1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31 
32 #include "i915_drv.h"
33 #include "i915_active.h"
34 #include "i915_globals.h"
35 #include "i915_reset.h"
36 
37 struct execute_cb {
38 	struct list_head link;
39 	struct irq_work work;
40 	struct i915_sw_fence *fence;
41 };
42 
43 static struct i915_global_request {
44 	struct i915_global base;
45 	struct kmem_cache *slab_requests;
46 	struct kmem_cache *slab_dependencies;
47 	struct kmem_cache *slab_execute_cbs;
48 } global;
49 
50 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
51 {
52 	return "i915";
53 }
54 
55 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
56 {
57 	/*
58 	 * The timeline struct (as part of the ppgtt underneath a context)
59 	 * may be freed when the request is no longer in use by the GPU.
60 	 * We could extend the life of a context to beyond that of all
61 	 * fences, possibly keeping the hw resource around indefinitely,
62 	 * or we just give them a false name. Since
63 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
64 	 * lie seems justifiable.
65 	 */
66 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
67 		return "signaled";
68 
69 	return to_request(fence)->gem_context->name ?: "[i915]";
70 }
71 
72 static bool i915_fence_signaled(struct dma_fence *fence)
73 {
74 	return i915_request_completed(to_request(fence));
75 }
76 
77 static bool i915_fence_enable_signaling(struct dma_fence *fence)
78 {
79 	return i915_request_enable_breadcrumb(to_request(fence));
80 }
81 
82 static signed long i915_fence_wait(struct dma_fence *fence,
83 				   bool interruptible,
84 				   signed long timeout)
85 {
86 	return i915_request_wait(to_request(fence),
87 				 interruptible | I915_WAIT_PRIORITY,
88 				 timeout);
89 }
90 
91 static void i915_fence_release(struct dma_fence *fence)
92 {
93 	struct i915_request *rq = to_request(fence);
94 
95 	/*
96 	 * The request is put onto a RCU freelist (i.e. the address
97 	 * is immediately reused), mark the fences as being freed now.
98 	 * Otherwise the debugobjects for the fences are only marked as
99 	 * freed when the slab cache itself is freed, and so we would get
100 	 * caught trying to reuse dead objects.
101 	 */
102 	i915_sw_fence_fini(&rq->submit);
103 
104 	kmem_cache_free(global.slab_requests, rq);
105 }
106 
107 const struct dma_fence_ops i915_fence_ops = {
108 	.get_driver_name = i915_fence_get_driver_name,
109 	.get_timeline_name = i915_fence_get_timeline_name,
110 	.enable_signaling = i915_fence_enable_signaling,
111 	.signaled = i915_fence_signaled,
112 	.wait = i915_fence_wait,
113 	.release = i915_fence_release,
114 };
115 
116 static inline void
117 i915_request_remove_from_client(struct i915_request *request)
118 {
119 	struct drm_i915_file_private *file_priv;
120 
121 	file_priv = request->file_priv;
122 	if (!file_priv)
123 		return;
124 
125 	spin_lock(&file_priv->mm.lock);
126 	if (request->file_priv) {
127 		list_del(&request->client_link);
128 		request->file_priv = NULL;
129 	}
130 	spin_unlock(&file_priv->mm.lock);
131 }
132 
133 static void reserve_gt(struct drm_i915_private *i915)
134 {
135 	if (!i915->gt.active_requests++)
136 		i915_gem_unpark(i915);
137 }
138 
139 static void unreserve_gt(struct drm_i915_private *i915)
140 {
141 	GEM_BUG_ON(!i915->gt.active_requests);
142 	if (!--i915->gt.active_requests)
143 		i915_gem_park(i915);
144 }
145 
146 static void advance_ring(struct i915_request *request)
147 {
148 	struct intel_ring *ring = request->ring;
149 	unsigned int tail;
150 
151 	/*
152 	 * We know the GPU must have read the request to have
153 	 * sent us the seqno + interrupt, so use the position
154 	 * of tail of the request to update the last known position
155 	 * of the GPU head.
156 	 *
157 	 * Note this requires that we are always called in request
158 	 * completion order.
159 	 */
160 	GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list));
161 	if (list_is_last(&request->ring_link, &ring->request_list)) {
162 		/*
163 		 * We may race here with execlists resubmitting this request
164 		 * as we retire it. The resubmission will move the ring->tail
165 		 * forwards (to request->wa_tail). We either read the
166 		 * current value that was written to hw, or the value that
167 		 * is just about to be. Either works, if we miss the last two
168 		 * noops - they are safe to be replayed on a reset.
169 		 */
170 		tail = READ_ONCE(request->tail);
171 		list_del(&ring->active_link);
172 	} else {
173 		tail = request->postfix;
174 	}
175 	list_del_init(&request->ring_link);
176 
177 	ring->head = tail;
178 }
179 
180 static void free_capture_list(struct i915_request *request)
181 {
182 	struct i915_capture_list *capture;
183 
184 	capture = request->capture_list;
185 	while (capture) {
186 		struct i915_capture_list *next = capture->next;
187 
188 		kfree(capture);
189 		capture = next;
190 	}
191 }
192 
193 static void __retire_engine_request(struct intel_engine_cs *engine,
194 				    struct i915_request *rq)
195 {
196 	GEM_TRACE("%s(%s) fence %llx:%lld, current %d\n",
197 		  __func__, engine->name,
198 		  rq->fence.context, rq->fence.seqno,
199 		  hwsp_seqno(rq));
200 
201 	GEM_BUG_ON(!i915_request_completed(rq));
202 
203 	local_irq_disable();
204 
205 	spin_lock(&engine->timeline.lock);
206 	GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests));
207 	list_del_init(&rq->link);
208 	spin_unlock(&engine->timeline.lock);
209 
210 	spin_lock(&rq->lock);
211 	i915_request_mark_complete(rq);
212 	if (!i915_request_signaled(rq))
213 		dma_fence_signal_locked(&rq->fence);
214 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
215 		i915_request_cancel_breadcrumb(rq);
216 	if (rq->waitboost) {
217 		GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
218 		atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
219 	}
220 	spin_unlock(&rq->lock);
221 
222 	local_irq_enable();
223 
224 	/*
225 	 * The backing object for the context is done after switching to the
226 	 * *next* context. Therefore we cannot retire the previous context until
227 	 * the next context has already started running. However, since we
228 	 * cannot take the required locks at i915_request_submit() we
229 	 * defer the unpinning of the active context to now, retirement of
230 	 * the subsequent request.
