list_head link;
46 	struct irq_work work;
47 	struct i915_sw_fence *fence;
48 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
49 	struct i915_request *signal;
50 };
51 
52 static struct i915_global_request {
53 	struct i915_global base;
54 	struct kmem_cache *slab_requests;
55 	struct kmem_cache *slab_execute_cbs;
56 } global;
57 
58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 {
60 	return dev_name(to_request(fence)->i915->drm.dev);
61 }
62 
63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 {
65 	const struct i915_gem_context *ctx;
66 
67 	/*
68 	 * The timeline struct (as part of the ppgtt underneath a context)
69 	 * may be freed when the request is no longer in use by the GPU.
70 	 * We could extend the life of a context to beyond that of all
71 	 * fences, possibly keeping the hw resource around indefinitely,
72 	 * or we just give them a false name. Since
73 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
74 	 * lie seems justifiable.
75 	 */
76 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
77 		return "signaled";
78 
79 	ctx = i915_request_gem_context(to_request(fence));
80 	if (!ctx)
81 		return "[" DRIVER_NAME "]";
82 
83 	return ctx->name;
84 }
85 
86 static bool i915_fence_signaled(struct dma_fence *fence)
87 {
88 	return i915_request_completed(to_request(fence));
89 }
90 
91 static bool i915_fence_enable_signaling(struct dma_fence *fence)
92 {
93 	return i915_request_enable_breadcrumb(to_request(fence));
94 }
95 
96 static signed long i915_fence_wait(struct dma_fence *fence,
97 				   bool interruptible,
98 				   signed long timeout)
99 {
100 	return i915_request_wait(to_request(fence),
101 				 interruptible | I915_WAIT_PRIORITY,
102 				 timeout);
103 }
104 
105 struct kmem_cache *i915_request_slab_cache(void)
106 {
107 	return global.slab_requests;
108 }
109 
110 static void i915_fence_release(struct dma_fence *fence)
111 {
112 	struct i915_request *rq = to_request(fence);
113 
114 	/*
115 	 * The request is put onto a RCU freelist (i.e. the address
116 	 * is immediately reused), mark the fences as being freed now.
117 	 * Otherwise the debugobjects for the fences are only marked as
118 	 * freed when the slab cache itself is freed, and so we would get
119 	 * caught trying to reuse dead objects.
120 	 */
121 	i915_sw_fence_fini(&rq->submit);
122 	i915_sw_fence_fini(&rq->semaphore);
123 
124 	/* Keep one request on each engine for reserved use under mempressure */
125 	if (!cmpxchg(&rq->engine->request_pool, NULL, rq))
126 		return;
127 
128 	kmem_cache_free(global.slab_requests, rq);
129 }
130 
131 const struct dma_fence_ops i915_fence_ops = {
132 	.get_driver_name = i915_fence_get_driver_name,
133 	.get_timeline_name = i915_fence_get_timeline_name,
134 	.enable_signaling = i915_fence_enable_signaling,
135 	.signaled = i915_fence_signaled,
136 	.wait = i915_fence_wait,
137 	.release = i915_fence_release,
138 };
139 
140 static void irq_execute_cb(struct irq_work *wrk)
141 {
142 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
143 
144 	i915_sw_fence_complete(cb->fence);
145 	kmem_cache_free(global.slab_execute_cbs, cb);
146 }
147 
148 static void irq_execute_cb_hook(struct irq_work *wrk)
149 {
150 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
151 
152 	cb->hook(container_of(cb->fence, struct i915_request, submit),
153 		 &cb->signal->fence);
154 	i915_request_put(cb->signal);
155 
156 	irq_execute_cb(wrk);
157 }
158 
159 static void __notify_execute_cb(struct i915_request *rq)
160 {
161 	struct execute_cb *cb;
162 
163 	lockdep_assert_held(&rq->lock);
164 
165 	if (list_empty(&rq->execute_cb))
166 		return;
167 
168 	list_for_each_entry(cb, &rq->execute_cb, link)
169 		irq_work_queue(&cb->work);
170 
171 	/*
172 	 * XXX Rollback on __i915_request_unsubmit()
173 	 *
174 	 * In the future, perhaps when we have an active time-slicing scheduler,
175 	 * it will be interesting to unsubmit parallel execution and remove
176 	 * busywaits from the GPU until their master is restarted. This is
177 	 * quite hairy, we have to carefully rollback the fence and do a
178 	 * preempt-to-idle cycle on the target engine, all the while the
179 	 * master execute_cb may refire.
180 	 */
181 	INIT_LIST_HEAD(&rq->execute_cb);
182 }
183 
184 static inline void
185 remove_from_client(struct i915_request *request)
186 {
187 	struct drm_i915_file_private *file_priv;
188 
189 	if (!READ_ONCE(request->file_priv))
190 		return;
191 
192 	rcu_read_lock();
193 	file_priv = xchg(&request->file_priv, NULL);
194 	if (file_priv) {
195 		spin_lock(&file_priv->mm.lock);
196 		list_del(&request->client_link);
197 		spin_unlock(&file_priv->mm.lock);
198 	}
199 	rcu_read_unlock();
200 }
201 
202 static void free_capture_list(struct i915_request *request)
203 {
204 	struct i915_capture_list *capture;
205 
206 	capture = fetch_and_zero(&request->capture_list);
207 	while (capture) {
208 		struct i915_capture_list *next = capture->next;
209 
210 		kfree(capture);
211 		capture = next;
212 	}
213 }
214 
215 static void __i915_request_fill(struct i915_request *rq, u8 val)
216 {
217 	void *vaddr = rq->ring->vaddr;
218 	u32 head;
219 
220 	head = rq->infix;
221 	if (rq->postfix < head) {
222 		memset(vaddr + head, val, rq->ring->size - head);
223 		head = 0;
224 	}
225 	memset(vaddr + head, val, rq->postfix - head);
226 }
227 
228 static void remove_from_engine(struct i915_request *rq)
229 {
230 	struct intel_engine_cs *engine, *locked;
231 
232 	/*
233 	 * Virtual engines complicate acquiring the engine timeline lock,
234 	 * as their rq->engine pointer is not stable until under that
235 	 * engine lock. The simple ploy we use is to take the lock then
236 	 * check that the rq still belongs to the newly locked engine.
237 	 */
238 	locked = READ_ONCE(rq->engine);
239 	spin_lock_irq(&locked->active.lock);
240 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
241 		spin_unlock(&locked->active.lock);
242 		spin_lock(&engine->active.lock);
243 		locked = engine;
244 	}
245 	list_del_init(&rq->sched.link);
246 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
247 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
248 	spin_unlock_irq(&locked->active.lock);
249 }
250 
251 bool i915_request_retire(struct i915_request *rq)
252 {
253 	if (!i915_request_completed(rq))
254 		return false;
255 
256 	RQ_TRACE(rq, "\n");
257 
258 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
259 	trace_i915_request_retire(rq);
260 
261 	/*
262 	 * We know the GPU must have read the request to have
263 	 * sent us the seqno + interrupt, so use the position
264 	 * of tail of the request to update the last known position
265 	 * of the GPU head.
