1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 #include <linux/sched/mm.h> 33 34 #include "gem/i915_gem_context.h" 35 #include "gt/intel_breadcrumbs.h" 36 #include "gt/intel_context.h" 37 #include "gt/intel_engine.h" 38 #include "gt/intel_engine_heartbeat.h" 39 #include "gt/intel_engine_regs.h" 40 #include "gt/intel_gpu_commands.h" 41 #include "gt/intel_reset.h" 42 #include "gt/intel_ring.h" 43 #include "gt/intel_rps.h" 44 45 #include "i915_active.h" 46 #include "i915_deps.h" 47 #include "i915_driver.h" 48 #include "i915_drv.h" 49 #include "i915_trace.h" 50 #include "intel_pm.h" 51 52 struct execute_cb { 53 struct irq_work work; 54 struct i915_sw_fence *fence; 55 struct i915_request *signal; 56 }; 57 58 static struct kmem_cache *slab_requests; 59 static struct kmem_cache *slab_execute_cbs; 60 61 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 62 { 63 return dev_name(to_request(fence)->engine->i915->drm.dev); 64 } 65 66 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 67 { 68 const struct i915_gem_context *ctx; 69 70 /* 71 * The timeline struct (as part of the ppgtt underneath a context) 72 * may be freed when the request is no longer in use by the GPU. 73 * We could extend the life of a context to beyond that of all 74 * fences, possibly keeping the hw resource around indefinitely, 75 * or we just give them a false name. Since 76 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 77 * lie seems justifiable. 78 */ 79 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 80 return "signaled"; 81 82 ctx = i915_request_gem_context(to_request(fence)); 83 if (!ctx) 84 return "[" DRIVER_NAME "]"; 85 86 return ctx->name; 87 } 88 89 static bool i915_fence_signaled(struct dma_fence *fence) 90 { 91 return i915_request_completed(to_request(fence)); 92 } 93 94 static bool i915_fence_enable_signaling(struct dma_fence *fence) 95 { 96 return i915_request_enable_breadcrumb(to_request(fence)); 97 } 98 99 static signed long i915_fence_wait(struct dma_fence *fence, 100 bool interruptible, 101 signed long timeout) 102 { 103 return i915_request_wait_timeout(to_request(fence), 104 interruptible | I915_WAIT_PRIORITY, 105 timeout); 106 } 107 108 struct kmem_cache *i915_request_slab_cache(void) 109 { 110 return slab_requests; 111 } 112 113 static void i915_fence_release(struct dma_fence *fence) 114 { 115 struct i915_request *rq = to_request(fence); 116 117 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT && 118 rq->guc_prio != GUC_PRIO_FINI); 119 120 i915_request_free_capture_list(fetch_and_zero(&rq->capture_list)); 121 if (rq->batch_res) { 122 i915_vma_resource_put(rq->batch_res); 123 rq->batch_res = NULL; 124 } 125 126 /* 127 * The request is put onto a RCU freelist (i.e. the address 128 * is immediately reused), mark the fences as being freed now. 129 * Otherwise the debugobjects for the fences are only marked as 130 * freed when the slab cache itself is freed, and so we would get 131 * caught trying to reuse dead objects. 132 */ 133 i915_sw_fence_fini(&rq->submit); 134 i915_sw_fence_fini(&rq->semaphore); 135 136 /* 137 * Keep one request on each engine for reserved use under mempressure, 138 * do not use with virtual engines as this really is only needed for 139 * kernel contexts. 140 */ 141 if (!intel_engine_is_virtual(rq->engine) && 142 !cmpxchg(&rq->engine->request_pool, NULL, rq)) { 143 intel_context_put(rq->context); 144 return; 145 } 146 147 intel_context_put(rq->context); 148 149 kmem_cache_free(slab_requests, rq); 150 } 151 152 const struct dma_fence_ops i915_fence_ops = { 153 .get_driver_name = i915_fence_get_driver_name, 154 .get_timeline_name = i915_fence_get_timeline_name, 155 .enable_signaling = i915_fence_enable_signaling, 156 .signaled = i915_fence_signaled, 157 .wait = i915_fence_wait, 158 .release = i915_fence_release, 159 }; 160 161 static void irq_execute_cb(struct irq_work *wrk) 162 { 163 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 164 165 i915_sw_fence_complete(cb->fence); 166 kmem_cache_free(slab_execute_cbs, cb); 167 } 168 169 static __always_inline void 170 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 171 { 172 struct execute_cb *cb, *cn; 173 174 if (llist_empty(&rq->execute_cb)) 175 return; 176 177 llist_for_each_entry_safe(cb, cn, 178 llist_del_all(&rq->execute_cb), 179 work.node.llist) 180 fn(&cb->work); 181 } 182 183 static void __notify_execute_cb_irq(struct i915_request *rq) 184 { 185 __notify_execute_cb(rq, irq_work_queue); 186 } 187 188 static bool irq_work_imm(struct irq_work *wrk) 189 { 190 wrk->func(wrk); 191 return false; 192 } 193 194 void i915_request_notify_execute_cb_imm(struct i915_request *rq) 195 { 196 __notify_execute_cb(rq, irq_work_imm); 197 } 198 199 static void __i915_request_fill(struct i915_request *rq, u8 val) 200 { 201 void *vaddr = rq->ring->vaddr; 202 u32 head; 203 204 head = rq->infix; 205 if (rq->postfix < head) { 206 memset(vaddr + head, val, rq->ring->size - head); 207 head = 0; 208 } 209 memset(vaddr + head, val, rq->postfix - head); 210 } 211 212 /** 213 * i915_request_active_engine 214 * @rq: request to inspect 215 * @active: pointer in which to return the active engine 216 * 217 * Fills the currently active engine to the @active pointer if the request 218 * is active and still not completed. 219 * 220 * Returns true if request was active or false otherwise. 221 */ 222 bool 223 i915_request_active_engine(struct i915_request *rq, 224 struct intel_engine_cs **active) 225 { 226 struct intel_engine_cs *engine, *locked; 227 bool ret = false; 228 229 /* 230 * Serialise with __i915_request_submit() so that it sees 231 * is-banned?, or we know the request is already inflight. 232 * 233 * Note that rq->engine is unstable, and so we double 234 * check that we have acquired the lock on the final engine. 235 */ 236 locked = READ_ONCE(rq->engine); 237 spin_lock_irq(&locked->sched_engine->lock); 238 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 239 spin_unlock(&locked->sched_engine->lock); 240 locked = engine; 241 spin_lock(&locked->sched_engine->lock); 242 } 243 244 if (i915_request_is_active(rq)) { 245 if (!__i915_request_is_complete(rq)) 246 *active = locked; 247 ret = true; 248 } 249 250 spin_unlock_irq(&locked->sched_engine->lock); 251 252 return ret; 253 } 254 255 static void __rq_init_watchdog(struct i915_request *rq) 256 { 257 rq->watchdog.timer.function = NULL; 258 } 259 260 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer) 261 { 262 struct i915_request *rq = 263 container_of(hrtimer, struct i915_request, watchdog.timer); 264 struct intel_gt *gt = rq->engine->gt; 265 266 if (!i915_request_completed(rq)) { 267 if (llist_add(&rq->watchdog.link, >->watchdog.list)) 268 schedule_work(>->watchdog.work); 269 } else { 270 i915_request_put(rq); 271 } 272 273 return HRTIMER_NORESTART; 274 } 275 276 static void __rq_arm_watchdog(struct i915_request *rq) 277 { 278 struct i915_request_watchdog *wdg = &rq->watchdog; 279 struct intel_context *ce = rq->context; 280 281 if (!ce->watchdog.timeout_us) 282 return; 283 284 i915_request_get(rq); 285 286 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 287 wdg->timer.function = __rq_watchdog_expired; 288 hrtimer_start_range_ns(&wdg->timer, 289 ns_to_ktime(ce->watchdog.timeout_us * 290 NSEC_PER_USEC), 291 NSEC_PER_MSEC, 292 HRTIMER_MODE_REL); 293 } 294 295 static void __rq_cancel_watchdog(struct i915_request *rq) 296 { 297 struct i915_request_watchdog *wdg = &rq->watchdog; 298 299 if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0) 300 i915_request_put(rq); 301 } 302 303 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 304 305 /** 306 * i915_request_free_capture_list - Free a capture list 307 * @capture: Pointer to the first list item or NULL 308 * 309 */ 310 void i915_request_free_capture_list(struct i915_capture_list *capture) 311 { 312 while (capture) { 313 struct i915_capture_list *next = capture->next; 314 315 i915_vma_resource_put(capture->vma_res); 316 kfree(capture); 317 capture = next; 318 } 319 } 320 321 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list) 322 323 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL) 324 325 #else 326 327 #define i915_request_free_capture_list(_a) do {} while (0) 328 329 #define assert_capture_list_is_null(_a) do {} while (0) 330 331 #define clear_capture_list(_rq) do {} while (0) 332 333 #endif 334 335 bool i915_request_retire(struct i915_request *rq) 336 { 337 if (!__i915_request_is_complete(rq)) 338 return false; 339 340 RQ_TRACE(rq, "\n"); 341 342 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 343 trace_i915_request_retire(rq); 344 i915_request_mark_complete(rq); 345 346 __rq_cancel_watchdog(rq); 347 348 /* 349 * We know the GPU must have read the request to have 350 * sent us the seqno + interrupt, so use the position 351 * of tail of the request to update the last known position 352 * of the GPU head. 353 * 354 * Note this requires that we are always called in request 355 * completion order. 