1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 #include <linux/sched/mm.h> 33 34 #include "gem/i915_gem_context.h" 35 #include "gt/intel_breadcrumbs.h" 36 #include "gt/intel_context.h" 37 #include "gt/intel_engine.h" 38 #include "gt/intel_engine_heartbeat.h" 39 #include "gt/intel_engine_regs.h" 40 #include "gt/intel_gpu_commands.h" 41 #include "gt/intel_reset.h" 42 #include "gt/intel_ring.h" 43 #include "gt/intel_rps.h" 44 45 #include "i915_active.h" 46 #include "i915_config.h" 47 #include "i915_deps.h" 48 #include "i915_driver.h" 49 #include "i915_drv.h" 50 #include "i915_trace.h" 51 #include "intel_pm.h" 52 53 struct execute_cb { 54 struct irq_work work; 55 struct i915_sw_fence *fence; 56 struct i915_request *signal; 57 }; 58 59 static struct kmem_cache *slab_requests; 60 static struct kmem_cache *slab_execute_cbs; 61 62 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 63 { 64 return dev_name(to_request(fence)->i915->drm.dev); 65 } 66 67 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 68 { 69 const struct i915_gem_context *ctx; 70 71 /* 72 * The timeline struct (as part of the ppgtt underneath a context) 73 * may be freed when the request is no longer in use by the GPU. 74 * We could extend the life of a context to beyond that of all 75 * fences, possibly keeping the hw resource around indefinitely, 76 * or we just give them a false name. Since 77 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 78 * lie seems justifiable. 79 */ 80 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 81 return "signaled"; 82 83 ctx = i915_request_gem_context(to_request(fence)); 84 if (!ctx) 85 return "[" DRIVER_NAME "]"; 86 87 return ctx->name; 88 } 89 90 static bool i915_fence_signaled(struct dma_fence *fence) 91 { 92 return i915_request_completed(to_request(fence)); 93 } 94 95 static bool i915_fence_enable_signaling(struct dma_fence *fence) 96 { 97 return i915_request_enable_breadcrumb(to_request(fence)); 98 } 99 100 static signed long i915_fence_wait(struct dma_fence *fence, 101 bool interruptible, 102 signed long timeout) 103 { 104 return i915_request_wait_timeout(to_request(fence), 105 interruptible | I915_WAIT_PRIORITY, 106 timeout); 107 } 108 109 struct kmem_cache *i915_request_slab_cache(void) 110 { 111 return slab_requests; 112 } 113 114 static void i915_fence_release(struct dma_fence *fence) 115 { 116 struct i915_request *rq = to_request(fence); 117 118 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT && 119 rq->guc_prio != GUC_PRIO_FINI); 120 121 i915_request_free_capture_list(fetch_and_zero(&rq->capture_list)); 122 if (rq->batch_res) { 123 i915_vma_resource_put(rq->batch_res); 124 rq->batch_res = NULL; 125 } 126 127 /* 128 * The request is put onto a RCU freelist (i.e. the address 129 * is immediately reused), mark the fences as being freed now. 130 * Otherwise the debugobjects for the fences are only marked as 131 * freed when the slab cache itself is freed, and so we would get 132 * caught trying to reuse dead objects. 133 */ 134 i915_sw_fence_fini(&rq->submit); 135 i915_sw_fence_fini(&rq->semaphore); 136 137 /* 138 * Keep one request on each engine for reserved use under mempressure 139 * do not use with virtual engines as this really is only needed for 140 * kernel contexts. 141 * 142 * We do not hold a reference to the engine here and so have to be 143 * very careful in what rq->engine we poke. The virtual engine is 144 * referenced via the rq->context and we released that ref during 145 * i915_request_retire(), ergo we must not dereference a virtual 146 * engine here. Not that we would want to, as the only consumer of 147 * the reserved engine->request_pool is the power management parking, 148 * which must-not-fail, and that is only run on the physical engines. 149 * 150 * Since the request must have been executed to be have completed, 151 * we know that it will have been processed by the HW and will 152 * not be unsubmitted again, so rq->engine and rq->execution_mask 153 * at this point is stable. rq->execution_mask will be a single 154 * bit if the last and _only_ engine it could execution on was a 155 * physical engine, if it's multiple bits then it started on and 156 * could still be on a virtual engine. Thus if the mask is not a 157 * power-of-two we assume that rq->engine may still be a virtual 158 * engine and so a dangling invalid pointer that we cannot dereference 159 * 160 * For example, consider the flow of a bonded request through a virtual 161 * engine. The request is created with a wide engine mask (all engines 162 * that we might execute on). On processing the bond, the request mask 163 * is reduced to one or more engines. If the request is subsequently 164 * bound to a single engine, it will then be constrained to only 165 * execute on that engine and never returned to the virtual engine 166 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 167 * know that if the rq->execution_mask is a single bit, rq->engine 168 * can be a physical engine with the exact corresponding mask. 169 */ 170 if (!intel_engine_is_virtual(rq->engine) && 171 is_power_of_2(rq->execution_mask) && 172 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 173 return; 174 175 kmem_cache_free(slab_requests, rq); 176 } 177 178 const struct dma_fence_ops i915_fence_ops = { 179 .get_driver_name = i915_fence_get_driver_name, 180 .get_timeline_name = i915_fence_get_timeline_name, 181 .enable_signaling = i915_fence_enable_signaling, 182 .signaled = i915_fence_signaled, 183 .wait = i915_fence_wait, 184 .release = i915_fence_release, 185 }; 186 187 static void irq_execute_cb(struct irq_work *wrk) 188 { 189 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 190 191 i915_sw_fence_complete(cb->fence); 192 kmem_cache_free(slab_execute_cbs, cb); 193 } 194 195 static __always_inline void 196 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 197 { 198 struct execute_cb *cb, *cn; 199 200 if (llist_empty(&rq->execute_cb)) 201 return; 202 203 llist_for_each_entry_safe(cb, cn, 204 llist_del_all(&rq->execute_cb), 205 work.node.llist) 206 fn(&cb->work); 207 } 208 209 static void __notify_execute_cb_irq(struct i915_request *rq) 210 { 211 __notify_execute_cb(rq, irq_work_queue); 212 } 213 214 static bool irq_work_imm(struct irq_work *wrk) 215 { 216 wrk->func(wrk); 217 return false; 218 } 219 220 void i915_request_notify_execute_cb_imm(struct i915_request *rq) 221 { 222 __notify_execute_cb(rq, irq_work_imm); 223 } 224 225 static void __i915_request_fill(struct i915_request *rq, u8 val) 226 { 227 void *vaddr = rq->ring->vaddr; 228 u32 head; 229 230 head = rq->infix; 231 if (rq->postfix < head) { 232 memset(vaddr + head, val, rq->ring->size - head); 233 head = 0; 234 } 235 memset(vaddr + head, val, rq->postfix - head); 236 } 237 238 /** 239 * i915_request_active_engine 240 * @rq: request to inspect 241 * @active: pointer in which to return the active engine 242 * 243 * Fills the currently active engine to the @active pointer if the request 244 * is active and still not completed. 245 * 246 * Returns true if request was active or false otherwise. 247 */ 248 bool 249 i915_request_active_engine(struct i915_request *rq, 250 struct intel_engine_cs **active) 251 { 252 struct intel_engine_cs *engine, *locked; 253 bool ret = false; 254 255 /* 256 * Serialise with __i915_request_submit() so that it sees 257 * is-banned?, or we know the request is already inflight. 258 * 259 * Note that rq->engine is unstable, and so we double 260 * check that we have acquired the lock on the final engine. 261 */ 262 locked = READ_ONCE(rq->engine); 263 spin_lock_irq(&locked->sched_engine->lock); 264 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 265 spin_unlock(&locked->sched_engine->lock); 266 locked = engine; 267 spin_lock(&locked->sched_engine->lock); 268 } 269 270 if (i915_request_is_active(rq)) { 271 if (!__i915_request_is_complete(rq)) 272 *active = locked; 273 ret = true; 274 } 275 276 spin_unlock_irq(&locked->sched_engine->lock); 277 278 return ret; 279 } 280 281 static void __rq_init_watchdog(struct i915_request *rq) 282 { 283 rq->watchdog.timer.function = NULL; 284 } 285 286 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer) 287 { 288 struct i915_request *rq = 289 container_of(hrtimer, struct i915_request, watchdog.timer); 290 struct intel_gt *gt = rq->engine->gt; 291 292 if (!i915_request_completed(rq)) { 293 if (llist_add(&rq->watchdog.link, >->watchdog.list)) 294 schedule_work(>->watchdog.work); 295 } else { 296 i915_request_put(rq); 297 } 298 299 return HRTIMER_NORESTART; 300 } 301 302 static void __rq_arm_watchdog(struct i915_request *rq) 303 { 304 struct i915_request_watchdog *wdg = &rq->watchdog; 305 struct intel_context *ce = rq->context; 306 307 if (!ce->watchdog.timeout_us) 308 return; 309 310 i915_request_get(rq); 311 312 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 313 wdg->timer.function = __rq_watchdog_expired; 314 hrtimer_start_range_ns(&wdg->timer, 315 ns_to_ktime(ce->watchdog.timeout_us * 316 NSEC_PER_USEC), 317 NSEC_PER_MSEC, 318 HRTIMER_MODE_REL); 319 } 320 321 static void __rq_cancel_watchdog(struct i915_request *rq) 322 { 323 struct i915_request_watchdog *wdg = &rq->watchdog; 324 325 if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0) 326 i915_request_put(rq); 327 } 328 329 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 330 331 /** 332 * i915_request_free_capture_list - Free a capture list 333 * @capture: Pointer to the first list item or NULL 334 * 335 */ 336 void i915_request_free_capture_list(struct i915_capture_list *capture) 337 { 338 while (capture) { 339 struct i915_capture_list *next = capture->next; 340 341 i915_vma_resource_put(capture->vma_res); 342 kfree(capture); 343 capture = next; 344 } 345 } 346 347 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list) 348 349 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL) 350 351 #else 352 353 #define i915_request_free_capture_list(_a) do {} while (0) 354 355 #define assert_capture_list_is_null(_a) do {} while (0) 356 357 #define clear_capture_list(_rq) do {} while (0) 358 359 #endif 360 361 bool i915_request_retire(struct i915_request *rq) 362 { 363 if (!