1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/irq_work.h> 27 #include <linux/prefetch.h> 28 #include <linux/sched.h> 29 #include <linux/sched/clock.h> 30 #include <linux/sched/signal.h> 31 32 #include "i915_drv.h" 33 #include "i915_active.h" 34 #include "i915_globals.h" 35 #include "i915_reset.h" 36 37 struct execute_cb { 38 struct list_head link; 39 struct irq_work work; 40 struct i915_sw_fence *fence; 41 }; 42 43 static struct i915_global_request { 44 struct i915_global base; 45 struct kmem_cache *slab_requests; 46 struct kmem_cache *slab_dependencies; 47 struct kmem_cache *slab_execute_cbs; 48 } global; 49 50 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 51 { 52 return "i915"; 53 } 54 55 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 56 { 57 /* 58 * The timeline struct (as part of the ppgtt underneath a context) 59 * may be freed when the request is no longer in use by the GPU. 60 * We could extend the life of a context to beyond that of all 61 * fences, possibly keeping the hw resource around indefinitely, 62 * or we just give them a false name. Since 63 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 64 * lie seems justifiable. 65 */ 66 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 67 return "signaled"; 68 69 return to_request(fence)->gem_context->name ?: "[i915]"; 70 } 71 72 static bool i915_fence_signaled(struct dma_fence *fence) 73 { 74 return i915_request_completed(to_request(fence)); 75 } 76 77 static bool i915_fence_enable_signaling(struct dma_fence *fence) 78 { 79 return i915_request_enable_breadcrumb(to_request(fence)); 80 } 81 82 static signed long i915_fence_wait(struct dma_fence *fence, 83 bool interruptible, 84 signed long timeout) 85 { 86 return i915_request_wait(to_request(fence), 87 interruptible | I915_WAIT_PRIORITY, 88 timeout); 89 } 90 91 static void i915_fence_release(struct dma_fence *fence) 92 { 93 struct i915_request *rq = to_request(fence); 94 95 /* 96 * The request is put onto a RCU freelist (i.e. the address 97 * is immediately reused), mark the fences as being freed now. 98 * Otherwise the debugobjects for the fences are only marked as 99 * freed when the slab cache itself is freed, and so we would get 100 * caught trying to reuse dead objects. 101 */ 102 i915_sw_fence_fini(&rq->submit); 103 104 kmem_cache_free(global.slab_requests, rq); 105 } 106 107 const struct dma_fence_ops i915_fence_ops = { 108 .get_driver_name = i915_fence_get_driver_name, 109 .get_timeline_name = i915_fence_get_timeline_name, 110 .enable_signaling = i915_fence_enable_signaling, 111 .signaled = i915_fence_signaled, 112 .wait = i915_fence_wait, 113 .release = i915_fence_release, 114 }; 115 116 static inline void 117 i915_request_remove_from_client(struct i915_request *request) 118 { 119 struct drm_i915_file_private *file_priv; 120 121 file_priv = request->file_priv; 122 if (!file_priv) 123 return; 124 125 spin_lock(&file_priv->mm.lock); 126 if (request->file_priv) { 127 list_del(&request->client_link); 128 request->file_priv = NULL; 129 } 130 spin_unlock(&file_priv->mm.lock); 131 } 132 133 static void reserve_gt(struct drm_i915_private *i915) 134 { 135 if (!i915->gt.active_requests++) 136 i915_gem_unpark(i915); 137 } 138 139 static void unreserve_gt(struct drm_i915_private *i915) 140 { 141 GEM_BUG_ON(!i915->gt.active_requests); 142 if (!--i915->gt.active_requests) 143 i915_gem_park(i915); 144 } 145 146 static void advance_ring(struct i915_request *request) 147 { 148 struct intel_ring *ring = request->ring; 149 unsigned int tail; 150 151 /* 152 * We know the GPU must have read the request to have 153 * sent us the seqno + interrupt, so use the position 154 * of tail of the request to update the last known position 155 * of the GPU head. 156 * 157 * Note this requires that we are always called in request 158 * completion order. 159 */ 160 GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list)); 161 if (list_is_last(&request->ring_link, &ring->request_list)) { 162 /* 163 * We may race here with execlists resubmitting this request 164 * as we retire it. The resubmission will move the ring->tail 165 * forwards (to request->wa_tail). We either read the 166 * current value that was written to hw, or the value that 167 * is just about to be. Either works, if we miss the last two 168 * noops - they are safe to be replayed on a reset. 169 */ 170 tail = READ_ONCE(request->tail); 171 list_del(&ring->active_link); 172 } else { 173 tail = request->postfix; 174 } 175 list_del_init(&request->ring_link); 176 177 ring->head = tail; 178 } 179 180 static void free_capture_list(struct i915_request *request) 181 { 182 struct i915_capture_list *capture; 183 184 capture = request->capture_list; 185 while (capture) { 186 struct i915_capture_list *next = capture->next; 187 188 kfree(capture); 189 capture = next; 190 } 191 } 192 193 static void __retire_engine_request(struct intel_engine_cs *engine, 194 struct i915_request *rq) 195 { 196 GEM_TRACE("%s(%s) fence %llx:%lld, current %d\n", 197 __func__, engine->name, 198 rq->fence.context, rq->fence.seqno, 199 hwsp_seqno(rq)); 200 201 GEM_BUG_ON(!i915_request_completed(rq)); 202 203 local_irq_disable(); 204 205 spin_lock(&engine->timeline.lock); 206 GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests)); 207 list_del_init(&rq->link); 208 spin_unlock(&engine->timeline.lock); 209 210 spin_lock(&rq->lock); 211 i915_request_mark_complete(rq); 212 if (!i915_request_signaled(rq)) 213 dma_fence_signal_locked(&rq->fence); 214 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 215 i915_request_cancel_breadcrumb(rq); 216 if (rq->waitboost) { 217 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters)); 218 atomic_dec(&rq->i915->gt_pm.rps.num_waiters); 219 } 220 spin_unlock(&rq->lock); 221 222 local_irq_enable(); 223 224 /* 225 * The backing object for the context is done after switching to the 226 * *next* context. Therefore we cannot retire the previous context until 227 * the next context has already started running. However, since we 228 * cannot take the required locks at i915_request_submit() we 229 * defer the unpinning of the active context to now, retirement of 230 * the subsequent request. 