1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31 
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 
35 #include "i915_active.h"
36 #include "i915_drv.h"
37 #include "i915_globals.h"
38 #include "intel_pm.h"
39 
40 struct execute_cb {
41 	struct list_head link;
42 	struct irq_work work;
43 	struct i915_sw_fence *fence;
44 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
45 	struct i915_request *signal;
46 };
47 
48 static struct i915_global_request {
49 	struct i915_global base;
50 	struct kmem_cache *slab_requests;
51 	struct kmem_cache *slab_dependencies;
52 	struct kmem_cache *slab_execute_cbs;
53 } global;
54 
55 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
56 {
57 	return "i915";
58 }
59 
60 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
61 {
62 	/*
63 	 * The timeline struct (as part of the ppgtt underneath a context)
64 	 * may be freed when the request is no longer in use by the GPU.
65 	 * We could extend the life of a context to beyond that of all
66 	 * fences, possibly keeping the hw resource around indefinitely,
67 	 * or we just give them a false name. Since
68 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
69 	 * lie seems justifiable.
70 	 */
71 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
72 		return "signaled";
73 
74 	return to_request(fence)->gem_context->name ?: "[i915]";
75 }
76 
77 static bool i915_fence_signaled(struct dma_fence *fence)
78 {
79 	return i915_request_completed(to_request(fence));
80 }
81 
82 static bool i915_fence_enable_signaling(struct dma_fence *fence)
83 {
84 	return i915_request_enable_breadcrumb(to_request(fence));
85 }
86 
87 static signed long i915_fence_wait(struct dma_fence *fence,
88 				   bool interruptible,
89 				   signed long timeout)
90 {
91 	return i915_request_wait(to_request(fence),
92 				 interruptible | I915_WAIT_PRIORITY,
93 				 timeout);
94 }
95 
96 static void i915_fence_release(struct dma_fence *fence)
97 {
98 	struct i915_request *rq = to_request(fence);
99 
100 	/*
101 	 * The request is put onto a RCU freelist (i.e. the address
102 	 * is immediately reused), mark the fences as being freed now.
103 	 * Otherwise the debugobjects for the fences are only marked as
104 	 * freed when the slab cache itself is freed, and so we would get
105 	 * caught trying to reuse dead objects.
106 	 */
107 	i915_sw_fence_fini(&rq->submit);
108 	i915_sw_fence_fini(&rq->semaphore);
109 
110 	kmem_cache_free(global.slab_requests, rq);
111 }
112 
113 const struct dma_fence_ops i915_fence_ops = {
114 	.get_driver_name = i915_fence_get_driver_name,
115 	.get_timeline_name = i915_fence_get_timeline_name,
116 	.enable_signaling = i915_fence_enable_signaling,
117 	.signaled = i915_fence_signaled,
118 	.wait = i915_fence_wait,
119 	.release = i915_fence_release,
120 };
121 
122 static inline void
123 i915_request_remove_from_client(struct i915_request *request)
124 {
125 	struct drm_i915_file_private *file_priv;
126 
127 	file_priv = request->file_priv;
128 	if (!file_priv)
129 		return;
130 
131 	spin_lock(&file_priv->mm.lock);
132 	if (request->file_priv) {
133 		list_del(&request->client_link);
134 		request->file_priv = NULL;
135 	}
136 	spin_unlock(&file_priv->mm.lock);
137 }
138 
139 static void advance_ring(struct i915_request *request)
140 {
141 	struct intel_ring *ring = request->ring;
142 	unsigned int tail;
143 
144 	/*
145 	 * We know the GPU must have read the request to have
146 	 * sent us the seqno + interrupt, so use the position
147 	 * of tail of the request to update the last known position
148 	 * of the GPU head.
149 	 *
150 	 * Note this requires that we are always called in request
151 	 * completion order.
152 	 */
153 	GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list));
154 	if (list_is_last(&request->ring_link, &ring->request_list)) {
155 		/*
156 		 * We may race here with execlists resubmitting this request
157 		 * as we retire it. The resubmission will move the ring->tail
158 		 * forwards (to request->wa_tail). We either read the
159 		 * current value that was written to hw, or the value that
160 		 * is just about to be. Either works, if we miss the last two
161 		 * noops - they are safe to be replayed on a reset.
162 		 */
163 		tail = READ_ONCE(request->tail);
164 		list_del(&ring->active_link);
165 	} else {
166 		tail = request->postfix;
167 	}
168 	list_del_init(&request->ring_link);
169 
170 	ring->head = tail;
171 }
172 
173 static void free_capture_list(struct i915_request *request)
174 {
175 	struct i915_capture_list *capture;
176 
177 	capture = request->capture_list;
178 	while (capture) {
179 		struct i915_capture_list *next = capture->next;
180 
181 		kfree(capture);
182 		capture = next;
183 	}
184 }
185 
186 static bool i915_request_retire(struct i915_request *rq)
187 {
188 	struct i915_active_request *active, *next;
189 
190 	lockdep_assert_held(&rq->i915->drm.struct_mutex);
191 	if (!i915_request_completed(rq))
192 		return false;
193 
194 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
195 		  rq->engine->name,
196 		  rq->fence.context, rq->fence.seqno,
197 		  hwsp_seqno(rq));
198 
199 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
200 	trace_i915_request_retire(rq);
201 
202 	advance_ring(rq);
203 
204 	/*
205 	 * Walk through the active list, calling retire on each. This allows
206 	 * objects to track their GPU activity and mark themselves as idle
207 	 * when their *last* active request is completed (updating state
208 	 * tracking lists for eviction, active references for GEM, etc).
209 	 *
210 	 * As the ->retire() may free the node, we decouple it first and
211 	 * pass along the auxiliary information (to avoid dereferencing
212 	 * the node after the callback).
213 	 */
214 	list_for_each_entry_safe(active, next, &rq->active_list, link) {
215 		/*
216 		 * In microbenchmarks or focusing upon time inside the kernel,
217 		 * we may spend an inordinate amount of time simply handling
218 		 * the retirement of requests and processing their callbacks.
219 		 * Of which, this loop itself is particularly hot due to the
220 		 * cache misses when jumping around the list of
221 		 * i915_active_request.  So we try to keep this loop as
222 		 * streamlined as possible and also prefetch the next
223 		 * i915_active_request to try and hide the likely cache miss.
