1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 33 #include "gem/i915_gem_context.h" 34 #include "gt/intel_context.h" 35 #include "gt/intel_ring.h" 36 #include "gt/intel_rps.h" 37 38 #include "i915_active.h" 39 #include "i915_drv.h" 40 #include "i915_globals.h" 41 #include "i915_trace.h" 42 #include "intel_pm.h" 43 44 struct execute_cb { 45 struct irq_work work; 46 struct i915_sw_fence *fence; 47 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 48 struct i915_request *signal; 49 }; 50 51 static struct i915_global_request { 52 struct i915_global base; 53 struct kmem_cache *slab_requests; 54 struct kmem_cache *slab_execute_cbs; 55 } global; 56 57 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 58 { 59 return dev_name(to_request(fence)->engine->i915->drm.dev); 60 } 61 62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 63 { 64 const struct i915_gem_context *ctx; 65 66 /* 67 * The timeline struct (as part of the ppgtt underneath a context) 68 * may be freed when the request is no longer in use by the GPU. 69 * We could extend the life of a context to beyond that of all 70 * fences, possibly keeping the hw resource around indefinitely, 71 * or we just give them a false name. Since 72 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 73 * lie seems justifiable. 74 */ 75 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 76 return "signaled"; 77 78 ctx = i915_request_gem_context(to_request(fence)); 79 if (!ctx) 80 return "[" DRIVER_NAME "]"; 81 82 return ctx->name; 83 } 84 85 static bool i915_fence_signaled(struct dma_fence *fence) 86 { 87 return i915_request_completed(to_request(fence)); 88 } 89 90 static bool i915_fence_enable_signaling(struct dma_fence *fence) 91 { 92 return i915_request_enable_breadcrumb(to_request(fence)); 93 } 94 95 static signed long i915_fence_wait(struct dma_fence *fence, 96 bool interruptible, 97 signed long timeout) 98 { 99 return i915_request_wait(to_request(fence), 100 interruptible | I915_WAIT_PRIORITY, 101 timeout); 102 } 103 104 struct kmem_cache *i915_request_slab_cache(void) 105 { 106 return global.slab_requests; 107 } 108 109 static void i915_fence_release(struct dma_fence *fence) 110 { 111 struct i915_request *rq = to_request(fence); 112 113 /* 114 * The request is put onto a RCU freelist (i.e. the address 115 * is immediately reused), mark the fences as being freed now. 116 * Otherwise the debugobjects for the fences are only marked as 117 * freed when the slab cache itself is freed, and so we would get 118 * caught trying to reuse dead objects. 119 */ 120 i915_sw_fence_fini(&rq->submit); 121 i915_sw_fence_fini(&rq->semaphore); 122 123 /* 124 * Keep one request on each engine for reserved use under mempressure 125 * 126 * We do not hold a reference to the engine here and so have to be 127 * very careful in what rq->engine we poke. The virtual engine is 128 * referenced via the rq->context and we released that ref during 129 * i915_request_retire(), ergo we must not dereference a virtual 130 * engine here. Not that we would want to, as the only consumer of 131 * the reserved engine->request_pool is the power management parking, 132 * which must-not-fail, and that is only run on the physical engines. 133 * 134 * Since the request must have been executed to be have completed, 135 * we know that it will have been processed by the HW and will 136 * not be unsubmitted again, so rq->engine and rq->execution_mask 137 * at this point is stable. rq->execution_mask will be a single 138 * bit if the last and _only_ engine it could execution on was a 139 * physical engine, if it's multiple bits then it started on and 140 * could still be on a virtual engine. Thus if the mask is not a 141 * power-of-two we assume that rq->engine may still be a virtual 142 * engine and so a dangling invalid pointer that we cannot dereference 143 * 144 * For example, consider the flow of a bonded request through a virtual 145 * engine. The request is created with a wide engine mask (all engines 146 * that we might execute on). On processing the bond, the request mask 147 * is reduced to one or more engines. If the request is subsequently 148 * bound to a single engine, it will then be constrained to only 149 * execute on that engine and never returned to the virtual engine 150 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 151 * know that if the rq->execution_mask is a single bit, rq->engine 152 * can be a physical engine with the exact corresponding mask. 153 */ 154 if (is_power_of_2(rq->execution_mask) && 155 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 156 return; 157 158 kmem_cache_free(global.slab_requests, rq); 159 } 160 161 const struct dma_fence_ops i915_fence_ops = { 162 .get_driver_name = i915_fence_get_driver_name, 163 .get_timeline_name = i915_fence_get_timeline_name, 164 .enable_signaling = i915_fence_enable_signaling, 165 .signaled = i915_fence_signaled, 166 .wait = i915_fence_wait, 167 .release = i915_fence_release, 168 }; 169 170 static void irq_execute_cb(struct irq_work *wrk) 171 { 172 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 173 174 i915_sw_fence_complete(cb->fence); 175 kmem_cache_free(global.slab_execute_cbs, cb); 176 } 177 178 static void irq_execute_cb_hook(struct irq_work *wrk) 179 { 180 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 181 182 cb->hook(container_of(cb->fence, struct i915_request, submit), 183 &cb->signal->fence); 184 i915_request_put(cb->signal); 185 186 irq_execute_cb(wrk); 187 } 188 189 static void __notify_execute_cb(struct i915_request *rq) 190 { 191 struct execute_cb *cb, *cn; 192 193 lockdep_assert_held(&rq->lock); 194 195 GEM_BUG_ON(!i915_request_is_active(rq)); 196 if (llist_empty(&rq->execute_cb)) 197 return; 198 199 llist_for_each_entry_safe(cb, cn, rq->execute_cb.first, work.llnode) 200 irq_work_queue(&cb->work); 201 202 /* 203 * XXX Rollback on __i915_request_unsubmit() 204 * 205 * In the future, perhaps when we have an active time-slicing scheduler, 206 * it will be interesting to unsubmit parallel execution and remove 207 * busywaits from the GPU until their master is restarted. This is 208 * quite hairy, we have to carefully rollback the fence and do a 209 * preempt-to-idle cycle on the target engine, all the while the 210 * master execute_cb may refire. 