1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 33 #include "gem/i915_gem_context.h" 34 #include "gt/intel_breadcrumbs.h" 35 #include "gt/intel_context.h" 36 #include "gt/intel_engine.h" 37 #include "gt/intel_engine_heartbeat.h" 38 #include "gt/intel_gpu_commands.h" 39 #include "gt/intel_reset.h" 40 #include "gt/intel_ring.h" 41 #include "gt/intel_rps.h" 42 43 #include "i915_active.h" 44 #include "i915_drv.h" 45 #include "i915_trace.h" 46 #include "intel_pm.h" 47 48 struct execute_cb { 49 struct irq_work work; 50 struct i915_sw_fence *fence; 51 struct i915_request *signal; 52 }; 53 54 static struct kmem_cache *slab_requests; 55 static struct kmem_cache *slab_execute_cbs; 56 57 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 58 { 59 return dev_name(to_request(fence)->engine->i915->drm.dev); 60 } 61 62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 63 { 64 const struct i915_gem_context *ctx; 65 66 /* 67 * The timeline struct (as part of the ppgtt underneath a context) 68 * may be freed when the request is no longer in use by the GPU. 69 * We could extend the life of a context to beyond that of all 70 * fences, possibly keeping the hw resource around indefinitely, 71 * or we just give them a false name. Since 72 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 73 * lie seems justifiable. 74 */ 75 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 76 return "signaled"; 77 78 ctx = i915_request_gem_context(to_request(fence)); 79 if (!ctx) 80 return "[" DRIVER_NAME "]"; 81 82 return ctx->name; 83 } 84 85 static bool i915_fence_signaled(struct dma_fence *fence) 86 { 87 return i915_request_completed(to_request(fence)); 88 } 89 90 static bool i915_fence_enable_signaling(struct dma_fence *fence) 91 { 92 return i915_request_enable_breadcrumb(to_request(fence)); 93 } 94 95 static signed long i915_fence_wait(struct dma_fence *fence, 96 bool interruptible, 97 signed long timeout) 98 { 99 return i915_request_wait(to_request(fence), 100 interruptible | I915_WAIT_PRIORITY, 101 timeout); 102 } 103 104 struct kmem_cache *i915_request_slab_cache(void) 105 { 106 return slab_requests; 107 } 108 109 static void i915_fence_release(struct dma_fence *fence) 110 { 111 struct i915_request *rq = to_request(fence); 112 113 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT && 114 rq->guc_prio != GUC_PRIO_FINI); 115 116 /* 117 * The request is put onto a RCU freelist (i.e. the address 118 * is immediately reused), mark the fences as being freed now. 119 * Otherwise the debugobjects for the fences are only marked as 120 * freed when the slab cache itself is freed, and so we would get 121 * caught trying to reuse dead objects. 122 */ 123 i915_sw_fence_fini(&rq->submit); 124 i915_sw_fence_fini(&rq->semaphore); 125 126 /* 127 * Keep one request on each engine for reserved use under mempressure, 128 * do not use with virtual engines as this really is only needed for 129 * kernel contexts. 130 */ 131 if (!intel_engine_is_virtual(rq->engine) && 132 !cmpxchg(&rq->engine->request_pool, NULL, rq)) { 133 intel_context_put(rq->context); 134 return; 135 } 136 137 intel_context_put(rq->context); 138 139 kmem_cache_free(slab_requests, rq); 140 } 141 142 const struct dma_fence_ops i915_fence_ops = { 143 .get_driver_name = i915_fence_get_driver_name, 144 .get_timeline_name = i915_fence_get_timeline_name, 145 .enable_signaling = i915_fence_enable_signaling, 146 .signaled = i915_fence_signaled, 147 .wait = i915_fence_wait, 148 .release = i915_fence_release, 149 }; 150 151 static void irq_execute_cb(struct irq_work *wrk) 152 { 153 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 154 155 i915_sw_fence_complete(cb->fence); 156 kmem_cache_free(slab_execute_cbs, cb); 157 } 158 159 static __always_inline void 160 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 161 { 162 struct execute_cb *cb, *cn; 163 164 if (llist_empty(&rq->execute_cb)) 165 return; 166 167 llist_for_each_entry_safe(cb, cn, 168 llist_del_all(&rq->execute_cb), 169 work.node.llist) 170 fn(&cb->work); 171 } 172 173 static void __notify_execute_cb_irq(struct i915_request *rq) 174 { 175 __notify_execute_cb(rq, irq_work_queue); 176 } 177 178 static bool irq_work_imm(struct irq_work *wrk) 179 { 180 wrk->func(wrk); 181 return false; 182 } 183 184 void i915_request_notify_execute_cb_imm(struct i915_request *rq) 185 { 186 __notify_execute_cb(rq, irq_work_imm); 187 } 188 189 static void free_capture_list(struct i915_request *request) 190 { 191 struct i915_capture_list *capture; 192 193 capture = fetch_and_zero(&request->capture_list); 194 while (capture) { 195 struct i915_capture_list *next = capture->next; 196 197 kfree(capture); 198 capture = next; 199 } 200 } 201 202 static void __i915_request_fill(struct i915_request *rq, u8 val) 203 { 204 void *vaddr = rq->ring->vaddr; 205 u32 head; 206 207 head = rq->infix; 208 if (rq->postfix < head) { 209 memset(vaddr + head, val, rq->ring->size - head); 210 head = 0; 211 } 212 memset(vaddr + head, val, rq->postfix - head); 213 } 214 215 /** 216 * i915_request_active_engine 217 * @rq: request to inspect 218 * @active: pointer in which to return the active engine 219 * 220 * Fills the currently active engine to the @active pointer if the request 221 * is active and still not completed. 222 * 223 * Returns true if request was active or false otherwise. 224 */ 225 bool 226 i915_request_active_engine(struct i915_request *rq, 227 struct intel_engine_cs **active) 228 { 229 struct intel_engine_cs *engine, *locked; 230 bool ret = false; 231 232 /* 233 * Serialise with __i915_request_submit() so that it sees 234 * is-banned?, or we know the request is already inflight. 235 * 236 * Note that rq->engine is unstable, and so we double 237 * check that we have acquired the lock on the final engine. 238 */ 239 locked = READ_ONCE(rq->engine); 240 spin_lock_irq(&locked->sched_engine->lock); 241 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 242 spin_unlock(&locked->sched_engine->lock); 243 locked = engine; 244 spin_lock(&locked->sched_engine->lock); 245 } 246 247 if (i915_request_is_active(rq)) { 248 if (!__i915_request_is_complete(rq)) 249 *active = locked; 250 ret = true; 251 } 252 253 spin_unlock_irq(&locked->sched_engine->lock); 254 255 return ret; 256 } 257 258 static void __rq_init_watchdog(struct i915_request *rq) 259 { 260 rq->watchdog.timer.function = NULL; 261 } 262 263 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer) 264 { 265 struct i915_request *rq = 266 container_of(hrtimer, struct i915_request, watchdog.timer); 267 struct intel_gt *gt = rq->engine->gt; 268 269 if (!i915_request_completed(rq)) { 270 if (llist_add(&rq->watchdog.link, >->watchdog.list)) 271 schedule_work(>->watchdog.work); 272 } else { 273 i915_request_put(rq); 274 } 275 276 return HRTIMER_NORESTART; 277 } 278 279 static void __rq_arm_watchdog(struct i915_request *rq) 280 { 281 struct i915_request_watchdog *wdg = &rq->watchdog; 282 struct intel_context *ce = rq->context; 283 284 if (!ce->watchdog.timeout_us) 285 return; 286 287 i915_request_get(rq); 288 289 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 290 wdg->timer.function = __rq_watchdog_expired; 291 hrtimer_start_range_ns(&wdg->timer, 292 ns_to_ktime(ce->watchdog.timeout_us * 293 NSEC_PER_USEC), 294 NSEC_PER_MSEC, 295 HRTIMER_MODE_REL); 296 } 297 298 static void __rq_cancel_watchdog(struct i915_request *rq) 299 { 300 struct i915_request_watchdog *wdg = &rq->watchdog; 301 302 if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0) 303 i915_request_put(rq); 304 } 305 306 bool i915_request_retire(struct i915_request *rq) 307 { 308 if (!__i915_request_is_complete(rq)) 309 return false; 310 311 RQ_TRACE(rq, "\n"); 312 313 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 314 trace_i915_request_retire(rq); 315 i915_request_mark_complete(rq); 316 317 __rq_cancel_watchdog(rq); 318 319 /* 320 * We know the GPU must have read the request to have 321 * sent us the seqno + interrupt, so use the position 322 * of tail of the request to update the last known position 323 * of the GPU head. 324 * 325 * Note this requires that we are always called in request 326 * completion order. 