231 	 */
232 	if (engine->last_retired_context)
233 		intel_context_unpin(engine->last_retired_context);
234 	engine->last_retired_context = rq->hw_context;
235 }
236 
237 static void __retire_engine_upto(struct intel_engine_cs *engine,
238 				 struct i915_request *rq)
239 {
240 	struct i915_request *tmp;
241 
242 	if (list_empty(&rq->link))
243 		return;
244 
245 	do {
246 		tmp = list_first_entry(&engine->timeline.requests,
247 				       typeof(*tmp), link);
248 
249 		GEM_BUG_ON(tmp->engine != engine);
250 		__retire_engine_request(engine, tmp);
251 	} while (tmp != rq);
252 }
253 
254 static void i915_request_retire(struct i915_request *request)
255 {
256 	struct i915_active_request *active, *next;
257 
258 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
259 		  request->engine->name,
260 		  request->fence.context, request->fence.seqno,
261 		  hwsp_seqno(request));
262 
263 	lockdep_assert_held(&request->i915->drm.struct_mutex);
264 	GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
265 	GEM_BUG_ON(!i915_request_completed(request));
266 
267 	trace_i915_request_retire(request);
268 
269 	advance_ring(request);
270 	free_capture_list(request);
271 
272 	/*
273 	 * Walk through the active list, calling retire on each. This allows
274 	 * objects to track their GPU activity and mark themselves as idle
275 	 * when their *last* active request is completed (updating state
276 	 * tracking lists for eviction, active references for GEM, etc).
277 	 *
278 	 * As the ->retire() may free the node, we decouple it first and
279 	 * pass along the auxiliary information (to avoid dereferencing
280 	 * the node after the callback).
281 	 */
282 	list_for_each_entry_safe(active, next, &request->active_list, link) {
283 		/*
284 		 * In microbenchmarks or focusing upon time inside the kernel,
285 		 * we may spend an inordinate amount of time simply handling
286 		 * the retirement of requests and processing their callbacks.
287 		 * Of which, this loop itself is particularly hot due to the
288 		 * cache misses when jumping around the list of
289 		 * i915_active_request.  So we try to keep this loop as
290 		 * streamlined as possible and also prefetch the next
291 		 * i915_active_request to try and hide the likely cache miss.
292 		 */
293 		prefetchw(next);
294 
295 		INIT_LIST_HEAD(&active->link);
296 		RCU_INIT_POINTER(active->request, NULL);
297 
298 		active->retire(active, request);
299 	}
300 
301 	i915_request_remove_from_client(request);
302 
303 	intel_context_unpin(request->hw_context);
304 
305 	__retire_engine_upto(request->engine, request);
306 
307 	unreserve_gt(request->i915);
308 
309 	i915_sched_node_fini(&request->sched);
310 	i915_request_put(request);
311 }
312 
313 void i915_request_retire_upto(struct i915_request *rq)
314 {
315 	struct intel_ring *ring = rq->ring;
316 	struct i915_request *tmp;
317 
318 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
319 		  rq->engine->name,
320 		  rq->fence.context, rq->fence.seqno,
321 		  hwsp_seqno(rq));
322 
323 	lockdep_assert_held(&rq->i915->drm.struct_mutex);
324 	GEM_BUG_ON(!i915_request_completed(rq));
325 
326 	if (list_empty(&rq->ring_link))
327 		return;
328 
329 	do {
330 		tmp = list_first_entry(&ring->request_list,
331 				       typeof(*tmp), ring_link);
332 
333 		i915_request_retire(tmp);
334 	} while (tmp != rq);
335 }
336 
337 static void irq_execute_cb(struct irq_work *wrk)
338 {
339 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
340 
341 	i915_sw_fence_complete(cb->fence);
342 	kmem_cache_free(global.slab_execute_cbs, cb);
343 }
344 
345 static void __notify_execute_cb(struct i915_request *rq)
346 {
347 	struct execute_cb *cb;
348 
349 	lockdep_assert_held(&rq->lock);
350 
351 	if (list_empty(&rq->execute_cb))
352 		return;
353 
354 	list_for_each_entry(cb, &rq->execute_cb, link)
355 		irq_work_queue(&cb->work);
356 
357 	/*
358 	 * XXX Rollback on __i915_request_unsubmit()
359 	 *
360 	 * In the future, perhaps when we have an active time-slicing scheduler,
361 	 * it will be interesting to unsubmit parallel execution and remove
362 	 * busywaits from the GPU until their master is restarted. This is
363 	 * quite hairy, we have to carefully rollback the fence and do a
364 	 * preempt-to-idle cycle on the target engine, all the while the
365 	 * master execute_cb may refire.
