1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31 
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 #include "gt/intel_ring.h"
35 #include "gt/intel_rps.h"
36 
37 #include "i915_active.h"
38 #include "i915_drv.h"
39 #include "i915_globals.h"
40 #include "i915_trace.h"
41 #include "intel_pm.h"
42 
43 struct execute_cb {
44 	struct list_head link;
45 	struct irq_work work;
46 	struct i915_sw_fence *fence;
47 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48 	struct i915_request *signal;
49 };
50 
51 static struct i915_global_request {
52 	struct i915_global base;
53 	struct kmem_cache *slab_requests;
54 	struct kmem_cache *slab_dependencies;
55 	struct kmem_cache *slab_execute_cbs;
56 } global;
57 
58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 {
60 	return "i915";
61 }
62 
63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 {
65 	/*
66 	 * The timeline struct (as part of the ppgtt underneath a context)
67 	 * may be freed when the request is no longer in use by the GPU.
68 	 * We could extend the life of a context to beyond that of all
69 	 * fences, possibly keeping the hw resource around indefinitely,
70 	 * or we just give them a false name. Since
71 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
72 	 * lie seems justifiable.
73 	 */
74 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
75 		return "signaled";
76 
77 	return to_request(fence)->gem_context->name ?: "[i915]";
78 }
79 
80 static bool i915_fence_signaled(struct dma_fence *fence)
81 {
82 	return i915_request_completed(to_request(fence));
83 }
84 
85 static bool i915_fence_enable_signaling(struct dma_fence *fence)
86 {
87 	return i915_request_enable_breadcrumb(to_request(fence));
88 }
89 
90 static signed long i915_fence_wait(struct dma_fence *fence,
91 				   bool interruptible,
92 				   signed long timeout)
93 {
94 	return i915_request_wait(to_request(fence),
95 				 interruptible | I915_WAIT_PRIORITY,
96 				 timeout);
97 }
98 
99 static void i915_fence_release(struct dma_fence *fence)
100 {
101 	struct i915_request *rq = to_request(fence);
102 
103 	/*
104 	 * The request is put onto a RCU freelist (i.e. the address
105 	 * is immediately reused), mark the fences as being freed now.
106 	 * Otherwise the debugobjects for the fences are only marked as
107 	 * freed when the slab cache itself is freed, and so we would get
108 	 * caught trying to reuse dead objects.
109 	 */
110 	i915_sw_fence_fini(&rq->submit);
111 	i915_sw_fence_fini(&rq->semaphore);
112 
113 	kmem_cache_free(global.slab_requests, rq);
114 }
115 
116 const struct dma_fence_ops i915_fence_ops = {
117 	.get_driver_name = i915_fence_get_driver_name,
118 	.get_timeline_name = i915_fence_get_timeline_name,
119 	.enable_signaling = i915_fence_enable_signaling,
120 	.signaled = i915_fence_signaled,
121 	.wait = i915_fence_wait,
122 	.release = i915_fence_release,
123 };
124 
125 static void irq_execute_cb(struct irq_work *wrk)
126 {
127 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
128 
129 	i915_sw_fence_complete(cb->fence);
130 	kmem_cache_free(global.slab_execute_cbs, cb);
131 }
132 
133 static void irq_execute_cb_hook(struct irq_work *wrk)
134 {
135 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
136 
137 	cb->hook(container_of(cb->fence, struct i915_request, submit),
138 		 &cb->signal->fence);
139 	i915_request_put(cb->signal);
140 
141 	irq_execute_cb(wrk);
142 }
143 
144 static void __notify_execute_cb(struct i915_request *rq)
145 {
146 	struct execute_cb *cb;
147 
148 	lockdep_assert_held(&rq->lock);
149 
150 	if (list_empty(&rq->execute_cb))
151 		return;
152 
153 	list_for_each_entry(cb, &rq->execute_cb, link)
154 		irq_work_queue(&cb->work);
155 
156 	/*
157 	 * XXX Rollback on __i915_request_unsubmit()
158 	 *
159 	 * In the future, perhaps when we have an active time-slicing scheduler,
160 	 * it will be interesting to unsubmit parallel execution and remove
161 	 * busywaits from the GPU until their master is restarted. This is
162 	 * quite hairy, we have to carefully rollback the fence and do a
163 	 * preempt-to-idle cycle on the target engine, all the while the
164 	 * master execute_cb may refire.
165 	 */
166 	INIT_LIST_HEAD(&rq->execute_cb);
167 }
168 
169 static inline void
170 remove_from_client(struct i915_request *request)
171 {
172 	struct drm_i915_file_private *file_priv;
173 
174 	if (!READ_ONCE(request->file_priv))
175 		return;
176 
177 	rcu_read_lock();
178 	file_priv = xchg(&request->file_priv, NULL);
179 	if (file_priv) {
180 		spin_lock(&file_priv->mm.lock);
181 		list_del(&request->client_link);
182 		spin_unlock(&file_priv->mm.lock);
183 	}
184 	rcu_read_unlock();
185 }
186 
187 static void free_capture_list(struct i915_request *request)
188 {
189 	struct i915_capture_list *capture;
190 
191 	capture = request->capture_list;
192 	while (capture) {
193 		struct i915_capture_list *next = capture->next;
194 
195 		kfree(capture);
196 		capture = next;
197 	}
198 }
199 
200 static void remove_from_engine(struct i915_request *rq)
201 {
202 	struct intel_engine_cs *engine, *locked;
203 
204 	/*
205 	 * Virtual engines complicate acquiring the engine timeline lock,
206 	 * as their rq->engine pointer is not stable until under that
207 	 * engine lock. The simple ploy we use is to take the lock then
208 	 * check that the rq still belongs to the newly locked engine.
209 	 */
210 	locked = READ_ONCE(rq->engine);
211 	spin_lock_irq(&locked->active.lock);
212 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
213 		spin_unlock(&locked->active.lock);
214 		spin_lock(&engine->active.lock);
215 		locked = engine;
216 	}
217 	list_del(&rq->sched.link);
218 	spin_unlock_irq(&locked->active.lock);
219 }
220 
221 bool i915_request_retire(struct i915_request *rq)
222 {
223 	if (!i915_request_completed(rq))
224 		return false;
225 
226 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
227 		  rq->engine->name,
228 		  rq->fence.context, rq->fence.seqno,
229 		  hwsp_seqno(rq));
230 
231 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
232 	trace_i915_request_retire(rq);
233 
234 	/*
235 	 * We know the GPU must have read the request to have
236 	 * sent us the seqno + interrupt, so use the position
237 	 * of tail of the request to update the last known position
238 	 * of the GPU head.
