xref: /openbmc/linux/drivers/gpu/drm/i915/i915_request.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 
33 #include "gem/i915_gem_context.h"
34 #include "gt/intel_context.h"
35 #include "gt/intel_ring.h"
36 #include "gt/intel_rps.h"
37 
38 #include "i915_active.h"
39 #include "i915_drv.h"
40 #include "i915_globals.h"
41 #include "i915_trace.h"
42 #include "intel_pm.h"
43 
44 struct execute_cb {
45 	struct list_head link;
46 	struct irq_work work;
47 	struct i915_sw_fence *fence;
48 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
49 	struct i915_request *signal;
50 };
51 
52 static struct i915_global_request {
53 	struct i915_global base;
54 	struct kmem_cache *slab_requests;
55 	struct kmem_cache *slab_execute_cbs;
56 } global;
57 
58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 {
60 	return dev_name(to_request(fence)->i915->drm.dev);
61 }
62 
63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 {
65 	const struct i915_gem_context *ctx;
66 
67 	/*
68 	 * The timeline struct (as part of the ppgtt underneath a context)
69 	 * may be freed when the request is no longer in use by the GPU.
70 	 * We could extend the life of a context to beyond that of all
71 	 * fences, possibly keeping the hw resource around indefinitely,
72 	 * or we just give them a false name. Since
73 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
74 	 * lie seems justifiable.
75 	 */
76 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
77 		return "signaled";
78 
79 	ctx = i915_request_gem_context(to_request(fence));
80 	if (!ctx)
81 		return "[" DRIVER_NAME "]";
82 
83 	return ctx->name;
84 }
85 
86 static bool i915_fence_signaled(struct dma_fence *fence)
87 {
88 	return i915_request_completed(to_request(fence));
89 }
90 
91 static bool i915_fence_enable_signaling(struct dma_fence *fence)
92 {
93 	return i915_request_enable_breadcrumb(to_request(fence));
94 }
95 
96 static signed long i915_fence_wait(struct dma_fence *fence,
97 				   bool interruptible,
98 				   signed long timeout)
99 {
100 	return i915_request_wait(to_request(fence),
101 				 interruptible | I915_WAIT_PRIORITY,
102 				 timeout);
103 }
104 
105 struct kmem_cache *i915_request_slab_cache(void)
106 {
107 	return global.slab_requests;
108 }
109 
110 static void i915_fence_release(struct dma_fence *fence)
111 {
112 	struct i915_request *rq = to_request(fence);
113 
114 	/*
115 	 * The request is put onto a RCU freelist (i.e. the address
116 	 * is immediately reused), mark the fences as being freed now.
117 	 * Otherwise the debugobjects for the fences are only marked as
118 	 * freed when the slab cache itself is freed, and so we would get
119 	 * caught trying to reuse dead objects.
120 	 */
121 	i915_sw_fence_fini(&rq->submit);
122 	i915_sw_fence_fini(&rq->semaphore);
123 
124 	/*
125 	 * Keep one request on each engine for reserved use under mempressure
126 	 *
127 	 * We do not hold a reference to the engine here and so have to be
128 	 * very careful in what rq->engine we poke. The virtual engine is
129 	 * referenced via the rq->context and we released that ref during
130 	 * i915_request_retire(), ergo we must not dereference a virtual
131 	 * engine here. Not that we would want to, as the only consumer of
132 	 * the reserved engine->request_pool is the power management parking,
133 	 * which must-not-fail, and that is only run on the physical engines.
134 	 *
135 	 * Since the request must have been executed to be have completed,
136 	 * we know that it will have been processed by the HW and will
137 	 * not be unsubmitted again, so rq->engine and rq->execution_mask
138 	 * at this point is stable. rq->execution_mask will be a single
139 	 * bit if the last and _only_ engine it could execution on was a
140 	 * physical engine, if it's multiple bits then it started on and
141 	 * could still be on a virtual engine. Thus if the mask is not a
142 	 * power-of-two we assume that rq->engine may still be a virtual
143 	 * engine and so a dangling invalid pointer that we cannot dereference
144 	 *
145 	 * For example, consider the flow of a bonded request through a virtual
146 	 * engine. The request is created with a wide engine mask (all engines
147 	 * that we might execute on). On processing the bond, the request mask
148 	 * is reduced to one or more engines. If the request is subsequently
149 	 * bound to a single engine, it will then be constrained to only
150 	 * execute on that engine and never returned to the virtual engine
151 	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
152 	 * know that if the rq->execution_mask is a single bit, rq->engine
153 	 * can be a physical engine with the exact corresponding mask.
154 	 */
155 	if (is_power_of_2(rq->execution_mask) &&
156 	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
157 		return;
158 
159 	kmem_cache_free(global.slab_requests, rq);
160 }
161 
162 const struct dma_fence_ops i915_fence_ops = {
163 	.get_driver_name = i915_fence_get_driver_name,
164 	.get_timeline_name = i915_fence_get_timeline_name,
165 	.enable_signaling = i915_fence_enable_signaling,
166 	.signaled = i915_fence_signaled,
167 	.wait = i915_fence_wait,
168 	.release = i915_fence_release,
169 };
170 
171 static void irq_execute_cb(struct irq_work *wrk)
172 {
173 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
174 
175 	i915_sw_fence_complete(cb->fence);
176 	kmem_cache_free(global.slab_execute_cbs, cb);
177 }
178 
179 static void irq_execute_cb_hook(struct irq_work *wrk)
180 {
181 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
182 
183 	cb->hook(container_of(cb->fence, struct i915_request, submit),
184 		 &cb->signal->fence);
185 	i915_request_put(cb->signal);
186 
187 	irq_execute_cb(wrk);
188 }
189 
190 static void __notify_execute_cb(struct i915_request *rq)
191 {
192 	struct execute_cb *cb;
193 
194 	lockdep_assert_held(&rq->lock);
195 
196 	if (list_empty(&rq->execute_cb))
197 		return;
198 
199 	list_for_each_entry(cb, &rq->execute_cb, link)
200 		irq_work_queue(&cb->work);
201 
202 	/*
203 	 * XXX Rollback on __i915_request_unsubmit()
204 	 *
205 	 * In the future, perhaps when we have an active time-slicing scheduler,
206 	 * it will be interesting to unsubmit parallel execution and remove
207 	 * busywaits from the GPU until their master is restarted. This is
208 	 * quite hairy, we have to carefully rollback the fence and do a
209 	 * preempt-to-idle cycle on the target engine, all the while the
210 	 * master execute_cb may refire.
211 	 */
212 	INIT_LIST_HEAD(&rq->execute_cb);
213 }
214 
215 static inline void
216 remove_from_client(struct i915_request *request)
217 {
218 	struct drm_i915_file_private *file_priv;
219 
220 	if (!READ_ONCE(request->file_priv))
221 		return;
222 
223 	rcu_read_lock();
224 	file_priv = xchg(&request->file_priv, NULL);
225 	if (file_priv) {
226 		spin_lock(&file_priv->mm.lock);
227 		list_del(&request->client_link);
228 		spin_unlock(&file_priv->mm.lock);
229 	}
230 	rcu_read_unlock();
231 }
232 
233 static void free_capture_list(struct i915_request *request)
234 {
235 	struct i915_capture_list *capture;
236 
237 	capture = fetch_and_zero(&request->capture_list);
238 	while (capture) {
239 		struct i915_capture_list *next = capture->next;
240 
241 		kfree(capture);
242 		capture = next;
243 	}
244 }
245 
246 static void __i915_request_fill(struct i915_request *rq, u8 val)
247 {
248 	void *vaddr = rq->ring->vaddr;
249 	u32 head;
250 
251 	head = rq->infix;
252 	if (rq->postfix < head) {
253 		memset(vaddr + head, val, rq->ring->size - head);
254 		head = 0;
255 	}
256 	memset(vaddr + head, val, rq->postfix - head);
257 }
258 
259 static void remove_from_engine(struct i915_request *rq)
260 {
261 	struct intel_engine_cs *engine, *locked;
262 
263 	/*
264 	 * Virtual engines complicate acquiring the engine timeline lock,
265 	 * as their rq->engine pointer is not stable until under that
266 	 * engine lock. The simple ploy we use is to take the lock then
267 	 * check that the rq still belongs to the newly locked engine.