356 */ 357 GEM_BUG_ON(!list_is_first(&rq->link, 358 &i915_request_timeline(rq)->requests)); 359 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 360 /* Poison before we release our space in the ring */ 361 __i915_request_fill(rq, POISON_FREE); 362 rq->ring->head = rq->postfix; 363 364 if (!i915_request_signaled(rq)) { 365 spin_lock_irq(&rq->lock); 366 dma_fence_signal_locked(&rq->fence); 367 spin_unlock_irq(&rq->lock); 368 } 369 370 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) 371 intel_rps_dec_waiters(&rq->engine->gt->rps); 372 373 /* 374 * We only loosely track inflight requests across preemption, 375 * and so we may find ourselves attempting to retire a _completed_ 376 * request that we have removed from the HW and put back on a run 377 * queue. 378 * 379 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 380 * after removing the breadcrumb and signaling it, so that we do not 381 * inadvertently attach the breadcrumb to a completed request. 382 */ 383 rq->engine->remove_active_request(rq); 384 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 385 386 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 387 388 intel_context_exit(rq->context); 389 intel_context_unpin(rq->context); 390 391 i915_sched_node_fini(&rq->sched); 392 i915_request_put(rq); 393 394 return true; 395 } 396 397 void i915_request_retire_upto(struct i915_request *rq) 398 { 399 struct intel_timeline * const tl = i915_request_timeline(rq); 400 struct i915_request *tmp; 401 402 RQ_TRACE(rq, "\n"); 403 GEM_BUG_ON(!__i915_request_is_complete(rq)); 404 405 do { 406 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 407 GEM_BUG_ON(!i915_request_completed(tmp)); 408 } while (i915_request_retire(tmp) && tmp != rq); 409 } 410 411 static struct i915_request * const * 412 __engine_active(struct intel_engine_cs *engine) 413 { 414 return READ_ONCE(engine->execlists.active); 415 } 416 417 static bool __request_in_flight(const struct i915_request *signal) 418 { 419 struct i915_request * const *port, *rq; 420 bool inflight = false; 421 422 if (!i915_request_is_ready(signal)) 423 return false; 424 425 /* 426 * Even if we have unwound the request, it may still be on 427 * the GPU (preempt-to-busy). If that request is inside an 428 * unpreemptible critical section, it will not be removed. Some 429 * GPU functions may even be stuck waiting for the paired request 430 * (__await_execution) to be submitted and cannot be preempted 431 * until the bond is executing. 432 * 433 * As we know that there are always preemption points between 434 * requests, we know that only the currently executing request 435 * may be still active even though we have cleared the flag. 436 * However, we can't rely on our tracking of ELSP[0] to know 437 * which request is currently active and so maybe stuck, as 438 * the tracking maybe an event behind. Instead assume that 439 * if the context is still inflight, then it is still active 440 * even if the active flag has been cleared. 441 * 442 * To further complicate matters, if there a pending promotion, the HW 443 * may either perform a context switch to the second inflight execlists, 444 * or it may switch to the pending set of execlists. In the case of the 445 * latter, it may send the ACK and we process the event copying the 446 * pending[] over top of inflight[], _overwriting_ our *active. Since 447 * this implies the HW is arbitrating and not struck in *active, we do 448 * not worry about complete accuracy, but we do require no read/write 449 * tearing of the pointer [the read of the pointer must be valid, even 450 * as the array is being overwritten, for which we require the writes 451 * to avoid tearing.] 452 * 453 * Note that the read of *execlists->active may race with the promotion 454 * of execlists->pending[] to execlists->inflight[], overwritting 455 * the value at *execlists->active. This is fine. The promotion implies 456 * that we received an ACK from the HW, and so the context is not 457 * stuck -- if we do not see ourselves in *active, the inflight status 458 * is valid. If instead we see ourselves being copied into *active, 459 * we are inflight and may signal the callback. 460 */ 461 if (!intel_context_inflight(signal->context)) 462 return false; 463 464 rcu_read_lock(); 465 for (port = __engine_active(signal->engine); 466 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 467 port++) { 468 if (rq->context == signal->context) { 469 inflight = i915_seqno_passed(rq->fence.seqno, 470 signal->fence.seqno); 471 break; 472 } 473 } 474 rcu_read_unlock(); 475 476 return inflight; 477 } 478 479 static int 480 __await_execution(struct i915_request *rq, 481 struct i915_request *signal, 482 gfp_t gfp) 483 { 484 struct execute_cb *cb; 485 486 if (i915_request_is_active(signal)) 487 return 0; 488 489 cb = kmem_cache_alloc(slab_execute_cbs, gfp); 490 if (!cb) 491 return -ENOMEM; 492 493 cb->fence = &rq->submit; 494 i915_sw_fence_await(cb->fence); 495 init_irq_work(&cb->work, irq_execute_cb); 496 497 /* 498 * Register the callback first, then see if the signaler is already 499 * active. This ensures that if we race with the 500 * __notify_execute_cb from i915_request_submit() and we are not 501 * included in that list, we get a second bite of the cherry and 502 * execute it ourselves. After this point, a future 503 * i915_request_submit() will notify us. 504 * 505 * In i915_request_retire() we set the ACTIVE bit on a completed 506 * request (then flush the execute_cb). So by registering the 507 * callback first, then checking the ACTIVE bit, we serialise with 508 * the completed/retired request. 509 */ 510 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) { 511 if (i915_request_is_active(signal) || 512 __request_in_flight(signal)) 513 i915_request_notify_execute_cb_imm(signal); 514 } 515 516 return 0; 517 } 518 519 static bool fatal_error(int error) 520 { 521 switch (error) { 522 case 0: /* not an error! */ 523 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 524 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 525 return false; 526 default: 527 return true; 528 } 529 } 530 531 void __i915_request_skip(struct i915_request *rq) 532 { 533 GEM_BUG_ON(!fatal_error(rq->fence.error)); 534 535 if (rq->infix == rq->postfix) 536 return; 537 538 RQ_TRACE(rq, "error: %d\n", rq->fence.error); 539 540 /* 541 * As this request likely depends on state from the lost 542 * context, clear out all the user operations leaving the 543 * breadcrumb at the end (so we get the fence notifications). 544 */ 545 __i915_request_fill(rq, 0); 546 rq->infix = rq->postfix; 547 } 548 549 bool i915_request_set_error_once(struct i915_request *rq, int error) 550 { 551 int old; 552 553 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 554 555 if (i915_request_signaled(rq)) 556 return false; 557 558 old = READ_ONCE(rq->fence.error); 559 do { 560 if (fatal_error(old)) 561 return false; 562 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 563 564 return true; 565 } 566 567 struct i915_request *i915_request_mark_eio(struct i915_request *rq) 568 { 569 if (__i915_request_is_complete(rq)) 570 return NULL; 571 572 GEM_BUG_ON(i915_request_signaled(rq)); 573 574 /* As soon as the request is completed, it may be retired */ 575 rq = i915_request_get(rq); 576 577 i915_request_set_error_once(rq, -EIO); 578 i915_request_mark_complete(rq); 579 580 return rq; 581 } 582 583 bool __i915_request_submit(struct i915_request *request) 584 { 585 struct intel_engine_cs *engine = request->engine; 586 bool result = false; 587 588 RQ_TRACE(request, "\n"); 589 590 GEM_BUG_ON(!irqs_disabled()); 591 lockdep_assert_held(&engine->sched_engine->lock); 592 593 /* 594 * With the advent of preempt-to-busy, we frequently encounter 595 * requests that we have unsubmitted from HW, but left running 596 * until the next ack and so have completed in the meantime. On 597 * resubmission of that completed request, we can skip 598 * updating the payload, and execlists can even skip submitting 599 * the request. 600 * 601 * We must remove the request from the caller's priority queue, 602 * and the caller must only call us when the request is in their 603 * priority queue, under the sched_engine->lock. This ensures that the 604 * request has *not* yet been retired and we can safely move 605 * the request into the engine->active.list where it will be 606 * dropped upon retiring. (Otherwise if resubmit a *retired* 607 * request, this would be a horrible use-after-free.) 608 */ 609 if (__i915_request_is_complete(request)) { 610 list_del_init(&request->sched.link); 611 goto active; 612 } 613 614 if (unlikely(intel_context_is_banned(request->context))) 615 i915_request_set_error_once(request, -EIO); 616 617 if (unlikely(fatal_error(request->fence.error))) 618 __i915_request_skip(request); 619 620 /* 621 * Are we using semaphores when the gpu is already saturated? 