1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 33 #include "gem/i915_gem_context.h" 34 #include "gt/intel_breadcrumbs.h" 35 #include "gt/intel_context.h" 36 #include "gt/intel_engine.h" 37 #include "gt/intel_engine_heartbeat.h" 38 #include "gt/intel_gpu_commands.h" 39 #include "gt/intel_reset.h" 40 #include "gt/intel_ring.h" 41 #include "gt/intel_rps.h" 42 43 #include "i915_active.h" 44 #include "i915_drv.h" 45 #include "i915_trace.h" 46 #include "intel_pm.h" 47 48 struct execute_cb { 49 struct irq_work work; 50 struct i915_sw_fence *fence; 51 struct i915_request *signal; 52 }; 53 54 static struct kmem_cache *slab_requests; 55 static struct kmem_cache *slab_execute_cbs; 56 57 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 58 { 59 return dev_name(to_request(fence)->engine->i915->drm.dev); 60 } 61 62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 63 { 64 const struct i915_gem_context *ctx; 65 66 /* 67 * The timeline struct (as part of the ppgtt underneath a context) 68 * may be freed when the request is no longer in use by the GPU. 69 * We could extend the life of a context to beyond that of all 70 * fences, possibly keeping the hw resource around indefinitely, 71 * or we just give them a false name. Since 72 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 73 * lie seems justifiable. 74 */ 75 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 76 return "signaled"; 77 78 ctx = i915_request_gem_context(to_request(fence)); 79 if (!ctx) 80 return "[" DRIVER_NAME "]"; 81 82 return ctx->name; 83 } 84 85 static bool i915_fence_signaled(struct dma_fence *fence) 86 { 87 return i915_request_completed(to_request(fence)); 88 } 89 90 static bool i915_fence_enable_signaling(struct dma_fence *fence) 91 { 92 return i915_request_enable_breadcrumb(to_request(fence)); 93 } 94 95 static signed long i915_fence_wait(struct dma_fence *fence, 96 bool interruptible, 97 signed long timeout) 98 { 99 return i915_request_wait(to_request(fence), 100 interruptible | I915_WAIT_PRIORITY, 101 timeout); 102 } 103 104 struct kmem_cache *i915_request_slab_cache(void) 105 { 106 return slab_requests; 107 } 108 109 static void i915_fence_release(struct dma_fence *fence) 110 { 111 struct i915_request *rq = to_request(fence); 112 113 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT && 114 rq->guc_prio != GUC_PRIO_FINI); 115 116 /* 117 * The request is put onto a RCU freelist (i.e. the address 118 * is immediately reused), mark the fences as being freed now. 119 * Otherwise the debugobjects for the fences are only marked as 120 * freed when the slab cache itself is freed, and so we would get 121 * caught trying to reuse dead objects. 122 */ 123 i915_sw_fence_fini(&rq->submit); 124 i915_sw_fence_fini(&rq->semaphore); 125 126 /* 127 * Keep one request on each engine for reserved use under mempressure, 128 * do not use with virtual engines as this really is only needed for 129 * kernel contexts. 130 */ 131 if (!intel_engine_is_virtual(rq->engine) && 132 !cmpxchg(&rq->engine->request_pool, NULL, rq)) { 133 intel_context_put(rq->context); 134 return; 135 } 136 137 intel_context_put(rq->context); 138 139 kmem_cache_free(slab_requests, rq); 140 } 141 142 const struct dma_fence_ops i915_fence_ops = { 143 .get_driver_name = i915_fence_get_driver_name, 144 .get_timeline_name = i915_fence_get_timeline_name, 145 .enable_signaling = i915_fence_enable_signaling, 146 .signaled = i915_fence_signaled, 147 .wait = i915_fence_wait, 148 .release = i915_fence_release, 149 }; 150 151 static void irq_execute_cb(struct irq_work *wrk) 152 { 153 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 154 155 i915_sw_fence_complete(cb->fence); 156 kmem_cache_free(slab_execute_cbs, cb); 157 } 158 159 static __always_inline void 160 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 161 { 162 struct execute_cb *cb, *cn; 163 164 if (llist_empty(&rq->execute_cb)) 165 return; 166 167 llist_for_each_entry_safe(cb, cn, 168 llist_del_all(&rq->execute_cb), 169 work.node.llist) 170 fn(&cb->work); 171 } 172 173 static void __notify_execute_cb_irq(struct i915_request *rq) 174 { 175 __notify_execute_cb(rq, irq_work_queue); 176 } 177 178 static bool irq_work_imm(struct irq_work *wrk) 179 { 180 wrk->func(wrk); 181 return false; 182 } 183 184 void i915_request_notify_execute_cb_imm(struct i915_request *rq) 185 { 186 __notify_execute_cb(rq, irq_work_imm); 187 } 188 189 static void free_capture_list(struct i915_request *request) 190 { 191 struct i915_capture_list *capture; 192 193 capture = fetch_and_zero(&request->capture_list); 194 while (capture) { 195 struct i915_capture_list *next = capture->next; 196 197 kfree(capture); 198 capture = next; 199 } 200 } 201 202 static void __i915_request_fill(struct i915_request *rq, u8 val) 203 { 204 void *vaddr = rq->ring->vaddr; 205 u32 head; 206 207 head = rq->infix; 208 if (rq->postfix < head) { 209 memset(vaddr + head, val, rq->ring->size - head); 210 head = 0; 211 } 212 memset(vaddr + head, val, rq->postfix - head); 213 } 214 215 /** 216 * i915_request_active_engine 217 * @rq: request to inspect 218 * @active: pointer in which to return the active engine 219 * 220 * Fills the currently active engine to the @active pointer if the request 221 * is active and still not completed. 222 * 223 * Returns true if request was active or false otherwise. 224 */ 225 bool 226 i915_request_active_engine(struct i915_request *rq, 227 struct intel_engine_cs **active) 228 { 229 struct intel_engine_cs *engine, *locked; 230 bool ret = false; 231 232 /* 233 * Serialise with __i915_request_submit() so that it sees 234 * is-banned?, or we know the request is already inflight. 235 * 236 * Note that rq->engine is unstable, and so we double 237 * check that we have acquired the lock on the final engine. 238 */ 239 locked = READ_ONCE(rq->engine); 240 spin_lock_irq(&locked->sched_engine->lock); 241 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 242 spin_unlock(&locked->sched_engine->lock); 243 locked = engine; 244 spin_lock(&locked->sched_engine->lock); 245 } 246 247 if (i915_request_is_active(rq)) { 248 if (!__i915_request_is_complete(rq)) 249 *active = locked; 250 ret = true; 251 } 252 253 spin_unlock_irq(&locked->sched_engine->lock); 254 255 return ret; 256 } 257 258 static void __rq_init_watchdog(struct i915_request *rq) 259 { 260 rq->watchdog.timer.function = NULL; 261 } 262 263 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer) 264 { 265 struct i915_request *rq = 266 container_of(hrtimer, struct i915_request, watchdog.timer); 267 struct intel_gt *gt = rq->engine->gt; 268 269 if (!i915_request_completed(rq)) { 270 if (llist_add(&rq->watchdog.link, >->watchdog.list)) 271 schedule_work(>->watchdog.work); 272 } else { 273 i915_request_put(rq); 274 } 275 276 return HRTIMER_NORESTART; 277 } 278 279 static void __rq_arm_watchdog(struct i915_request *rq) 280 { 281 struct i915_request_watchdog *wdg = &rq->watchdog; 282 struct intel_context *ce = rq->context; 283 284 if (!ce->watchdog.timeout_us) 285 return; 286 287 i915_request_get(rq); 288 289 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 290 wdg->timer.function = __rq_watchdog_expired; 291 hrtimer_start_range_ns(&wdg->timer, 292 ns_to_ktime(ce->watchdog.timeout_us * 293 NSEC_PER_USEC), 294 NSEC_PER_MSEC, 295 HRTIMER_MODE_REL); 296 } 297 298 static void __rq_cancel_watchdog(struct i915_request *rq) 299 { 300 struct i915_request_watchdog *wdg = &rq->watchdog; 301 302 if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0) 303 i915_request_put(rq); 304 } 305 306 bool i915_request_retire(struct i915_request *rq) 307 { 308 if (!__i915_request_is_complete(rq)) 309 return false; 310 311 RQ_TRACE(rq, "\n"); 312 313 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 314 trace_i915_request_retire(rq); 315 i915_request_mark_complete(rq); 316 317 __rq_cancel_watchdog(rq); 318 319 /* 320 * We know the GPU must have read the request to have 321 * sent us the seqno + interrupt, so use the position 322 * of tail of the request to update the last known position 323 * of the GPU head. 324 * 325 * Note this requires that we are always called in request 326 * completion order. 