1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/irq_work.h> 27 #include <linux/prefetch.h> 28 #include <linux/sched.h> 29 #include <linux/sched/clock.h> 30 #include <linux/sched/signal.h> 31 32 #include "i915_active.h" 33 #include "i915_drv.h" 34 #include "i915_globals.h" 35 #include "intel_pm.h" 36 37 struct execute_cb { 38 struct list_head link; 39 struct irq_work work; 40 struct i915_sw_fence *fence; 41 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 42 struct i915_request *signal; 43 }; 44 45 static struct i915_global_request { 46 struct i915_global base; 47 struct kmem_cache *slab_requests; 48 struct kmem_cache *slab_dependencies; 49 struct kmem_cache *slab_execute_cbs; 50 } global; 51 52 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 53 { 54 return "i915"; 55 } 56 57 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 58 { 59 /* 60 * The timeline struct (as part of the ppgtt underneath a context) 61 * may be freed when the request is no longer in use by the GPU. 62 * We could extend the life of a context to beyond that of all 63 * fences, possibly keeping the hw resource around indefinitely, 64 * or we just give them a false name. Since 65 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 66 * lie seems justifiable. 67 */ 68 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 69 return "signaled"; 70 71 return to_request(fence)->gem_context->name ?: "[i915]"; 72 } 73 74 static bool i915_fence_signaled(struct dma_fence *fence) 75 { 76 return i915_request_completed(to_request(fence)); 77 } 78 79 static bool i915_fence_enable_signaling(struct dma_fence *fence) 80 { 81 return i915_request_enable_breadcrumb(to_request(fence)); 82 } 83 84 static signed long i915_fence_wait(struct dma_fence *fence, 85 bool interruptible, 86 signed long timeout) 87 { 88 return i915_request_wait(to_request(fence), 89 interruptible | I915_WAIT_PRIORITY, 90 timeout); 91 } 92 93 static void i915_fence_release(struct dma_fence *fence) 94 { 95 struct i915_request *rq = to_request(fence); 96 97 /* 98 * The request is put onto a RCU freelist (i.e. the address 99 * is immediately reused), mark the fences as being freed now. 100 * Otherwise the debugobjects for the fences are only marked as 101 * freed when the slab cache itself is freed, and so we would get 102 * caught trying to reuse dead objects. 103 */ 104 i915_sw_fence_fini(&rq->submit); 105 i915_sw_fence_fini(&rq->semaphore); 106 107 kmem_cache_free(global.slab_requests, rq); 108 } 109 110 const struct dma_fence_ops i915_fence_ops = { 111 .get_driver_name = i915_fence_get_driver_name, 112 .get_timeline_name = i915_fence_get_timeline_name, 113 .enable_signaling = i915_fence_enable_signaling, 114 .signaled = i915_fence_signaled, 115 .wait = i915_fence_wait, 116 .release = i915_fence_release, 117 }; 118 119 static inline void 120 i915_request_remove_from_client(struct i915_request *request) 121 { 122 struct drm_i915_file_private *file_priv; 123 124 file_priv = request->file_priv; 125 if (!file_priv) 126 return; 127 128 spin_lock(&file_priv->mm.lock); 129 if (request->file_priv) { 130 list_del(&request->client_link); 131 request->file_priv = NULL; 132 } 133 spin_unlock(&file_priv->mm.lock); 134 } 135 136 static void advance_ring(struct i915_request *request) 137 { 138 struct intel_ring *ring = request->ring; 139 unsigned int tail; 140 141 /* 142 * We know the GPU must have read the request to have 143 * sent us the seqno + interrupt, so use the position 144 * of tail of the request to update the last known position 145 * of the GPU head. 146 * 147 * Note this requires that we are always called in request 148 * completion order. 149 */ 150 GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list)); 151 if (list_is_last(&request->ring_link, &ring->request_list)) { 152 /* 153 * We may race here with execlists resubmitting this request 154 * as we retire it. The resubmission will move the ring->tail 155 * forwards (to request->wa_tail). We either read the 156 * current value that was written to hw, or the value that 157 * is just about to be. Either works, if we miss the last two 158 * noops - they are safe to be replayed on a reset. 159 */ 160 tail = READ_ONCE(request->tail); 161 list_del(&ring->active_link); 162 } else { 163 tail = request->postfix; 164 } 165 list_del_init(&request->ring_link); 166 167 ring->head = tail; 168 } 169 170 static void free_capture_list(struct i915_request *request) 171 { 172 struct i915_capture_list *capture; 173 174 capture = request->capture_list; 175 while (capture) { 176 struct i915_capture_list *next = capture->next; 177 178 kfree(capture); 179 capture = next; 180 } 181 } 182 183 static void __retire_engine_request(struct intel_engine_cs *engine, 184 struct i915_request *rq) 185 { 186 GEM_TRACE("%s(%s) fence %llx:%lld, current %d\n", 187 __func__, engine->name, 188 rq->fence.context, rq->fence.seqno, 189 hwsp_seqno(rq)); 190 191 GEM_BUG_ON(!i915_request_completed(rq)); 192 193 local_irq_disable(); 194 195 spin_lock(&engine->timeline.lock); 196 GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests)); 197 list_del_init(&rq->link); 198 spin_unlock(&engine->timeline.lock); 199 200 spin_lock(&rq->lock); 201 i915_request_mark_complete(rq); 202 if (!i915_request_signaled(rq)) 203 dma_fence_signal_locked(&rq->fence); 204 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 205 i915_request_cancel_breadcrumb(rq); 206 if (rq->waitboost) { 207 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters)); 208 atomic_dec(&rq->i915->gt_pm.rps.num_waiters); 209 } 210 spin_unlock(&rq->lock); 211 212 local_irq_enable(); 213 214 /* 215 * The backing object for the context is done after switching to the 216 * *next* context. Therefore we cannot retire the previous context until 217 * the next context has already started running. However, since we 218 * cannot take the required locks at i915_request_submit() we 219 * defer the unpinning of the active context to now, retirement of 220 * the subsequent request. 