211 */ 212 init_llist_head(&rq->execute_cb); 213 } 214 215 static inline void 216 remove_from_client(struct i915_request *request) 217 { 218 struct drm_i915_file_private *file_priv; 219 220 if (!READ_ONCE(request->file_priv)) 221 return; 222 223 rcu_read_lock(); 224 file_priv = xchg(&request->file_priv, NULL); 225 if (file_priv) { 226 spin_lock(&file_priv->mm.lock); 227 list_del(&request->client_link); 228 spin_unlock(&file_priv->mm.lock); 229 } 230 rcu_read_unlock(); 231 } 232 233 static void free_capture_list(struct i915_request *request) 234 { 235 struct i915_capture_list *capture; 236 237 capture = fetch_and_zero(&request->capture_list); 238 while (capture) { 239 struct i915_capture_list *next = capture->next; 240 241 kfree(capture); 242 capture = next; 243 } 244 } 245 246 static void __i915_request_fill(struct i915_request *rq, u8 val) 247 { 248 void *vaddr = rq->ring->vaddr; 249 u32 head; 250 251 head = rq->infix; 252 if (rq->postfix < head) { 253 memset(vaddr + head, val, rq->ring->size - head); 254 head = 0; 255 } 256 memset(vaddr + head, val, rq->postfix - head); 257 } 258 259 static void remove_from_engine(struct i915_request *rq) 260 { 261 struct intel_engine_cs *engine, *locked; 262 263 /* 264 * Virtual engines complicate acquiring the engine timeline lock, 265 * as their rq->engine pointer is not stable until under that 266 * engine lock. The simple ploy we use is to take the lock then 267 * check that the rq still belongs to the newly locked engine. 268 */ 269 locked = READ_ONCE(rq->engine); 270 spin_lock_irq(&locked->active.lock); 271 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 272 spin_unlock(&locked->active.lock); 273 spin_lock(&engine->active.lock); 274 locked = engine; 275 } 276 list_del_init(&rq->sched.link); 277 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 278 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 279 spin_unlock_irq(&locked->active.lock); 280 } 281 282 bool i915_request_retire(struct i915_request *rq) 283 { 284 if (!i915_request_completed(rq)) 285 return false; 286 287 RQ_TRACE(rq, "\n"); 288 289 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 290 trace_i915_request_retire(rq); 291 292 /* 293 * We know the GPU must have read the request to have 294 * sent us the seqno + interrupt, so use the position 295 * of tail of the request to update the last known position 296 * of the GPU head. 297 * 298 * Note this requires that we are always called in request 299 * completion order. 300 */ 301 GEM_BUG_ON(!list_is_first(&rq->link, 302 &i915_request_timeline(rq)->requests)); 303 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 304 /* Poison before we release our space in the ring */ 305 __i915_request_fill(rq, POISON_FREE); 306 rq->ring->head = rq->postfix; 307 308 /* 309 * We only loosely track inflight requests across preemption, 310 * and so we may find ourselves attempting to retire a _completed_ 311 * request that we have removed from the HW and put back on a run 312 * queue. 313 */ 314 remove_from_engine(rq); 315 316 spin_lock_irq(&rq->lock); 317 i915_request_mark_complete(rq); 318 if (!i915_request_signaled(rq)) 319 dma_fence_signal_locked(&rq->fence); 320 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 321 i915_request_cancel_breadcrumb(rq); 322 if (i915_request_has_waitboost(rq)) { 323 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters)); 324 atomic_dec(&rq->engine->gt->rps.num_waiters); 325 } 326 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) { 327 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 328 __notify_execute_cb(rq); 329 } 330 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 331 spin_unlock_irq(&rq->lock); 332 333 remove_from_client(rq); 334 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 335 336 intel_context_exit(rq->context); 337 intel_context_unpin(rq->context); 338 339 free_capture_list(rq); 340 i915_sched_node_fini(&rq->sched); 341 i915_request_put(rq); 342 343 return true; 344 } 345 346 void i915_request_retire_upto(struct i915_request *rq) 347 { 348 struct intel_timeline * const tl = i915_request_timeline(rq); 349 struct i915_request *tmp; 350 351 RQ_TRACE(rq, "\n"); 352 353 GEM_BUG_ON(!i915_request_completed(rq)); 354 355 do { 356 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 357 } while (i915_request_retire(tmp) && tmp != rq); 358 } 359 360 static void __llist_add(struct llist_node *node, struct llist_head *head) 361 { 362 node->next = head->first; 363 head->first = node; 364 } 365 366 static struct i915_request * const * 367 __engine_active(struct intel_engine_cs *engine) 368 { 369 return READ_ONCE(engine->execlists.active); 370 } 371 372 static bool __request_in_flight(const struct i915_request *signal) 373 { 374 struct i915_request * const *port, *rq; 375 bool inflight = false; 376 377 if (!i915_request_is_ready(signal)) 378 return false; 379 380 /* 381 * Even if we have unwound the request, it may still be on 382 * the GPU (preempt-to-busy). If that request is inside an 383 * unpreemptible critical section, it will not be removed. Some 384 * GPU functions may even be stuck waiting for the paired request 385 * (__await_execution) to be submitted and cannot be preempted 386 * until the bond is executing. 387 * 388 * As we know that there are always preemption points between 389 * requests, we know that only the currently executing request 390 * may be still active even though we have cleared the flag. 391 * However, we can't rely on our tracking of ELSP[0] to known 392 * which request is currently active and so maybe stuck, as 393 * the tracking maybe an event behind. Instead assume that 394 * if the context is still inflight, then it is still active 395 * even if the active flag has been cleared. 396 */ 397 if (!intel_context_inflight(signal->context)) 398 return false; 399 400 rcu_read_lock(); 401 for (port = __engine_active(signal->engine); (rq = *port); port++) { 402 if (rq->context == signal->context) { 403 inflight = i915_seqno_passed(rq->fence.seqno, 404 signal->fence.seqno); 405 break; 406 } 407 } 408 rcu_read_unlock(); 409 410 return inflight; 411 } 412 413 static int 414 __await_execution(struct i915_request *rq, 415 struct i915_request *signal, 416 void (*hook)(struct i915_request *rq, 417 struct dma_fence *signal), 418 gfp_t gfp) 419 { 420 struct execute_cb *cb; 421 422 if (i915_request_is_active(signal)) { 423 if (hook) 424 hook(rq, &signal->fence); 425 return 0; 426 } 427 428 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 429 if (!cb) 430 return -ENOMEM; 431 432 cb->fence = &rq->submit; 433 i915_sw_fence_await(cb->fence); 434 init_irq_work(&cb->work, irq_execute_cb); 435 436 if (hook) { 437 cb->hook = hook; 438 cb->signal = i915_request_get(signal); 439 cb->work.func = irq_execute_cb_hook; 440 } 441 442 spin_lock_irq(&signal->lock); 443 if (i915_request_is_active(signal) || __request_in_flight(signal)) { 444 if (hook) { 445 hook(rq, &signal->fence); 446 i915_request_put(signal); 447 } 448 i915_sw_fence_complete(cb->fence); 449 kmem_cache_free(global.slab_execute_cbs, cb); 450 } else { 451 __llist_add(&cb->work.llnode, &signal->execute_cb); 452 } 453 spin_unlock_irq(&signal->lock); 454 455 return 0; 456 } 457 458 static bool fatal_error(int error) 459 { 460 switch (error) { 461 case 0: /* not an error! */ 462 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 463 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 464 return false; 465 default: 466 return true; 467 } 468 } 469 470 void __i915_request_skip(struct i915_request *rq) 471 { 472 GEM_BUG_ON(!fatal_error(rq->fence.error)); 473 474 if (rq->infix == rq->postfix) 475 return; 476 477 /* 478 * As this request likely depends on state from the lost 479 * context, clear out all the user operations leaving the 480 * breadcrumb at the end (so we get the fence notifications). 