__i915_request_is_complete(rq)) 364 return false; 365 366 RQ_TRACE(rq, "\n"); 367 368 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 369 trace_i915_request_retire(rq); 370 i915_request_mark_complete(rq); 371 372 __rq_cancel_watchdog(rq); 373 374 /* 375 * We know the GPU must have read the request to have 376 * sent us the seqno + interrupt, so use the position 377 * of tail of the request to update the last known position 378 * of the GPU head. 379 * 380 * Note this requires that we are always called in request 381 * completion order. 382 */ 383 GEM_BUG_ON(!list_is_first(&rq->link, 384 &i915_request_timeline(rq)->requests)); 385 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 386 /* Poison before we release our space in the ring */ 387 __i915_request_fill(rq, POISON_FREE); 388 rq->ring->head = rq->postfix; 389 390 if (!i915_request_signaled(rq)) { 391 spin_lock_irq(&rq->lock); 392 dma_fence_signal_locked(&rq->fence); 393 spin_unlock_irq(&rq->lock); 394 } 395 396 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) 397 intel_rps_dec_waiters(&rq->engine->gt->rps); 398 399 /* 400 * We only loosely track inflight requests across preemption, 401 * and so we may find ourselves attempting to retire a _completed_ 402 * request that we have removed from the HW and put back on a run 403 * queue. 404 * 405 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 406 * after removing the breadcrumb and signaling it, so that we do not 407 * inadvertently attach the breadcrumb to a completed request. 408 */ 409 rq->engine->remove_active_request(rq); 410 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 411 412 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 413 414 intel_context_exit(rq->context); 415 intel_context_unpin(rq->context); 416 417 i915_sched_node_fini(&rq->sched); 418 i915_request_put(rq); 419 420 return true; 421 } 422 423 void i915_request_retire_upto(struct i915_request *rq) 424 { 425 struct intel_timeline * const tl = i915_request_timeline(rq); 426 struct i915_request *tmp; 427 428 RQ_TRACE(rq, "\n"); 429 GEM_BUG_ON(!__i915_request_is_complete(rq)); 430 431 do { 432 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 433 GEM_BUG_ON(!i915_request_completed(tmp)); 434 } while (i915_request_retire(tmp) && tmp != rq); 435 } 436 437 static struct i915_request * const * 438 __engine_active(struct intel_engine_cs *engine) 439 { 440 return READ_ONCE(engine->execlists.active); 441 } 442 443 static bool __request_in_flight(const struct i915_request *signal) 444 { 445 struct i915_request * const *port, *rq; 446 bool inflight = false; 447 448 if (!i915_request_is_ready(signal)) 449 return false; 450 451 /* 452 * Even if we have unwound the request, it may still be on 453 * the GPU (preempt-to-busy). If that request is inside an 454 * unpreemptible critical section, it will not be removed. Some 455 * GPU functions may even be stuck waiting for the paired request 456 * (__await_execution) to be submitted and cannot be preempted 457 * until the bond is executing. 458 * 459 * As we know that there are always preemption points between 460 * requests, we know that only the currently executing request 461 * may be still active even though we have cleared the flag. 462 * However, we can't rely on our tracking of ELSP[0] to know 463 * which request is currently active and so maybe stuck, as 464 * the tracking maybe an event behind. Instead assume that 465 * if the context is still inflight, then it is still active 466 * even if the active flag has been cleared. 467 * 468 * To further complicate matters, if there a pending promotion, the HW 469 * may either perform a context switch to the second inflight execlists, 470 * or it may switch to the pending set of execlists. In the case of the 471 * latter, it may send the ACK and we process the event copying the 472 * pending[] over top of inflight[], _overwriting_ our *active. Since 473 * this implies the HW is arbitrating and not struck in *active, we do 474 * not worry about complete accuracy, but we do require no read/write 475 * tearing of the pointer [the read of the pointer must be valid, even 476 * as the array is being overwritten, for which we require the writes 477 * to avoid tearing.] 478 * 479 * Note that the read of *execlists->active may race with the promotion 480 * of execlists->pending[] to execlists->inflight[], overwritting 481 * the value at *execlists->active. This is fine. The promotion implies 482 * that we received an ACK from the HW, and so the context is not 483 * stuck -- if we do not see ourselves in *active, the inflight status 484 * is valid. If instead we see ourselves being copied into *active, 485 * we are inflight and may signal the callback. 486 */ 487 if (!intel_context_inflight(signal->context)) 488 return false; 489 490 rcu_read_lock(); 491 for (port = __engine_active(signal->engine); 492 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 493 port++) { 494 if (rq->context == signal->context) { 495 inflight = i915_seqno_passed(rq->fence.seqno, 496 signal->fence.seqno); 497 break; 498 } 499 } 500 rcu_read_unlock(); 501 502 return inflight; 503 } 504 505 static int 506 __await_execution(struct i915_request *rq, 507 struct i915_request *signal, 508 gfp_t gfp) 509 { 510 struct execute_cb *cb; 511 512 if (i915_request_is_active(signal)) 513 return 0; 514 515 cb = kmem_cache_alloc(slab_execute_cbs, gfp); 516 if (!cb) 517 return -ENOMEM; 518 519 cb->fence = &rq->submit; 520 i915_sw_fence_await(cb->fence); 521 init_irq_work(&cb->work, irq_execute_cb); 522 523 /* 524 * Register the callback first, then see if the signaler is already 525 * active. This ensures that if we race with the 526 * __notify_execute_cb from i915_request_submit() and we are not 527 * included in that list, we get a second bite of the cherry and 528 * execute it ourselves. After this point, a future 529 * i915_request_submit() will notify us. 530 * 531 * In i915_request_retire() we set the ACTIVE bit on a completed 532 * request (then flush the execute_cb). So by registering the 533 * callback first, then checking the ACTIVE bit, we serialise with 534 * the completed/retired request. 535 */ 536 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) { 537 if (i915_request_is_active(signal) || 538 __request_in_flight(signal)) 539 i915_request_notify_execute_cb_imm(signal); 540 } 541 542 return 0; 543 } 544 545 static bool fatal_error(int error) 546 { 547 switch (error) { 548 case 0: /* not an error! */ 549 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 550 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 551 return false; 552 default: 553 return true; 554 } 555 } 556 557 void __i915_request_skip(struct i915_request *rq) 558 { 559 GEM_BUG_ON(!fatal_error(rq->fence.error)); 560 561 if (rq->infix == rq->postfix) 562 return; 563 564 RQ_TRACE(rq, "error: %d\n", rq->fence.error); 565 566 /* 567 * As this request likely depends on state from the lost 568 * context, clear out all the user operations leaving the 569 * breadcrumb at the end (so we get the fence notifications). 570 */ 571 __i915_request_fill(rq, 0); 572 rq->infix = rq->postfix; 573 } 574 575 bool i915_request_set_error_once(struct i915_request *rq, int error) 576 { 577 int old; 578 579 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 580 581 if (i915_request_signaled(rq)) 582 return false; 583 584 old = READ_ONCE(rq->fence.error); 585 do { 586 if (fatal_error(old)) 587 return false; 588 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 589 590 return true; 591 } 592 593 struct i915_request *i915_request_mark_eio(struct i915_request *rq) 594 { 595 if (__i915_request_is_complete(rq)) 596 return NULL; 597 598 GEM_BUG_ON(i915_request_signaled(rq)); 599 600 /* As soon as the request is completed, it may be retired */ 601 rq = i915_request_get(rq); 602 603 i915_request_set_error_once(rq, -EIO); 604 i915_request_mark_complete(rq); 605 606 return rq; 607 } 608 609 bool __i915_request_submit(struct i915_request *request) 610 { 611 struct intel_engine_cs *engine = request->engine; 612 bool result = false; 613 614 RQ_TRACE(request, "\n"); 615 616 GEM_BUG_ON(!irqs_disabled()); 617 lockdep_assert_held(&engine->sched_engine->lock); 618 619 /* 620 * With the advent of preempt-to-busy, we frequently encounter 621 * requests that we have unsubmitted from HW, but left running 622 * until the next ack and so have completed in the meantime. On 623 * resubmission of that completed request, we can skip 624 * updating the payload, and execlists can even skip submitting 625 * the request. 