622 * 623 * Using semaphores incurs a cost in having the GPU poll a 624 * memory location, busywaiting for it to change. The continual 625 * memory reads can have a noticeable impact on the rest of the 626 * system with the extra bus traffic, stalling the cpu as it too 627 * tries to access memory across the bus (perf stat -e bus-cycles). 628 * 629 * If we installed a semaphore on this request and we only submit 630 * the request after the signaler completed, that indicates the 631 * system is overloaded and using semaphores at this time only 632 * increases the amount of work we are doing. If so, we disable 633 * further use of semaphores until we are idle again, whence we 634 * optimistically try again. 635 */ 636 if (request->sched.semaphores && 637 i915_sw_fence_signaled(&request->semaphore)) 638 engine->saturated |= request->sched.semaphores; 639 640 engine->emit_fini_breadcrumb(request, 641 request->ring->vaddr + request->postfix); 642 643 trace_i915_request_execute(request); 644 if (engine->bump_serial) 645 engine->bump_serial(engine); 646 else 647 engine->serial++; 648 649 result = true; 650 651 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 652 engine->add_active_request(request); 653 active: 654 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 655 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 656 657 /* 658 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 659 * 660 * In the future, perhaps when we have an active time-slicing scheduler, 661 * it will be interesting to unsubmit parallel execution and remove 662 * busywaits from the GPU until their master is restarted. This is 663 * quite hairy, we have to carefully rollback the fence and do a 664 * preempt-to-idle cycle on the target engine, all the while the 665 * master execute_cb may refire. 666 */ 667 __notify_execute_cb_irq(request); 668 669 /* We may be recursing from the signal callback of another i915 fence */ 670 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 671 i915_request_enable_breadcrumb(request); 672 673 return result; 674 } 675 676 void i915_request_submit(struct i915_request *request) 677 { 678 struct intel_engine_cs *engine = request->engine; 679 unsigned long flags; 680 681 /* Will be called from irq-context when using foreign fences. */ 682 spin_lock_irqsave(&engine->sched_engine->lock, flags); 683 684 __i915_request_submit(request); 685 686 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 687 } 688 689 void __i915_request_unsubmit(struct i915_request *request) 690 { 691 struct intel_engine_cs *engine = request->engine; 692 693 /* 694 * Only unwind in reverse order, required so that the per-context list 695 * is kept in seqno/ring order. 696 */ 697 RQ_TRACE(request, "\n"); 698 699 GEM_BUG_ON(!irqs_disabled()); 700 lockdep_assert_held(&engine->sched_engine->lock); 701 702 /* 703 * Before we remove this breadcrumb from the signal list, we have 704 * to ensure that a concurrent dma_fence_enable_signaling() does not 705 * attach itself. We first mark the request as no longer active and 706 * make sure that is visible to other cores, and then remove the 707 * breadcrumb if attached. 708 */ 709 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 710 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 711 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 712 i915_request_cancel_breadcrumb(request); 713 714 /* We've already spun, don't charge on resubmitting. */ 715 if (request->sched.semaphores && __i915_request_has_started(request)) 716 request->sched.semaphores = 0; 717 718 /* 719 * We don't need to wake_up any waiters on request->execute, they 720 * will get woken by any other event or us re-adding this request 721 * to the engine timeline (__i915_request_submit()). The waiters 722 * should be quite adapt at finding that the request now has a new 723 * global_seqno to the one they went to sleep on. 724 */ 725 } 726 727 void i915_request_unsubmit(struct i915_request *request) 728 { 729 struct intel_engine_cs *engine = request->engine; 730 unsigned long flags; 731 732 /* Will be called from irq-context when using foreign fences. */ 733 spin_lock_irqsave(&engine->sched_engine->lock, flags); 734 735 __i915_request_unsubmit(request); 736 737 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 738 } 739 740 void i915_request_cancel(struct i915_request *rq, int error) 741 { 742 if (!i915_request_set_error_once(rq, error)) 743 return; 744 745 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags); 746 747 intel_context_cancel_request(rq->context, rq); 748 } 749 750 static int 751 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 752 { 753 struct i915_request *request = 754 container_of(fence, typeof(*request), submit); 755 756 switch (state) { 757 case FENCE_COMPLETE: 758 trace_i915_request_submit(request); 759 760 if (unlikely(fence->error)) 761 i915_request_set_error_once(request, fence->error); 762 else 763 __rq_arm_watchdog(request); 764 765 /* 766 * We need to serialize use of the submit_request() callback 767 * with its hotplugging performed during an emergency 768 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 769 * critical section in order to force i915_gem_set_wedged() to 770 * wait until the submit_request() is completed before 771 * proceeding. 772 */ 773 rcu_read_lock(); 774 request->engine->submit_request(request); 775 rcu_read_unlock(); 776 break; 777 778 case FENCE_FREE: 779 i915_request_put(request); 780 break; 781 } 782 783 return NOTIFY_DONE; 784 } 785 786 static int 787 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 788 { 789 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 790 791 switch (state) { 792 case FENCE_COMPLETE: 793 break; 794 795 case FENCE_FREE: 796 i915_request_put(rq); 797 break; 798 } 799 800 return NOTIFY_DONE; 801 } 802 803 static void retire_requests(struct intel_timeline *tl) 804 { 805 struct i915_request *rq, *rn; 806 807 list_for_each_entry_safe(rq, rn, &tl->requests, link) 808 if (!i915_request_retire(rq)) 809 break; 810 } 811 812 static noinline struct i915_request * 813 request_alloc_slow(struct intel_timeline *tl, 814 struct i915_request **rsvd, 815 gfp_t gfp) 816 { 817 struct i915_request *rq; 818 819 /* If we cannot wait, dip into our reserves */ 820 if (!gfpflags_allow_blocking(gfp)) { 821 rq = xchg(rsvd, NULL); 822 if (!rq) /* Use the normal failure path for one final WARN */ 823 goto out; 824 825 return rq; 826 } 827 828 if (list_empty(&tl->requests)) 829 goto out; 830 831 /* Move our oldest request to the slab-cache (if not in use!) */ 832 rq = list_first_entry(&tl->requests, typeof(*rq), link); 833 i915_request_retire(rq); 834 835 rq = kmem_cache_alloc(slab_requests, 836 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 837 if (rq) 838 return rq; 839 840 /* Ratelimit ourselves to prevent oom from malicious clients */ 841 rq = list_last_entry(&tl->requests, typeof(*rq), link); 842 cond_synchronize_rcu(rq->rcustate); 843 844 /* Retire our old requests in the hope that we free some */ 845 retire_requests(tl); 846 847 out: 848 return kmem_cache_alloc(slab_requests, gfp); 849 } 850 851 static void __i915_request_ctor(void *arg) 852 { 853 struct i915_request *rq = arg; 854 855 spin_lock_init(&rq->lock); 856 i915_sched_node_init(&rq->sched); 857 i915_sw_fence_init(&rq->submit, submit_notify); 858 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 859 860 clear_capture_list(rq); 861 rq->batch_res = NULL; 862 863 init_llist_head(&rq->execute_cb); 864 } 865 866 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 867 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL) 868 #else 869 #define clear_batch_ptr(_a) do {} while (0) 870 #endif 871 872 struct i915_request * 873 __i915_request_create(struct intel_context *ce, gfp_t gfp) 874 { 875 struct intel_timeline *tl = ce->timeline; 876 struct i915_request *rq; 877 u32 seqno; 878 int ret; 879 880 might_alloc(gfp); 881 882 /* Check that the caller provided an already pinned context */ 883 __intel_context_pin(ce); 884 885 /* 886 * Beware: Dragons be flying overhead. 887 * 888 * We use RCU to look up requests in flight. The lookups may 889 * race with the request being allocated from the slab freelist. 890 * That is the request we are writing to here, may be in the process 891 * of being read by __i915_active_request_get_rcu(). As such, 892 * we have to be very careful when overwriting the contents. During 893 * the RCU lookup, we change chase the request->engine pointer, 894 * read the request->global_seqno and increment the reference count. 