366 	 */
367 	INIT_LIST_HEAD(&rq->execute_cb);
368 }
369 
370 static int
371 i915_request_await_execution(struct i915_request *rq,
372 			     struct i915_request *signal,
373 			     gfp_t gfp)
374 {
375 	struct execute_cb *cb;
376 
377 	if (i915_request_is_active(signal))
378 		return 0;
379 
380 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
381 	if (!cb)
382 		return -ENOMEM;
383 
384 	cb->fence = &rq->submit;
385 	i915_sw_fence_await(cb->fence);
386 	init_irq_work(&cb->work, irq_execute_cb);
387 
388 	spin_lock_irq(&signal->lock);
389 	if (i915_request_is_active(signal)) {
390 		i915_sw_fence_complete(cb->fence);
391 		kmem_cache_free(global.slab_execute_cbs, cb);
392 	} else {
393 		list_add_tail(&cb->link, &signal->execute_cb);
394 	}
395 	spin_unlock_irq(&signal->lock);
396 
397 	return 0;
398 }
399 
400 static void move_to_timeline(struct i915_request *request,
401 			     struct i915_timeline *timeline)
402 {
403 	GEM_BUG_ON(request->timeline == &request->engine->timeline);
404 	lockdep_assert_held(&request->engine->timeline.lock);
405 
406 	spin_lock(&request->timeline->lock);
407 	list_move_tail(&request->link, &timeline->requests);
408 	spin_unlock(&request->timeline->lock);
409 }
410 
411 void __i915_request_submit(struct i915_request *request)
412 {
413 	struct intel_engine_cs *engine = request->engine;
414 
415 	GEM_TRACE("%s fence %llx:%lld -> current %d\n",
416 		  engine->name,
417 		  request->fence.context, request->fence.seqno,
418 		  hwsp_seqno(request));
419 
420 	GEM_BUG_ON(!irqs_disabled());
421 	lockdep_assert_held(&engine->timeline.lock);
422 
423 	if (i915_gem_context_is_banned(request->gem_context))
424 		i915_request_skip(request, -EIO);
425 
426 	/* We may be recursing from the signal callback of another i915 fence */
427 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
428 
429 	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
430 	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
431 
432 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
433 	    !i915_request_enable_breadcrumb(request))
434 		intel_engine_queue_breadcrumbs(engine);
435 
436 	__notify_execute_cb(request);
437 
438 	spin_unlock(&request->lock);
439 
440 	engine->emit_fini_breadcrumb(request,
441 				     request->ring->vaddr + request->postfix);
442 
443 	/* Transfer from per-context onto the global per-engine timeline */
444 	move_to_timeline(request, &engine->timeline);
445 
446 	trace_i915_request_execute(request);
447 }
448 
449 void i915_request_submit(struct i915_request *request)
450 {
451 	struct intel_engine_cs *engine = request->engine;
452 	unsigned long flags;
453 
454 	/* Will be called from irq-context when using foreign fences. */
455 	spin_lock_irqsave(&engine->timeline.lock, flags);
456 
457 	__i915_request_submit(request);
458 
459 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
460 }
461 
462 void __i915_request_unsubmit(struct i915_request *request)
463 {
464 	struct intel_engine_cs *engine = request->engine;
465 
466 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
467 		  engine->name,
468 		  request->fence.context, request->fence.seqno,
469 		  hwsp_seqno(request));
470 
471 	GEM_BUG_ON(!irqs_disabled());
472 	lockdep_assert_held(&engine->timeline.lock);
473 
474 	/*
475 	 * Only unwind in reverse order, required so that the per-context list
476 	 * is kept in seqno/ring order.
477 	 */
478 
479 	/* We may be recursing from the signal callback of another i915 fence */
480 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
481 
482 	/*
483 	 * As we do not allow WAIT to preempt inflight requests,
484 	 * once we have executed a request, along with triggering
485 	 * any execution callbacks, we must preserve its ordering
486 	 * within the non-preemptible FIFO.
487 	 */
488 	BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */
489 	request->sched.attr.priority |= __NO_PREEMPTION;
490 
491 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
492 		i915_request_cancel_breadcrumb(request);
493 
494 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
495 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
496 
497 	spin_unlock(&request->lock);
498 
499 	/* Transfer back from the global per-engine timeline to per-context */
500 	move_to_timeline(request, request->timeline);
501 
502 	/*
503 	 * We don't need to wake_up any waiters on request->execute, they
504 	 * will get woken by any other event or us re-adding this request
505 	 * to the engine timeline (__i915_request_submit()). The waiters
506 	 * should be quite adapt at finding that the request now has a new
507 	 * global_seqno to the one they went to sleep on.
508 	 */
509 }
510 
511 void i915_request_unsubmit(struct i915_request *request)
512 {
513 	struct intel_engine_cs *engine = request->engine;
514 	unsigned long flags;
515 
516 	/* Will be called from irq-context when using foreign fences. */
517 	spin_lock_irqsave(&engine->timeline.lock, flags);
518 
519 	__i915_request_unsubmit(request);
520 
521 	spin_unlock_irqrestore(&engine->timeline.lock, flags);
522 }
523 
524 static int __i915_sw_fence_call
525 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
526 {
527 	struct i915_request *request =
528 		container_of(fence, typeof(*request), submit);
529 
530 	switch (state) {
531 	case FENCE_COMPLETE:
532 		trace_i915_request_submit(request);
533 		/*
534 		 * We need to serialize use of the submit_request() callback
535 		 * with its hotplugging performed during an emergency
536 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
537 		 * critical section in order to force i915_gem_set_wedged() to
538 		 * wait until the submit_request() is completed before
539 		 * proceeding.
540 		 */
541 		rcu_read_lock();
542 		request->engine->submit_request(request);
543 		rcu_read_unlock();
544 		break;
545 
546 	case FENCE_FREE:
547 		i915_request_put(request);
548 		break;
549 	}
550 
551 	return NOTIFY_DONE;
552 }
553 
554 static void ring_retire_requests(struct intel_ring *ring)
555 {
556 	struct i915_request *rq, *rn;
557 
558 	list_for_each_entry_safe(rq, rn, &ring->request_list, ring_link) {
559 		if (!i915_request_completed(rq))
560 			break;
561 
562 		i915_request_retire(rq);
563 	}
564 }
565 
566 static noinline struct i915_request *
567 i915_request_alloc_slow(struct intel_context *ce)
568 {
569 	struct intel_ring *ring = ce->ring;
570 	struct i915_request *rq;
571 
572 	if (list_empty(&ring->request_list))
573 		goto out;
574 
575 	/* Ratelimit ourselves to prevent oom from malicious clients */
576 	rq = list_last_entry(&ring->request_list, typeof(*rq), ring_link);
577 	cond_synchronize_rcu(rq->rcustate);
578 
579 	/* Retire our old requests in the hope that we free some */
580 	ring_retire_requests(ring);
581 
582 out:
583 	return kmem_cache_alloc(global.slab_requests, GFP_KERNEL);
584 }
585 
586 static int add_timeline_barrier(struct i915_request *rq)
587 {
588 	return i915_request_await_active_request(rq, &rq->timeline->barrier);
589 }
590 
591 /**
592  * i915_request_alloc - allocate a request structure
593  *
594  * @engine: engine that we wish to issue the request on.