266 	 *
267 	 * Note this requires that we are always called in request
268 	 * completion order.
269 	 */
270 	GEM_BUG_ON(!list_is_first(&rq->link,
271 				  &i915_request_timeline(rq)->requests));
272 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
273 		/* Poison before we release our space in the ring */
274 		__i915_request_fill(rq, POISON_FREE);
275 	rq->ring->head = rq->postfix;
276 
277 	/*
278 	 * We only loosely track inflight requests across preemption,
279 	 * and so we may find ourselves attempting to retire a _completed_
280 	 * request that we have removed from the HW and put back on a run
281 	 * queue.
282 	 */
283 	remove_from_engine(rq);
284 
285 	spin_lock_irq(&rq->lock);
286 	i915_request_mark_complete(rq);
287 	if (!i915_request_signaled(rq))
288 		dma_fence_signal_locked(&rq->fence);
289 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
290 		i915_request_cancel_breadcrumb(rq);
291 	if (i915_request_has_waitboost(rq)) {
292 		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
293 		atomic_dec(&rq->engine->gt->rps.num_waiters);
294 	}
295 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
296 		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
297 		__notify_execute_cb(rq);
298 	}
299 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
300 	spin_unlock_irq(&rq->lock);
301 
302 	remove_from_client(rq);
303 	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
304 
305 	intel_context_exit(rq->context);
306 	intel_context_unpin(rq->context);
307 
308 	free_capture_list(rq);
309 	i915_sched_node_fini(&rq->sched);
310 	i915_request_put(rq);
311 
312 	return true;
313 }
314 
315 void i915_request_retire_upto(struct i915_request *rq)
316 {
317 	struct intel_timeline * const tl = i915_request_timeline(rq);
318 	struct i915_request *tmp;
319 
320 	RQ_TRACE(rq, "\n");
321 
322 	GEM_BUG_ON(!i915_request_completed(rq));
323 
324 	do {
325 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
326 	} while (i915_request_retire(tmp) && tmp != rq);
327 }
328 
329 static int
330 __await_execution(struct i915_request *rq,
331 		  struct i915_request *signal,
332 		  void (*hook)(struct i915_request *rq,
333 			       struct dma_fence *signal),
334 		  gfp_t gfp)
335 {
336 	struct execute_cb *cb;
337 
338 	if (i915_request_is_active(signal)) {
339 		if (hook)
340 			hook(rq, &signal->fence);
341 		return 0;
342 	}
343 
344 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
345 	if (!cb)
346 		return -ENOMEM;
347 
348 	cb->fence = &rq->submit;
349 	i915_sw_fence_await(cb->fence);
350 	init_irq_work(&cb->work, irq_execute_cb);
351 
352 	if (hook) {
353 		cb->hook = hook;
354 		cb->signal = i915_request_get(signal);
355 		cb->work.func = irq_execute_cb_hook;
356 	}
357 
358 	spin_lock_irq(&signal->lock);
359 	if (i915_request_is_active(signal)) {
360 		if (hook) {
361 			hook(rq, &signal->fence);
362 			i915_request_put(signal);
363 		}
364 		i915_sw_fence_complete(cb->fence);
365 		kmem_cache_free(global.slab_execute_cbs, cb);
366 	} else {
367 		list_add_tail(&cb->link, &signal->execute_cb);
368 	}
369 	spin_unlock_irq(&signal->lock);
370 
371 	return 0;
372 }
373 
374 static bool fatal_error(int error)
375 {
376 	switch (error) {
377 	case 0: /* not an error! */
378 	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
379 	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
380 		return false;
381 	default:
382 		return true;
383 	}
384 }
385 
386 void __i915_request_skip(struct i915_request *rq)
387 {
388 	GEM_BUG_ON(!fatal_error(rq->fence.error));
389 
390 	if (rq->infix == rq->postfix)
391 		return;
392 
393 	/*
394 	 * As this request likely depends on state from the lost
395 	 * context, clear out all the user operations leaving the
396 	 * breadcrumb at the end (so we get the fence notifications).
397 	 */
398 	__i915_request_fill(rq, 0);
399 	rq->infix = rq->postfix;
400 }
401 
402 void i915_request_set_error_once(struct i915_request *rq, int error)
403 {
404 	int old;
405 
406 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
407 
408 	if (i915_request_signaled(rq))
409 		return;
410 
411 	old = READ_ONCE(rq->fence.error);
412 	do {
413 		if (fatal_error(old))
414 			return;
415 	} while (!try_cmpxchg(&rq->fence.error, &old, error));
416 }
417 
418 bool __i915_request_submit(struct i915_request *request)
419 {
420 	struct intel_engine_cs *engine = request->engine;
421 	bool result = false;
422 
423 	RQ_TRACE(request, "\n");
424 
425 	GEM_BUG_ON(!irqs_disabled());
426 	lockdep_assert_held(&engine->active.lock);
427 
428 	/*
429 	 * With the advent of preempt-to-busy, we frequently encounter
430 	 * requests that we have unsubmitted from HW, but left running
431 	 * until the next ack and so have completed in the meantime. On
432 	 * resubmission of that completed request, we can skip
433 	 * updating the payload, and execlists can even skip submitting
434 	 * the request.
435 	 *
436 	 * We must remove the request from the caller's priority queue,
437 	 * and the caller must only call us when the request is in their
438 	 * priority queue, under the active.lock. This ensures that the
439 	 * request has *not* yet been retired and we can safely move
440 	 * the request into the engine->active.list where it will be
441 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
442 	 * request, this would be a horrible use-after-free.)
443 	 */
444 	if (i915_request_completed(request))
445 		goto xfer;
446 
447 	if (unlikely(intel_context_is_banned(request->context)))
448 		i915_request_set_error_once(request, -EIO);
449 	if (unlikely(fatal_error(request->fence.error)))
450 		__i915_request_skip(request);
451 
452 	/*
453 	 * Are we using semaphores when the gpu is already saturated?
454 	 *
455 	 * Using semaphores incurs a cost in having the GPU poll a
456 	 * memory location, busywaiting for it to change. The continual
457 	 * memory reads can have a noticeable impact on the rest of the
458 	 * system with the extra bus traffic, stalling the cpu as it too
459 	 * tries to access memory across the bus (perf stat -e bus-cycles).
460 	 *
461 	 * If we installed a semaphore on this request and we only submit
462 	 * the request after the signaler completed, that indicates the
463 	 * system is overloaded and using semaphores at this time only
464 	 * increases the amount of work we are doing. If so, we disable
465 	 * further use of semaphores until we are idle again, whence we
466 	 * optimistically try again.