239 	 *
240 	 * Note this requires that we are always called in request
241 	 * completion order.
242 	 */
243 	GEM_BUG_ON(!list_is_first(&rq->link,
244 				  &i915_request_timeline(rq)->requests));
245 	rq->ring->head = rq->postfix;
246 
247 	/*
248 	 * We only loosely track inflight requests across preemption,
249 	 * and so we may find ourselves attempting to retire a _completed_
250 	 * request that we have removed from the HW and put back on a run
251 	 * queue.
252 	 */
253 	remove_from_engine(rq);
254 
255 	spin_lock_irq(&rq->lock);
256 	i915_request_mark_complete(rq);
257 	if (!i915_request_signaled(rq))
258 		dma_fence_signal_locked(&rq->fence);
259 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
260 		i915_request_cancel_breadcrumb(rq);
261 	if (i915_request_has_waitboost(rq)) {
262 		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
263 		atomic_dec(&rq->engine->gt->rps.num_waiters);
264 	}
265 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
266 		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
267 		__notify_execute_cb(rq);
268 	}
269 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
270 	spin_unlock_irq(&rq->lock);
271 
272 	remove_from_client(rq);
273 	list_del(&rq->link);
274 
275 	intel_context_exit(rq->hw_context);
276 	intel_context_unpin(rq->hw_context);
277 
278 	free_capture_list(rq);
279 	i915_sched_node_fini(&rq->sched);
280 	i915_request_put(rq);
281 
282 	return true;
283 }
284 
285 void i915_request_retire_upto(struct i915_request *rq)
286 {
287 	struct intel_timeline * const tl = i915_request_timeline(rq);
288 	struct i915_request *tmp;
289 
290 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
291 		  rq->engine->name,
292 		  rq->fence.context, rq->fence.seqno,
293 		  hwsp_seqno(rq));
294 
295 	GEM_BUG_ON(!i915_request_completed(rq));
296 
297 	do {
298 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
299 	} while (i915_request_retire(tmp) && tmp != rq);
300 }
301 
302 static int
303 __i915_request_await_execution(struct i915_request *rq,
304 			       struct i915_request *signal,
305 			       void (*hook)(struct i915_request *rq,
306 					    struct dma_fence *signal),
307 			       gfp_t gfp)
308 {
309 	struct execute_cb *cb;
310 
311 	if (i915_request_is_active(signal)) {
312 		if (hook)
313 			hook(rq, &signal->fence);
314 		return 0;
315 	}
316 
317 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
318 	if (!cb)
319 		return -ENOMEM;
320 
321 	cb->fence = &rq->submit;
322 	i915_sw_fence_await(cb->fence);
323 	init_irq_work(&cb->work, irq_execute_cb);
324 
325 	if (hook) {
326 		cb->hook = hook;
327 		cb->signal = i915_request_get(signal);
328 		cb->work.func = irq_execute_cb_hook;
329 	}
330 
331 	spin_lock_irq(&signal->lock);
332 	if (i915_request_is_active(signal)) {
333 		if (hook) {
334 			hook(rq, &signal->fence);
335 			i915_request_put(signal);
336 		}
337 		i915_sw_fence_complete(cb->fence);
338 		kmem_cache_free(global.slab_execute_cbs, cb);
339 	} else {
340 		list_add_tail(&cb->link, &signal->execute_cb);
341 	}
342 	spin_unlock_irq(&signal->lock);
343 
344 	return 0;
345 }
346 
347 bool __i915_request_submit(struct i915_request *request)
348 {
349 	struct intel_engine_cs *engine = request->engine;
350 	bool result = false;
351 
352 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
353 		  engine->name,
354 		  request->fence.context, request->fence.seqno,
355 		  hwsp_seqno(request));
356 
357 	GEM_BUG_ON(!irqs_disabled());
358 	lockdep_assert_held(&engine->active.lock);
359 
360 	/*
361 	 * With the advent of preempt-to-busy, we frequently encounter
362 	 * requests that we have unsubmitted from HW, but left running
363 	 * until the next ack and so have completed in the meantime. On
364 	 * resubmission of that completed request, we can skip
365 	 * updating the payload, and execlists can even skip submitting
366 	 * the request.
367 	 *
368 	 * We must remove the request from the caller's priority queue,
369 	 * and the caller must only call us when the request is in their
370 	 * priority queue, under the active.lock. This ensures that the
371 	 * request has *not* yet been retired and we can safely move
372 	 * the request into the engine->active.list where it will be
373 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
374 	 * request, this would be a horrible use-after-free.)
375 	 */
376 	if (i915_request_completed(request))
377 		goto xfer;
378 
379 	if (i915_gem_context_is_banned(request->gem_context))
380 		i915_request_skip(request, -EIO);
381 
382 	/*
383 	 * Are we using semaphores when the gpu is already saturated?
384 	 *
385 	 * Using semaphores incurs a cost in having the GPU poll a
386 	 * memory location, busywaiting for it to change. The continual
387 	 * memory reads can have a noticeable impact on the rest of the
388 	 * system with the extra bus traffic, stalling the cpu as it too
389 	 * tries to access memory across the bus (perf stat -e bus-cycles).
390 	 *
391 	 * If we installed a semaphore on this request and we only submit
392 	 * the request after the signaler completed, that indicates the
393 	 * system is overloaded and using semaphores at this time only
394 	 * increases the amount of work we are doing. If so, we disable
395 	 * further use of semaphores until we are idle again, whence we
396 	 * optimistically try again.
397 	 */
398 	if (request->sched.semaphores &&
399 	    i915_sw_fence_signaled(&request->semaphore))
400 		engine->saturated |= request->sched.semaphores;
401 
402 	engine->emit_fini_breadcrumb(request,
403 				     request->ring->vaddr + request->postfix);
404 
405 	trace_i915_request_execute(request);
406 	engine->serial++;
407 	result = true;
408 
409 xfer:	/* We may be recursing from the signal callback of another i915 fence */
410 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
411 
412 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
413 		list_move_tail(&request->sched.link, &engine->active.requests);
414 
415 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
416 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
417 	    !i915_request_enable_breadcrumb(request))
418 		intel_engine_queue_breadcrumbs(engine);
419 
420 	__notify_execute_cb(request);
421 
422 	spin_unlock(&request->lock);
423 
424 	return result;
425 }
426 
427 void i915_request_submit(struct i915_request *request)
428 {
429 	struct intel_engine_cs *engine = request->engine;
430 	unsigned long flags;
431 
432 	/* Will be called from irq-context when using foreign fences. */
433 	spin_lock_irqsave(&engine->active.lock, flags);
434 
435 	__i915_request_submit(request);
436 
437 	spin_unlock_irqrestore(&engine->active.lock, flags);
438 }
439 
440 void __i915_request_unsubmit(struct i915_request *request)
441 {
442 	struct intel_engine_cs *engine = request->engine;
443 
444 	GEM_TRACE("%s fence %llx:%lld, current %d\n",
445 		  engine->name,
446 		  request->fence.context, request->fence.seqno,
447 		  hwsp_seqno(request));
448 
449 	GEM_BUG_ON(!irqs_disabled());
450 	lockdep_assert_held(&engine->active.lock);
451 
452 	/*
453 	 * Only unwind in reverse order, required so that the per-context list
454 	 * is kept in seqno/ring order.