221 */ 222 if (engine->last_retired_context) 223 intel_context_unpin(engine->last_retired_context); 224 engine->last_retired_context = rq->hw_context; 225 } 226 227 static void __retire_engine_upto(struct intel_engine_cs *engine, 228 struct i915_request *rq) 229 { 230 struct i915_request *tmp; 231 232 if (list_empty(&rq->link)) 233 return; 234 235 do { 236 tmp = list_first_entry(&engine->timeline.requests, 237 typeof(*tmp), link); 238 239 GEM_BUG_ON(tmp->engine != engine); 240 __retire_engine_request(engine, tmp); 241 } while (tmp != rq); 242 } 243 244 static void i915_request_retire(struct i915_request *request) 245 { 246 struct i915_active_request *active, *next; 247 248 GEM_TRACE("%s fence %llx:%lld, current %d\n", 249 request->engine->name, 250 request->fence.context, request->fence.seqno, 251 hwsp_seqno(request)); 252 253 lockdep_assert_held(&request->i915->drm.struct_mutex); 254 GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit)); 255 GEM_BUG_ON(!i915_request_completed(request)); 256 257 trace_i915_request_retire(request); 258 259 advance_ring(request); 260 free_capture_list(request); 261 262 /* 263 * Walk through the active list, calling retire on each. This allows 264 * objects to track their GPU activity and mark themselves as idle 265 * when their *last* active request is completed (updating state 266 * tracking lists for eviction, active references for GEM, etc). 267 * 268 * As the ->retire() may free the node, we decouple it first and 269 * pass along the auxiliary information (to avoid dereferencing 270 * the node after the callback). 271 */ 272 list_for_each_entry_safe(active, next, &request->active_list, link) { 273 /* 274 * In microbenchmarks or focusing upon time inside the kernel, 275 * we may spend an inordinate amount of time simply handling 276 * the retirement of requests and processing their callbacks. 277 * Of which, this loop itself is particularly hot due to the 278 * cache misses when jumping around the list of 279 * i915_active_request. So we try to keep this loop as 280 * streamlined as possible and also prefetch the next 281 * i915_active_request to try and hide the likely cache miss. 282 */ 283 prefetchw(next); 284 285 INIT_LIST_HEAD(&active->link); 286 RCU_INIT_POINTER(active->request, NULL); 287 288 active->retire(active, request); 289 } 290 291 i915_request_remove_from_client(request); 292 293 __retire_engine_upto(request->engine, request); 294 295 intel_context_exit(request->hw_context); 296 intel_context_unpin(request->hw_context); 297 298 i915_sched_node_fini(&request->sched); 299 i915_request_put(request); 300 } 301 302 void i915_request_retire_upto(struct i915_request *rq) 303 { 304 struct intel_ring *ring = rq->ring; 305 struct i915_request *tmp; 306 307 GEM_TRACE("%s fence %llx:%lld, current %d\n", 308 rq->engine->name, 309 rq->fence.context, rq->fence.seqno, 310 hwsp_seqno(rq)); 311 312 lockdep_assert_held(&rq->i915->drm.struct_mutex); 313 GEM_BUG_ON(!i915_request_completed(rq)); 314 315 if (list_empty(&rq->ring_link)) 316 return; 317 318 do { 319 tmp = list_first_entry(&ring->request_list, 320 typeof(*tmp), ring_link); 321 322 i915_request_retire(tmp); 323 } while (tmp != rq); 324 } 325 326 static void irq_execute_cb(struct irq_work *wrk) 327 { 328 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 329 330 i915_sw_fence_complete(cb->fence); 331 kmem_cache_free(global.slab_execute_cbs, cb); 332 } 333 334 static void irq_execute_cb_hook(struct irq_work *wrk) 335 { 336 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 337 338 cb->hook(container_of(cb->fence, struct i915_request, submit), 339 &cb->signal->fence); 340 i915_request_put(cb->signal); 341 342 irq_execute_cb(wrk); 343 } 344 345 static void __notify_execute_cb(struct i915_request *rq) 346 { 347 struct execute_cb *cb; 348 349 lockdep_assert_held(&rq->lock); 350 351 if (list_empty(&rq->execute_cb)) 352 return; 353 354 list_for_each_entry(cb, &rq->execute_cb, link) 355 irq_work_queue(&cb->work); 356 357 /* 358 * XXX Rollback on __i915_request_unsubmit() 359 * 360 * In the future, perhaps when we have an active time-slicing scheduler, 361 * it will be interesting to unsubmit parallel execution and remove 362 * busywaits from the GPU until their master is restarted. This is 363 * quite hairy, we have to carefully rollback the fence and do a 364 * preempt-to-idle cycle on the target engine, all the while the 365 * master execute_cb may refire. 366 */ 367 INIT_LIST_HEAD(&rq->execute_cb); 368 } 369 370 static int 371 __i915_request_await_execution(struct i915_request *rq, 372 struct i915_request *signal, 373 void (*hook)(struct i915_request *rq, 374 struct dma_fence *signal), 375 gfp_t gfp) 376 { 377 struct execute_cb *cb; 378 379 if (i915_request_is_active(signal)) { 380 if (hook) 381 hook(rq, &signal->fence); 382 return 0; 383 } 384 385 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 386 if (!cb) 387 return -ENOMEM; 388 389 cb->fence = &rq->submit; 390 i915_sw_fence_await(cb->fence); 391 init_irq_work(&cb->work, irq_execute_cb); 392 393 if (hook) { 394 cb->hook = hook; 395 cb->signal = i915_request_get(signal); 396 cb->work.func = irq_execute_cb_hook; 397 } 398 399 spin_lock_irq(&signal->lock); 400 if (i915_request_is_active(signal)) { 401 if (hook) { 402 hook(rq, &signal->fence); 403 i915_request_put(signal); 404 } 405 i915_sw_fence_complete(cb->fence); 406 kmem_cache_free(global.slab_execute_cbs, cb); 407 } else { 408 list_add_tail(&cb->link, &signal->execute_cb); 409 } 410 spin_unlock_irq(&signal->lock); 411 412 return 0; 413 } 414 415 static void move_to_timeline(struct i915_request *request, 416 struct i915_timeline *timeline) 417 { 418 GEM_BUG_ON(request->timeline == &request->engine->timeline); 419 lockdep_assert_held(&request->engine->timeline.lock); 420 421 spin_lock(&request->timeline->lock); 422 list_move_tail(&request->link, &timeline->requests); 423 spin_unlock(&request->timeline->lock); 424 } 425 426 void __i915_request_submit(struct i915_request *request) 427 { 428 struct intel_engine_cs *engine = request->engine; 429 430 GEM_TRACE("%s fence %llx:%lld -> current %d\n", 431 engine->name, 432 request->fence.context, request->fence.seqno, 433 hwsp_seqno(request)); 434 435 GEM_BUG_ON(!irqs_disabled()); 436 lockdep_assert_held(&engine->timeline.lock); 437 438 if (i915_gem_context_is_banned(request->gem_context)) 439 i915_request_skip(request, -EIO); 440 441 /* 442 * Are we using semaphores when the gpu is already saturated? 