268 	 */
269 	locked = READ_ONCE(rq->engine);
270 	spin_lock_irq(&locked->active.lock);
271 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
272 		spin_unlock(&locked->active.lock);
273 		spin_lock(&engine->active.lock);
274 		locked = engine;
275 	}
276 	list_del_init(&rq->sched.link);
277 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
278 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
279 	spin_unlock_irq(&locked->active.lock);
280 }
281 
282 bool i915_request_retire(struct i915_request *rq)
283 {
284 	if (!i915_request_completed(rq))
285 		return false;
286 
287 	RQ_TRACE(rq, "\n");
288 
289 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
290 	trace_i915_request_retire(rq);
291 
292 	/*
293 	 * We know the GPU must have read the request to have
294 	 * sent us the seqno + interrupt, so use the position
295 	 * of tail of the request to update the last known position
296 	 * of the GPU head.
297 	 *
298 	 * Note this requires that we are always called in request
299 	 * completion order.
300 	 */
301 	GEM_BUG_ON(!list_is_first(&rq->link,
302 				  &i915_request_timeline(rq)->requests));
303 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
304 		/* Poison before we release our space in the ring */
305 		__i915_request_fill(rq, POISON_FREE);
306 	rq->ring->head = rq->postfix;
307 
308 	/*
309 	 * We only loosely track inflight requests across preemption,
310 	 * and so we may find ourselves attempting to retire a _completed_
311 	 * request that we have removed from the HW and put back on a run
312 	 * queue.
313 	 */
314 	remove_from_engine(rq);
315 
316 	spin_lock_irq(&rq->lock);
317 	i915_request_mark_complete(rq);
318 	if (!i915_request_signaled(rq))
319 		dma_fence_signal_locked(&rq->fence);
320 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
321 		i915_request_cancel_breadcrumb(rq);
322 	if (i915_request_has_waitboost(rq)) {
323 		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
324 		atomic_dec(&rq->engine->gt->rps.num_waiters);
325 	}
326 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
327 		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
328 		__notify_execute_cb(rq);
329 	}
330 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
331 	spin_unlock_irq(&rq->lock);
332 
333 	remove_from_client(rq);
334 	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
335 
336 	intel_context_exit(rq->context);
337 	intel_context_unpin(rq->context);
338 
339 	free_capture_list(rq);
340 	i915_sched_node_fini(&rq->sched);
341 	i915_request_put(rq);
342 
343 	return true;
344 }
345 
346 void i915_request_retire_upto(struct i915_request *rq)
347 {
348 	struct intel_timeline * const tl = i915_request_timeline(rq);
349 	struct i915_request *tmp;
350 
351 	RQ_TRACE(rq, "\n");
352 
353 	GEM_BUG_ON(!i915_request_completed(rq));
354 
355 	do {
356 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
357 	} while (i915_request_retire(tmp) && tmp != rq);
358 }
359 
360 static struct i915_request * const *
361 __engine_active(struct intel_engine_cs *engine)
362 {
363 	return READ_ONCE(engine->execlists.active);
364 }
365 
366 static bool __request_in_flight(const struct i915_request *signal)
367 {
368 	struct i915_request * const *port, *rq;
369 	bool inflight = false;
370 
371 	if (!i915_request_is_ready(signal))
372 		return false;
373 
374 	/*
375 	 * Even if we have unwound the request, it may still be on
376 	 * the GPU (preempt-to-busy). If that request is inside an
377 	 * unpreemptible critical section, it will not be removed. Some
378 	 * GPU functions may even be stuck waiting for the paired request
379 	 * (__await_execution) to be submitted and cannot be preempted
380 	 * until the bond is executing.
381 	 *
382 	 * As we know that there are always preemption points between
383 	 * requests, we know that only the currently executing request
384 	 * may be still active even though we have cleared the flag.
385 	 * However, we can't rely on our tracking of ELSP[0] to known
386 	 * which request is currently active and so maybe stuck, as
387 	 * the tracking maybe an event behind. Instead assume that
388 	 * if the context is still inflight, then it is still active
389 	 * even if the active flag has been cleared.
390 	 */
391 	if (!intel_context_inflight(signal->context))
392 		return false;
393 
394 	rcu_read_lock();
395 	for (port = __engine_active(signal->engine); (rq = *port); port++) {
396 		if (rq->context == signal->context) {
397 			inflight = i915_seqno_passed(rq->fence.seqno,
398 						     signal->fence.seqno);
399 			break;
400 		}
401 	}
402 	rcu_read_unlock();
403 
404 	return inflight;
405 }
406 
407 static int
408 __await_execution(struct i915_request *rq,
409 		  struct i915_request *signal,
410 		  void (*hook)(struct i915_request *rq,
411 			       struct dma_fence *signal),
412 		  gfp_t gfp)
413 {
414 	struct execute_cb *cb;
415 
416 	if (i915_request_is_active(signal)) {
417 		if (hook)
418 			hook(rq, &signal->fence);
419 		return 0;
420 	}
421 
422 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
423 	if (!cb)
424 		return -ENOMEM;
425 
426 	cb->fence = &rq->submit;
427 	i915_sw_fence_await(cb->fence);
428 	init_irq_work(&cb->work, irq_execute_cb);
429 
430 	if (hook) {
431 		cb->hook = hook;
432 		cb->signal = i915_request_get(signal);
433 		cb->work.func = irq_execute_cb_hook;
434 	}
435 
436 	spin_lock_irq(&signal->lock);
437 	if (i915_request_is_active(signal) || __request_in_flight(signal)) {
438 		if (hook) {
439 			hook(rq, &signal->fence);
440 			i915_request_put(signal);
441 		}
442 		i915_sw_fence_complete(cb->fence);
443 		kmem_cache_free(global.slab_execute_cbs, cb);
444 	} else {
445 		list_add_tail(&cb->link, &signal->execute_cb);
446 	}
447 	spin_unlock_irq(&signal->lock);
448 
449 	return 0;
450 }
451 
452 static bool fatal_error(int error)
453 {
454 	switch (error) {
455 	case 0: /* not an error! */
456 	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
457 	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
458 		return false;
459 	default:
460 		return true;
461 	}
462 }
463 
464 void __i915_request_skip(struct i915_request *rq)
465 {
466 	GEM_BUG_ON(!fatal_error(rq->fence.error));
467 
468 	if (rq->infix == rq->postfix)
469 		return;
470 
471 	/*
472 	 * As this request likely depends on state from the lost
473 	 * context, clear out all the user operations leaving the
474 	 * breadcrumb at the end (so we get the fence notifications).