895 * 896 * The reference count is incremented atomically. If it is zero, 897 * the lookup knows the request is unallocated and complete. Otherwise, 898 * it is either still in use, or has been reallocated and reset 899 * with dma_fence_init(). This increment is safe for release as we 900 * check that the request we have a reference to and matches the active 901 * request. 902 * 903 * Before we increment the refcount, we chase the request->engine 904 * pointer. We must not call kmem_cache_zalloc() or else we set 905 * that pointer to NULL and cause a crash during the lookup. If 906 * we see the request is completed (based on the value of the 907 * old engine and seqno), the lookup is complete and reports NULL. 908 * If we decide the request is not completed (new engine or seqno), 909 * then we grab a reference and double check that it is still the 910 * active request - which it won't be and restart the lookup. 911 * 912 * Do not use kmem_cache_zalloc() here! 913 */ 914 rq = kmem_cache_alloc(slab_requests, 915 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 916 if (unlikely(!rq)) { 917 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 918 if (!rq) { 919 ret = -ENOMEM; 920 goto err_unreserve; 921 } 922 } 923 924 /* 925 * Hold a reference to the intel_context over life of an i915_request. 926 * Without this an i915_request can exist after the context has been 927 * destroyed (e.g. request retired, context closed, but user space holds 928 * a reference to the request from an out fence). In the case of GuC 929 * submission + virtual engine, the engine that the request references 930 * is also destroyed which can trigger bad pointer dref in fence ops 931 * (e.g. i915_fence_get_driver_name). We could likely change these 932 * functions to avoid touching the engine but let's just be safe and 933 * hold the intel_context reference. In execlist mode the request always 934 * eventually points to a physical engine so this isn't an issue. 935 */ 936 rq->context = intel_context_get(ce); 937 rq->engine = ce->engine; 938 rq->ring = ce->ring; 939 rq->execution_mask = ce->engine->mask; 940 941 ret = intel_timeline_get_seqno(tl, rq, &seqno); 942 if (ret) 943 goto err_free; 944 945 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 946 tl->fence_context, seqno); 947 948 RCU_INIT_POINTER(rq->timeline, tl); 949 rq->hwsp_seqno = tl->hwsp_seqno; 950 GEM_BUG_ON(__i915_request_is_complete(rq)); 951 952 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 953 954 rq->guc_prio = GUC_PRIO_INIT; 955 956 /* We bump the ref for the fence chain */ 957 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 958 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 959 960 i915_sched_node_reinit(&rq->sched); 961 962 /* No zalloc, everything must be cleared after use */ 963 clear_batch_ptr(rq); 964 __rq_init_watchdog(rq); 965 assert_capture_list_is_null(rq); 966 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 967 GEM_BUG_ON(rq->batch_res); 968 969 /* 970 * Reserve space in the ring buffer for all the commands required to 971 * eventually emit this request. This is to guarantee that the 972 * i915_request_add() call can't fail. Note that the reserve may need 973 * to be redone if the request is not actually submitted straight 974 * away, e.g. because a GPU scheduler has deferred it. 975 * 976 * Note that due to how we add reserved_space to intel_ring_begin() 977 * we need to double our request to ensure that if we need to wrap 978 * around inside i915_request_add() there is sufficient space at 979 * the beginning of the ring as well. 980 */ 981 rq->reserved_space = 982 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 983 984 /* 985 * Record the position of the start of the request so that 986 * should we detect the updated seqno part-way through the 987 * GPU processing the request, we never over-estimate the 988 * position of the head. 989 */ 990 rq->head = rq->ring->emit; 991 992 ret = rq->engine->request_alloc(rq); 993 if (ret) 994 goto err_unwind; 995 996 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 997 998 intel_context_mark_active(ce); 999 list_add_tail_rcu(&rq->link, &tl->requests); 1000 1001 return rq; 1002 1003 err_unwind: 1004 ce->ring->emit = rq->head; 1005 1006 /* Make sure we didn't add ourselves to external state before freeing */ 1007 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 1008 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 1009 1010 err_free: 1011 intel_context_put(ce); 1012 kmem_cache_free(slab_requests, rq); 1013 err_unreserve: 1014 intel_context_unpin(ce); 1015 return ERR_PTR(ret); 1016 } 1017 1018 struct i915_request * 1019 i915_request_create(struct intel_context *ce) 1020 { 1021 struct i915_request *rq; 1022 struct intel_timeline *tl; 1023 1024 tl = intel_context_timeline_lock(ce); 1025 if (IS_ERR(tl)) 1026 return ERR_CAST(tl); 1027 1028 /* Move our oldest request to the slab-cache (if not in use!) */ 1029 rq = list_first_entry(&tl->requests, typeof(*rq), link); 1030 if (!list_is_last(&rq->link, &tl->requests)) 1031 i915_request_retire(rq); 1032 1033 intel_context_enter(ce); 1034 rq = __i915_request_create(ce, GFP_KERNEL); 1035 intel_context_exit(ce); /* active reference transferred to request */ 1036 if (IS_ERR(rq)) 1037 goto err_unlock; 1038 1039 /* Check that we do not interrupt ourselves with a new request */ 1040 rq->cookie = lockdep_pin_lock(&tl->mutex); 1041 1042 return rq; 1043 1044 err_unlock: 1045 intel_context_timeline_unlock(tl); 1046 return rq; 1047 } 1048 1049 static int 1050 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 1051 { 1052 struct dma_fence *fence; 1053 int err; 1054 1055 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 1056 return 0; 1057 1058 if (i915_request_started(signal)) 1059 return 0; 1060 1061 /* 1062 * The caller holds a reference on @signal, but we do not serialise 1063 * against it being retired and removed from the lists. 1064 * 1065 * We do not hold a reference to the request before @signal, and 1066 * so must be very careful to ensure that it is not _recycled_ as 1067 * we follow the link backwards. 1068 */ 1069 fence = NULL; 1070 rcu_read_lock(); 1071 do { 1072 struct list_head *pos = READ_ONCE(signal->link.prev); 1073 struct i915_request *prev; 1074 1075 /* Confirm signal has not been retired, the link is valid */ 1076 if (unlikely(__i915_request_has_started(signal))) 1077 break; 1078 1079 /* Is signal the earliest request on its timeline? */ 1080 if (pos == &rcu_dereference(signal->timeline)->requests) 1081 break; 1082 1083 /* 1084 * Peek at the request before us in the timeline. That 1085 * request will only be valid before it is retired, so 1086 * after acquiring a reference to it, confirm that it is 1087 * still part of the signaler's timeline. 1088 */ 1089 prev = list_entry(pos, typeof(*prev), link); 1090 if (!i915_request_get_rcu(prev)) 1091 break; 1092 1093 /* After the strong barrier, confirm prev is still attached */ 1094 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 1095 i915_request_put(prev); 1096 break; 1097 } 1098 1099 fence = &prev->fence; 1100 } while (0); 1101 rcu_read_unlock(); 1102 if (!fence) 1103 return 0; 1104 1105 err = 0; 1106 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1107 err = i915_sw_fence_await_dma_fence(&rq->submit, 1108 fence, 0, 1109 I915_FENCE_GFP); 1110 dma_fence_put(fence); 1111 1112 return err; 1113 } 1114 1115 static intel_engine_mask_t 1116 already_busywaiting(struct i915_request *rq) 1117 { 1118 /* 1119 * Polling a semaphore causes bus traffic, delaying other users of 1120 * both the GPU and CPU. We want to limit the impact on others, 1121 * while taking advantage of early submission to reduce GPU 1122 * latency. Therefore we restrict ourselves to not using more 1123 * than one semaphore from each source, and not using a semaphore 1124 * if we have detected the engine is saturated (i.e. would not be 1125 * submitted early and cause bus traffic reading an already passed 1126 * semaphore). 1127 * 1128 * See the are-we-too-late? check in __i915_request_submit(). 1129 */ 1130 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1131 } 1132 1133 static int 1134 __emit_semaphore_wait(struct i915_request *to, 1135 struct i915_request *from, 1136 u32 seqno) 1137 { 1138 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12; 1139 u32 hwsp_offset; 1140 int len, err; 1141 u32 *cs; 1142 1143 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8); 1144 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1145 1146 /* We need to pin the signaler's HWSP until we are finished reading. */ 1147 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1148 if (err) 1149 return err; 1150 1151 len = 4; 1152 if (has_token) 1153 len += 2; 1154 1155 cs = intel_ring_begin(to, len); 1156 if (IS_ERR(cs)) 1157 return PTR_ERR(cs); 1158 1159 /* 1160 * Using greater-than-or-equal here means we have to worry 1161 * about seqno wraparound. To side step that issue, we swap 1162 * the timeline HWSP upon wrapping, so that everyone listening 1163 * for the old (pre-wrap) values do not see the much smaller 1164 * (post-wrap) values than they were expecting (and so wait 1165 * forever). 