455 	 */
456 
457 	/* We may be recursing from the signal callback of another i915 fence */
458 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
459 
460 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
461 		i915_request_cancel_breadcrumb(request);
462 
463 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
464 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
465 
466 	spin_unlock(&request->lock);
467 
468 	/* We've already spun, don't charge on resubmitting. */
469 	if (request->sched.semaphores && i915_request_started(request)) {
470 		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
471 		request->sched.semaphores = 0;
472 	}
473 
474 	/*
475 	 * We don't need to wake_up any waiters on request->execute, they
476 	 * will get woken by any other event or us re-adding this request
477 	 * to the engine timeline (__i915_request_submit()). The waiters
478 	 * should be quite adapt at finding that the request now has a new
479 	 * global_seqno to the one they went to sleep on.
480 	 */
481 }
482 
483 void i915_request_unsubmit(struct i915_request *request)
484 {
485 	struct intel_engine_cs *engine = request->engine;
486 	unsigned long flags;
487 
488 	/* Will be called from irq-context when using foreign fences. */
489 	spin_lock_irqsave(&engine->active.lock, flags);
490 
491 	__i915_request_unsubmit(request);
492 
493 	spin_unlock_irqrestore(&engine->active.lock, flags);
494 }
495 
496 static int __i915_sw_fence_call
497 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
498 {
499 	struct i915_request *request =
500 		container_of(fence, typeof(*request), submit);
501 
502 	switch (state) {
503 	case FENCE_COMPLETE:
504 		trace_i915_request_submit(request);
505 
506 		if (unlikely(fence->error))
507 			i915_request_skip(request, fence->error);
508 
509 		/*
510 		 * We need to serialize use of the submit_request() callback
511 		 * with its hotplugging performed during an emergency
512 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
513 		 * critical section in order to force i915_gem_set_wedged() to
514 		 * wait until the submit_request() is completed before
515 		 * proceeding.
516 		 */
517 		rcu_read_lock();
518 		request->engine->submit_request(request);
519 		rcu_read_unlock();
520 		break;
521 
522 	case FENCE_FREE:
523 		i915_request_put(request);
524 		break;
525 	}
526 
527 	return NOTIFY_DONE;
528 }
529 
530 static int __i915_sw_fence_call
531 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
532 {
533 	struct i915_request *request =
534 		container_of(fence, typeof(*request), semaphore);
535 
536 	switch (state) {
537 	case FENCE_COMPLETE:
538 		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
539 		break;
540 
541 	case FENCE_FREE:
542 		i915_request_put(request);
543 		break;
544 	}
545 
546 	return NOTIFY_DONE;
547 }
548 
549 static void retire_requests(struct intel_timeline *tl)
550 {
551 	struct i915_request *rq, *rn;
552 
553 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
554 		if (!i915_request_retire(rq))
555 			break;
556 }
557 
558 static noinline struct i915_request *
559 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
560 {
561 	struct i915_request *rq;
562 
563 	if (list_empty(&tl->requests))
564 		goto out;
565 
566 	if (!gfpflags_allow_blocking(gfp))
567 		goto out;
568 
569 	/* Move our oldest request to the slab-cache (if not in use!) */
570 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
571 	i915_request_retire(rq);
572 
573 	rq = kmem_cache_alloc(global.slab_requests,
574 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
575 	if (rq)
576 		return rq;
577 
578 	/* Ratelimit ourselves to prevent oom from malicious clients */
579 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
580 	cond_synchronize_rcu(rq->rcustate);
581 
582 	/* Retire our old requests in the hope that we free some */
583 	retire_requests(tl);
584 
585 out:
586 	return kmem_cache_alloc(global.slab_requests, gfp);
587 }
588 
589 struct i915_request *
590 __i915_request_create(struct intel_context *ce, gfp_t gfp)
591 {
592 	struct intel_timeline *tl = ce->timeline;
593 	struct i915_request *rq;
594 	u32 seqno;
595 	int ret;
596 
597 	might_sleep_if(gfpflags_allow_blocking(gfp));
598 
599 	/* Check that the caller provided an already pinned context */
600 	__intel_context_pin(ce);
601 
602 	/*
603 	 * Beware: Dragons be flying overhead.
604 	 *
605 	 * We use RCU to look up requests in flight. The lookups may
606 	 * race with the request being allocated from the slab freelist.
607 	 * That is the request we are writing to here, may be in the process
608 	 * of being read by __i915_active_request_get_rcu(). As such,
609 	 * we have to be very careful when overwriting the contents. During
610 	 * the RCU lookup, we change chase the request->engine pointer,
611 	 * read the request->global_seqno and increment the reference count.
612 	 *
613 	 * The reference count is incremented atomically. If it is zero,
614 	 * the lookup knows the request is unallocated and complete. Otherwise,
615 	 * it is either still in use, or has been reallocated and reset
616 	 * with dma_fence_init(). This increment is safe for release as we
617 	 * check that the request we have a reference to and matches the active
618 	 * request.
619 	 *
620 	 * Before we increment the refcount, we chase the request->engine
621 	 * pointer. We must not call kmem_cache_zalloc() or else we set
622 	 * that pointer to NULL and cause a crash during the lookup. If
623 	 * we see the request is completed (based on the value of the
624 	 * old engine and seqno), the lookup is complete and reports NULL.
625 	 * If we decide the request is not completed (new engine or seqno),
626 	 * then we grab a reference and double check that it is still the
627 	 * active request - which it won't be and restart the lookup.
628 	 *
629 	 * Do not use kmem_cache_zalloc() here!