595  * @ctx: context that the request will be associated with.
596  *
597  * Returns a pointer to the allocated request if successful,
598  * or an error code if not.
599  */
600 struct i915_request *
601 i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
602 {
603 	struct drm_i915_private *i915 = engine->i915;
604 	struct intel_context *ce;
605 	struct i915_timeline *tl;
606 	struct i915_request *rq;
607 	u32 seqno;
608 	int ret;
609 
610 	lockdep_assert_held(&i915->drm.struct_mutex);
611 
612 	/*
613 	 * Preempt contexts are reserved for exclusive use to inject a
614 	 * preemption context switch. They are never to be used for any trivial
615 	 * request!
616 	 */
617 	GEM_BUG_ON(ctx == i915->preempt_context);
618 
619 	/*
620 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
621 	 * EIO if the GPU is already wedged.
622 	 */
623 	ret = i915_terminally_wedged(i915);
624 	if (ret)
625 		return ERR_PTR(ret);
626 
627 	/*
628 	 * Pinning the contexts may generate requests in order to acquire
629 	 * GGTT space, so do this first before we reserve a seqno for
630 	 * ourselves.
631 	 */
632 	ce = intel_context_pin(ctx, engine);
633 	if (IS_ERR(ce))
634 		return ERR_CAST(ce);
635 
636 	reserve_gt(i915);
637 	mutex_lock(&ce->ring->timeline->mutex);
638 
639 	/* Move our oldest request to the slab-cache (if not in use!) */
640 	rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link);
641 	if (!list_is_last(&rq->ring_link, &ce->ring->request_list) &&
642 	    i915_request_completed(rq))
643 		i915_request_retire(rq);
644 
645 	/*
646 	 * Beware: Dragons be flying overhead.
647 	 *
648 	 * We use RCU to look up requests in flight. The lookups may
649 	 * race with the request being allocated from the slab freelist.
650 	 * That is the request we are writing to here, may be in the process
651 	 * of being read by __i915_active_request_get_rcu(). As such,
652 	 * we have to be very careful when overwriting the contents. During
653 	 * the RCU lookup, we change chase the request->engine pointer,
654 	 * read the request->global_seqno and increment the reference count.
655 	 *
656 	 * The reference count is incremented atomically. If it is zero,
657 	 * the lookup knows the request is unallocated and complete. Otherwise,
658 	 * it is either still in use, or has been reallocated and reset
659 	 * with dma_fence_init(). This increment is safe for release as we
660 	 * check that the request we have a reference to and matches the active
661 	 * request.
662 	 *
663 	 * Before we increment the refcount, we chase the request->engine
664 	 * pointer. We must not call kmem_cache_zalloc() or else we set
665 	 * that pointer to NULL and cause a crash during the lookup. If
666 	 * we see the request is completed (based on the value of the
667 	 * old engine and seqno), the lookup is complete and reports NULL.
668 	 * If we decide the request is not completed (new engine or seqno),
669 	 * then we grab a reference and double check that it is still the
670 	 * active request - which it won't be and restart the lookup.
671 	 *
672 	 * Do not use kmem_cache_zalloc() here!
673 	 */
674 	rq = kmem_cache_alloc(global.slab_requests,
675 			      GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
676 	if (unlikely(!rq)) {
677 		rq = i915_request_alloc_slow(ce);
678 		if (!rq) {
679 			ret = -ENOMEM;
680 			goto err_unreserve;
681 		}
682 	}
683 
684 	INIT_LIST_HEAD(&rq->active_list);
685 	INIT_LIST_HEAD(&rq->execute_cb);
686 
687 	tl = ce->ring->timeline;
688 	ret = i915_timeline_get_seqno(tl, rq, &seqno);
689 	if (ret)
690 		goto err_free;
691 
692 	rq->i915 = i915;
693 	rq->engine = engine;
694 	rq->gem_context = ctx;
695 	rq->hw_context = ce;
696 	rq->ring = ce->ring;
697 	rq->timeline = tl;
698 	GEM_BUG_ON(rq->timeline == &engine->timeline);
699 	rq->hwsp_seqno = tl->hwsp_seqno;
700 	rq->hwsp_cacheline = tl->hwsp_cacheline;
701 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
702 
703 	spin_lock_init(&rq->lock);
704 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
705 		       tl->fence_context, seqno);
706 
707 	/* We bump the ref for the fence chain */
708 	i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
709 
710 	i915_sched_node_init(&rq->sched);
711 
712 	/* No zalloc, must clear what we need by hand */
713 	rq->file_priv = NULL;
714 	rq->batch = NULL;
715 	rq->capture_list = NULL;
716 	rq->waitboost = false;
717 
718 	/*
719 	 * Reserve space in the ring buffer for all the commands required to
720 	 * eventually emit this request. This is to guarantee that the
721 	 * i915_request_add() call can't fail. Note that the reserve may need
722 	 * to be redone if the request is not actually submitted straight
723 	 * away, e.g. because a GPU scheduler has deferred it.
724 	 *
725 	 * Note that due to how we add reserved_space to intel_ring_begin()
726 	 * we need to double our request to ensure that if we need to wrap
727 	 * around inside i915_request_add() there is sufficient space at
728 	 * the beginning of the ring as well.
729 	 */
730 	rq->reserved_space = 2 * engine->emit_fini_breadcrumb_dw * sizeof(u32);
731 
732 	/*
733 	 * Record the position of the start of the request so that
734 	 * should we detect the updated seqno part-way through the
735 	 * GPU processing the request, we never over-estimate the
736 	 * position of the head.