224 		 */
225 		prefetchw(next);
226 
227 		INIT_LIST_HEAD(&active->link);
228 		RCU_INIT_POINTER(active->request, NULL);
229 
230 		active->retire(active, rq);
231 	}
232 
233 	local_irq_disable();
234 
235 	spin_lock(&rq->engine->active.lock);
236 	list_del(&rq->sched.link);
237 	spin_unlock(&rq->engine->active.lock);
238 
239 	spin_lock(&rq->lock);
240 	i915_request_mark_complete(rq);
241 	if (!i915_request_signaled(rq))
242 		dma_fence_signal_locked(&rq->fence);
243 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
244 		i915_request_cancel_breadcrumb(rq);
245 	if (rq->waitboost) {
246 		GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
247 		atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
248 	}
249 	spin_unlock(&rq->lock);
250 
251 	local_irq_enable();
252 
253 	intel_context_exit(rq->hw_context);
254 	intel_context_unpin(rq->hw_context);
255 
256 	i915_request_remove_from_client(rq);
257 	list_del(&rq->link);
258 
259 	free_capture_list(rq);
260 	i915_sched_node_fini(&rq->sched);
261 	i915_request_put(rq);
262 
263 	return true;
264 }
265 
266 void i915_request_retire_upto(struct i915_request *rq)
267 {
268 	struct intel_ring *ring = rq->ring;
269 	struct i915_request *tmp;
270 
271 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
272 		  rq->engine->name,
273 		  rq->fence.context, rq->fence.seqno,
274 		  hwsp_seqno(rq));
275 
276 	lockdep_assert_held(&rq->i915->drm.struct_mutex);
277 	GEM_BUG_ON(!i915_request_completed(rq));
278 
279 	if (list_empty(&rq->ring_link))
280 		return;
281 
282 	do {
283 		tmp = list_first_entry(&ring->request_list,
284 				       typeof(*tmp), ring_link);
285 	} while (i915_request_retire(tmp) && tmp != rq);
286 }
287 
288 static void irq_execute_cb(struct irq_work *wrk)
289 {
290 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
291 
292 	i915_sw_fence_complete(cb->fence);
293 	kmem_cache_free(global.slab_execute_cbs, cb);
294 }
295 
296 static void irq_execute_cb_hook(struct irq_work *wrk)
297 {
298 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
299 
300 	cb->hook(container_of(cb->fence, struct i915_request, submit),
301 		 &cb->signal->fence);
302 	i915_request_put(cb->signal);
303 
304 	irq_execute_cb(wrk);
305 }
306 
307 static void __notify_execute_cb(struct i915_request *rq)
308 {
309 	struct execute_cb *cb;
310 
311 	lockdep_assert_held(&rq->lock);
312 
313 	if (list_empty(&rq->execute_cb))
314 		return;
315 
316 	list_for_each_entry(cb, &rq->execute_cb, link)
317 		irq_work_queue(&cb->work);
318 
319 	/*
320 	 * XXX Rollback on __i915_request_unsubmit()
321 	 *
322 	 * In the future, perhaps when we have an active time-slicing scheduler,
323 	 * it will be interesting to unsubmit parallel execution and remove
324 	 * busywaits from the GPU until their master is restarted. This is
325 	 * quite hairy, we have to carefully rollback the fence and do a
326 	 * preempt-to-idle cycle on the target engine, all the while the
327 	 * master execute_cb may refire.
328 	 */
329 	INIT_LIST_HEAD(&rq->execute_cb);
330 }
331 
332 static int
333 __i915_request_await_execution(struct i915_request *rq,
334 			       struct i915_request *signal,
335 			       void (*hook)(struct i915_request *rq,
336 					    struct dma_fence *signal),
337 			       gfp_t gfp)
338 {
339 	struct execute_cb *cb;
340 
341 	if (i915_request_is_active(signal)) {
342 		if (hook)
343 			hook(rq, &signal->fence);
344 		return 0;
345 	}
346 
347 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
348 	if (!cb)
349 		return -ENOMEM;
350 
351 	cb->fence = &rq->submit;
352 	i915_sw_fence_await(cb->fence);
353 	init_irq_work(&cb->work, irq_execute_cb);
354 
355 	if (hook) {
356 		cb->hook = hook;
357 		cb->signal = i915_request_get(signal);
358 		cb->work.func = irq_execute_cb_hook;
359 	}
360 
361 	spin_lock_irq(&signal->lock);
362 	if (i915_request_is_active(signal)) {
363 		if (hook) {
364 			hook(rq, &signal->fence);
365 			i915_request_put(signal);
366 		}
367 		i915_sw_fence_complete(cb->fence);
368 		kmem_cache_free(global.slab_execute_cbs, cb);
369 	} else {
370 		list_add_tail(&cb->link, &signal->execute_cb);
371 	}
372 	spin_unlock_irq(&signal->lock);
373 
374 	return 0;
375 }
376 
377 void __i915_request_submit(struct i915_request *request)
378 {
379 	struct intel_engine_cs *engine = request->engine;
380 
381 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
382 		  engine->name,
383 		  request->fence.context, request->fence.seqno,
384 		  hwsp_seqno(request));
385 
386 	GEM_BUG_ON(!irqs_disabled());
387 	lockdep_assert_held(&engine->active.lock);
388 
389 	if (i915_gem_context_is_banned(request->gem_context))
390 		i915_request_skip(request, -EIO);
391 
392 	/*
393 	 * Are we using semaphores when the gpu is already saturated?
394 	 *
395 	 * Using semaphores incurs a cost in having the GPU poll a
396 	 * memory location, busywaiting for it to change. The continual
397 	 * memory reads can have a noticeable impact on the rest of the
398 	 * system with the extra bus traffic, stalling the cpu as it too
399 	 * tries to access memory across the bus (perf stat -e bus-cycles).
400 	 *
401 	 * If we installed a semaphore on this request and we only submit
402 	 * the request after the signaler completed, that indicates the
403 	 * system is overloaded and using semaphores at this time only
404 	 * increases the amount of work we are doing. If so, we disable
405 	 * further use of semaphores until we are idle again, whence we
406 	 * optimistically try again.