327 */ 328 GEM_BUG_ON(!list_is_first(&rq->link, 329 &i915_request_timeline(rq)->requests)); 330 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 331 /* Poison before we release our space in the ring */ 332 __i915_request_fill(rq, POISON_FREE); 333 rq->ring->head = rq->postfix; 334 335 if (!i915_request_signaled(rq)) { 336 spin_lock_irq(&rq->lock); 337 dma_fence_signal_locked(&rq->fence); 338 spin_unlock_irq(&rq->lock); 339 } 340 341 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) 342 atomic_dec(&rq->engine->gt->rps.num_waiters); 343 344 /* 345 * We only loosely track inflight requests across preemption, 346 * and so we may find ourselves attempting to retire a _completed_ 347 * request that we have removed from the HW and put back on a run 348 * queue. 349 * 350 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 351 * after removing the breadcrumb and signaling it, so that we do not 352 * inadvertently attach the breadcrumb to a completed request. 353 */ 354 rq->engine->remove_active_request(rq); 355 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 356 357 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 358 359 intel_context_exit(rq->context); 360 intel_context_unpin(rq->context); 361 362 free_capture_list(rq); 363 i915_sched_node_fini(&rq->sched); 364 i915_request_put(rq); 365 366 return true; 367 } 368 369 void i915_request_retire_upto(struct i915_request *rq) 370 { 371 struct intel_timeline * const tl = i915_request_timeline(rq); 372 struct i915_request *tmp; 373 374 RQ_TRACE(rq, "\n"); 375 GEM_BUG_ON(!__i915_request_is_complete(rq)); 376 377 do { 378 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 379 GEM_BUG_ON(!i915_request_completed(tmp)); 380 } while (i915_request_retire(tmp) && tmp != rq); 381 } 382 383 static struct i915_request * const * 384 __engine_active(struct intel_engine_cs *engine) 385 { 386 return READ_ONCE(engine->execlists.active); 387 } 388 389 static bool __request_in_flight(const struct i915_request *signal) 390 { 391 struct i915_request * const *port, *rq; 392 bool inflight = false; 393 394 if (!i915_request_is_ready(signal)) 395 return false; 396 397 /* 398 * Even if we have unwound the request, it may still be on 399 * the GPU (preempt-to-busy). If that request is inside an 400 * unpreemptible critical section, it will not be removed. Some 401 * GPU functions may even be stuck waiting for the paired request 402 * (__await_execution) to be submitted and cannot be preempted 403 * until the bond is executing. 404 * 405 * As we know that there are always preemption points between 406 * requests, we know that only the currently executing request 407 * may be still active even though we have cleared the flag. 408 * However, we can't rely on our tracking of ELSP[0] to know 409 * which request is currently active and so maybe stuck, as 410 * the tracking maybe an event behind. Instead assume that 411 * if the context is still inflight, then it is still active 412 * even if the active flag has been cleared. 413 * 414 * To further complicate matters, if there a pending promotion, the HW 415 * may either perform a context switch to the second inflight execlists, 416 * or it may switch to the pending set of execlists. In the case of the 417 * latter, it may send the ACK and we process the event copying the 418 * pending[] over top of inflight[], _overwriting_ our *active. Since 419 * this implies the HW is arbitrating and not struck in *active, we do 420 * not worry about complete accuracy, but we do require no read/write 421 * tearing of the pointer [the read of the pointer must be valid, even 422 * as the array is being overwritten, for which we require the writes 423 * to avoid tearing.] 424 * 425 * Note that the read of *execlists->active may race with the promotion 426 * of execlists->pending[] to execlists->inflight[], overwritting 427 * the value at *execlists->active. This is fine. The promotion implies 428 * that we received an ACK from the HW, and so the context is not 429 * stuck -- if we do not see ourselves in *active, the inflight status 430 * is valid. If instead we see ourselves being copied into *active, 431 * we are inflight and may signal the callback. 432 */ 433 if (!intel_context_inflight(signal->context)) 434 return false; 435 436 rcu_read_lock(); 437 for (port = __engine_active(signal->engine); 438 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 439 port++) { 440 if (rq->context == signal->context) { 441 inflight = i915_seqno_passed(rq->fence.seqno, 442 signal->fence.seqno); 443 break; 444 } 445 } 446 rcu_read_unlock(); 447 448 return inflight; 449 } 450 451 static int 452 __await_execution(struct i915_request *rq, 453 struct i915_request *signal, 454 gfp_t gfp) 455 { 456 struct execute_cb *cb; 457 458 if (i915_request_is_active(signal)) 459 return 0; 460 461 cb = kmem_cache_alloc(slab_execute_cbs, gfp); 462 if (!cb) 463 return -ENOMEM; 464 465 cb->fence = &rq->submit; 466 i915_sw_fence_await(cb->fence); 467 init_irq_work(&cb->work, irq_execute_cb); 468 469 /* 470 * Register the callback first, then see if the signaler is already 471 * active. This ensures that if we race with the 472 * __notify_execute_cb from i915_request_submit() and we are not 473 * included in that list, we get a second bite of the cherry and 474 * execute it ourselves. After this point, a future 475 * i915_request_submit() will notify us. 476 * 477 * In i915_request_retire() we set the ACTIVE bit on a completed 478 * request (then flush the execute_cb). So by registering the 479 * callback first, then checking the ACTIVE bit, we serialise with 480 * the completed/retired request. 481 */ 482 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) { 483 if (i915_request_is_active(signal) || 484 __request_in_flight(signal)) 485 i915_request_notify_execute_cb_imm(signal); 486 } 487 488 return 0; 489 } 490 491 static bool fatal_error(int error) 492 { 493 switch (error) { 494 case 0: /* not an error! */ 495 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 496 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 497 return false; 498 default: 499 return true; 500 } 501 } 502 503 void __i915_request_skip(struct i915_request *rq) 504 { 505 GEM_BUG_ON(!fatal_error(rq->fence.error)); 506 507 if (rq->infix == rq->postfix) 508 return; 509 510 RQ_TRACE(rq, "error: %d\n", rq->fence.error); 511 512 /* 513 * As this request likely depends on state from the lost 514 * context, clear out all the user operations leaving the 515 * breadcrumb at the end (so we get the fence notifications). 516 */ 517 __i915_request_fill(rq, 0); 518 rq->infix = rq->postfix; 519 } 520 521 bool i915_request_set_error_once(struct i915_request *rq, int error) 522 { 523 int old; 524 525 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 526 527 if (i915_request_signaled(rq)) 528 return false; 529 530 old = READ_ONCE(rq->fence.error); 531 do { 532 if (fatal_error(old)) 533 return false; 534 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 535 536 return true; 537 } 538 539 struct i915_request *i915_request_mark_eio(struct i915_request *rq) 540 { 541 if (__i915_request_is_complete(rq)) 542 return NULL; 543 544 GEM_BUG_ON(i915_request_signaled(rq)); 545 546 /* As soon as the request is completed, it may be retired */ 547 rq = i915_request_get(rq); 548 549 i915_request_set_error_once(rq, -EIO); 550 i915_request_mark_complete(rq); 551 552 return rq; 553 } 554 555 bool __i915_request_submit(struct i915_request *request) 556 { 557 struct intel_engine_cs *engine = request->engine; 558 bool result = false; 559 560 RQ_TRACE(request, "\n"); 561 562 GEM_BUG_ON(!irqs_disabled()); 563 lockdep_assert_held(&engine->sched_engine->lock); 564 565 /* 566 * With the advent of preempt-to-busy, we frequently encounter 567 * requests that we have unsubmitted from HW, but left running 568 * until the next ack and so have completed in the meantime. On 569 * resubmission of that completed request, we can skip 570 * updating the payload, and execlists can even skip submitting 571 * the request. 