231 */ 232 if (engine->last_retired_context) 233 intel_context_unpin(engine->last_retired_context); 234 engine->last_retired_context = rq->hw_context; 235 } 236 237 static void __retire_engine_upto(struct intel_engine_cs *engine, 238 struct i915_request *rq) 239 { 240 struct i915_request *tmp; 241 242 if (list_empty(&rq->link)) 243 return; 244 245 do { 246 tmp = list_first_entry(&engine->timeline.requests, 247 typeof(*tmp), link); 248 249 GEM_BUG_ON(tmp->engine != engine); 250 __retire_engine_request(engine, tmp); 251 } while (tmp != rq); 252 } 253 254 static void i915_request_retire(struct i915_request *request) 255 { 256 struct i915_active_request *active, *next; 257 258 GEM_TRACE("%s fence %llx:%lld, current %d\n", 259 request->engine->name, 260 request->fence.context, request->fence.seqno, 261 hwsp_seqno(request)); 262 263 lockdep_assert_held(&request->i915->drm.struct_mutex); 264 GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit)); 265 GEM_BUG_ON(!i915_request_completed(request)); 266 267 trace_i915_request_retire(request); 268 269 advance_ring(request); 270 free_capture_list(request); 271 272 /* 273 * Walk through the active list, calling retire on each. This allows 274 * objects to track their GPU activity and mark themselves as idle 275 * when their *last* active request is completed (updating state 276 * tracking lists for eviction, active references for GEM, etc). 277 * 278 * As the ->retire() may free the node, we decouple it first and 279 * pass along the auxiliary information (to avoid dereferencing 280 * the node after the callback). 281 */ 282 list_for_each_entry_safe(active, next, &request->active_list, link) { 283 /* 284 * In microbenchmarks or focusing upon time inside the kernel, 285 * we may spend an inordinate amount of time simply handling 286 * the retirement of requests and processing their callbacks. 287 * Of which, this loop itself is particularly hot due to the 288 * cache misses when jumping around the list of 289 * i915_active_request. So we try to keep this loop as 290 * streamlined as possible and also prefetch the next 291 * i915_active_request to try and hide the likely cache miss. 292 */ 293 prefetchw(next); 294 295 INIT_LIST_HEAD(&active->link); 296 RCU_INIT_POINTER(active->request, NULL); 297 298 active->retire(active, request); 299 } 300 301 i915_request_remove_from_client(request); 302 303 intel_context_unpin(request->hw_context); 304 305 __retire_engine_upto(request->engine, request); 306 307 unreserve_gt(request->i915); 308 309 i915_sched_node_fini(&request->sched); 310 i915_request_put(request); 311 } 312 313 void i915_request_retire_upto(struct i915_request *rq) 314 { 315 struct intel_ring *ring = rq->ring; 316 struct i915_request *tmp; 317 318 GEM_TRACE("%s fence %llx:%lld, current %d\n", 319 rq->engine->name, 320 rq->fence.context, rq->fence.seqno, 321 hwsp_seqno(rq)); 322 323 lockdep_assert_held(&rq->i915->drm.struct_mutex); 324 GEM_BUG_ON(!i915_request_completed(rq)); 325 326 if (list_empty(&rq->ring_link)) 327 return; 328 329 do { 330 tmp = list_first_entry(&ring->request_list, 331 typeof(*tmp), ring_link); 332 333 i915_request_retire(tmp); 334 } while (tmp != rq); 335 } 336 337 static void irq_execute_cb(struct irq_work *wrk) 338 { 339 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 340 341 i915_sw_fence_complete(cb->fence); 342 kmem_cache_free(global.slab_execute_cbs, cb); 343 } 344 345 static void __notify_execute_cb(struct i915_request *rq) 346 { 347 struct execute_cb *cb; 348 349 lockdep_assert_held(&rq->lock); 350 351 if (list_empty(&rq->execute_cb)) 352 return; 353 354 list_for_each_entry(cb, &rq->execute_cb, link) 355 irq_work_queue(&cb->work); 356 357 /* 358 * XXX Rollback on __i915_request_unsubmit() 359 * 360 * In the future, perhaps when we have an active time-slicing scheduler, 361 * it will be interesting to unsubmit parallel execution and remove 362 * busywaits from the GPU until their master is restarted. This is 363 * quite hairy, we have to carefully rollback the fence and do a 364 * preempt-to-idle cycle on the target engine, all the while the 365 * master execute_cb may refire. 366 */ 367 INIT_LIST_HEAD(&rq->execute_cb); 368 } 369 370 static int 371 i915_request_await_execution(struct i915_request *rq, 372 struct i915_request *signal, 373 gfp_t gfp) 374 { 375 struct execute_cb *cb; 376 377 if (i915_request_is_active(signal)) 378 return 0; 379 380 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 381 if (!cb) 382 return -ENOMEM; 383 384 cb->fence = &rq->submit; 385 i915_sw_fence_await(cb->fence); 386 init_irq_work(&cb->work, irq_execute_cb); 387 388 spin_lock_irq(&signal->lock); 389 if (i915_request_is_active(signal)) { 390 i915_sw_fence_complete(cb->fence); 391 kmem_cache_free(global.slab_execute_cbs, cb); 392 } else { 393 list_add_tail(&cb->link, &signal->execute_cb); 394 } 395 spin_unlock_irq(&signal->lock); 396 397 return 0; 398 } 399 400 static void move_to_timeline(struct i915_request *request, 401 struct i915_timeline *timeline) 402 { 403 GEM_BUG_ON(request->timeline == &request->engine->timeline); 404 lockdep_assert_held(&request->engine->timeline.lock); 405 406 spin_lock(&request->timeline->lock); 407 list_move_tail(&request->link, &timeline->requests); 408 spin_unlock(&request->timeline->lock); 409 } 410 411 void __i915_request_submit(struct i915_request *request) 412 { 413 struct intel_engine_cs *engine = request->engine; 414 415 GEM_TRACE("%s fence %llx:%lld -> current %d\n", 416 engine->name, 417 request->fence.context, request->fence.seqno, 418 hwsp_seqno(request)); 419 420 GEM_BUG_ON(!irqs_disabled()); 421 lockdep_assert_held(&engine->timeline.lock); 422 423 if (i915_gem_context_is_banned(request->gem_context)) 424 i915_request_skip(request, -EIO); 425 426 /* We may be recursing from the signal callback of another i915 fence */ 427 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 428 429 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 430 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 431 432 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 433 !i915_request_enable_breadcrumb(request)) 434 intel_engine_queue_breadcrumbs(engine); 435 436 __notify_execute_cb(request); 437 438 spin_unlock(&request->lock); 439 440 engine->emit_fini_breadcrumb(request, 441 request->ring->vaddr + request->postfix); 442 443 /* Transfer from per-context onto the global per-engine timeline */ 444 move_to_timeline(request, &engine->timeline); 445 446 trace_i915_request_execute(request); 447 } 448 449 void i915_request_submit(struct i915_request *request) 450 { 451 struct intel_engine_cs *engine = request->engine; 452 unsigned long flags; 453 454 /* Will be called from irq-context when using foreign fences. */ 455 spin_lock_irqsave(&engine->timeline.lock, flags); 456 457 __i915_request_submit(request); 458 459 spin_unlock_irqrestore(&engine->timeline.lock, flags); 460 } 461 462 void __i915_request_unsubmit(struct i915_request *request) 463 { 464 struct intel_engine_cs *engine = request->engine; 465 466 GEM_TRACE("%s fence %llx:%lld, current %d\n", 467 engine->name, 468 request->fence.context, request->fence.seqno, 469 hwsp_seqno(request)); 470 471 GEM_BUG_ON(!irqs_disabled()); 472 lockdep_assert_held(&engine->timeline.lock); 473 474 /* 475 * Only unwind in reverse order, required so that the per-context list 476 * is kept in seqno/ring order. 477 */ 478 479 /* We may be recursing from the signal callback of another i915 fence */ 480 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 481 482 /* 483 * As we do not allow WAIT to preempt inflight requests, 484 * once we have executed a request, along with triggering 485 * any execution callbacks, we must preserve its ordering 486 * within the non-preemptible FIFO. 487 */ 488 BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */ 489 request->sched.attr.priority |= __NO_PREEMPTION; 490 491 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 492 i915_request_cancel_breadcrumb(request); 493 494 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 495 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 496 497 spin_unlock(&request->lock); 498 499 /* Transfer back from the global per-engine timeline to per-context */ 500 move_to_timeline(request, request->timeline); 501 502 /* 503 * We don't need to wake_up any waiters on request->execute, they 504 * will get woken by any other event or us re-adding this request 505 * to the engine timeline (__i915_request_submit()). The waiters 506 * should be quite adapt at finding that the request now has a new 507 * global_seqno to the one they went to sleep on. 508 */ 509 } 510 511 void i915_request_unsubmit(struct i915_request *request) 512 { 513 struct intel_engine_cs *engine = request->engine; 514 unsigned long flags; 515 516 /* Will be called from irq-context when using foreign fences. */ 517 spin_lock_irqsave(&engine->timeline.lock, flags); 518 519 __i915_request_unsubmit(request); 520 521 spin_unlock_irqrestore(&engine->timeline.lock, flags); 522 } 523 524 static int __i915_sw_fence_call 525 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 526 { 527 struct i915_request *request = 528 container_of(fence, typeof(*request), submit); 529 530 switch (state) { 531 case FENCE_COMPLETE: 532 trace_i915_request_submit(request); 533 /* 534 * We need to serialize use of the submit_request() callback 535 * with its hotplugging performed during an emergency 536 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 537 * critical section in order to force i915_gem_set_wedged() to 538 * wait until the submit_request() is completed before 539 * proceeding. 540 */ 541 rcu_read_lock(); 542 request->engine->submit_request(request); 543 rcu_read_unlock(); 544 break; 545 546 case FENCE_FREE: 547 i915_request_put(request); 548 break; 549 } 550 551 return NOTIFY_DONE; 552 } 553 554 static void ring_retire_requests(struct intel_ring *ring) 555 { 556 struct i915_request *rq, *rn; 557 558 list_for_each_entry_safe(rq, rn, &ring->request_list, ring_link) { 559 if (!i915_request_completed(rq)) 560 break; 561 562 i915_request_retire(rq); 563 } 564 } 565 566 static noinline struct i915_request * 567 i915_request_alloc_slow(struct intel_context *ce) 568 { 569 struct intel_ring *ring = ce->ring; 570 struct i915_request *rq; 571 572 if (list_empty(&ring->request_list)) 573 goto out; 574 575 /* Ratelimit ourselves to prevent oom from malicious clients */ 576 rq = list_last_entry(&ring->request_list, typeof(*rq), ring_link); 577 cond_synchronize_rcu(rq->rcustate); 578 579 /* Retire our old requests in the hope that we free some */ 580 ring_retire_requests(ring); 581 582 out: 583 return kmem_cache_alloc(global.slab_requests, GFP_KERNEL); 