626 * 627 * We must remove the request from the caller's priority queue, 628 * and the caller must only call us when the request is in their 629 * priority queue, under the sched_engine->lock. This ensures that the 630 * request has *not* yet been retired and we can safely move 631 * the request into the engine->active.list where it will be 632 * dropped upon retiring. (Otherwise if resubmit a *retired* 633 * request, this would be a horrible use-after-free.) 634 */ 635 if (__i915_request_is_complete(request)) { 636 list_del_init(&request->sched.link); 637 goto active; 638 } 639 640 if (unlikely(!intel_context_is_schedulable(request->context))) 641 i915_request_set_error_once(request, -EIO); 642 643 if (unlikely(fatal_error(request->fence.error))) 644 __i915_request_skip(request); 645 646 /* 647 * Are we using semaphores when the gpu is already saturated? 648 * 649 * Using semaphores incurs a cost in having the GPU poll a 650 * memory location, busywaiting for it to change. The continual 651 * memory reads can have a noticeable impact on the rest of the 652 * system with the extra bus traffic, stalling the cpu as it too 653 * tries to access memory across the bus (perf stat -e bus-cycles). 654 * 655 * If we installed a semaphore on this request and we only submit 656 * the request after the signaler completed, that indicates the 657 * system is overloaded and using semaphores at this time only 658 * increases the amount of work we are doing. If so, we disable 659 * further use of semaphores until we are idle again, whence we 660 * optimistically try again. 661 */ 662 if (request->sched.semaphores && 663 i915_sw_fence_signaled(&request->semaphore)) 664 engine->saturated |= request->sched.semaphores; 665 666 engine->emit_fini_breadcrumb(request, 667 request->ring->vaddr + request->postfix); 668 669 trace_i915_request_execute(request); 670 if (engine->bump_serial) 671 engine->bump_serial(engine); 672 else 673 engine->serial++; 674 675 result = true; 676 677 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 678 engine->add_active_request(request); 679 active: 680 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 681 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 682 683 /* 684 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 685 * 686 * In the future, perhaps when we have an active time-slicing scheduler, 687 * it will be interesting to unsubmit parallel execution and remove 688 * busywaits from the GPU until their master is restarted. This is 689 * quite hairy, we have to carefully rollback the fence and do a 690 * preempt-to-idle cycle on the target engine, all the while the 691 * master execute_cb may refire. 692 */ 693 __notify_execute_cb_irq(request); 694 695 /* We may be recursing from the signal callback of another i915 fence */ 696 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 697 i915_request_enable_breadcrumb(request); 698 699 return result; 700 } 701 702 void i915_request_submit(struct i915_request *request) 703 { 704 struct intel_engine_cs *engine = request->engine; 705 unsigned long flags; 706 707 /* Will be called from irq-context when using foreign fences. */ 708 spin_lock_irqsave(&engine->sched_engine->lock, flags); 709 710 __i915_request_submit(request); 711 712 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 713 } 714 715 void __i915_request_unsubmit(struct i915_request *request) 716 { 717 struct intel_engine_cs *engine = request->engine; 718 719 /* 720 * Only unwind in reverse order, required so that the per-context list 721 * is kept in seqno/ring order. 722 */ 723 RQ_TRACE(request, "\n"); 724 725 GEM_BUG_ON(!irqs_disabled()); 726 lockdep_assert_held(&engine->sched_engine->lock); 727 728 /* 729 * Before we remove this breadcrumb from the signal list, we have 730 * to ensure that a concurrent dma_fence_enable_signaling() does not 731 * attach itself. We first mark the request as no longer active and 732 * make sure that is visible to other cores, and then remove the 733 * breadcrumb if attached. 734 */ 735 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 736 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 737 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 738 i915_request_cancel_breadcrumb(request); 739 740 /* We've already spun, don't charge on resubmitting. */ 741 if (request->sched.semaphores && __i915_request_has_started(request)) 742 request->sched.semaphores = 0; 743 744 /* 745 * We don't need to wake_up any waiters on request->execute, they 746 * will get woken by any other event or us re-adding this request 747 * to the engine timeline (__i915_request_submit()). The waiters 748 * should be quite adapt at finding that the request now has a new 749 * global_seqno to the one they went to sleep on. 750 */ 751 } 752 753 void i915_request_unsubmit(struct i915_request *request) 754 { 755 struct intel_engine_cs *engine = request->engine; 756 unsigned long flags; 757 758 /* Will be called from irq-context when using foreign fences. */ 759 spin_lock_irqsave(&engine->sched_engine->lock, flags); 760 761 __i915_request_unsubmit(request); 762 763 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 764 } 765 766 void i915_request_cancel(struct i915_request *rq, int error) 767 { 768 if (!i915_request_set_error_once(rq, error)) 769 return; 770 771 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags); 772 773 intel_context_cancel_request(rq->context, rq); 774 } 775 776 static int 777 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 778 { 779 struct i915_request *request = 780 container_of(fence, typeof(*request), submit); 781 782 switch (state) { 783 case FENCE_COMPLETE: 784 trace_i915_request_submit(request); 785 786 if (unlikely(fence->error)) 787 i915_request_set_error_once(request, fence->error); 788 else 789 __rq_arm_watchdog(request); 790 791 /* 792 * We need to serialize use of the submit_request() callback 793 * with its hotplugging performed during an emergency 794 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 795 * critical section in order to force i915_gem_set_wedged() to 796 * wait until the submit_request() is completed before 797 * proceeding. 798 */ 799 rcu_read_lock(); 800 request->engine->submit_request(request); 801 rcu_read_unlock(); 802 break; 803 804 case FENCE_FREE: 805 i915_request_put(request); 806 break; 807 } 808 809 return NOTIFY_DONE; 810 } 811 812 static int 813 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 814 { 815 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 816 817 switch (state) { 818 case FENCE_COMPLETE: 819 break; 820 821 case FENCE_FREE: 822 i915_request_put(rq); 823 break; 824 } 825 826 return NOTIFY_DONE; 827 } 828 829 static void retire_requests(struct intel_timeline *tl) 830 { 831 struct i915_request *rq, *rn; 832 833 list_for_each_entry_safe(rq, rn, &tl->requests, link) 834 if (!i915_request_retire(rq)) 835 break; 836 } 837 838 static noinline struct i915_request * 839 request_alloc_slow(struct intel_timeline *tl, 840 struct i915_request **rsvd, 841 gfp_t gfp) 842 { 843 struct i915_request *rq; 844 845 /* If we cannot wait, dip into our reserves */ 846 if (!gfpflags_allow_blocking(gfp)) { 847 rq = xchg(rsvd, NULL); 848 if (!rq) /* Use the normal failure path for one final WARN */ 849 goto out; 850 851 return rq; 852 } 853 854 if (list_empty(&tl->requests)) 855 goto out; 856 857 /* Move our oldest request to the slab-cache (if not in use!) */ 858 rq = list_first_entry(&tl->requests, typeof(*rq), link); 859 i915_request_retire(rq); 860 861 rq = kmem_cache_alloc(slab_requests, 862 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 863 if (rq) 864 return rq; 865 866 /* Ratelimit ourselves to prevent oom from malicious clients */ 867 rq = list_last_entry(&tl->requests, typeof(*rq), link); 868 cond_synchronize_rcu(rq->rcustate); 869 870 /* Retire our old requests in the hope that we free some */ 871 retire_requests(tl); 872 873 out: 874 return kmem_cache_alloc(slab_requests, gfp); 875 } 876 877 static void __i915_request_ctor(void *arg) 878 { 879 struct i915_request *rq = arg; 880 881 spin_lock_init(&rq->lock); 882 i915_sched_node_init(&rq->sched); 883 i915_sw_fence_init(&rq->submit, submit_notify); 884 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 885 886 clear_capture_list(rq); 887 rq->batch_res = NULL; 888 889 init_llist_head(&rq->execute_cb); 890 } 891 892 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 893 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL) 894 #else 895 #define clear_batch_ptr(_a) do {} while (0) 896 #endif 897 898 struct i915_request * 899 __i915_request_create(struct intel_context *ce, gfp_t gfp) 900 { 901 struct intel_timeline *tl = ce->timeline; 902 struct i915_request *rq; 903 u32 seqno; 904 int ret; 905 906 might_alloc(gfp); 907 908 /* Check that the caller provided an already pinned context */ 909 __intel_context_pin(ce); 910 911 /* 912 * Beware: Dragons be flying overhead. 