327 */ 328 GEM_BUG_ON(!list_is_first(&rq->link, 329 &i915_request_timeline(rq)->requests)); 330 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 331 /* Poison before we release our space in the ring */ 332 __i915_request_fill(rq, POISON_FREE); 333 rq->ring->head = rq->postfix; 334 335 if (!i915_request_signaled(rq)) { 336 spin_lock_irq(&rq->lock); 337 dma_fence_signal_locked(&rq->fence); 338 spin_unlock_irq(&rq->lock); 339 } 340 341 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) 342 atomic_dec(&rq->engine->gt->rps.num_waiters); 343 344 /* 345 * We only loosely track inflight requests across preemption, 346 * and so we may find ourselves attempting to retire a _completed_ 347 * request that we have removed from the HW and put back on a run 348 * queue. 349 * 350 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 351 * after removing the breadcrumb and signaling it, so that we do not 352 * inadvertently attach the breadcrumb to a completed request. 353 */ 354 rq->engine->remove_active_request(rq); 355 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 356 357 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 358 359 intel_context_exit(rq->context); 360 intel_context_unpin(rq->context); 361 362 free_capture_list(rq); 363 i915_sched_node_fini(&rq->sched); 364 i915_request_put(rq); 365 366 return true; 367 } 368 369 void i915_request_retire_upto(struct i915_request *rq) 370 { 371 struct intel_timeline * const tl = i915_request_timeline(rq); 372 struct i915_request *tmp; 373 374 RQ_TRACE(rq, "\n"); 375 GEM_BUG_ON(!__i915_request_is_complete(rq)); 376 377 do { 378 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 379 GEM_BUG_ON(!i915_request_completed(tmp)); 380 } while (i915_request_retire(tmp) && tmp != rq); 381 } 382 383 static struct i915_request * const * 384 __engine_active(struct intel_engine_cs *engine) 385 { 386 return READ_ONCE(engine->execlists.active); 387 } 388 389 static bool __request_in_flight(const struct i915_request *signal) 390 { 391 struct i915_request * const *port, *rq; 392 bool inflight = false; 393 394 if (!i915_request_is_ready(signal)) 395 return false; 396 397 /* 398 * Even if we have unwound the request, it may still be on 399 * the GPU (preempt-to-busy). If that request is inside an 400 * unpreemptible critical section, it will not be removed. Some 401 * GPU functions may even be stuck waiting for the paired request 402 * (__await_execution) to be submitted and cannot be preempted 403 * until the bond is executing. 404 * 405 * As we know that there are always preemption points between 406 * requests, we know that only the currently executing request 407 * may be still active even though we have cleared the flag. 408 * However, we can't rely on our tracking of ELSP[0] to know 409 * which request is currently active and so maybe stuck, as 410 * the tracking maybe an event behind. Instead assume that 411 * if the context is still inflight, then it is still active 412 * even if the active flag has been cleared. 413 * 414 * To further complicate matters, if there a pending promotion, the HW 415 * may either perform a context switch to the second inflight execlists, 416 * or it may switch to the pending set of execlists. In the case of the 417 * latter, it may send the ACK and we process the event copying the 418 * pending[] over top of inflight[], _overwriting_ our *active. Since 419 * this implies the HW is arbitrating and not struck in *active, we do 420 * not worry about complete accuracy, but we do require no read/write 421 * tearing of the pointer [the read of the pointer must be valid, even 422 * as the array is being overwritten, for which we require the writes 423 * to avoid tearing.] 424 * 425 * Note that the read of *execlists->active may race with the promotion 426 * of execlists->pending[] to execlists->inflight[], overwritting 427 * the value at *execlists->active. This is fine. The promotion implies 428 * that we received an ACK from the HW, and so the context is not 429 * stuck -- if we do not see ourselves in *active, the inflight status 430 * is valid. If instead we see ourselves being copied into *active, 431 * we are inflight and may signal the callback. 432 */ 433 if (!intel_context_inflight(signal->context)) 434 return false; 435 436 rcu_read_lock(); 437 for (port = __engine_active(signal->engine); 438 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 439 port++) { 440 if (rq->context == signal->context) { 441 inflight = i915_seqno_passed(rq->fence.seqno, 442 signal->fence.seqno); 443 break; 444 } 445 } 446 rcu_read_unlock(); 447 448 return inflight; 449 } 450 451 static int 452 __await_execution(struct i915_request *rq, 453 struct i915_request *signal, 454 gfp_t gfp) 455 { 456 struct execute_cb *cb; 457 458 if (i915_request_is_active(signal)) 459 return 0; 460 461 cb = kmem_cache_alloc(slab_execute_cbs, gfp); 462 if (!cb) 463 return -ENOMEM; 464 465 cb->fence = &rq->submit; 466 i915_sw_fence_await(cb->fence); 467 init_irq_work(&cb->work, irq_execute_cb); 468 469 /* 470 * Register the callback first, then see if the signaler is already 471 * active. This ensures that if we race with the 472 * __notify_execute_cb from i915_request_submit() and we are not 473 * included in that list, we get a second bite of the cherry and 474 * execute it ourselves. After this point, a future 475 * i915_request_submit() will notify us. 476 * 477 * In i915_request_retire() we set the ACTIVE bit on a completed 478 * request (then flush the execute_cb). So by registering the 479 * callback first, then checking the ACTIVE bit, we serialise with 480 * the completed/retired request. 481 */ 482 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) { 483 if (i915_request_is_active(signal) || 484 __request_in_flight(signal)) 485 i915_request_notify_execute_cb_imm(signal); 486 } 487 488 return 0; 489 } 490 491 static bool fatal_error(int error) 492 { 493 switch (error) { 494 case 0: /* not an error! */ 495 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 496 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 497 return false; 498 default: 499 return true; 500 } 501 } 502 503 void __i915_request_skip(struct i915_request *rq) 504 { 505 GEM_BUG_ON(!fatal_error(rq->fence.error)); 506 507 if (rq->infix == rq->postfix) 508 return; 509 510 RQ_TRACE(rq, "error: %d\n", rq->fence.error); 511 512 /* 513 * As this request likely depends on state from the lost 514 * context, clear out all the user operations leaving the 515 * breadcrumb at the end (so we get the fence notifications). 516 */ 517 __i915_request_fill(rq, 0); 518 rq->infix = rq->postfix; 519 } 520 521 bool i915_request_set_error_once(struct i915_request *rq, int error) 522 { 523 int old; 524 525 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 526 527 if (i915_request_signaled(rq)) 528 return false; 529 530 old = READ_ONCE(rq->fence.error); 531 do { 532 if (fatal_error(old)) 533 return false; 534 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 535 536 return true; 537 } 538 539 struct i915_request *i915_request_mark_eio(struct i915_request *rq) 540 { 541 if (__i915_request_is_complete(rq)) 542 return NULL; 543 544 GEM_BUG_ON(i915_request_signaled(rq)); 545 546 /* As soon as the request is completed, it may be retired */ 547 rq = i915_request_get(rq); 548 549 i915_request_set_error_once(rq, -EIO); 550 i915_request_mark_complete(rq); 551 552 return rq; 553 } 554 555 bool __i915_request_submit(struct i915_request *request) 556 { 557 struct intel_engine_cs *engine = request->engine; 558 bool result = false; 559 560 RQ_TRACE(request, "\n"); 561 562 GEM_BUG_ON(!irqs_disabled()); 563 lockdep_assert_held(&engine->sched_engine->lock); 564 565 /* 566 * With the advent of preempt-to-busy, we frequently encounter 567 * requests that we have unsubmitted from HW, but left running 568 * until the next ack and so have completed in the meantime. On 569 * resubmission of that completed request, we can skip 570 * updating the payload, and execlists can even skip submitting 571 * the request. 572 * 573 * We must remove the request from the caller's priority queue, 574 * and the caller must only call us when the request is in their 575 * priority queue, under the sched_engine->lock. This ensures that the 576 * request has *not* yet been retired and we can safely move 577 * the request into the engine->active.list where it will be 578 * dropped upon retiring. (Otherwise if resubmit a *retired* 579 * request, this would be a horrible use-after-free.) 580 */ 581 if (__i915_request_is_complete(request)) { 582 list_del_init(&request->sched.link); 583 goto active; 584 } 585 586 if (unlikely(intel_context_is_banned(request->context))) 587 i915_request_set_error_once(request, -EIO); 588 589 if (unlikely(fatal_error(request->fence.error))) 590 __i915_request_skip(request); 591 592 /* 593 * Are we using semaphores when the gpu is already saturated? 