475 	 */
476 	__i915_request_fill(rq, 0);
477 	rq->infix = rq->postfix;
478 }
479 
480 void i915_request_set_error_once(struct i915_request *rq, int error)
481 {
482 	int old;
483 
484 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
485 
486 	if (i915_request_signaled(rq))
487 		return;
488 
489 	old = READ_ONCE(rq->fence.error);
490 	do {
491 		if (fatal_error(old))
492 			return;
493 	} while (!try_cmpxchg(&rq->fence.error, &old, error));
494 }
495 
496 bool __i915_request_submit(struct i915_request *request)
497 {
498 	struct intel_engine_cs *engine = request->engine;
499 	bool result = false;
500 
501 	RQ_TRACE(request, "\n");
502 
503 	GEM_BUG_ON(!irqs_disabled());
504 	lockdep_assert_held(&engine->active.lock);
505 
506 	/*
507 	 * With the advent of preempt-to-busy, we frequently encounter
508 	 * requests that we have unsubmitted from HW, but left running
509 	 * until the next ack and so have completed in the meantime. On
510 	 * resubmission of that completed request, we can skip
511 	 * updating the payload, and execlists can even skip submitting
512 	 * the request.
513 	 *
514 	 * We must remove the request from the caller's priority queue,
515 	 * and the caller must only call us when the request is in their
516 	 * priority queue, under the active.lock. This ensures that the
517 	 * request has *not* yet been retired and we can safely move
518 	 * the request into the engine->active.list where it will be
519 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
520 	 * request, this would be a horrible use-after-free.)
521 	 */
522 	if (i915_request_completed(request))
523 		goto xfer;
524 
525 	if (unlikely(intel_context_is_banned(request->context)))
526 		i915_request_set_error_once(request, -EIO);
527 	if (unlikely(fatal_error(request->fence.error)))
528 		__i915_request_skip(request);
529 
530 	/*
531 	 * Are we using semaphores when the gpu is already saturated?
532 	 *
533 	 * Using semaphores incurs a cost in having the GPU poll a
534 	 * memory location, busywaiting for it to change. The continual
535 	 * memory reads can have a noticeable impact on the rest of the
536 	 * system with the extra bus traffic, stalling the cpu as it too
537 	 * tries to access memory across the bus (perf stat -e bus-cycles).
538 	 *
539 	 * If we installed a semaphore on this request and we only submit
540 	 * the request after the signaler completed, that indicates the
541 	 * system is overloaded and using semaphores at this time only
542 	 * increases the amount of work we are doing. If so, we disable
543 	 * further use of semaphores until we are idle again, whence we
544 	 * optimistically try again.
545 	 */
546 	if (request->sched.semaphores &&
547 	    i915_sw_fence_signaled(&request->semaphore))
548 		engine->saturated |= request->sched.semaphores;
549 
550 	engine->emit_fini_breadcrumb(request,
551 				     request->ring->vaddr + request->postfix);
552 
553 	trace_i915_request_execute(request);
554 	engine->serial++;
555 	result = true;
556 
557 xfer:	/* We may be recursing from the signal callback of another i915 fence */
558 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
559 
560 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
561 		list_move_tail(&request->sched.link, &engine->active.requests);
562 		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
563 	}
564 
565 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
566 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
567 	    !i915_request_enable_breadcrumb(request))
568 		intel_engine_signal_breadcrumbs(engine);
569 
570 	__notify_execute_cb(request);
571 
572 	spin_unlock(&request->lock);
573 
574 	return result;
575 }
576 
577 void i915_request_submit(struct i915_request *request)
578 {
579 	struct intel_engine_cs *engine = request->engine;
580 	unsigned long flags;
581 
582 	/* Will be called from irq-context when using foreign fences. */
583 	spin_lock_irqsave(&engine->active.lock, flags);
584 
585 	__i915_request_submit(request);
586 
587 	spin_unlock_irqrestore(&engine->active.lock, flags);
588 }
589 
590 void __i915_request_unsubmit(struct i915_request *request)
591 {
592 	struct intel_engine_cs *engine = request->engine;
593 
594 	RQ_TRACE(request, "\n");
595 
596 	GEM_BUG_ON(!irqs_disabled());
597 	lockdep_assert_held(&engine->active.lock);
598 
599 	/*
600 	 * Only unwind in reverse order, required so that the per-context list
601 	 * is kept in seqno/ring order.
602 	 */
603 
604 	/* We may be recursing from the signal callback of another i915 fence */
605 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
606 
607 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
608 		i915_request_cancel_breadcrumb(request);
609 
610 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
611 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
612 
613 	spin_unlock(&request->lock);
614 
615 	/* We've already spun, don't charge on resubmitting. */
616 	if (request->sched.semaphores && i915_request_started(request))
617 		request->sched.semaphores = 0;
618 
619 	/*
620 	 * We don't need to wake_up any waiters on request->execute, they
621 	 * will get woken by any other event or us re-adding this request
622 	 * to the engine timeline (__i915_request_submit()). The waiters
623 	 * should be quite adapt at finding that the request now has a new
624 	 * global_seqno to the one they went to sleep on.
625 	 */
626 }
627 
628 void i915_request_unsubmit(struct i915_request *request)
629 {
630 	struct intel_engine_cs *engine = request->engine;
631 	unsigned long flags;
632 
633 	/* Will be called from irq-context when using foreign fences. */
634 	spin_lock_irqsave(&engine->active.lock, flags);
635 
636 	__i915_request_unsubmit(request);
637 
638 	spin_unlock_irqrestore(&engine->active.lock, flags);
639 }
640 
641 static int __i915_sw_fence_call
642 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
643 {
644 	struct i915_request *request =
645 		container_of(fence, typeof(*request), submit);
646 
647 	switch (state) {
648 	case FENCE_COMPLETE:
649 		trace_i915_request_submit(request);
650 
651 		if (unlikely(fence->error))
652 			i915_request_set_error_once(request, fence->error);
653 
654 		/*
655 		 * We need to serialize use of the submit_request() callback
656 		 * with its hotplugging performed during an emergency
657 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
658 		 * critical section in order to force i915_gem_set_wedged() to
659 		 * wait until the submit_request() is completed before
660 		 * proceeding.
661 		 */
662 		rcu_read_lock();
663 		request->engine->submit_request(request);
664 		rcu_read_unlock();
665 		break;
666 
667 	case FENCE_FREE:
668 		i915_request_put(request);
669 		break;
670 	}
671 
672 	return NOTIFY_DONE;
673 }
674 
675 static int __i915_sw_fence_call
676 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
677 {
678 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
679 
680 	switch (state) {
681 	case FENCE_COMPLETE:
682 		break;
683 
684 	case FENCE_FREE:
685 		i915_request_put(rq);
686 		break;
687 	}
688 
689 	return NOTIFY_DONE;
690 }
691 
692 static void retire_requests(struct intel_timeline *tl)
693 {
694 	struct i915_request *rq, *rn;
695 
696 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
697 		if (!i915_request_retire(rq))
698 			break;
699 }
700 
701 static noinline struct i915_request *
702 request_alloc_slow(struct intel_timeline *tl,
703 		   struct i915_request **rsvd,
704 		   gfp_t gfp)
705 {
706 	struct i915_request *rq;
707 
708 	/* If we cannot wait, dip into our reserves */
709 	if (!gfpflags_allow_blocking(gfp)) {
710 		rq = xchg(rsvd, NULL);
711 		if (!rq) /* Use the normal failure path for one final WARN */
712 			goto out;
713 
714 		return rq;
715 	}
716 
717 	if (list_empty(&tl->requests))
718 		goto out;
719 
720 	/* Move our oldest request to the slab-cache (if not in use!) */
721 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
722 	i915_request_retire(rq);
723 
724 	rq = kmem_cache_alloc(global.slab_requests,
725 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
726 	if (rq)
727 		return rq;
728 
729 	/* Ratelimit ourselves to prevent oom from malicious clients */
730 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
731 	cond_synchronize_rcu(rq->rcustate);
732 
733 	/* Retire our old requests in the hope that we free some */
734 	retire_requests(tl);
735 
736 out:
737 	return kmem_cache_alloc(global.slab_requests, gfp);
738 }
739 
740 static void __i915_request_ctor(void *arg)
741 {
742 	struct i915_request *rq = arg;
743 
744 	spin_lock_init(&rq->lock);
745 	i915_sched_node_init(&rq->sched);
746 	i915_sw_fence_init(&rq->submit, submit_notify);
747 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
748 
749 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
750 
751 	rq->file_priv = NULL;
752 	rq->capture_list = NULL;
753 
754 	INIT_LIST_HEAD(&rq->execute_cb);
755 }
756 
757 struct i915_request *
758 __i915_request_create(struct intel_context *ce, gfp_t gfp)
759 {
760 	struct intel_timeline *tl = ce->timeline;
761 	struct i915_request *rq;
762 	u32 seqno;
763 	int ret;
764 
765 	might_sleep_if(gfpflags_allow_blocking(gfp));
766 
767 	/* Check that the caller provided an already pinned context */
768 	__intel_context_pin(ce);
769 
770 	/*
771 	 * Beware: Dragons be flying overhead.