584 } 585 586 static int add_timeline_barrier(struct i915_request *rq) 587 { 588 return i915_request_await_active_request(rq, &rq->timeline->barrier); 589 } 590 591 /** 592 * i915_request_alloc - allocate a request structure 593 * 594 * @engine: engine that we wish to issue the request on. 595 * @ctx: context that the request will be associated with. 596 * 597 * Returns a pointer to the allocated request if successful, 598 * or an error code if not. 599 */ 600 struct i915_request * 601 i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx) 602 { 603 struct drm_i915_private *i915 = engine->i915; 604 struct intel_context *ce; 605 struct i915_timeline *tl; 606 struct i915_request *rq; 607 u32 seqno; 608 int ret; 609 610 lockdep_assert_held(&i915->drm.struct_mutex); 611 612 /* 613 * Preempt contexts are reserved for exclusive use to inject a 614 * preemption context switch. They are never to be used for any trivial 615 * request! 616 */ 617 GEM_BUG_ON(ctx == i915->preempt_context); 618 619 /* 620 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 621 * EIO if the GPU is already wedged. 622 */ 623 ret = i915_terminally_wedged(i915); 624 if (ret) 625 return ERR_PTR(ret); 626 627 /* 628 * Pinning the contexts may generate requests in order to acquire 629 * GGTT space, so do this first before we reserve a seqno for 630 * ourselves. 631 */ 632 ce = intel_context_pin(ctx, engine); 633 if (IS_ERR(ce)) 634 return ERR_CAST(ce); 635 636 reserve_gt(i915); 637 mutex_lock(&ce->ring->timeline->mutex); 638 639 /* Move our oldest request to the slab-cache (if not in use!) */ 640 rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link); 641 if (!list_is_last(&rq->ring_link, &ce->ring->request_list) && 642 i915_request_completed(rq)) 643 i915_request_retire(rq); 644 645 /* 646 * Beware: Dragons be flying overhead. 647 * 648 * We use RCU to look up requests in flight. The lookups may 649 * race with the request being allocated from the slab freelist. 650 * That is the request we are writing to here, may be in the process 651 * of being read by __i915_active_request_get_rcu(). As such, 652 * we have to be very careful when overwriting the contents. During 653 * the RCU lookup, we change chase the request->engine pointer, 654 * read the request->global_seqno and increment the reference count. 655 * 656 * The reference count is incremented atomically. If it is zero, 657 * the lookup knows the request is unallocated and complete. Otherwise, 658 * it is either still in use, or has been reallocated and reset 659 * with dma_fence_init(). This increment is safe for release as we 660 * check that the request we have a reference to and matches the active 661 * request. 662 * 663 * Before we increment the refcount, we chase the request->engine 664 * pointer. We must not call kmem_cache_zalloc() or else we set 665 * that pointer to NULL and cause a crash during the lookup. If 666 * we see the request is completed (based on the value of the 667 * old engine and seqno), the lookup is complete and reports NULL. 668 * If we decide the request is not completed (new engine or seqno), 669 * then we grab a reference and double check that it is still the 670 * active request - which it won't be and restart the lookup. 671 * 672 * Do not use kmem_cache_zalloc() here! 673 */ 674 rq = kmem_cache_alloc(global.slab_requests, 675 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 676 if (unlikely(!rq)) { 677 rq = i915_request_alloc_slow(ce); 678 if (!rq) { 679 ret = -ENOMEM; 680 goto err_unreserve; 681 } 682 } 683 684 INIT_LIST_HEAD(&rq->active_list); 685 INIT_LIST_HEAD(&rq->execute_cb); 686 687 tl = ce->ring->timeline; 688 ret = i915_timeline_get_seqno(tl, rq, &seqno); 689 if (ret) 690 goto err_free; 691 692 rq->i915 = i915; 693 rq->engine = engine; 694 rq->gem_context = ctx; 695 rq->hw_context = ce; 696 rq->ring = ce->ring; 697 rq->timeline = tl; 698 GEM_BUG_ON(rq->timeline == &engine->timeline); 699 rq->hwsp_seqno = tl->hwsp_seqno; 700 rq->hwsp_cacheline = tl->hwsp_cacheline; 701 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 702 703 spin_lock_init(&rq->lock); 704 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 705 tl->fence_context, seqno); 706 707 /* We bump the ref for the fence chain */ 708 i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify); 709 710 i915_sched_node_init(&rq->sched); 711 712 /* No zalloc, must clear what we need by hand */ 713 rq->file_priv = NULL; 714 rq->batch = NULL; 715 rq->capture_list = NULL; 716 rq->waitboost = false; 717 718 /* 719 * Reserve space in the ring buffer for all the commands required to 720 * eventually emit this request. This is to guarantee that the 721 * i915_request_add() call can't fail. Note that the reserve may need 722 * to be redone if the request is not actually submitted straight 723 * away, e.g. because a GPU scheduler has deferred it. 724 * 725 * Note that due to how we add reserved_space to intel_ring_begin() 726 * we need to double our request to ensure that if we need to wrap 727 * around inside i915_request_add() there is sufficient space at 728 * the beginning of the ring as well. 729 */ 730 rq->reserved_space = 2 * engine->emit_fini_breadcrumb_dw * sizeof(u32); 731 732 /* 733 * Record the position of the start of the request so that 734 * should we detect the updated seqno part-way through the 735 * GPU processing the request, we never over-estimate the 736 * position of the head. 737 */ 738 rq->head = rq->ring->emit; 739 740 ret = add_timeline_barrier(rq); 741 if (ret) 742 goto err_unwind; 743 744 ret = engine->request_alloc(rq); 745 if (ret) 746 goto err_unwind; 