737 	 */
738 	rq->head = rq->ring->emit;
739 
740 	ret = add_timeline_barrier(rq);
741 	if (ret)
742 		goto err_unwind;
743 
744 	ret = engine->request_alloc(rq);
745 	if (ret)
746 		goto err_unwind;
747 
748 	/* Keep a second pin for the dual retirement along engine and ring */
749 	__intel_context_pin(ce);
750 
751 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
752 
753 	/* Check that we didn't interrupt ourselves with a new request */
754 	GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
755 	return rq;
756 
757 err_unwind:
758 	ce->ring->emit = rq->head;
759 
760 	/* Make sure we didn't add ourselves to external state before freeing */
761 	GEM_BUG_ON(!list_empty(&rq->active_list));
762 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
763 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
764 
765 err_free:
766 	kmem_cache_free(global.slab_requests, rq);
767 err_unreserve:
768 	mutex_unlock(&ce->ring->timeline->mutex);
769 	unreserve_gt(i915);
770 	intel_context_unpin(ce);
771 	return ERR_PTR(ret);
772 }
773 
774 static int
775 emit_semaphore_wait(struct i915_request *to,
776 		    struct i915_request *from,
777 		    gfp_t gfp)
778 {
779 	u32 hwsp_offset;
780 	u32 *cs;
781 	int err;
782 
783 	GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
784 	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
785 
786 	/* We need to pin the signaler's HWSP until we are finished reading. */
787 	err = i915_timeline_read_hwsp(from, to, &hwsp_offset);
788 	if (err)
789 		return err;
790 
791 	/* Only submit our spinner after the signaler is running! */
792 	err = i915_request_await_execution(to, from, gfp);
793 	if (err)
794 		return err;
795 
796 	cs = intel_ring_begin(to, 4);
797 	if (IS_ERR(cs))
798 		return PTR_ERR(cs);
799 
800 	/*
801 	 * Using greater-than-or-equal here means we have to worry
802 	 * about seqno wraparound. To side step that issue, we swap
803 	 * the timeline HWSP upon wrapping, so that everyone listening
804 	 * for the old (pre-wrap) values do not see the much smaller
805 	 * (post-wrap) values than they were expecting (and so wait
806 	 * forever).
807 	 */
808 	*cs++ = MI_SEMAPHORE_WAIT |
809 		MI_SEMAPHORE_GLOBAL_GTT |
810 		MI_SEMAPHORE_POLL |
811 		MI_SEMAPHORE_SAD_GTE_SDD;
812 	*cs++ = from->fence.seqno;
813 	*cs++ = hwsp_offset;
814 	*cs++ = 0;
815 
816 	intel_ring_advance(to, cs);
817 	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE;
818 	return 0;
819 }
820 
821 static int
822 i915_request_await_request(struct i915_request *to, struct i915_request *from)
823 {
824 	int ret;
825 
826 	GEM_BUG_ON(to == from);
827 	GEM_BUG_ON(to->timeline == from->timeline);
828 
829 	if (i915_request_completed(from))
830 		return 0;
831 
832 	if (to->engine->schedule) {
833 		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
834 		if (ret < 0)
835 			return ret;
836 	}
837 
838 	if (to->engine == from->engine) {
839 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
840 						       &from->submit,
841 						       I915_FENCE_GFP);
842 	} else if (intel_engine_has_semaphores(to->engine) &&
843 		   to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
844 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
845 	} else {
846 		ret = i915_sw_fence_await_dma_fence(&to->submit,
847 						    &from->fence, 0,
848 						    I915_FENCE_GFP);
849 	}
850 
851 	return ret < 0 ? ret : 0;
852 }
853 
854 int
855 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
856 {
857 	struct dma_fence **child = &fence;
858 	unsigned int nchild = 1;
859 	int ret;
860 
861 	/*
862 	 * Note that if the fence-array was created in signal-on-any mode,
863 	 * we should *not* decompose it into its individual fences. However,
864 	 * we don't currently store which mode the fence-array is operating
865 	 * in. Fortunately, the only user of signal-on-any is private to
866 	 * amdgpu and we should not see any incoming fence-array from
867 	 * sync-file being in signal-on-any mode.
868 	 */
869 	if (dma_fence_is_array(fence)) {
870 		struct dma_fence_array *array = to_dma_fence_array(fence);
871 
872 		child = array->fences;
873 		nchild = array->num_fences;
874 		GEM_BUG_ON(!nchild);
875 	}
876 
877 	do {
878 		fence = *child++;
879 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
880 			continue;
881 
882 		/*
883 		 * Requests on the same timeline are explicitly ordered, along
884 		 * with their dependencies, by i915_request_add() which ensures
885 		 * that requests are submitted in-order through each ring.
886 		 */
887 		if (fence->context == rq->fence.context)
888 			continue;
889 
890 		/* Squash repeated waits to the same timelines */
891 		if (fence->context != rq->i915->mm.unordered_timeline &&
892 		    i915_timeline_sync_is_later(rq->timeline, fence))
893 			continue;
894 
895 		if (dma_fence_is_i915(fence))
896 			ret = i915_request_await_request(rq, to_request(fence));
897 		else
898 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
899 							    I915_FENCE_TIMEOUT,
900 							    I915_FENCE_GFP);
901 		if (ret < 0)
902 			return ret;
903 
904 		/* Record the latest fence used against each timeline */
905 		if (fence->context != rq->i915->mm.unordered_timeline)
906 			i915_timeline_sync_set(rq->timeline, fence);
907 	} while (--nchild);
908 
909 	return 0;
910 }
911 
912 /**
913  * i915_request_await_object - set this request to (async) wait upon a bo
914  * @to: request we are wishing to use
915  * @obj: object which may be in use on another ring.
916  * @write: whether the wait is on behalf of a writer
917  *
918  * This code is meant to abstract object synchronization with the GPU.
919  * Conceptually we serialise writes between engines inside the GPU.
920  * We only allow one engine to write into a buffer at any time, but
921  * multiple readers. To ensure each has a coherent view of memory, we must:
922  *
923  * - If there is an outstanding write request to the object, the new
924  *   request must wait for it to complete (either CPU or in hw, requests
925  *   on the same ring will be naturally ordered).
926  *
927  * - If we are a write request (pending_write_domain is set), the new
928  *   request must wait for outstanding read requests to complete.