772 	 *
773 	 * We use RCU to look up requests in flight. The lookups may
774 	 * race with the request being allocated from the slab freelist.
775 	 * That is the request we are writing to here, may be in the process
776 	 * of being read by __i915_active_request_get_rcu(). As such,
777 	 * we have to be very careful when overwriting the contents. During
778 	 * the RCU lookup, we change chase the request->engine pointer,
779 	 * read the request->global_seqno and increment the reference count.
780 	 *
781 	 * The reference count is incremented atomically. If it is zero,
782 	 * the lookup knows the request is unallocated and complete. Otherwise,
783 	 * it is either still in use, or has been reallocated and reset
784 	 * with dma_fence_init(). This increment is safe for release as we
785 	 * check that the request we have a reference to and matches the active
786 	 * request.
787 	 *
788 	 * Before we increment the refcount, we chase the request->engine
789 	 * pointer. We must not call kmem_cache_zalloc() or else we set
790 	 * that pointer to NULL and cause a crash during the lookup. If
791 	 * we see the request is completed (based on the value of the
792 	 * old engine and seqno), the lookup is complete and reports NULL.
793 	 * If we decide the request is not completed (new engine or seqno),
794 	 * then we grab a reference and double check that it is still the
795 	 * active request - which it won't be and restart the lookup.
796 	 *
797 	 * Do not use kmem_cache_zalloc() here!
798 	 */
799 	rq = kmem_cache_alloc(global.slab_requests,
800 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
801 	if (unlikely(!rq)) {
802 		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
803 		if (!rq) {
804 			ret = -ENOMEM;
805 			goto err_unreserve;
806 		}
807 	}
808 
809 	rq->i915 = ce->engine->i915;
810 	rq->context = ce;
811 	rq->engine = ce->engine;
812 	rq->ring = ce->ring;
813 	rq->execution_mask = ce->engine->mask;
814 
815 	kref_init(&rq->fence.refcount);
816 	rq->fence.flags = 0;
817 	rq->fence.error = 0;
818 	INIT_LIST_HEAD(&rq->fence.cb_list);
819 
820 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
821 	if (ret)
822 		goto err_free;
823 
824 	rq->fence.context = tl->fence_context;
825 	rq->fence.seqno = seqno;
826 
827 	RCU_INIT_POINTER(rq->timeline, tl);
828 	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
829 	rq->hwsp_seqno = tl->hwsp_seqno;
830 	GEM_BUG_ON(i915_request_completed(rq));
831 
832 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
833 
834 	/* We bump the ref for the fence chain */
835 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
836 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
837 
838 	i915_sched_node_reinit(&rq->sched);
839 
840 	/* No zalloc, everything must be cleared after use */
841 	rq->batch = NULL;
842 	GEM_BUG_ON(rq->file_priv);
843 	GEM_BUG_ON(rq->capture_list);
844 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
845 
846 	/*
847 	 * Reserve space in the ring buffer for all the commands required to
848 	 * eventually emit this request. This is to guarantee that the
849 	 * i915_request_add() call can't fail. Note that the reserve may need
850 	 * to be redone if the request is not actually submitted straight
851 	 * away, e.g. because a GPU scheduler has deferred it.
852 	 *
853 	 * Note that due to how we add reserved_space to intel_ring_begin()
854 	 * we need to double our request to ensure that if we need to wrap
855 	 * around inside i915_request_add() there is sufficient space at
856 	 * the beginning of the ring as well.
857 	 */
858 	rq->reserved_space =
859 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
860 
861 	/*
862 	 * Record the position of the start of the request so that
863 	 * should we detect the updated seqno part-way through the
864 	 * GPU processing the request, we never over-estimate the
865 	 * position of the head.
866 	 */
867 	rq->head = rq->ring->emit;
868 
869 	ret = rq->engine->request_alloc(rq);
870 	if (ret)
871 		goto err_unwind;
872 
873 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
874 
875 	intel_context_mark_active(ce);
876 	list_add_tail_rcu(&rq->link, &tl->requests);
877 
878 	return rq;
879 
880 err_unwind:
881 	ce->ring->emit = rq->head;
882 
883 	/* Make sure we didn't add ourselves to external state before freeing */
884 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
885 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
886 
887 err_free:
888 	kmem_cache_free(global.slab_requests, rq);
889 err_unreserve:
890 	intel_context_unpin(ce);
891 	return ERR_PTR(ret);
892 }
893 
894 struct i915_request *
895 i915_request_create(struct intel_context *ce)
896 {
897 	struct i915_request *rq;
898 	struct intel_timeline *tl;
899 
900 	tl = intel_context_timeline_lock(ce);
901 	if (IS_ERR(tl))
902 		return ERR_CAST(tl);
903 
904 	/* Move our oldest request to the slab-cache (if not in use!) */
905 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
906 	if (!list_is_last(&rq->link, &tl->requests))
907 		i915_request_retire(rq);
908 
909 	intel_context_enter(ce);
910 	rq = __i915_request_create(ce, GFP_KERNEL);
911 	intel_context_exit(ce); /* active reference transferred to request */
912 	if (IS_ERR(rq))
913 		goto err_unlock;
914 
915 	/* Check that we do not interrupt ourselves with a new request */
916 	rq->cookie = lockdep_pin_lock(&tl->mutex);
917 
918 	return rq;
919 
920 err_unlock:
921 	intel_context_timeline_unlock(tl);
922 	return rq;
923 }
924 
925 static int
926 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
927 {
928 	struct dma_fence *fence;
929 	int err;
930 
931 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
932 		return 0;
933 
934 	if (i915_request_started(signal))
935 		return 0;
936 
937 	fence = NULL;
938 	rcu_read_lock();
939 	spin_lock_irq(&signal->lock);
940 	do {
941 		struct list_head *pos = READ_ONCE(signal->link.prev);
942 		struct i915_request *prev;
943 
944 		/* Confirm signal has not been retired, the link is valid */
945 		if (unlikely(i915_request_started(signal)))
946 			break;
947 
948 		/* Is signal the earliest request on its timeline? */
949 		if (pos == &rcu_dereference(signal->timeline)->requests)
950 			break;
951 
952 		/*
953 		 * Peek at the request before us in the timeline. That
954 		 * request will only be valid before it is retired, so
955 		 * after acquiring a reference to it, confirm that it is
956 		 * still part of the signaler's timeline.