594 * 595 * Using semaphores incurs a cost in having the GPU poll a 596 * memory location, busywaiting for it to change. The continual 597 * memory reads can have a noticeable impact on the rest of the 598 * system with the extra bus traffic, stalling the cpu as it too 599 * tries to access memory across the bus (perf stat -e bus-cycles). 600 * 601 * If we installed a semaphore on this request and we only submit 602 * the request after the signaler completed, that indicates the 603 * system is overloaded and using semaphores at this time only 604 * increases the amount of work we are doing. If so, we disable 605 * further use of semaphores until we are idle again, whence we 606 * optimistically try again. 607 */ 608 if (request->sched.semaphores && 609 i915_sw_fence_signaled(&request->semaphore)) 610 engine->saturated |= request->sched.semaphores; 611 612 engine->emit_fini_breadcrumb(request, 613 request->ring->vaddr + request->postfix); 614 615 trace_i915_request_execute(request); 616 if (engine->bump_serial) 617 engine->bump_serial(engine); 618 else 619 engine->serial++; 620 621 result = true; 622 623 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 624 engine->add_active_request(request); 625 active: 626 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 627 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 628 629 /* 630 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 631 * 632 * In the future, perhaps when we have an active time-slicing scheduler, 633 * it will be interesting to unsubmit parallel execution and remove 634 * busywaits from the GPU until their master is restarted. This is 635 * quite hairy, we have to carefully rollback the fence and do a 636 * preempt-to-idle cycle on the target engine, all the while the 637 * master execute_cb may refire. 638 */ 639 __notify_execute_cb_irq(request); 640 641 /* We may be recursing from the signal callback of another i915 fence */ 642 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 643 i915_request_enable_breadcrumb(request); 644 645 return result; 646 } 647 648 void i915_request_submit(struct i915_request *request) 649 { 650 struct intel_engine_cs *engine = request->engine; 651 unsigned long flags; 652 653 /* Will be called from irq-context when using foreign fences. */ 654 spin_lock_irqsave(&engine->sched_engine->lock, flags); 655 656 __i915_request_submit(request); 657 658 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 659 } 660 661 void __i915_request_unsubmit(struct i915_request *request) 662 { 663 struct intel_engine_cs *engine = request->engine; 664 665 /* 666 * Only unwind in reverse order, required so that the per-context list 667 * is kept in seqno/ring order. 668 */ 669 RQ_TRACE(request, "\n"); 670 671 GEM_BUG_ON(!irqs_disabled()); 672 lockdep_assert_held(&engine->sched_engine->lock); 673 674 /* 675 * Before we remove this breadcrumb from the signal list, we have 676 * to ensure that a concurrent dma_fence_enable_signaling() does not 677 * attach itself. We first mark the request as no longer active and 678 * make sure that is visible to other cores, and then remove the 679 * breadcrumb if attached. 680 */ 681 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 682 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 683 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 684 i915_request_cancel_breadcrumb(request); 685 686 /* We've already spun, don't charge on resubmitting. */ 687 if (request->sched.semaphores && __i915_request_has_started(request)) 688 request->sched.semaphores = 0; 689 690 /* 691 * We don't need to wake_up any waiters on request->execute, they 692 * will get woken by any other event or us re-adding this request 693 * to the engine timeline (__i915_request_submit()). The waiters 694 * should be quite adapt at finding that the request now has a new 695 * global_seqno to the one they went to sleep on. 696 */ 697 } 698 699 void i915_request_unsubmit(struct i915_request *request) 700 { 701 struct intel_engine_cs *engine = request->engine; 702 unsigned long flags; 703 704 /* Will be called from irq-context when using foreign fences. */ 705 spin_lock_irqsave(&engine->sched_engine->lock, flags); 706 707 __i915_request_unsubmit(request); 708 709 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 710 } 711 712 void i915_request_cancel(struct i915_request *rq, int error) 713 { 714 if (!i915_request_set_error_once(rq, error)) 715 return; 716 717 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags); 718 719 intel_context_cancel_request(rq->context, rq); 720 } 721 722 static int __i915_sw_fence_call 723 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 724 { 725 struct i915_request *request = 726 container_of(fence, typeof(*request), submit); 727 728 switch (state) { 729 case FENCE_COMPLETE: 730 trace_i915_request_submit(request); 731 732 if (unlikely(fence->error)) 733 i915_request_set_error_once(request, fence->error); 734 else 735 __rq_arm_watchdog(request); 736 737 /* 738 * We need to serialize use of the submit_request() callback 739 * with its hotplugging performed during an emergency 740 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 741 * critical section in order to force i915_gem_set_wedged() to 742 * wait until the submit_request() is completed before 743 * proceeding. 744 */ 745 rcu_read_lock(); 746 request->engine->submit_request(request); 747 rcu_read_unlock(); 748 break; 749 750 case FENCE_FREE: 751 i915_request_put(request); 752 break; 753 } 754 755 return NOTIFY_DONE; 756 } 757 758 static int __i915_sw_fence_call 759 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 760 { 761 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 762 763 switch (state) { 764 case FENCE_COMPLETE: 765 break; 766 767 case FENCE_FREE: 768 i915_request_put(rq); 769 break; 770 } 771 772 return NOTIFY_DONE; 773 } 774 775 static void retire_requests(struct intel_timeline *tl) 776 { 777 struct i915_request *rq, *rn; 778 779 list_for_each_entry_safe(rq, rn, &tl->requests, link) 780 if (!i915_request_retire(rq)) 781 break; 782 } 783 784 static noinline struct i915_request * 785 request_alloc_slow(struct intel_timeline *tl, 786 struct i915_request **rsvd, 787 gfp_t gfp) 788 { 789 struct i915_request *rq; 790 791 /* If we cannot wait, dip into our reserves */ 792 if (!gfpflags_allow_blocking(gfp)) { 793 rq = xchg(rsvd, NULL); 794 if (!rq) /* Use the normal failure path for one final WARN */ 795 goto out; 796 797 return rq; 798 } 799 800 if (list_empty(&tl->requests)) 801 goto out; 802 803 /* Move our oldest request to the slab-cache (if not in use!) */ 804 rq = list_first_entry(&tl->requests, typeof(*rq), link); 805 i915_request_retire(rq); 806 807 rq = kmem_cache_alloc(slab_requests, 808 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 809 if (rq) 810 return rq; 811 812 /* Ratelimit ourselves to prevent oom from malicious clients */ 813 rq = list_last_entry(&tl->requests, typeof(*rq), link); 814 cond_synchronize_rcu(rq->rcustate); 815 816 /* Retire our old requests in the hope that we free some */ 817 retire_requests(tl); 818 819 out: 820 return kmem_cache_alloc(slab_requests, gfp); 821 } 822 823 static void __i915_request_ctor(void *arg) 824 { 825 struct i915_request *rq = arg; 826 827 spin_lock_init(&rq->lock); 828 i915_sched_node_init(&rq->sched); 829 i915_sw_fence_init(&rq->submit, submit_notify); 830 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 831 832 rq->capture_list = NULL; 833 834 init_llist_head(&rq->execute_cb); 835 } 836 837 struct i915_request * 838 __i915_request_create(struct intel_context *ce, gfp_t gfp) 839 { 840 struct intel_timeline *tl = ce->timeline; 841 struct i915_request *rq; 842 u32 seqno; 843 int ret; 844 845 might_alloc(gfp); 846 847 /* Check that the caller provided an already pinned context */ 848 __intel_context_pin(ce); 849 850 /* 851 * Beware: Dragons be flying overhead. 852 * 853 * We use RCU to look up requests in flight. The lookups may 854 * race with the request being allocated from the slab freelist. 855 * That is the request we are writing to here, may be in the process 856 * of being read by __i915_active_request_get_rcu(). As such, 857 * we have to be very careful when overwriting the contents. During 858 * the RCU lookup, we change chase the request->engine pointer, 859 * read the request->global_seqno and increment the reference count. 