443 * 444 * Using semaphores incurs a cost in having the GPU poll a 445 * memory location, busywaiting for it to change. The continual 446 * memory reads can have a noticeable impact on the rest of the 447 * system with the extra bus traffic, stalling the cpu as it too 448 * tries to access memory across the bus (perf stat -e bus-cycles). 449 * 450 * If we installed a semaphore on this request and we only submit 451 * the request after the signaler completed, that indicates the 452 * system is overloaded and using semaphores at this time only 453 * increases the amount of work we are doing. If so, we disable 454 * further use of semaphores until we are idle again, whence we 455 * optimistically try again. 456 */ 457 if (request->sched.semaphores && 458 i915_sw_fence_signaled(&request->semaphore)) 459 request->hw_context->saturated |= request->sched.semaphores; 460 461 /* We may be recursing from the signal callback of another i915 fence */ 462 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 463 464 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 465 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 466 467 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 468 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) && 469 !i915_request_enable_breadcrumb(request)) 470 intel_engine_queue_breadcrumbs(engine); 471 472 __notify_execute_cb(request); 473 474 spin_unlock(&request->lock); 475 476 engine->emit_fini_breadcrumb(request, 477 request->ring->vaddr + request->postfix); 478 479 /* Transfer from per-context onto the global per-engine timeline */ 480 move_to_timeline(request, &engine->timeline); 481 482 engine->serial++; 483 484 trace_i915_request_execute(request); 485 } 486 487 void i915_request_submit(struct i915_request *request) 488 { 489 struct intel_engine_cs *engine = request->engine; 490 unsigned long flags; 491 492 /* Will be called from irq-context when using foreign fences. */ 493 spin_lock_irqsave(&engine->timeline.lock, flags); 494 495 __i915_request_submit(request); 496 497 spin_unlock_irqrestore(&engine->timeline.lock, flags); 498 } 499 500 void __i915_request_unsubmit(struct i915_request *request) 501 { 502 struct intel_engine_cs *engine = request->engine; 503 504 GEM_TRACE("%s fence %llx:%lld, current %d\n", 505 engine->name, 506 request->fence.context, request->fence.seqno, 507 hwsp_seqno(request)); 508 509 GEM_BUG_ON(!irqs_disabled()); 510 lockdep_assert_held(&engine->timeline.lock); 511 512 /* 513 * Only unwind in reverse order, required so that the per-context list 514 * is kept in seqno/ring order. 515 */ 516 517 /* We may be recursing from the signal callback of another i915 fence */ 518 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 519 520 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 521 i915_request_cancel_breadcrumb(request); 522 523 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 524 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 525 526 spin_unlock(&request->lock); 527 528 /* Transfer back from the global per-engine timeline to per-context */ 529 move_to_timeline(request, request->timeline); 530 531 /* We've already spun, don't charge on resubmitting. */ 532 if (request->sched.semaphores && i915_request_started(request)) { 533 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE; 534 request->sched.semaphores = 0; 535 } 536 537 /* 538 * We don't need to wake_up any waiters on request->execute, they 539 * will get woken by any other event or us re-adding this request 540 * to the engine timeline (__i915_request_submit()). The waiters 541 * should be quite adapt at finding that the request now has a new 542 * global_seqno to the one they went to sleep on. 543 */ 544 } 545 546 void i915_request_unsubmit(struct i915_request *request) 547 { 548 struct intel_engine_cs *engine = request->engine; 549 unsigned long flags; 550 551 /* Will be called from irq-context when using foreign fences. */ 552 spin_lock_irqsave(&engine->timeline.lock, flags); 553 554 __i915_request_unsubmit(request); 555 556 spin_unlock_irqrestore(&engine->timeline.lock, flags); 557 } 558 559 static int __i915_sw_fence_call 560 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 561 { 562 struct i915_request *request = 563 container_of(fence, typeof(*request), submit); 564 565 switch (state) { 566 case FENCE_COMPLETE: 567 trace_i915_request_submit(request); 568 /* 569 * We need to serialize use of the submit_request() callback 570 * with its hotplugging performed during an emergency 571 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 572 * critical section in order to force i915_gem_set_wedged() to 573 * wait until the submit_request() is completed before 574 * proceeding. 575 */ 576 rcu_read_lock(); 577 request->engine->submit_request(request); 578 rcu_read_unlock(); 579 break; 580 581 case FENCE_FREE: 582 i915_request_put(request); 583 break; 584 } 585 586 return NOTIFY_DONE; 587 } 588 589 static int __i915_sw_fence_call 590 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 591 { 592 struct i915_request *request = 593 container_of(fence, typeof(*request), semaphore); 594 595 switch (state) { 596 case FENCE_COMPLETE: 597 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE); 598 break; 599 600 case FENCE_FREE: 601 i915_request_put(request); 602 break; 603 } 604 605 return NOTIFY_DONE; 606 } 607 608 static void ring_retire_requests(struct intel_ring *ring) 609 { 610 struct i915_request *rq, *rn; 611 612 list_for_each_entry_safe(rq, rn, &ring->request_list, ring_link) { 613 if (!i915_request_completed(rq)) 614 break; 615 616 i915_request_retire(rq); 617 } 618 } 619 620 static noinline struct i915_request * 621 request_alloc_slow(struct intel_context *ce, gfp_t gfp) 622 { 623 struct intel_ring *ring = ce->ring; 624 struct i915_request *rq; 625 626 if (list_empty(&ring->request_list)) 627 goto out; 628 629 if (!gfpflags_allow_blocking(gfp)) 630 goto out; 631 632 /* Ratelimit ourselves to prevent oom from malicious clients */ 633 rq = list_last_entry(&ring->request_list, typeof(*rq), ring_link); 634 cond_synchronize_rcu(rq->rcustate); 635 636 /* Retire our old requests in the hope that we free some */ 637 ring_retire_requests(ring); 638 639 out: 640 return kmem_cache_alloc(global.slab_requests, gfp); 641 } 642 643 struct i915_request * 644 __i915_request_create(struct intel_context *ce, gfp_t gfp) 645 { 646 struct i915_timeline *tl = ce->ring->timeline; 647 struct i915_request *rq; 648 u32 seqno; 649 int ret; 650 651 might_sleep_if(gfpflags_allow_blocking(gfp)); 652 653 /* Check that the caller provided an already pinned context */ 654 __intel_context_pin(ce); 655 656 /* 657 * Beware: Dragons be flying overhead. 