929  *
930  * Returns 0 if successful, else propagates up the lower layer error.
931  */
932 int
933 i915_request_await_object(struct i915_request *to,
934 			  struct drm_i915_gem_object *obj,
935 			  bool write)
936 {
937 	struct dma_fence *excl;
938 	int ret = 0;
939 
940 	if (write) {
941 		struct dma_fence **shared;
942 		unsigned int count, i;
943 
944 		ret = reservation_object_get_fences_rcu(obj->resv,
945 							&excl, &count, &shared);
946 		if (ret)
947 			return ret;
948 
949 		for (i = 0; i < count; i++) {
950 			ret = i915_request_await_dma_fence(to, shared[i]);
951 			if (ret)
952 				break;
953 
954 			dma_fence_put(shared[i]);
955 		}
956 
957 		for (; i < count; i++)
958 			dma_fence_put(shared[i]);
959 		kfree(shared);
960 	} else {
961 		excl = reservation_object_get_excl_rcu(obj->resv);
962 	}
963 
964 	if (excl) {
965 		if (ret == 0)
966 			ret = i915_request_await_dma_fence(to, excl);
967 
968 		dma_fence_put(excl);
969 	}
970 
971 	return ret;
972 }
973 
974 void i915_request_skip(struct i915_request *rq, int error)
975 {
976 	void *vaddr = rq->ring->vaddr;
977 	u32 head;
978 
979 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
980 	dma_fence_set_error(&rq->fence, error);
981 
982 	/*
983 	 * As this request likely depends on state from the lost
984 	 * context, clear out all the user operations leaving the
985 	 * breadcrumb at the end (so we get the fence notifications).
986 	 */
987 	head = rq->infix;
988 	if (rq->postfix < head) {
989 		memset(vaddr + head, 0, rq->ring->size - head);
990 		head = 0;
991 	}
992 	memset(vaddr + head, 0, rq->postfix - head);
993 }
994 
995 static struct i915_request *
996 __i915_request_add_to_timeline(struct i915_request *rq)
997 {
998 	struct i915_timeline *timeline = rq->timeline;
999 	struct i915_request *prev;
1000 
1001 	/*
1002 	 * Dependency tracking and request ordering along the timeline
1003 	 * is special cased so that we can eliminate redundant ordering
1004 	 * operations while building the request (we know that the timeline
1005 	 * itself is ordered, and here we guarantee it).
1006 	 *
1007 	 * As we know we will need to emit tracking along the timeline,
1008 	 * we embed the hooks into our request struct -- at the cost of
1009 	 * having to have specialised no-allocation interfaces (which will
1010 	 * be beneficial elsewhere).
1011 	 *
1012 	 * A second benefit to open-coding i915_request_await_request is
1013 	 * that we can apply a slight variant of the rules specialised
1014 	 * for timelines that jump between engines (such as virtual engines).
1015 	 * If we consider the case of virtual engine, we must emit a dma-fence
1016 	 * to prevent scheduling of the second request until the first is
1017 	 * complete (to maximise our greedy late load balancing) and this
1018 	 * precludes optimising to use semaphores serialisation of a single
1019 	 * timeline across engines.
1020 	 */
1021 	prev = i915_active_request_raw(&timeline->last_request,
1022 				       &rq->i915->drm.struct_mutex);
1023 	if (prev && !i915_request_completed(prev)) {
1024 		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1025 			i915_sw_fence_await_sw_fence(&rq->submit,
1026 						     &prev->submit,
1027 						     &rq->submitq);
1028 		else
1029 			__i915_sw_fence_await_dma_fence(&rq->submit,
1030 							&prev->fence,
1031 							&rq->dmaq);
1032 		if (rq->engine->schedule)
1033 			__i915_sched_node_add_dependency(&rq->sched,
1034 							 &prev->sched,
1035 							 &rq->dep,
1036 							 0);
1037 	}
1038 
1039 	spin_lock_irq(&timeline->lock);
1040 	list_add_tail(&rq->link, &timeline->requests);
1041 	spin_unlock_irq(&timeline->lock);
1042 
1043 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1044 	__i915_active_request_set(&timeline->last_request, rq);
1045 
1046 	return prev;
1047 }
1048 
1049 /*
1050  * NB: This function is not allowed to fail. Doing so would mean the the
1051  * request is not being tracked for completion but the work itself is
1052  * going to happen on the hardware. This would be a Bad Thing(tm).
1053  */
1054 void i915_request_add(struct i915_request *request)
1055 {
1056 	struct intel_engine_cs *engine = request->engine;
1057 	struct i915_timeline *timeline = request->timeline;
1058 	struct intel_ring *ring = request->ring;
1059 	struct i915_request *prev;
1060 	u32 *cs;
1061 
1062 	GEM_TRACE("%s fence %llx:%lld\n",
1063 		  engine->name, request->fence.context, request->fence.seqno);
1064 
1065 	lockdep_assert_held(&request->timeline->mutex);
1066 	trace_i915_request_add(request);
1067 
1068 	/*
1069 	 * Make sure that no request gazumped us - if it was allocated after
1070 	 * our i915_request_alloc() and called __i915_request_add() before
1071 	 * us, the timeline will hold its seqno which is later than ours.
1072 	 */
1073 	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1074 
1075 	/*
1076 	 * To ensure that this call will not fail, space for its emissions
1077 	 * should already have been reserved in the ring buffer. Let the ring
1078 	 * know that it is time to use that space up.
1079 	 */
1080 	GEM_BUG_ON(request->reserved_space > request->ring->space);
1081 	request->reserved_space = 0;
1082 
1083 	/*
1084 	 * Record the position of the start of the breadcrumb so that
1085 	 * should we detect the updated seqno part-way through the
1086 	 * GPU processing the request, we never over-estimate the
1087 	 * position of the ring's HEAD.