467 	 */
468 	if (request->sched.semaphores &&
469 	    i915_sw_fence_signaled(&request->semaphore))
470 		engine->saturated |= request->sched.semaphores;
471 
472 	engine->emit_fini_breadcrumb(request,
473 				     request->ring->vaddr + request->postfix);
474 
475 	trace_i915_request_execute(request);
476 	engine->serial++;
477 	result = true;
478 
479 xfer:	/* We may be recursing from the signal callback of another i915 fence */
480 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
481 
482 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
483 		list_move_tail(&request->sched.link, &engine->active.requests);
484 		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
485 	}
486 
487 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
488 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
489 	    !i915_request_enable_breadcrumb(request))
490 		intel_engine_signal_breadcrumbs(engine);
491 
492 	__notify_execute_cb(request);
493 
494 	spin_unlock(&request->lock);
495 
496 	return result;
497 }
498 
499 void i915_request_submit(struct i915_request *request)
500 {
501 	struct intel_engine_cs *engine = request->engine;
502 	unsigned long flags;
503 
504 	/* Will be called from irq-context when using foreign fences. */
505 	spin_lock_irqsave(&engine->active.lock, flags);
506 
507 	__i915_request_submit(request);
508 
509 	spin_unlock_irqrestore(&engine->active.lock, flags);
510 }
511 
512 void __i915_request_unsubmit(struct i915_request *request)
513 {
514 	struct intel_engine_cs *engine = request->engine;
515 
516 	RQ_TRACE(request, "\n");
517 
518 	GEM_BUG_ON(!irqs_disabled());
519 	lockdep_assert_held(&engine->active.lock);
520 
521 	/*
522 	 * Only unwind in reverse order, required so that the per-context list
523 	 * is kept in seqno/ring order.
524 	 */
525 
526 	/* We may be recursing from the signal callback of another i915 fence */
527 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
528 
529 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
530 		i915_request_cancel_breadcrumb(request);
531 
532 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
533 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
534 
535 	spin_unlock(&request->lock);
536 
537 	/* We've already spun, don't charge on resubmitting. */
538 	if (request->sched.semaphores && i915_request_started(request))
539 		request->sched.semaphores = 0;
540 
541 	/*
542 	 * We don't need to wake_up any waiters on request->execute, they
543 	 * will get woken by any other event or us re-adding this request
544 	 * to the engine timeline (__i915_request_submit()). The waiters
545 	 * should be quite adapt at finding that the request now has a new
546 	 * global_seqno to the one they went to sleep on.
547 	 */
548 }
549 
550 void i915_request_unsubmit(struct i915_request *request)
551 {
552 	struct intel_engine_cs *engine = request->engine;
553 	unsigned long flags;
554 
555 	/* Will be called from irq-context when using foreign fences. */
556 	spin_lock_irqsave(&engine->active.lock, flags);
557 
558 	__i915_request_unsubmit(request);
559 
560 	spin_unlock_irqrestore(&engine->active.lock, flags);
561 }
562 
563 static int __i915_sw_fence_call
564 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
565 {
566 	struct i915_request *request =
567 		container_of(fence, typeof(*request), submit);
568 
569 	switch (state) {
570 	case FENCE_COMPLETE:
571 		trace_i915_request_submit(request);
572 
573 		if (unlikely(fence->error))
574 			i915_request_set_error_once(request, fence->error);
575 
576 		/*
577 		 * We need to serialize use of the submit_request() callback
578 		 * with its hotplugging performed during an emergency
579 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
580 		 * critical section in order to force i915_gem_set_wedged() to
581 		 * wait until the submit_request() is completed before
582 		 * proceeding.
583 		 */
584 		rcu_read_lock();
585 		request->engine->submit_request(request);
586 		rcu_read_unlock();
587 		break;
588 
589 	case FENCE_FREE:
590 		i915_request_put(request);
591 		break;
592 	}
593 
594 	return NOTIFY_DONE;
595 }
596 
597 static int __i915_sw_fence_call
598 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
599 {
600 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
601 
602 	switch (state) {
603 	case FENCE_COMPLETE:
604 		break;
605 
606 	case FENCE_FREE:
607 		i915_request_put(rq);
608 		break;
609 	}
610 
611 	return NOTIFY_DONE;
612 }
613 
614 static void retire_requests(struct intel_timeline *tl)
615 {
616 	struct i915_request *rq, *rn;
617 
618 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
619 		if (!i915_request_retire(rq))
620 			break;
621 }
622 
623 static noinline struct i915_request *
624 request_alloc_slow(struct intel_timeline *tl,
625 		   struct i915_request **rsvd,
626 		   gfp_t gfp)
627 {
628 	struct i915_request *rq;
629 
630 	/* If we cannot wait, dip into our reserves */
631 	if (!gfpflags_allow_blocking(gfp)) {
632 		rq = xchg(rsvd, NULL);
633 		if (!rq) /* Use the normal failure path for one final WARN */
634 			goto out;
635 
636 		return rq;
637 	}
638 
639 	if (list_empty(&tl->requests))
640 		goto out;
641 
642 	/* Move our oldest request to the slab-cache (if not in use!) */
643 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
644 	i915_request_retire(rq);
645 
646 	rq = kmem_cache_alloc(global.slab_requests,
647 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
648 	if (rq)
649 		return rq;
650 
651 	/* Ratelimit ourselves to prevent oom from malicious clients */
652 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
653 	cond_synchronize_rcu(rq->rcustate);
654 
655 	/* Retire our old requests in the hope that we free some */
656 	retire_requests(tl);
657 
658 out:
659 	return kmem_cache_alloc(global.slab_requests, gfp);
660 }
661 
662 static void __i915_request_ctor(void *arg)
663 {
664 	struct i915_request *rq = arg;
665 
666 	spin_lock_init(&rq->lock);
667 	i915_sched_node_init(&rq->sched);
668 	i915_sw_fence_init(&rq->submit, submit_notify);
669 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
670 
671 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
672 
673 	rq->file_priv = NULL;
674 	rq->capture_list = NULL;
675 
676 	INIT_LIST_HEAD(&rq->execute_cb);
677 }
678 
679 struct i915_request *
680 __i915_request_create(struct intel_context *ce, gfp_t gfp)
681 {
682 	struct intel_timeline *tl = ce->timeline;
683 	struct i915_request *rq;
684 	u32 seqno;
685 	int ret;
686 
687 	might_sleep_if(gfpflags_allow_blocking(gfp));
688 
689 	/* Check that the caller provided an already pinned context */
690 	__intel_context_pin(ce);
691 
692 	/*
693 	 * Beware: Dragons be flying overhead.
694 	 *
695 	 * We use RCU to look up requests in flight. The lookups may
696 	 * race with the request being allocated from the slab freelist.
697 	 * That is the request we are writing to here, may be in the process
698 	 * of being read by __i915_active_request_get_rcu(). As such,
699 	 * we have to be very careful when overwriting the contents. During
700 	 * the RCU lookup, we change chase the request->engine pointer,
701 	 * read the request->global_seqno and increment the reference count.
702 	 *
703 	 * The reference count is incremented atomically. If it is zero,
704 	 * the lookup knows the request is unallocated and complete. Otherwise,
705 	 * it is either still in use, or has been reallocated and reset
706 	 * with dma_fence_init(). This increment is safe for release as we
707 	 * check that the request we have a reference to and matches the active
708 	 * request.
709 	 *
710 	 * Before we increment the refcount, we chase the request->engine
711 	 * pointer. We must not call kmem_cache_zalloc() or else we set
712 	 * that pointer to NULL and cause a crash during the lookup. If
713 	 * we see the request is completed (based on the value of the
714 	 * old engine and seqno), the lookup is complete and reports NULL.