572 * 573 * We must remove the request from the caller's priority queue, 574 * and the caller must only call us when the request is in their 575 * priority queue, under the sched_engine->lock. This ensures that the 576 * request has *not* yet been retired and we can safely move 577 * the request into the engine->active.list where it will be 578 * dropped upon retiring. (Otherwise if resubmit a *retired* 579 * request, this would be a horrible use-after-free.) 580 */ 581 if (__i915_request_is_complete(request)) { 582 list_del_init(&request->sched.link); 583 goto active; 584 } 585 586 if (unlikely(intel_context_is_banned(request->context))) 587 i915_request_set_error_once(request, -EIO); 588 589 if (unlikely(fatal_error(request->fence.error))) 590 __i915_request_skip(request); 591 592 /* 593 * Are we using semaphores when the gpu is already saturated? 594 * 595 * Using semaphores incurs a cost in having the GPU poll a 596 * memory location, busywaiting for it to change. The continual 597 * memory reads can have a noticeable impact on the rest of the 598 * system with the extra bus traffic, stalling the cpu as it too 599 * tries to access memory across the bus (perf stat -e bus-cycles). 600 * 601 * If we installed a semaphore on this request and we only submit 602 * the request after the signaler completed, that indicates the 603 * system is overloaded and using semaphores at this time only 604 * increases the amount of work we are doing. If so, we disable 605 * further use of semaphores until we are idle again, whence we 606 * optimistically try again. 607 */ 608 if (request->sched.semaphores && 609 i915_sw_fence_signaled(&request->semaphore)) 610 engine->saturated |= request->sched.semaphores; 611 612 engine->emit_fini_breadcrumb(request, 613 request->ring->vaddr + request->postfix); 614 615 trace_i915_request_execute(request); 616 if (engine->bump_serial) 617 engine->bump_serial(engine); 618 else 619 engine->serial++; 620 621 result = true; 622 623 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 624 engine->add_active_request(request); 625 active: 626 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 627 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 628 629 /* 630 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 631 * 632 * In the future, perhaps when we have an active time-slicing scheduler, 633 * it will be interesting to unsubmit parallel execution and remove 634 * busywaits from the GPU until their master is restarted. This is 635 * quite hairy, we have to carefully rollback the fence and do a 636 * preempt-to-idle cycle on the target engine, all the while the 637 * master execute_cb may refire. 638 */ 639 __notify_execute_cb_irq(request); 640 641 /* We may be recursing from the signal callback of another i915 fence */ 642 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 643 i915_request_enable_breadcrumb(request); 644 645 return result; 646 } 647 648 void i915_request_submit(struct i915_request *request) 649 { 650 struct intel_engine_cs *engine = request->engine; 651 unsigned long flags; 652 653 /* Will be called from irq-context when using foreign fences. */ 654 spin_lock_irqsave(&engine->sched_engine->lock, flags); 655 656 __i915_request_submit(request); 657 658 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 659 } 660 661 void __i915_request_unsubmit(struct i915_request *request) 662 { 663 struct intel_engine_cs *engine = request->engine; 664 665 /* 666 * Only unwind in reverse order, required so that the per-context list 667 * is kept in seqno/ring order. 668 */ 669 RQ_TRACE(request, "\n"); 670 671 GEM_BUG_ON(!irqs_disabled()); 672 lockdep_assert_held(&engine->sched_engine->lock); 673 674 /* 675 * Before we remove this breadcrumb from the signal list, we have 676 * to ensure that a concurrent dma_fence_enable_signaling() does not 677 * attach itself. We first mark the request as no longer active and 678 * make sure that is visible to other cores, and then remove the 679 * breadcrumb if attached. 680 */ 681 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 682 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 683 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 684 i915_request_cancel_breadcrumb(request); 685 686 /* We've already spun, don't charge on resubmitting. */ 687 if (request->sched.semaphores && __i915_request_has_started(request)) 688 request->sched.semaphores = 0; 689 690 /* 691 * We don't need to wake_up any waiters on request->execute, they 692 * will get woken by any other event or us re-adding this request 693 * to the engine timeline (__i915_request_submit()). The waiters 694 * should be quite adapt at finding that the request now has a new 695 * global_seqno to the one they went to sleep on. 696 */ 697 } 698 699 void i915_request_unsubmit(struct i915_request *request) 700 { 701 struct intel_engine_cs *engine = request->engine; 702 unsigned long flags; 703 704 /* Will be called from irq-context when using foreign fences. */ 705 spin_lock_irqsave(&engine->sched_engine->lock, flags); 706 707 __i915_request_unsubmit(request); 708 709 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 710 } 711 712 void i915_request_cancel(struct i915_request *rq, int error) 713 { 714 if (!i915_request_set_error_once(rq, error)) 715 return; 716 717 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags); 718 719 intel_context_cancel_request(rq->context, rq); 720 } 721 722 static int __i915_sw_fence_call 723 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 724 { 725 struct i915_request *request = 726 container_of(fence, typeof(*request), submit); 727 728 switch (state) { 729 case FENCE_COMPLETE: 730 trace_i915_request_submit(request); 731 732 if (unlikely(fence->error)) 733 i915_request_set_error_once(request, fence->error); 734 else 735 __rq_arm_watchdog(request); 736 737 /* 738 * We need to serialize use of the submit_request() callback 739 * with its hotplugging performed during an emergency 740 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 741 * critical section in order to force i915_gem_set_wedged() to 742 * wait until the submit_request() is completed before 743 * proceeding. 744 */ 745 rcu_read_lock(); 746 request->engine->submit_request(request); 747 rcu_read_unlock(); 748 break; 749 750 case FENCE_FREE: 751 i915_request_put(request); 752 break; 753 } 754 755 return NOTIFY_DONE; 756 } 757 758 static int __i915_sw_fence_call 759 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 760 { 761 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 762 763 switch (state) { 764 case FENCE_COMPLETE: 765 break; 766 767 case FENCE_FREE: 768 i915_request_put(rq); 769 break; 770 } 771 772 return NOTIFY_DONE; 773 } 774 775 static void retire_requests(struct intel_timeline *tl) 776 { 777 struct i915_request *rq, *rn; 778 779 list_for_each_entry_safe(rq, rn, &tl->requests, link) 780 if (!i915_request_retire(rq)) 781 break; 782 } 783 784 static noinline struct i915_request * 785 request_alloc_slow(struct intel_timeline *tl, 786 struct i915_request **rsvd, 787 gfp_t gfp) 788 { 789 struct i915_request *rq; 790 791 /* If we cannot wait, dip into our reserves */ 792 if (!gfpflags_allow_blocking(gfp)) { 793 rq = xchg(rsvd, NULL); 794 if (!rq) /* Use the normal failure path for one final WARN */ 795 goto out; 796 797 return rq; 798 } 799 800 if (list_empty(&tl->requests)) 801 goto out; 802 803 /* Move our oldest request to the slab-cache (if not in use!) */ 804 rq = list_first_entry(&tl->requests, typeof(*rq), link); 805 i915_request_retire(rq); 806 807 rq = kmem_cache_alloc(slab_requests, 808 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 809 if (rq) 810 return rq; 811 812 /* Ratelimit ourselves to prevent oom from malicious clients */ 813 rq = list_last_entry(&tl->requests, typeof(*rq), link); 814 cond_synchronize_rcu(rq->rcustate); 815 816 /* Retire our old requests in the hope that we free some */ 817 retire_requests(tl); 818 819 out: 820 return kmem_cache_alloc(slab_requests, gfp); 821 } 822 823 static void __i915_request_ctor(void *arg) 824 { 825 struct i915_request *rq = arg; 826 827 spin_lock_init(&rq->lock); 828 i915_sched_node_init(&rq->sched); 829 i915_sw_fence_init(&rq->submit, submit_notify); 830 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 831 832 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0); 833 834 rq->capture_list = NULL; 835 836 init_llist_head(&rq->execute_cb); 837 } 838 839 struct i915_request * 840 __i915_request_create(struct intel_context *ce, gfp_t gfp) 841 { 842 struct intel_timeline *tl = ce->timeline; 843 struct i915_request *rq; 844 u32 seqno; 845 int ret; 846 847 might_alloc(gfp); 848 849 /* Check that the caller provided an already pinned context */ 850 __intel_context_pin(ce); 851 852 /* 853 * Beware: Dragons be flying overhead. 