747 748 /* Keep a second pin for the dual retirement along engine and ring */ 749 __intel_context_pin(ce); 750 751 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 752 753 /* Check that we didn't interrupt ourselves with a new request */ 754 GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno); 755 return rq; 756 757 err_unwind: 758 ce->ring->emit = rq->head; 759 760 /* Make sure we didn't add ourselves to external state before freeing */ 761 GEM_BUG_ON(!list_empty(&rq->active_list)); 762 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 763 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 764 765 err_free: 766 kmem_cache_free(global.slab_requests, rq); 767 err_unreserve: 768 mutex_unlock(&ce->ring->timeline->mutex); 769 unreserve_gt(i915); 770 intel_context_unpin(ce); 771 return ERR_PTR(ret); 772 } 773 774 static int 775 emit_semaphore_wait(struct i915_request *to, 776 struct i915_request *from, 777 gfp_t gfp) 778 { 779 u32 hwsp_offset; 780 u32 *cs; 781 int err; 782 783 GEM_BUG_ON(!from->timeline->has_initial_breadcrumb); 784 GEM_BUG_ON(INTEL_GEN(to->i915) < 8); 785 786 /* We need to pin the signaler's HWSP until we are finished reading. */ 787 err = i915_timeline_read_hwsp(from, to, &hwsp_offset); 788 if (err) 789 return err; 790 791 /* Only submit our spinner after the signaler is running! */ 792 err = i915_request_await_execution(to, from, gfp); 793 if (err) 794 return err; 795 796 cs = intel_ring_begin(to, 4); 797 if (IS_ERR(cs)) 798 return PTR_ERR(cs); 799 800 /* 801 * Using greater-than-or-equal here means we have to worry 802 * about seqno wraparound. To side step that issue, we swap 803 * the timeline HWSP upon wrapping, so that everyone listening 804 * for the old (pre-wrap) values do not see the much smaller 805 * (post-wrap) values than they were expecting (and so wait 806 * forever). 807 */ 808 *cs++ = MI_SEMAPHORE_WAIT | 809 MI_SEMAPHORE_GLOBAL_GTT | 810 MI_SEMAPHORE_POLL | 811 MI_SEMAPHORE_SAD_GTE_SDD; 812 *cs++ = from->fence.seqno; 813 *cs++ = hwsp_offset; 814 *cs++ = 0; 815 816 intel_ring_advance(to, cs); 817 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE; 818 return 0; 819 } 820 821 static int 822 i915_request_await_request(struct i915_request *to, struct i915_request *from) 823 { 824 int ret; 825 826 GEM_BUG_ON(to == from); 827 GEM_BUG_ON(to->timeline == from->timeline); 828 829 if (i915_request_completed(from)) 830 return 0; 831 832 if (to->engine->schedule) { 833 ret = i915_sched_node_add_dependency(&to->sched, &from->sched); 834 if (ret < 0) 835 return ret; 836 } 837 838 if (to->engine == from->engine) { 839 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, 840 &from->submit, 841 I915_FENCE_GFP); 842 } else if (intel_engine_has_semaphores(to->engine) && 843 to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) { 844 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 845 } else { 846 ret = i915_sw_fence_await_dma_fence(&to->submit, 847 &from->fence, 0, 848 I915_FENCE_GFP); 849 } 850 851 return ret < 0 ? ret : 0; 852 } 853 854 int 855 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 856 { 857 struct dma_fence **child = &fence; 858 unsigned int nchild = 1; 859 int ret; 860 861 /* 862 * Note that if the fence-array was created in signal-on-any mode, 863 * we should *not* decompose it into its individual fences. However, 864 * we don't currently store which mode the fence-array is operating 865 * in. Fortunately, the only user of signal-on-any is private to 866 * amdgpu and we should not see any incoming fence-array from 867 * sync-file being in signal-on-any mode. 868 */ 869 if (dma_fence_is_array(fence)) { 870 struct dma_fence_array *array = to_dma_fence_array(fence); 871 872 child = array->fences; 873 nchild = array->num_fences; 874 GEM_BUG_ON(!nchild); 875 } 876 877 do { 878 fence = *child++; 879 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 880 continue; 881 882 /* 883 * Requests on the same timeline are explicitly ordered, along 884 * with their dependencies, by i915_request_add() which ensures 885 * that requests are submitted in-order through each ring. 886 */ 887 if (fence->context == rq->fence.context) 888 continue; 889 890 /* Squash repeated waits to the same timelines */ 891 if (fence->context != rq->i915->mm.unordered_timeline && 892 i915_timeline_sync_is_later(rq->timeline, fence)) 893 continue; 894 895 if (dma_fence_is_i915(fence)) 896 ret = i915_request_await_request(rq, to_request(fence)); 897 else 898 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 899 I915_FENCE_TIMEOUT, 900 I915_FENCE_GFP); 901 if (ret < 0) 902 return ret; 903 904 /* Record the latest fence used against each timeline */ 905 if (fence->context != rq->i915->mm.unordered_timeline) 906 i915_timeline_sync_set(rq->timeline, fence); 907 } while (--nchild); 908 909 return 0; 910 } 911 912 /** 913 * i915_request_await_object - set this request to (async) wait upon a bo 914 * @to: request we are wishing to use 915 * @obj: object which may be in use on another ring. 916 * @write: whether the wait is on behalf of a writer 917 * 918 * This code is meant to abstract object synchronization with the GPU. 919 * Conceptually we serialise writes between engines inside the GPU. 920 * We only allow one engine to write into a buffer at any time, but 921 * multiple readers. To ensure each has a coherent view of memory, we must: 922 * 923 * - If there is an outstanding write request to the object, the new 924 * request must wait for it to complete (either CPU or in hw, requests 925 * on the same ring will be naturally ordered). 