1166 */ 1167 *cs++ = (MI_SEMAPHORE_WAIT | 1168 MI_SEMAPHORE_GLOBAL_GTT | 1169 MI_SEMAPHORE_POLL | 1170 MI_SEMAPHORE_SAD_GTE_SDD) + 1171 has_token; 1172 *cs++ = seqno; 1173 *cs++ = hwsp_offset; 1174 *cs++ = 0; 1175 if (has_token) { 1176 *cs++ = 0; 1177 *cs++ = MI_NOOP; 1178 } 1179 1180 intel_ring_advance(to, cs); 1181 return 0; 1182 } 1183 1184 static bool 1185 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from) 1186 { 1187 return to->engine->gt->ggtt == from->engine->gt->ggtt; 1188 } 1189 1190 static int 1191 emit_semaphore_wait(struct i915_request *to, 1192 struct i915_request *from, 1193 gfp_t gfp) 1194 { 1195 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1196 struct i915_sw_fence *wait = &to->submit; 1197 1198 if (!can_use_semaphore_wait(to, from)) 1199 goto await_fence; 1200 1201 if (!intel_context_use_semaphores(to->context)) 1202 goto await_fence; 1203 1204 if (i915_request_has_initial_breadcrumb(to)) 1205 goto await_fence; 1206 1207 /* 1208 * If this or its dependents are waiting on an external fence 1209 * that may fail catastrophically, then we want to avoid using 1210 * sempahores as they bypass the fence signaling metadata, and we 1211 * lose the fence->error propagation. 1212 */ 1213 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1214 goto await_fence; 1215 1216 /* Just emit the first semaphore we see as request space is limited. */ 1217 if (already_busywaiting(to) & mask) 1218 goto await_fence; 1219 1220 if (i915_request_await_start(to, from) < 0) 1221 goto await_fence; 1222 1223 /* Only submit our spinner after the signaler is running! */ 1224 if (__await_execution(to, from, gfp)) 1225 goto await_fence; 1226 1227 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1228 goto await_fence; 1229 1230 to->sched.semaphores |= mask; 1231 wait = &to->semaphore; 1232 1233 await_fence: 1234 return i915_sw_fence_await_dma_fence(wait, 1235 &from->fence, 0, 1236 I915_FENCE_GFP); 1237 } 1238 1239 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1240 struct dma_fence *fence) 1241 { 1242 return __intel_timeline_sync_is_later(tl, 1243 fence->context, 1244 fence->seqno - 1); 1245 } 1246 1247 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1248 const struct dma_fence *fence) 1249 { 1250 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1251 } 1252 1253 static int 1254 __i915_request_await_execution(struct i915_request *to, 1255 struct i915_request *from) 1256 { 1257 int err; 1258 1259 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1260 1261 /* Submit both requests at the same time */ 1262 err = __await_execution(to, from, I915_FENCE_GFP); 1263 if (err) 1264 return err; 1265 1266 /* Squash repeated depenendices to the same timelines */ 1267 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1268 &from->fence)) 1269 return 0; 1270 1271 /* 1272 * Wait until the start of this request. 1273 * 1274 * The execution cb fires when we submit the request to HW. But in 1275 * many cases this may be long before the request itself is ready to 1276 * run (consider that we submit 2 requests for the same context, where 1277 * the request of interest is behind an indefinite spinner). So we hook 1278 * up to both to reduce our queues and keep the execution lag minimised 1279 * in the worst case, though we hope that the await_start is elided. 1280 */ 1281 err = i915_request_await_start(to, from); 1282 if (err < 0) 1283 return err; 1284 1285 /* 1286 * Ensure both start together [after all semaphores in signal] 1287 * 1288 * Now that we are queued to the HW at roughly the same time (thanks 1289 * to the execute cb) and are ready to run at roughly the same time 1290 * (thanks to the await start), our signaler may still be indefinitely 1291 * delayed by waiting on a semaphore from a remote engine. If our 1292 * signaler depends on a semaphore, so indirectly do we, and we do not 1293 * want to start our payload until our signaler also starts theirs. 1294 * So we wait. 1295 * 1296 * However, there is also a second condition for which we need to wait 1297 * for the precise start of the signaler. Consider that the signaler 1298 * was submitted in a chain of requests following another context 1299 * (with just an ordinary intra-engine fence dependency between the 1300 * two). In this case the signaler is queued to HW, but not for 1301 * immediate execution, and so we must wait until it reaches the 1302 * active slot. 1303 */ 1304 if (can_use_semaphore_wait(to, from) && 1305 intel_engine_has_semaphores(to->engine) && 1306 !i915_request_has_initial_breadcrumb(to)) { 1307 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1308 if (err < 0) 1309 return err; 1310 } 1311 1312 /* Couple the dependency tree for PI on this exposed to->fence */ 1313 if (to->engine->sched_engine->schedule) { 1314 err = i915_sched_node_add_dependency(&to->sched, 1315 &from->sched, 1316 I915_DEPENDENCY_WEAK); 1317 if (err < 0) 1318 return err; 1319 } 1320 1321 return intel_timeline_sync_set_start(i915_request_timeline(to), 1322 &from->fence); 1323 } 1324 1325 static void mark_external(struct i915_request *rq) 1326 { 1327 /* 1328 * The downside of using semaphores is that we lose metadata passing 1329 * along the signaling chain. This is particularly nasty when we 1330 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1331 * fatal errors we want to scrub the request before it is executed, 1332 * which means that we cannot preload the request onto HW and have 1333 * it wait upon a semaphore. 1334 */ 1335 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1336 } 1337 1338 static int 1339 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1340 { 1341 mark_external(rq); 1342 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1343 i915_fence_context_timeout(rq->engine->i915, 1344 fence->context), 1345 I915_FENCE_GFP); 1346 } 1347 1348 static int 1349 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1350 { 1351 struct dma_fence *iter; 1352 int err = 0; 1353 1354 if (!to_dma_fence_chain(fence)) 1355 return __i915_request_await_external(rq, fence); 1356 1357 dma_fence_chain_for_each(iter, fence) { 1358 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1359 1360 if (!dma_fence_is_i915(chain->fence)) { 1361 err = __i915_request_await_external(rq, iter); 1362 break; 1363 } 1364 1365 err = i915_request_await_dma_fence(rq, chain->fence); 1366 if (err < 0) 1367 break; 1368 } 1369 1370 dma_fence_put(iter); 1371 return err; 1372 } 1373 1374 static inline bool is_parallel_rq(struct i915_request *rq) 1375 { 1376 return intel_context_is_parallel(rq->context); 1377 } 1378 1379 static inline struct intel_context *request_to_parent(struct i915_request *rq) 1380 { 1381 return intel_context_to_parent(rq->context); 1382 } 1383 1384 static bool is_same_parallel_context(struct i915_request *to, 1385 struct i915_request *from) 1386 { 1387 if (is_parallel_rq(to)) 1388 return request_to_parent(to) == request_to_parent(from); 1389 1390 return false; 1391 } 1392 1393 int 1394 i915_request_await_execution(struct i915_request *rq, 1395 struct dma_fence *fence) 1396 { 1397 struct dma_fence **child = &fence; 1398 unsigned int nchild = 1; 1399 int ret; 1400 1401 if (dma_fence_is_array(fence)) { 1402 struct dma_fence_array *array = to_dma_fence_array(fence); 1403 1404 /* XXX Error for signal-on-any fence arrays */ 1405 1406 child = array->fences; 1407 nchild = array->num_fences; 1408 GEM_BUG_ON(!nchild); 1409 } 1410 1411 do { 1412 fence = *child++; 1413 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1414 continue; 1415 1416 if (fence->context == rq->fence.context) 1417 continue; 1418 1419 /* 1420 * We don't squash repeated fence dependencies here as we 1421 * want to run our callback in all cases. 1422 */ 1423 1424 if (dma_fence_is_i915(fence)) { 1425 if (is_same_parallel_context(rq, to_request(fence))) 1426 continue; 1427 ret = __i915_request_await_execution(rq, 1428 to_request(fence)); 1429 } else { 1430 ret = i915_request_await_external(rq, fence); 1431 } 1432 if (ret < 0) 1433 return ret; 1434 } while (--nchild); 1435 1436 return 0; 1437 } 1438 1439 static int 1440 await_request_submit(struct i915_request *to, struct i915_request *from) 1441 { 1442 /* 1443 * If we are waiting on a virtual engine, then it may be 1444 * constrained to execute on a single engine *prior* to submission. 1445 * When it is submitted, it will be first submitted to the virtual 1446 * engine and then passed to the physical engine. We cannot allow 1447 * the waiter to be submitted immediately to the physical engine 1448 * as it may then bypass the virtual request. 