957 		 */
958 		prev = list_entry(pos, typeof(*prev), link);
959 		if (!i915_request_get_rcu(prev))
960 			break;
961 
962 		/* After the strong barrier, confirm prev is still attached */
963 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
964 			i915_request_put(prev);
965 			break;
966 		}
967 
968 		fence = &prev->fence;
969 	} while (0);
970 	spin_unlock_irq(&signal->lock);
971 	rcu_read_unlock();
972 	if (!fence)
973 		return 0;
974 
975 	err = 0;
976 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
977 		err = i915_sw_fence_await_dma_fence(&rq->submit,
978 						    fence, 0,
979 						    I915_FENCE_GFP);
980 	dma_fence_put(fence);
981 
982 	return err;
983 }
984 
985 static intel_engine_mask_t
986 already_busywaiting(struct i915_request *rq)
987 {
988 	/*
989 	 * Polling a semaphore causes bus traffic, delaying other users of
990 	 * both the GPU and CPU. We want to limit the impact on others,
991 	 * while taking advantage of early submission to reduce GPU
992 	 * latency. Therefore we restrict ourselves to not using more
993 	 * than one semaphore from each source, and not using a semaphore
994 	 * if we have detected the engine is saturated (i.e. would not be
995 	 * submitted early and cause bus traffic reading an already passed
996 	 * semaphore).
997 	 *
998 	 * See the are-we-too-late? check in __i915_request_submit().
999 	 */
1000 	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1001 }
1002 
1003 static int
1004 __emit_semaphore_wait(struct i915_request *to,
1005 		      struct i915_request *from,
1006 		      u32 seqno)
1007 {
1008 	const int has_token = INTEL_GEN(to->i915) >= 12;
1009 	u32 hwsp_offset;
1010 	int len, err;
1011 	u32 *cs;
1012 
1013 	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
1014 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1015 
1016 	/* We need to pin the signaler's HWSP until we are finished reading. */
1017 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1018 	if (err)
1019 		return err;
1020 
1021 	len = 4;
1022 	if (has_token)
1023 		len += 2;
1024 
1025 	cs = intel_ring_begin(to, len);
1026 	if (IS_ERR(cs))
1027 		return PTR_ERR(cs);
1028 
1029 	/*
1030 	 * Using greater-than-or-equal here means we have to worry
1031 	 * about seqno wraparound. To side step that issue, we swap
1032 	 * the timeline HWSP upon wrapping, so that everyone listening
1033 	 * for the old (pre-wrap) values do not see the much smaller
1034 	 * (post-wrap) values than they were expecting (and so wait
1035 	 * forever).
1036 	 */
1037 	*cs++ = (MI_SEMAPHORE_WAIT |
1038 		 MI_SEMAPHORE_GLOBAL_GTT |
1039 		 MI_SEMAPHORE_POLL |
1040 		 MI_SEMAPHORE_SAD_GTE_SDD) +
1041 		has_token;
1042 	*cs++ = seqno;
1043 	*cs++ = hwsp_offset;
1044 	*cs++ = 0;
1045 	if (has_token) {
1046 		*cs++ = 0;
1047 		*cs++ = MI_NOOP;
1048 	}
1049 
1050 	intel_ring_advance(to, cs);
1051 	return 0;
1052 }
1053 
1054 static int
1055 emit_semaphore_wait(struct i915_request *to,
1056 		    struct i915_request *from,
1057 		    gfp_t gfp)
1058 {
1059 	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1060 	struct i915_sw_fence *wait = &to->submit;
1061 
1062 	if (!intel_context_use_semaphores(to->context))
1063 		goto await_fence;
1064 
1065 	if (i915_request_has_initial_breadcrumb(to))
1066 		goto await_fence;
1067 
1068 	if (!rcu_access_pointer(from->hwsp_cacheline))
1069 		goto await_fence;
1070 
1071 	/*
1072 	 * If this or its dependents are waiting on an external fence
1073 	 * that may fail catastrophically, then we want to avoid using
1074 	 * sempahores as they bypass the fence signaling metadata, and we
1075 	 * lose the fence->error propagation.
1076 	 */
1077 	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1078 		goto await_fence;
1079 
1080 	/* Just emit the first semaphore we see as request space is limited. */
1081 	if (already_busywaiting(to) & mask)
1082 		goto await_fence;
1083 
1084 	if (i915_request_await_start(to, from) < 0)
1085 		goto await_fence;
1086 
1087 	/* Only submit our spinner after the signaler is running! */
1088 	if (__await_execution(to, from, NULL, gfp))
1089 		goto await_fence;
1090 
1091 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1092 		goto await_fence;
1093 
1094 	to->sched.semaphores |= mask;
1095 	wait = &to->semaphore;
1096 
1097 await_fence:
1098 	return i915_sw_fence_await_dma_fence(wait,
1099 					     &from->fence, 0,
1100 					     I915_FENCE_GFP);
1101 }
1102 
1103 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1104 					  struct dma_fence *fence)
1105 {
1106 	return __intel_timeline_sync_is_later(tl,
1107 					      fence->context,
1108 					      fence->seqno - 1);
1109 }
1110 
1111 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1112 					 const struct dma_fence *fence)
1113 {
1114 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1115 }
1116 
1117 static int
1118 __i915_request_await_execution(struct i915_request *to,
1119 			       struct i915_request *from,
1120 			       void (*hook)(struct i915_request *rq,
1121 					    struct dma_fence *signal))
1122 {
1123 	int err;
1124 
1125 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1126 
1127 	/* Submit both requests at the same time */
1128 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1129 	if (err)
1130 		return err;
1131 
1132 	/* Squash repeated depenendices to the same timelines */
1133 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1134 					  &from->fence))
1135 		return 0;
1136 
1137 	/*
1138 	 * Wait until the start of this request.
1139 	 *
1140 	 * The execution cb fires when we submit the request to HW. But in
1141 	 * many cases this may be long before the request itself is ready to
1142 	 * run (consider that we submit 2 requests for the same context, where
1143 	 * the request of interest is behind an indefinite spinner). So we hook
1144 	 * up to both to reduce our queues and keep the execution lag minimised
1145 	 * in the worst case, though we hope that the await_start is elided.
1146 	 */
1147 	err = i915_request_await_start(to, from);
1148 	if (err < 0)
1149 		return err;
1150 
1151 	/*
1152 	 * Ensure both start together [after all semaphores in signal]
1153 	 *
1154 	 * Now that we are queued to the HW at roughly the same time (thanks
1155 	 * to the execute cb) and are ready to run at roughly the same time
1156 	 * (thanks to the await start), our signaler may still be indefinitely
1157 	 * delayed by waiting on a semaphore from a remote engine. If our
1158 	 * signaler depends on a semaphore, so indirectly do we, and we do not
1159 	 * want to start our payload until our signaler also starts theirs.
1160 	 * So we wait.
1161 	 *
1162 	 * However, there is also a second condition for which we need to wait
1163 	 * for the precise start of the signaler. Consider that the signaler
1164 	 * was submitted in a chain of requests following another context
1165 	 * (with just an ordinary intra-engine fence dependency between the
1166 	 * two). In this case the signaler is queued to HW, but not for
1167 	 * immediate execution, and so we must wait until it reaches the
1168 	 * active slot.
1169 	 */
1170 	if (intel_engine_has_semaphores(to->engine) &&
1171 	    !i915_request_has_initial_breadcrumb(to)) {
1172 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1173 		if (err < 0)
1174 			return err;
1175 	}
1176 
1177 	/* Couple the dependency tree for PI on this exposed to->fence */
1178 	if (to->engine->schedule) {
1179 		err = i915_sched_node_add_dependency(&to->sched,
1180 						     &from->sched,
1181 						     I915_DEPENDENCY_WEAK);
1182 		if (err < 0)
1183 			return err;
1184 	}
1185 
1186 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1187 					     &from->fence);
1188 }
1189 
1190 static void mark_external(struct i915_request *rq)
1191 {
1192 	/*
1193 	 * The downside of using semaphores is that we lose metadata passing
1194 	 * along the signaling chain. This is particularly nasty when we
1195 	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1196 	 * fatal errors we want to scrub the request before it is executed,
1197 	 * which means that we cannot preload the request onto HW and have
1198 	 * it wait upon a semaphore.