926 * 927 * - If we are a write request (pending_write_domain is set), the new 928 * request must wait for outstanding read requests to complete. 929 * 930 * Returns 0 if successful, else propagates up the lower layer error. 931 */ 932 int 933 i915_request_await_object(struct i915_request *to, 934 struct drm_i915_gem_object *obj, 935 bool write) 936 { 937 struct dma_fence *excl; 938 int ret = 0; 939 940 if (write) { 941 struct dma_fence **shared; 942 unsigned int count, i; 943 944 ret = reservation_object_get_fences_rcu(obj->resv, 945 &excl, &count, &shared); 946 if (ret) 947 return ret; 948 949 for (i = 0; i < count; i++) { 950 ret = i915_request_await_dma_fence(to, shared[i]); 951 if (ret) 952 break; 953 954 dma_fence_put(shared[i]); 955 } 956 957 for (; i < count; i++) 958 dma_fence_put(shared[i]); 959 kfree(shared); 960 } else { 961 excl = reservation_object_get_excl_rcu(obj->resv); 962 } 963 964 if (excl) { 965 if (ret == 0) 966 ret = i915_request_await_dma_fence(to, excl); 967 968 dma_fence_put(excl); 969 } 970 971 return ret; 972 } 973 974 void i915_request_skip(struct i915_request *rq, int error) 975 { 976 void *vaddr = rq->ring->vaddr; 977 u32 head; 978 979 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 980 dma_fence_set_error(&rq->fence, error); 981 982 /* 983 * As this request likely depends on state from the lost 984 * context, clear out all the user operations leaving the 985 * breadcrumb at the end (so we get the fence notifications). 986 */ 987 head = rq->infix; 988 if (rq->postfix < head) { 989 memset(vaddr + head, 0, rq->ring->size - head); 990 head = 0; 991 } 992 memset(vaddr + head, 0, rq->postfix - head); 993 } 994 995 static struct i915_request * 996 __i915_request_add_to_timeline(struct i915_request *rq) 997 { 998 struct i915_timeline *timeline = rq->timeline; 999 struct i915_request *prev; 1000 1001 /* 1002 * Dependency tracking and request ordering along the timeline 1003 * is special cased so that we can eliminate redundant ordering 1004 * operations while building the request (we know that the timeline 1005 * itself is ordered, and here we guarantee it). 1006 * 1007 * As we know we will need to emit tracking along the timeline, 1008 * we embed the hooks into our request struct -- at the cost of 1009 * having to have specialised no-allocation interfaces (which will 1010 * be beneficial elsewhere). 1011 * 1012 * A second benefit to open-coding i915_request_await_request is 1013 * that we can apply a slight variant of the rules specialised 1014 * for timelines that jump between engines (such as virtual engines). 1015 * If we consider the case of virtual engine, we must emit a dma-fence 1016 * to prevent scheduling of the second request until the first is 1017 * complete (to maximise our greedy late load balancing) and this 1018 * precludes optimising to use semaphores serialisation of a single 1019 * timeline across engines. 1020 */ 1021 prev = i915_active_request_raw(&timeline->last_request, 1022 &rq->i915->drm.struct_mutex); 1023 if (prev && !i915_request_completed(prev)) { 1024 if (is_power_of_2(prev->engine->mask | rq->engine->mask)) 1025 i915_sw_fence_await_sw_fence(&rq->submit, 1026 &prev->submit, 1027 &rq->submitq); 1028 else 1029 __i915_sw_fence_await_dma_fence(&rq->submit, 1030 &prev->fence, 1031 &rq->dmaq); 1032 if (rq->engine->schedule) 1033 __i915_sched_node_add_dependency(&rq->sched, 1034 &prev->sched, 1035 &rq->dep, 1036 0); 1037 } 1038 1039 spin_lock_irq(&timeline->lock); 1040 list_add_tail(&rq->link, &timeline->requests); 1041 spin_unlock_irq(&timeline->lock); 1042 1043 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1044 __i915_active_request_set(&timeline->last_request, rq); 1045 1046 return prev; 1047 } 1048 1049 /* 1050 * NB: This function is not allowed to fail. Doing so would mean the the 1051 * request is not being tracked for completion but the work itself is 1052 * going to happen on the hardware. This would be a Bad Thing(tm). 1053 */ 1054 void i915_request_add(struct i915_request *request) 1055 { 1056 struct intel_engine_cs *engine = request->engine; 1057 struct i915_timeline *timeline = request->timeline; 1058 struct intel_ring *ring = request->ring; 1059 struct i915_request *prev; 1060 u32 *cs; 1061 1062 GEM_TRACE("%s fence %llx:%lld\n", 1063 engine->name, request->fence.context, request->fence.seqno); 1064 1065 lockdep_assert_held(&request->timeline->mutex); 1066 trace_i915_request_add(request); 1067 1068 /* 1069 * Make sure that no request gazumped us - if it was allocated after 1070 * our i915_request_alloc() and called __i915_request_add() before 1071 * us, the timeline will hold its seqno which is later than ours. 1072 */ 1073 GEM_BUG_ON(timeline->seqno != request->fence.seqno); 1074 1075 /* 1076 * To ensure that this call will not fail, space for its emissions 1077 * should already have been reserved in the ring buffer. Let the ring 1078 * know that it is time to use that space up. 1079 */ 1080 GEM_BUG_ON(request->reserved_space > request->ring->space); 1081 request->reserved_space = 0; 1082 1083 /* 1084 * Record the position of the start of the breadcrumb so that 1085 * should we detect the updated seqno part-way through the 1086 * GPU processing the request, we never over-estimate the 1087 * position of the ring's HEAD. 1088 */ 1089 cs = intel_ring_begin(request, engine->emit_fini_breadcrumb_dw); 1090 GEM_BUG_ON(IS_ERR(cs)); 1091 request->postfix = intel_ring_offset(request, cs); 1092 1093 prev = __i915_request_add_to_timeline(request); 1094 1095 list_add_tail(&request->ring_link, &ring->request_list); 1096 if (list_is_first(&request->ring_link, &ring->request_list)) 1097 list_add(&ring->active_link, &request->i915->gt.active_rings); 1098 request->i915->gt.active_engines |= request->engine->mask; 1099 request->emitted_jiffies = jiffies; 1100 1101 /* 1102 * Let the backend know a new request has arrived that may need 1103 * to adjust the existing execution schedule due to a high priority 1104 * request - i.e. we may want to preempt the current request in order 1105 * to run a high priority dependency chain *before* we can execute this 1106 * request. 