860 * 861 * The reference count is incremented atomically. If it is zero, 862 * the lookup knows the request is unallocated and complete. Otherwise, 863 * it is either still in use, or has been reallocated and reset 864 * with dma_fence_init(). This increment is safe for release as we 865 * check that the request we have a reference to and matches the active 866 * request. 867 * 868 * Before we increment the refcount, we chase the request->engine 869 * pointer. We must not call kmem_cache_zalloc() or else we set 870 * that pointer to NULL and cause a crash during the lookup. If 871 * we see the request is completed (based on the value of the 872 * old engine and seqno), the lookup is complete and reports NULL. 873 * If we decide the request is not completed (new engine or seqno), 874 * then we grab a reference and double check that it is still the 875 * active request - which it won't be and restart the lookup. 876 * 877 * Do not use kmem_cache_zalloc() here! 878 */ 879 rq = kmem_cache_alloc(slab_requests, 880 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 881 if (unlikely(!rq)) { 882 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 883 if (!rq) { 884 ret = -ENOMEM; 885 goto err_unreserve; 886 } 887 } 888 889 /* 890 * Hold a reference to the intel_context over life of an i915_request. 891 * Without this an i915_request can exist after the context has been 892 * destroyed (e.g. request retired, context closed, but user space holds 893 * a reference to the request from an out fence). In the case of GuC 894 * submission + virtual engine, the engine that the request references 895 * is also destroyed which can trigger bad pointer dref in fence ops 896 * (e.g. i915_fence_get_driver_name). We could likely change these 897 * functions to avoid touching the engine but let's just be safe and 898 * hold the intel_context reference. In execlist mode the request always 899 * eventually points to a physical engine so this isn't an issue. 900 */ 901 rq->context = intel_context_get(ce); 902 rq->engine = ce->engine; 903 rq->ring = ce->ring; 904 rq->execution_mask = ce->engine->mask; 905 906 ret = intel_timeline_get_seqno(tl, rq, &seqno); 907 if (ret) 908 goto err_free; 909 910 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 911 tl->fence_context, seqno); 912 913 RCU_INIT_POINTER(rq->timeline, tl); 914 rq->hwsp_seqno = tl->hwsp_seqno; 915 GEM_BUG_ON(__i915_request_is_complete(rq)); 916 917 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 918 919 rq->guc_prio = GUC_PRIO_INIT; 920 921 /* We bump the ref for the fence chain */ 922 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 923 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 924 925 i915_sched_node_reinit(&rq->sched); 926 927 /* No zalloc, everything must be cleared after use */ 928 rq->batch = NULL; 929 __rq_init_watchdog(rq); 930 GEM_BUG_ON(rq->capture_list); 931 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 932 933 /* 934 * Reserve space in the ring buffer for all the commands required to 935 * eventually emit this request. This is to guarantee that the 936 * i915_request_add() call can't fail. Note that the reserve may need 937 * to be redone if the request is not actually submitted straight 938 * away, e.g. because a GPU scheduler has deferred it. 939 * 940 * Note that due to how we add reserved_space to intel_ring_begin() 941 * we need to double our request to ensure that if we need to wrap 942 * around inside i915_request_add() there is sufficient space at 943 * the beginning of the ring as well. 944 */ 945 rq->reserved_space = 946 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 947 948 /* 949 * Record the position of the start of the request so that 950 * should we detect the updated seqno part-way through the 951 * GPU processing the request, we never over-estimate the 952 * position of the head. 953 */ 954 rq->head = rq->ring->emit; 955 956 ret = rq->engine->request_alloc(rq); 957 if (ret) 958 goto err_unwind; 959 960 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 961 962 intel_context_mark_active(ce); 963 list_add_tail_rcu(&rq->link, &tl->requests); 964 965 return rq; 966 967 err_unwind: 968 ce->ring->emit = rq->head; 969 970 /* Make sure we didn't add ourselves to external state before freeing */ 971 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 972 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 973 974 err_free: 975 intel_context_put(ce); 976 kmem_cache_free(slab_requests, rq); 977 err_unreserve: 978 intel_context_unpin(ce); 979 return ERR_PTR(ret); 980 } 981 982 struct i915_request * 983 i915_request_create(struct intel_context *ce) 984 { 985 struct i915_request *rq; 986 struct intel_timeline *tl; 987 988 tl = intel_context_timeline_lock(ce); 989 if (IS_ERR(tl)) 990 return ERR_CAST(tl); 991 992 /* Move our oldest request to the slab-cache (if not in use!) */ 993 rq = list_first_entry(&tl->requests, typeof(*rq), link); 994 if (!list_is_last(&rq->link, &tl->requests)) 995 i915_request_retire(rq); 996 997 intel_context_enter(ce); 998 rq = __i915_request_create(ce, GFP_KERNEL); 999 intel_context_exit(ce); /* active reference transferred to request */ 1000 if (IS_ERR(rq)) 1001 goto err_unlock; 1002 1003 /* Check that we do not interrupt ourselves with a new request */ 1004 rq->cookie = lockdep_pin_lock(&tl->mutex); 1005 1006 return rq; 1007 1008 err_unlock: 1009 intel_context_timeline_unlock(tl); 1010 return rq; 1011 } 1012 1013 static int 1014 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 1015 { 1016 struct dma_fence *fence; 1017 int err; 1018 1019 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 1020 return 0; 1021 1022 if (i915_request_started(signal)) 1023 return 0; 1024 1025 /* 1026 * The caller holds a reference on @signal, but we do not serialise 1027 * against it being retired and removed from the lists. 1028 * 1029 * We do not hold a reference to the request before @signal, and 1030 * so must be very careful to ensure that it is not _recycled_ as 1031 * we follow the link backwards. 1032 */ 1033 fence = NULL; 1034 rcu_read_lock(); 1035 do { 1036 struct list_head *pos = READ_ONCE(signal->link.prev); 1037 struct i915_request *prev; 1038 1039 /* Confirm signal has not been retired, the link is valid */ 1040 if (unlikely(__i915_request_has_started(signal))) 1041 break; 1042 1043 /* Is signal the earliest request on its timeline? */ 1044 if (pos == &rcu_dereference(signal->timeline)->requests) 1045 break; 1046 1047 /* 1048 * Peek at the request before us in the timeline. That 1049 * request will only be valid before it is retired, so 1050 * after acquiring a reference to it, confirm that it is 1051 * still part of the signaler's timeline. 1052 */ 1053 prev = list_entry(pos, typeof(*prev), link); 1054 if (!i915_request_get_rcu(prev)) 1055 break; 1056 1057 /* After the strong barrier, confirm prev is still attached */ 1058 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 1059 i915_request_put(prev); 1060 break; 1061 } 1062 1063 fence = &prev->fence; 1064 } while (0); 1065 rcu_read_unlock(); 1066 if (!fence) 1067 return 0; 1068 1069 err = 0; 1070 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1071 err = i915_sw_fence_await_dma_fence(&rq->submit, 1072 fence, 0, 1073 I915_FENCE_GFP); 1074 dma_fence_put(fence); 1075 1076 return err; 1077 } 1078 1079 static intel_engine_mask_t 1080 already_busywaiting(struct i915_request *rq) 1081 { 1082 /* 1083 * Polling a semaphore causes bus traffic, delaying other users of 1084 * both the GPU and CPU. We want to limit the impact on others, 1085 * while taking advantage of early submission to reduce GPU 1086 * latency. Therefore we restrict ourselves to not using more 1087 * than one semaphore from each source, and not using a semaphore 1088 * if we have detected the engine is saturated (i.e. would not be 1089 * submitted early and cause bus traffic reading an already passed 1090 * semaphore). 1091 * 1092 * See the are-we-too-late? check in __i915_request_submit(). 