715 	 * If we decide the request is not completed (new engine or seqno),
716 	 * then we grab a reference and double check that it is still the
717 	 * active request - which it won't be and restart the lookup.
718 	 *
719 	 * Do not use kmem_cache_zalloc() here!
720 	 */
721 	rq = kmem_cache_alloc(global.slab_requests,
722 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
723 	if (unlikely(!rq)) {
724 		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
725 		if (!rq) {
726 			ret = -ENOMEM;
727 			goto err_unreserve;
728 		}
729 	}
730 
731 	rq->i915 = ce->engine->i915;
732 	rq->context = ce;
733 	rq->engine = ce->engine;
734 	rq->ring = ce->ring;
735 	rq->execution_mask = ce->engine->mask;
736 
737 	kref_init(&rq->fence.refcount);
738 	rq->fence.flags = 0;
739 	rq->fence.error = 0;
740 	INIT_LIST_HEAD(&rq->fence.cb_list);
741 
742 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
743 	if (ret)
744 		goto err_free;
745 
746 	rq->fence.context = tl->fence_context;
747 	rq->fence.seqno = seqno;
748 
749 	RCU_INIT_POINTER(rq->timeline, tl);
750 	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
751 	rq->hwsp_seqno = tl->hwsp_seqno;
752 	GEM_BUG_ON(i915_request_completed(rq));
753 
754 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
755 
756 	/* We bump the ref for the fence chain */
757 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
758 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
759 
760 	i915_sched_node_reinit(&rq->sched);
761 
762 	/* No zalloc, everything must be cleared after use */
763 	rq->batch = NULL;
764 	GEM_BUG_ON(rq->file_priv);
765 	GEM_BUG_ON(rq->capture_list);
766 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
767 
768 	/*
769 	 * Reserve space in the ring buffer for all the commands required to
770 	 * eventually emit this request. This is to guarantee that the
771 	 * i915_request_add() call can't fail. Note that the reserve may need
772 	 * to be redone if the request is not actually submitted straight
773 	 * away, e.g. because a GPU scheduler has deferred it.
774 	 *
775 	 * Note that due to how we add reserved_space to intel_ring_begin()
776 	 * we need to double our request to ensure that if we need to wrap
777 	 * around inside i915_request_add() there is sufficient space at
778 	 * the beginning of the ring as well.
779 	 */
780 	rq->reserved_space =
781 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
782 
783 	/*
784 	 * Record the position of the start of the request so that
785 	 * should we detect the updated seqno part-way through the
786 	 * GPU processing the request, we never over-estimate the
787 	 * position of the head.
788 	 */
789 	rq->head = rq->ring->emit;
790 
791 	ret = rq->engine->request_alloc(rq);
792 	if (ret)
793 		goto err_unwind;
794 
795 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
796 
797 	intel_context_mark_active(ce);
798 	list_add_tail_rcu(&rq->link, &tl->requests);
799 
800 	return rq;
801 
802 err_unwind:
803 	ce->ring->emit = rq->head;
804 
805 	/* Make sure we didn't add ourselves to external state before freeing */
806 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
807 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
808 
809 err_free:
810 	kmem_cache_free(global.slab_requests, rq);
811 err_unreserve:
812 	intel_context_unpin(ce);
813 	return ERR_PTR(ret);
814 }
815 
816 struct i915_request *
817 i915_request_create(struct intel_context *ce)
818 {
819 	struct i915_request *rq;
820 	struct intel_timeline *tl;
821 
822 	tl = intel_context_timeline_lock(ce);
823 	if (IS_ERR(tl))
824 		return ERR_CAST(tl);
825 
826 	/* Move our oldest request to the slab-cache (if not in use!) */
827 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
828 	if (!list_is_last(&rq->link, &tl->requests))
829 		i915_request_retire(rq);
830 
831 	intel_context_enter(ce);
832 	rq = __i915_request_create(ce, GFP_KERNEL);
833 	intel_context_exit(ce); /* active reference transferred to request */
834 	if (IS_ERR(rq))
835 		goto err_unlock;
836 
837 	/* Check that we do not interrupt ourselves with a new request */
838 	rq->cookie = lockdep_pin_lock(&tl->mutex);
839 
840 	return rq;
841 
842 err_unlock:
843 	intel_context_timeline_unlock(tl);
844 	return rq;
845 }
846 
847 static int
848 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
849 {
850 	struct dma_fence *fence;
851 	int err;
852 
853 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
854 		return 0;
855 
856 	if (i915_request_started(signal))
857 		return 0;
858 
859 	fence = NULL;
860 	rcu_read_lock();
861 	spin_lock_irq(&signal->lock);
862 	do {
863 		struct list_head *pos = READ_ONCE(signal->link.prev);
864 		struct i915_request *prev;
865 
866 		/* Confirm signal has not been retired, the link is valid */
867 		if (unlikely(i915_request_started(signal)))
868 			break;
869 
870 		/* Is signal the earliest request on its timeline? */
871 		if (pos == &rcu_dereference(signal->timeline)->requests)
872 			break;
873 
874 		/*
875 		 * Peek at the request before us in the timeline. That
876 		 * request will only be valid before it is retired, so
877 		 * after acquiring a reference to it, confirm that it is
878 		 * still part of the signaler's timeline.
879 		 */
880 		prev = list_entry(pos, typeof(*prev), link);
881 		if (!i915_request_get_rcu(prev))
882 			break;
883 
884 		/* After the strong barrier, confirm prev is still attached */
885 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
886 			i915_request_put(prev);
887 			break;
888 		}
889 
890 		fence = &prev->fence;
891 	} while (0);
892 	spin_unlock_irq(&signal->lock);
893 	rcu_read_unlock();
894 	if (!fence)
895 		return 0;
896 
897 	err = 0;
898 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
899 		err = i915_sw_fence_await_dma_fence(&rq->submit,
900 						    fence, 0,
901 						    I915_FENCE_GFP);
902 	dma_fence_put(fence);
903 
904 	return err;
905 }
906 
907 static intel_engine_mask_t
908 already_busywaiting(struct i915_request *rq)
909 {
910 	/*
911 	 * Polling a semaphore causes bus traffic, delaying other users of
912 	 * both the GPU and CPU. We want to limit the impact on others,
913 	 * while taking advantage of early submission to reduce GPU
914 	 * latency. Therefore we restrict ourselves to not using more
915 	 * than one semaphore from each source, and not using a semaphore
916 	 * if we have detected the engine is saturated (i.e. would not be
917 	 * submitted early and cause bus traffic reading an already passed
918 	 * semaphore).
919 	 *
920 	 * See the are-we-too-late? check in __i915_request_submit().