630 	 */
631 	rq = kmem_cache_alloc(global.slab_requests,
632 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
633 	if (unlikely(!rq)) {
634 		rq = request_alloc_slow(tl, gfp);
635 		if (!rq) {
636 			ret = -ENOMEM;
637 			goto err_unreserve;
638 		}
639 	}
640 
641 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
642 	if (ret)
643 		goto err_free;
644 
645 	rq->i915 = ce->engine->i915;
646 	rq->hw_context = ce;
647 	rq->gem_context = ce->gem_context;
648 	rq->engine = ce->engine;
649 	rq->ring = ce->ring;
650 	rq->execution_mask = ce->engine->mask;
651 
652 	rcu_assign_pointer(rq->timeline, tl);
653 	rq->hwsp_seqno = tl->hwsp_seqno;
654 	rq->hwsp_cacheline = tl->hwsp_cacheline;
655 
656 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
657 
658 	spin_lock_init(&rq->lock);
659 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
660 		       tl->fence_context, seqno);
661 
662 	/* We bump the ref for the fence chain */
663 	i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
664 	i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
665 
666 	i915_sched_node_init(&rq->sched);
667 
668 	/* No zalloc, must clear what we need by hand */
669 	rq->file_priv = NULL;
670 	rq->batch = NULL;
671 	rq->capture_list = NULL;
672 	rq->flags = 0;
673 
674 	INIT_LIST_HEAD(&rq->execute_cb);
675 
676 	/*
677 	 * Reserve space in the ring buffer for all the commands required to
678 	 * eventually emit this request. This is to guarantee that the
679 	 * i915_request_add() call can't fail. Note that the reserve may need
680 	 * to be redone if the request is not actually submitted straight
681 	 * away, e.g. because a GPU scheduler has deferred it.
682 	 *
683 	 * Note that due to how we add reserved_space to intel_ring_begin()
684 	 * we need to double our request to ensure that if we need to wrap
685 	 * around inside i915_request_add() there is sufficient space at
686 	 * the beginning of the ring as well.
687 	 */
688 	rq->reserved_space =
689 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
690 
691 	/*
692 	 * Record the position of the start of the request so that
693 	 * should we detect the updated seqno part-way through the
694 	 * GPU processing the request, we never over-estimate the
695 	 * position of the head.
696 	 */
697 	rq->head = rq->ring->emit;
698 
699 	ret = rq->engine->request_alloc(rq);
700 	if (ret)
701 		goto err_unwind;
702 
703 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
704 
705 	intel_context_mark_active(ce);
706 	return rq;
707 
708 err_unwind:
709 	ce->ring->emit = rq->head;
710 
711 	/* Make sure we didn't add ourselves to external state before freeing */
712 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
713 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
714 
715 err_free:
716 	kmem_cache_free(global.slab_requests, rq);
717 err_unreserve:
718 	intel_context_unpin(ce);
719 	return ERR_PTR(ret);
720 }
721 
722 struct i915_request *
723 i915_request_create(struct intel_context *ce)
724 {
725 	struct i915_request *rq;
726 	struct intel_timeline *tl;
727 
728 	tl = intel_context_timeline_lock(ce);
729 	if (IS_ERR(tl))
730 		return ERR_CAST(tl);
731 
732 	/* Move our oldest request to the slab-cache (if not in use!) */
733 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
734 	if (!list_is_last(&rq->link, &tl->requests))
735 		i915_request_retire(rq);
736 
737 	intel_context_enter(ce);
738 	rq = __i915_request_create(ce, GFP_KERNEL);
739 	intel_context_exit(ce); /* active reference transferred to request */
740 	if (IS_ERR(rq))
741 		goto err_unlock;
742 
743 	/* Check that we do not interrupt ourselves with a new request */
744 	rq->cookie = lockdep_pin_lock(&tl->mutex);
745 
746 	return rq;
747 
748 err_unlock:
749 	intel_context_timeline_unlock(tl);
750 	return rq;
751 }
752 
753 static int
754 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
755 {
756 	struct intel_timeline *tl;
757 	struct dma_fence *fence;
758 	int err;
759 
760 	GEM_BUG_ON(i915_request_timeline(rq) ==
761 		   rcu_access_pointer(signal->timeline));
762 
763 	rcu_read_lock();
764 	tl = rcu_dereference(signal->timeline);
765 	if (i915_request_started(signal) || !kref_get_unless_zero(&tl->kref))
766 		tl = NULL;
767 	rcu_read_unlock();
768 	if (!tl) /* already started or maybe even completed */
769 		return 0;
770 
771 	fence = ERR_PTR(-EBUSY);
772 	if (mutex_trylock(&tl->mutex)) {
773 		fence = NULL;
774 		if (!i915_request_started(signal) &&
775 		    !list_is_first(&signal->link, &tl->requests)) {
776 			signal = list_prev_entry(signal, link);
777 			fence = dma_fence_get(&signal->fence);
778 		}
779 		mutex_unlock(&tl->mutex);
780 	}
781 	intel_timeline_put(tl);
782 	if (IS_ERR_OR_NULL(fence))
783 		return PTR_ERR_OR_ZERO(fence);
784 
785 	err = 0;
786 	if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
787 		err = i915_sw_fence_await_dma_fence(&rq->submit,
788 						    fence, 0,
789 						    I915_FENCE_GFP);
790 	dma_fence_put(fence);
791 
792 	return err;
793 }
794 
795 static intel_engine_mask_t
796 already_busywaiting(struct i915_request *rq)
797 {
798 	/*
799 	 * Polling a semaphore causes bus traffic, delaying other users of
800 	 * both the GPU and CPU. We want to limit the impact on others,
801 	 * while taking advantage of early submission to reduce GPU
802 	 * latency. Therefore we restrict ourselves to not using more
803 	 * than one semaphore from each source, and not using a semaphore
804 	 * if we have detected the engine is saturated (i.e. would not be
805 	 * submitted early and cause bus traffic reading an already passed
806 	 * semaphore).
807 	 *
808 	 * See the are-we-too-late? check in __i915_request_submit().