1449 */ 1450 if (to->engine == READ_ONCE(from->engine)) 1451 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1452 &from->submit, 1453 I915_FENCE_GFP); 1454 else 1455 return __i915_request_await_execution(to, from); 1456 } 1457 1458 static int 1459 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1460 { 1461 int ret; 1462 1463 GEM_BUG_ON(to == from); 1464 GEM_BUG_ON(to->timeline == from->timeline); 1465 1466 if (i915_request_completed(from)) { 1467 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1468 return 0; 1469 } 1470 1471 if (to->engine->sched_engine->schedule) { 1472 ret = i915_sched_node_add_dependency(&to->sched, 1473 &from->sched, 1474 I915_DEPENDENCY_EXTERNAL); 1475 if (ret < 0) 1476 return ret; 1477 } 1478 1479 if (!intel_engine_uses_guc(to->engine) && 1480 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1481 ret = await_request_submit(to, from); 1482 else 1483 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1484 if (ret < 0) 1485 return ret; 1486 1487 return 0; 1488 } 1489 1490 int 1491 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1492 { 1493 struct dma_fence **child = &fence; 1494 unsigned int nchild = 1; 1495 int ret; 1496 1497 /* 1498 * Note that if the fence-array was created in signal-on-any mode, 1499 * we should *not* decompose it into its individual fences. However, 1500 * we don't currently store which mode the fence-array is operating 1501 * in. Fortunately, the only user of signal-on-any is private to 1502 * amdgpu and we should not see any incoming fence-array from 1503 * sync-file being in signal-on-any mode. 1504 */ 1505 if (dma_fence_is_array(fence)) { 1506 struct dma_fence_array *array = to_dma_fence_array(fence); 1507 1508 child = array->fences; 1509 nchild = array->num_fences; 1510 GEM_BUG_ON(!nchild); 1511 } 1512 1513 do { 1514 fence = *child++; 1515 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1516 continue; 1517 1518 /* 1519 * Requests on the same timeline are explicitly ordered, along 1520 * with their dependencies, by i915_request_add() which ensures 1521 * that requests are submitted in-order through each ring. 1522 */ 1523 if (fence->context == rq->fence.context) 1524 continue; 1525 1526 /* Squash repeated waits to the same timelines */ 1527 if (fence->context && 1528 intel_timeline_sync_is_later(i915_request_timeline(rq), 1529 fence)) 1530 continue; 1531 1532 if (dma_fence_is_i915(fence)) { 1533 if (is_same_parallel_context(rq, to_request(fence))) 1534 continue; 1535 ret = i915_request_await_request(rq, to_request(fence)); 1536 } else { 1537 ret = i915_request_await_external(rq, fence); 1538 } 1539 if (ret < 0) 1540 return ret; 1541 1542 /* Record the latest fence used against each timeline */ 1543 if (fence->context) 1544 intel_timeline_sync_set(i915_request_timeline(rq), 1545 fence); 1546 } while (--nchild); 1547 1548 return 0; 1549 } 1550 1551 /** 1552 * i915_request_await_deps - set this request to (async) wait upon a struct 1553 * i915_deps dma_fence collection 1554 * @rq: request we are wishing to use 1555 * @deps: The struct i915_deps containing the dependencies. 1556 * 1557 * Returns 0 if successful, negative error code on error. 1558 */ 1559 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps) 1560 { 1561 int i, err; 1562 1563 for (i = 0; i < deps->num_deps; ++i) { 1564 err = i915_request_await_dma_fence(rq, deps->fences[i]); 1565 if (err) 1566 return err; 1567 } 1568 1569 return 0; 1570 } 1571 1572 /** 1573 * i915_request_await_object - set this request to (async) wait upon a bo 1574 * @to: request we are wishing to use 1575 * @obj: object which may be in use on another ring. 1576 * @write: whether the wait is on behalf of a writer 1577 * 1578 * This code is meant to abstract object synchronization with the GPU. 1579 * Conceptually we serialise writes between engines inside the GPU. 1580 * We only allow one engine to write into a buffer at any time, but 1581 * multiple readers. To ensure each has a coherent view of memory, we must: 1582 * 1583 * - If there is an outstanding write request to the object, the new 1584 * request must wait for it to complete (either CPU or in hw, requests 1585 * on the same ring will be naturally ordered). 1586 * 1587 * - If we are a write request (pending_write_domain is set), the new 1588 * request must wait for outstanding read requests to complete. 1589 * 1590 * Returns 0 if successful, else propagates up the lower layer error. 1591 */ 1592 int 1593 i915_request_await_object(struct i915_request *to, 1594 struct drm_i915_gem_object *obj, 1595 bool write) 1596 { 1597 struct dma_resv_iter cursor; 1598 struct dma_fence *fence; 1599 int ret = 0; 1600 1601 dma_resv_for_each_fence(&cursor, obj->base.resv, 1602 dma_resv_usage_rw(write), fence) { 1603 ret = i915_request_await_dma_fence(to, fence); 1604 if (ret) 1605 break; 1606 } 1607 1608 return ret; 1609 } 1610 1611 static struct i915_request * 1612 __i915_request_ensure_parallel_ordering(struct i915_request *rq, 1613 struct intel_timeline *timeline) 1614 { 1615 struct i915_request *prev; 1616 1617 GEM_BUG_ON(!is_parallel_rq(rq)); 1618 1619 prev = request_to_parent(rq)->parallel.last_rq; 1620 if (prev) { 1621 if (!__i915_request_is_complete(prev)) { 1622 i915_sw_fence_await_sw_fence(&rq->submit, 1623 &prev->submit, 1624 &rq->submitq); 1625 1626 if (rq->engine->sched_engine->schedule) 1627 __i915_sched_node_add_dependency(&rq->sched, 1628 &prev->sched, 1629 &rq->dep, 1630 0); 1631 } 1632 i915_request_put(prev); 1633 } 1634 1635 request_to_parent(rq)->parallel.last_rq = i915_request_get(rq); 1636 1637 return to_request(__i915_active_fence_set(&timeline->last_request, 1638 &rq->fence)); 1639 } 1640 1641 static struct i915_request * 1642 __i915_request_ensure_ordering(struct i915_request *rq, 1643 struct intel_timeline *timeline) 1644 { 1645 struct i915_request *prev; 1646 1647 GEM_BUG_ON(is_parallel_rq(rq)); 1648 1649 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1650 &rq->fence)); 1651 1652 if (prev && !__i915_request_is_complete(prev)) { 1653 bool uses_guc = intel_engine_uses_guc(rq->engine); 1654 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask | 1655 rq->engine->mask); 1656 bool same_context = prev->context == rq->context; 1657 1658 /* 1659 * The requests are supposed to be kept in order. However, 1660 * we need to be wary in case the timeline->last_request 1661 * is used as a barrier for external modification to this 1662 * context. 1663 */ 1664 GEM_BUG_ON(same_context && 1665 i915_seqno_passed(prev->fence.seqno, 1666 rq->fence.seqno)); 1667 1668 if ((same_context && uses_guc) || (!uses_guc && pow2)) 1669 i915_sw_fence_await_sw_fence(&rq->submit, 1670 &prev->submit, 1671 &rq->submitq); 1672 else 1673 __i915_sw_fence_await_dma_fence(&rq->submit, 1674 &prev->fence, 1675 &rq->dmaq); 1676 if (rq->engine->sched_engine->schedule) 1677 __i915_sched_node_add_dependency(&rq->sched, 1678 &prev->sched, 1679 &rq->dep, 1680 0); 1681 } 1682 1683 return prev; 1684 } 1685 1686 static struct i915_request * 1687 __i915_request_add_to_timeline(struct i915_request *rq) 1688 { 1689 struct intel_timeline *timeline = i915_request_timeline(rq); 1690 struct i915_request *prev; 1691 1692 /* 1693 * Dependency tracking and request ordering along the timeline 1694 * is special cased so that we can eliminate redundant ordering 1695 * operations while building the request (we know that the timeline 1696 * itself is ordered, and here we guarantee it). 1697 * 1698 * As we know we will need to emit tracking along the timeline, 1699 * we embed the hooks into our request struct -- at the cost of 1700 * having to have specialised no-allocation interfaces (which will 1701 * be beneficial elsewhere). 1702 * 1703 * A second benefit to open-coding i915_request_await_request is 1704 * that we can apply a slight variant of the rules specialised 1705 * for timelines that jump between engines (such as virtual engines). 1706 * If we consider the case of virtual engine, we must emit a dma-fence 1707 * to prevent scheduling of the second request until the first is 1708 * complete (to maximise our greedy late load balancing) and this 1709 * precludes optimising to use semaphores serialisation of a single 1710 * timeline across engines. 1711 * 1712 * We do not order parallel submission requests on the timeline as each 1713 * parallel submission context has its own timeline and the ordering 1714 * rules for parallel requests are that they must be submitted in the 1715 * order received from the execbuf IOCTL. So rather than using the 1716 * timeline we store a pointer to last request submitted in the 1717 * relationship in the gem context and insert a submission fence 1718 * between that request and request passed into this function or 1719 * alternatively we use completion fence if gem context has a single 1720 * timeline and this is the first submission of an execbuf IOCTL. 