407 	 */
408 	if (request->sched.semaphores &&
409 	    i915_sw_fence_signaled(&request->semaphore))
410 		engine->saturated |= request->sched.semaphores;
411 
412 	/* We may be recursing from the signal callback of another i915 fence */
413 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
414 
415 	list_move_tail(&request->sched.link, &engine->active.requests);
416 
417 	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
418 	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
419 
420 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
421 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
422 	    !i915_request_enable_breadcrumb(request))
423 		intel_engine_queue_breadcrumbs(engine);
424 
425 	__notify_execute_cb(request);
426 
427 	spin_unlock(&request->lock);
428 
429 	engine->emit_fini_breadcrumb(request,
430 				     request->ring->vaddr + request->postfix);
431 
432 	engine->serial++;
433 
434 	trace_i915_request_execute(request);
435 }
436 
437 void i915_request_submit(struct i915_request *request)
438 {
439 	struct intel_engine_cs *engine = request->engine;
440 	unsigned long flags;
441 
442 	/* Will be called from irq-context when using foreign fences. */
443 	spin_lock_irqsave(&engine->active.lock, flags);
444 
445 	__i915_request_submit(request);
446 
447 	spin_unlock_irqrestore(&engine->active.lock, flags);
448 }
449 
450 void __i915_request_unsubmit(struct i915_request *request)
451 {
452 	struct intel_engine_cs *engine = request->engine;
453 
454 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
455 		  engine->name,
456 		  request->fence.context, request->fence.seqno,
457 		  hwsp_seqno(request));
458 
459 	GEM_BUG_ON(!irqs_disabled());
460 	lockdep_assert_held(&engine->active.lock);
461 
462 	/*
463 	 * Only unwind in reverse order, required so that the per-context list
464 	 * is kept in seqno/ring order.
465 	 */
466 
467 	/* We may be recursing from the signal callback of another i915 fence */
468 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
469 
470 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
471 		i915_request_cancel_breadcrumb(request);
472 
473 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
474 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
475 
476 	spin_unlock(&request->lock);
477 
478 	/* We've already spun, don't charge on resubmitting. */
479 	if (request->sched.semaphores && i915_request_started(request)) {
480 		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
481 		request->sched.semaphores = 0;
482 	}
483 
484 	/*
485 	 * We don't need to wake_up any waiters on request->execute, they
486 	 * will get woken by any other event or us re-adding this request
487 	 * to the engine timeline (__i915_request_submit()). The waiters
488 	 * should be quite adapt at finding that the request now has a new
489 	 * global_seqno to the one they went to sleep on.
490 	 */
491 }
492 
493 void i915_request_unsubmit(struct i915_request *request)
494 {
495 	struct intel_engine_cs *engine = request->engine;
496 	unsigned long flags;
497 
498 	/* Will be called from irq-context when using foreign fences. */
499 	spin_lock_irqsave(&engine->active.lock, flags);
500 
501 	__i915_request_unsubmit(request);
502 
503 	spin_unlock_irqrestore(&engine->active.lock, flags);
504 }
505 
506 static int __i915_sw_fence_call
507 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
508 {
509 	struct i915_request *request =
510 		container_of(fence, typeof(*request), submit);
511 
512 	switch (state) {
513 	case FENCE_COMPLETE:
514 		trace_i915_request_submit(request);
515 		/*
516 		 * We need to serialize use of the submit_request() callback
517 		 * with its hotplugging performed during an emergency
518 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
519 		 * critical section in order to force i915_gem_set_wedged() to
520 		 * wait until the submit_request() is completed before
521 		 * proceeding.
522 		 */
523 		rcu_read_lock();
524 		request->engine->submit_request(request);
525 		rcu_read_unlock();
526 		break;
527 
528 	case FENCE_FREE:
529 		i915_request_put(request);
530 		break;
531 	}
532 
533 	return NOTIFY_DONE;
534 }
535 
536 static int __i915_sw_fence_call
537 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
538 {
539 	struct i915_request *request =
540 		container_of(fence, typeof(*request), semaphore);
541 
542 	switch (state) {
543 	case FENCE_COMPLETE:
544 		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
545 		break;
546 
547 	case FENCE_FREE:
548 		i915_request_put(request);
549 		break;
550 	}
551 
552 	return NOTIFY_DONE;
553 }
554 
555 static void ring_retire_requests(struct intel_ring *ring)
556 {
557 	struct i915_request *rq, *rn;
558 
559 	list_for_each_entry_safe(rq, rn, &ring->request_list, ring_link)
560 		if (!i915_request_retire(rq))
561 			break;
562 }
563 
564 static noinline struct i915_request *
565 request_alloc_slow(struct intel_context *ce, gfp_t gfp)
566 {
567 	struct intel_ring *ring = ce->ring;
568 	struct i915_request *rq;
569 
570 	if (list_empty(&ring->request_list))
571 		goto out;
572 
573 	if (!gfpflags_allow_blocking(gfp))
574 		goto out;
575 
576 	/* Move our oldest request to the slab-cache (if not in use!) */
577 	rq = list_first_entry(&ring->request_list, typeof(*rq), ring_link);
578 	i915_request_retire(rq);
579 
580 	rq = kmem_cache_alloc(global.slab_requests,
581 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
582 	if (rq)
583 		return rq;
584 
585 	/* Ratelimit ourselves to prevent oom from malicious clients */
586 	rq = list_last_entry(&ring->request_list, typeof(*rq), ring_link);
587 	cond_synchronize_rcu(rq->rcustate);
588 
589 	/* Retire our old requests in the hope that we free some */
590 	ring_retire_requests(ring);
591 
592 out:
593 	return kmem_cache_alloc(global.slab_requests, gfp);
594 }
595 
596 struct i915_request *
597 __i915_request_create(struct intel_context *ce, gfp_t gfp)
598 {
599 	struct i915_timeline *tl = ce->ring->timeline;
600 	struct i915_request *rq;
601 	u32 seqno;
602 	int ret;
603 
604 	might_sleep_if(gfpflags_allow_blocking(gfp));
605 
606 	/* Check that the caller provided an already pinned context */
607 	__intel_context_pin(ce);
608 
609 	/*
610 	 * Beware: Dragons be flying overhead.
611 	 *
612 	 * We use RCU to look up requests in flight. The lookups may
613 	 * race with the request being allocated from the slab freelist.
614 	 * That is the request we are writing to here, may be in the process
615 	 * of being read by __i915_active_request_get_rcu(). As such,
616 	 * we have to be very careful when overwriting the contents. During
617 	 * the RCU lookup, we change chase the request->engine pointer,
618 	 * read the request->global_seqno and increment the reference count.
619 	 *
620 	 * The reference count is incremented atomically. If it is zero,
621 	 * the lookup knows the request is unallocated and complete. Otherwise,
622 	 * it is either still in use, or has been reallocated and reset
623 	 * with dma_fence_init(). This increment is safe for release as we
624 	 * check that the request we have a reference to and matches the active
625 	 * request.
626 	 *
627 	 * Before we increment the refcount, we chase the request->engine
628 	 * pointer. We must not call kmem_cache_zalloc() or else we set
629 	 * that pointer to NULL and cause a crash during the lookup. If
630 	 * we see the request is completed (based on the value of the
631 	 * old engine and seqno), the lookup is complete and reports NULL.