1093 */ 1094 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1095 } 1096 1097 static int 1098 __emit_semaphore_wait(struct i915_request *to, 1099 struct i915_request *from, 1100 u32 seqno) 1101 { 1102 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12; 1103 u32 hwsp_offset; 1104 int len, err; 1105 u32 *cs; 1106 1107 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8); 1108 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1109 1110 /* We need to pin the signaler's HWSP until we are finished reading. */ 1111 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1112 if (err) 1113 return err; 1114 1115 len = 4; 1116 if (has_token) 1117 len += 2; 1118 1119 cs = intel_ring_begin(to, len); 1120 if (IS_ERR(cs)) 1121 return PTR_ERR(cs); 1122 1123 /* 1124 * Using greater-than-or-equal here means we have to worry 1125 * about seqno wraparound. To side step that issue, we swap 1126 * the timeline HWSP upon wrapping, so that everyone listening 1127 * for the old (pre-wrap) values do not see the much smaller 1128 * (post-wrap) values than they were expecting (and so wait 1129 * forever). 1130 */ 1131 *cs++ = (MI_SEMAPHORE_WAIT | 1132 MI_SEMAPHORE_GLOBAL_GTT | 1133 MI_SEMAPHORE_POLL | 1134 MI_SEMAPHORE_SAD_GTE_SDD) + 1135 has_token; 1136 *cs++ = seqno; 1137 *cs++ = hwsp_offset; 1138 *cs++ = 0; 1139 if (has_token) { 1140 *cs++ = 0; 1141 *cs++ = MI_NOOP; 1142 } 1143 1144 intel_ring_advance(to, cs); 1145 return 0; 1146 } 1147 1148 static bool 1149 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from) 1150 { 1151 return to->engine->gt->ggtt == from->engine->gt->ggtt; 1152 } 1153 1154 static int 1155 emit_semaphore_wait(struct i915_request *to, 1156 struct i915_request *from, 1157 gfp_t gfp) 1158 { 1159 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1160 struct i915_sw_fence *wait = &to->submit; 1161 1162 if (!can_use_semaphore_wait(to, from)) 1163 goto await_fence; 1164 1165 if (!intel_context_use_semaphores(to->context)) 1166 goto await_fence; 1167 1168 if (i915_request_has_initial_breadcrumb(to)) 1169 goto await_fence; 1170 1171 /* 1172 * If this or its dependents are waiting on an external fence 1173 * that may fail catastrophically, then we want to avoid using 1174 * sempahores as they bypass the fence signaling metadata, and we 1175 * lose the fence->error propagation. 1176 */ 1177 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1178 goto await_fence; 1179 1180 /* Just emit the first semaphore we see as request space is limited. */ 1181 if (already_busywaiting(to) & mask) 1182 goto await_fence; 1183 1184 if (i915_request_await_start(to, from) < 0) 1185 goto await_fence; 1186 1187 /* Only submit our spinner after the signaler is running! */ 1188 if (__await_execution(to, from, gfp)) 1189 goto await_fence; 1190 1191 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1192 goto await_fence; 1193 1194 to->sched.semaphores |= mask; 1195 wait = &to->semaphore; 1196 1197 await_fence: 1198 return i915_sw_fence_await_dma_fence(wait, 1199 &from->fence, 0, 1200 I915_FENCE_GFP); 1201 } 1202 1203 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1204 struct dma_fence *fence) 1205 { 1206 return __intel_timeline_sync_is_later(tl, 1207 fence->context, 1208 fence->seqno - 1); 1209 } 1210 1211 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1212 const struct dma_fence *fence) 1213 { 1214 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1215 } 1216 1217 static int 1218 __i915_request_await_execution(struct i915_request *to, 1219 struct i915_request *from) 1220 { 1221 int err; 1222 1223 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1224 1225 /* Submit both requests at the same time */ 1226 err = __await_execution(to, from, I915_FENCE_GFP); 1227 if (err) 1228 return err; 1229 1230 /* Squash repeated depenendices to the same timelines */ 1231 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1232 &from->fence)) 1233 return 0; 1234 1235 /* 1236 * Wait until the start of this request. 1237 * 1238 * The execution cb fires when we submit the request to HW. But in 1239 * many cases this may be long before the request itself is ready to 1240 * run (consider that we submit 2 requests for the same context, where 1241 * the request of interest is behind an indefinite spinner). So we hook 1242 * up to both to reduce our queues and keep the execution lag minimised 1243 * in the worst case, though we hope that the await_start is elided. 1244 */ 1245 err = i915_request_await_start(to, from); 1246 if (err < 0) 1247 return err; 1248 1249 /* 1250 * Ensure both start together [after all semaphores in signal] 1251 * 1252 * Now that we are queued to the HW at roughly the same time (thanks 1253 * to the execute cb) and are ready to run at roughly the same time 1254 * (thanks to the await start), our signaler may still be indefinitely 1255 * delayed by waiting on a semaphore from a remote engine. If our 1256 * signaler depends on a semaphore, so indirectly do we, and we do not 1257 * want to start our payload until our signaler also starts theirs. 1258 * So we wait. 1259 * 1260 * However, there is also a second condition for which we need to wait 1261 * for the precise start of the signaler. Consider that the signaler 1262 * was submitted in a chain of requests following another context 1263 * (with just an ordinary intra-engine fence dependency between the 1264 * two). In this case the signaler is queued to HW, but not for 1265 * immediate execution, and so we must wait until it reaches the 1266 * active slot. 1267 */ 1268 if (can_use_semaphore_wait(to, from) && 1269 intel_engine_has_semaphores(to->engine) && 1270 !i915_request_has_initial_breadcrumb(to)) { 1271 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1272 if (err < 0) 1273 return err; 1274 } 1275 1276 /* Couple the dependency tree for PI on this exposed to->fence */ 1277 if (to->engine->sched_engine->schedule) { 1278 err = i915_sched_node_add_dependency(&to->sched, 1279 &from->sched, 1280 I915_DEPENDENCY_WEAK); 1281 if (err < 0) 1282 return err; 1283 } 1284 1285 return intel_timeline_sync_set_start(i915_request_timeline(to), 1286 &from->fence); 1287 } 1288 1289 static void mark_external(struct i915_request *rq) 1290 { 1291 /* 1292 * The downside of using semaphores is that we lose metadata passing 1293 * along the signaling chain. This is particularly nasty when we 1294 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1295 * fatal errors we want to scrub the request before it is executed, 1296 * which means that we cannot preload the request onto HW and have 1297 * it wait upon a semaphore. 1298 */ 1299 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1300 } 1301 1302 static int 1303 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1304 { 1305 mark_external(rq); 1306 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1307 i915_fence_context_timeout(rq->engine->i915, 1308 fence->context), 1309 I915_FENCE_GFP); 1310 } 1311 1312 static int 1313 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1314 { 1315 struct dma_fence *iter; 1316 int err = 0; 1317 1318 if (!to_dma_fence_chain(fence)) 1319 return __i915_request_await_external(rq, fence); 1320 1321 dma_fence_chain_for_each(iter, fence) { 1322 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1323 1324 if (!dma_fence_is_i915(chain->fence)) { 1325 err = __i915_request_await_external(rq, iter); 1326 break; 1327 } 1328 1329 err = i915_request_await_dma_fence(rq, chain->fence); 1330 if (err < 0) 1331 break; 1332 } 1333 1334 dma_fence_put(iter); 1335 return err; 1336 } 1337 1338 static inline bool is_parallel_rq(struct i915_request *rq) 1339 { 1340 return intel_context_is_parallel(rq->context); 1341 } 1342 1343 static inline struct intel_context *request_to_parent(struct i915_request *rq) 1344 { 1345 return intel_context_to_parent(rq->context); 1346 } 1347 1348 static bool is_same_parallel_context(struct i915_request *to, 1349 struct i915_request *from) 1350 { 1351 if (is_parallel_rq(to)) 1352 return request_to_parent(to) == request_to_parent(from); 1353 1354 return false; 1355 } 1356 1357 int 1358 i915_request_await_execution(struct i915_request *rq, 1359 struct dma_fence *fence) 1360 { 1361 struct dma_fence **child = &fence; 1362 unsigned int nchild = 1; 1363 int ret; 1364 1365 if (dma_fence_is_array(fence)) { 1366 struct dma_fence_array *array = to_dma_fence_array(fence); 1367 1368 /* XXX Error for signal-on-any fence arrays */ 1369 1370 child = array->fences; 1371 nchild = array->num_fences; 1372 GEM_BUG_ON(!nchild); 1373 } 1374 1375 do { 1376 fence = *child++; 1377 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1378 continue; 1379 1380 if (fence->context == rq->fence.context) 1381 continue; 1382 1383 /* 1384 * We don't squash repeated fence dependencies here as we 1385 * want to run our callback in all cases. 