658 * 659 * We use RCU to look up requests in flight. The lookups may 660 * race with the request being allocated from the slab freelist. 661 * That is the request we are writing to here, may be in the process 662 * of being read by __i915_active_request_get_rcu(). As such, 663 * we have to be very careful when overwriting the contents. During 664 * the RCU lookup, we change chase the request->engine pointer, 665 * read the request->global_seqno and increment the reference count. 666 * 667 * The reference count is incremented atomically. If it is zero, 668 * the lookup knows the request is unallocated and complete. Otherwise, 669 * it is either still in use, or has been reallocated and reset 670 * with dma_fence_init(). This increment is safe for release as we 671 * check that the request we have a reference to and matches the active 672 * request. 673 * 674 * Before we increment the refcount, we chase the request->engine 675 * pointer. We must not call kmem_cache_zalloc() or else we set 676 * that pointer to NULL and cause a crash during the lookup. If 677 * we see the request is completed (based on the value of the 678 * old engine and seqno), the lookup is complete and reports NULL. 679 * If we decide the request is not completed (new engine or seqno), 680 * then we grab a reference and double check that it is still the 681 * active request - which it won't be and restart the lookup. 682 * 683 * Do not use kmem_cache_zalloc() here! 684 */ 685 rq = kmem_cache_alloc(global.slab_requests, 686 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 687 if (unlikely(!rq)) { 688 rq = request_alloc_slow(ce, gfp); 689 if (!rq) { 690 ret = -ENOMEM; 691 goto err_unreserve; 692 } 693 } 694 695 ret = i915_timeline_get_seqno(tl, rq, &seqno); 696 if (ret) 697 goto err_free; 698 699 rq->i915 = ce->engine->i915; 700 rq->hw_context = ce; 701 rq->gem_context = ce->gem_context; 702 rq->engine = ce->engine; 703 rq->ring = ce->ring; 704 rq->timeline = tl; 705 GEM_BUG_ON(rq->timeline == &ce->engine->timeline); 706 rq->hwsp_seqno = tl->hwsp_seqno; 707 rq->hwsp_cacheline = tl->hwsp_cacheline; 708 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 709 710 spin_lock_init(&rq->lock); 711 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 712 tl->fence_context, seqno); 713 714 /* We bump the ref for the fence chain */ 715 i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify); 716 i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify); 717 718 i915_sched_node_init(&rq->sched); 719 720 /* No zalloc, must clear what we need by hand */ 721 rq->file_priv = NULL; 722 rq->batch = NULL; 723 rq->capture_list = NULL; 724 rq->waitboost = false; 725 rq->execution_mask = ALL_ENGINES; 726 727 INIT_LIST_HEAD(&rq->active_list); 728 INIT_LIST_HEAD(&rq->execute_cb); 729 730 /* 731 * Reserve space in the ring buffer for all the commands required to 732 * eventually emit this request. This is to guarantee that the 733 * i915_request_add() call can't fail. Note that the reserve may need 734 * to be redone if the request is not actually submitted straight 735 * away, e.g. because a GPU scheduler has deferred it. 736 * 737 * Note that due to how we add reserved_space to intel_ring_begin() 738 * we need to double our request to ensure that if we need to wrap 739 * around inside i915_request_add() there is sufficient space at 740 * the beginning of the ring as well. 741 */ 742 rq->reserved_space = 743 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 744 745 /* 746 * Record the position of the start of the request so that 747 * should we detect the updated seqno part-way through the 748 * GPU processing the request, we never over-estimate the 749 * position of the head. 750 */ 751 rq->head = rq->ring->emit; 752 753 ret = rq->engine->request_alloc(rq); 754 if (ret) 755 goto err_unwind; 756 757 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 758 759 /* Keep a second pin for the dual retirement along engine and ring */ 760 __intel_context_pin(ce); 761 762 intel_context_mark_active(ce); 763 return rq; 764 765 err_unwind: 766 ce->ring->emit = rq->head; 767 768 /* Make sure we didn't add ourselves to external state before freeing */ 769 GEM_BUG_ON(!list_empty(&rq->active_list)); 770 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 771 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 772 773 err_free: 774 kmem_cache_free(global.slab_requests, rq); 775 err_unreserve: 776 intel_context_unpin(ce); 777 return ERR_PTR(ret); 778 } 779 780 struct i915_request * 781 i915_request_create(struct intel_context *ce) 782 { 783 struct i915_request *rq; 784 785 intel_context_timeline_lock(ce); 786 787 /* Move our oldest request to the slab-cache (if not in use!) */ 788 rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link); 789 if (!list_is_last(&rq->ring_link, &ce->ring->request_list) && 790 i915_request_completed(rq)) 791 i915_request_retire(rq); 792 793 intel_context_enter(ce); 794 rq = __i915_request_create(ce, GFP_KERNEL); 795 intel_context_exit(ce); /* active reference transferred to request */ 796 if (IS_ERR(rq)) 797 goto err_unlock; 798 799 /* Check that we do not interrupt ourselves with a new request */ 800 rq->cookie = lockdep_pin_lock(&ce->ring->timeline->mutex); 801 802 return rq; 803 804 err_unlock: 805 intel_context_timeline_unlock(ce); 806 return rq; 807 } 808 809 static int 810 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 811 { 812 if (list_is_first(&signal->ring_link, &signal->ring->request_list)) 813 return 0; 814 815 signal = list_prev_entry(signal, ring_link); 816 if (i915_timeline_sync_is_later(rq->timeline, &signal->fence)) 817 return 0; 818 819 return i915_sw_fence_await_dma_fence(&rq->submit, 820 &signal->fence, 0, 821 I915_FENCE_GFP); 822 } 823 824 static intel_engine_mask_t 825 already_busywaiting(struct i915_request *rq) 826 { 827 /* 828 * Polling a semaphore causes bus traffic, delaying other users of 829 * both the GPU and CPU. We want to limit the impact on others, 830 * while taking advantage of early submission to reduce GPU 831 * latency. Therefore we restrict ourselves to not using more 832 * than one semaphore from each source, and not using a semaphore 833 * if we have detected the engine is saturated (i.e. would not be 834 * submitted early and cause bus traffic reading an already passed 835 * semaphore). 