632 	 * If we decide the request is not completed (new engine or seqno),
633 	 * then we grab a reference and double check that it is still the
634 	 * active request - which it won't be and restart the lookup.
635 	 *
636 	 * Do not use kmem_cache_zalloc() here!
637 	 */
638 	rq = kmem_cache_alloc(global.slab_requests,
639 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
640 	if (unlikely(!rq)) {
641 		rq = request_alloc_slow(ce, gfp);
642 		if (!rq) {
643 			ret = -ENOMEM;
644 			goto err_unreserve;
645 		}
646 	}
647 
648 	ret = i915_timeline_get_seqno(tl, rq, &seqno);
649 	if (ret)
650 		goto err_free;
651 
652 	rq->i915 = ce->engine->i915;
653 	rq->hw_context = ce;
654 	rq->gem_context = ce->gem_context;
655 	rq->engine = ce->engine;
656 	rq->ring = ce->ring;
657 	rq->timeline = tl;
658 	rq->hwsp_seqno = tl->hwsp_seqno;
659 	rq->hwsp_cacheline = tl->hwsp_cacheline;
660 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
661 
662 	spin_lock_init(&rq->lock);
663 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
664 		       tl->fence_context, seqno);
665 
666 	/* We bump the ref for the fence chain */
667 	i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
668 	i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
669 
670 	i915_sched_node_init(&rq->sched);
671 
672 	/* No zalloc, must clear what we need by hand */
673 	rq->file_priv = NULL;
674 	rq->batch = NULL;
675 	rq->capture_list = NULL;
676 	rq->waitboost = false;
677 	rq->execution_mask = ALL_ENGINES;
678 
679 	INIT_LIST_HEAD(&rq->active_list);
680 	INIT_LIST_HEAD(&rq->execute_cb);
681 
682 	/*
683 	 * Reserve space in the ring buffer for all the commands required to
684 	 * eventually emit this request. This is to guarantee that the
685 	 * i915_request_add() call can't fail. Note that the reserve may need
686 	 * to be redone if the request is not actually submitted straight
687 	 * away, e.g. because a GPU scheduler has deferred it.
688 	 *
689 	 * Note that due to how we add reserved_space to intel_ring_begin()
690 	 * we need to double our request to ensure that if we need to wrap
691 	 * around inside i915_request_add() there is sufficient space at
692 	 * the beginning of the ring as well.
693 	 */
694 	rq->reserved_space =
695 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
696 
697 	/*
698 	 * Record the position of the start of the request so that
699 	 * should we detect the updated seqno part-way through the
700 	 * GPU processing the request, we never over-estimate the
701 	 * position of the head.
702 	 */
703 	rq->head = rq->ring->emit;
704 
705 	ret = rq->engine->request_alloc(rq);
706 	if (ret)
707 		goto err_unwind;
708 
709 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
710 
711 	intel_context_mark_active(ce);
712 	return rq;
713 
714 err_unwind:
715 	ce->ring->emit = rq->head;
716 
717 	/* Make sure we didn't add ourselves to external state before freeing */
718 	GEM_BUG_ON(!list_empty(&rq->active_list));
719 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
720 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
721 
722 err_free:
723 	kmem_cache_free(global.slab_requests, rq);
724 err_unreserve:
725 	intel_context_unpin(ce);
726 	return ERR_PTR(ret);
727 }
728 
729 struct i915_request *
730 i915_request_create(struct intel_context *ce)
731 {
732 	struct i915_request *rq;
733 	int err;
734 
735 	err = intel_context_timeline_lock(ce);
736 	if (err)
737 		return ERR_PTR(err);
738 
739 	/* Move our oldest request to the slab-cache (if not in use!) */
740 	rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link);
741 	if (!list_is_last(&rq->ring_link, &ce->ring->request_list))
742 		i915_request_retire(rq);
743 
744 	intel_context_enter(ce);
745 	rq = __i915_request_create(ce, GFP_KERNEL);
746 	intel_context_exit(ce); /* active reference transferred to request */
747 	if (IS_ERR(rq))
748 		goto err_unlock;
749 
750 	/* Check that we do not interrupt ourselves with a new request */
751 	rq->cookie = lockdep_pin_lock(&ce->ring->timeline->mutex);
752 
753 	return rq;
754 
755 err_unlock:
756 	intel_context_timeline_unlock(ce);
757 	return rq;
758 }
759 
760 static int
761 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
762 {
763 	if (list_is_first(&signal->ring_link, &signal->ring->request_list))
764 		return 0;
765 
766 	signal = list_prev_entry(signal, ring_link);
767 	if (i915_timeline_sync_is_later(rq->timeline, &signal->fence))
768 		return 0;
769 
770 	return i915_sw_fence_await_dma_fence(&rq->submit,
771 					     &signal->fence, 0,
772 					     I915_FENCE_GFP);
773 }
774 
775 static intel_engine_mask_t
776 already_busywaiting(struct i915_request *rq)
777 {
778 	/*
779 	 * Polling a semaphore causes bus traffic, delaying other users of
780 	 * both the GPU and CPU. We want to limit the impact on others,
781 	 * while taking advantage of early submission to reduce GPU
782 	 * latency. Therefore we restrict ourselves to not using more
783 	 * than one semaphore from each source, and not using a semaphore
784 	 * if we have detected the engine is saturated (i.e. would not be
785 	 * submitted early and cause bus traffic reading an already passed
786 	 * semaphore).
787 	 *
788 	 * See the are-we-too-late? check in __i915_request_submit().
789 	 */
790 	return rq->sched.semaphores | rq->engine->saturated;
791 }
792 
793 static int
794 emit_semaphore_wait(struct i915_request *to,
795 		    struct i915_request *from,
796 		    gfp_t gfp)
797 {
798 	u32 hwsp_offset;
799 	u32 *cs;
800 	int err;
801 
802 	GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
803 	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
804 
805 	/* Just emit the first semaphore we see as request space is limited. */
806 	if (already_busywaiting(to) & from->engine->mask)
807 		return i915_sw_fence_await_dma_fence(&to->submit,
808 						     &from->fence, 0,
809 						     I915_FENCE_GFP);
810 
811 	err = i915_request_await_start(to, from);
812 	if (err < 0)
813 		return err;
814 
815 	/* Only submit our spinner after the signaler is running! */
816 	err = __i915_request_await_execution(to, from, NULL, gfp);
817 	if (err)
818 		return err;
819 
820 	/* We need to pin the signaler's HWSP until we are finished reading. */
821 	err = i915_timeline_read_hwsp(from, to, &hwsp_offset);
822 	if (err)
823 		return err;
824 
825 	cs = intel_ring_begin(to, 4);
826 	if (IS_ERR(cs))
827 		return PTR_ERR(cs);
828 
829 	/*
830 	 * Using greater-than-or-equal here means we have to worry
831 	 * about seqno wraparound. To side step that issue, we swap
832 	 * the timeline HWSP upon wrapping, so that everyone listening
833 	 * for the old (pre-wrap) values do not see the much smaller
834 	 * (post-wrap) values than they were expecting (and so wait
835 	 * forever).