809 	 */
810 	return rq->sched.semaphores | rq->engine->saturated;
811 }
812 
813 static int
814 emit_semaphore_wait(struct i915_request *to,
815 		    struct i915_request *from,
816 		    gfp_t gfp)
817 {
818 	const int has_token = INTEL_GEN(to->i915) >= 12;
819 	u32 hwsp_offset;
820 	int len;
821 	u32 *cs;
822 
823 	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
824 
825 	/* Just emit the first semaphore we see as request space is limited. */
826 	if (already_busywaiting(to) & from->engine->mask)
827 		goto await_fence;
828 
829 	if (i915_request_await_start(to, from) < 0)
830 		goto await_fence;
831 
832 	/* Only submit our spinner after the signaler is running! */
833 	if (__i915_request_await_execution(to, from, NULL, gfp))
834 		goto await_fence;
835 
836 	/* We need to pin the signaler's HWSP until we are finished reading. */
837 	if (intel_timeline_read_hwsp(from, to, &hwsp_offset))
838 		goto await_fence;
839 
840 	len = 4;
841 	if (has_token)
842 		len += 2;
843 
844 	cs = intel_ring_begin(to, len);
845 	if (IS_ERR(cs))
846 		return PTR_ERR(cs);
847 
848 	/*
849 	 * Using greater-than-or-equal here means we have to worry
850 	 * about seqno wraparound. To side step that issue, we swap
851 	 * the timeline HWSP upon wrapping, so that everyone listening
852 	 * for the old (pre-wrap) values do not see the much smaller
853 	 * (post-wrap) values than they were expecting (and so wait
854 	 * forever).
855 	 */
856 	*cs++ = (MI_SEMAPHORE_WAIT |
857 		 MI_SEMAPHORE_GLOBAL_GTT |
858 		 MI_SEMAPHORE_POLL |
859 		 MI_SEMAPHORE_SAD_GTE_SDD) +
860 		has_token;
861 	*cs++ = from->fence.seqno;
862 	*cs++ = hwsp_offset;
863 	*cs++ = 0;
864 	if (has_token) {
865 		*cs++ = 0;
866 		*cs++ = MI_NOOP;
867 	}
868 
869 	intel_ring_advance(to, cs);
870 	to->sched.semaphores |= from->engine->mask;
871 	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
872 	return 0;
873 
874 await_fence:
875 	return i915_sw_fence_await_dma_fence(&to->submit,
876 					     &from->fence, 0,
877 					     I915_FENCE_GFP);
878 }
879 
880 static int
881 i915_request_await_request(struct i915_request *to, struct i915_request *from)
882 {
883 	int ret;
884 
885 	GEM_BUG_ON(to == from);
886 	GEM_BUG_ON(to->timeline == from->timeline);
887 
888 	if (i915_request_completed(from))
889 		return 0;
890 
891 	if (to->engine->schedule) {
892 		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
893 		if (ret < 0)
894 			return ret;
895 	}
896 
897 	if (to->engine == from->engine) {
898 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
899 						       &from->submit,
900 						       I915_FENCE_GFP);
901 	} else if (intel_engine_has_semaphores(to->engine) &&
902 		   to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
903 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
904 	} else {
905 		ret = i915_sw_fence_await_dma_fence(&to->submit,
906 						    &from->fence, 0,
907 						    I915_FENCE_GFP);
908 	}
909 	if (ret < 0)
910 		return ret;
911 
912 	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
913 		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
914 						    &from->fence, 0,
915 						    I915_FENCE_GFP);
916 		if (ret < 0)
917 			return ret;
918 	}
919 
920 	return 0;
921 }
922 
923 int
924 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
925 {
926 	struct dma_fence **child = &fence;
927 	unsigned int nchild = 1;
928 	int ret;
929 
930 	/*
931 	 * Note that if the fence-array was created in signal-on-any mode,
932 	 * we should *not* decompose it into its individual fences. However,
933 	 * we don't currently store which mode the fence-array is operating
934 	 * in. Fortunately, the only user of signal-on-any is private to
935 	 * amdgpu and we should not see any incoming fence-array from
936 	 * sync-file being in signal-on-any mode.
937 	 */
938 	if (dma_fence_is_array(fence)) {
939 		struct dma_fence_array *array = to_dma_fence_array(fence);
940 
941 		child = array->fences;
942 		nchild = array->num_fences;
943 		GEM_BUG_ON(!nchild);
944 	}
945 
946 	do {
947 		fence = *child++;
948 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
949 			continue;
950 
951 		/*
952 		 * Requests on the same timeline are explicitly ordered, along
953 		 * with their dependencies, by i915_request_add() which ensures
954 		 * that requests are submitted in-order through each ring.
955 		 */
956 		if (fence->context == rq->fence.context)
957 			continue;
958 
959 		/* Squash repeated waits to the same timelines */
960 		if (fence->context &&
961 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
962 						 fence))
963 			continue;
964 
965 		if (dma_fence_is_i915(fence))
966 			ret = i915_request_await_request(rq, to_request(fence));
967 		else
968 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
969 							    fence->context ? I915_FENCE_TIMEOUT : 0,
970 							    I915_FENCE_GFP);
971 		if (ret < 0)
972 			return ret;
973 
974 		/* Record the latest fence used against each timeline */
975 		if (fence->context)
976 			intel_timeline_sync_set(i915_request_timeline(rq),
977 						fence);
978 	} while (--nchild);
979 
980 	return 0;
981 }
982 
983 int
984 i915_request_await_execution(struct i915_request *rq,
985 			     struct dma_fence *fence,
986 			     void (*hook)(struct i915_request *rq,
987 					  struct dma_fence *signal))
988 {
989 	struct dma_fence **child = &fence;
990 	unsigned int nchild = 1;
991 	int ret;
992 
993 	if (dma_fence_is_array(fence)) {
994 		struct dma_fence_array *array = to_dma_fence_array(fence);
995 
996 		/* XXX Error for signal-on-any fence arrays */
997 
998 		child = array->fences;
999 		nchild = array->num_fences;
1000 		GEM_BUG_ON(!nchild);
1001 	}
1002 
1003 	do {
1004 		fence = *child++;
1005 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1006 			continue;
1007 
1008 		/*
1009 		 * We don't squash repeated fence dependencies here as we
1010 		 * want to run our callback in all cases.
1011 		 */
1012 
1013 		if (dma_fence_is_i915(fence))
1014 			ret = __i915_request_await_execution(rq,
1015 							     to_request(fence),
1016 							     hook,
1017 							     I915_FENCE_GFP);
1018 		else
1019 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1020 							    I915_FENCE_TIMEOUT,
1021 							    GFP_KERNEL);
1022 		if (ret < 0)
1023 			return ret;
1024 	} while (--nchild);
1025 
1026 	return 0;
1027 }
1028 
1029 /**
1030  * i915_request_await_object - set this request to (async) wait upon a bo
1031  * @to: request we are wishing to use
1032  * @obj: object which may be in use on another ring.