921 	 */
922 	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
923 }
924 
925 static int
926 __emit_semaphore_wait(struct i915_request *to,
927 		      struct i915_request *from,
928 		      u32 seqno)
929 {
930 	const int has_token = INTEL_GEN(to->i915) >= 12;
931 	u32 hwsp_offset;
932 	int len, err;
933 	u32 *cs;
934 
935 	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
936 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
937 
938 	/* We need to pin the signaler's HWSP until we are finished reading. */
939 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
940 	if (err)
941 		return err;
942 
943 	len = 4;
944 	if (has_token)
945 		len += 2;
946 
947 	cs = intel_ring_begin(to, len);
948 	if (IS_ERR(cs))
949 		return PTR_ERR(cs);
950 
951 	/*
952 	 * Using greater-than-or-equal here means we have to worry
953 	 * about seqno wraparound. To side step that issue, we swap
954 	 * the timeline HWSP upon wrapping, so that everyone listening
955 	 * for the old (pre-wrap) values do not see the much smaller
956 	 * (post-wrap) values than they were expecting (and so wait
957 	 * forever).
958 	 */
959 	*cs++ = (MI_SEMAPHORE_WAIT |
960 		 MI_SEMAPHORE_GLOBAL_GTT |
961 		 MI_SEMAPHORE_POLL |
962 		 MI_SEMAPHORE_SAD_GTE_SDD) +
963 		has_token;
964 	*cs++ = seqno;
965 	*cs++ = hwsp_offset;
966 	*cs++ = 0;
967 	if (has_token) {
968 		*cs++ = 0;
969 		*cs++ = MI_NOOP;
970 	}
971 
972 	intel_ring_advance(to, cs);
973 	return 0;
974 }
975 
976 static int
977 emit_semaphore_wait(struct i915_request *to,
978 		    struct i915_request *from,
979 		    gfp_t gfp)
980 {
981 	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
982 	struct i915_sw_fence *wait = &to->submit;
983 
984 	if (!intel_context_use_semaphores(to->context))
985 		goto await_fence;
986 
987 	if (i915_request_has_initial_breadcrumb(to))
988 		goto await_fence;
989 
990 	if (!rcu_access_pointer(from->hwsp_cacheline))
991 		goto await_fence;
992 
993 	/*
994 	 * If this or its dependents are waiting on an external fence
995 	 * that may fail catastrophically, then we want to avoid using
996 	 * sempahores as they bypass the fence signaling metadata, and we
997 	 * lose the fence->error propagation.
998 	 */
999 	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1000 		goto await_fence;
1001 
1002 	/* Just emit the first semaphore we see as request space is limited. */
1003 	if (already_busywaiting(to) & mask)
1004 		goto await_fence;
1005 
1006 	if (i915_request_await_start(to, from) < 0)
1007 		goto await_fence;
1008 
1009 	/* Only submit our spinner after the signaler is running! */
1010 	if (__await_execution(to, from, NULL, gfp))
1011 		goto await_fence;
1012 
1013 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1014 		goto await_fence;
1015 
1016 	to->sched.semaphores |= mask;
1017 	wait = &to->semaphore;
1018 
1019 await_fence:
1020 	return i915_sw_fence_await_dma_fence(wait,
1021 					     &from->fence, 0,
1022 					     I915_FENCE_GFP);
1023 }
1024 
1025 static int
1026 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1027 {
1028 	int ret;
1029 
1030 	GEM_BUG_ON(to == from);
1031 	GEM_BUG_ON(to->timeline == from->timeline);
1032 
1033 	if (i915_request_completed(from)) {
1034 		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1035 		return 0;
1036 	}
1037 
1038 	if (to->engine->schedule) {
1039 		ret = i915_sched_node_add_dependency(&to->sched,
1040 						     &from->sched,
1041 						     I915_DEPENDENCY_EXTERNAL);
1042 		if (ret < 0)
1043 			return ret;
1044 	}
1045 
1046 	if (to->engine == from->engine)
1047 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
1048 						       &from->submit,
1049 						       I915_FENCE_GFP);
1050 	else
1051 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1052 	if (ret < 0)
1053 		return ret;
1054 
1055 	return 0;
1056 }
1057 
1058 static void mark_external(struct i915_request *rq)
1059 {
1060 	/*
1061 	 * The downside of using semaphores is that we lose metadata passing
1062 	 * along the signaling chain. This is particularly nasty when we
1063 	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1064 	 * fatal errors we want to scrub the request before it is executed,
1065 	 * which means that we cannot preload the request onto HW and have
1066 	 * it wait upon a semaphore.
1067 	 */
1068 	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1069 }
1070 
1071 static int
1072 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1073 {
1074 	mark_external(rq);
1075 	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1076 					     i915_fence_context_timeout(rq->i915,
1077 									fence->context),
1078 					     I915_FENCE_GFP);
1079 }
1080 
1081 static int
1082 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1083 {
1084 	struct dma_fence *iter;
1085 	int err = 0;
1086 
1087 	if (!to_dma_fence_chain(fence))
1088 		return __i915_request_await_external(rq, fence);
1089 
1090 	dma_fence_chain_for_each(iter, fence) {
1091 		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1092 
1093 		if (!dma_fence_is_i915(chain->fence)) {
1094 			err = __i915_request_await_external(rq, iter);
1095 			break;
1096 		}
1097 
1098 		err = i915_request_await_dma_fence(rq, chain->fence);
1099 		if (err < 0)
1100 			break;
1101 	}
1102 
1103 	dma_fence_put(iter);
1104 	return err;
1105 }
1106 
1107 int
1108 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1109 {
1110 	struct dma_fence **child = &fence;
1111 	unsigned int nchild = 1;
1112 	int ret;
1113 
1114 	/*
1115 	 * Note that if the fence-array was created in signal-on-any mode,
1116 	 * we should *not* decompose it into its individual fences. However,
1117 	 * we don't currently store which mode the fence-array is operating
1118 	 * in. Fortunately, the only user of signal-on-any is private to
1119 	 * amdgpu and we should not see any incoming fence-array from
1120 	 * sync-file being in signal-on-any mode.
1121 	 */
1122 	if (dma_fence_is_array(fence)) {
1123 		struct dma_fence_array *array = to_dma_fence_array(fence);
1124 
1125 		child = array->fences;
1126 		nchild = array->num_fences;
1127 		GEM_BUG_ON(!nchild);
1128 	}
1129 
1130 	do {
1131 		fence = *child++;
1132 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1133 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1134 			continue;
1135 		}
1136 
1137 		/*
1138 		 * Requests on the same timeline are explicitly ordered, along
1139 		 * with their dependencies, by i915_request_add() which ensures
1140 		 * that requests are submitted in-order through each ring.