836 	 */
837 	*cs++ = MI_SEMAPHORE_WAIT |
838 		MI_SEMAPHORE_GLOBAL_GTT |
839 		MI_SEMAPHORE_POLL |
840 		MI_SEMAPHORE_SAD_GTE_SDD;
841 	*cs++ = from->fence.seqno;
842 	*cs++ = hwsp_offset;
843 	*cs++ = 0;
844 
845 	intel_ring_advance(to, cs);
846 	to->sched.semaphores |= from->engine->mask;
847 	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
848 	return 0;
849 }
850 
851 static int
852 i915_request_await_request(struct i915_request *to, struct i915_request *from)
853 {
854 	int ret;
855 
856 	GEM_BUG_ON(to == from);
857 	GEM_BUG_ON(to->timeline == from->timeline);
858 
859 	if (i915_request_completed(from))
860 		return 0;
861 
862 	if (to->engine->schedule) {
863 		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
864 		if (ret < 0)
865 			return ret;
866 	}
867 
868 	if (to->engine == from->engine) {
869 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
870 						       &from->submit,
871 						       I915_FENCE_GFP);
872 	} else if (intel_engine_has_semaphores(to->engine) &&
873 		   to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
874 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
875 	} else {
876 		ret = i915_sw_fence_await_dma_fence(&to->submit,
877 						    &from->fence, 0,
878 						    I915_FENCE_GFP);
879 	}
880 	if (ret < 0)
881 		return ret;
882 
883 	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
884 		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
885 						    &from->fence, 0,
886 						    I915_FENCE_GFP);
887 		if (ret < 0)
888 			return ret;
889 	}
890 
891 	return 0;
892 }
893 
894 int
895 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
896 {
897 	struct dma_fence **child = &fence;
898 	unsigned int nchild = 1;
899 	int ret;
900 
901 	/*
902 	 * Note that if the fence-array was created in signal-on-any mode,
903 	 * we should *not* decompose it into its individual fences. However,
904 	 * we don't currently store which mode the fence-array is operating
905 	 * in. Fortunately, the only user of signal-on-any is private to
906 	 * amdgpu and we should not see any incoming fence-array from
907 	 * sync-file being in signal-on-any mode.
908 	 */
909 	if (dma_fence_is_array(fence)) {
910 		struct dma_fence_array *array = to_dma_fence_array(fence);
911 
912 		child = array->fences;
913 		nchild = array->num_fences;
914 		GEM_BUG_ON(!nchild);
915 	}
916 
917 	do {
918 		fence = *child++;
919 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
920 			continue;
921 
922 		/*
923 		 * Requests on the same timeline are explicitly ordered, along
924 		 * with their dependencies, by i915_request_add() which ensures
925 		 * that requests are submitted in-order through each ring.
926 		 */
927 		if (fence->context == rq->fence.context)
928 			continue;
929 
930 		/* Squash repeated waits to the same timelines */
931 		if (fence->context != rq->i915->mm.unordered_timeline &&
932 		    i915_timeline_sync_is_later(rq->timeline, fence))
933 			continue;
934 
935 		if (dma_fence_is_i915(fence))
936 			ret = i915_request_await_request(rq, to_request(fence));
937 		else
938 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
939 							    I915_FENCE_TIMEOUT,
940 							    I915_FENCE_GFP);
941 		if (ret < 0)
942 			return ret;
943 
944 		/* Record the latest fence used against each timeline */
945 		if (fence->context != rq->i915->mm.unordered_timeline)
946 			i915_timeline_sync_set(rq->timeline, fence);
947 	} while (--nchild);
948 
949 	return 0;
950 }
951 
952 int
953 i915_request_await_execution(struct i915_request *rq,
954 			     struct dma_fence *fence,
955 			     void (*hook)(struct i915_request *rq,
956 					  struct dma_fence *signal))
957 {
958 	struct dma_fence **child = &fence;
959 	unsigned int nchild = 1;
960 	int ret;
961 
962 	if (dma_fence_is_array(fence)) {
963 		struct dma_fence_array *array = to_dma_fence_array(fence);
964 
965 		/* XXX Error for signal-on-any fence arrays */
966 
967 		child = array->fences;
968 		nchild = array->num_fences;
969 		GEM_BUG_ON(!nchild);
970 	}
971 
972 	do {
973 		fence = *child++;
974 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
975 			continue;
976 
977 		/*
978 		 * We don't squash repeated fence dependencies here as we
979 		 * want to run our callback in all cases.
980 		 */
981 
982 		if (dma_fence_is_i915(fence))
983 			ret = __i915_request_await_execution(rq,
984 							     to_request(fence),
985 							     hook,
986 							     I915_FENCE_GFP);
987 		else
988 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
989 							    I915_FENCE_TIMEOUT,
990 							    GFP_KERNEL);
991 		if (ret < 0)
992 			return ret;
993 	} while (--nchild);
994 
995 	return 0;
996 }
997 
998 /**
999  * i915_request_await_object - set this request to (async) wait upon a bo
1000  * @to: request we are wishing to use
1001  * @obj: object which may be in use on another ring.
1002  * @write: whether the wait is on behalf of a writer
1003  *
1004  * This code is meant to abstract object synchronization with the GPU.
1005  * Conceptually we serialise writes between engines inside the GPU.
1006  * We only allow one engine to write into a buffer at any time, but
1007  * multiple readers. To ensure each has a coherent view of memory, we must:
1008  *
1009  * - If there is an outstanding write request to the object, the new
1010  *   request must wait for it to complete (either CPU or in hw, requests
1011  *   on the same ring will be naturally ordered).
1012  *
1013  * - If we are a write request (pending_write_domain is set), the new
1014  *   request must wait for outstanding read requests to complete.
1015  *
1016  * Returns 0 if successful, else propagates up the lower layer error.