1386 */ 1387 1388 if (dma_fence_is_i915(fence)) { 1389 if (is_same_parallel_context(rq, to_request(fence))) 1390 continue; 1391 ret = __i915_request_await_execution(rq, 1392 to_request(fence)); 1393 } else { 1394 ret = i915_request_await_external(rq, fence); 1395 } 1396 if (ret < 0) 1397 return ret; 1398 } while (--nchild); 1399 1400 return 0; 1401 } 1402 1403 static int 1404 await_request_submit(struct i915_request *to, struct i915_request *from) 1405 { 1406 /* 1407 * If we are waiting on a virtual engine, then it may be 1408 * constrained to execute on a single engine *prior* to submission. 1409 * When it is submitted, it will be first submitted to the virtual 1410 * engine and then passed to the physical engine. We cannot allow 1411 * the waiter to be submitted immediately to the physical engine 1412 * as it may then bypass the virtual request. 1413 */ 1414 if (to->engine == READ_ONCE(from->engine)) 1415 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1416 &from->submit, 1417 I915_FENCE_GFP); 1418 else 1419 return __i915_request_await_execution(to, from); 1420 } 1421 1422 static int 1423 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1424 { 1425 int ret; 1426 1427 GEM_BUG_ON(to == from); 1428 GEM_BUG_ON(to->timeline == from->timeline); 1429 1430 if (i915_request_completed(from)) { 1431 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1432 return 0; 1433 } 1434 1435 if (to->engine->sched_engine->schedule) { 1436 ret = i915_sched_node_add_dependency(&to->sched, 1437 &from->sched, 1438 I915_DEPENDENCY_EXTERNAL); 1439 if (ret < 0) 1440 return ret; 1441 } 1442 1443 if (!intel_engine_uses_guc(to->engine) && 1444 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1445 ret = await_request_submit(to, from); 1446 else 1447 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1448 if (ret < 0) 1449 return ret; 1450 1451 return 0; 1452 } 1453 1454 int 1455 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1456 { 1457 struct dma_fence **child = &fence; 1458 unsigned int nchild = 1; 1459 int ret; 1460 1461 /* 1462 * Note that if the fence-array was created in signal-on-any mode, 1463 * we should *not* decompose it into its individual fences. However, 1464 * we don't currently store which mode the fence-array is operating 1465 * in. Fortunately, the only user of signal-on-any is private to 1466 * amdgpu and we should not see any incoming fence-array from 1467 * sync-file being in signal-on-any mode. 1468 */ 1469 if (dma_fence_is_array(fence)) { 1470 struct dma_fence_array *array = to_dma_fence_array(fence); 1471 1472 child = array->fences; 1473 nchild = array->num_fences; 1474 GEM_BUG_ON(!nchild); 1475 } 1476 1477 do { 1478 fence = *child++; 1479 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1480 continue; 1481 1482 /* 1483 * Requests on the same timeline are explicitly ordered, along 1484 * with their dependencies, by i915_request_add() which ensures 1485 * that requests are submitted in-order through each ring. 1486 */ 1487 if (fence->context == rq->fence.context) 1488 continue; 1489 1490 /* Squash repeated waits to the same timelines */ 1491 if (fence->context && 1492 intel_timeline_sync_is_later(i915_request_timeline(rq), 1493 fence)) 1494 continue; 1495 1496 if (dma_fence_is_i915(fence)) { 1497 if (is_same_parallel_context(rq, to_request(fence))) 1498 continue; 1499 ret = i915_request_await_request(rq, to_request(fence)); 1500 } else { 1501 ret = i915_request_await_external(rq, fence); 1502 } 1503 if (ret < 0) 1504 return ret; 1505 1506 /* Record the latest fence used against each timeline */ 1507 if (fence->context) 1508 intel_timeline_sync_set(i915_request_timeline(rq), 1509 fence); 1510 } while (--nchild); 1511 1512 return 0; 1513 } 1514 1515 /** 1516 * i915_request_await_object - set this request to (async) wait upon a bo 1517 * @to: request we are wishing to use 1518 * @obj: object which may be in use on another ring. 1519 * @write: whether the wait is on behalf of a writer 1520 * 1521 * This code is meant to abstract object synchronization with the GPU. 1522 * Conceptually we serialise writes between engines inside the GPU. 1523 * We only allow one engine to write into a buffer at any time, but 1524 * multiple readers. To ensure each has a coherent view of memory, we must: 1525 * 1526 * - If there is an outstanding write request to the object, the new 1527 * request must wait for it to complete (either CPU or in hw, requests 1528 * on the same ring will be naturally ordered). 1529 * 1530 * - If we are a write request (pending_write_domain is set), the new 1531 * request must wait for outstanding read requests to complete. 1532 * 1533 * Returns 0 if successful, else propagates up the lower layer error. 1534 */ 1535 int 1536 i915_request_await_object(struct i915_request *to, 1537 struct drm_i915_gem_object *obj, 1538 bool write) 1539 { 1540 struct dma_resv_iter cursor; 1541 struct dma_fence *fence; 1542 int ret = 0; 1543 1544 dma_resv_for_each_fence(&cursor, obj->base.resv, write, fence) { 1545 ret = i915_request_await_dma_fence(to, fence); 1546 if (ret) 1547 break; 1548 } 1549 1550 return ret; 1551 } 1552 1553 static struct i915_request * 1554 __i915_request_ensure_parallel_ordering(struct i915_request *rq, 1555 struct intel_timeline *timeline) 1556 { 1557 struct i915_request *prev; 1558 1559 GEM_BUG_ON(!is_parallel_rq(rq)); 1560 1561 prev = request_to_parent(rq)->parallel.last_rq; 1562 if (prev) { 1563 if (!__i915_request_is_complete(prev)) { 1564 i915_sw_fence_await_sw_fence(&rq->submit, 1565 &prev->submit, 1566 &rq->submitq); 1567 1568 if (rq->engine->sched_engine->schedule) 1569 __i915_sched_node_add_dependency(&rq->sched, 1570 &prev->sched, 1571 &rq->dep, 1572 0); 1573 } 1574 i915_request_put(prev); 1575 } 1576 1577 request_to_parent(rq)->parallel.last_rq = i915_request_get(rq); 1578 1579 return to_request(__i915_active_fence_set(&timeline->last_request, 1580 &rq->fence)); 1581 } 1582 1583 static struct i915_request * 1584 __i915_request_ensure_ordering(struct i915_request *rq, 1585 struct intel_timeline *timeline) 1586 { 1587 struct i915_request *prev; 1588 1589 GEM_BUG_ON(is_parallel_rq(rq)); 1590 1591 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1592 &rq->fence)); 1593 1594 if (prev && !__i915_request_is_complete(prev)) { 1595 bool uses_guc = intel_engine_uses_guc(rq->engine); 1596 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask | 1597 rq->engine->mask); 1598 bool same_context = prev->context == rq->context; 1599 1600 /* 1601 * The requests are supposed to be kept in order. However, 1602 * we need to be wary in case the timeline->last_request 1603 * is used as a barrier for external modification to this 1604 * context. 1605 */ 1606 GEM_BUG_ON(same_context && 1607 i915_seqno_passed(prev->fence.seqno, 1608 rq->fence.seqno)); 1609 1610 if ((same_context && uses_guc) || (!uses_guc && pow2)) 1611 i915_sw_fence_await_sw_fence(&rq->submit, 1612 &prev->submit, 1613 &rq->submitq); 1614 else 1615 __i915_sw_fence_await_dma_fence(&rq->submit, 1616 &prev->fence, 1617 &rq->dmaq); 1618 if (rq->engine->sched_engine->schedule) 1619 __i915_sched_node_add_dependency(&rq->sched, 1620 &prev->sched, 1621 &rq->dep, 1622 0); 1623 } 1624 1625 return prev; 1626 } 1627 1628 static struct i915_request * 1629 __i915_request_add_to_timeline(struct i915_request *rq) 1630 { 1631 struct intel_timeline *timeline = i915_request_timeline(rq); 1632 struct i915_request *prev; 1633 1634 /* 1635 * Dependency tracking and request ordering along the timeline 1636 * is special cased so that we can eliminate redundant ordering 1637 * operations while building the request (we know that the timeline 1638 * itself is ordered, and here we guarantee it). 1639 * 1640 * As we know we will need to emit tracking along the timeline, 1641 * we embed the hooks into our request struct -- at the cost of 1642 * having to have specialised no-allocation interfaces (which will 1643 * be beneficial elsewhere). 1644 * 1645 * A second benefit to open-coding i915_request_await_request is 1646 * that we can apply a slight variant of the rules specialised 1647 * for timelines that jump between engines (such as virtual engines). 1648 * If we consider the case of virtual engine, we must emit a dma-fence 1649 * to prevent scheduling of the second request until the first is 1650 * complete (to maximise our greedy late load balancing) and this 1651 * precludes optimising to use semaphores serialisation of a single 1652 * timeline across engines. 