481 */ 482 __i915_request_fill(rq, 0); 483 rq->infix = rq->postfix; 484 } 485 486 void i915_request_set_error_once(struct i915_request *rq, int error) 487 { 488 int old; 489 490 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 491 492 if (i915_request_signaled(rq)) 493 return; 494 495 old = READ_ONCE(rq->fence.error); 496 do { 497 if (fatal_error(old)) 498 return; 499 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 500 } 501 502 bool __i915_request_submit(struct i915_request *request) 503 { 504 struct intel_engine_cs *engine = request->engine; 505 bool result = false; 506 507 RQ_TRACE(request, "\n"); 508 509 GEM_BUG_ON(!irqs_disabled()); 510 lockdep_assert_held(&engine->active.lock); 511 512 /* 513 * With the advent of preempt-to-busy, we frequently encounter 514 * requests that we have unsubmitted from HW, but left running 515 * until the next ack and so have completed in the meantime. On 516 * resubmission of that completed request, we can skip 517 * updating the payload, and execlists can even skip submitting 518 * the request. 519 * 520 * We must remove the request from the caller's priority queue, 521 * and the caller must only call us when the request is in their 522 * priority queue, under the active.lock. This ensures that the 523 * request has *not* yet been retired and we can safely move 524 * the request into the engine->active.list where it will be 525 * dropped upon retiring. (Otherwise if resubmit a *retired* 526 * request, this would be a horrible use-after-free.) 527 */ 528 if (i915_request_completed(request)) 529 goto xfer; 530 531 if (unlikely(intel_context_is_banned(request->context))) 532 i915_request_set_error_once(request, -EIO); 533 if (unlikely(fatal_error(request->fence.error))) 534 __i915_request_skip(request); 535 536 /* 537 * Are we using semaphores when the gpu is already saturated? 538 * 539 * Using semaphores incurs a cost in having the GPU poll a 540 * memory location, busywaiting for it to change. The continual 541 * memory reads can have a noticeable impact on the rest of the 542 * system with the extra bus traffic, stalling the cpu as it too 543 * tries to access memory across the bus (perf stat -e bus-cycles). 544 * 545 * If we installed a semaphore on this request and we only submit 546 * the request after the signaler completed, that indicates the 547 * system is overloaded and using semaphores at this time only 548 * increases the amount of work we are doing. If so, we disable 549 * further use of semaphores until we are idle again, whence we 550 * optimistically try again. 551 */ 552 if (request->sched.semaphores && 553 i915_sw_fence_signaled(&request->semaphore)) 554 engine->saturated |= request->sched.semaphores; 555 556 engine->emit_fini_breadcrumb(request, 557 request->ring->vaddr + request->postfix); 558 559 trace_i915_request_execute(request); 560 engine->serial++; 561 result = true; 562 563 xfer: 564 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) { 565 list_move_tail(&request->sched.link, &engine->active.requests); 566 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 567 } 568 569 /* We may be recursing from the signal callback of another i915 fence */ 570 if (!i915_request_signaled(request)) { 571 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 572 573 __notify_execute_cb(request); 574 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, 575 &request->fence.flags) && 576 !i915_request_enable_breadcrumb(request)) 577 intel_engine_signal_breadcrumbs(engine); 578 579 spin_unlock(&request->lock); 580 GEM_BUG_ON(!llist_empty(&request->execute_cb)); 581 } 582 583 return result; 584 } 585 586 void i915_request_submit(struct i915_request *request) 587 { 588 struct intel_engine_cs *engine = request->engine; 589 unsigned long flags; 590 591 /* Will be called from irq-context when using foreign fences. */ 592 spin_lock_irqsave(&engine->active.lock, flags); 593 594 __i915_request_submit(request); 595 596 spin_unlock_irqrestore(&engine->active.lock, flags); 597 } 598 599 void __i915_request_unsubmit(struct i915_request *request) 600 { 601 struct intel_engine_cs *engine = request->engine; 602 603 RQ_TRACE(request, "\n"); 604 605 GEM_BUG_ON(!irqs_disabled()); 606 lockdep_assert_held(&engine->active.lock); 607 608 /* 609 * Only unwind in reverse order, required so that the per-context list 610 * is kept in seqno/ring order. 611 */ 612 613 /* We may be recursing from the signal callback of another i915 fence */ 614 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 615 616 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 617 i915_request_cancel_breadcrumb(request); 618 619 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 620 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 621 622 spin_unlock(&request->lock); 623 624 /* We've already spun, don't charge on resubmitting. */ 625 if (request->sched.semaphores && i915_request_started(request)) 626 request->sched.semaphores = 0; 627 628 /* 629 * We don't need to wake_up any waiters on request->execute, they 630 * will get woken by any other event or us re-adding this request 631 * to the engine timeline (__i915_request_submit()). The waiters 632 * should be quite adapt at finding that the request now has a new 633 * global_seqno to the one they went to sleep on. 634 */ 635 } 636 637 void i915_request_unsubmit(struct i915_request *request) 638 { 639 struct intel_engine_cs *engine = request->engine; 640 unsigned long flags; 641 642 /* Will be called from irq-context when using foreign fences. */ 643 spin_lock_irqsave(&engine->active.lock, flags); 644 645 __i915_request_unsubmit(request); 646 647 spin_unlock_irqrestore(&engine->active.lock, flags); 648 } 649 650 static int __i915_sw_fence_call 651 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 652 { 653 struct i915_request *request = 654 container_of(fence, typeof(*request), submit); 655 656 switch (state) { 657 case FENCE_COMPLETE: 658 trace_i915_request_submit(request); 659 660 if (unlikely(fence->error)) 661 i915_request_set_error_once(request, fence->error); 662 663 /* 664 * We need to serialize use of the submit_request() callback 665 * with its hotplugging performed during an emergency 666 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 667 * critical section in order to force i915_gem_set_wedged() to 668 * wait until the submit_request() is completed before 669 * proceeding. 