1017  */
1018 int
1019 i915_request_await_object(struct i915_request *to,
1020 			  struct drm_i915_gem_object *obj,
1021 			  bool write)
1022 {
1023 	struct dma_fence *excl;
1024 	int ret = 0;
1025 
1026 	if (write) {
1027 		struct dma_fence **shared;
1028 		unsigned int count, i;
1029 
1030 		ret = reservation_object_get_fences_rcu(obj->base.resv,
1031 							&excl, &count, &shared);
1032 		if (ret)
1033 			return ret;
1034 
1035 		for (i = 0; i < count; i++) {
1036 			ret = i915_request_await_dma_fence(to, shared[i]);
1037 			if (ret)
1038 				break;
1039 
1040 			dma_fence_put(shared[i]);
1041 		}
1042 
1043 		for (; i < count; i++)
1044 			dma_fence_put(shared[i]);
1045 		kfree(shared);
1046 	} else {
1047 		excl = reservation_object_get_excl_rcu(obj->base.resv);
1048 	}
1049 
1050 	if (excl) {
1051 		if (ret == 0)
1052 			ret = i915_request_await_dma_fence(to, excl);
1053 
1054 		dma_fence_put(excl);
1055 	}
1056 
1057 	return ret;
1058 }
1059 
1060 void i915_request_skip(struct i915_request *rq, int error)
1061 {
1062 	void *vaddr = rq->ring->vaddr;
1063 	u32 head;
1064 
1065 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1066 	dma_fence_set_error(&rq->fence, error);
1067 
1068 	/*
1069 	 * As this request likely depends on state from the lost
1070 	 * context, clear out all the user operations leaving the
1071 	 * breadcrumb at the end (so we get the fence notifications).
1072 	 */
1073 	head = rq->infix;
1074 	if (rq->postfix < head) {
1075 		memset(vaddr + head, 0, rq->ring->size - head);
1076 		head = 0;
1077 	}
1078 	memset(vaddr + head, 0, rq->postfix - head);
1079 }
1080 
1081 static struct i915_request *
1082 __i915_request_add_to_timeline(struct i915_request *rq)
1083 {
1084 	struct i915_timeline *timeline = rq->timeline;
1085 	struct i915_request *prev;
1086 
1087 	/*
1088 	 * Dependency tracking and request ordering along the timeline
1089 	 * is special cased so that we can eliminate redundant ordering
1090 	 * operations while building the request (we know that the timeline
1091 	 * itself is ordered, and here we guarantee it).
1092 	 *
1093 	 * As we know we will need to emit tracking along the timeline,
1094 	 * we embed the hooks into our request struct -- at the cost of
1095 	 * having to have specialised no-allocation interfaces (which will
1096 	 * be beneficial elsewhere).
1097 	 *
1098 	 * A second benefit to open-coding i915_request_await_request is
1099 	 * that we can apply a slight variant of the rules specialised
1100 	 * for timelines that jump between engines (such as virtual engines).
1101 	 * If we consider the case of virtual engine, we must emit a dma-fence
1102 	 * to prevent scheduling of the second request until the first is
1103 	 * complete (to maximise our greedy late load balancing) and this
1104 	 * precludes optimising to use semaphores serialisation of a single
1105 	 * timeline across engines.
1106 	 */
1107 	prev = rcu_dereference_protected(timeline->last_request.request, 1);
1108 	if (prev && !i915_request_completed(prev)) {
1109 		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1110 			i915_sw_fence_await_sw_fence(&rq->submit,
1111 						     &prev->submit,
1112 						     &rq->submitq);
1113 		else
1114 			__i915_sw_fence_await_dma_fence(&rq->submit,
1115 							&prev->fence,
1116 							&rq->dmaq);
1117 		if (rq->engine->schedule)
1118 			__i915_sched_node_add_dependency(&rq->sched,
1119 							 &prev->sched,
1120 							 &rq->dep,
1121 							 0);
1122 	}
1123 
1124 	list_add_tail(&rq->link, &timeline->requests);
1125 
1126 	/*
1127 	 * Make sure that no request gazumped us - if it was allocated after
1128 	 * our i915_request_alloc() and called __i915_request_add() before
1129 	 * us, the timeline will hold its seqno which is later than ours.
1130 	 */
1131 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1132 	__i915_active_request_set(&timeline->last_request, rq);
1133 
1134 	return prev;
1135 }
1136 
1137 /*
1138  * NB: This function is not allowed to fail. Doing so would mean the the
1139  * request is not being tracked for completion but the work itself is
1140  * going to happen on the hardware. This would be a Bad Thing(tm).
1141  */
1142 struct i915_request *__i915_request_commit(struct i915_request *rq)
1143 {
1144 	struct intel_engine_cs *engine = rq->engine;
1145 	struct intel_ring *ring = rq->ring;
1146 	struct i915_request *prev;
1147 	u32 *cs;
1148 
1149 	GEM_TRACE("%s fence %llx:%lld\n",
1150 		  engine->name, rq->fence.context, rq->fence.seqno);
1151 
1152 	/*
1153 	 * To ensure that this call will not fail, space for its emissions
1154 	 * should already have been reserved in the ring buffer. Let the ring
1155 	 * know that it is time to use that space up.
1156 	 */
1157 	GEM_BUG_ON(rq->reserved_space > ring->space);
1158 	rq->reserved_space = 0;
1159 
1160 	/*
1161 	 * Record the position of the start of the breadcrumb so that
1162 	 * should we detect the updated seqno part-way through the
1163 	 * GPU processing the request, we never over-estimate the
1164 	 * position of the ring's HEAD.
1165 	 */
1166 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1167 	GEM_BUG_ON(IS_ERR(cs));
1168 	rq->postfix = intel_ring_offset(rq, cs);
1169 
1170 	prev = __i915_request_add_to_timeline(rq);
1171 
1172 	list_add_tail(&rq->ring_link, &ring->request_list);
1173 	if (list_is_first(&rq->ring_link, &ring->request_list))
1174 		list_add(&ring->active_link, &rq->i915->gt.active_rings);
1175 	rq->emitted_jiffies = jiffies;
1176 
1177 	/*
1178 	 * Let the backend know a new request has arrived that may need
1179 	 * to adjust the existing execution schedule due to a high priority
1180 	 * request - i.e. we may want to preempt the current request in order
1181 	 * to run a high priority dependency chain *before* we can execute this
1182 	 * request.
1183 	 *
1184 	 * This is called before the request is ready to run so that we can
1185 	 * decide whether to preempt the entire chain so that it is ready to
1186 	 * run at the earliest possible convenience.