854 * 855 * We use RCU to look up requests in flight. The lookups may 856 * race with the request being allocated from the slab freelist. 857 * That is the request we are writing to here, may be in the process 858 * of being read by __i915_active_request_get_rcu(). As such, 859 * we have to be very careful when overwriting the contents. During 860 * the RCU lookup, we change chase the request->engine pointer, 861 * read the request->global_seqno and increment the reference count. 862 * 863 * The reference count is incremented atomically. If it is zero, 864 * the lookup knows the request is unallocated and complete. Otherwise, 865 * it is either still in use, or has been reallocated and reset 866 * with dma_fence_init(). This increment is safe for release as we 867 * check that the request we have a reference to and matches the active 868 * request. 869 * 870 * Before we increment the refcount, we chase the request->engine 871 * pointer. We must not call kmem_cache_zalloc() or else we set 872 * that pointer to NULL and cause a crash during the lookup. If 873 * we see the request is completed (based on the value of the 874 * old engine and seqno), the lookup is complete and reports NULL. 875 * If we decide the request is not completed (new engine or seqno), 876 * then we grab a reference and double check that it is still the 877 * active request - which it won't be and restart the lookup. 878 * 879 * Do not use kmem_cache_zalloc() here! 880 */ 881 rq = kmem_cache_alloc(slab_requests, 882 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 883 if (unlikely(!rq)) { 884 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 885 if (!rq) { 886 ret = -ENOMEM; 887 goto err_unreserve; 888 } 889 } 890 891 /* 892 * Hold a reference to the intel_context over life of an i915_request. 893 * Without this an i915_request can exist after the context has been 894 * destroyed (e.g. request retired, context closed, but user space holds 895 * a reference to the request from an out fence). In the case of GuC 896 * submission + virtual engine, the engine that the request references 897 * is also destroyed which can trigger bad pointer dref in fence ops 898 * (e.g. i915_fence_get_driver_name). We could likely change these 899 * functions to avoid touching the engine but let's just be safe and 900 * hold the intel_context reference. In execlist mode the request always 901 * eventually points to a physical engine so this isn't an issue. 902 */ 903 rq->context = intel_context_get(ce); 904 rq->engine = ce->engine; 905 rq->ring = ce->ring; 906 rq->execution_mask = ce->engine->mask; 907 908 kref_init(&rq->fence.refcount); 909 rq->fence.flags = 0; 910 rq->fence.error = 0; 911 INIT_LIST_HEAD(&rq->fence.cb_list); 912 913 ret = intel_timeline_get_seqno(tl, rq, &seqno); 914 if (ret) 915 goto err_free; 916 917 rq->fence.context = tl->fence_context; 918 rq->fence.seqno = seqno; 919 920 RCU_INIT_POINTER(rq->timeline, tl); 921 rq->hwsp_seqno = tl->hwsp_seqno; 922 GEM_BUG_ON(__i915_request_is_complete(rq)); 923 924 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 925 926 rq->guc_prio = GUC_PRIO_INIT; 927 928 /* We bump the ref for the fence chain */ 929 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 930 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 931 932 i915_sched_node_reinit(&rq->sched); 933 934 /* No zalloc, everything must be cleared after use */ 935 rq->batch = NULL; 936 __rq_init_watchdog(rq); 937 GEM_BUG_ON(rq->capture_list); 938 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 939 940 /* 941 * Reserve space in the ring buffer for all the commands required to 942 * eventually emit this request. This is to guarantee that the 943 * i915_request_add() call can't fail. Note that the reserve may need 944 * to be redone if the request is not actually submitted straight 945 * away, e.g. because a GPU scheduler has deferred it. 946 * 947 * Note that due to how we add reserved_space to intel_ring_begin() 948 * we need to double our request to ensure that if we need to wrap 949 * around inside i915_request_add() there is sufficient space at 950 * the beginning of the ring as well. 951 */ 952 rq->reserved_space = 953 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 954 955 /* 956 * Record the position of the start of the request so that 957 * should we detect the updated seqno part-way through the 958 * GPU processing the request, we never over-estimate the 959 * position of the head. 960 */ 961 rq->head = rq->ring->emit; 962 963 ret = rq->engine->request_alloc(rq); 964 if (ret) 965 goto err_unwind; 966 967 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 968 969 intel_context_mark_active(ce); 970 list_add_tail_rcu(&rq->link, &tl->requests); 971 972 return rq; 973 974 err_unwind: 975 ce->ring->emit = rq->head; 976 977 /* Make sure we didn't add ourselves to external state before freeing */ 978 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 979 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 980 981 err_free: 982 intel_context_put(ce); 983 kmem_cache_free(slab_requests, rq); 984 err_unreserve: 985 intel_context_unpin(ce); 986 return ERR_PTR(ret); 987 } 988 989 struct i915_request * 990 i915_request_create(struct intel_context *ce) 991 { 992 struct i915_request *rq; 993 struct intel_timeline *tl; 994 995 tl = intel_context_timeline_lock(ce); 996 if (IS_ERR(tl)) 997 return ERR_CAST(tl); 998 999 /* Move our oldest request to the slab-cache (if not in use!) */ 1000 rq = list_first_entry(&tl->requests, typeof(*rq), link); 1001 if (!list_is_last(&rq->link, &tl->requests)) 1002 i915_request_retire(rq); 1003 1004 intel_context_enter(ce); 1005 rq = __i915_request_create(ce, GFP_KERNEL); 1006 intel_context_exit(ce); /* active reference transferred to request */ 1007 if (IS_ERR(rq)) 1008 goto err_unlock; 1009 1010 /* Check that we do not interrupt ourselves with a new request */ 1011 rq->cookie = lockdep_pin_lock(&tl->mutex); 1012 1013 return rq; 1014 1015 err_unlock: 1016 intel_context_timeline_unlock(tl); 1017 return rq; 1018 } 1019 1020 static int 1021 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 1022 { 1023 struct dma_fence *fence; 1024 int err; 1025 1026 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 1027 return 0; 1028 1029 if (i915_request_started(signal)) 1030 return 0; 1031 1032 /* 1033 * The caller holds a reference on @signal, but we do not serialise 1034 * against it being retired and removed from the lists. 1035 * 1036 * We do not hold a reference to the request before @signal, and 1037 * so must be very careful to ensure that it is not _recycled_ as 1038 * we follow the link backwards. 1039 */ 1040 fence = NULL; 1041 rcu_read_lock(); 1042 do { 1043 struct list_head *pos = READ_ONCE(signal->link.prev); 1044 struct i915_request *prev; 1045 1046 /* Confirm signal has not been retired, the link is valid */ 1047 if (unlikely(__i915_request_has_started(signal))) 1048 break; 1049 1050 /* Is signal the earliest request on its timeline? */ 1051 if (pos == &rcu_dereference(signal->timeline)->requests) 1052 break; 1053 1054 /* 1055 * Peek at the request before us in the timeline. That 1056 * request will only be valid before it is retired, so 1057 * after acquiring a reference to it, confirm that it is 1058 * still part of the signaler's timeline. 