1033  * @write: whether the wait is on behalf of a writer
1034  *
1035  * This code is meant to abstract object synchronization with the GPU.
1036  * Conceptually we serialise writes between engines inside the GPU.
1037  * We only allow one engine to write into a buffer at any time, but
1038  * multiple readers. To ensure each has a coherent view of memory, we must:
1039  *
1040  * - If there is an outstanding write request to the object, the new
1041  *   request must wait for it to complete (either CPU or in hw, requests
1042  *   on the same ring will be naturally ordered).
1043  *
1044  * - If we are a write request (pending_write_domain is set), the new
1045  *   request must wait for outstanding read requests to complete.
1046  *
1047  * Returns 0 if successful, else propagates up the lower layer error.
1048  */
1049 int
1050 i915_request_await_object(struct i915_request *to,
1051 			  struct drm_i915_gem_object *obj,
1052 			  bool write)
1053 {
1054 	struct dma_fence *excl;
1055 	int ret = 0;
1056 
1057 	if (write) {
1058 		struct dma_fence **shared;
1059 		unsigned int count, i;
1060 
1061 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1062 							&excl, &count, &shared);
1063 		if (ret)
1064 			return ret;
1065 
1066 		for (i = 0; i < count; i++) {
1067 			ret = i915_request_await_dma_fence(to, shared[i]);
1068 			if (ret)
1069 				break;
1070 
1071 			dma_fence_put(shared[i]);
1072 		}
1073 
1074 		for (; i < count; i++)
1075 			dma_fence_put(shared[i]);
1076 		kfree(shared);
1077 	} else {
1078 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1079 	}
1080 
1081 	if (excl) {
1082 		if (ret == 0)
1083 			ret = i915_request_await_dma_fence(to, excl);
1084 
1085 		dma_fence_put(excl);
1086 	}
1087 
1088 	return ret;
1089 }
1090 
1091 void i915_request_skip(struct i915_request *rq, int error)
1092 {
1093 	void *vaddr = rq->ring->vaddr;
1094 	u32 head;
1095 
1096 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1097 	dma_fence_set_error(&rq->fence, error);
1098 
1099 	if (rq->infix == rq->postfix)
1100 		return;
1101 
1102 	/*
1103 	 * As this request likely depends on state from the lost
1104 	 * context, clear out all the user operations leaving the
1105 	 * breadcrumb at the end (so we get the fence notifications).
1106 	 */
1107 	head = rq->infix;
1108 	if (rq->postfix < head) {
1109 		memset(vaddr + head, 0, rq->ring->size - head);
1110 		head = 0;
1111 	}
1112 	memset(vaddr + head, 0, rq->postfix - head);
1113 	rq->infix = rq->postfix;
1114 }
1115 
1116 static struct i915_request *
1117 __i915_request_add_to_timeline(struct i915_request *rq)
1118 {
1119 	struct intel_timeline *timeline = i915_request_timeline(rq);
1120 	struct i915_request *prev;
1121 
1122 	/*
1123 	 * Dependency tracking and request ordering along the timeline
1124 	 * is special cased so that we can eliminate redundant ordering
1125 	 * operations while building the request (we know that the timeline
1126 	 * itself is ordered, and here we guarantee it).
1127 	 *
1128 	 * As we know we will need to emit tracking along the timeline,
1129 	 * we embed the hooks into our request struct -- at the cost of
1130 	 * having to have specialised no-allocation interfaces (which will
1131 	 * be beneficial elsewhere).
1132 	 *
1133 	 * A second benefit to open-coding i915_request_await_request is
1134 	 * that we can apply a slight variant of the rules specialised
1135 	 * for timelines that jump between engines (such as virtual engines).
1136 	 * If we consider the case of virtual engine, we must emit a dma-fence
1137 	 * to prevent scheduling of the second request until the first is
1138 	 * complete (to maximise our greedy late load balancing) and this
1139 	 * precludes optimising to use semaphores serialisation of a single
1140 	 * timeline across engines.
1141 	 */
1142 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1143 						  &rq->fence));
1144 	if (prev && !i915_request_completed(prev)) {
1145 		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1146 			i915_sw_fence_await_sw_fence(&rq->submit,
1147 						     &prev->submit,
1148 						     &rq->submitq);
1149 		else
1150 			__i915_sw_fence_await_dma_fence(&rq->submit,
1151 							&prev->fence,
1152 							&rq->dmaq);
1153 		if (rq->engine->schedule)
1154 			__i915_sched_node_add_dependency(&rq->sched,
1155 							 &prev->sched,
1156 							 &rq->dep,
1157 							 0);
1158 	}
1159 
1160 	list_add_tail(&rq->link, &timeline->requests);
1161 
1162 	/*
1163 	 * Make sure that no request gazumped us - if it was allocated after
1164 	 * our i915_request_alloc() and called __i915_request_add() before
1165 	 * us, the timeline will hold its seqno which is later than ours.
1166 	 */
1167 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1168 
1169 	return prev;
1170 }
1171 
1172 /*
1173  * NB: This function is not allowed to fail. Doing so would mean the the
1174  * request is not being tracked for completion but the work itself is
1175  * going to happen on the hardware. This would be a Bad Thing(tm).
1176  */
1177 struct i915_request *__i915_request_commit(struct i915_request *rq)
1178 {
1179 	struct intel_engine_cs *engine = rq->engine;
1180 	struct intel_ring *ring = rq->ring;
1181 	u32 *cs;
1182 
1183 	GEM_TRACE("%s fence %llx:%lld\n",
1184 		  engine->name, rq->fence.context, rq->fence.seqno);
1185 
1186 	/*
1187 	 * To ensure that this call will not fail, space for its emissions
1188 	 * should already have been reserved in the ring buffer. Let the ring
1189 	 * know that it is time to use that space up.
1190 	 */
1191 	GEM_BUG_ON(rq->reserved_space > ring->space);
1192 	rq->reserved_space = 0;
1193 	rq->emitted_jiffies = jiffies;
1194 
1195 	/*
1196 	 * Record the position of the start of the breadcrumb so that
1197 	 * should we detect the updated seqno part-way through the
1198 	 * GPU processing the request, we never over-estimate the
1199 	 * position of the ring's HEAD.
1200 	 */
1201 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1202 	GEM_BUG_ON(IS_ERR(cs));
1203 	rq->postfix = intel_ring_offset(rq, cs);
1204 
1205 	return __i915_request_add_to_timeline(rq);
1206 }
1207 
1208 void __i915_request_queue(struct i915_request *rq,
1209 			  const struct i915_sched_attr *attr)
1210 {
1211 	/*
1212 	 * Let the backend know a new request has arrived that may need
1213 	 * to adjust the existing execution schedule due to a high priority
1214 	 * request - i.e. we may want to preempt the current request in order
1215 	 * to run a high priority dependency chain *before* we can execute this
1216 	 * request.