1187 	 */
1188 	local_bh_disable();
1189 	i915_sw_fence_commit(&rq->semaphore);
1190 	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
1191 	if (engine->schedule) {
1192 		struct i915_sched_attr attr = rq->gem_context->sched;
1193 
1194 		/*
1195 		 * Boost actual workloads past semaphores!
1196 		 *
1197 		 * With semaphores we spin on one engine waiting for another,
1198 		 * simply to reduce the latency of starting our work when
1199 		 * the signaler completes. However, if there is any other
1200 		 * work that we could be doing on this engine instead, that
1201 		 * is better utilisation and will reduce the overall duration
1202 		 * of the current work. To avoid PI boosting a semaphore
1203 		 * far in the distance past over useful work, we keep a history
1204 		 * of any semaphore use along our dependency chain.
1205 		 */
1206 		if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1207 			attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1208 
1209 		/*
1210 		 * Boost priorities to new clients (new request flows).
1211 		 *
1212 		 * Allow interactive/synchronous clients to jump ahead of
1213 		 * the bulk clients. (FQ_CODEL)
1214 		 */
1215 		if (list_empty(&rq->sched.signalers_list))
1216 			attr.priority |= I915_PRIORITY_WAIT;
1217 
1218 		engine->schedule(rq, &attr);
1219 	}
1220 	rcu_read_unlock();
1221 	i915_sw_fence_commit(&rq->submit);
1222 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1223 
1224 	return prev;
1225 }
1226 
1227 void i915_request_add(struct i915_request *rq)
1228 {
1229 	struct i915_request *prev;
1230 
1231 	lockdep_assert_held(&rq->timeline->mutex);
1232 	lockdep_unpin_lock(&rq->timeline->mutex, rq->cookie);
1233 
1234 	trace_i915_request_add(rq);
1235 
1236 	prev = __i915_request_commit(rq);
1237 
1238 	/*
1239 	 * In typical scenarios, we do not expect the previous request on
1240 	 * the timeline to be still tracked by timeline->last_request if it
1241 	 * has been completed. If the completed request is still here, that
1242 	 * implies that request retirement is a long way behind submission,
1243 	 * suggesting that we haven't been retiring frequently enough from
1244 	 * the combination of retire-before-alloc, waiters and the background
1245 	 * retirement worker. So if the last request on this timeline was
1246 	 * already completed, do a catch up pass, flushing the retirement queue
1247 	 * up to this client. Since we have now moved the heaviest operations
1248 	 * during retirement onto secondary workers, such as freeing objects
1249 	 * or contexts, retiring a bunch of requests is mostly list management
1250 	 * (and cache misses), and so we should not be overly penalizing this
1251 	 * client by performing excess work, though we may still performing
1252 	 * work on behalf of others -- but instead we should benefit from
1253 	 * improved resource management. (Well, that's the theory at least.)
1254 	 */
1255 	if (prev && i915_request_completed(prev))
1256 		i915_request_retire_upto(prev);
1257 
1258 	mutex_unlock(&rq->timeline->mutex);
1259 }
1260 
1261 static unsigned long local_clock_us(unsigned int *cpu)
1262 {
1263 	unsigned long t;
1264 
1265 	/*
1266 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1267 	 * The result and subsequent calculations are also defined in the same
1268 	 * approximate microseconds units. The principal source of timing
1269 	 * error here is from the simple truncation.
1270 	 *
1271 	 * Note that local_clock() is only defined wrt to the current CPU;
1272 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1273 	 * blocking preemption for the entire busywait, we can detect the CPU
1274 	 * switch and use that as indicator of system load and a reason to
1275 	 * stop busywaiting, see busywait_stop().
1276 	 */
1277 	*cpu = get_cpu();
1278 	t = local_clock() >> 10;
1279 	put_cpu();
1280 
1281 	return t;
1282 }
1283 
1284 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1285 {
1286 	unsigned int this_cpu;
1287 
1288 	if (time_after(local_clock_us(&this_cpu), timeout))
1289 		return true;
1290 
1291 	return this_cpu != cpu;
1292 }
1293 
1294 static bool __i915_spin_request(const struct i915_request * const rq,
1295 				int state, unsigned long timeout_us)
1296 {
1297 	unsigned int cpu;
1298 
1299 	/*
1300 	 * Only wait for the request if we know it is likely to complete.
1301 	 *
1302 	 * We don't track the timestamps around requests, nor the average
1303 	 * request length, so we do not have a good indicator that this
1304 	 * request will complete within the timeout. What we do know is the
1305 	 * order in which requests are executed by the context and so we can
1306 	 * tell if the request has been started. If the request is not even
1307 	 * running yet, it is a fair assumption that it will not complete
1308 	 * within our relatively short timeout.
1309 	 */
1310 	if (!i915_request_is_running(rq))
1311 		return false;
1312 
1313 	/*
1314 	 * When waiting for high frequency requests, e.g. during synchronous
1315 	 * rendering split between the CPU and GPU, the finite amount of time
1316 	 * required to set up the irq and wait upon it limits the response
1317 	 * rate. By busywaiting on the request completion for a short while we
1318 	 * can service the high frequency waits as quick as possible. However,
1319 	 * if it is a slow request, we want to sleep as quickly as possible.
1320 	 * The tradeoff between waiting and sleeping is roughly the time it
1321 	 * takes to sleep on a request, on the order of a microsecond.
1322 	 */
1323 
1324 	timeout_us += local_clock_us(&cpu);
1325 	do {
1326 		if (i915_request_completed(rq))
1327 			return true;
1328 
1329 		if (signal_pending_state(state, current))
1330 			break;
1331 
1332 		if (busywait_stop(timeout_us, cpu))
1333 			break;
1334 
1335 		cpu_relax();
1336 	} while (!need_resched());
1337 
1338 	return false;
1339 }
1340 
1341 struct request_wait {
1342 	struct dma_fence_cb cb;
1343 	struct task_struct *tsk;
1344 };
1345 
1346 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1347 {
1348 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1349 
1350 	wake_up_process(wait->tsk);
1351 }
1352 
1353 /**
1354  * i915_request_wait - wait until execution of request has finished
1355  * @rq: the request to wait upon
1356  * @flags: how to wait
1357  * @timeout: how long to wait in jiffies
1358  *
1359  * i915_request_wait() waits for the request to be completed, for a
1360  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1361  * unbounded wait).
1362  *
1363  * Returns the remaining time (in jiffies) if the request completed, which may
1364  * be zero or -ETIME if the request is unfinished after the timeout expires.
1365  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1366  * pending before the request completes.