1059 */ 1060 prev = list_entry(pos, typeof(*prev), link); 1061 if (!i915_request_get_rcu(prev)) 1062 break; 1063 1064 /* After the strong barrier, confirm prev is still attached */ 1065 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 1066 i915_request_put(prev); 1067 break; 1068 } 1069 1070 fence = &prev->fence; 1071 } while (0); 1072 rcu_read_unlock(); 1073 if (!fence) 1074 return 0; 1075 1076 err = 0; 1077 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1078 err = i915_sw_fence_await_dma_fence(&rq->submit, 1079 fence, 0, 1080 I915_FENCE_GFP); 1081 dma_fence_put(fence); 1082 1083 return err; 1084 } 1085 1086 static intel_engine_mask_t 1087 already_busywaiting(struct i915_request *rq) 1088 { 1089 /* 1090 * Polling a semaphore causes bus traffic, delaying other users of 1091 * both the GPU and CPU. We want to limit the impact on others, 1092 * while taking advantage of early submission to reduce GPU 1093 * latency. Therefore we restrict ourselves to not using more 1094 * than one semaphore from each source, and not using a semaphore 1095 * if we have detected the engine is saturated (i.e. would not be 1096 * submitted early and cause bus traffic reading an already passed 1097 * semaphore). 1098 * 1099 * See the are-we-too-late? check in __i915_request_submit(). 1100 */ 1101 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1102 } 1103 1104 static int 1105 __emit_semaphore_wait(struct i915_request *to, 1106 struct i915_request *from, 1107 u32 seqno) 1108 { 1109 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12; 1110 u32 hwsp_offset; 1111 int len, err; 1112 u32 *cs; 1113 1114 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8); 1115 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1116 1117 /* We need to pin the signaler's HWSP until we are finished reading. */ 1118 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1119 if (err) 1120 return err; 1121 1122 len = 4; 1123 if (has_token) 1124 len += 2; 1125 1126 cs = intel_ring_begin(to, len); 1127 if (IS_ERR(cs)) 1128 return PTR_ERR(cs); 1129 1130 /* 1131 * Using greater-than-or-equal here means we have to worry 1132 * about seqno wraparound. To side step that issue, we swap 1133 * the timeline HWSP upon wrapping, so that everyone listening 1134 * for the old (pre-wrap) values do not see the much smaller 1135 * (post-wrap) values than they were expecting (and so wait 1136 * forever). 1137 */ 1138 *cs++ = (MI_SEMAPHORE_WAIT | 1139 MI_SEMAPHORE_GLOBAL_GTT | 1140 MI_SEMAPHORE_POLL | 1141 MI_SEMAPHORE_SAD_GTE_SDD) + 1142 has_token; 1143 *cs++ = seqno; 1144 *cs++ = hwsp_offset; 1145 *cs++ = 0; 1146 if (has_token) { 1147 *cs++ = 0; 1148 *cs++ = MI_NOOP; 1149 } 1150 1151 intel_ring_advance(to, cs); 1152 return 0; 1153 } 1154 1155 static int 1156 emit_semaphore_wait(struct i915_request *to, 1157 struct i915_request *from, 1158 gfp_t gfp) 1159 { 1160 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1161 struct i915_sw_fence *wait = &to->submit; 1162 1163 if (!intel_context_use_semaphores(to->context)) 1164 goto await_fence; 1165 1166 if (i915_request_has_initial_breadcrumb(to)) 1167 goto await_fence; 1168 1169 /* 1170 * If this or its dependents are waiting on an external fence 1171 * that may fail catastrophically, then we want to avoid using 1172 * sempahores as they bypass the fence signaling metadata, and we 1173 * lose the fence->error propagation. 1174 */ 1175 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1176 goto await_fence; 1177 1178 /* Just emit the first semaphore we see as request space is limited. */ 1179 if (already_busywaiting(to) & mask) 1180 goto await_fence; 1181 1182 if (i915_request_await_start(to, from) < 0) 1183 goto await_fence; 1184 1185 /* Only submit our spinner after the signaler is running! */ 1186 if (__await_execution(to, from, gfp)) 1187 goto await_fence; 1188 1189 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1190 goto await_fence; 1191 1192 to->sched.semaphores |= mask; 1193 wait = &to->semaphore; 1194 1195 await_fence: 1196 return i915_sw_fence_await_dma_fence(wait, 1197 &from->fence, 0, 1198 I915_FENCE_GFP); 1199 } 1200 1201 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1202 struct dma_fence *fence) 1203 { 1204 return __intel_timeline_sync_is_later(tl, 1205 fence->context, 1206 fence->seqno - 1); 1207 } 1208 1209 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1210 const struct dma_fence *fence) 1211 { 1212 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1213 } 1214 1215 static int 1216 __i915_request_await_execution(struct i915_request *to, 1217 struct i915_request *from) 1218 { 1219 int err; 1220 1221 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1222 1223 /* Submit both requests at the same time */ 1224 err = __await_execution(to, from, I915_FENCE_GFP); 1225 if (err) 1226 return err; 1227 1228 /* Squash repeated depenendices to the same timelines */ 1229 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1230 &from->fence)) 1231 return 0; 1232 1233 /* 1234 * Wait until the start of this request. 1235 * 1236 * The execution cb fires when we submit the request to HW. But in 1237 * many cases this may be long before the request itself is ready to 1238 * run (consider that we submit 2 requests for the same context, where 1239 * the request of interest is behind an indefinite spinner). So we hook 1240 * up to both to reduce our queues and keep the execution lag minimised 1241 * in the worst case, though we hope that the await_start is elided. 1242 */ 1243 err = i915_request_await_start(to, from); 1244 if (err < 0) 1245 return err; 1246 1247 /* 1248 * Ensure both start together [after all semaphores in signal] 1249 * 1250 * Now that we are queued to the HW at roughly the same time (thanks 1251 * to the execute cb) and are ready to run at roughly the same time 1252 * (thanks to the await start), our signaler may still be indefinitely 1253 * delayed by waiting on a semaphore from a remote engine. If our 1254 * signaler depends on a semaphore, so indirectly do we, and we do not 1255 * want to start our payload until our signaler also starts theirs. 1256 * So we wait. 1257 * 1258 * However, there is also a second condition for which we need to wait 1259 * for the precise start of the signaler. Consider that the signaler 1260 * was submitted in a chain of requests following another context 1261 * (with just an ordinary intra-engine fence dependency between the 1262 * two). In this case the signaler is queued to HW, but not for 1263 * immediate execution, and so we must wait until it reaches the 1264 * active slot. 1265 */ 1266 if (intel_engine_has_semaphores(to->engine) && 1267 !i915_request_has_initial_breadcrumb(to)) { 1268 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1269 if (err < 0) 1270 return err; 1271 } 1272 1273 /* Couple the dependency tree for PI on this exposed to->fence */ 1274 if (to->engine->sched_engine->schedule) { 1275 err = i915_sched_node_add_dependency(&to->sched, 1276 &from->sched, 1277 I915_DEPENDENCY_WEAK); 1278 if (err < 0) 1279 return err; 1280 } 1281 1282 return intel_timeline_sync_set_start(i915_request_timeline(to), 1283 &from->fence); 1284 } 1285 1286 static void mark_external(struct i915_request *rq) 1287 { 1288 /* 1289 * The downside of using semaphores is that we lose metadata passing 1290 * along the signaling chain. This is particularly nasty when we 1291 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1292 * fatal errors we want to scrub the request before it is executed, 1293 * which means that we cannot preload the request onto HW and have 1294 * it wait upon a semaphore. 1295 */ 1296 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1297 } 1298 1299 static int 1300 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1301 { 1302 mark_external(rq); 1303 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1304 i915_fence_context_timeout(rq->engine->i915, 1305 fence->context), 1306 I915_FENCE_GFP); 1307 } 1308 1309 static int 1310 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1311 { 1312 struct dma_fence *iter; 1313 int err = 0; 1314 1315 if (!to_dma_fence_chain(fence)) 1316 return __i915_request_await_external(rq, fence); 1317 1318 dma_fence_chain_for_each(iter, fence) { 1319 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1320 1321 if (!dma_fence_is_i915(chain->fence)) { 1322 err = __i915_request_await_external(rq, iter); 1323 break; 1324 } 1325 1326 err = i915_request_await_dma_fence(rq, chain->fence); 1327 if (err < 0) 1328 break; 1329 } 1330 1331 dma_fence_put(iter); 1332 return err; 1333 } 1334 1335 int 1336 i915_request_await_execution(struct i915_request *rq, 1337 struct dma_fence *fence) 1338 { 1339 struct dma_fence **child = &fence; 1340 unsigned int nchild = 1; 1341 int ret; 1342 1343 if (dma_fence_is_array(fence)) { 1344 struct dma_fence_array *array = to_dma_fence_array(fence); 1345 1346 /* XXX Error for signal-on-any fence arrays */ 1347 1348 child = array->fences; 1349 nchild = array->num_fences; 1350 GEM_BUG_ON(!nchild); 1351 } 1352 1353 do { 1354 fence = *child++; 1355 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1356 continue; 1357 1358 if (fence->context == rq->fence.context) 1359 continue; 1360 1361 /* 1362 * We don't squash repeated fence dependencies here as we 1363 * want to run our callback in all cases. 