670 */ 671 rcu_read_lock(); 672 request->engine->submit_request(request); 673 rcu_read_unlock(); 674 break; 675 676 case FENCE_FREE: 677 i915_request_put(request); 678 break; 679 } 680 681 return NOTIFY_DONE; 682 } 683 684 static int __i915_sw_fence_call 685 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 686 { 687 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 688 689 switch (state) { 690 case FENCE_COMPLETE: 691 break; 692 693 case FENCE_FREE: 694 i915_request_put(rq); 695 break; 696 } 697 698 return NOTIFY_DONE; 699 } 700 701 static void retire_requests(struct intel_timeline *tl) 702 { 703 struct i915_request *rq, *rn; 704 705 list_for_each_entry_safe(rq, rn, &tl->requests, link) 706 if (!i915_request_retire(rq)) 707 break; 708 } 709 710 static noinline struct i915_request * 711 request_alloc_slow(struct intel_timeline *tl, 712 struct i915_request **rsvd, 713 gfp_t gfp) 714 { 715 struct i915_request *rq; 716 717 /* If we cannot wait, dip into our reserves */ 718 if (!gfpflags_allow_blocking(gfp)) { 719 rq = xchg(rsvd, NULL); 720 if (!rq) /* Use the normal failure path for one final WARN */ 721 goto out; 722 723 return rq; 724 } 725 726 if (list_empty(&tl->requests)) 727 goto out; 728 729 /* Move our oldest request to the slab-cache (if not in use!) */ 730 rq = list_first_entry(&tl->requests, typeof(*rq), link); 731 i915_request_retire(rq); 732 733 rq = kmem_cache_alloc(global.slab_requests, 734 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 735 if (rq) 736 return rq; 737 738 /* Ratelimit ourselves to prevent oom from malicious clients */ 739 rq = list_last_entry(&tl->requests, typeof(*rq), link); 740 cond_synchronize_rcu(rq->rcustate); 741 742 /* Retire our old requests in the hope that we free some */ 743 retire_requests(tl); 744 745 out: 746 return kmem_cache_alloc(global.slab_requests, gfp); 747 } 748 749 static void __i915_request_ctor(void *arg) 750 { 751 struct i915_request *rq = arg; 752 753 spin_lock_init(&rq->lock); 754 i915_sched_node_init(&rq->sched); 755 i915_sw_fence_init(&rq->submit, submit_notify); 756 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 757 758 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0); 759 760 rq->file_priv = NULL; 761 rq->capture_list = NULL; 762 763 init_llist_head(&rq->execute_cb); 764 } 765 766 struct i915_request * 767 __i915_request_create(struct intel_context *ce, gfp_t gfp) 768 { 769 struct intel_timeline *tl = ce->timeline; 770 struct i915_request *rq; 771 u32 seqno; 772 int ret; 773 774 might_sleep_if(gfpflags_allow_blocking(gfp)); 775 776 /* Check that the caller provided an already pinned context */ 777 __intel_context_pin(ce); 778 779 /* 780 * Beware: Dragons be flying overhead. 781 * 782 * We use RCU to look up requests in flight. The lookups may 783 * race with the request being allocated from the slab freelist. 784 * That is the request we are writing to here, may be in the process 785 * of being read by __i915_active_request_get_rcu(). As such, 786 * we have to be very careful when overwriting the contents. During 787 * the RCU lookup, we change chase the request->engine pointer, 788 * read the request->global_seqno and increment the reference count. 789 * 790 * The reference count is incremented atomically. If it is zero, 791 * the lookup knows the request is unallocated and complete. Otherwise, 792 * it is either still in use, or has been reallocated and reset 793 * with dma_fence_init(). This increment is safe for release as we 794 * check that the request we have a reference to and matches the active 795 * request. 796 * 797 * Before we increment the refcount, we chase the request->engine 798 * pointer. We must not call kmem_cache_zalloc() or else we set 799 * that pointer to NULL and cause a crash during the lookup. If 800 * we see the request is completed (based on the value of the 801 * old engine and seqno), the lookup is complete and reports NULL. 802 * If we decide the request is not completed (new engine or seqno), 803 * then we grab a reference and double check that it is still the 804 * active request - which it won't be and restart the lookup. 805 * 806 * Do not use kmem_cache_zalloc() here! 807 */ 808 rq = kmem_cache_alloc(global.slab_requests, 809 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 810 if (unlikely(!rq)) { 811 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 812 if (!rq) { 813 ret = -ENOMEM; 814 goto err_unreserve; 815 } 816 } 817 818 rq->context = ce; 819 rq->engine = ce->engine; 820 rq->ring = ce->ring; 821 rq->execution_mask = ce->engine->mask; 822 823 kref_init(&rq->fence.refcount); 824 rq->fence.flags = 0; 825 rq->fence.error = 0; 826 INIT_LIST_HEAD(&rq->fence.cb_list); 827 828 ret = intel_timeline_get_seqno(tl, rq, &seqno); 829 if (ret) 830 goto err_free; 831 832 rq->fence.context = tl->fence_context; 833 rq->fence.seqno = seqno; 834 835 RCU_INIT_POINTER(rq->timeline, tl); 836 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 837 rq->hwsp_seqno = tl->hwsp_seqno; 838 GEM_BUG_ON(i915_request_completed(rq)); 839 840 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 841 842 /* We bump the ref for the fence chain */ 843 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 844 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 845 846 i915_sched_node_reinit(&rq->sched); 847 848 /* No zalloc, everything must be cleared after use */ 849 rq->batch = NULL; 850 GEM_BUG_ON(rq->file_priv); 851 GEM_BUG_ON(rq->capture_list); 852 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 853 854 /* 855 * Reserve space in the ring buffer for all the commands required to 856 * eventually emit this request. This is to guarantee that the 857 * i915_request_add() call can't fail. Note that the reserve may need 858 * to be redone if the request is not actually submitted straight 859 * away, e.g. because a GPU scheduler has deferred it. 860 * 861 * Note that due to how we add reserved_space to intel_ring_begin() 862 * we need to double our request to ensure that if we need to wrap 863 * around inside i915_request_add() there is sufficient space at 864 * the beginning of the ring as well. 865 */ 866 rq->reserved_space = 867 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 868 869 /* 870 * Record the position of the start of the request so that 871 * should we detect the updated seqno part-way through the 872 * GPU processing the request, we never over-estimate the 873 * position of the head. 874 */ 875 rq->head = rq->ring->emit; 876 877 ret = rq->engine->request_alloc(rq); 878 if (ret) 879 goto err_unwind; 