913 * 914 * We use RCU to look up requests in flight. The lookups may 915 * race with the request being allocated from the slab freelist. 916 * That is the request we are writing to here, may be in the process 917 * of being read by __i915_active_request_get_rcu(). As such, 918 * we have to be very careful when overwriting the contents. During 919 * the RCU lookup, we change chase the request->engine pointer, 920 * read the request->global_seqno and increment the reference count. 921 * 922 * The reference count is incremented atomically. If it is zero, 923 * the lookup knows the request is unallocated and complete. Otherwise, 924 * it is either still in use, or has been reallocated and reset 925 * with dma_fence_init(). This increment is safe for release as we 926 * check that the request we have a reference to and matches the active 927 * request. 928 * 929 * Before we increment the refcount, we chase the request->engine 930 * pointer. We must not call kmem_cache_zalloc() or else we set 931 * that pointer to NULL and cause a crash during the lookup. If 932 * we see the request is completed (based on the value of the 933 * old engine and seqno), the lookup is complete and reports NULL. 934 * If we decide the request is not completed (new engine or seqno), 935 * then we grab a reference and double check that it is still the 936 * active request - which it won't be and restart the lookup. 937 * 938 * Do not use kmem_cache_zalloc() here! 939 */ 940 rq = kmem_cache_alloc(slab_requests, 941 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 942 if (unlikely(!rq)) { 943 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 944 if (!rq) { 945 ret = -ENOMEM; 946 goto err_unreserve; 947 } 948 } 949 950 rq->context = ce; 951 rq->engine = ce->engine; 952 rq->ring = ce->ring; 953 rq->execution_mask = ce->engine->mask; 954 rq->i915 = ce->engine->i915; 955 956 ret = intel_timeline_get_seqno(tl, rq, &seqno); 957 if (ret) 958 goto err_free; 959 960 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 961 tl->fence_context, seqno); 962 963 RCU_INIT_POINTER(rq->timeline, tl); 964 rq->hwsp_seqno = tl->hwsp_seqno; 965 GEM_BUG_ON(__i915_request_is_complete(rq)); 966 967 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 968 969 rq->guc_prio = GUC_PRIO_INIT; 970 971 /* We bump the ref for the fence chain */ 972 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 973 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 974 975 i915_sched_node_reinit(&rq->sched); 976 977 /* No zalloc, everything must be cleared after use */ 978 clear_batch_ptr(rq); 979 __rq_init_watchdog(rq); 980 assert_capture_list_is_null(rq); 981 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 982 GEM_BUG_ON(rq->batch_res); 983 984 /* 985 * Reserve space in the ring buffer for all the commands required to 986 * eventually emit this request. This is to guarantee that the 987 * i915_request_add() call can't fail. Note that the reserve may need 988 * to be redone if the request is not actually submitted straight 989 * away, e.g. because a GPU scheduler has deferred it. 990 * 991 * Note that due to how we add reserved_space to intel_ring_begin() 992 * we need to double our request to ensure that if we need to wrap 993 * around inside i915_request_add() there is sufficient space at 994 * the beginning of the ring as well. 995 */ 996 rq->reserved_space = 997 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 998 999 /* 1000 * Record the position of the start of the request so that 1001 * should we detect the updated seqno part-way through the 1002 * GPU processing the request, we never over-estimate the 1003 * position of the head. 1004 */ 1005 rq->head = rq->ring->emit; 1006 1007 ret = rq->engine->request_alloc(rq); 1008 if (ret) 1009 goto err_unwind; 1010 1011 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 1012 1013 intel_context_mark_active(ce); 1014 list_add_tail_rcu(&rq->link, &tl->requests); 1015 1016 return rq; 1017 1018 err_unwind: 1019 ce->ring->emit = rq->head; 1020 1021 /* Make sure we didn't add ourselves to external state before freeing */ 1022 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 1023 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 1024 1025 err_free: 1026 kmem_cache_free(slab_requests, rq); 1027 err_unreserve: 1028 intel_context_unpin(ce); 1029 return ERR_PTR(ret); 1030 } 1031 1032 struct i915_request * 1033 i915_request_create(struct intel_context *ce) 1034 { 1035 struct i915_request *rq; 1036 struct intel_timeline *tl; 1037 1038 tl = intel_context_timeline_lock(ce); 1039 if (IS_ERR(tl)) 1040 return ERR_CAST(tl); 1041 1042 /* Move our oldest request to the slab-cache (if not in use!) */ 1043 rq = list_first_entry(&tl->requests, typeof(*rq), link); 1044 if (!list_is_last(&rq->link, &tl->requests)) 1045 i915_request_retire(rq); 1046 1047 intel_context_enter(ce); 1048 rq = __i915_request_create(ce, GFP_KERNEL); 1049 intel_context_exit(ce); /* active reference transferred to request */ 1050 if (IS_ERR(rq)) 1051 goto err_unlock; 1052 1053 /* Check that we do not interrupt ourselves with a new request */ 1054 rq->cookie = lockdep_pin_lock(&tl->mutex); 1055 1056 return rq; 1057 1058 err_unlock: 1059 intel_context_timeline_unlock(tl); 1060 return rq; 1061 } 1062 1063 static int 1064 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 1065 { 1066 struct dma_fence *fence; 1067 int err; 1068 1069 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 1070 return 0; 1071 1072 if (i915_request_started(signal)) 1073 return 0; 1074 1075 /* 1076 * The caller holds a reference on @signal, but we do not serialise 1077 * against it being retired and removed from the lists. 1078 * 1079 * We do not hold a reference to the request before @signal, and 1080 * so must be very careful to ensure that it is not _recycled_ as 1081 * we follow the link backwards. 1082 */ 1083 fence = NULL; 1084 rcu_read_lock(); 1085 do { 1086 struct list_head *pos = READ_ONCE(signal->link.prev); 1087 struct i915_request *prev; 1088 1089 /* Confirm signal has not been retired, the link is valid */ 1090 if (unlikely(__i915_request_has_started(signal))) 1091 break; 1092 1093 /* Is signal the earliest request on its timeline? */ 1094 if (pos == &rcu_dereference(signal->timeline)->requests) 1095 break; 1096 1097 /* 1098 * Peek at the request before us in the timeline. That 1099 * request will only be valid before it is retired, so 1100 * after acquiring a reference to it, confirm that it is 1101 * still part of the signaler's timeline. 1102 */ 1103 prev = list_entry(pos, typeof(*prev), link); 1104 if (!i915_request_get_rcu(prev)) 1105 break; 1106 1107 /* After the strong barrier, confirm prev is still attached */ 1108 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 1109 i915_request_put(prev); 1110 break; 1111 } 1112 1113 fence = &prev->fence; 1114 } while (0); 1115 rcu_read_unlock(); 1116 if (!fence) 1117 return 0; 1118 1119 err = 0; 1120 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1121 err = i915_sw_fence_await_dma_fence(&rq->submit, 1122 fence, 0, 1123 I915_FENCE_GFP); 1124 dma_fence_put(fence); 1125 1126 return err; 1127 } 1128 1129 static intel_engine_mask_t 1130 already_busywaiting(struct i915_request *rq) 1131 { 1132 /* 1133 * Polling a semaphore causes bus traffic, delaying other users of 1134 * both the GPU and CPU. We want to limit the impact on others, 1135 * while taking advantage of early submission to reduce GPU 1136 * latency. Therefore we restrict ourselves to not using more 1137 * than one semaphore from each source, and not using a semaphore 1138 * if we have detected the engine is saturated (i.e. would not be 1139 * submitted early and cause bus traffic reading an already passed 1140 * semaphore). 1141 * 1142 * See the are-we-too-late? check in __i915_request_submit(). 1143 */ 1144 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1145 } 1146 1147 static int 1148 __emit_semaphore_wait(struct i915_request *to, 1149 struct i915_request *from, 1150 u32 seqno) 1151 { 1152 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12; 1153 u32 hwsp_offset; 1154 int len, err; 1155 u32 *cs; 1156 1157 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8); 1158 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1159 1160 /* We need to pin the signaler's HWSP until we are finished reading. */ 1161 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1162 if (err) 1163 return err; 1164 1165 len = 4; 1166 if (has_token) 1167 len += 2; 1168 1169 cs = intel_ring_begin(to, len); 1170 if (IS_ERR(cs)) 1171 return PTR_ERR(cs); 1172 1173 /* 1174 * Using greater-than-or-equal here means we have to worry 1175 * about seqno wraparound. To side step that issue, we swap 1176 * the timeline HWSP upon wrapping, so that everyone listening 1177 * for the old (pre-wrap) values do not see the much smaller 1178 * (post-wrap) values than they were expecting (and so wait 1179 * forever). 