1107 * 1108 * This is called before the request is ready to run so that we can 1109 * decide whether to preempt the entire chain so that it is ready to 1110 * run at the earliest possible convenience. 1111 */ 1112 local_bh_disable(); 1113 rcu_read_lock(); /* RCU serialisation for set-wedged protection */ 1114 if (engine->schedule) { 1115 struct i915_sched_attr attr = request->gem_context->sched; 1116 1117 /* 1118 * Boost actual workloads past semaphores! 1119 * 1120 * With semaphores we spin on one engine waiting for another, 1121 * simply to reduce the latency of starting our work when 1122 * the signaler completes. However, if there is any other 1123 * work that we could be doing on this engine instead, that 1124 * is better utilisation and will reduce the overall duration 1125 * of the current work. To avoid PI boosting a semaphore 1126 * far in the distance past over useful work, we keep a history 1127 * of any semaphore use along our dependency chain. 1128 */ 1129 if (!(request->sched.flags & I915_SCHED_HAS_SEMAPHORE)) 1130 attr.priority |= I915_PRIORITY_NOSEMAPHORE; 1131 1132 /* 1133 * Boost priorities to new clients (new request flows). 1134 * 1135 * Allow interactive/synchronous clients to jump ahead of 1136 * the bulk clients. (FQ_CODEL) 1137 */ 1138 if (list_empty(&request->sched.signalers_list)) 1139 attr.priority |= I915_PRIORITY_NEWCLIENT; 1140 1141 engine->schedule(request, &attr); 1142 } 1143 rcu_read_unlock(); 1144 i915_sw_fence_commit(&request->submit); 1145 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 1146 1147 /* 1148 * In typical scenarios, we do not expect the previous request on 1149 * the timeline to be still tracked by timeline->last_request if it 1150 * has been completed. If the completed request is still here, that 1151 * implies that request retirement is a long way behind submission, 1152 * suggesting that we haven't been retiring frequently enough from 1153 * the combination of retire-before-alloc, waiters and the background 1154 * retirement worker. So if the last request on this timeline was 1155 * already completed, do a catch up pass, flushing the retirement queue 1156 * up to this client. Since we have now moved the heaviest operations 1157 * during retirement onto secondary workers, such as freeing objects 1158 * or contexts, retiring a bunch of requests is mostly list management 1159 * (and cache misses), and so we should not be overly penalizing this 1160 * client by performing excess work, though we may still performing 1161 * work on behalf of others -- but instead we should benefit from 1162 * improved resource management. (Well, that's the theory at least.) 1163 */ 1164 if (prev && i915_request_completed(prev)) 1165 i915_request_retire_upto(prev); 1166 1167 mutex_unlock(&request->timeline->mutex); 1168 } 1169 1170 static unsigned long local_clock_us(unsigned int *cpu) 1171 { 1172 unsigned long t; 1173 1174 /* 1175 * Cheaply and approximately convert from nanoseconds to microseconds. 1176 * The result and subsequent calculations are also defined in the same 1177 * approximate microseconds units. The principal source of timing 1178 * error here is from the simple truncation. 1179 * 1180 * Note that local_clock() is only defined wrt to the current CPU; 1181 * the comparisons are no longer valid if we switch CPUs. Instead of 1182 * blocking preemption for the entire busywait, we can detect the CPU 1183 * switch and use that as indicator of system load and a reason to 1184 * stop busywaiting, see busywait_stop(). 1185 */ 1186 *cpu = get_cpu(); 1187 t = local_clock() >> 10; 1188 put_cpu(); 1189 1190 return t; 1191 } 1192 1193 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1194 { 1195 unsigned int this_cpu; 1196 1197 if (time_after(local_clock_us(&this_cpu), timeout)) 1198 return true; 1199 1200 return this_cpu != cpu; 1201 } 1202 1203 static bool __i915_spin_request(const struct i915_request * const rq, 1204 int state, unsigned long timeout_us) 1205 { 1206 unsigned int cpu; 1207 1208 /* 1209 * Only wait for the request if we know it is likely to complete. 1210 * 1211 * We don't track the timestamps around requests, nor the average 1212 * request length, so we do not have a good indicator that this 1213 * request will complete within the timeout. What we do know is the 1214 * order in which requests are executed by the context and so we can 1215 * tell if the request has been started. If the request is not even 1216 * running yet, it is a fair assumption that it will not complete 1217 * within our relatively short timeout. 1218 */ 1219 if (!i915_request_is_running(rq)) 1220 return false; 1221 1222 /* 1223 * When waiting for high frequency requests, e.g. during synchronous 1224 * rendering split between the CPU and GPU, the finite amount of time 1225 * required to set up the irq and wait upon it limits the response 1226 * rate. By busywaiting on the request completion for a short while we 1227 * can service the high frequency waits as quick as possible. However, 1228 * if it is a slow request, we want to sleep as quickly as possible. 1229 * The tradeoff between waiting and sleeping is roughly the time it 1230 * takes to sleep on a request, on the order of a microsecond. 