880 881 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 882 883 intel_context_mark_active(ce); 884 list_add_tail_rcu(&rq->link, &tl->requests); 885 886 return rq; 887 888 err_unwind: 889 ce->ring->emit = rq->head; 890 891 /* Make sure we didn't add ourselves to external state before freeing */ 892 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 893 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 894 895 err_free: 896 kmem_cache_free(global.slab_requests, rq); 897 err_unreserve: 898 intel_context_unpin(ce); 899 return ERR_PTR(ret); 900 } 901 902 struct i915_request * 903 i915_request_create(struct intel_context *ce) 904 { 905 struct i915_request *rq; 906 struct intel_timeline *tl; 907 908 tl = intel_context_timeline_lock(ce); 909 if (IS_ERR(tl)) 910 return ERR_CAST(tl); 911 912 /* Move our oldest request to the slab-cache (if not in use!) */ 913 rq = list_first_entry(&tl->requests, typeof(*rq), link); 914 if (!list_is_last(&rq->link, &tl->requests)) 915 i915_request_retire(rq); 916 917 intel_context_enter(ce); 918 rq = __i915_request_create(ce, GFP_KERNEL); 919 intel_context_exit(ce); /* active reference transferred to request */ 920 if (IS_ERR(rq)) 921 goto err_unlock; 922 923 /* Check that we do not interrupt ourselves with a new request */ 924 rq->cookie = lockdep_pin_lock(&tl->mutex); 925 926 return rq; 927 928 err_unlock: 929 intel_context_timeline_unlock(tl); 930 return rq; 931 } 932 933 static int 934 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 935 { 936 struct dma_fence *fence; 937 int err; 938 939 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 940 return 0; 941 942 if (i915_request_started(signal)) 943 return 0; 944 945 fence = NULL; 946 rcu_read_lock(); 947 spin_lock_irq(&signal->lock); 948 do { 949 struct list_head *pos = READ_ONCE(signal->link.prev); 950 struct i915_request *prev; 951 952 /* Confirm signal has not been retired, the link is valid */ 953 if (unlikely(i915_request_started(signal))) 954 break; 955 956 /* Is signal the earliest request on its timeline? */ 957 if (pos == &rcu_dereference(signal->timeline)->requests) 958 break; 959 960 /* 961 * Peek at the request before us in the timeline. That 962 * request will only be valid before it is retired, so 963 * after acquiring a reference to it, confirm that it is 964 * still part of the signaler's timeline. 965 */ 966 prev = list_entry(pos, typeof(*prev), link); 967 if (!i915_request_get_rcu(prev)) 968 break; 969 970 /* After the strong barrier, confirm prev is still attached */ 971 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 972 i915_request_put(prev); 973 break; 974 } 975 976 fence = &prev->fence; 977 } while (0); 978 spin_unlock_irq(&signal->lock); 979 rcu_read_unlock(); 980 if (!fence) 981 return 0; 982 983 err = 0; 984 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 985 err = i915_sw_fence_await_dma_fence(&rq->submit, 986 fence, 0, 987 I915_FENCE_GFP); 988 dma_fence_put(fence); 989 990 return err; 991 } 992 993 static intel_engine_mask_t 994 already_busywaiting(struct i915_request *rq) 995 { 996 /* 997 * Polling a semaphore causes bus traffic, delaying other users of 998 * both the GPU and CPU. We want to limit the impact on others, 999 * while taking advantage of early submission to reduce GPU 1000 * latency. Therefore we restrict ourselves to not using more 1001 * than one semaphore from each source, and not using a semaphore 1002 * if we have detected the engine is saturated (i.e. would not be 1003 * submitted early and cause bus traffic reading an already passed 1004 * semaphore). 1005 * 1006 * See the are-we-too-late? check in __i915_request_submit(). 1007 */ 1008 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1009 } 1010 1011 static int 1012 __emit_semaphore_wait(struct i915_request *to, 1013 struct i915_request *from, 1014 u32 seqno) 1015 { 1016 const int has_token = INTEL_GEN(to->engine->i915) >= 12; 1017 u32 hwsp_offset; 1018 int len, err; 1019 u32 *cs; 1020 1021 GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8); 1022 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1023 1024 /* We need to pin the signaler's HWSP until we are finished reading. */ 1025 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1026 if (err) 1027 return err; 1028 1029 len = 4; 1030 if (has_token) 1031 len += 2; 1032 1033 cs = intel_ring_begin(to, len); 1034 if (IS_ERR(cs)) 1035 return PTR_ERR(cs); 1036 1037 /* 1038 * Using greater-than-or-equal here means we have to worry 1039 * about seqno wraparound. To side step that issue, we swap 1040 * the timeline HWSP upon wrapping, so that everyone listening 1041 * for the old (pre-wrap) values do not see the much smaller 1042 * (post-wrap) values than they were expecting (and so wait 1043 * forever). 1044 */ 1045 *cs++ = (MI_SEMAPHORE_WAIT | 1046 MI_SEMAPHORE_GLOBAL_GTT | 1047 MI_SEMAPHORE_POLL | 1048 MI_SEMAPHORE_SAD_GTE_SDD) + 1049 has_token; 1050 *cs++ = seqno; 1051 *cs++ = hwsp_offset; 1052 *cs++ = 0; 1053 if (has_token) { 1054 *cs++ = 0; 1055 *cs++ = MI_NOOP; 1056 } 1057 1058 intel_ring_advance(to, cs); 1059 return 0; 1060 } 1061 1062 static int 1063 emit_semaphore_wait(struct i915_request *to, 1064 struct i915_request *from, 1065 gfp_t gfp) 1066 { 1067 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1068 struct i915_sw_fence *wait = &to->submit; 1069 1070 if (!intel_context_use_semaphores(to->context)) 1071 goto await_fence; 1072 1073 if (i915_request_has_initial_breadcrumb(to)) 1074 goto await_fence; 1075 1076 if (!rcu_access_pointer(from->hwsp_cacheline)) 1077 goto await_fence; 1078 1079 /* 1080 * If this or its dependents are waiting on an external fence 1081 * that may fail catastrophically, then we want to avoid using 1082 * sempahores as they bypass the fence signaling metadata, and we 1083 * lose the fence->error propagation. 1084 */ 1085 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1086 goto await_fence; 1087 1088 /* Just emit the first semaphore we see as request space is limited. */ 1089 if (already_busywaiting(to) & mask) 1090 goto await_fence; 1091 1092 if (i915_request_await_start(to, from) < 0) 1093 goto await_fence; 1094 1095 /* Only submit our spinner after the signaler is running! */ 1096 if (__await_execution(to, from, NULL, gfp)) 1097 goto await_fence; 1098 1099 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1100 goto await_fence; 1101 1102 to->sched.semaphores |= mask; 1103 wait = &to->semaphore; 1104 1105 await_fence: 1106 return i915_sw_fence_await_dma_fence(wait, 1107 &from->fence, 0, 1108 I915_FENCE_GFP); 1109 } 1110 1111 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1112 struct dma_fence *fence) 1113 { 1114 return __intel_timeline_sync_is_later(tl, 1115 fence->context, 1116 fence->seqno - 1); 1117 } 1118 1119 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1120 const struct dma_fence *fence) 1121 { 1122 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1123 } 1124 1125 static int 1126 __i915_request_await_execution(struct i915_request *to, 1127 struct i915_request *from, 1128 void (*hook)(struct i915_request *rq, 1129 struct dma_fence *signal)) 1130 { 1131 int err; 1132 1133 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1134 1135 /* Submit both requests at the same time */ 1136 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1137 if (err) 1138 return err; 1139 1140 /* Squash repeated depenendices to the same timelines */ 1141 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1142 &from->fence)) 1143 return 0; 1144 1145 /* 1146 * Wait until the start of this request. 