1180 */ 1181 *cs++ = (MI_SEMAPHORE_WAIT | 1182 MI_SEMAPHORE_GLOBAL_GTT | 1183 MI_SEMAPHORE_POLL | 1184 MI_SEMAPHORE_SAD_GTE_SDD) + 1185 has_token; 1186 *cs++ = seqno; 1187 *cs++ = hwsp_offset; 1188 *cs++ = 0; 1189 if (has_token) { 1190 *cs++ = 0; 1191 *cs++ = MI_NOOP; 1192 } 1193 1194 intel_ring_advance(to, cs); 1195 return 0; 1196 } 1197 1198 static bool 1199 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from) 1200 { 1201 return to->engine->gt->ggtt == from->engine->gt->ggtt; 1202 } 1203 1204 static int 1205 emit_semaphore_wait(struct i915_request *to, 1206 struct i915_request *from, 1207 gfp_t gfp) 1208 { 1209 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1210 struct i915_sw_fence *wait = &to->submit; 1211 1212 if (!can_use_semaphore_wait(to, from)) 1213 goto await_fence; 1214 1215 if (!intel_context_use_semaphores(to->context)) 1216 goto await_fence; 1217 1218 if (i915_request_has_initial_breadcrumb(to)) 1219 goto await_fence; 1220 1221 /* 1222 * If this or its dependents are waiting on an external fence 1223 * that may fail catastrophically, then we want to avoid using 1224 * sempahores as they bypass the fence signaling metadata, and we 1225 * lose the fence->error propagation. 1226 */ 1227 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1228 goto await_fence; 1229 1230 /* Just emit the first semaphore we see as request space is limited. */ 1231 if (already_busywaiting(to) & mask) 1232 goto await_fence; 1233 1234 if (i915_request_await_start(to, from) < 0) 1235 goto await_fence; 1236 1237 /* Only submit our spinner after the signaler is running! */ 1238 if (__await_execution(to, from, gfp)) 1239 goto await_fence; 1240 1241 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1242 goto await_fence; 1243 1244 to->sched.semaphores |= mask; 1245 wait = &to->semaphore; 1246 1247 await_fence: 1248 return i915_sw_fence_await_dma_fence(wait, 1249 &from->fence, 0, 1250 I915_FENCE_GFP); 1251 } 1252 1253 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1254 struct dma_fence *fence) 1255 { 1256 return __intel_timeline_sync_is_later(tl, 1257 fence->context, 1258 fence->seqno - 1); 1259 } 1260 1261 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1262 const struct dma_fence *fence) 1263 { 1264 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1265 } 1266 1267 static int 1268 __i915_request_await_execution(struct i915_request *to, 1269 struct i915_request *from) 1270 { 1271 int err; 1272 1273 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1274 1275 /* Submit both requests at the same time */ 1276 err = __await_execution(to, from, I915_FENCE_GFP); 1277 if (err) 1278 return err; 1279 1280 /* Squash repeated depenendices to the same timelines */ 1281 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1282 &from->fence)) 1283 return 0; 1284 1285 /* 1286 * Wait until the start of this request. 1287 * 1288 * The execution cb fires when we submit the request to HW. But in 1289 * many cases this may be long before the request itself is ready to 1290 * run (consider that we submit 2 requests for the same context, where 1291 * the request of interest is behind an indefinite spinner). So we hook 1292 * up to both to reduce our queues and keep the execution lag minimised 1293 * in the worst case, though we hope that the await_start is elided. 1294 */ 1295 err = i915_request_await_start(to, from); 1296 if (err < 0) 1297 return err; 1298 1299 /* 1300 * Ensure both start together [after all semaphores in signal] 1301 * 1302 * Now that we are queued to the HW at roughly the same time (thanks 1303 * to the execute cb) and are ready to run at roughly the same time 1304 * (thanks to the await start), our signaler may still be indefinitely 1305 * delayed by waiting on a semaphore from a remote engine. If our 1306 * signaler depends on a semaphore, so indirectly do we, and we do not 1307 * want to start our payload until our signaler also starts theirs. 1308 * So we wait. 1309 * 1310 * However, there is also a second condition for which we need to wait 1311 * for the precise start of the signaler. Consider that the signaler 1312 * was submitted in a chain of requests following another context 1313 * (with just an ordinary intra-engine fence dependency between the 1314 * two). In this case the signaler is queued to HW, but not for 1315 * immediate execution, and so we must wait until it reaches the 1316 * active slot. 1317 */ 1318 if (can_use_semaphore_wait(to, from) && 1319 intel_engine_has_semaphores(to->engine) && 1320 !i915_request_has_initial_breadcrumb(to)) { 1321 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1322 if (err < 0) 1323 return err; 1324 } 1325 1326 /* Couple the dependency tree for PI on this exposed to->fence */ 1327 if (to->engine->sched_engine->schedule) { 1328 err = i915_sched_node_add_dependency(&to->sched, 1329 &from->sched, 1330 I915_DEPENDENCY_WEAK); 1331 if (err < 0) 1332 return err; 1333 } 1334 1335 return intel_timeline_sync_set_start(i915_request_timeline(to), 1336 &from->fence); 1337 } 1338 1339 static void mark_external(struct i915_request *rq) 1340 { 1341 /* 1342 * The downside of using semaphores is that we lose metadata passing 1343 * along the signaling chain. This is particularly nasty when we 1344 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1345 * fatal errors we want to scrub the request before it is executed, 1346 * which means that we cannot preload the request onto HW and have 1347 * it wait upon a semaphore. 1348 */ 1349 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1350 } 1351 1352 static int 1353 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1354 { 1355 mark_external(rq); 1356 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1357 i915_fence_context_timeout(rq->engine->i915, 1358 fence->context), 1359 I915_FENCE_GFP); 1360 } 1361 1362 static int 1363 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1364 { 1365 struct dma_fence *iter; 1366 int err = 0; 1367 1368 if (!to_dma_fence_chain(fence)) 1369 return __i915_request_await_external(rq, fence); 1370 1371 dma_fence_chain_for_each(iter, fence) { 1372 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1373 1374 if (!dma_fence_is_i915(chain->fence)) { 1375 err = __i915_request_await_external(rq, iter); 1376 break; 1377 } 1378 1379 err = i915_request_await_dma_fence(rq, chain->fence); 1380 if (err < 0) 1381 break; 1382 } 1383 1384 dma_fence_put(iter); 1385 return err; 1386 } 1387 1388 static inline bool is_parallel_rq(struct i915_request *rq) 1389 { 1390 return intel_context_is_parallel(rq->context); 1391 } 1392 1393 static inline struct intel_context *request_to_parent(struct i915_request *rq) 1394 { 1395 return intel_context_to_parent(rq->context); 1396 } 1397 1398 static bool is_same_parallel_context(struct i915_request *to, 1399 struct i915_request *from) 1400 { 1401 if (is_parallel_rq(to)) 1402 return request_to_parent(to) == request_to_parent(from); 1403 1404 return false; 1405 } 1406 1407 int 1408 i915_request_await_execution(struct i915_request *rq, 1409 struct dma_fence *fence) 1410 { 1411 struct dma_fence **child = &fence; 1412 unsigned int nchild = 1; 1413 int ret; 1414 1415 if (dma_fence_is_array(fence)) { 1416 struct dma_fence_array *array = to_dma_fence_array(fence); 1417 1418 /* XXX Error for signal-on-any fence arrays */ 1419 1420 child = array->fences; 1421 nchild = array->num_fences; 1422 GEM_BUG_ON(!nchild); 1423 } 1424 1425 do { 1426 fence = *child++; 1427 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1428 continue; 1429 1430 if (fence->context == rq->fence.context) 1431 continue; 1432 1433 /* 1434 * We don't squash repeated fence dependencies here as we 1435 * want to run our callback in all cases. 1436 */ 1437 1438 if (dma_fence_is_i915(fence)) { 1439 if (is_same_parallel_context(rq, to_request(fence))) 1440 continue; 1441 ret = __i915_request_await_execution(rq, 1442 to_request(fence)); 1443 } else { 1444 ret = i915_request_await_external(rq, fence); 1445 } 1446 if (ret < 0) 1447 return ret; 1448 } while (--nchild); 1449 1450 return 0; 1451 } 1452 1453 static int 1454 await_request_submit(struct i915_request *to, struct i915_request *from) 1455 { 1456 /* 1457 * If we are waiting on a virtual engine, then it may be 1458 * constrained to execute on a single engine *prior* to submission. 1459 * When it is submitted, it will be first submitted to the virtual 1460 * engine and then passed to the physical engine. We cannot allow 1461 * the waiter to be submitted immediately to the physical engine 1462 * as it may then bypass the virtual request. 