1199 	 */
1200 	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1201 }
1202 
1203 static int
1204 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1205 {
1206 	mark_external(rq);
1207 	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1208 					     i915_fence_context_timeout(rq->i915,
1209 									fence->context),
1210 					     I915_FENCE_GFP);
1211 }
1212 
1213 static int
1214 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1215 {
1216 	struct dma_fence *iter;
1217 	int err = 0;
1218 
1219 	if (!to_dma_fence_chain(fence))
1220 		return __i915_request_await_external(rq, fence);
1221 
1222 	dma_fence_chain_for_each(iter, fence) {
1223 		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1224 
1225 		if (!dma_fence_is_i915(chain->fence)) {
1226 			err = __i915_request_await_external(rq, iter);
1227 			break;
1228 		}
1229 
1230 		err = i915_request_await_dma_fence(rq, chain->fence);
1231 		if (err < 0)
1232 			break;
1233 	}
1234 
1235 	dma_fence_put(iter);
1236 	return err;
1237 }
1238 
1239 int
1240 i915_request_await_execution(struct i915_request *rq,
1241 			     struct dma_fence *fence,
1242 			     void (*hook)(struct i915_request *rq,
1243 					  struct dma_fence *signal))
1244 {
1245 	struct dma_fence **child = &fence;
1246 	unsigned int nchild = 1;
1247 	int ret;
1248 
1249 	if (dma_fence_is_array(fence)) {
1250 		struct dma_fence_array *array = to_dma_fence_array(fence);
1251 
1252 		/* XXX Error for signal-on-any fence arrays */
1253 
1254 		child = array->fences;
1255 		nchild = array->num_fences;
1256 		GEM_BUG_ON(!nchild);
1257 	}
1258 
1259 	do {
1260 		fence = *child++;
1261 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1262 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1263 			continue;
1264 		}
1265 
1266 		if (fence->context == rq->fence.context)
1267 			continue;
1268 
1269 		/*
1270 		 * We don't squash repeated fence dependencies here as we
1271 		 * want to run our callback in all cases.
1272 		 */
1273 
1274 		if (dma_fence_is_i915(fence))
1275 			ret = __i915_request_await_execution(rq,
1276 							     to_request(fence),
1277 							     hook);
1278 		else
1279 			ret = i915_request_await_external(rq, fence);
1280 		if (ret < 0)
1281 			return ret;
1282 	} while (--nchild);
1283 
1284 	return 0;
1285 }
1286 
1287 static int
1288 await_request_submit(struct i915_request *to, struct i915_request *from)
1289 {
1290 	/*
1291 	 * If we are waiting on a virtual engine, then it may be
1292 	 * constrained to execute on a single engine *prior* to submission.
1293 	 * When it is submitted, it will be first submitted to the virtual
1294 	 * engine and then passed to the physical engine. We cannot allow
1295 	 * the waiter to be submitted immediately to the physical engine
1296 	 * as it may then bypass the virtual request.
1297 	 */
1298 	if (to->engine == READ_ONCE(from->engine))
1299 		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1300 							&from->submit,
1301 							I915_FENCE_GFP);
1302 	else
1303 		return __i915_request_await_execution(to, from, NULL);
1304 }
1305 
1306 static int
1307 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1308 {
1309 	int ret;
1310 
1311 	GEM_BUG_ON(to == from);
1312 	GEM_BUG_ON(to->timeline == from->timeline);
1313 
1314 	if (i915_request_completed(from)) {
1315 		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1316 		return 0;
1317 	}
1318 
1319 	if (to->engine->schedule) {
1320 		ret = i915_sched_node_add_dependency(&to->sched,
1321 						     &from->sched,
1322 						     I915_DEPENDENCY_EXTERNAL);
1323 		if (ret < 0)
1324 			return ret;
1325 	}
1326 
1327 	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1328 		ret = await_request_submit(to, from);
1329 	else
1330 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1331 	if (ret < 0)
1332 		return ret;
1333 
1334 	return 0;
1335 }
1336 
1337 int
1338 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1339 {
1340 	struct dma_fence **child = &fence;
1341 	unsigned int nchild = 1;
1342 	int ret;
1343 
1344 	/*
1345 	 * Note that if the fence-array was created in signal-on-any mode,
1346 	 * we should *not* decompose it into its individual fences. However,
1347 	 * we don't currently store which mode the fence-array is operating
1348 	 * in. Fortunately, the only user of signal-on-any is private to
1349 	 * amdgpu and we should not see any incoming fence-array from
1350 	 * sync-file being in signal-on-any mode.
1351 	 */
1352 	if (dma_fence_is_array(fence)) {
1353 		struct dma_fence_array *array = to_dma_fence_array(fence);
1354 
1355 		child = array->fences;
1356 		nchild = array->num_fences;
1357 		GEM_BUG_ON(!nchild);
1358 	}
1359 
1360 	do {
1361 		fence = *child++;
1362 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1363 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1364 			continue;
1365 		}
1366 
1367 		/*
1368 		 * Requests on the same timeline are explicitly ordered, along
1369 		 * with their dependencies, by i915_request_add() which ensures
1370 		 * that requests are submitted in-order through each ring.
1371 		 */
1372 		if (fence->context == rq->fence.context)
1373 			continue;
1374 
1375 		/* Squash repeated waits to the same timelines */
1376 		if (fence->context &&
1377 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1378 						 fence))
1379 			continue;
1380 
1381 		if (dma_fence_is_i915(fence))
1382 			ret = i915_request_await_request(rq, to_request(fence));
1383 		else
1384 			ret = i915_request_await_external(rq, fence);
1385 		if (ret < 0)
1386 			return ret;
1387 
1388 		/* Record the latest fence used against each timeline */
1389 		if (fence->context)
1390 			intel_timeline_sync_set(i915_request_timeline(rq),
1391 						fence);
1392 	} while (--nchild);
1393 
1394 	return 0;
1395 }
1396 
1397 /**
1398  * i915_request_await_object - set this request to (async) wait upon a bo
1399  * @to: request we are wishing to use
1400  * @obj: object which may be in use on another ring.
1401  * @write: whether the wait is on behalf of a writer
1402  *
1403  * This code is meant to abstract object synchronization with the GPU.
1404  * Conceptually we serialise writes between engines inside the GPU.
1405  * We only allow one engine to write into a buffer at any time, but
1406  * multiple readers. To ensure each has a coherent view of memory, we must:
1407  *
1408  * - If there is an outstanding write request to the object, the new
1409  *   request must wait for it to complete (either CPU or in hw, requests
1410  *   on the same ring will be naturally ordered).
1411  *
1412  * - If we are a write request (pending_write_domain is set), the new
1413  *   request must wait for outstanding read requests to complete.
1414  *
1415  * Returns 0 if successful, else propagates up the lower layer error.