1147 * 1148 * The execution cb fires when we submit the request to HW. But in 1149 * many cases this may be long before the request itself is ready to 1150 * run (consider that we submit 2 requests for the same context, where 1151 * the request of interest is behind an indefinite spinner). So we hook 1152 * up to both to reduce our queues and keep the execution lag minimised 1153 * in the worst case, though we hope that the await_start is elided. 1154 */ 1155 err = i915_request_await_start(to, from); 1156 if (err < 0) 1157 return err; 1158 1159 /* 1160 * Ensure both start together [after all semaphores in signal] 1161 * 1162 * Now that we are queued to the HW at roughly the same time (thanks 1163 * to the execute cb) and are ready to run at roughly the same time 1164 * (thanks to the await start), our signaler may still be indefinitely 1165 * delayed by waiting on a semaphore from a remote engine. If our 1166 * signaler depends on a semaphore, so indirectly do we, and we do not 1167 * want to start our payload until our signaler also starts theirs. 1168 * So we wait. 1169 * 1170 * However, there is also a second condition for which we need to wait 1171 * for the precise start of the signaler. Consider that the signaler 1172 * was submitted in a chain of requests following another context 1173 * (with just an ordinary intra-engine fence dependency between the 1174 * two). In this case the signaler is queued to HW, but not for 1175 * immediate execution, and so we must wait until it reaches the 1176 * active slot. 1177 */ 1178 if (intel_engine_has_semaphores(to->engine) && 1179 !i915_request_has_initial_breadcrumb(to)) { 1180 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1181 if (err < 0) 1182 return err; 1183 } 1184 1185 /* Couple the dependency tree for PI on this exposed to->fence */ 1186 if (to->engine->schedule) { 1187 err = i915_sched_node_add_dependency(&to->sched, 1188 &from->sched, 1189 I915_DEPENDENCY_WEAK); 1190 if (err < 0) 1191 return err; 1192 } 1193 1194 return intel_timeline_sync_set_start(i915_request_timeline(to), 1195 &from->fence); 1196 } 1197 1198 static void mark_external(struct i915_request *rq) 1199 { 1200 /* 1201 * The downside of using semaphores is that we lose metadata passing 1202 * along the signaling chain. This is particularly nasty when we 1203 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1204 * fatal errors we want to scrub the request before it is executed, 1205 * which means that we cannot preload the request onto HW and have 1206 * it wait upon a semaphore. 1207 */ 1208 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1209 } 1210 1211 static int 1212 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1213 { 1214 mark_external(rq); 1215 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1216 i915_fence_context_timeout(rq->engine->i915, 1217 fence->context), 1218 I915_FENCE_GFP); 1219 } 1220 1221 static int 1222 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1223 { 1224 struct dma_fence *iter; 1225 int err = 0; 1226 1227 if (!to_dma_fence_chain(fence)) 1228 return __i915_request_await_external(rq, fence); 1229 1230 dma_fence_chain_for_each(iter, fence) { 1231 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1232 1233 if (!dma_fence_is_i915(chain->fence)) { 1234 err = __i915_request_await_external(rq, iter); 1235 break; 1236 } 1237 1238 err = i915_request_await_dma_fence(rq, chain->fence); 1239 if (err < 0) 1240 break; 1241 } 1242 1243 dma_fence_put(iter); 1244 return err; 1245 } 1246 1247 int 1248 i915_request_await_execution(struct i915_request *rq, 1249 struct dma_fence *fence, 1250 void (*hook)(struct i915_request *rq, 1251 struct dma_fence *signal)) 1252 { 1253 struct dma_fence **child = &fence; 1254 unsigned int nchild = 1; 1255 int ret; 1256 1257 if (dma_fence_is_array(fence)) { 1258 struct dma_fence_array *array = to_dma_fence_array(fence); 1259 1260 /* XXX Error for signal-on-any fence arrays */ 1261 1262 child = array->fences; 1263 nchild = array->num_fences; 1264 GEM_BUG_ON(!nchild); 1265 } 1266 1267 do { 1268 fence = *child++; 1269 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1270 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1271 continue; 1272 } 1273 1274 if (fence->context == rq->fence.context) 1275 continue; 1276 1277 /* 1278 * We don't squash repeated fence dependencies here as we 1279 * want to run our callback in all cases. 1280 */ 1281 1282 if (dma_fence_is_i915(fence)) 1283 ret = __i915_request_await_execution(rq, 1284 to_request(fence), 1285 hook); 1286 else 1287 ret = i915_request_await_external(rq, fence); 1288 if (ret < 0) 1289 return ret; 1290 } while (--nchild); 1291 1292 return 0; 1293 } 1294 1295 static int 1296 await_request_submit(struct i915_request *to, struct i915_request *from) 1297 { 1298 /* 1299 * If we are waiting on a virtual engine, then it may be 1300 * constrained to execute on a single engine *prior* to submission. 1301 * When it is submitted, it will be first submitted to the virtual 1302 * engine and then passed to the physical engine. We cannot allow 1303 * the waiter to be submitted immediately to the physical engine 1304 * as it may then bypass the virtual request. 