1364 */ 1365 1366 if (dma_fence_is_i915(fence)) 1367 ret = __i915_request_await_execution(rq, 1368 to_request(fence)); 1369 else 1370 ret = i915_request_await_external(rq, fence); 1371 if (ret < 0) 1372 return ret; 1373 } while (--nchild); 1374 1375 return 0; 1376 } 1377 1378 static int 1379 await_request_submit(struct i915_request *to, struct i915_request *from) 1380 { 1381 /* 1382 * If we are waiting on a virtual engine, then it may be 1383 * constrained to execute on a single engine *prior* to submission. 1384 * When it is submitted, it will be first submitted to the virtual 1385 * engine and then passed to the physical engine. We cannot allow 1386 * the waiter to be submitted immediately to the physical engine 1387 * as it may then bypass the virtual request. 1388 */ 1389 if (to->engine == READ_ONCE(from->engine)) 1390 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1391 &from->submit, 1392 I915_FENCE_GFP); 1393 else 1394 return __i915_request_await_execution(to, from); 1395 } 1396 1397 static int 1398 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1399 { 1400 int ret; 1401 1402 GEM_BUG_ON(to == from); 1403 GEM_BUG_ON(to->timeline == from->timeline); 1404 1405 if (i915_request_completed(from)) { 1406 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1407 return 0; 1408 } 1409 1410 if (to->engine->sched_engine->schedule) { 1411 ret = i915_sched_node_add_dependency(&to->sched, 1412 &from->sched, 1413 I915_DEPENDENCY_EXTERNAL); 1414 if (ret < 0) 1415 return ret; 1416 } 1417 1418 if (!intel_engine_uses_guc(to->engine) && 1419 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1420 ret = await_request_submit(to, from); 1421 else 1422 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1423 if (ret < 0) 1424 return ret; 1425 1426 return 0; 1427 } 1428 1429 int 1430 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1431 { 1432 struct dma_fence **child = &fence; 1433 unsigned int nchild = 1; 1434 int ret; 1435 1436 /* 1437 * Note that if the fence-array was created in signal-on-any mode, 1438 * we should *not* decompose it into its individual fences. However, 1439 * we don't currently store which mode the fence-array is operating 1440 * in. Fortunately, the only user of signal-on-any is private to 1441 * amdgpu and we should not see any incoming fence-array from 1442 * sync-file being in signal-on-any mode. 1443 */ 1444 if (dma_fence_is_array(fence)) { 1445 struct dma_fence_array *array = to_dma_fence_array(fence); 1446 1447 child = array->fences; 1448 nchild = array->num_fences; 1449 GEM_BUG_ON(!nchild); 1450 } 1451 1452 do { 1453 fence = *child++; 1454 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1455 continue; 1456 1457 /* 1458 * Requests on the same timeline are explicitly ordered, along 1459 * with their dependencies, by i915_request_add() which ensures 1460 * that requests are submitted in-order through each ring. 1461 */ 1462 if (fence->context == rq->fence.context) 1463 continue; 1464 1465 /* Squash repeated waits to the same timelines */ 1466 if (fence->context && 1467 intel_timeline_sync_is_later(i915_request_timeline(rq), 1468 fence)) 1469 continue; 1470 1471 if (dma_fence_is_i915(fence)) 1472 ret = i915_request_await_request(rq, to_request(fence)); 1473 else 1474 ret = i915_request_await_external(rq, fence); 1475 if (ret < 0) 1476 return ret; 1477 1478 /* Record the latest fence used against each timeline */ 1479 if (fence->context) 1480 intel_timeline_sync_set(i915_request_timeline(rq), 1481 fence); 1482 } while (--nchild); 1483 1484 return 0; 1485 } 1486 1487 /** 1488 * i915_request_await_object - set this request to (async) wait upon a bo 1489 * @to: request we are wishing to use 1490 * @obj: object which may be in use on another ring. 1491 * @write: whether the wait is on behalf of a writer 1492 * 1493 * This code is meant to abstract object synchronization with the GPU. 1494 * Conceptually we serialise writes between engines inside the GPU. 1495 * We only allow one engine to write into a buffer at any time, but 1496 * multiple readers. To ensure each has a coherent view of memory, we must: 1497 * 1498 * - If there is an outstanding write request to the object, the new 1499 * request must wait for it to complete (either CPU or in hw, requests 1500 * on the same ring will be naturally ordered). 1501 * 1502 * - If we are a write request (pending_write_domain is set), the new 1503 * request must wait for outstanding read requests to complete. 1504 * 1505 * Returns 0 if successful, else propagates up the lower layer error. 1506 */ 1507 int 1508 i915_request_await_object(struct i915_request *to, 1509 struct drm_i915_gem_object *obj, 1510 bool write) 1511 { 1512 struct dma_fence *excl; 1513 int ret = 0; 1514 1515 if (write) { 1516 struct dma_fence **shared; 1517 unsigned int count, i; 1518 1519 ret = dma_resv_get_fences(obj->base.resv, &excl, &count, 1520 &shared); 1521 if (ret) 1522 return ret; 1523 1524 for (i = 0; i < count; i++) { 1525 ret = i915_request_await_dma_fence(to, shared[i]); 1526 if (ret) 1527 break; 1528 1529 dma_fence_put(shared[i]); 1530 } 1531 1532 for (; i < count; i++) 1533 dma_fence_put(shared[i]); 1534 kfree(shared); 1535 } else { 1536 excl = dma_resv_get_excl_unlocked(obj->base.resv); 1537 } 1538 1539 if (excl) { 1540 if (ret == 0) 1541 ret = i915_request_await_dma_fence(to, excl); 1542 1543 dma_fence_put(excl); 1544 } 1545 1546 return ret; 1547 } 1548 1549 static struct i915_request * 1550 __i915_request_add_to_timeline(struct i915_request *rq) 1551 { 1552 struct intel_timeline *timeline = i915_request_timeline(rq); 1553 struct i915_request *prev; 1554 1555 /* 1556 * Dependency tracking and request ordering along the timeline 1557 * is special cased so that we can eliminate redundant ordering 1558 * operations while building the request (we know that the timeline 1559 * itself is ordered, and here we guarantee it). 1560 * 1561 * As we know we will need to emit tracking along the timeline, 1562 * we embed the hooks into our request struct -- at the cost of 1563 * having to have specialised no-allocation interfaces (which will 1564 * be beneficial elsewhere). 1565 * 1566 * A second benefit to open-coding i915_request_await_request is 1567 * that we can apply a slight variant of the rules specialised 1568 * for timelines that jump between engines (such as virtual engines). 1569 * If we consider the case of virtual engine, we must emit a dma-fence 1570 * to prevent scheduling of the second request until the first is 1571 * complete (to maximise our greedy late load balancing) and this 1572 * precludes optimising to use semaphores serialisation of a single 1573 * timeline across engines. 1574 */ 1575 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1576 &rq->fence)); 1577 if (prev && !__i915_request_is_complete(prev)) { 1578 bool uses_guc = intel_engine_uses_guc(rq->engine); 1579 1580 /* 1581 * The requests are supposed to be kept in order. However, 1582 * we need to be wary in case the timeline->last_request 1583 * is used as a barrier for external modification to this 1584 * context. 