1141 		 */
1142 		if (fence->context == rq->fence.context)
1143 			continue;
1144 
1145 		/* Squash repeated waits to the same timelines */
1146 		if (fence->context &&
1147 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1148 						 fence))
1149 			continue;
1150 
1151 		if (dma_fence_is_i915(fence))
1152 			ret = i915_request_await_request(rq, to_request(fence));
1153 		else
1154 			ret = i915_request_await_external(rq, fence);
1155 		if (ret < 0)
1156 			return ret;
1157 
1158 		/* Record the latest fence used against each timeline */
1159 		if (fence->context)
1160 			intel_timeline_sync_set(i915_request_timeline(rq),
1161 						fence);
1162 	} while (--nchild);
1163 
1164 	return 0;
1165 }
1166 
1167 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1168 					  struct dma_fence *fence)
1169 {
1170 	return __intel_timeline_sync_is_later(tl,
1171 					      fence->context,
1172 					      fence->seqno - 1);
1173 }
1174 
1175 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1176 					 const struct dma_fence *fence)
1177 {
1178 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1179 }
1180 
1181 static int
1182 __i915_request_await_execution(struct i915_request *to,
1183 			       struct i915_request *from,
1184 			       void (*hook)(struct i915_request *rq,
1185 					    struct dma_fence *signal))
1186 {
1187 	int err;
1188 
1189 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1190 
1191 	/* Submit both requests at the same time */
1192 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1193 	if (err)
1194 		return err;
1195 
1196 	/* Squash repeated depenendices to the same timelines */
1197 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1198 					  &from->fence))
1199 		return 0;
1200 
1201 	/*
1202 	 * Wait until the start of this request.
1203 	 *
1204 	 * The execution cb fires when we submit the request to HW. But in
1205 	 * many cases this may be long before the request itself is ready to
1206 	 * run (consider that we submit 2 requests for the same context, where
1207 	 * the request of interest is behind an indefinite spinner). So we hook
1208 	 * up to both to reduce our queues and keep the execution lag minimised
1209 	 * in the worst case, though we hope that the await_start is elided.
1210 	 */
1211 	err = i915_request_await_start(to, from);
1212 	if (err < 0)
1213 		return err;
1214 
1215 	/*
1216 	 * Ensure both start together [after all semaphores in signal]
1217 	 *
1218 	 * Now that we are queued to the HW at roughly the same time (thanks
1219 	 * to the execute cb) and are ready to run at roughly the same time
1220 	 * (thanks to the await start), our signaler may still be indefinitely
1221 	 * delayed by waiting on a semaphore from a remote engine. If our
1222 	 * signaler depends on a semaphore, so indirectly do we, and we do not
1223 	 * want to start our payload until our signaler also starts theirs.
1224 	 * So we wait.
1225 	 *
1226 	 * However, there is also a second condition for which we need to wait
1227 	 * for the precise start of the signaler. Consider that the signaler
1228 	 * was submitted in a chain of requests following another context
1229 	 * (with just an ordinary intra-engine fence dependency between the
1230 	 * two). In this case the signaler is queued to HW, but not for
1231 	 * immediate execution, and so we must wait until it reaches the
1232 	 * active slot.
1233 	 */
1234 	if (intel_engine_has_semaphores(to->engine) &&
1235 	    !i915_request_has_initial_breadcrumb(to)) {
1236 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1237 		if (err < 0)
1238 			return err;
1239 	}
1240 
1241 	/* Couple the dependency tree for PI on this exposed to->fence */
1242 	if (to->engine->schedule) {
1243 		err = i915_sched_node_add_dependency(&to->sched,
1244 						     &from->sched,
1245 						     I915_DEPENDENCY_WEAK);
1246 		if (err < 0)
1247 			return err;
1248 	}
1249 
1250 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1251 					     &from->fence);
1252 }
1253 
1254 int
1255 i915_request_await_execution(struct i915_request *rq,
1256 			     struct dma_fence *fence,
1257 			     void (*hook)(struct i915_request *rq,
1258 					  struct dma_fence *signal))
1259 {
1260 	struct dma_fence **child = &fence;
1261 	unsigned int nchild = 1;
1262 	int ret;
1263 
1264 	if (dma_fence_is_array(fence)) {
1265 		struct dma_fence_array *array = to_dma_fence_array(fence);
1266 
1267 		/* XXX Error for signal-on-any fence arrays */
1268 
1269 		child = array->fences;
1270 		nchild = array->num_fences;
1271 		GEM_BUG_ON(!nchild);
1272 	}
1273 
1274 	do {
1275 		fence = *child++;
1276 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1277 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1278 			continue;
1279 		}
1280 
1281 		if (fence->context == rq->fence.context)
1282 			continue;
1283 
1284 		/*
1285 		 * We don't squash repeated fence dependencies here as we
1286 		 * want to run our callback in all cases.
1287 		 */
1288 
1289 		if (dma_fence_is_i915(fence))
1290 			ret = __i915_request_await_execution(rq,
1291 							     to_request(fence),
1292 							     hook);
1293 		else
1294 			ret = i915_request_await_external(rq, fence);
1295 		if (ret < 0)
1296 			return ret;
1297 	} while (--nchild);
1298 
1299 	return 0;
1300 }
1301 
1302 /**
1303  * i915_request_await_object - set this request to (async) wait upon a bo
1304  * @to: request we are wishing to use
1305  * @obj: object which may be in use on another ring.
1306  * @write: whether the wait is on behalf of a writer
1307  *
1308  * This code is meant to abstract object synchronization with the GPU.
1309  * Conceptually we serialise writes between engines inside the GPU.
1310  * We only allow one engine to write into a buffer at any time, but
1311  * multiple readers. To ensure each has a coherent view of memory, we must:
1312  *
1313  * - If there is an outstanding write request to the object, the new
1314  *   request must wait for it to complete (either CPU or in hw, requests
1315  *   on the same ring will be naturally ordered).
1316  *
1317  * - If we are a write request (pending_write_domain is set), the new
1318  *   request must wait for outstanding read requests to complete.
1319  *
1320  * Returns 0 if successful, else propagates up the lower layer error.
1321  */
1322 int
1323 i915_request_await_object(struct i915_request *to,
1324 			  struct drm_i915_gem_object *obj,
1325 			  bool write)
1326 {
1327 	struct dma_fence *excl;
1328 	int ret = 0;
1329 
1330 	if (write) {
1331 		struct dma_fence **shared;
1332 		unsigned int count, i;
1333 
1334 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1335 							&excl, &count, &shared);
1336 		if (ret)
1337 			return ret;
1338 
1339 		for (i = 0; i < count; i++) {
1340 			ret = i915_request_await_dma_fence(to, shared[i]);
1341 			if (ret)
1342 				break;
1343 
1344 			dma_fence_put(shared[i]);
1345 		}
1346 
1347 		for (; i < count; i++)
1348 			dma_fence_put(shared[i]);
1349 		kfree(shared);
1350 	} else {
1351 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1352 	}
1353 
1354 	if (excl) {
1355 		if (ret == 0)
1356 			ret = i915_request_await_dma_fence(to, excl);
1357 
1358 		dma_fence_put(excl);
1359 	}
1360 
1361 	return ret;
1362 }
1363 
1364 static struct i915_request *
1365 __i915_request_add_to_timeline(struct i915_request *rq)
1366 {
1367 	struct intel_timeline *timeline = i915_request_timeline(rq);
1368 	struct i915_request *prev;
1369 
1370 	/*
1371 	 * Dependency tracking and request ordering along the timeline
1372 	 * is special cased so that we can eliminate redundant ordering
1373 	 * operations while building the request (we know that the timeline
1374 	 * itself is ordered, and here we guarantee it).