1231 */ 1232 1233 timeout_us += local_clock_us(&cpu); 1234 do { 1235 if (i915_request_completed(rq)) 1236 return true; 1237 1238 if (signal_pending_state(state, current)) 1239 break; 1240 1241 if (busywait_stop(timeout_us, cpu)) 1242 break; 1243 1244 cpu_relax(); 1245 } while (!need_resched()); 1246 1247 return false; 1248 } 1249 1250 struct request_wait { 1251 struct dma_fence_cb cb; 1252 struct task_struct *tsk; 1253 }; 1254 1255 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1256 { 1257 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1258 1259 wake_up_process(wait->tsk); 1260 } 1261 1262 /** 1263 * i915_request_wait - wait until execution of request has finished 1264 * @rq: the request to wait upon 1265 * @flags: how to wait 1266 * @timeout: how long to wait in jiffies 1267 * 1268 * i915_request_wait() waits for the request to be completed, for a 1269 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1270 * unbounded wait). 1271 * 1272 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED 1273 * in via the flags, and vice versa if the struct_mutex is not held, the caller 1274 * must not specify that the wait is locked. 1275 * 1276 * Returns the remaining time (in jiffies) if the request completed, which may 1277 * be zero or -ETIME if the request is unfinished after the timeout expires. 1278 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1279 * pending before the request completes. 1280 */ 1281 long i915_request_wait(struct i915_request *rq, 1282 unsigned int flags, 1283 long timeout) 1284 { 1285 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1286 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1287 struct request_wait wait; 1288 1289 might_sleep(); 1290 GEM_BUG_ON(timeout < 0); 1291 1292 if (i915_request_completed(rq)) 1293 return timeout; 1294 1295 if (!timeout) 1296 return -ETIME; 1297 1298 trace_i915_request_wait_begin(rq, flags); 1299 1300 /* Optimistic short spin before touching IRQs */ 1301 if (__i915_spin_request(rq, state, 5)) 1302 goto out; 1303 1304 /* 1305 * This client is about to stall waiting for the GPU. In many cases 1306 * this is undesirable and limits the throughput of the system, as 1307 * many clients cannot continue processing user input/output whilst 1308 * blocked. RPS autotuning may take tens of milliseconds to respond 1309 * to the GPU load and thus incurs additional latency for the client. 1310 * We can circumvent that by promoting the GPU frequency to maximum 1311 * before we sleep. This makes the GPU throttle up much more quickly 1312 * (good for benchmarks and user experience, e.g. window animations), 1313 * but at a cost of spending more power processing the workload 1314 * (bad for battery). 1315 */ 1316 if (flags & I915_WAIT_PRIORITY) { 1317 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6) 1318 gen6_rps_boost(rq); 1319 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT); 1320 } 1321 1322 wait.tsk = current; 1323 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1324 goto out; 1325 1326 for (;;) { 1327 set_current_state(state); 1328 1329 if (i915_request_completed(rq)) 1330 break; 1331 1332 if (signal_pending_state(state, current)) { 1333 timeout = -ERESTARTSYS; 1334 break; 1335 } 1336 1337 if (!timeout) { 1338 timeout = -ETIME; 1339 break; 1340 } 1341 1342 timeout = io_schedule_timeout(timeout); 1343 } 1344 __set_current_state(TASK_RUNNING); 1345 1346 dma_fence_remove_callback(&rq->fence, &wait.cb); 1347 1348 out: 1349 trace_i915_request_wait_end(rq); 1350 return timeout; 1351 } 1352 1353 void i915_retire_requests(struct drm_i915_private *i915) 1354 { 1355 struct intel_ring *ring, *tmp; 1356 1357 lockdep_assert_held(&i915->drm.struct_mutex); 1358 1359 if (!i915->gt.active_requests) 1360 return; 1361 1362 list_for_each_entry_safe(ring, tmp, 1363 &i915->gt.active_rings, active_link) { 1364 intel_ring_get(ring); /* last rq holds reference! */ 1365 ring_retire_requests(ring); 1366 intel_ring_put(ring); 1367 } 1368 } 1369 1370 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1371 #include "selftests/mock_request.c" 1372 #include "selftests/i915_request.c" 1373 #endif 1374 1375 static void i915_global_request_shrink(void) 1376 { 1377 kmem_cache_shrink(global.slab_dependencies); 1378 kmem_cache_shrink(global.slab_execute_cbs); 1379 kmem_cache_shrink(global.slab_requests); 1380 } 1381 1382 static void i915_global_request_exit(void) 1383 { 1384 kmem_cache_destroy(global.slab_dependencies); 1385 kmem_cache_destroy(global.slab_execute_cbs); 1386 kmem_cache_destroy(global.slab_requests); 1387 } 1388 1389 static struct i915_global_request global = { { 1390 .shrink = i915_global_request_shrink, 1391 .exit = i915_global_request_exit, 1392 } }; 1393 1394 int __init i915_global_request_init(void) 1395 { 1396 global.slab_requests = KMEM_CACHE(i915_request, 1397 SLAB_HWCACHE_ALIGN | 1398 SLAB_RECLAIM_ACCOUNT | 1399 SLAB_TYPESAFE_BY_RCU); 1400 if (!global.slab_requests) 1401 return -ENOMEM; 1402 1403 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1404 SLAB_HWCACHE_ALIGN | 1405 SLAB_RECLAIM_ACCOUNT | 1406 SLAB_TYPESAFE_BY_RCU); 1407 if (!global.slab_execute_cbs) 1408 goto err_requests; 1409 1410 global.slab_dependencies = KMEM_CACHE(i915_dependency, 1411 SLAB_HWCACHE_ALIGN | 1412 SLAB_RECLAIM_ACCOUNT); 1413 if (!global.slab_dependencies) 1414 goto err_execute_cbs; 1415 1416 i915_global_register(&global.base); 1417 return 0; 1418 1419 err_execute_cbs: 1420 kmem_cache_destroy(global.slab_execute_cbs); 1421 err_requests: 1422 kmem_cache_destroy(global.slab_requests); 1423 return -ENOMEM; 1424 } 1425