1463 */ 1464 if (to->engine == READ_ONCE(from->engine)) 1465 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1466 &from->submit, 1467 I915_FENCE_GFP); 1468 else 1469 return __i915_request_await_execution(to, from); 1470 } 1471 1472 static int 1473 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1474 { 1475 int ret; 1476 1477 GEM_BUG_ON(to == from); 1478 GEM_BUG_ON(to->timeline == from->timeline); 1479 1480 if (i915_request_completed(from)) { 1481 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1482 return 0; 1483 } 1484 1485 if (to->engine->sched_engine->schedule) { 1486 ret = i915_sched_node_add_dependency(&to->sched, 1487 &from->sched, 1488 I915_DEPENDENCY_EXTERNAL); 1489 if (ret < 0) 1490 return ret; 1491 } 1492 1493 if (!intel_engine_uses_guc(to->engine) && 1494 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1495 ret = await_request_submit(to, from); 1496 else 1497 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1498 if (ret < 0) 1499 return ret; 1500 1501 return 0; 1502 } 1503 1504 int 1505 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1506 { 1507 struct dma_fence **child = &fence; 1508 unsigned int nchild = 1; 1509 int ret; 1510 1511 /* 1512 * Note that if the fence-array was created in signal-on-any mode, 1513 * we should *not* decompose it into its individual fences. However, 1514 * we don't currently store which mode the fence-array is operating 1515 * in. Fortunately, the only user of signal-on-any is private to 1516 * amdgpu and we should not see any incoming fence-array from 1517 * sync-file being in signal-on-any mode. 1518 */ 1519 if (dma_fence_is_array(fence)) { 1520 struct dma_fence_array *array = to_dma_fence_array(fence); 1521 1522 child = array->fences; 1523 nchild = array->num_fences; 1524 GEM_BUG_ON(!nchild); 1525 } 1526 1527 do { 1528 fence = *child++; 1529 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1530 continue; 1531 1532 /* 1533 * Requests on the same timeline are explicitly ordered, along 1534 * with their dependencies, by i915_request_add() which ensures 1535 * that requests are submitted in-order through each ring. 1536 */ 1537 if (fence->context == rq->fence.context) 1538 continue; 1539 1540 /* Squash repeated waits to the same timelines */ 1541 if (fence->context && 1542 intel_timeline_sync_is_later(i915_request_timeline(rq), 1543 fence)) 1544 continue; 1545 1546 if (dma_fence_is_i915(fence)) { 1547 if (is_same_parallel_context(rq, to_request(fence))) 1548 continue; 1549 ret = i915_request_await_request(rq, to_request(fence)); 1550 } else { 1551 ret = i915_request_await_external(rq, fence); 1552 } 1553 if (ret < 0) 1554 return ret; 1555 1556 /* Record the latest fence used against each timeline */ 1557 if (fence->context) 1558 intel_timeline_sync_set(i915_request_timeline(rq), 1559 fence); 1560 } while (--nchild); 1561 1562 return 0; 1563 } 1564 1565 /** 1566 * i915_request_await_deps - set this request to (async) wait upon a struct 1567 * i915_deps dma_fence collection 1568 * @rq: request we are wishing to use 1569 * @deps: The struct i915_deps containing the dependencies. 1570 * 1571 * Returns 0 if successful, negative error code on error. 1572 */ 1573 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps) 1574 { 1575 int i, err; 1576 1577 for (i = 0; i < deps->num_deps; ++i) { 1578 err = i915_request_await_dma_fence(rq, deps->fences[i]); 1579 if (err) 1580 return err; 1581 } 1582 1583 return 0; 1584 } 1585 1586 /** 1587 * i915_request_await_object - set this request to (async) wait upon a bo 1588 * @to: request we are wishing to use 1589 * @obj: object which may be in use on another ring. 1590 * @write: whether the wait is on behalf of a writer 1591 * 1592 * This code is meant to abstract object synchronization with the GPU. 1593 * Conceptually we serialise writes between engines inside the GPU. 1594 * We only allow one engine to write into a buffer at any time, but 1595 * multiple readers. To ensure each has a coherent view of memory, we must: 1596 * 1597 * - If there is an outstanding write request to the object, the new 1598 * request must wait for it to complete (either CPU or in hw, requests 1599 * on the same ring will be naturally ordered). 1600 * 1601 * - If we are a write request (pending_write_domain is set), the new 1602 * request must wait for outstanding read requests to complete. 1603 * 1604 * Returns 0 if successful, else propagates up the lower layer error. 1605 */ 1606 int 1607 i915_request_await_object(struct i915_request *to, 1608 struct drm_i915_gem_object *obj, 1609 bool write) 1610 { 1611 struct dma_resv_iter cursor; 1612 struct dma_fence *fence; 1613 int ret = 0; 1614 1615 dma_resv_for_each_fence(&cursor, obj->base.resv, 1616 dma_resv_usage_rw(write), fence) { 1617 ret = i915_request_await_dma_fence(to, fence); 1618 if (ret) 1619 break; 1620 } 1621 1622 return ret; 1623 } 1624 1625 static void i915_request_await_huc(struct i915_request *rq) 1626 { 1627 struct intel_huc *huc = &rq->context->engine->gt->uc.huc; 1628 1629 /* don't stall kernel submissions! */ 1630 if (!rcu_access_pointer(rq->context->gem_context)) 1631 return; 1632 1633 if (intel_huc_wait_required(huc)) 1634 i915_sw_fence_await_sw_fence(&rq->submit, 1635 &huc->delayed_load.fence, 1636 &rq->hucq); 1637 } 1638 1639 static struct i915_request * 1640 __i915_request_ensure_parallel_ordering(struct i915_request *rq, 1641 struct intel_timeline *timeline) 1642 { 1643 struct i915_request *prev; 1644 1645 GEM_BUG_ON(!is_parallel_rq(rq)); 1646 1647 prev = request_to_parent(rq)->parallel.last_rq; 1648 if (prev) { 1649 if (!__i915_request_is_complete(prev)) { 1650 i915_sw_fence_await_sw_fence(&rq->submit, 1651 &prev->submit, 1652 &rq->submitq); 1653 1654 if (rq->engine->sched_engine->schedule) 1655 __i915_sched_node_add_dependency(&rq->sched, 1656 &prev->sched, 1657 &rq->dep, 1658 0); 1659 } 1660 i915_request_put(prev); 1661 } 1662 1663 request_to_parent(rq)->parallel.last_rq = i915_request_get(rq); 1664 1665 return to_request(__i915_active_fence_set(&timeline->last_request, 1666 &rq->fence)); 1667 } 1668 1669 static struct i915_request * 1670 __i915_request_ensure_ordering(struct i915_request *rq, 1671 struct intel_timeline *timeline) 1672 { 1673 struct i915_request *prev; 1674 1675 GEM_BUG_ON(is_parallel_rq(rq)); 1676 1677 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1678 &rq->fence)); 1679 1680 if (prev && !__i915_request_is_complete(prev)) { 1681 bool uses_guc = intel_engine_uses_guc(rq->engine); 1682 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask | 1683 rq->engine->mask); 1684 bool same_context = prev->context == rq->context; 1685 1686 /* 1687 * The requests are supposed to be kept in order. However, 1688 * we need to be wary in case the timeline->last_request 1689 * is used as a barrier for external modification to this 1690 * context. 1691 */ 1692 GEM_BUG_ON(same_context && 1693 i915_seqno_passed(prev->fence.seqno, 1694 rq->fence.seqno)); 1695 1696 if ((same_context && uses_guc) || (!uses_guc && pow2)) 1697 i915_sw_fence_await_sw_fence(&rq->submit, 1698 &prev->submit, 1699 &rq->submitq); 1700 else 1701 __i915_sw_fence_await_dma_fence(&rq->submit, 1702 &prev->fence, 1703 &rq->dmaq); 1704 if (rq->engine->sched_engine->schedule) 1705 __i915_sched_node_add_dependency(&rq->sched, 1706 &prev->sched, 1707 &rq->dep, 1708 0); 1709 } 1710 1711 return prev; 1712 } 1713 1714 static struct i915_request * 1715 __i915_request_add_to_timeline(struct i915_request *rq) 1716 { 1717 struct intel_timeline *timeline = i915_request_timeline(rq); 1718 struct i915_request *prev; 1719 1720 /* 1721 * Media workloads may require HuC, so stall them until HuC loading is 1722 * complete. Note that HuC not being loaded when a user submission 1723 * arrives can only happen when HuC is loaded via GSC and in that case 1724 * we still expect the window between us starting to accept submissions 1725 * and HuC loading completion to be small (a few hundred ms). 1726 */ 1727 if (rq->engine->class == VIDEO_DECODE_CLASS) 1728 i915_request_await_huc(rq); 1729 1730 /* 1731 * Dependency tracking and request ordering along the timeline 1732 * is special cased so that we can eliminate redundant ordering 1733 * operations while building the request (we know that the timeline 1734 * itself is ordered, and here we guarantee it). 1735 * 1736 * As we know we will need to emit tracking along the timeline, 1737 * we embed the hooks into our request struct -- at the cost of 1738 * having to have specialised no-allocation interfaces (which will 1739 * be beneficial elsewhere). 1740 * 1741 * A second benefit to open-coding i915_request_await_request is 1742 * that we can apply a slight variant of the rules specialised 1743 * for timelines that jump between engines (such as virtual engines). 1744 * If we consider the case of virtual engine, we must emit a dma-fence 1745 * to prevent scheduling of the second request until the first is 1746 * complete (to maximise our greedy late load balancing) and this 1747 * precludes optimising to use semaphores serialisation of a single 1748 * timeline across engines. 