1305 */ 1306 if (to->engine == READ_ONCE(from->engine)) 1307 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1308 &from->submit, 1309 I915_FENCE_GFP); 1310 else 1311 return __i915_request_await_execution(to, from, NULL); 1312 } 1313 1314 static int 1315 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1316 { 1317 int ret; 1318 1319 GEM_BUG_ON(to == from); 1320 GEM_BUG_ON(to->timeline == from->timeline); 1321 1322 if (i915_request_completed(from)) { 1323 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1324 return 0; 1325 } 1326 1327 if (to->engine->schedule) { 1328 ret = i915_sched_node_add_dependency(&to->sched, 1329 &from->sched, 1330 I915_DEPENDENCY_EXTERNAL); 1331 if (ret < 0) 1332 return ret; 1333 } 1334 1335 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1336 ret = await_request_submit(to, from); 1337 else 1338 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1339 if (ret < 0) 1340 return ret; 1341 1342 return 0; 1343 } 1344 1345 int 1346 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1347 { 1348 struct dma_fence **child = &fence; 1349 unsigned int nchild = 1; 1350 int ret; 1351 1352 /* 1353 * Note that if the fence-array was created in signal-on-any mode, 1354 * we should *not* decompose it into its individual fences. However, 1355 * we don't currently store which mode the fence-array is operating 1356 * in. Fortunately, the only user of signal-on-any is private to 1357 * amdgpu and we should not see any incoming fence-array from 1358 * sync-file being in signal-on-any mode. 1359 */ 1360 if (dma_fence_is_array(fence)) { 1361 struct dma_fence_array *array = to_dma_fence_array(fence); 1362 1363 child = array->fences; 1364 nchild = array->num_fences; 1365 GEM_BUG_ON(!nchild); 1366 } 1367 1368 do { 1369 fence = *child++; 1370 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1371 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1372 continue; 1373 } 1374 1375 /* 1376 * Requests on the same timeline are explicitly ordered, along 1377 * with their dependencies, by i915_request_add() which ensures 1378 * that requests are submitted in-order through each ring. 1379 */ 1380 if (fence->context == rq->fence.context) 1381 continue; 1382 1383 /* Squash repeated waits to the same timelines */ 1384 if (fence->context && 1385 intel_timeline_sync_is_later(i915_request_timeline(rq), 1386 fence)) 1387 continue; 1388 1389 if (dma_fence_is_i915(fence)) 1390 ret = i915_request_await_request(rq, to_request(fence)); 1391 else 1392 ret = i915_request_await_external(rq, fence); 1393 if (ret < 0) 1394 return ret; 1395 1396 /* Record the latest fence used against each timeline */ 1397 if (fence->context) 1398 intel_timeline_sync_set(i915_request_timeline(rq), 1399 fence); 1400 } while (--nchild); 1401 1402 return 0; 1403 } 1404 1405 /** 1406 * i915_request_await_object - set this request to (async) wait upon a bo 1407 * @to: request we are wishing to use 1408 * @obj: object which may be in use on another ring. 1409 * @write: whether the wait is on behalf of a writer 1410 * 1411 * This code is meant to abstract object synchronization with the GPU. 1412 * Conceptually we serialise writes between engines inside the GPU. 1413 * We only allow one engine to write into a buffer at any time, but 1414 * multiple readers. To ensure each has a coherent view of memory, we must: 1415 * 1416 * - If there is an outstanding write request to the object, the new 1417 * request must wait for it to complete (either CPU or in hw, requests 1418 * on the same ring will be naturally ordered). 1419 * 1420 * - If we are a write request (pending_write_domain is set), the new 1421 * request must wait for outstanding read requests to complete. 1422 * 1423 * Returns 0 if successful, else propagates up the lower layer error. 1424 */ 1425 int 1426 i915_request_await_object(struct i915_request *to, 1427 struct drm_i915_gem_object *obj, 1428 bool write) 1429 { 1430 struct dma_fence *excl; 1431 int ret = 0; 1432 1433 if (write) { 1434 struct dma_fence **shared; 1435 unsigned int count, i; 1436 1437 ret = dma_resv_get_fences_rcu(obj->base.resv, 1438 &excl, &count, &shared); 1439 if (ret) 1440 return ret; 1441 1442 for (i = 0; i < count; i++) { 1443 ret = i915_request_await_dma_fence(to, shared[i]); 1444 if (ret) 1445 break; 1446 1447 dma_fence_put(shared[i]); 1448 } 1449 1450 for (; i < count; i++) 1451 dma_fence_put(shared[i]); 1452 kfree(shared); 1453 } else { 1454 excl = dma_resv_get_excl_rcu(obj->base.resv); 1455 } 1456 1457 if (excl) { 1458 if (ret == 0) 1459 ret = i915_request_await_dma_fence(to, excl); 1460 1461 dma_fence_put(excl); 1462 } 1463 1464 return ret; 1465 } 1466 1467 static struct i915_request * 1468 __i915_request_add_to_timeline(struct i915_request *rq) 1469 { 1470 struct intel_timeline *timeline = i915_request_timeline(rq); 1471 struct i915_request *prev; 1472 1473 /* 1474 * Dependency tracking and request ordering along the timeline 1475 * is special cased so that we can eliminate redundant ordering 1476 * operations while building the request (we know that the timeline 1477 * itself is ordered, and here we guarantee it). 1478 * 1479 * As we know we will need to emit tracking along the timeline, 1480 * we embed the hooks into our request struct -- at the cost of 1481 * having to have specialised no-allocation interfaces (which will 1482 * be beneficial elsewhere). 1483 * 1484 * A second benefit to open-coding i915_request_await_request is 1485 * that we can apply a slight variant of the rules specialised 1486 * for timelines that jump between engines (such as virtual engines). 1487 * If we consider the case of virtual engine, we must emit a dma-fence 1488 * to prevent scheduling of the second request until the first is 1489 * complete (to maximise our greedy late load balancing) and this 1490 * precludes optimising to use semaphores serialisation of a single 1491 * timeline across engines. 1492 */ 1493 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1494 &rq->fence)); 1495 if (prev && !i915_request_completed(prev)) { 1496 /* 1497 * The requests are supposed to be kept in order. However, 1498 * we need to be wary in case the timeline->last_request 1499 * is used as a barrier for external modification to this 1500 * context. 1501 */ 1502 GEM_BUG_ON(prev->context == rq->context && 1503 i915_seqno_passed(prev->fence.seqno, 1504 rq->fence.seqno)); 1505 1506 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)) 1507 i915_sw_fence_await_sw_fence(&rq->submit, 1508 &prev->submit, 1509 &rq->submitq); 1510 else 1511 __i915_sw_fence_await_dma_fence(&rq->submit, 1512 &prev->fence, 1513 &rq->dmaq); 1514 if (rq->engine->schedule) 1515 __i915_sched_node_add_dependency(&rq->sched, 1516 &prev->sched, 1517 &rq->dep, 1518 0); 1519 } 1520 1521 /* 1522 * Make sure that no request gazumped us - if it was allocated after 1523 * our i915_request_alloc() and called __i915_request_add() before 1524 * us, the timeline will hold its seqno which is later than ours. 1525 */ 1526 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1527 1528 return prev; 1529 } 1530 1531 /* 1532 * NB: This function is not allowed to fail. Doing so would mean the the 1533 * request is not being tracked for completion but the work itself is 1534 * going to happen on the hardware. This would be a Bad Thing(tm). 