836 * 837 * See the are-we-too-late? check in __i915_request_submit(). 838 */ 839 return rq->sched.semaphores | rq->hw_context->saturated; 840 } 841 842 static int 843 emit_semaphore_wait(struct i915_request *to, 844 struct i915_request *from, 845 gfp_t gfp) 846 { 847 u32 hwsp_offset; 848 u32 *cs; 849 int err; 850 851 GEM_BUG_ON(!from->timeline->has_initial_breadcrumb); 852 GEM_BUG_ON(INTEL_GEN(to->i915) < 8); 853 854 /* Just emit the first semaphore we see as request space is limited. */ 855 if (already_busywaiting(to) & from->engine->mask) 856 return i915_sw_fence_await_dma_fence(&to->submit, 857 &from->fence, 0, 858 I915_FENCE_GFP); 859 860 err = i915_request_await_start(to, from); 861 if (err < 0) 862 return err; 863 864 /* Only submit our spinner after the signaler is running! */ 865 err = __i915_request_await_execution(to, from, NULL, gfp); 866 if (err) 867 return err; 868 869 /* We need to pin the signaler's HWSP until we are finished reading. */ 870 err = i915_timeline_read_hwsp(from, to, &hwsp_offset); 871 if (err) 872 return err; 873 874 cs = intel_ring_begin(to, 4); 875 if (IS_ERR(cs)) 876 return PTR_ERR(cs); 877 878 /* 879 * Using greater-than-or-equal here means we have to worry 880 * about seqno wraparound. To side step that issue, we swap 881 * the timeline HWSP upon wrapping, so that everyone listening 882 * for the old (pre-wrap) values do not see the much smaller 883 * (post-wrap) values than they were expecting (and so wait 884 * forever). 885 */ 886 *cs++ = MI_SEMAPHORE_WAIT | 887 MI_SEMAPHORE_GLOBAL_GTT | 888 MI_SEMAPHORE_POLL | 889 MI_SEMAPHORE_SAD_GTE_SDD; 890 *cs++ = from->fence.seqno; 891 *cs++ = hwsp_offset; 892 *cs++ = 0; 893 894 intel_ring_advance(to, cs); 895 to->sched.semaphores |= from->engine->mask; 896 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; 897 return 0; 898 } 899 900 static int 901 i915_request_await_request(struct i915_request *to, struct i915_request *from) 902 { 903 int ret; 904 905 GEM_BUG_ON(to == from); 906 GEM_BUG_ON(to->timeline == from->timeline); 907 908 if (i915_request_completed(from)) 909 return 0; 910 911 if (to->engine->schedule) { 912 ret = i915_sched_node_add_dependency(&to->sched, &from->sched); 913 if (ret < 0) 914 return ret; 915 } 916 917 if (to->engine == from->engine) { 918 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, 919 &from->submit, 920 I915_FENCE_GFP); 921 } else if (intel_engine_has_semaphores(to->engine) && 922 to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) { 923 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 924 } else { 925 ret = i915_sw_fence_await_dma_fence(&to->submit, 926 &from->fence, 0, 927 I915_FENCE_GFP); 928 } 929 if (ret < 0) 930 return ret; 931 932 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) { 933 ret = i915_sw_fence_await_dma_fence(&to->semaphore, 934 &from->fence, 0, 935 I915_FENCE_GFP); 936 if (ret < 0) 937 return ret; 938 } 939 940 return 0; 941 } 942 943 int 944 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 945 { 946 struct dma_fence **child = &fence; 947 unsigned int nchild = 1; 948 int ret; 949 950 /* 951 * Note that if the fence-array was created in signal-on-any mode, 952 * we should *not* decompose it into its individual fences. However, 953 * we don't currently store which mode the fence-array is operating 954 * in. Fortunately, the only user of signal-on-any is private to 955 * amdgpu and we should not see any incoming fence-array from 956 * sync-file being in signal-on-any mode. 957 */ 958 if (dma_fence_is_array(fence)) { 959 struct dma_fence_array *array = to_dma_fence_array(fence); 960 961 child = array->fences; 962 nchild = array->num_fences; 963 GEM_BUG_ON(!nchild); 964 } 965 966 do { 967 fence = *child++; 968 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 969 continue; 970 971 /* 972 * Requests on the same timeline are explicitly ordered, along 973 * with their dependencies, by i915_request_add() which ensures 974 * that requests are submitted in-order through each ring. 975 */ 976 if (fence->context == rq->fence.context) 977 continue; 978 979 /* Squash repeated waits to the same timelines */ 980 if (fence->context != rq->i915->mm.unordered_timeline && 981 i915_timeline_sync_is_later(rq->timeline, fence)) 982 continue; 983 984 if (dma_fence_is_i915(fence)) 985 ret = i915_request_await_request(rq, to_request(fence)); 986 else 987 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 988 I915_FENCE_TIMEOUT, 989 I915_FENCE_GFP); 990 if (ret < 0) 991 return ret; 992 993 /* Record the latest fence used against each timeline */ 994 if (fence->context != rq->i915->mm.unordered_timeline) 995 i915_timeline_sync_set(rq->timeline, fence); 996 } while (--nchild); 997 998 return 0; 999 } 1000 1001 int 1002 i915_request_await_execution(struct i915_request *rq, 1003 struct dma_fence *fence, 1004 void (*hook)(struct i915_request *rq, 1005 struct dma_fence *signal)) 1006 { 1007 struct dma_fence **child = &fence; 1008 unsigned int nchild = 1; 1009 int ret; 1010 1011 if (dma_fence_is_array(fence)) { 1012 struct dma_fence_array *array = to_dma_fence_array(fence); 1013 1014 /* XXX Error for signal-on-any fence arrays */ 1015 1016 child = array->fences; 1017 nchild = array->num_fences; 1018 GEM_BUG_ON(!nchild); 1019 } 1020 1021 do { 1022 fence = *child++; 1023 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1024 continue; 1025 1026 /* 1027 * We don't squash repeated fence dependencies here as we 1028 * want to run our callback in all cases. 