1749 * 1750 * We do not order parallel submission requests on the timeline as each 1751 * parallel submission context has its own timeline and the ordering 1752 * rules for parallel requests are that they must be submitted in the 1753 * order received from the execbuf IOCTL. So rather than using the 1754 * timeline we store a pointer to last request submitted in the 1755 * relationship in the gem context and insert a submission fence 1756 * between that request and request passed into this function or 1757 * alternatively we use completion fence if gem context has a single 1758 * timeline and this is the first submission of an execbuf IOCTL. 1759 */ 1760 if (likely(!is_parallel_rq(rq))) 1761 prev = __i915_request_ensure_ordering(rq, timeline); 1762 else 1763 prev = __i915_request_ensure_parallel_ordering(rq, timeline); 1764 1765 /* 1766 * Make sure that no request gazumped us - if it was allocated after 1767 * our i915_request_alloc() and called __i915_request_add() before 1768 * us, the timeline will hold its seqno which is later than ours. 1769 */ 1770 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1771 1772 return prev; 1773 } 1774 1775 /* 1776 * NB: This function is not allowed to fail. Doing so would mean the the 1777 * request is not being tracked for completion but the work itself is 1778 * going to happen on the hardware. This would be a Bad Thing(tm). 1779 */ 1780 struct i915_request *__i915_request_commit(struct i915_request *rq) 1781 { 1782 struct intel_engine_cs *engine = rq->engine; 1783 struct intel_ring *ring = rq->ring; 1784 u32 *cs; 1785 1786 RQ_TRACE(rq, "\n"); 1787 1788 /* 1789 * To ensure that this call will not fail, space for its emissions 1790 * should already have been reserved in the ring buffer. Let the ring 1791 * know that it is time to use that space up. 1792 */ 1793 GEM_BUG_ON(rq->reserved_space > ring->space); 1794 rq->reserved_space = 0; 1795 rq->emitted_jiffies = jiffies; 1796 1797 /* 1798 * Record the position of the start of the breadcrumb so that 1799 * should we detect the updated seqno part-way through the 1800 * GPU processing the request, we never over-estimate the 1801 * position of the ring's HEAD. 1802 */ 1803 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1804 GEM_BUG_ON(IS_ERR(cs)); 1805 rq->postfix = intel_ring_offset(rq, cs); 1806 1807 return __i915_request_add_to_timeline(rq); 1808 } 1809 1810 void __i915_request_queue_bh(struct i915_request *rq) 1811 { 1812 i915_sw_fence_commit(&rq->semaphore); 1813 i915_sw_fence_commit(&rq->submit); 1814 } 1815 1816 void __i915_request_queue(struct i915_request *rq, 1817 const struct i915_sched_attr *attr) 1818 { 1819 /* 1820 * Let the backend know a new request has arrived that may need 1821 * to adjust the existing execution schedule due to a high priority 1822 * request - i.e. we may want to preempt the current request in order 1823 * to run a high priority dependency chain *before* we can execute this 1824 * request. 1825 * 1826 * This is called before the request is ready to run so that we can 1827 * decide whether to preempt the entire chain so that it is ready to 1828 * run at the earliest possible convenience. 1829 */ 1830 if (attr && rq->engine->sched_engine->schedule) 1831 rq->engine->sched_engine->schedule(rq, attr); 1832 1833 local_bh_disable(); 1834 __i915_request_queue_bh(rq); 1835 local_bh_enable(); /* kick tasklets */ 1836 } 1837 1838 void i915_request_add(struct i915_request *rq) 1839 { 1840 struct intel_timeline * const tl = i915_request_timeline(rq); 1841 struct i915_sched_attr attr = {}; 1842 struct i915_gem_context *ctx; 1843 1844 lockdep_assert_held(&tl->mutex); 1845 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1846 1847 trace_i915_request_add(rq); 1848 __i915_request_commit(rq); 1849 1850 /* XXX placeholder for selftests */ 1851 rcu_read_lock(); 1852 ctx = rcu_dereference(rq->context->gem_context); 1853 if (ctx) 1854 attr = ctx->sched; 1855 rcu_read_unlock(); 1856 1857 __i915_request_queue(rq, &attr); 1858 1859 mutex_unlock(&tl->mutex); 1860 } 1861 1862 static unsigned long local_clock_ns(unsigned int *cpu) 1863 { 1864 unsigned long t; 1865 1866 /* 1867 * Cheaply and approximately convert from nanoseconds to microseconds. 1868 * The result and subsequent calculations are also defined in the same 1869 * approximate microseconds units. The principal source of timing 1870 * error here is from the simple truncation. 1871 * 1872 * Note that local_clock() is only defined wrt to the current CPU; 1873 * the comparisons are no longer valid if we switch CPUs. Instead of 1874 * blocking preemption for the entire busywait, we can detect the CPU 1875 * switch and use that as indicator of system load and a reason to 1876 * stop busywaiting, see busywait_stop(). 1877 */ 1878 *cpu = get_cpu(); 1879 t = local_clock(); 1880 put_cpu(); 1881 1882 return t; 1883 } 1884 1885 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1886 { 1887 unsigned int this_cpu; 1888 1889 if (time_after(local_clock_ns(&this_cpu), timeout)) 1890 return true; 1891 1892 return this_cpu != cpu; 1893 } 1894 1895 static bool __i915_spin_request(struct i915_request * const rq, int state) 1896 { 1897 unsigned long timeout_ns; 1898 unsigned int cpu; 1899 1900 /* 1901 * Only wait for the request if we know it is likely to complete. 1902 * 1903 * We don't track the timestamps around requests, nor the average 1904 * request length, so we do not have a good indicator that this 1905 * request will complete within the timeout. What we do know is the 1906 * order in which requests are executed by the context and so we can 1907 * tell if the request has been started. If the request is not even 1908 * running yet, it is a fair assumption that it will not complete 1909 * within our relatively short timeout. 1910 */ 1911 if (!i915_request_is_running(rq)) 1912 return false; 1913 1914 /* 1915 * When waiting for high frequency requests, e.g. during synchronous 1916 * rendering split between the CPU and GPU, the finite amount of time 1917 * required to set up the irq and wait upon it limits the response 1918 * rate. By busywaiting on the request completion for a short while we 1919 * can service the high frequency waits as quick as possible. However, 1920 * if it is a slow request, we want to sleep as quickly as possible. 1921 * The tradeoff between waiting and sleeping is roughly the time it 1922 * takes to sleep on a request, on the order of a microsecond. 1923 */ 1924 1925 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1926 timeout_ns += local_clock_ns(&cpu); 1927 do { 1928 if (dma_fence_is_signaled(&rq->fence)) 1929 return true; 1930 1931 if (signal_pending_state(state, current)) 1932 break; 1933 1934 if (busywait_stop(timeout_ns, cpu)) 1935 break; 1936 1937 cpu_relax(); 1938 } while (!need_resched()); 1939 1940 return false; 1941 } 1942 1943 struct request_wait { 1944 struct dma_fence_cb cb; 1945 struct task_struct *tsk; 1946 }; 1947 1948 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1949 { 1950 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1951 1952 wake_up_process(fetch_and_zero(&wait->tsk)); 1953 } 1954 1955 /** 1956 * i915_request_wait_timeout - wait until execution of request has finished 1957 * @rq: the request to wait upon 1958 * @flags: how to wait 1959 * @timeout: how long to wait in jiffies 1960 * 1961 * i915_request_wait_timeout() waits for the request to be completed, for a 1962 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1963 * unbounded wait). 1964 * 1965 * Returns the remaining time (in jiffies) if the request completed, which may 1966 * be zero if the request is unfinished after the timeout expires. 1967 * If the timeout is 0, it will return 1 if the fence is signaled. 1968 * 1969 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1970 * pending before the request completes. 1971 * 1972 * NOTE: This function has the same wait semantics as dma-fence. 1973 */ 1974 long i915_request_wait_timeout(struct i915_request *rq, 1975 unsigned int flags, 1976 long timeout) 1977 { 1978 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1979 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1980 struct request_wait wait; 1981 1982 might_sleep(); 1983 GEM_BUG_ON(timeout < 0); 1984 1985 if (dma_fence_is_signaled(&rq->fence)) 1986 return timeout ?: 1; 1987 1988 if (!timeout) 1989 return -ETIME; 1990 1991 trace_i915_request_wait_begin(rq, flags); 1992 1993 /* 1994 * We must never wait on the GPU while holding a lock as we 1995 * may need to perform a GPU reset. So while we don't need to 1996 * serialise wait/reset with an explicit lock, we do want 1997 * lockdep to detect potential dependency cycles. 1998 */ 1999 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 2000 2001 /* 2002 * Optimistic spin before touching IRQs. 2003 * 2004 * We may use a rather large value here to offset the penalty of 2005 * switching away from the active task. Frequently, the client will 2006 * wait upon an old swapbuffer to throttle itself to remain within a 2007 * frame of the gpu. If the client is running in lockstep with the gpu, 2008 * then it should not be waiting long at all, and a sleep now will incur 2009 * extra scheduler latency in producing the next frame. To try to 2010 * avoid adding the cost of enabling/disabling the interrupt to the 2011 * short wait, we first spin to see if the request would have completed 2012 * in the time taken to setup the interrupt. 