1585 */ 1586 GEM_BUG_ON(prev->context == rq->context && 1587 i915_seqno_passed(prev->fence.seqno, 1588 rq->fence.seqno)); 1589 1590 if ((!uses_guc && 1591 is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)) || 1592 (uses_guc && prev->context == rq->context)) 1593 i915_sw_fence_await_sw_fence(&rq->submit, 1594 &prev->submit, 1595 &rq->submitq); 1596 else 1597 __i915_sw_fence_await_dma_fence(&rq->submit, 1598 &prev->fence, 1599 &rq->dmaq); 1600 if (rq->engine->sched_engine->schedule) 1601 __i915_sched_node_add_dependency(&rq->sched, 1602 &prev->sched, 1603 &rq->dep, 1604 0); 1605 } 1606 1607 /* 1608 * Make sure that no request gazumped us - if it was allocated after 1609 * our i915_request_alloc() and called __i915_request_add() before 1610 * us, the timeline will hold its seqno which is later than ours. 1611 */ 1612 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1613 1614 return prev; 1615 } 1616 1617 /* 1618 * NB: This function is not allowed to fail. Doing so would mean the the 1619 * request is not being tracked for completion but the work itself is 1620 * going to happen on the hardware. This would be a Bad Thing(tm). 1621 */ 1622 struct i915_request *__i915_request_commit(struct i915_request *rq) 1623 { 1624 struct intel_engine_cs *engine = rq->engine; 1625 struct intel_ring *ring = rq->ring; 1626 u32 *cs; 1627 1628 RQ_TRACE(rq, "\n"); 1629 1630 /* 1631 * To ensure that this call will not fail, space for its emissions 1632 * should already have been reserved in the ring buffer. Let the ring 1633 * know that it is time to use that space up. 1634 */ 1635 GEM_BUG_ON(rq->reserved_space > ring->space); 1636 rq->reserved_space = 0; 1637 rq->emitted_jiffies = jiffies; 1638 1639 /* 1640 * Record the position of the start of the breadcrumb so that 1641 * should we detect the updated seqno part-way through the 1642 * GPU processing the request, we never over-estimate the 1643 * position of the ring's HEAD. 1644 */ 1645 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1646 GEM_BUG_ON(IS_ERR(cs)); 1647 rq->postfix = intel_ring_offset(rq, cs); 1648 1649 return __i915_request_add_to_timeline(rq); 1650 } 1651 1652 void __i915_request_queue_bh(struct i915_request *rq) 1653 { 1654 i915_sw_fence_commit(&rq->semaphore); 1655 i915_sw_fence_commit(&rq->submit); 1656 } 1657 1658 void __i915_request_queue(struct i915_request *rq, 1659 const struct i915_sched_attr *attr) 1660 { 1661 /* 1662 * Let the backend know a new request has arrived that may need 1663 * to adjust the existing execution schedule due to a high priority 1664 * request - i.e. we may want to preempt the current request in order 1665 * to run a high priority dependency chain *before* we can execute this 1666 * request. 1667 * 1668 * This is called before the request is ready to run so that we can 1669 * decide whether to preempt the entire chain so that it is ready to 1670 * run at the earliest possible convenience. 1671 */ 1672 if (attr && rq->engine->sched_engine->schedule) 1673 rq->engine->sched_engine->schedule(rq, attr); 1674 1675 local_bh_disable(); 1676 __i915_request_queue_bh(rq); 1677 local_bh_enable(); /* kick tasklets */ 1678 } 1679 1680 void i915_request_add(struct i915_request *rq) 1681 { 1682 struct intel_timeline * const tl = i915_request_timeline(rq); 1683 struct i915_sched_attr attr = {}; 1684 struct i915_gem_context *ctx; 1685 1686 lockdep_assert_held(&tl->mutex); 1687 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1688 1689 trace_i915_request_add(rq); 1690 __i915_request_commit(rq); 1691 1692 /* XXX placeholder for selftests */ 1693 rcu_read_lock(); 1694 ctx = rcu_dereference(rq->context->gem_context); 1695 if (ctx) 1696 attr = ctx->sched; 1697 rcu_read_unlock(); 1698 1699 __i915_request_queue(rq, &attr); 1700 1701 mutex_unlock(&tl->mutex); 1702 } 1703 1704 static unsigned long local_clock_ns(unsigned int *cpu) 1705 { 1706 unsigned long t; 1707 1708 /* 1709 * Cheaply and approximately convert from nanoseconds to microseconds. 1710 * The result and subsequent calculations are also defined in the same 1711 * approximate microseconds units. The principal source of timing 1712 * error here is from the simple truncation. 1713 * 1714 * Note that local_clock() is only defined wrt to the current CPU; 1715 * the comparisons are no longer valid if we switch CPUs. Instead of 1716 * blocking preemption for the entire busywait, we can detect the CPU 1717 * switch and use that as indicator of system load and a reason to 1718 * stop busywaiting, see busywait_stop(). 1719 */ 1720 *cpu = get_cpu(); 1721 t = local_clock(); 1722 put_cpu(); 1723 1724 return t; 1725 } 1726 1727 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1728 { 1729 unsigned int this_cpu; 1730 1731 if (time_after(local_clock_ns(&this_cpu), timeout)) 1732 return true; 1733 1734 return this_cpu != cpu; 1735 } 1736 1737 static bool __i915_spin_request(struct i915_request * const rq, int state) 1738 { 1739 unsigned long timeout_ns; 1740 unsigned int cpu; 1741 1742 /* 1743 * Only wait for the request if we know it is likely to complete. 1744 * 1745 * We don't track the timestamps around requests, nor the average 1746 * request length, so we do not have a good indicator that this 1747 * request will complete within the timeout. What we do know is the 1748 * order in which requests are executed by the context and so we can 1749 * tell if the request has been started. If the request is not even 1750 * running yet, it is a fair assumption that it will not complete 1751 * within our relatively short timeout. 1752 */ 1753 if (!i915_request_is_running(rq)) 1754 return false; 1755 1756 /* 1757 * When waiting for high frequency requests, e.g. during synchronous 1758 * rendering split between the CPU and GPU, the finite amount of time 1759 * required to set up the irq and wait upon it limits the response 1760 * rate. By busywaiting on the request completion for a short while we 1761 * can service the high frequency waits as quick as possible. However, 1762 * if it is a slow request, we want to sleep as quickly as possible. 1763 * The tradeoff between waiting and sleeping is roughly the time it 1764 * takes to sleep on a request, on the order of a microsecond. 1765 */ 1766 1767 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1768 timeout_ns += local_clock_ns(&cpu); 1769 do { 1770 if (dma_fence_is_signaled(&rq->fence)) 1771 return true; 1772 1773 if (signal_pending_state(state, current)) 1774 break; 1775 1776 if (busywait_stop(timeout_ns, cpu)) 1777 break; 1778 1779 cpu_relax(); 1780 } while (!need_resched()); 1781 1782 return false; 1783 } 1784 1785 struct request_wait { 1786 struct dma_fence_cb cb; 1787 struct task_struct *tsk; 1788 }; 1789 1790 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1791 { 1792 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1793 1794 wake_up_process(fetch_and_zero(&wait->tsk)); 1795 } 1796 1797 /** 1798 * i915_request_wait - wait until execution of request has finished 1799 * @rq: the request to wait upon 1800 * @flags: how to wait 1801 * @timeout: how long to wait in jiffies 1802 * 1803 * i915_request_wait() waits for the request to be completed, for a 1804 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1805 * unbounded wait). 1806 * 1807 * Returns the remaining time (in jiffies) if the request completed, which may 1808 * be zero or -ETIME if the request is unfinished after the timeout expires. 1809 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1810 * pending before the request completes. 1811 */ 1812 long i915_request_wait(struct i915_request *rq, 1813 unsigned int flags, 1814 long timeout) 1815 { 1816 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1817 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1818 struct request_wait wait; 1819 1820 might_sleep(); 1821 GEM_BUG_ON(timeout < 0); 1822 1823 if (dma_fence_is_signaled(&rq->fence)) 1824 return timeout; 1825 1826 if (!timeout) 1827 return -ETIME; 1828 1829 trace_i915_request_wait_begin(rq, flags); 1830 1831 /* 1832 * We must never wait on the GPU while holding a lock as we 1833 * may need to perform a GPU reset. So while we don't need to 1834 * serialise wait/reset with an explicit lock, we do want 1835 * lockdep to detect potential dependency cycles. 