1088 	 */
1089 	cs = intel_ring_begin(request, engine->emit_fini_breadcrumb_dw);
1090 	GEM_BUG_ON(IS_ERR(cs));
1091 	request->postfix = intel_ring_offset(request, cs);
1092 
1093 	prev = __i915_request_add_to_timeline(request);
1094 
1095 	list_add_tail(&request->ring_link, &ring->request_list);
1096 	if (list_is_first(&request->ring_link, &ring->request_list))
1097 		list_add(&ring->active_link, &request->i915->gt.active_rings);
1098 	request->i915->gt.active_engines |= request->engine->mask;
1099 	request->emitted_jiffies = jiffies;
1100 
1101 	/*
1102 	 * Let the backend know a new request has arrived that may need
1103 	 * to adjust the existing execution schedule due to a high priority
1104 	 * request - i.e. we may want to preempt the current request in order
1105 	 * to run a high priority dependency chain *before* we can execute this
1106 	 * request.
1107 	 *
1108 	 * This is called before the request is ready to run so that we can
1109 	 * decide whether to preempt the entire chain so that it is ready to
1110 	 * run at the earliest possible convenience.
1111 	 */
1112 	local_bh_disable();
1113 	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
1114 	if (engine->schedule) {
1115 		struct i915_sched_attr attr = request->gem_context->sched;
1116 
1117 		/*
1118 		 * Boost actual workloads past semaphores!
1119 		 *
1120 		 * With semaphores we spin on one engine waiting for another,
1121 		 * simply to reduce the latency of starting our work when
1122 		 * the signaler completes. However, if there is any other
1123 		 * work that we could be doing on this engine instead, that
1124 		 * is better utilisation and will reduce the overall duration
1125 		 * of the current work. To avoid PI boosting a semaphore
1126 		 * far in the distance past over useful work, we keep a history
1127 		 * of any semaphore use along our dependency chain.
1128 		 */
1129 		if (!(request->sched.flags & I915_SCHED_HAS_SEMAPHORE))
1130 			attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1131 
1132 		/*
1133 		 * Boost priorities to new clients (new request flows).
1134 		 *
1135 		 * Allow interactive/synchronous clients to jump ahead of
1136 		 * the bulk clients. (FQ_CODEL)
1137 		 */
1138 		if (list_empty(&request->sched.signalers_list))
1139 			attr.priority |= I915_PRIORITY_NEWCLIENT;
1140 
1141 		engine->schedule(request, &attr);
1142 	}
1143 	rcu_read_unlock();
1144 	i915_sw_fence_commit(&request->submit);
1145 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1146 
1147 	/*
1148 	 * In typical scenarios, we do not expect the previous request on
1149 	 * the timeline to be still tracked by timeline->last_request if it
1150 	 * has been completed. If the completed request is still here, that
1151 	 * implies that request retirement is a long way behind submission,
1152 	 * suggesting that we haven't been retiring frequently enough from
1153 	 * the combination of retire-before-alloc, waiters and the background
1154 	 * retirement worker. So if the last request on this timeline was
1155 	 * already completed, do a catch up pass, flushing the retirement queue
1156 	 * up to this client. Since we have now moved the heaviest operations
1157 	 * during retirement onto secondary workers, such as freeing objects
1158 	 * or contexts, retiring a bunch of requests is mostly list management
1159 	 * (and cache misses), and so we should not be overly penalizing this
1160 	 * client by performing excess work, though we may still performing
1161 	 * work on behalf of others -- but instead we should benefit from
1162 	 * improved resource management. (Well, that's the theory at least.)
1163 	 */
1164 	if (prev && i915_request_completed(prev))
1165 		i915_request_retire_upto(prev);
1166 
1167 	mutex_unlock(&request->timeline->mutex);
1168 }
1169 
1170 static unsigned long local_clock_us(unsigned int *cpu)
1171 {
1172 	unsigned long t;
1173 
1174 	/*
1175 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1176 	 * The result and subsequent calculations are also defined in the same
1177 	 * approximate microseconds units. The principal source of timing
1178 	 * error here is from the simple truncation.
1179 	 *
1180 	 * Note that local_clock() is only defined wrt to the current CPU;
1181 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1182 	 * blocking preemption for the entire busywait, we can detect the CPU
1183 	 * switch and use that as indicator of system load and a reason to
1184 	 * stop busywaiting, see busywait_stop().
1185 	 */
1186 	*cpu = get_cpu();
1187 	t = local_clock() >> 10;
1188 	put_cpu();
1189 
1190 	return t;
1191 }
1192 
1193 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1194 {
1195 	unsigned int this_cpu;
1196 
1197 	if (time_after(local_clock_us(&this_cpu), timeout))
1198 		return true;
1199 
1200 	return this_cpu != cpu;
1201 }
1202 
1203 static bool __i915_spin_request(const struct i915_request * const rq,
1204 				int state, unsigned long timeout_us)
1205 {
1206 	unsigned int cpu;
1207 
1208 	/*
1209 	 * Only wait for the request if we know it is likely to complete.
1210 	 *
1211 	 * We don't track the timestamps around requests, nor the average
1212 	 * request length, so we do not have a good indicator that this
1213 	 * request will complete within the timeout. What we do know is the
1214 	 * order in which requests are executed by the context and so we can
1215 	 * tell if the request has been started. If the request is not even
1216 	 * running yet, it is a fair assumption that it will not complete
1217 	 * within our relatively short timeout.
1218 	 */
1219 	if (!i915_request_is_running(rq))
1220 		return false;
1221 
1222 	/*
1223 	 * When waiting for high frequency requests, e.g. during synchronous
1224 	 * rendering split between the CPU and GPU, the finite amount of time
1225 	 * required to set up the irq and wait upon it limits the response
1226 	 * rate. By busywaiting on the request completion for a short while we
1227 	 * can service the high frequency waits as quick as possible. However,
1228 	 * if it is a slow request, we want to sleep as quickly as possible.
1229 	 * The tradeoff between waiting and sleeping is roughly the time it
1230 	 * takes to sleep on a request, on the order of a microsecond.