1721 */ 1722 if (likely(!is_parallel_rq(rq))) 1723 prev = __i915_request_ensure_ordering(rq, timeline); 1724 else 1725 prev = __i915_request_ensure_parallel_ordering(rq, timeline); 1726 1727 /* 1728 * Make sure that no request gazumped us - if it was allocated after 1729 * our i915_request_alloc() and called __i915_request_add() before 1730 * us, the timeline will hold its seqno which is later than ours. 1731 */ 1732 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1733 1734 return prev; 1735 } 1736 1737 /* 1738 * NB: This function is not allowed to fail. Doing so would mean the the 1739 * request is not being tracked for completion but the work itself is 1740 * going to happen on the hardware. This would be a Bad Thing(tm). 1741 */ 1742 struct i915_request *__i915_request_commit(struct i915_request *rq) 1743 { 1744 struct intel_engine_cs *engine = rq->engine; 1745 struct intel_ring *ring = rq->ring; 1746 u32 *cs; 1747 1748 RQ_TRACE(rq, "\n"); 1749 1750 /* 1751 * To ensure that this call will not fail, space for its emissions 1752 * should already have been reserved in the ring buffer. Let the ring 1753 * know that it is time to use that space up. 1754 */ 1755 GEM_BUG_ON(rq->reserved_space > ring->space); 1756 rq->reserved_space = 0; 1757 rq->emitted_jiffies = jiffies; 1758 1759 /* 1760 * Record the position of the start of the breadcrumb so that 1761 * should we detect the updated seqno part-way through the 1762 * GPU processing the request, we never over-estimate the 1763 * position of the ring's HEAD. 1764 */ 1765 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1766 GEM_BUG_ON(IS_ERR(cs)); 1767 rq->postfix = intel_ring_offset(rq, cs); 1768 1769 return __i915_request_add_to_timeline(rq); 1770 } 1771 1772 void __i915_request_queue_bh(struct i915_request *rq) 1773 { 1774 i915_sw_fence_commit(&rq->semaphore); 1775 i915_sw_fence_commit(&rq->submit); 1776 } 1777 1778 void __i915_request_queue(struct i915_request *rq, 1779 const struct i915_sched_attr *attr) 1780 { 1781 /* 1782 * Let the backend know a new request has arrived that may need 1783 * to adjust the existing execution schedule due to a high priority 1784 * request - i.e. we may want to preempt the current request in order 1785 * to run a high priority dependency chain *before* we can execute this 1786 * request. 1787 * 1788 * This is called before the request is ready to run so that we can 1789 * decide whether to preempt the entire chain so that it is ready to 1790 * run at the earliest possible convenience. 1791 */ 1792 if (attr && rq->engine->sched_engine->schedule) 1793 rq->engine->sched_engine->schedule(rq, attr); 1794 1795 local_bh_disable(); 1796 __i915_request_queue_bh(rq); 1797 local_bh_enable(); /* kick tasklets */ 1798 } 1799 1800 void i915_request_add(struct i915_request *rq) 1801 { 1802 struct intel_timeline * const tl = i915_request_timeline(rq); 1803 struct i915_sched_attr attr = {}; 1804 struct i915_gem_context *ctx; 1805 1806 lockdep_assert_held(&tl->mutex); 1807 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1808 1809 trace_i915_request_add(rq); 1810 __i915_request_commit(rq); 1811 1812 /* XXX placeholder for selftests */ 1813 rcu_read_lock(); 1814 ctx = rcu_dereference(rq->context->gem_context); 1815 if (ctx) 1816 attr = ctx->sched; 1817 rcu_read_unlock(); 1818 1819 __i915_request_queue(rq, &attr); 1820 1821 mutex_unlock(&tl->mutex); 1822 } 1823 1824 static unsigned long local_clock_ns(unsigned int *cpu) 1825 { 1826 unsigned long t; 1827 1828 /* 1829 * Cheaply and approximately convert from nanoseconds to microseconds. 1830 * The result and subsequent calculations are also defined in the same 1831 * approximate microseconds units. The principal source of timing 1832 * error here is from the simple truncation. 1833 * 1834 * Note that local_clock() is only defined wrt to the current CPU; 1835 * the comparisons are no longer valid if we switch CPUs. Instead of 1836 * blocking preemption for the entire busywait, we can detect the CPU 1837 * switch and use that as indicator of system load and a reason to 1838 * stop busywaiting, see busywait_stop(). 1839 */ 1840 *cpu = get_cpu(); 1841 t = local_clock(); 1842 put_cpu(); 1843 1844 return t; 1845 } 1846 1847 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1848 { 1849 unsigned int this_cpu; 1850 1851 if (time_after(local_clock_ns(&this_cpu), timeout)) 1852 return true; 1853 1854 return this_cpu != cpu; 1855 } 1856 1857 static bool __i915_spin_request(struct i915_request * const rq, int state) 1858 { 1859 unsigned long timeout_ns; 1860 unsigned int cpu; 1861 1862 /* 1863 * Only wait for the request if we know it is likely to complete. 1864 * 1865 * We don't track the timestamps around requests, nor the average 1866 * request length, so we do not have a good indicator that this 1867 * request will complete within the timeout. What we do know is the 1868 * order in which requests are executed by the context and so we can 1869 * tell if the request has been started. If the request is not even 1870 * running yet, it is a fair assumption that it will not complete 1871 * within our relatively short timeout. 1872 */ 1873 if (!i915_request_is_running(rq)) 1874 return false; 1875 1876 /* 1877 * When waiting for high frequency requests, e.g. during synchronous 1878 * rendering split between the CPU and GPU, the finite amount of time 1879 * required to set up the irq and wait upon it limits the response 1880 * rate. By busywaiting on the request completion for a short while we 1881 * can service the high frequency waits as quick as possible. However, 1882 * if it is a slow request, we want to sleep as quickly as possible. 1883 * The tradeoff between waiting and sleeping is roughly the time it 1884 * takes to sleep on a request, on the order of a microsecond. 1885 */ 1886 1887 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1888 timeout_ns += local_clock_ns(&cpu); 1889 do { 1890 if (dma_fence_is_signaled(&rq->fence)) 1891 return true; 1892 1893 if (signal_pending_state(state, current)) 1894 break; 1895 1896 if (busywait_stop(timeout_ns, cpu)) 1897 break; 1898 1899 cpu_relax(); 1900 } while (!need_resched()); 1901 1902 return false; 1903 } 1904 1905 struct request_wait { 1906 struct dma_fence_cb cb; 1907 struct task_struct *tsk; 1908 }; 1909 1910 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1911 { 1912 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1913 1914 wake_up_process(fetch_and_zero(&wait->tsk)); 1915 } 1916 1917 /** 1918 * i915_request_wait_timeout - wait until execution of request has finished 1919 * @rq: the request to wait upon 1920 * @flags: how to wait 1921 * @timeout: how long to wait in jiffies 1922 * 1923 * i915_request_wait_timeout() waits for the request to be completed, for a 1924 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1925 * unbounded wait). 1926 * 1927 * Returns the remaining time (in jiffies) if the request completed, which may 1928 * be zero if the request is unfinished after the timeout expires. 1929 * If the timeout is 0, it will return 1 if the fence is signaled. 1930 * 1931 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1932 * pending before the request completes. 1933 * 1934 * NOTE: This function has the same wait semantics as dma-fence. 1935 */ 1936 long i915_request_wait_timeout(struct i915_request *rq, 1937 unsigned int flags, 1938 long timeout) 1939 { 1940 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1941 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1942 struct request_wait wait; 1943 1944 might_sleep(); 1945 GEM_BUG_ON(timeout < 0); 1946 1947 if (dma_fence_is_signaled(&rq->fence)) 1948 return timeout ?: 1; 1949 1950 if (!timeout) 1951 return -ETIME; 1952 1953 trace_i915_request_wait_begin(rq, flags); 1954 1955 /* 1956 * We must never wait on the GPU while holding a lock as we 1957 * may need to perform a GPU reset. So while we don't need to 1958 * serialise wait/reset with an explicit lock, we do want 1959 * lockdep to detect potential dependency cycles. 1960 */ 1961 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1962 1963 /* 1964 * Optimistic spin before touching IRQs. 1965 * 1966 * We may use a rather large value here to offset the penalty of 1967 * switching away from the active task. Frequently, the client will 1968 * wait upon an old swapbuffer to throttle itself to remain within a 1969 * frame of the gpu. If the client is running in lockstep with the gpu, 1970 * then it should not be waiting long at all, and a sleep now will incur 1971 * extra scheduler latency in producing the next frame. To try to 1972 * avoid adding the cost of enabling/disabling the interrupt to the 1973 * short wait, we first spin to see if the request would have completed 1974 * in the time taken to setup the interrupt. 