1836 */ 1837 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1838 1839 /* 1840 * Optimistic spin before touching IRQs. 1841 * 1842 * We may use a rather large value here to offset the penalty of 1843 * switching away from the active task. Frequently, the client will 1844 * wait upon an old swapbuffer to throttle itself to remain within a 1845 * frame of the gpu. If the client is running in lockstep with the gpu, 1846 * then it should not be waiting long at all, and a sleep now will incur 1847 * extra scheduler latency in producing the next frame. To try to 1848 * avoid adding the cost of enabling/disabling the interrupt to the 1849 * short wait, we first spin to see if the request would have completed 1850 * in the time taken to setup the interrupt. 1851 * 1852 * We need upto 5us to enable the irq, and upto 20us to hide the 1853 * scheduler latency of a context switch, ignoring the secondary 1854 * impacts from a context switch such as cache eviction. 1855 * 1856 * The scheme used for low-latency IO is called "hybrid interrupt 1857 * polling". The suggestion there is to sleep until just before you 1858 * expect to be woken by the device interrupt and then poll for its 1859 * completion. That requires having a good predictor for the request 1860 * duration, which we currently lack. 1861 */ 1862 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) && 1863 __i915_spin_request(rq, state)) 1864 goto out; 1865 1866 /* 1867 * This client is about to stall waiting for the GPU. In many cases 1868 * this is undesirable and limits the throughput of the system, as 1869 * many clients cannot continue processing user input/output whilst 1870 * blocked. RPS autotuning may take tens of milliseconds to respond 1871 * to the GPU load and thus incurs additional latency for the client. 1872 * We can circumvent that by promoting the GPU frequency to maximum 1873 * before we sleep. This makes the GPU throttle up much more quickly 1874 * (good for benchmarks and user experience, e.g. window animations), 1875 * but at a cost of spending more power processing the workload 1876 * (bad for battery). 1877 */ 1878 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 1879 intel_rps_boost(rq); 1880 1881 wait.tsk = current; 1882 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1883 goto out; 1884 1885 /* 1886 * Flush the submission tasklet, but only if it may help this request. 1887 * 1888 * We sometimes experience some latency between the HW interrupts and 1889 * tasklet execution (mostly due to ksoftirqd latency, but it can also 1890 * be due to lazy CS events), so lets run the tasklet manually if there 1891 * is a chance it may submit this request. If the request is not ready 1892 * to run, as it is waiting for other fences to be signaled, flushing 1893 * the tasklet is busy work without any advantage for this client. 1894 * 1895 * If the HW is being lazy, this is the last chance before we go to 1896 * sleep to catch any pending events. We will check periodically in 1897 * the heartbeat to flush the submission tasklets as a last resort 1898 * for unhappy HW. 1899 */ 1900 if (i915_request_is_ready(rq)) 1901 __intel_engine_flush_submission(rq->engine, false); 1902 1903 for (;;) { 1904 set_current_state(state); 1905 1906 if (dma_fence_is_signaled(&rq->fence)) 1907 break; 1908 1909 if (signal_pending_state(state, current)) { 1910 timeout = -ERESTARTSYS; 1911 break; 1912 } 1913 1914 if (!timeout) { 1915 timeout = -ETIME; 1916 break; 1917 } 1918 1919 timeout = io_schedule_timeout(timeout); 1920 } 1921 __set_current_state(TASK_RUNNING); 1922 1923 if (READ_ONCE(wait.tsk)) 1924 dma_fence_remove_callback(&rq->fence, &wait.cb); 1925 GEM_BUG_ON(!list_empty(&wait.cb.node)); 1926 1927 out: 1928 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1929 trace_i915_request_wait_end(rq); 1930 return timeout; 1931 } 1932 1933 static int print_sched_attr(const struct i915_sched_attr *attr, 1934 char *buf, int x, int len) 1935 { 1936 if (attr->priority == I915_PRIORITY_INVALID) 1937 return x; 1938 1939 x += snprintf(buf + x, len - x, 1940 " prio=%d", attr->priority); 1941 1942 return x; 1943 } 1944 1945 static char queue_status(const struct i915_request *rq) 1946 { 1947 if (i915_request_is_active(rq)) 1948 return 'E'; 1949 1950 if (i915_request_is_ready(rq)) 1951 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R'; 1952 1953 return 'U'; 1954 } 1955 1956 static const char *run_status(const struct i915_request *rq) 1957 { 1958 if (__i915_request_is_complete(rq)) 1959 return "!"; 1960 1961 if (__i915_request_has_started(rq)) 1962 return "*"; 1963 1964 if (!i915_sw_fence_signaled(&rq->semaphore)) 1965 return "&"; 1966 1967 return ""; 1968 } 1969 1970 static const char *fence_status(const struct i915_request *rq) 1971 { 1972 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 1973 return "+"; 1974 1975 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 1976 return "-"; 1977 1978 return ""; 1979 } 1980 1981 void i915_request_show(struct drm_printer *m, 1982 const struct i915_request *rq, 1983 const char *prefix, 1984 int indent) 1985 { 1986 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence); 1987 char buf[80] = ""; 1988 int x = 0; 1989 1990 /* 1991 * The prefix is used to show the queue status, for which we use 1992 * the following flags: 1993 * 1994 * U [Unready] 1995 * - initial status upon being submitted by the user 1996 * 1997 * - the request is not ready for execution as it is waiting 1998 * for external fences 1999 * 2000 * R [Ready] 2001 * - all fences the request was waiting on have been signaled, 2002 * and the request is now ready for execution and will be 2003 * in a backend queue 2004 * 2005 * - a ready request may still need to wait on semaphores 2006 * [internal fences] 2007 * 2008 * V [Ready/virtual] 2009 * - same as ready, but queued over multiple backends 2010 * 2011 * E [Executing] 2012 * - the request has been transferred from the backend queue and 2013 * submitted for execution on HW 2014 * 2015 * - a completed request may still be regarded as executing, its 2016 * status may not be updated until it is retired and removed 2017 * from the lists 2018 */ 2019 2020 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); 2021 2022 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n", 2023 prefix, indent, " ", 2024 queue_status(rq), 2025 rq->fence.context, rq->fence.seqno, 2026 run_status(rq), 2027 fence_status(rq), 2028 buf, 2029 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 2030 name); 2031 } 2032 2033 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq) 2034 { 2035 u32 ring = ENGINE_READ(engine, RING_START); 2036 2037 return ring == i915_ggtt_offset(rq->ring->vma); 2038 } 2039 2040 static bool match_ring(struct i915_request *rq) 2041 { 2042 struct intel_engine_cs *engine; 2043 bool found; 2044 int i; 2045 2046 if (!intel_engine_is_virtual(rq->engine)) 2047 return engine_match_ring(rq->engine, rq); 2048 2049 found = false; 2050 i = 0; 2051 while ((engine = intel_engine_get_sibling(rq->engine, i++))) { 2052 found = engine_match_ring(engine, rq); 2053 if (found) 2054 break; 2055 } 2056 2057 return found; 2058 } 2059 2060 enum i915_request_state i915_test_request_state(struct i915_request *rq) 2061 { 2062 if (i915_request_completed(rq)) 2063 return I915_REQUEST_COMPLETE; 2064 2065 if (!i915_request_started(rq)) 2066 return I915_REQUEST_PENDING; 2067 2068 if (match_ring(rq)) 2069 return I915_REQUEST_ACTIVE; 2070 2071 return I915_REQUEST_QUEUED; 2072 } 2073 2074 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2075 #include "selftests/mock_request.c" 2076 #include "selftests/i915_request.c" 2077 #endif 2078 2079 void i915_request_module_exit(void) 2080 { 2081 kmem_cache_destroy(slab_execute_cbs); 2082 kmem_cache_destroy(slab_requests); 2083 } 2084 2085 int __init i915_request_module_init(void) 2086 { 2087 slab_requests = 2088 kmem_cache_create("i915_request", 2089 sizeof(struct i915_request), 2090 __alignof__(struct i915_request), 2091 SLAB_HWCACHE_ALIGN | 2092 SLAB_RECLAIM_ACCOUNT | 2093 SLAB_TYPESAFE_BY_RCU, 2094 __i915_request_ctor); 2095 if (!slab_requests) 2096 return -ENOMEM; 2097 2098 slab_execute_cbs = KMEM_CACHE(execute_cb, 2099 SLAB_HWCACHE_ALIGN | 2100 SLAB_RECLAIM_ACCOUNT | 2101 SLAB_TYPESAFE_BY_RCU); 2102 if (!slab_execute_cbs) 2103 goto err_requests; 2104 2105 return 0; 2106 2107 err_requests: 2108 kmem_cache_destroy(slab_requests); 2109 return -ENOMEM; 2110 } 2111