1029 */ 1030 1031 if (dma_fence_is_i915(fence)) 1032 ret = __i915_request_await_execution(rq, 1033 to_request(fence), 1034 hook, 1035 I915_FENCE_GFP); 1036 else 1037 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 1038 I915_FENCE_TIMEOUT, 1039 GFP_KERNEL); 1040 if (ret < 0) 1041 return ret; 1042 } while (--nchild); 1043 1044 return 0; 1045 } 1046 1047 /** 1048 * i915_request_await_object - set this request to (async) wait upon a bo 1049 * @to: request we are wishing to use 1050 * @obj: object which may be in use on another ring. 1051 * @write: whether the wait is on behalf of a writer 1052 * 1053 * This code is meant to abstract object synchronization with the GPU. 1054 * Conceptually we serialise writes between engines inside the GPU. 1055 * We only allow one engine to write into a buffer at any time, but 1056 * multiple readers. To ensure each has a coherent view of memory, we must: 1057 * 1058 * - If there is an outstanding write request to the object, the new 1059 * request must wait for it to complete (either CPU or in hw, requests 1060 * on the same ring will be naturally ordered). 1061 * 1062 * - If we are a write request (pending_write_domain is set), the new 1063 * request must wait for outstanding read requests to complete. 1064 * 1065 * Returns 0 if successful, else propagates up the lower layer error. 1066 */ 1067 int 1068 i915_request_await_object(struct i915_request *to, 1069 struct drm_i915_gem_object *obj, 1070 bool write) 1071 { 1072 struct dma_fence *excl; 1073 int ret = 0; 1074 1075 if (write) { 1076 struct dma_fence **shared; 1077 unsigned int count, i; 1078 1079 ret = reservation_object_get_fences_rcu(obj->resv, 1080 &excl, &count, &shared); 1081 if (ret) 1082 return ret; 1083 1084 for (i = 0; i < count; i++) { 1085 ret = i915_request_await_dma_fence(to, shared[i]); 1086 if (ret) 1087 break; 1088 1089 dma_fence_put(shared[i]); 1090 } 1091 1092 for (; i < count; i++) 1093 dma_fence_put(shared[i]); 1094 kfree(shared); 1095 } else { 1096 excl = reservation_object_get_excl_rcu(obj->resv); 1097 } 1098 1099 if (excl) { 1100 if (ret == 0) 1101 ret = i915_request_await_dma_fence(to, excl); 1102 1103 dma_fence_put(excl); 1104 } 1105 1106 return ret; 1107 } 1108 1109 void i915_request_skip(struct i915_request *rq, int error) 1110 { 1111 void *vaddr = rq->ring->vaddr; 1112 u32 head; 1113 1114 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 1115 dma_fence_set_error(&rq->fence, error); 1116 1117 /* 1118 * As this request likely depends on state from the lost 1119 * context, clear out all the user operations leaving the 1120 * breadcrumb at the end (so we get the fence notifications). 1121 */ 1122 head = rq->infix; 1123 if (rq->postfix < head) { 1124 memset(vaddr + head, 0, rq->ring->size - head); 1125 head = 0; 1126 } 1127 memset(vaddr + head, 0, rq->postfix - head); 1128 } 1129 1130 static struct i915_request * 1131 __i915_request_add_to_timeline(struct i915_request *rq) 1132 { 1133 struct i915_timeline *timeline = rq->timeline; 1134 struct i915_request *prev; 1135 1136 /* 1137 * Dependency tracking and request ordering along the timeline 1138 * is special cased so that we can eliminate redundant ordering 1139 * operations while building the request (we know that the timeline 1140 * itself is ordered, and here we guarantee it). 1141 * 1142 * As we know we will need to emit tracking along the timeline, 1143 * we embed the hooks into our request struct -- at the cost of 1144 * having to have specialised no-allocation interfaces (which will 1145 * be beneficial elsewhere). 1146 * 1147 * A second benefit to open-coding i915_request_await_request is 1148 * that we can apply a slight variant of the rules specialised 1149 * for timelines that jump between engines (such as virtual engines). 1150 * If we consider the case of virtual engine, we must emit a dma-fence 1151 * to prevent scheduling of the second request until the first is 1152 * complete (to maximise our greedy late load balancing) and this 1153 * precludes optimising to use semaphores serialisation of a single 1154 * timeline across engines. 1155 */ 1156 prev = rcu_dereference_protected(timeline->last_request.request, 1); 1157 if (prev && !i915_request_completed(prev)) { 1158 if (is_power_of_2(prev->engine->mask | rq->engine->mask)) 1159 i915_sw_fence_await_sw_fence(&rq->submit, 1160 &prev->submit, 1161 &rq->submitq); 1162 else 1163 __i915_sw_fence_await_dma_fence(&rq->submit, 1164 &prev->fence, 1165 &rq->dmaq); 1166 if (rq->engine->schedule) 1167 __i915_sched_node_add_dependency(&rq->sched, 1168 &prev->sched, 1169 &rq->dep, 1170 0); 1171 } 1172 1173 spin_lock_irq(&timeline->lock); 1174 list_add_tail(&rq->link, &timeline->requests); 1175 spin_unlock_irq(&timeline->lock); 1176 1177 /* 1178 * Make sure that no request gazumped us - if it was allocated after 1179 * our i915_request_alloc() and called __i915_request_add() before 1180 * us, the timeline will hold its seqno which is later than ours. 1181 */ 1182 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1183 __i915_active_request_set(&timeline->last_request, rq); 1184 1185 return prev; 1186 } 1187 1188 /* 1189 * NB: This function is not allowed to fail. Doing so would mean the the 1190 * request is not being tracked for completion but the work itself is 1191 * going to happen on the hardware. This would be a Bad Thing(tm). 1192 */ 1193 struct i915_request *__i915_request_commit(struct i915_request *rq) 1194 { 1195 struct intel_engine_cs *engine = rq->engine; 1196 struct intel_ring *ring = rq->ring; 1197 struct i915_request *prev; 1198 u32 *cs; 1199 1200 GEM_TRACE("%s fence %llx:%lld\n", 1201 engine->name, rq->fence.context, rq->fence.seqno); 1202 1203 /* 1204 * To ensure that this call will not fail, space for its emissions 1205 * should already have been reserved in the ring buffer. Let the ring 1206 * know that it is time to use that space up. 1207 */ 1208 GEM_BUG_ON(rq->reserved_space > ring->space); 1209 rq->reserved_space = 0; 1210 1211 /* 1212 * Record the position of the start of the breadcrumb so that 1213 * should we detect the updated seqno part-way through the 1214 * GPU processing the request, we never over-estimate the 1215 * position of the ring's HEAD. 1216 */ 1217 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1218 GEM_BUG_ON(IS_ERR(cs)); 1219 rq->postfix = intel_ring_offset(rq, cs); 1220 1221 prev = __i915_request_add_to_timeline(rq); 1222 1223 list_add_tail(&rq->ring_link, &ring->request_list); 1224 if (list_is_first(&rq->ring_link, &ring->request_list)) 1225 list_add(&ring->active_link, &rq->i915->gt.active_rings); 1226 rq->emitted_jiffies = jiffies; 1227 1228 /* 1229 * Let the backend know a new request has arrived that may need 1230 * to adjust the existing execution schedule due to a high priority 1231 * request - i.e. we may want to preempt the current request in order 1232 * to run a high priority dependency chain *before* we can execute this 1233 * request. 