1375 	 *
1376 	 * As we know we will need to emit tracking along the timeline,
1377 	 * we embed the hooks into our request struct -- at the cost of
1378 	 * having to have specialised no-allocation interfaces (which will
1379 	 * be beneficial elsewhere).
1380 	 *
1381 	 * A second benefit to open-coding i915_request_await_request is
1382 	 * that we can apply a slight variant of the rules specialised
1383 	 * for timelines that jump between engines (such as virtual engines).
1384 	 * If we consider the case of virtual engine, we must emit a dma-fence
1385 	 * to prevent scheduling of the second request until the first is
1386 	 * complete (to maximise our greedy late load balancing) and this
1387 	 * precludes optimising to use semaphores serialisation of a single
1388 	 * timeline across engines.
1389 	 */
1390 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1391 						  &rq->fence));
1392 	if (prev && !i915_request_completed(prev)) {
1393 		/*
1394 		 * The requests are supposed to be kept in order. However,
1395 		 * we need to be wary in case the timeline->last_request
1396 		 * is used as a barrier for external modification to this
1397 		 * context.
1398 		 */
1399 		GEM_BUG_ON(prev->context == rq->context &&
1400 			   i915_seqno_passed(prev->fence.seqno,
1401 					     rq->fence.seqno));
1402 
1403 		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1404 			i915_sw_fence_await_sw_fence(&rq->submit,
1405 						     &prev->submit,
1406 						     &rq->submitq);
1407 		else
1408 			__i915_sw_fence_await_dma_fence(&rq->submit,
1409 							&prev->fence,
1410 							&rq->dmaq);
1411 		if (rq->engine->schedule)
1412 			__i915_sched_node_add_dependency(&rq->sched,
1413 							 &prev->sched,
1414 							 &rq->dep,
1415 							 0);
1416 	}
1417 
1418 	/*
1419 	 * Make sure that no request gazumped us - if it was allocated after
1420 	 * our i915_request_alloc() and called __i915_request_add() before
1421 	 * us, the timeline will hold its seqno which is later than ours.
1422 	 */
1423 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1424 
1425 	return prev;
1426 }
1427 
1428 /*
1429  * NB: This function is not allowed to fail. Doing so would mean the the
1430  * request is not being tracked for completion but the work itself is
1431  * going to happen on the hardware. This would be a Bad Thing(tm).
1432  */
1433 struct i915_request *__i915_request_commit(struct i915_request *rq)
1434 {
1435 	struct intel_engine_cs *engine = rq->engine;
1436 	struct intel_ring *ring = rq->ring;
1437 	u32 *cs;
1438 
1439 	RQ_TRACE(rq, "\n");
1440 
1441 	/*
1442 	 * To ensure that this call will not fail, space for its emissions
1443 	 * should already have been reserved in the ring buffer. Let the ring
1444 	 * know that it is time to use that space up.
1445 	 */
1446 	GEM_BUG_ON(rq->reserved_space > ring->space);
1447 	rq->reserved_space = 0;
1448 	rq->emitted_jiffies = jiffies;
1449 
1450 	/*
1451 	 * Record the position of the start of the breadcrumb so that
1452 	 * should we detect the updated seqno part-way through the
1453 	 * GPU processing the request, we never over-estimate the
1454 	 * position of the ring's HEAD.
1455 	 */
1456 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1457 	GEM_BUG_ON(IS_ERR(cs));
1458 	rq->postfix = intel_ring_offset(rq, cs);
1459 
1460 	return __i915_request_add_to_timeline(rq);
1461 }
1462 
1463 void __i915_request_queue(struct i915_request *rq,
1464 			  const struct i915_sched_attr *attr)
1465 {
1466 	/*
1467 	 * Let the backend know a new request has arrived that may need
1468 	 * to adjust the existing execution schedule due to a high priority
1469 	 * request - i.e. we may want to preempt the current request in order
1470 	 * to run a high priority dependency chain *before* we can execute this
1471 	 * request.
1472 	 *
1473 	 * This is called before the request is ready to run so that we can
1474 	 * decide whether to preempt the entire chain so that it is ready to
1475 	 * run at the earliest possible convenience.
1476 	 */
1477 	if (attr && rq->engine->schedule)
1478 		rq->engine->schedule(rq, attr);
1479 	i915_sw_fence_commit(&rq->semaphore);
1480 	i915_sw_fence_commit(&rq->submit);
1481 }
1482 
1483 void i915_request_add(struct i915_request *rq)
1484 {
1485 	struct intel_timeline * const tl = i915_request_timeline(rq);
1486 	struct i915_sched_attr attr = {};
1487 	struct i915_gem_context *ctx;
1488 
1489 	lockdep_assert_held(&tl->mutex);
1490 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1491 
1492 	trace_i915_request_add(rq);
1493 	__i915_request_commit(rq);
1494 
1495 	/* XXX placeholder for selftests */
1496 	rcu_read_lock();
1497 	ctx = rcu_dereference(rq->context->gem_context);
1498 	if (ctx)
1499 		attr = ctx->sched;
1500 	rcu_read_unlock();
1501 
1502 	__i915_request_queue(rq, &attr);
1503 
1504 	mutex_unlock(&tl->mutex);
1505 }
1506 
1507 static unsigned long local_clock_ns(unsigned int *cpu)
1508 {
1509 	unsigned long t;
1510 
1511 	/*
1512 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1513 	 * The result and subsequent calculations are also defined in the same
1514 	 * approximate microseconds units. The principal source of timing
1515 	 * error here is from the simple truncation.
1516 	 *
1517 	 * Note that local_clock() is only defined wrt to the current CPU;
1518 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1519 	 * blocking preemption for the entire busywait, we can detect the CPU
1520 	 * switch and use that as indicator of system load and a reason to
1521 	 * stop busywaiting, see busywait_stop().
1522 	 */
1523 	*cpu = get_cpu();
1524 	t = local_clock();
1525 	put_cpu();
1526 
1527 	return t;
1528 }
1529 
1530 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1531 {
1532 	unsigned int this_cpu;
1533 
1534 	if (time_after(local_clock_ns(&this_cpu), timeout))
1535 		return true;
1536 
1537 	return this_cpu != cpu;
1538 }
1539 
1540 static bool __i915_spin_request(const struct i915_request * const rq, int state)
1541 {
1542 	unsigned long timeout_ns;
1543 	unsigned int cpu;
1544 
1545 	/*
1546 	 * Only wait for the request if we know it is likely to complete.
1547 	 *
1548 	 * We don't track the timestamps around requests, nor the average
1549 	 * request length, so we do not have a good indicator that this
1550 	 * request will complete within the timeout. What we do know is the
1551 	 * order in which requests are executed by the context and so we can
1552 	 * tell if the request has been started. If the request is not even
1553 	 * running yet, it is a fair assumption that it will not complete
1554 	 * within our relatively short timeout.
1555 	 */
1556 	if (!i915_request_is_running(rq))
1557 		return false;
1558 
1559 	/*
1560 	 * When waiting for high frequency requests, e.g. during synchronous
1561 	 * rendering split between the CPU and GPU, the finite amount of time
1562 	 * required to set up the irq and wait upon it limits the response
1563 	 * rate. By busywaiting on the request completion for a short while we
1564 	 * can service the high frequency waits as quick as possible. However,
1565 	 * if it is a slow request, we want to sleep as quickly as possible.