1217 	 *
1218 	 * This is called before the request is ready to run so that we can
1219 	 * decide whether to preempt the entire chain so that it is ready to
1220 	 * run at the earliest possible convenience.
1221 	 */
1222 	i915_sw_fence_commit(&rq->semaphore);
1223 	if (attr && rq->engine->schedule)
1224 		rq->engine->schedule(rq, attr);
1225 	i915_sw_fence_commit(&rq->submit);
1226 }
1227 
1228 void i915_request_add(struct i915_request *rq)
1229 {
1230 	struct i915_sched_attr attr = rq->gem_context->sched;
1231 	struct intel_timeline * const tl = i915_request_timeline(rq);
1232 	struct i915_request *prev;
1233 
1234 	lockdep_assert_held(&tl->mutex);
1235 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1236 
1237 	trace_i915_request_add(rq);
1238 
1239 	prev = __i915_request_commit(rq);
1240 
1241 	/*
1242 	 * Boost actual workloads past semaphores!
1243 	 *
1244 	 * With semaphores we spin on one engine waiting for another,
1245 	 * simply to reduce the latency of starting our work when
1246 	 * the signaler completes. However, if there is any other
1247 	 * work that we could be doing on this engine instead, that
1248 	 * is better utilisation and will reduce the overall duration
1249 	 * of the current work. To avoid PI boosting a semaphore
1250 	 * far in the distance past over useful work, we keep a history
1251 	 * of any semaphore use along our dependency chain.
1252 	 */
1253 	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1254 		attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1255 
1256 	/*
1257 	 * Boost priorities to new clients (new request flows).
1258 	 *
1259 	 * Allow interactive/synchronous clients to jump ahead of
1260 	 * the bulk clients. (FQ_CODEL)
1261 	 */
1262 	if (list_empty(&rq->sched.signalers_list))
1263 		attr.priority |= I915_PRIORITY_WAIT;
1264 
1265 	local_bh_disable();
1266 	__i915_request_queue(rq, &attr);
1267 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1268 
1269 	/*
1270 	 * In typical scenarios, we do not expect the previous request on
1271 	 * the timeline to be still tracked by timeline->last_request if it
1272 	 * has been completed. If the completed request is still here, that
1273 	 * implies that request retirement is a long way behind submission,
1274 	 * suggesting that we haven't been retiring frequently enough from
1275 	 * the combination of retire-before-alloc, waiters and the background
1276 	 * retirement worker. So if the last request on this timeline was
1277 	 * already completed, do a catch up pass, flushing the retirement queue
1278 	 * up to this client. Since we have now moved the heaviest operations
1279 	 * during retirement onto secondary workers, such as freeing objects
1280 	 * or contexts, retiring a bunch of requests is mostly list management
1281 	 * (and cache misses), and so we should not be overly penalizing this
1282 	 * client by performing excess work, though we may still performing
1283 	 * work on behalf of others -- but instead we should benefit from
1284 	 * improved resource management. (Well, that's the theory at least.)
1285 	 */
1286 	if (prev &&
1287 	    i915_request_completed(prev) &&
1288 	    rcu_access_pointer(prev->timeline) == tl)
1289 		i915_request_retire_upto(prev);
1290 
1291 	mutex_unlock(&tl->mutex);
1292 }
1293 
1294 static unsigned long local_clock_us(unsigned int *cpu)
1295 {
1296 	unsigned long t;
1297 
1298 	/*
1299 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1300 	 * The result and subsequent calculations are also defined in the same
1301 	 * approximate microseconds units. The principal source of timing
1302 	 * error here is from the simple truncation.
1303 	 *
1304 	 * Note that local_clock() is only defined wrt to the current CPU;
1305 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1306 	 * blocking preemption for the entire busywait, we can detect the CPU
1307 	 * switch and use that as indicator of system load and a reason to
1308 	 * stop busywaiting, see busywait_stop().
1309 	 */
1310 	*cpu = get_cpu();
1311 	t = local_clock() >> 10;
1312 	put_cpu();
1313 
1314 	return t;
1315 }
1316 
1317 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1318 {
1319 	unsigned int this_cpu;
1320 
1321 	if (time_after(local_clock_us(&this_cpu), timeout))
1322 		return true;
1323 
1324 	return this_cpu != cpu;
1325 }
1326 
1327 static bool __i915_spin_request(const struct i915_request * const rq,
1328 				int state, unsigned long timeout_us)
1329 {
1330 	unsigned int cpu;
1331 
1332 	/*
1333 	 * Only wait for the request if we know it is likely to complete.
1334 	 *
1335 	 * We don't track the timestamps around requests, nor the average
1336 	 * request length, so we do not have a good indicator that this
1337 	 * request will complete within the timeout. What we do know is the
1338 	 * order in which requests are executed by the context and so we can
1339 	 * tell if the request has been started. If the request is not even
1340 	 * running yet, it is a fair assumption that it will not complete
1341 	 * within our relatively short timeout.
1342 	 */
1343 	if (!i915_request_is_running(rq))
1344 		return false;
1345 
1346 	/*
1347 	 * When waiting for high frequency requests, e.g. during synchronous
1348 	 * rendering split between the CPU and GPU, the finite amount of time
1349 	 * required to set up the irq and wait upon it limits the response
1350 	 * rate. By busywaiting on the request completion for a short while we
1351 	 * can service the high frequency waits as quick as possible. However,
1352 	 * if it is a slow request, we want to sleep as quickly as possible.
1353 	 * The tradeoff between waiting and sleeping is roughly the time it
1354 	 * takes to sleep on a request, on the order of a microsecond.
1355 	 */
1356 
1357 	timeout_us += local_clock_us(&cpu);
1358 	do {
1359 		if (i915_request_completed(rq))
1360 			return true;
1361 
1362 		if (signal_pending_state(state, current))
1363 			break;
1364 
1365 		if (busywait_stop(timeout_us, cpu))
1366 			break;
1367 
1368 		cpu_relax();
1369 	} while (!need_resched());
1370 
1371 	return false;
1372 }
1373 
1374 struct request_wait {
1375 	struct dma_fence_cb cb;
1376 	struct task_struct *tsk;
1377 };
1378 
1379 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1380 {
1381 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1382 
1383 	wake_up_process(wait->tsk);
1384 }
1385 
1386 /**
1387  * i915_request_wait - wait until execution of request has finished
1388  * @rq: the request to wait upon
1389  * @flags: how to wait
1390  * @timeout: how long to wait in jiffies
1391  *
1392  * i915_request_wait() waits for the request to be completed, for a
1393  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1394  * unbounded wait).