1653 * 1654 * We do not order parallel submission requests on the timeline as each 1655 * parallel submission context has its own timeline and the ordering 1656 * rules for parallel requests are that they must be submitted in the 1657 * order received from the execbuf IOCTL. So rather than using the 1658 * timeline we store a pointer to last request submitted in the 1659 * relationship in the gem context and insert a submission fence 1660 * between that request and request passed into this function or 1661 * alternatively we use completion fence if gem context has a single 1662 * timeline and this is the first submission of an execbuf IOCTL. 1663 */ 1664 if (likely(!is_parallel_rq(rq))) 1665 prev = __i915_request_ensure_ordering(rq, timeline); 1666 else 1667 prev = __i915_request_ensure_parallel_ordering(rq, timeline); 1668 1669 /* 1670 * Make sure that no request gazumped us - if it was allocated after 1671 * our i915_request_alloc() and called __i915_request_add() before 1672 * us, the timeline will hold its seqno which is later than ours. 1673 */ 1674 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1675 1676 return prev; 1677 } 1678 1679 /* 1680 * NB: This function is not allowed to fail. Doing so would mean the the 1681 * request is not being tracked for completion but the work itself is 1682 * going to happen on the hardware. This would be a Bad Thing(tm). 1683 */ 1684 struct i915_request *__i915_request_commit(struct i915_request *rq) 1685 { 1686 struct intel_engine_cs *engine = rq->engine; 1687 struct intel_ring *ring = rq->ring; 1688 u32 *cs; 1689 1690 RQ_TRACE(rq, "\n"); 1691 1692 /* 1693 * To ensure that this call will not fail, space for its emissions 1694 * should already have been reserved in the ring buffer. Let the ring 1695 * know that it is time to use that space up. 1696 */ 1697 GEM_BUG_ON(rq->reserved_space > ring->space); 1698 rq->reserved_space = 0; 1699 rq->emitted_jiffies = jiffies; 1700 1701 /* 1702 * Record the position of the start of the breadcrumb so that 1703 * should we detect the updated seqno part-way through the 1704 * GPU processing the request, we never over-estimate the 1705 * position of the ring's HEAD. 1706 */ 1707 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1708 GEM_BUG_ON(IS_ERR(cs)); 1709 rq->postfix = intel_ring_offset(rq, cs); 1710 1711 return __i915_request_add_to_timeline(rq); 1712 } 1713 1714 void __i915_request_queue_bh(struct i915_request *rq) 1715 { 1716 i915_sw_fence_commit(&rq->semaphore); 1717 i915_sw_fence_commit(&rq->submit); 1718 } 1719 1720 void __i915_request_queue(struct i915_request *rq, 1721 const struct i915_sched_attr *attr) 1722 { 1723 /* 1724 * Let the backend know a new request has arrived that may need 1725 * to adjust the existing execution schedule due to a high priority 1726 * request - i.e. we may want to preempt the current request in order 1727 * to run a high priority dependency chain *before* we can execute this 1728 * request. 1729 * 1730 * This is called before the request is ready to run so that we can 1731 * decide whether to preempt the entire chain so that it is ready to 1732 * run at the earliest possible convenience. 1733 */ 1734 if (attr && rq->engine->sched_engine->schedule) 1735 rq->engine->sched_engine->schedule(rq, attr); 1736 1737 local_bh_disable(); 1738 __i915_request_queue_bh(rq); 1739 local_bh_enable(); /* kick tasklets */ 1740 } 1741 1742 void i915_request_add(struct i915_request *rq) 1743 { 1744 struct intel_timeline * const tl = i915_request_timeline(rq); 1745 struct i915_sched_attr attr = {}; 1746 struct i915_gem_context *ctx; 1747 1748 lockdep_assert_held(&tl->mutex); 1749 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1750 1751 trace_i915_request_add(rq); 1752 __i915_request_commit(rq); 1753 1754 /* XXX placeholder for selftests */ 1755 rcu_read_lock(); 1756 ctx = rcu_dereference(rq->context->gem_context); 1757 if (ctx) 1758 attr = ctx->sched; 1759 rcu_read_unlock(); 1760 1761 __i915_request_queue(rq, &attr); 1762 1763 mutex_unlock(&tl->mutex); 1764 } 1765 1766 static unsigned long local_clock_ns(unsigned int *cpu) 1767 { 1768 unsigned long t; 1769 1770 /* 1771 * Cheaply and approximately convert from nanoseconds to microseconds. 1772 * The result and subsequent calculations are also defined in the same 1773 * approximate microseconds units. The principal source of timing 1774 * error here is from the simple truncation. 1775 * 1776 * Note that local_clock() is only defined wrt to the current CPU; 1777 * the comparisons are no longer valid if we switch CPUs. Instead of 1778 * blocking preemption for the entire busywait, we can detect the CPU 1779 * switch and use that as indicator of system load and a reason to 1780 * stop busywaiting, see busywait_stop(). 1781 */ 1782 *cpu = get_cpu(); 1783 t = local_clock(); 1784 put_cpu(); 1785 1786 return t; 1787 } 1788 1789 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1790 { 1791 unsigned int this_cpu; 1792 1793 if (time_after(local_clock_ns(&this_cpu), timeout)) 1794 return true; 1795 1796 return this_cpu != cpu; 1797 } 1798 1799 static bool __i915_spin_request(struct i915_request * const rq, int state) 1800 { 1801 unsigned long timeout_ns; 1802 unsigned int cpu; 1803 1804 /* 1805 * Only wait for the request if we know it is likely to complete. 1806 * 1807 * We don't track the timestamps around requests, nor the average 1808 * request length, so we do not have a good indicator that this 1809 * request will complete within the timeout. What we do know is the 1810 * order in which requests are executed by the context and so we can 1811 * tell if the request has been started. If the request is not even 1812 * running yet, it is a fair assumption that it will not complete 1813 * within our relatively short timeout. 1814 */ 1815 if (!i915_request_is_running(rq)) 1816 return false; 1817 1818 /* 1819 * When waiting for high frequency requests, e.g. during synchronous 1820 * rendering split between the CPU and GPU, the finite amount of time 1821 * required to set up the irq and wait upon it limits the response 1822 * rate. By busywaiting on the request completion for a short while we 1823 * can service the high frequency waits as quick as possible. However, 1824 * if it is a slow request, we want to sleep as quickly as possible. 1825 * The tradeoff between waiting and sleeping is roughly the time it 1826 * takes to sleep on a request, on the order of a microsecond. 1827 */ 1828 1829 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1830 timeout_ns += local_clock_ns(&cpu); 1831 do { 1832 if (dma_fence_is_signaled(&rq->fence)) 1833 return true; 1834 1835 if (signal_pending_state(state, current)) 1836 break; 1837 1838 if (busywait_stop(timeout_ns, cpu)) 1839 break; 1840 1841 cpu_relax(); 1842 } while (!need_resched()); 1843 1844 return false; 1845 } 1846 1847 struct request_wait { 1848 struct dma_fence_cb cb; 1849 struct task_struct *tsk; 1850 }; 1851 1852 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1853 { 1854 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1855 1856 wake_up_process(fetch_and_zero(&wait->tsk)); 1857 } 1858 1859 /** 1860 * i915_request_wait - wait until execution of request has finished 1861 * @rq: the request to wait upon 1862 * @flags: how to wait 1863 * @timeout: how long to wait in jiffies 1864 * 1865 * i915_request_wait() waits for the request to be completed, for a 1866 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1867 * unbounded wait). 1868 * 1869 * Returns the remaining time (in jiffies) if the request completed, which may 1870 * be zero or -ETIME if the request is unfinished after the timeout expires. 1871 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1872 * pending before the request completes. 1873 */ 1874 long i915_request_wait(struct i915_request *rq, 1875 unsigned int flags, 1876 long timeout) 1877 { 1878 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1879 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1880 struct request_wait wait; 1881 1882 might_sleep(); 1883 GEM_BUG_ON(timeout < 0); 1884 1885 if (dma_fence_is_signaled(&rq->fence)) 1886 return timeout; 1887 1888 if (!timeout) 1889 return -ETIME; 1890 1891 trace_i915_request_wait_begin(rq, flags); 1892 1893 /* 1894 * We must never wait on the GPU while holding a lock as we 1895 * may need to perform a GPU reset. So while we don't need to 1896 * serialise wait/reset with an explicit lock, we do want 1897 * lockdep to detect potential dependency cycles. 