1231 	 */
1232 
1233 	timeout_us += local_clock_us(&cpu);
1234 	do {
1235 		if (i915_request_completed(rq))
1236 			return true;
1237 
1238 		if (signal_pending_state(state, current))
1239 			break;
1240 
1241 		if (busywait_stop(timeout_us, cpu))
1242 			break;
1243 
1244 		cpu_relax();
1245 	} while (!need_resched());
1246 
1247 	return false;
1248 }
1249 
1250 struct request_wait {
1251 	struct dma_fence_cb cb;
1252 	struct task_struct *tsk;
1253 };
1254 
1255 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1256 {
1257 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1258 
1259 	wake_up_process(wait->tsk);
1260 }
1261 
1262 /**
1263  * i915_request_wait - wait until execution of request has finished
1264  * @rq: the request to wait upon
1265  * @flags: how to wait
1266  * @timeout: how long to wait in jiffies
1267  *
1268  * i915_request_wait() waits for the request to be completed, for a
1269  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1270  * unbounded wait).
1271  *
1272  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1273  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1274  * must not specify that the wait is locked.
1275  *
1276  * Returns the remaining time (in jiffies) if the request completed, which may
1277  * be zero or -ETIME if the request is unfinished after the timeout expires.
1278  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1279  * pending before the request completes.
1280  */
1281 long i915_request_wait(struct i915_request *rq,
1282 		       unsigned int flags,
1283 		       long timeout)
1284 {
1285 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1286 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1287 	struct request_wait wait;
1288 
1289 	might_sleep();
1290 	GEM_BUG_ON(timeout < 0);
1291 
1292 	if (i915_request_completed(rq))
1293 		return timeout;
1294 
1295 	if (!timeout)
1296 		return -ETIME;
1297 
1298 	trace_i915_request_wait_begin(rq, flags);
1299 
1300 	/* Optimistic short spin before touching IRQs */
1301 	if (__i915_spin_request(rq, state, 5))
1302 		goto out;
1303 
1304 	/*
1305 	 * This client is about to stall waiting for the GPU. In many cases
1306 	 * this is undesirable and limits the throughput of the system, as
1307 	 * many clients cannot continue processing user input/output whilst
1308 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1309 	 * to the GPU load and thus incurs additional latency for the client.
1310 	 * We can circumvent that by promoting the GPU frequency to maximum
1311 	 * before we sleep. This makes the GPU throttle up much more quickly
1312 	 * (good for benchmarks and user experience, e.g. window animations),
1313 	 * but at a cost of spending more power processing the workload
1314 	 * (bad for battery).
1315 	 */
1316 	if (flags & I915_WAIT_PRIORITY) {
1317 		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1318 			gen6_rps_boost(rq);
1319 		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1320 	}
1321 
1322 	wait.tsk = current;
1323 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1324 		goto out;
1325 
1326 	for (;;) {
1327 		set_current_state(state);
1328 
1329 		if (i915_request_completed(rq))
1330 			break;
1331 
1332 		if (signal_pending_state(state, current)) {
1333 			timeout = -ERESTARTSYS;
1334 			break;
1335 		}
1336 
1337 		if (!timeout) {
1338 			timeout = -ETIME;
1339 			break;
1340 		}
1341 
1342 		timeout = io_schedule_timeout(timeout);
1343 	}
1344 	__set_current_state(TASK_RUNNING);
1345 
1346 	dma_fence_remove_callback(&rq->fence, &wait.cb);
1347 
1348 out:
1349 	trace_i915_request_wait_end(rq);
1350 	return timeout;
1351 }
1352 
1353 void i915_retire_requests(struct drm_i915_private *i915)
1354 {
1355 	struct intel_ring *ring, *tmp;
1356 
1357 	lockdep_assert_held(&i915->drm.struct_mutex);
1358 
1359 	if (!i915->gt.active_requests)
1360 		return;
1361 
1362 	list_for_each_entry_safe(ring, tmp,
1363 				 &i915->gt.active_rings, active_link) {
1364 		intel_ring_get(ring); /* last rq holds reference! */
1365 		ring_retire_requests(ring);
1366 		intel_ring_put(ring);
1367 	}
1368 }
1369 
1370 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1371 #include "selftests/mock_request.c"
1372 #include "selftests/i915_request.c"
1373 #endif
1374 
1375 static void i915_global_request_shrink(void)
1376 {
1377 	kmem_cache_shrink(global.slab_dependencies);
1378 	kmem_cache_shrink(global.slab_execute_cbs);
1379 	kmem_cache_shrink(global.slab_requests);
1380 }
1381 
1382 static void i915_global_request_exit(void)
1383 {
1384 	kmem_cache_destroy(global.slab_dependencies);
1385 	kmem_cache_destroy(global.slab_execute_cbs);
1386 	kmem_cache_destroy(global.slab_requests);
1387 }
1388 
1389 static struct i915_global_request global = { {
1390 	.shrink = i915_global_request_shrink,
1391 	.exit = i915_global_request_exit,
1392 } };
1393 
1394 int __init i915_global_request_init(void)
1395 {
1396 	global.slab_requests = KMEM_CACHE(i915_request,
1397 					  SLAB_HWCACHE_ALIGN |
1398 					  SLAB_RECLAIM_ACCOUNT |
1399 					  SLAB_TYPESAFE_BY_RCU);
1400 	if (!global.slab_requests)
1401 		return -ENOMEM;
1402 
1403 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1404 					     SLAB_HWCACHE_ALIGN |
1405 					     SLAB_RECLAIM_ACCOUNT |
1406 					     SLAB_TYPESAFE_BY_RCU);
1407 	if (!global.slab_execute_cbs)
1408 		goto err_requests;
1409 
1410 	global.slab_dependencies = KMEM_CACHE(i915_dependency,
1411 					      SLAB_HWCACHE_ALIGN |
1412 					      SLAB_RECLAIM_ACCOUNT);
1413 	if (!global.slab_dependencies)
1414 		goto err_execute_cbs;
1415 
1416 	i915_global_register(&global.base);
1417 	return 0;
1418 
1419 err_execute_cbs:
1420 	kmem_cache_destroy(global.slab_execute_cbs);
1421 err_requests:
1422 	kmem_cache_destroy(global.slab_requests);
1423 	return -ENOMEM;
1424 }
1425