1416  */
1417 int
1418 i915_request_await_object(struct i915_request *to,
1419 			  struct drm_i915_gem_object *obj,
1420 			  bool write)
1421 {
1422 	struct dma_fence *excl;
1423 	int ret = 0;
1424 
1425 	if (write) {
1426 		struct dma_fence **shared;
1427 		unsigned int count, i;
1428 
1429 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1430 							&excl, &count, &shared);
1431 		if (ret)
1432 			return ret;
1433 
1434 		for (i = 0; i < count; i++) {
1435 			ret = i915_request_await_dma_fence(to, shared[i]);
1436 			if (ret)
1437 				break;
1438 
1439 			dma_fence_put(shared[i]);
1440 		}
1441 
1442 		for (; i < count; i++)
1443 			dma_fence_put(shared[i]);
1444 		kfree(shared);
1445 	} else {
1446 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1447 	}
1448 
1449 	if (excl) {
1450 		if (ret == 0)
1451 			ret = i915_request_await_dma_fence(to, excl);
1452 
1453 		dma_fence_put(excl);
1454 	}
1455 
1456 	return ret;
1457 }
1458 
1459 static struct i915_request *
1460 __i915_request_add_to_timeline(struct i915_request *rq)
1461 {
1462 	struct intel_timeline *timeline = i915_request_timeline(rq);
1463 	struct i915_request *prev;
1464 
1465 	/*
1466 	 * Dependency tracking and request ordering along the timeline
1467 	 * is special cased so that we can eliminate redundant ordering
1468 	 * operations while building the request (we know that the timeline
1469 	 * itself is ordered, and here we guarantee it).
1470 	 *
1471 	 * As we know we will need to emit tracking along the timeline,
1472 	 * we embed the hooks into our request struct -- at the cost of
1473 	 * having to have specialised no-allocation interfaces (which will
1474 	 * be beneficial elsewhere).
1475 	 *
1476 	 * A second benefit to open-coding i915_request_await_request is
1477 	 * that we can apply a slight variant of the rules specialised
1478 	 * for timelines that jump between engines (such as virtual engines).
1479 	 * If we consider the case of virtual engine, we must emit a dma-fence
1480 	 * to prevent scheduling of the second request until the first is
1481 	 * complete (to maximise our greedy late load balancing) and this
1482 	 * precludes optimising to use semaphores serialisation of a single
1483 	 * timeline across engines.
1484 	 */
1485 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1486 						  &rq->fence));
1487 	if (prev && !i915_request_completed(prev)) {
1488 		/*
1489 		 * The requests are supposed to be kept in order. However,
1490 		 * we need to be wary in case the timeline->last_request
1491 		 * is used as a barrier for external modification to this
1492 		 * context.
1493 		 */
1494 		GEM_BUG_ON(prev->context == rq->context &&
1495 			   i915_seqno_passed(prev->fence.seqno,
1496 					     rq->fence.seqno));
1497 
1498 		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1499 			i915_sw_fence_await_sw_fence(&rq->submit,
1500 						     &prev->submit,
1501 						     &rq->submitq);
1502 		else
1503 			__i915_sw_fence_await_dma_fence(&rq->submit,
1504 							&prev->fence,
1505 							&rq->dmaq);
1506 		if (rq->engine->schedule)
1507 			__i915_sched_node_add_dependency(&rq->sched,
1508 							 &prev->sched,
1509 							 &rq->dep,
1510 							 0);
1511 	}
1512 
1513 	/*
1514 	 * Make sure that no request gazumped us - if it was allocated after
1515 	 * our i915_request_alloc() and called __i915_request_add() before
1516 	 * us, the timeline will hold its seqno which is later than ours.
1517 	 */
1518 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1519 
1520 	return prev;
1521 }
1522 
1523 /*
1524  * NB: This function is not allowed to fail. Doing so would mean the the
1525  * request is not being tracked for completion but the work itself is
1526  * going to happen on the hardware. This would be a Bad Thing(tm).
1527  */
1528 struct i915_request *__i915_request_commit(struct i915_request *rq)
1529 {
1530 	struct intel_engine_cs *engine = rq->engine;
1531 	struct intel_ring *ring = rq->ring;
1532 	u32 *cs;
1533 
1534 	RQ_TRACE(rq, "\n");
1535 
1536 	/*
1537 	 * To ensure that this call will not fail, space for its emissions
1538 	 * should already have been reserved in the ring buffer. Let the ring
1539 	 * know that it is time to use that space up.
1540 	 */
1541 	GEM_BUG_ON(rq->reserved_space > ring->space);
1542 	rq->reserved_space = 0;
1543 	rq->emitted_jiffies = jiffies;
1544 
1545 	/*
1546 	 * Record the position of the start of the breadcrumb so that
1547 	 * should we detect the updated seqno part-way through the
1548 	 * GPU processing the request, we never over-estimate the
1549 	 * position of the ring's HEAD.
1550 	 */
1551 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1552 	GEM_BUG_ON(IS_ERR(cs));
1553 	rq->postfix = intel_ring_offset(rq, cs);
1554 
1555 	return __i915_request_add_to_timeline(rq);
1556 }
1557 
1558 void __i915_request_queue(struct i915_request *rq,
1559 			  const struct i915_sched_attr *attr)
1560 {
1561 	/*
1562 	 * Let the backend know a new request has arrived that may need
1563 	 * to adjust the existing execution schedule due to a high priority
1564 	 * request - i.e. we may want to preempt the current request in order
1565 	 * to run a high priority dependency chain *before* we can execute this
1566 	 * request.
1567 	 *
1568 	 * This is called before the request is ready to run so that we can
1569 	 * decide whether to preempt the entire chain so that it is ready to
1570 	 * run at the earliest possible convenience.
1571 	 */
1572 	if (attr && rq->engine->schedule)
1573 		rq->engine->schedule(rq, attr);
1574 	i915_sw_fence_commit(&rq->semaphore);
1575 	i915_sw_fence_commit(&rq->submit);
1576 }
1577 
1578 void i915_request_add(struct i915_request *rq)
1579 {
1580 	struct intel_timeline * const tl = i915_request_timeline(rq);
1581 	struct i915_sched_attr attr = {};
1582 	struct i915_gem_context *ctx;
1583 
1584 	lockdep_assert_held(&tl->mutex);
1585 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1586 
1587 	trace_i915_request_add(rq);
1588 	__i915_request_commit(rq);
1589 
1590 	/* XXX placeholder for selftests */
1591 	rcu_read_lock();
1592 	ctx = rcu_dereference(rq->context->gem_context);
1593 	if (ctx)
1594 		attr = ctx->sched;
1595 	rcu_read_unlock();
1596 
1597 	__i915_request_queue(rq, &attr);
1598 
1599 	mutex_unlock(&tl->mutex);
1600 }
1601 
1602 static unsigned long local_clock_ns(unsigned int *cpu)
1603 {
1604 	unsigned long t;
1605 
1606 	/*
1607 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1608 	 * The result and subsequent calculations are also defined in the same
1609 	 * approximate microseconds units. The principal source of timing
1610 	 * error here is from the simple truncation.
1611 	 *
1612 	 * Note that local_clock() is only defined wrt to the current CPU;
1613 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1614 	 * blocking preemption for the entire busywait, we can detect the CPU
1615 	 * switch and use that as indicator of system load and a reason to
1616 	 * stop busywaiting, see busywait_stop().
1617 	 */
1618 	*cpu = get_cpu();
1619 	t = local_clock();
1620 	put_cpu();
1621 
1622 	return t;
1623 }
1624 
1625 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1626 {
1627 	unsigned int this_cpu;
1628 
1629 	if (time_after(local_clock_ns(&this_cpu), timeout))
1630 		return true;
1631 
1632 	return this_cpu != cpu;
1633 }
1634 
1635 static bool __i915_spin_request(const struct i915_request * const rq, int state)
1636 {
1637 	unsigned long timeout_ns;
1638 	unsigned int cpu;
1639 
1640 	/*
1641 	 * Only wait for the request if we know it is likely to complete.