1234 * 1235 * This is called before the request is ready to run so that we can 1236 * decide whether to preempt the entire chain so that it is ready to 1237 * run at the earliest possible convenience. 1238 */ 1239 local_bh_disable(); 1240 i915_sw_fence_commit(&rq->semaphore); 1241 rcu_read_lock(); /* RCU serialisation for set-wedged protection */ 1242 if (engine->schedule) { 1243 struct i915_sched_attr attr = rq->gem_context->sched; 1244 1245 /* 1246 * Boost actual workloads past semaphores! 1247 * 1248 * With semaphores we spin on one engine waiting for another, 1249 * simply to reduce the latency of starting our work when 1250 * the signaler completes. However, if there is any other 1251 * work that we could be doing on this engine instead, that 1252 * is better utilisation and will reduce the overall duration 1253 * of the current work. To avoid PI boosting a semaphore 1254 * far in the distance past over useful work, we keep a history 1255 * of any semaphore use along our dependency chain. 1256 */ 1257 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN)) 1258 attr.priority |= I915_PRIORITY_NOSEMAPHORE; 1259 1260 /* 1261 * Boost priorities to new clients (new request flows). 1262 * 1263 * Allow interactive/synchronous clients to jump ahead of 1264 * the bulk clients. (FQ_CODEL) 1265 */ 1266 if (list_empty(&rq->sched.signalers_list)) 1267 attr.priority |= I915_PRIORITY_WAIT; 1268 1269 engine->schedule(rq, &attr); 1270 } 1271 rcu_read_unlock(); 1272 i915_sw_fence_commit(&rq->submit); 1273 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 1274 1275 return prev; 1276 } 1277 1278 void i915_request_add(struct i915_request *rq) 1279 { 1280 struct i915_request *prev; 1281 1282 lockdep_assert_held(&rq->timeline->mutex); 1283 lockdep_unpin_lock(&rq->timeline->mutex, rq->cookie); 1284 1285 trace_i915_request_add(rq); 1286 1287 prev = __i915_request_commit(rq); 1288 1289 /* 1290 * In typical scenarios, we do not expect the previous request on 1291 * the timeline to be still tracked by timeline->last_request if it 1292 * has been completed. If the completed request is still here, that 1293 * implies that request retirement is a long way behind submission, 1294 * suggesting that we haven't been retiring frequently enough from 1295 * the combination of retire-before-alloc, waiters and the background 1296 * retirement worker. So if the last request on this timeline was 1297 * already completed, do a catch up pass, flushing the retirement queue 1298 * up to this client. Since we have now moved the heaviest operations 1299 * during retirement onto secondary workers, such as freeing objects 1300 * or contexts, retiring a bunch of requests is mostly list management 1301 * (and cache misses), and so we should not be overly penalizing this 1302 * client by performing excess work, though we may still performing 1303 * work on behalf of others -- but instead we should benefit from 1304 * improved resource management. (Well, that's the theory at least.) 1305 */ 1306 if (prev && i915_request_completed(prev)) 1307 i915_request_retire_upto(prev); 1308 1309 mutex_unlock(&rq->timeline->mutex); 1310 } 1311 1312 static unsigned long local_clock_us(unsigned int *cpu) 1313 { 1314 unsigned long t; 1315 1316 /* 1317 * Cheaply and approximately convert from nanoseconds to microseconds. 1318 * The result and subsequent calculations are also defined in the same 1319 * approximate microseconds units. The principal source of timing 1320 * error here is from the simple truncation. 1321 * 1322 * Note that local_clock() is only defined wrt to the current CPU; 1323 * the comparisons are no longer valid if we switch CPUs. Instead of 1324 * blocking preemption for the entire busywait, we can detect the CPU 1325 * switch and use that as indicator of system load and a reason to 1326 * stop busywaiting, see busywait_stop(). 1327 */ 1328 *cpu = get_cpu(); 1329 t = local_clock() >> 10; 1330 put_cpu(); 1331 1332 return t; 1333 } 1334 1335 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1336 { 1337 unsigned int this_cpu; 1338 1339 if (time_after(local_clock_us(&this_cpu), timeout)) 1340 return true; 1341 1342 return this_cpu != cpu; 1343 } 1344 1345 static bool __i915_spin_request(const struct i915_request * const rq, 1346 int state, unsigned long timeout_us) 1347 { 1348 unsigned int cpu; 1349 1350 /* 1351 * Only wait for the request if we know it is likely to complete. 1352 * 1353 * We don't track the timestamps around requests, nor the average 1354 * request length, so we do not have a good indicator that this 1355 * request will complete within the timeout. What we do know is the 1356 * order in which requests are executed by the context and so we can 1357 * tell if the request has been started. If the request is not even 1358 * running yet, it is a fair assumption that it will not complete 1359 * within our relatively short timeout. 1360 */ 1361 if (!i915_request_is_running(rq)) 1362 return false; 1363 1364 /* 1365 * When waiting for high frequency requests, e.g. during synchronous 1366 * rendering split between the CPU and GPU, the finite amount of time 1367 * required to set up the irq and wait upon it limits the response 1368 * rate. By busywaiting on the request completion for a short while we 1369 * can service the high frequency waits as quick as possible. However, 1370 * if it is a slow request, we want to sleep as quickly as possible. 1371 * The tradeoff between waiting and sleeping is roughly the time it 1372 * takes to sleep on a request, on the order of a microsecond. 1373 */ 1374 1375 timeout_us += local_clock_us(&cpu); 1376 do { 1377 if (i915_request_completed(rq)) 1378 return true; 1379 1380 if (signal_pending_state(state, current)) 1381 break; 1382 1383 if (busywait_stop(timeout_us, cpu)) 1384 break; 1385 1386 cpu_relax(); 1387 } while (!need_resched()); 1388 1389 return false; 1390 } 1391 1392 struct request_wait { 1393 struct dma_fence_cb cb; 1394 struct task_struct *tsk; 1395 }; 1396 1397 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1398 { 1399 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1400 1401 wake_up_process(wait->tsk); 1402 } 1403 1404 /** 1405 * i915_request_wait - wait until execution of request has finished 1406 * @rq: the request to wait upon 1407 * @flags: how to wait 1408 * @timeout: how long to wait in jiffies 1409 * 1410 * i915_request_wait() waits for the request to be completed, for a 1411 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1412 * unbounded wait). 