1975 * 1976 * We need upto 5us to enable the irq, and upto 20us to hide the 1977 * scheduler latency of a context switch, ignoring the secondary 1978 * impacts from a context switch such as cache eviction. 1979 * 1980 * The scheme used for low-latency IO is called "hybrid interrupt 1981 * polling". The suggestion there is to sleep until just before you 1982 * expect to be woken by the device interrupt and then poll for its 1983 * completion. That requires having a good predictor for the request 1984 * duration, which we currently lack. 1985 */ 1986 if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT && 1987 __i915_spin_request(rq, state)) 1988 goto out; 1989 1990 /* 1991 * This client is about to stall waiting for the GPU. In many cases 1992 * this is undesirable and limits the throughput of the system, as 1993 * many clients cannot continue processing user input/output whilst 1994 * blocked. RPS autotuning may take tens of milliseconds to respond 1995 * to the GPU load and thus incurs additional latency for the client. 1996 * We can circumvent that by promoting the GPU frequency to maximum 1997 * before we sleep. This makes the GPU throttle up much more quickly 1998 * (good for benchmarks and user experience, e.g. window animations), 1999 * but at a cost of spending more power processing the workload 2000 * (bad for battery). 2001 */ 2002 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 2003 intel_rps_boost(rq); 2004 2005 wait.tsk = current; 2006 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 2007 goto out; 2008 2009 /* 2010 * Flush the submission tasklet, but only if it may help this request. 2011 * 2012 * We sometimes experience some latency between the HW interrupts and 2013 * tasklet execution (mostly due to ksoftirqd latency, but it can also 2014 * be due to lazy CS events), so lets run the tasklet manually if there 2015 * is a chance it may submit this request. If the request is not ready 2016 * to run, as it is waiting for other fences to be signaled, flushing 2017 * the tasklet is busy work without any advantage for this client. 2018 * 2019 * If the HW is being lazy, this is the last chance before we go to 2020 * sleep to catch any pending events. We will check periodically in 2021 * the heartbeat to flush the submission tasklets as a last resort 2022 * for unhappy HW. 2023 */ 2024 if (i915_request_is_ready(rq)) 2025 __intel_engine_flush_submission(rq->engine, false); 2026 2027 for (;;) { 2028 set_current_state(state); 2029 2030 if (dma_fence_is_signaled(&rq->fence)) 2031 break; 2032 2033 if (signal_pending_state(state, current)) { 2034 timeout = -ERESTARTSYS; 2035 break; 2036 } 2037 2038 if (!timeout) { 2039 timeout = -ETIME; 2040 break; 2041 } 2042 2043 timeout = io_schedule_timeout(timeout); 2044 } 2045 __set_current_state(TASK_RUNNING); 2046 2047 if (READ_ONCE(wait.tsk)) 2048 dma_fence_remove_callback(&rq->fence, &wait.cb); 2049 GEM_BUG_ON(!list_empty(&wait.cb.node)); 2050 2051 out: 2052 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 2053 trace_i915_request_wait_end(rq); 2054 return timeout; 2055 } 2056 2057 /** 2058 * i915_request_wait - wait until execution of request has finished 2059 * @rq: the request to wait upon 2060 * @flags: how to wait 2061 * @timeout: how long to wait in jiffies 2062 * 2063 * i915_request_wait() waits for the request to be completed, for a 2064 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 2065 * unbounded wait). 2066 * 2067 * Returns the remaining time (in jiffies) if the request completed, which may 2068 * be zero or -ETIME if the request is unfinished after the timeout expires. 2069 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 2070 * pending before the request completes. 2071 * 2072 * NOTE: This function behaves differently from dma-fence wait semantics for 2073 * timeout = 0. It returns 0 on success, and -ETIME if not signaled. 2074 */ 2075 long i915_request_wait(struct i915_request *rq, 2076 unsigned int flags, 2077 long timeout) 2078 { 2079 long ret = i915_request_wait_timeout(rq, flags, timeout); 2080 2081 if (!ret) 2082 return -ETIME; 2083 2084 if (ret > 0 && !timeout) 2085 return 0; 2086 2087 return ret; 2088 } 2089 2090 static int print_sched_attr(const struct i915_sched_attr *attr, 2091 char *buf, int x, int len) 2092 { 2093 if (attr->priority == I915_PRIORITY_INVALID) 2094 return x; 2095 2096 x += snprintf(buf + x, len - x, 2097 " prio=%d", attr->priority); 2098 2099 return x; 2100 } 2101 2102 static char queue_status(const struct i915_request *rq) 2103 { 2104 if (i915_request_is_active(rq)) 2105 return 'E'; 2106 2107 if (i915_request_is_ready(rq)) 2108 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R'; 2109 2110 return 'U'; 2111 } 2112 2113 static const char *run_status(const struct i915_request *rq) 2114 { 2115 if (__i915_request_is_complete(rq)) 2116 return "!"; 2117 2118 if (__i915_request_has_started(rq)) 2119 return "*"; 2120 2121 if (!i915_sw_fence_signaled(&rq->semaphore)) 2122 return "&"; 2123 2124 return ""; 2125 } 2126 2127 static const char *fence_status(const struct i915_request *rq) 2128 { 2129 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 2130 return "+"; 2131 2132 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 2133 return "-"; 2134 2135 return ""; 2136 } 2137 2138 void i915_request_show(struct drm_printer *m, 2139 const struct i915_request *rq, 2140 const char *prefix, 2141 int indent) 2142 { 2143 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence); 2144 char buf[80] = ""; 2145 int x = 0; 2146 2147 /* 2148 * The prefix is used to show the queue status, for which we use 2149 * the following flags: 2150 * 2151 * U [Unready] 2152 * - initial status upon being submitted by the user 2153 * 2154 * - the request is not ready for execution as it is waiting 2155 * for external fences 2156 * 2157 * R [Ready] 2158 * - all fences the request was waiting on have been signaled, 2159 * and the request is now ready for execution and will be 2160 * in a backend queue 2161 * 2162 * - a ready request may still need to wait on semaphores 2163 * [internal fences] 2164 * 2165 * V [Ready/virtual] 2166 * - same as ready, but queued over multiple backends 2167 * 2168 * E [Executing] 2169 * - the request has been transferred from the backend queue and 2170 * submitted for execution on HW 2171 * 2172 * - a completed request may still be regarded as executing, its 2173 * status may not be updated until it is retired and removed 2174 * from the lists 2175 */ 2176 2177 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); 2178 2179 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n", 2180 prefix, indent, " ", 2181 queue_status(rq), 2182 rq->fence.context, rq->fence.seqno, 2183 run_status(rq), 2184 fence_status(rq), 2185 buf, 2186 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 2187 name); 2188 } 2189 2190 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq) 2191 { 2192 u32 ring = ENGINE_READ(engine, RING_START); 2193 2194 return ring == i915_ggtt_offset(rq->ring->vma); 2195 } 2196 2197 static bool match_ring(struct i915_request *rq) 2198 { 2199 struct intel_engine_cs *engine; 2200 bool found; 2201 int i; 2202 2203 if (!intel_engine_is_virtual(rq->engine)) 2204 return engine_match_ring(rq->engine, rq); 2205 2206 found = false; 2207 i = 0; 2208 while ((engine = intel_engine_get_sibling(rq->engine, i++))) { 2209 found = engine_match_ring(engine, rq); 2210 if (found) 2211 break; 2212 } 2213 2214 return found; 2215 } 2216 2217 enum i915_request_state i915_test_request_state(struct i915_request *rq) 2218 { 2219 if (i915_request_completed(rq)) 2220 return I915_REQUEST_COMPLETE; 2221 2222 if (!i915_request_started(rq)) 2223 return I915_REQUEST_PENDING; 2224 2225 if (match_ring(rq)) 2226 return I915_REQUEST_ACTIVE; 2227 2228 return I915_REQUEST_QUEUED; 2229 } 2230 2231 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2232 #include "selftests/mock_request.c" 2233 #include "selftests/i915_request.c" 2234 #endif 2235 2236 void i915_request_module_exit(void) 2237 { 2238 kmem_cache_destroy(slab_execute_cbs); 2239 kmem_cache_destroy(slab_requests); 2240 } 2241 2242 int __init i915_request_module_init(void) 2243 { 2244 slab_requests = 2245 kmem_cache_create("i915_request", 2246 sizeof(struct i915_request), 2247 __alignof__(struct i915_request), 2248 SLAB_HWCACHE_ALIGN | 2249 SLAB_RECLAIM_ACCOUNT | 2250 SLAB_TYPESAFE_BY_RCU, 2251 __i915_request_ctor); 2252 if (!slab_requests) 2253 return -ENOMEM; 2254 2255 slab_execute_cbs = KMEM_CACHE(execute_cb, 2256 SLAB_HWCACHE_ALIGN | 2257 SLAB_RECLAIM_ACCOUNT | 2258 SLAB_TYPESAFE_BY_RCU); 2259 if (!slab_execute_cbs) 2260 goto err_requests; 2261 2262 return 0; 2263 2264 err_requests: 2265 kmem_cache_destroy(slab_requests); 2266 return -ENOMEM; 2267 } 2268