2013 * 2014 * We need upto 5us to enable the irq, and upto 20us to hide the 2015 * scheduler latency of a context switch, ignoring the secondary 2016 * impacts from a context switch such as cache eviction. 2017 * 2018 * The scheme used for low-latency IO is called "hybrid interrupt 2019 * polling". The suggestion there is to sleep until just before you 2020 * expect to be woken by the device interrupt and then poll for its 2021 * completion. That requires having a good predictor for the request 2022 * duration, which we currently lack. 2023 */ 2024 if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT && 2025 __i915_spin_request(rq, state)) 2026 goto out; 2027 2028 /* 2029 * This client is about to stall waiting for the GPU. In many cases 2030 * this is undesirable and limits the throughput of the system, as 2031 * many clients cannot continue processing user input/output whilst 2032 * blocked. RPS autotuning may take tens of milliseconds to respond 2033 * to the GPU load and thus incurs additional latency for the client. 2034 * We can circumvent that by promoting the GPU frequency to maximum 2035 * before we sleep. This makes the GPU throttle up much more quickly 2036 * (good for benchmarks and user experience, e.g. window animations), 2037 * but at a cost of spending more power processing the workload 2038 * (bad for battery). 2039 */ 2040 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 2041 intel_rps_boost(rq); 2042 2043 wait.tsk = current; 2044 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 2045 goto out; 2046 2047 /* 2048 * Flush the submission tasklet, but only if it may help this request. 2049 * 2050 * We sometimes experience some latency between the HW interrupts and 2051 * tasklet execution (mostly due to ksoftirqd latency, but it can also 2052 * be due to lazy CS events), so lets run the tasklet manually if there 2053 * is a chance it may submit this request. If the request is not ready 2054 * to run, as it is waiting for other fences to be signaled, flushing 2055 * the tasklet is busy work without any advantage for this client. 2056 * 2057 * If the HW is being lazy, this is the last chance before we go to 2058 * sleep to catch any pending events. We will check periodically in 2059 * the heartbeat to flush the submission tasklets as a last resort 2060 * for unhappy HW. 2061 */ 2062 if (i915_request_is_ready(rq)) 2063 __intel_engine_flush_submission(rq->engine, false); 2064 2065 for (;;) { 2066 set_current_state(state); 2067 2068 if (dma_fence_is_signaled(&rq->fence)) 2069 break; 2070 2071 if (signal_pending_state(state, current)) { 2072 timeout = -ERESTARTSYS; 2073 break; 2074 } 2075 2076 if (!timeout) { 2077 timeout = -ETIME; 2078 break; 2079 } 2080 2081 timeout = io_schedule_timeout(timeout); 2082 } 2083 __set_current_state(TASK_RUNNING); 2084 2085 if (READ_ONCE(wait.tsk)) 2086 dma_fence_remove_callback(&rq->fence, &wait.cb); 2087 GEM_BUG_ON(!list_empty(&wait.cb.node)); 2088 2089 out: 2090 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 2091 trace_i915_request_wait_end(rq); 2092 return timeout; 2093 } 2094 2095 /** 2096 * i915_request_wait - wait until execution of request has finished 2097 * @rq: the request to wait upon 2098 * @flags: how to wait 2099 * @timeout: how long to wait in jiffies 2100 * 2101 * i915_request_wait() waits for the request to be completed, for a 2102 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 2103 * unbounded wait). 2104 * 2105 * Returns the remaining time (in jiffies) if the request completed, which may 2106 * be zero or -ETIME if the request is unfinished after the timeout expires. 2107 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 2108 * pending before the request completes. 2109 * 2110 * NOTE: This function behaves differently from dma-fence wait semantics for 2111 * timeout = 0. It returns 0 on success, and -ETIME if not signaled. 2112 */ 2113 long i915_request_wait(struct i915_request *rq, 2114 unsigned int flags, 2115 long timeout) 2116 { 2117 long ret = i915_request_wait_timeout(rq, flags, timeout); 2118 2119 if (!ret) 2120 return -ETIME; 2121 2122 if (ret > 0 && !timeout) 2123 return 0; 2124 2125 return ret; 2126 } 2127 2128 static int print_sched_attr(const struct i915_sched_attr *attr, 2129 char *buf, int x, int len) 2130 { 2131 if (attr->priority == I915_PRIORITY_INVALID) 2132 return x; 2133 2134 x += snprintf(buf + x, len - x, 2135 " prio=%d", attr->priority); 2136 2137 return x; 2138 } 2139 2140 static char queue_status(const struct i915_request *rq) 2141 { 2142 if (i915_request_is_active(rq)) 2143 return 'E'; 2144 2145 if (i915_request_is_ready(rq)) 2146 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R'; 2147 2148 return 'U'; 2149 } 2150 2151 static const char *run_status(const struct i915_request *rq) 2152 { 2153 if (__i915_request_is_complete(rq)) 2154 return "!"; 2155 2156 if (__i915_request_has_started(rq)) 2157 return "*"; 2158 2159 if (!i915_sw_fence_signaled(&rq->semaphore)) 2160 return "&"; 2161 2162 return ""; 2163 } 2164 2165 static const char *fence_status(const struct i915_request *rq) 2166 { 2167 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 2168 return "+"; 2169 2170 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 2171 return "-"; 2172 2173 return ""; 2174 } 2175 2176 void i915_request_show(struct drm_printer *m, 2177 const struct i915_request *rq, 2178 const char *prefix, 2179 int indent) 2180 { 2181 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence); 2182 char buf[80] = ""; 2183 int x = 0; 2184 2185 /* 2186 * The prefix is used to show the queue status, for which we use 2187 * the following flags: 2188 * 2189 * U [Unready] 2190 * - initial status upon being submitted by the user 2191 * 2192 * - the request is not ready for execution as it is waiting 2193 * for external fences 2194 * 2195 * R [Ready] 2196 * - all fences the request was waiting on have been signaled, 2197 * and the request is now ready for execution and will be 2198 * in a backend queue 2199 * 2200 * - a ready request may still need to wait on semaphores 2201 * [internal fences] 2202 * 2203 * V [Ready/virtual] 2204 * - same as ready, but queued over multiple backends 2205 * 2206 * E [Executing] 2207 * - the request has been transferred from the backend queue and 2208 * submitted for execution on HW 2209 * 2210 * - a completed request may still be regarded as executing, its 2211 * status may not be updated until it is retired and removed 2212 * from the lists 2213 */ 2214 2215 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); 2216 2217 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n", 2218 prefix, indent, " ", 2219 queue_status(rq), 2220 rq->fence.context, rq->fence.seqno, 2221 run_status(rq), 2222 fence_status(rq), 2223 buf, 2224 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 2225 name); 2226 } 2227 2228 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq) 2229 { 2230 u32 ring = ENGINE_READ(engine, RING_START); 2231 2232 return ring == i915_ggtt_offset(rq->ring->vma); 2233 } 2234 2235 static bool match_ring(struct i915_request *rq) 2236 { 2237 struct intel_engine_cs *engine; 2238 bool found; 2239 int i; 2240 2241 if (!intel_engine_is_virtual(rq->engine)) 2242 return engine_match_ring(rq->engine, rq); 2243 2244 found = false; 2245 i = 0; 2246 while ((engine = intel_engine_get_sibling(rq->engine, i++))) { 2247 found = engine_match_ring(engine, rq); 2248 if (found) 2249 break; 2250 } 2251 2252 return found; 2253 } 2254 2255 enum i915_request_state i915_test_request_state(struct i915_request *rq) 2256 { 2257 if (i915_request_completed(rq)) 2258 return I915_REQUEST_COMPLETE; 2259 2260 if (!i915_request_started(rq)) 2261 return I915_REQUEST_PENDING; 2262 2263 if (match_ring(rq)) 2264 return I915_REQUEST_ACTIVE; 2265 2266 return I915_REQUEST_QUEUED; 2267 } 2268 2269 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2270 #include "selftests/mock_request.c" 2271 #include "selftests/i915_request.c" 2272 #endif 2273 2274 void i915_request_module_exit(void) 2275 { 2276 kmem_cache_destroy(slab_execute_cbs); 2277 kmem_cache_destroy(slab_requests); 2278 } 2279 2280 int __init i915_request_module_init(void) 2281 { 2282 slab_requests = 2283 kmem_cache_create("i915_request", 2284 sizeof(struct i915_request), 2285 __alignof__(struct i915_request), 2286 SLAB_HWCACHE_ALIGN | 2287 SLAB_RECLAIM_ACCOUNT | 2288 SLAB_TYPESAFE_BY_RCU, 2289 __i915_request_ctor); 2290 if (!slab_requests) 2291 return -ENOMEM; 2292 2293 slab_execute_cbs = KMEM_CACHE(execute_cb, 2294 SLAB_HWCACHE_ALIGN | 2295 SLAB_RECLAIM_ACCOUNT | 2296 SLAB_TYPESAFE_BY_RCU); 2297 if (!slab_execute_cbs) 2298 goto err_requests; 2299 2300 return 0; 2301 2302 err_requests: 2303 kmem_cache_destroy(slab_requests); 2304 return -ENOMEM; 2305 } 2306