1413 * 1414 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED 1415 * in via the flags, and vice versa if the struct_mutex is not held, the caller 1416 * must not specify that the wait is locked. 1417 * 1418 * Returns the remaining time (in jiffies) if the request completed, which may 1419 * be zero or -ETIME if the request is unfinished after the timeout expires. 1420 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1421 * pending before the request completes. 1422 */ 1423 long i915_request_wait(struct i915_request *rq, 1424 unsigned int flags, 1425 long timeout) 1426 { 1427 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1428 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1429 struct request_wait wait; 1430 1431 might_sleep(); 1432 GEM_BUG_ON(timeout < 0); 1433 1434 if (i915_request_completed(rq)) 1435 return timeout; 1436 1437 if (!timeout) 1438 return -ETIME; 1439 1440 trace_i915_request_wait_begin(rq, flags); 1441 1442 /* 1443 * Optimistic spin before touching IRQs. 1444 * 1445 * We may use a rather large value here to offset the penalty of 1446 * switching away from the active task. Frequently, the client will 1447 * wait upon an old swapbuffer to throttle itself to remain within a 1448 * frame of the gpu. If the client is running in lockstep with the gpu, 1449 * then it should not be waiting long at all, and a sleep now will incur 1450 * extra scheduler latency in producing the next frame. To try to 1451 * avoid adding the cost of enabling/disabling the interrupt to the 1452 * short wait, we first spin to see if the request would have completed 1453 * in the time taken to setup the interrupt. 1454 * 1455 * We need upto 5us to enable the irq, and upto 20us to hide the 1456 * scheduler latency of a context switch, ignoring the secondary 1457 * impacts from a context switch such as cache eviction. 1458 * 1459 * The scheme used for low-latency IO is called "hybrid interrupt 1460 * polling". The suggestion there is to sleep until just before you 1461 * expect to be woken by the device interrupt and then poll for its 1462 * completion. That requires having a good predictor for the request 1463 * duration, which we currently lack. 1464 */ 1465 if (CONFIG_DRM_I915_SPIN_REQUEST && 1466 __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) 1467 goto out; 1468 1469 /* 1470 * This client is about to stall waiting for the GPU. In many cases 1471 * this is undesirable and limits the throughput of the system, as 1472 * many clients cannot continue processing user input/output whilst 1473 * blocked. RPS autotuning may take tens of milliseconds to respond 1474 * to the GPU load and thus incurs additional latency for the client. 1475 * We can circumvent that by promoting the GPU frequency to maximum 1476 * before we sleep. This makes the GPU throttle up much more quickly 1477 * (good for benchmarks and user experience, e.g. window animations), 1478 * but at a cost of spending more power processing the workload 1479 * (bad for battery). 1480 */ 1481 if (flags & I915_WAIT_PRIORITY) { 1482 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6) 1483 gen6_rps_boost(rq); 1484 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT); 1485 } 1486 1487 wait.tsk = current; 1488 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1489 goto out; 1490 1491 for (;;) { 1492 set_current_state(state); 1493 1494 if (i915_request_completed(rq)) 1495 break; 1496 1497 if (signal_pending_state(state, current)) { 1498 timeout = -ERESTARTSYS; 1499 break; 1500 } 1501 1502 if (!timeout) { 1503 timeout = -ETIME; 1504 break; 1505 } 1506 1507 timeout = io_schedule_timeout(timeout); 1508 } 1509 __set_current_state(TASK_RUNNING); 1510 1511 dma_fence_remove_callback(&rq->fence, &wait.cb); 1512 1513 out: 1514 trace_i915_request_wait_end(rq); 1515 return timeout; 1516 } 1517 1518 bool i915_retire_requests(struct drm_i915_private *i915) 1519 { 1520 struct intel_ring *ring, *tmp; 1521 1522 lockdep_assert_held(&i915->drm.struct_mutex); 1523 1524 list_for_each_entry_safe(ring, tmp, 1525 &i915->gt.active_rings, active_link) { 1526 intel_ring_get(ring); /* last rq holds reference! */ 1527 ring_retire_requests(ring); 1528 intel_ring_put(ring); 1529 } 1530 1531 return !list_empty(&i915->gt.active_rings); 1532 } 1533 1534 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1535 #include "selftests/mock_request.c" 1536 #include "selftests/i915_request.c" 1537 #endif 1538 1539 static void i915_global_request_shrink(void) 1540 { 1541 kmem_cache_shrink(global.slab_dependencies); 1542 kmem_cache_shrink(global.slab_execute_cbs); 1543 kmem_cache_shrink(global.slab_requests); 1544 } 1545 1546 static void i915_global_request_exit(void) 1547 { 1548 kmem_cache_destroy(global.slab_dependencies); 1549 kmem_cache_destroy(global.slab_execute_cbs); 1550 kmem_cache_destroy(global.slab_requests); 1551 } 1552 1553 static struct i915_global_request global = { { 1554 .shrink = i915_global_request_shrink, 1555 .exit = i915_global_request_exit, 1556 } }; 1557 1558 int __init i915_global_request_init(void) 1559 { 1560 global.slab_requests = KMEM_CACHE(i915_request, 1561 SLAB_HWCACHE_ALIGN | 1562 SLAB_RECLAIM_ACCOUNT | 1563 SLAB_TYPESAFE_BY_RCU); 1564 if (!global.slab_requests) 1565 return -ENOMEM; 1566 1567 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1568 SLAB_HWCACHE_ALIGN | 1569 SLAB_RECLAIM_ACCOUNT | 1570 SLAB_TYPESAFE_BY_RCU); 1571 if (!global.slab_execute_cbs) 1572 goto err_requests; 1573 1574 global.slab_dependencies = KMEM_CACHE(i915_dependency, 1575 SLAB_HWCACHE_ALIGN | 1576 SLAB_RECLAIM_ACCOUNT); 1577 if (!global.slab_dependencies) 1578 goto err_execute_cbs; 1579 1580 i915_global_register(&global.base); 1581 return 0; 1582 1583 err_execute_cbs: 1584 kmem_cache_destroy(global.slab_execute_cbs); 1585 err_requests: 1586 kmem_cache_destroy(global.slab_requests); 1587 return -ENOMEM; 1588 } 1589