1367  */
1368 long i915_request_wait(struct i915_request *rq,
1369 		       unsigned int flags,
1370 		       long timeout)
1371 {
1372 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1373 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1374 	struct request_wait wait;
1375 
1376 	might_sleep();
1377 	GEM_BUG_ON(timeout < 0);
1378 
1379 	if (dma_fence_is_signaled(&rq->fence))
1380 		return timeout;
1381 
1382 	if (!timeout)
1383 		return -ETIME;
1384 
1385 	trace_i915_request_wait_begin(rq, flags);
1386 
1387 	/*
1388 	 * We must never wait on the GPU while holding a lock as we
1389 	 * may need to perform a GPU reset. So while we don't need to
1390 	 * serialise wait/reset with an explicit lock, we do want
1391 	 * lockdep to detect potential dependency cycles.
1392 	 */
1393 	mutex_acquire(&rq->i915->gpu_error.wedge_mutex.dep_map,
1394 		      0, 0, _THIS_IP_);
1395 
1396 	/*
1397 	 * Optimistic spin before touching IRQs.
1398 	 *
1399 	 * We may use a rather large value here to offset the penalty of
1400 	 * switching away from the active task. Frequently, the client will
1401 	 * wait upon an old swapbuffer to throttle itself to remain within a
1402 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1403 	 * then it should not be waiting long at all, and a sleep now will incur
1404 	 * extra scheduler latency in producing the next frame. To try to
1405 	 * avoid adding the cost of enabling/disabling the interrupt to the
1406 	 * short wait, we first spin to see if the request would have completed
1407 	 * in the time taken to setup the interrupt.
1408 	 *
1409 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1410 	 * scheduler latency of a context switch, ignoring the secondary
1411 	 * impacts from a context switch such as cache eviction.
1412 	 *
1413 	 * The scheme used for low-latency IO is called "hybrid interrupt
1414 	 * polling". The suggestion there is to sleep until just before you
1415 	 * expect to be woken by the device interrupt and then poll for its
1416 	 * completion. That requires having a good predictor for the request
1417 	 * duration, which we currently lack.
1418 	 */
1419 	if (CONFIG_DRM_I915_SPIN_REQUEST &&
1420 	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1421 		dma_fence_signal(&rq->fence);
1422 		goto out;
1423 	}
1424 
1425 	/*
1426 	 * This client is about to stall waiting for the GPU. In many cases
1427 	 * this is undesirable and limits the throughput of the system, as
1428 	 * many clients cannot continue processing user input/output whilst
1429 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1430 	 * to the GPU load and thus incurs additional latency for the client.
1431 	 * We can circumvent that by promoting the GPU frequency to maximum
1432 	 * before we sleep. This makes the GPU throttle up much more quickly
1433 	 * (good for benchmarks and user experience, e.g. window animations),
1434 	 * but at a cost of spending more power processing the workload
1435 	 * (bad for battery).
1436 	 */
1437 	if (flags & I915_WAIT_PRIORITY) {
1438 		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1439 			gen6_rps_boost(rq);
1440 		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1441 	}
1442 
1443 	wait.tsk = current;
1444 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1445 		goto out;
1446 
1447 	for (;;) {
1448 		set_current_state(state);
1449 
1450 		if (i915_request_completed(rq))
1451 			break;
1452 
1453 		if (signal_pending_state(state, current)) {
1454 			timeout = -ERESTARTSYS;
1455 			break;
1456 		}
1457 
1458 		if (!timeout) {
1459 			timeout = -ETIME;
1460 			break;
1461 		}
1462 
1463 		timeout = io_schedule_timeout(timeout);
1464 	}
1465 	__set_current_state(TASK_RUNNING);
1466 
1467 	dma_fence_remove_callback(&rq->fence, &wait.cb);
1468 
1469 out:
1470 	mutex_release(&rq->i915->gpu_error.wedge_mutex.dep_map, 0, _THIS_IP_);
1471 	trace_i915_request_wait_end(rq);
1472 	return timeout;
1473 }
1474 
1475 bool i915_retire_requests(struct drm_i915_private *i915)
1476 {
1477 	struct intel_ring *ring, *tmp;
1478 
1479 	lockdep_assert_held(&i915->drm.struct_mutex);
1480 
1481 	list_for_each_entry_safe(ring, tmp,
1482 				 &i915->gt.active_rings, active_link) {
1483 		intel_ring_get(ring); /* last rq holds reference! */
1484 		ring_retire_requests(ring);
1485 		intel_ring_put(ring);
1486 	}
1487 
1488 	return !list_empty(&i915->gt.active_rings);
1489 }
1490 
1491 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1492 #include "selftests/mock_request.c"
1493 #include "selftests/i915_request.c"
1494 #endif
1495 
1496 static void i915_global_request_shrink(void)
1497 {
1498 	kmem_cache_shrink(global.slab_dependencies);
1499 	kmem_cache_shrink(global.slab_execute_cbs);
1500 	kmem_cache_shrink(global.slab_requests);
1501 }
1502 
1503 static void i915_global_request_exit(void)
1504 {
1505 	kmem_cache_destroy(global.slab_dependencies);
1506 	kmem_cache_destroy(global.slab_execute_cbs);
1507 	kmem_cache_destroy(global.slab_requests);
1508 }
1509 
1510 static struct i915_global_request global = { {
1511 	.shrink = i915_global_request_shrink,
1512 	.exit = i915_global_request_exit,
1513 } };
1514 
1515 int __init i915_global_request_init(void)
1516 {
1517 	global.slab_requests = KMEM_CACHE(i915_request,
1518 					  SLAB_HWCACHE_ALIGN |
1519 					  SLAB_RECLAIM_ACCOUNT |
1520 					  SLAB_TYPESAFE_BY_RCU);
1521 	if (!global.slab_requests)
1522 		return -ENOMEM;
1523 
1524 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1525 					     SLAB_HWCACHE_ALIGN |
1526 					     SLAB_RECLAIM_ACCOUNT |
1527 					     SLAB_TYPESAFE_BY_RCU);
1528 	if (!global.slab_execute_cbs)
1529 		goto err_requests;
1530 
1531 	global.slab_dependencies = KMEM_CACHE(i915_dependency,
1532 					      SLAB_HWCACHE_ALIGN |
1533 					      SLAB_RECLAIM_ACCOUNT);
1534 	if (!global.slab_dependencies)
1535 		goto err_execute_cbs;
1536 
1537 	i915_global_register(&global.base);
1538 	return 0;
1539 
1540 err_execute_cbs:
1541 	kmem_cache_destroy(global.slab_execute_cbs);
1542 err_requests:
1543 	kmem_cache_destroy(global.slab_requests);
1544 	return -ENOMEM;
1545 }
1546