1898 */ 1899 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1900 1901 /* 1902 * Optimistic spin before touching IRQs. 1903 * 1904 * We may use a rather large value here to offset the penalty of 1905 * switching away from the active task. Frequently, the client will 1906 * wait upon an old swapbuffer to throttle itself to remain within a 1907 * frame of the gpu. If the client is running in lockstep with the gpu, 1908 * then it should not be waiting long at all, and a sleep now will incur 1909 * extra scheduler latency in producing the next frame. To try to 1910 * avoid adding the cost of enabling/disabling the interrupt to the 1911 * short wait, we first spin to see if the request would have completed 1912 * in the time taken to setup the interrupt. 1913 * 1914 * We need upto 5us to enable the irq, and upto 20us to hide the 1915 * scheduler latency of a context switch, ignoring the secondary 1916 * impacts from a context switch such as cache eviction. 1917 * 1918 * The scheme used for low-latency IO is called "hybrid interrupt 1919 * polling". The suggestion there is to sleep until just before you 1920 * expect to be woken by the device interrupt and then poll for its 1921 * completion. That requires having a good predictor for the request 1922 * duration, which we currently lack. 1923 */ 1924 if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT && 1925 __i915_spin_request(rq, state)) 1926 goto out; 1927 1928 /* 1929 * This client is about to stall waiting for the GPU. In many cases 1930 * this is undesirable and limits the throughput of the system, as 1931 * many clients cannot continue processing user input/output whilst 1932 * blocked. RPS autotuning may take tens of milliseconds to respond 1933 * to the GPU load and thus incurs additional latency for the client. 1934 * We can circumvent that by promoting the GPU frequency to maximum 1935 * before we sleep. This makes the GPU throttle up much more quickly 1936 * (good for benchmarks and user experience, e.g. window animations), 1937 * but at a cost of spending more power processing the workload 1938 * (bad for battery). 1939 */ 1940 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 1941 intel_rps_boost(rq); 1942 1943 wait.tsk = current; 1944 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1945 goto out; 1946 1947 /* 1948 * Flush the submission tasklet, but only if it may help this request. 1949 * 1950 * We sometimes experience some latency between the HW interrupts and 1951 * tasklet execution (mostly due to ksoftirqd latency, but it can also 1952 * be due to lazy CS events), so lets run the tasklet manually if there 1953 * is a chance it may submit this request. If the request is not ready 1954 * to run, as it is waiting for other fences to be signaled, flushing 1955 * the tasklet is busy work without any advantage for this client. 1956 * 1957 * If the HW is being lazy, this is the last chance before we go to 1958 * sleep to catch any pending events. We will check periodically in 1959 * the heartbeat to flush the submission tasklets as a last resort 1960 * for unhappy HW. 1961 */ 1962 if (i915_request_is_ready(rq)) 1963 __intel_engine_flush_submission(rq->engine, false); 1964 1965 for (;;) { 1966 set_current_state(state); 1967 1968 if (dma_fence_is_signaled(&rq->fence)) 1969 break; 1970 1971 if (signal_pending_state(state, current)) { 1972 timeout = -ERESTARTSYS; 1973 break; 1974 } 1975 1976 if (!timeout) { 1977 timeout = -ETIME; 1978 break; 1979 } 1980 1981 timeout = io_schedule_timeout(timeout); 1982 } 1983 __set_current_state(TASK_RUNNING); 1984 1985 if (READ_ONCE(wait.tsk)) 1986 dma_fence_remove_callback(&rq->fence, &wait.cb); 1987 GEM_BUG_ON(!list_empty(&wait.cb.node)); 1988 1989 out: 1990 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1991 trace_i915_request_wait_end(rq); 1992 return timeout; 1993 } 1994 1995 static int print_sched_attr(const struct i915_sched_attr *attr, 1996 char *buf, int x, int len) 1997 { 1998 if (attr->priority == I915_PRIORITY_INVALID) 1999 return x; 2000 2001 x += snprintf(buf + x, len - x, 2002 " prio=%d", attr->priority); 2003 2004 return x; 2005 } 2006 2007 static char queue_status(const struct i915_request *rq) 2008 { 2009 if (i915_request_is_active(rq)) 2010 return 'E'; 2011 2012 if (i915_request_is_ready(rq)) 2013 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R'; 2014 2015 return 'U'; 2016 } 2017 2018 static const char *run_status(const struct i915_request *rq) 2019 { 2020 if (__i915_request_is_complete(rq)) 2021 return "!"; 2022 2023 if (__i915_request_has_started(rq)) 2024 return "*"; 2025 2026 if (!i915_sw_fence_signaled(&rq->semaphore)) 2027 return "&"; 2028 2029 return ""; 2030 } 2031 2032 static const char *fence_status(const struct i915_request *rq) 2033 { 2034 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 2035 return "+"; 2036 2037 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 2038 return "-"; 2039 2040 return ""; 2041 } 2042 2043 void i915_request_show(struct drm_printer *m, 2044 const struct i915_request *rq, 2045 const char *prefix, 2046 int indent) 2047 { 2048 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence); 2049 char buf[80] = ""; 2050 int x = 0; 2051 2052 /* 2053 * The prefix is used to show the queue status, for which we use 2054 * the following flags: 2055 * 2056 * U [Unready] 2057 * - initial status upon being submitted by the user 2058 * 2059 * - the request is not ready for execution as it is waiting 2060 * for external fences 2061 * 2062 * R [Ready] 2063 * - all fences the request was waiting on have been signaled, 2064 * and the request is now ready for execution and will be 2065 * in a backend queue 2066 * 2067 * - a ready request may still need to wait on semaphores 2068 * [internal fences] 2069 * 2070 * V [Ready/virtual] 2071 * - same as ready, but queued over multiple backends 2072 * 2073 * E [Executing] 2074 * - the request has been transferred from the backend queue and 2075 * submitted for execution on HW 2076 * 2077 * - a completed request may still be regarded as executing, its 2078 * status may not be updated until it is retired and removed 2079 * from the lists 2080 */ 2081 2082 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); 2083 2084 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n", 2085 prefix, indent, " ", 2086 queue_status(rq), 2087 rq->fence.context, rq->fence.seqno, 2088 run_status(rq), 2089 fence_status(rq), 2090 buf, 2091 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 2092 name); 2093 } 2094 2095 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq) 2096 { 2097 u32 ring = ENGINE_READ(engine, RING_START); 2098 2099 return ring == i915_ggtt_offset(rq->ring->vma); 2100 } 2101 2102 static bool match_ring(struct i915_request *rq) 2103 { 2104 struct intel_engine_cs *engine; 2105 bool found; 2106 int i; 2107 2108 if (!intel_engine_is_virtual(rq->engine)) 2109 return engine_match_ring(rq->engine, rq); 2110 2111 found = false; 2112 i = 0; 2113 while ((engine = intel_engine_get_sibling(rq->engine, i++))) { 2114 found = engine_match_ring(engine, rq); 2115 if (found) 2116 break; 2117 } 2118 2119 return found; 2120 } 2121 2122 enum i915_request_state i915_test_request_state(struct i915_request *rq) 2123 { 2124 if (i915_request_completed(rq)) 2125 return I915_REQUEST_COMPLETE; 2126 2127 if (!i915_request_started(rq)) 2128 return I915_REQUEST_PENDING; 2129 2130 if (match_ring(rq)) 2131 return I915_REQUEST_ACTIVE; 2132 2133 return I915_REQUEST_QUEUED; 2134 } 2135 2136 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2137 #include "selftests/mock_request.c" 2138 #include "selftests/i915_request.c" 2139 #endif 2140 2141 void i915_request_module_exit(void) 2142 { 2143 kmem_cache_destroy(slab_execute_cbs); 2144 kmem_cache_destroy(slab_requests); 2145 } 2146 2147 int __init i915_request_module_init(void) 2148 { 2149 slab_requests = 2150 kmem_cache_create("i915_request", 2151 sizeof(struct i915_request), 2152 __alignof__(struct i915_request), 2153 SLAB_HWCACHE_ALIGN | 2154 SLAB_RECLAIM_ACCOUNT | 2155 SLAB_TYPESAFE_BY_RCU, 2156 __i915_request_ctor); 2157 if (!slab_requests) 2158 return -ENOMEM; 2159 2160 slab_execute_cbs = KMEM_CACHE(execute_cb, 2161 SLAB_HWCACHE_ALIGN | 2162 SLAB_RECLAIM_ACCOUNT | 2163 SLAB_TYPESAFE_BY_RCU); 2164 if (!slab_execute_cbs) 2165 goto err_requests; 2166 2167 return 0; 2168 2169 err_requests: 2170 kmem_cache_destroy(slab_requests); 2171 return -ENOMEM; 2172 } 2173