1395  *
1396  * Returns the remaining time (in jiffies) if the request completed, which may
1397  * be zero or -ETIME if the request is unfinished after the timeout expires.
1398  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1399  * pending before the request completes.
1400  */
1401 long i915_request_wait(struct i915_request *rq,
1402 		       unsigned int flags,
1403 		       long timeout)
1404 {
1405 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1406 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1407 	struct request_wait wait;
1408 
1409 	might_sleep();
1410 	GEM_BUG_ON(timeout < 0);
1411 
1412 	if (dma_fence_is_signaled(&rq->fence))
1413 		return timeout;
1414 
1415 	if (!timeout)
1416 		return -ETIME;
1417 
1418 	trace_i915_request_wait_begin(rq, flags);
1419 
1420 	/*
1421 	 * We must never wait on the GPU while holding a lock as we
1422 	 * may need to perform a GPU reset. So while we don't need to
1423 	 * serialise wait/reset with an explicit lock, we do want
1424 	 * lockdep to detect potential dependency cycles.
1425 	 */
1426 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1427 
1428 	/*
1429 	 * Optimistic spin before touching IRQs.
1430 	 *
1431 	 * We may use a rather large value here to offset the penalty of
1432 	 * switching away from the active task. Frequently, the client will
1433 	 * wait upon an old swapbuffer to throttle itself to remain within a
1434 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1435 	 * then it should not be waiting long at all, and a sleep now will incur
1436 	 * extra scheduler latency in producing the next frame. To try to
1437 	 * avoid adding the cost of enabling/disabling the interrupt to the
1438 	 * short wait, we first spin to see if the request would have completed
1439 	 * in the time taken to setup the interrupt.
1440 	 *
1441 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1442 	 * scheduler latency of a context switch, ignoring the secondary
1443 	 * impacts from a context switch such as cache eviction.
1444 	 *
1445 	 * The scheme used for low-latency IO is called "hybrid interrupt
1446 	 * polling". The suggestion there is to sleep until just before you
1447 	 * expect to be woken by the device interrupt and then poll for its
1448 	 * completion. That requires having a good predictor for the request
1449 	 * duration, which we currently lack.
1450 	 */
1451 	if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1452 	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1453 		dma_fence_signal(&rq->fence);
1454 		goto out;
1455 	}
1456 
1457 	/*
1458 	 * This client is about to stall waiting for the GPU. In many cases
1459 	 * this is undesirable and limits the throughput of the system, as
1460 	 * many clients cannot continue processing user input/output whilst
1461 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1462 	 * to the GPU load and thus incurs additional latency for the client.
1463 	 * We can circumvent that by promoting the GPU frequency to maximum
1464 	 * before we sleep. This makes the GPU throttle up much more quickly
1465 	 * (good for benchmarks and user experience, e.g. window animations),
1466 	 * but at a cost of spending more power processing the workload
1467 	 * (bad for battery).
1468 	 */
1469 	if (flags & I915_WAIT_PRIORITY) {
1470 		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1471 			intel_rps_boost(rq);
1472 		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1473 	}
1474 
1475 	wait.tsk = current;
1476 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1477 		goto out;
1478 
1479 	for (;;) {
1480 		set_current_state(state);
1481 
1482 		if (i915_request_completed(rq)) {
1483 			dma_fence_signal(&rq->fence);
1484 			break;
1485 		}
1486 
1487 		if (signal_pending_state(state, current)) {
1488 			timeout = -ERESTARTSYS;
1489 			break;
1490 		}
1491 
1492 		if (!timeout) {
1493 			timeout = -ETIME;
1494 			break;
1495 		}
1496 
1497 		intel_engine_flush_submission(rq->engine);
1498 		timeout = io_schedule_timeout(timeout);
1499 	}
1500 	__set_current_state(TASK_RUNNING);
1501 
1502 	dma_fence_remove_callback(&rq->fence, &wait.cb);
1503 
1504 out:
1505 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1506 	trace_i915_request_wait_end(rq);
1507 	return timeout;
1508 }
1509 
1510 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1511 #include "selftests/mock_request.c"
1512 #include "selftests/i915_request.c"
1513 #endif
1514 
1515 static void i915_global_request_shrink(void)
1516 {
1517 	kmem_cache_shrink(global.slab_dependencies);
1518 	kmem_cache_shrink(global.slab_execute_cbs);
1519 	kmem_cache_shrink(global.slab_requests);
1520 }
1521 
1522 static void i915_global_request_exit(void)
1523 {
1524 	kmem_cache_destroy(global.slab_dependencies);
1525 	kmem_cache_destroy(global.slab_execute_cbs);
1526 	kmem_cache_destroy(global.slab_requests);
1527 }
1528 
1529 static struct i915_global_request global = { {
1530 	.shrink = i915_global_request_shrink,
1531 	.exit = i915_global_request_exit,
1532 } };
1533 
1534 int __init i915_global_request_init(void)
1535 {
1536 	global.slab_requests = KMEM_CACHE(i915_request,
1537 					  SLAB_HWCACHE_ALIGN |
1538 					  SLAB_RECLAIM_ACCOUNT |
1539 					  SLAB_TYPESAFE_BY_RCU);
1540 	if (!global.slab_requests)
1541 		return -ENOMEM;
1542 
1543 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1544 					     SLAB_HWCACHE_ALIGN |
1545 					     SLAB_RECLAIM_ACCOUNT |
1546 					     SLAB_TYPESAFE_BY_RCU);
1547 	if (!global.slab_execute_cbs)
1548 		goto err_requests;
1549 
1550 	global.slab_dependencies = KMEM_CACHE(i915_dependency,
1551 					      SLAB_HWCACHE_ALIGN |
1552 					      SLAB_RECLAIM_ACCOUNT);
1553 	if (!global.slab_dependencies)
1554 		goto err_execute_cbs;
1555 
1556 	i915_global_register(&global.base);
1557 	return 0;
1558 
1559 err_execute_cbs:
1560 	kmem_cache_destroy(global.slab_execute_cbs);
1561 err_requests:
1562 	kmem_cache_destroy(global.slab_requests);
1563 	return -ENOMEM;
1564 }
1565