1642 	 *
1643 	 * We don't track the timestamps around requests, nor the average
1644 	 * request length, so we do not have a good indicator that this
1645 	 * request will complete within the timeout. What we do know is the
1646 	 * order in which requests are executed by the context and so we can
1647 	 * tell if the request has been started. If the request is not even
1648 	 * running yet, it is a fair assumption that it will not complete
1649 	 * within our relatively short timeout.
1650 	 */
1651 	if (!i915_request_is_running(rq))
1652 		return false;
1653 
1654 	/*
1655 	 * When waiting for high frequency requests, e.g. during synchronous
1656 	 * rendering split between the CPU and GPU, the finite amount of time
1657 	 * required to set up the irq and wait upon it limits the response
1658 	 * rate. By busywaiting on the request completion for a short while we
1659 	 * can service the high frequency waits as quick as possible. However,
1660 	 * if it is a slow request, we want to sleep as quickly as possible.
1661 	 * The tradeoff between waiting and sleeping is roughly the time it
1662 	 * takes to sleep on a request, on the order of a microsecond.
1663 	 */
1664 
1665 	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1666 	timeout_ns += local_clock_ns(&cpu);
1667 	do {
1668 		if (i915_request_completed(rq))
1669 			return true;
1670 
1671 		if (signal_pending_state(state, current))
1672 			break;
1673 
1674 		if (busywait_stop(timeout_ns, cpu))
1675 			break;
1676 
1677 		cpu_relax();
1678 	} while (!need_resched());
1679 
1680 	return false;
1681 }
1682 
1683 struct request_wait {
1684 	struct dma_fence_cb cb;
1685 	struct task_struct *tsk;
1686 };
1687 
1688 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1689 {
1690 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1691 
1692 	wake_up_process(wait->tsk);
1693 }
1694 
1695 /**
1696  * i915_request_wait - wait until execution of request has finished
1697  * @rq: the request to wait upon
1698  * @flags: how to wait
1699  * @timeout: how long to wait in jiffies
1700  *
1701  * i915_request_wait() waits for the request to be completed, for a
1702  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1703  * unbounded wait).
1704  *
1705  * Returns the remaining time (in jiffies) if the request completed, which may
1706  * be zero or -ETIME if the request is unfinished after the timeout expires.
1707  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1708  * pending before the request completes.
1709  */
1710 long i915_request_wait(struct i915_request *rq,
1711 		       unsigned int flags,
1712 		       long timeout)
1713 {
1714 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1715 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1716 	struct request_wait wait;
1717 
1718 	might_sleep();
1719 	GEM_BUG_ON(timeout < 0);
1720 
1721 	if (dma_fence_is_signaled(&rq->fence))
1722 		return timeout;
1723 
1724 	if (!timeout)
1725 		return -ETIME;
1726 
1727 	trace_i915_request_wait_begin(rq, flags);
1728 
1729 	/*
1730 	 * We must never wait on the GPU while holding a lock as we
1731 	 * may need to perform a GPU reset. So while we don't need to
1732 	 * serialise wait/reset with an explicit lock, we do want
1733 	 * lockdep to detect potential dependency cycles.
1734 	 */
1735 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1736 
1737 	/*
1738 	 * Optimistic spin before touching IRQs.
1739 	 *
1740 	 * We may use a rather large value here to offset the penalty of
1741 	 * switching away from the active task. Frequently, the client will
1742 	 * wait upon an old swapbuffer to throttle itself to remain within a
1743 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1744 	 * then it should not be waiting long at all, and a sleep now will incur
1745 	 * extra scheduler latency in producing the next frame. To try to
1746 	 * avoid adding the cost of enabling/disabling the interrupt to the
1747 	 * short wait, we first spin to see if the request would have completed
1748 	 * in the time taken to setup the interrupt.
1749 	 *
1750 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1751 	 * scheduler latency of a context switch, ignoring the secondary
1752 	 * impacts from a context switch such as cache eviction.
1753 	 *
1754 	 * The scheme used for low-latency IO is called "hybrid interrupt
1755 	 * polling". The suggestion there is to sleep until just before you
1756 	 * expect to be woken by the device interrupt and then poll for its
1757 	 * completion. That requires having a good predictor for the request
1758 	 * duration, which we currently lack.
1759 	 */
1760 	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1761 	    __i915_spin_request(rq, state)) {
1762 		dma_fence_signal(&rq->fence);
1763 		goto out;
1764 	}
1765 
1766 	/*
1767 	 * This client is about to stall waiting for the GPU. In many cases
1768 	 * this is undesirable and limits the throughput of the system, as
1769 	 * many clients cannot continue processing user input/output whilst
1770 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1771 	 * to the GPU load and thus incurs additional latency for the client.
1772 	 * We can circumvent that by promoting the GPU frequency to maximum
1773 	 * before we sleep. This makes the GPU throttle up much more quickly
1774 	 * (good for benchmarks and user experience, e.g. window animations),
1775 	 * but at a cost of spending more power processing the workload
1776 	 * (bad for battery).
1777 	 */
1778 	if (flags & I915_WAIT_PRIORITY) {
1779 		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1780 			intel_rps_boost(rq);
1781 	}
1782 
1783 	wait.tsk = current;
1784 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1785 		goto out;
1786 
1787 	for (;;) {
1788 		set_current_state(state);
1789 
1790 		if (i915_request_completed(rq)) {
1791 			dma_fence_signal(&rq->fence);
1792 			break;
1793 		}
1794 
1795 		intel_engine_flush_submission(rq->engine);
1796 
1797 		if (signal_pending_state(state, current)) {
1798 			timeout = -ERESTARTSYS;
1799 			break;
1800 		}
1801 
1802 		if (!timeout) {
1803 			timeout = -ETIME;
1804 			break;
1805 		}
1806 
1807 		timeout = io_schedule_timeout(timeout);
1808 	}
1809 	__set_current_state(TASK_RUNNING);
1810 
1811 	dma_fence_remove_callback(&rq->fence, &wait.cb);
1812 
1813 out:
1814 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1815 	trace_i915_request_wait_end(rq);
1816 	return timeout;
1817 }
1818 
1819 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1820 #include "selftests/mock_request.c"
1821 #include "selftests/i915_request.c"
1822 #endif
1823 
1824 static void i915_global_request_shrink(void)
1825 {
1826 	kmem_cache_shrink(global.slab_execute_cbs);
1827 	kmem_cache_shrink(global.slab_requests);
1828 }
1829 
1830 static void i915_global_request_exit(void)
1831 {
1832 	kmem_cache_destroy(global.slab_execute_cbs);
1833 	kmem_cache_destroy(global.slab_requests);
1834 }
1835 
1836 static struct i915_global_request global = { {
1837 	.shrink = i915_global_request_shrink,
1838 	.exit = i915_global_request_exit,
1839 } };
1840 
1841 int __init i915_global_request_init(void)
1842 {
1843 	global.slab_requests =
1844 		kmem_cache_create("i915_request",
1845 				  sizeof(struct i915_request),
1846 				  __alignof__(struct i915_request),
1847 				  SLAB_HWCACHE_ALIGN |
1848 				  SLAB_RECLAIM_ACCOUNT |
1849 				  SLAB_TYPESAFE_BY_RCU,
1850 				  __i915_request_ctor);
1851 	if (!global.slab_requests)
1852 		return -ENOMEM;
1853 
1854 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1855 					     SLAB_HWCACHE_ALIGN |
1856 					     SLAB_RECLAIM_ACCOUNT |
1857 					     SLAB_TYPESAFE_BY_RCU);
1858 	if (!global.slab_execute_cbs)
1859 		goto err_requests;
1860 
1861 	i915_global_register(&global.base);
1862 	return 0;
1863 
1864 err_requests:
1865 	kmem_cache_destroy(global.slab_requests);
1866 	return -ENOMEM;
1867 }
1868