1566 	 * The tradeoff between waiting and sleeping is roughly the time it
1567 	 * takes to sleep on a request, on the order of a microsecond.
1568 	 */
1569 
1570 	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1571 	timeout_ns += local_clock_ns(&cpu);
1572 	do {
1573 		if (i915_request_completed(rq))
1574 			return true;
1575 
1576 		if (signal_pending_state(state, current))
1577 			break;
1578 
1579 		if (busywait_stop(timeout_ns, cpu))
1580 			break;
1581 
1582 		cpu_relax();
1583 	} while (!need_resched());
1584 
1585 	return false;
1586 }
1587 
1588 struct request_wait {
1589 	struct dma_fence_cb cb;
1590 	struct task_struct *tsk;
1591 };
1592 
1593 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1594 {
1595 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1596 
1597 	wake_up_process(wait->tsk);
1598 }
1599 
1600 /**
1601  * i915_request_wait - wait until execution of request has finished
1602  * @rq: the request to wait upon
1603  * @flags: how to wait
1604  * @timeout: how long to wait in jiffies
1605  *
1606  * i915_request_wait() waits for the request to be completed, for a
1607  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1608  * unbounded wait).
1609  *
1610  * Returns the remaining time (in jiffies) if the request completed, which may
1611  * be zero or -ETIME if the request is unfinished after the timeout expires.
1612  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1613  * pending before the request completes.
1614  */
1615 long i915_request_wait(struct i915_request *rq,
1616 		       unsigned int flags,
1617 		       long timeout)
1618 {
1619 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1620 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1621 	struct request_wait wait;
1622 
1623 	might_sleep();
1624 	GEM_BUG_ON(timeout < 0);
1625 
1626 	if (dma_fence_is_signaled(&rq->fence))
1627 		return timeout;
1628 
1629 	if (!timeout)
1630 		return -ETIME;
1631 
1632 	trace_i915_request_wait_begin(rq, flags);
1633 
1634 	/*
1635 	 * We must never wait on the GPU while holding a lock as we
1636 	 * may need to perform a GPU reset. So while we don't need to
1637 	 * serialise wait/reset with an explicit lock, we do want
1638 	 * lockdep to detect potential dependency cycles.
1639 	 */
1640 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1641 
1642 	/*
1643 	 * Optimistic spin before touching IRQs.
1644 	 *
1645 	 * We may use a rather large value here to offset the penalty of
1646 	 * switching away from the active task. Frequently, the client will
1647 	 * wait upon an old swapbuffer to throttle itself to remain within a
1648 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1649 	 * then it should not be waiting long at all, and a sleep now will incur
1650 	 * extra scheduler latency in producing the next frame. To try to
1651 	 * avoid adding the cost of enabling/disabling the interrupt to the
1652 	 * short wait, we first spin to see if the request would have completed
1653 	 * in the time taken to setup the interrupt.
1654 	 *
1655 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1656 	 * scheduler latency of a context switch, ignoring the secondary
1657 	 * impacts from a context switch such as cache eviction.
1658 	 *
1659 	 * The scheme used for low-latency IO is called "hybrid interrupt
1660 	 * polling". The suggestion there is to sleep until just before you
1661 	 * expect to be woken by the device interrupt and then poll for its
1662 	 * completion. That requires having a good predictor for the request
1663 	 * duration, which we currently lack.
1664 	 */
1665 	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1666 	    __i915_spin_request(rq, state)) {
1667 		dma_fence_signal(&rq->fence);
1668 		goto out;
1669 	}
1670 
1671 	/*
1672 	 * This client is about to stall waiting for the GPU. In many cases
1673 	 * this is undesirable and limits the throughput of the system, as
1674 	 * many clients cannot continue processing user input/output whilst
1675 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1676 	 * to the GPU load and thus incurs additional latency for the client.
1677 	 * We can circumvent that by promoting the GPU frequency to maximum
1678 	 * before we sleep. This makes the GPU throttle up much more quickly
1679 	 * (good for benchmarks and user experience, e.g. window animations),
1680 	 * but at a cost of spending more power processing the workload
1681 	 * (bad for battery).
1682 	 */
1683 	if (flags & I915_WAIT_PRIORITY) {
1684 		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1685 			intel_rps_boost(rq);
1686 	}
1687 
1688 	wait.tsk = current;
1689 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1690 		goto out;
1691 
1692 	for (;;) {
1693 		set_current_state(state);
1694 
1695 		if (i915_request_completed(rq)) {
1696 			dma_fence_signal(&rq->fence);
1697 			break;
1698 		}
1699 
1700 		intel_engine_flush_submission(rq->engine);
1701 
1702 		if (signal_pending_state(state, current)) {
1703 			timeout = -ERESTARTSYS;
1704 			break;
1705 		}
1706 
1707 		if (!timeout) {
1708 			timeout = -ETIME;
1709 			break;
1710 		}
1711 
1712 		timeout = io_schedule_timeout(timeout);
1713 	}
1714 	__set_current_state(TASK_RUNNING);
1715 
1716 	dma_fence_remove_callback(&rq->fence, &wait.cb);
1717 
1718 out:
1719 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1720 	trace_i915_request_wait_end(rq);
1721 	return timeout;
1722 }
1723 
1724 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1725 #include "selftests/mock_request.c"
1726 #include "selftests/i915_request.c"
1727 #endif
1728 
1729 static void i915_global_request_shrink(void)
1730 {
1731 	kmem_cache_shrink(global.slab_execute_cbs);
1732 	kmem_cache_shrink(global.slab_requests);
1733 }
1734 
1735 static void i915_global_request_exit(void)
1736 {
1737 	kmem_cache_destroy(global.slab_execute_cbs);
1738 	kmem_cache_destroy(global.slab_requests);
1739 }
1740 
1741 static struct i915_global_request global = { {
1742 	.shrink = i915_global_request_shrink,
1743 	.exit = i915_global_request_exit,
1744 } };
1745 
1746 int __init i915_global_request_init(void)
1747 {
1748 	global.slab_requests =
1749 		kmem_cache_create("i915_request",
1750 				  sizeof(struct i915_request),
1751 				  __alignof__(struct i915_request),
1752 				  SLAB_HWCACHE_ALIGN |
1753 				  SLAB_RECLAIM_ACCOUNT |
1754 				  SLAB_TYPESAFE_BY_RCU,
1755 				  __i915_request_ctor);
1756 	if (!global.slab_requests)
1757 		return -ENOMEM;
1758 
1759 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1760 					     SLAB_HWCACHE_ALIGN |
1761 					     SLAB_RECLAIM_ACCOUNT |
1762 					     SLAB_TYPESAFE_BY_RCU);
1763 	if (!global.slab_execute_cbs)
1764 		goto err_requests;
1765 
1766 	i915_global_register(&global.base);
1767 	return 0;
1768 
1769 err_requests:
1770 	kmem_cache_destroy(global.slab_requests);
1771 	return -ENOMEM;
1772 }
1773