1535 */ 1536 struct i915_request *__i915_request_commit(struct i915_request *rq) 1537 { 1538 struct intel_engine_cs *engine = rq->engine; 1539 struct intel_ring *ring = rq->ring; 1540 u32 *cs; 1541 1542 RQ_TRACE(rq, "\n"); 1543 1544 /* 1545 * To ensure that this call will not fail, space for its emissions 1546 * should already have been reserved in the ring buffer. Let the ring 1547 * know that it is time to use that space up. 1548 */ 1549 GEM_BUG_ON(rq->reserved_space > ring->space); 1550 rq->reserved_space = 0; 1551 rq->emitted_jiffies = jiffies; 1552 1553 /* 1554 * Record the position of the start of the breadcrumb so that 1555 * should we detect the updated seqno part-way through the 1556 * GPU processing the request, we never over-estimate the 1557 * position of the ring's HEAD. 1558 */ 1559 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1560 GEM_BUG_ON(IS_ERR(cs)); 1561 rq->postfix = intel_ring_offset(rq, cs); 1562 1563 return __i915_request_add_to_timeline(rq); 1564 } 1565 1566 void __i915_request_queue(struct i915_request *rq, 1567 const struct i915_sched_attr *attr) 1568 { 1569 /* 1570 * Let the backend know a new request has arrived that may need 1571 * to adjust the existing execution schedule due to a high priority 1572 * request - i.e. we may want to preempt the current request in order 1573 * to run a high priority dependency chain *before* we can execute this 1574 * request. 1575 * 1576 * This is called before the request is ready to run so that we can 1577 * decide whether to preempt the entire chain so that it is ready to 1578 * run at the earliest possible convenience. 1579 */ 1580 if (attr && rq->engine->schedule) 1581 rq->engine->schedule(rq, attr); 1582 i915_sw_fence_commit(&rq->semaphore); 1583 i915_sw_fence_commit(&rq->submit); 1584 } 1585 1586 void i915_request_add(struct i915_request *rq) 1587 { 1588 struct intel_timeline * const tl = i915_request_timeline(rq); 1589 struct i915_sched_attr attr = {}; 1590 struct i915_gem_context *ctx; 1591 1592 lockdep_assert_held(&tl->mutex); 1593 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1594 1595 trace_i915_request_add(rq); 1596 __i915_request_commit(rq); 1597 1598 /* XXX placeholder for selftests */ 1599 rcu_read_lock(); 1600 ctx = rcu_dereference(rq->context->gem_context); 1601 if (ctx) 1602 attr = ctx->sched; 1603 rcu_read_unlock(); 1604 1605 __i915_request_queue(rq, &attr); 1606 1607 mutex_unlock(&tl->mutex); 1608 } 1609 1610 static unsigned long local_clock_ns(unsigned int *cpu) 1611 { 1612 unsigned long t; 1613 1614 /* 1615 * Cheaply and approximately convert from nanoseconds to microseconds. 1616 * The result and subsequent calculations are also defined in the same 1617 * approximate microseconds units. The principal source of timing 1618 * error here is from the simple truncation. 1619 * 1620 * Note that local_clock() is only defined wrt to the current CPU; 1621 * the comparisons are no longer valid if we switch CPUs. Instead of 1622 * blocking preemption for the entire busywait, we can detect the CPU 1623 * switch and use that as indicator of system load and a reason to 1624 * stop busywaiting, see busywait_stop(). 1625 */ 1626 *cpu = get_cpu(); 1627 t = local_clock(); 1628 put_cpu(); 1629 1630 return t; 1631 } 1632 1633 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1634 { 1635 unsigned int this_cpu; 1636 1637 if (time_after(local_clock_ns(&this_cpu), timeout)) 1638 return true; 1639 1640 return this_cpu != cpu; 1641 } 1642 1643 static bool __i915_spin_request(const struct i915_request * const rq, int state) 1644 { 1645 unsigned long timeout_ns; 1646 unsigned int cpu; 1647 1648 /* 1649 * Only wait for the request if we know it is likely to complete. 1650 * 1651 * We don't track the timestamps around requests, nor the average 1652 * request length, so we do not have a good indicator that this 1653 * request will complete within the timeout. What we do know is the 1654 * order in which requests are executed by the context and so we can 1655 * tell if the request has been started. If the request is not even 1656 * running yet, it is a fair assumption that it will not complete 1657 * within our relatively short timeout. 1658 */ 1659 if (!i915_request_is_running(rq)) 1660 return false; 1661 1662 /* 1663 * When waiting for high frequency requests, e.g. during synchronous 1664 * rendering split between the CPU and GPU, the finite amount of time 1665 * required to set up the irq and wait upon it limits the response 1666 * rate. By busywaiting on the request completion for a short while we 1667 * can service the high frequency waits as quick as possible. However, 1668 * if it is a slow request, we want to sleep as quickly as possible. 1669 * The tradeoff between waiting and sleeping is roughly the time it 1670 * takes to sleep on a request, on the order of a microsecond. 1671 */ 1672 1673 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1674 timeout_ns += local_clock_ns(&cpu); 1675 do { 1676 if (i915_request_completed(rq)) 1677 return true; 1678 1679 if (signal_pending_state(state, current)) 1680 break; 1681 1682 if (busywait_stop(timeout_ns, cpu)) 1683 break; 1684 1685 cpu_relax(); 1686 } while (!need_resched()); 1687 1688 return false; 1689 } 1690 1691 struct request_wait { 1692 struct dma_fence_cb cb; 1693 struct task_struct *tsk; 1694 }; 1695 1696 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1697 { 1698 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1699 1700 wake_up_process(wait->tsk); 1701 } 1702 1703 /** 1704 * i915_request_wait - wait until execution of request has finished 1705 * @rq: the request to wait upon 1706 * @flags: how to wait 1707 * @timeout: how long to wait in jiffies 1708 * 1709 * i915_request_wait() waits for the request to be completed, for a 1710 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1711 * unbounded wait). 1712 * 1713 * Returns the remaining time (in jiffies) if the request completed, which may 1714 * be zero or -ETIME if the request is unfinished after the timeout expires. 1715 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1716 * pending before the request completes. 1717 */ 1718 long i915_request_wait(struct i915_request *rq, 1719 unsigned int flags, 1720 long timeout) 1721 { 1722 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1723 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1724 struct request_wait wait; 1725 1726 might_sleep(); 1727 GEM_BUG_ON(timeout < 0); 1728 1729 if (dma_fence_is_signaled(&rq->fence)) 1730 return timeout; 1731 1732 if (!timeout) 1733 return -ETIME; 1734 1735 trace_i915_request_wait_begin(rq, flags); 1736 1737 /* 1738 * We must never wait on the GPU while holding a lock as we 1739 * may need to perform a GPU reset. So while we don't need to 1740 * serialise wait/reset with an explicit lock, we do want 1741 * lockdep to detect potential dependency cycles. 1742 */ 1743 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1744 1745 /* 1746 * Optimistic spin before touching IRQs. 1747 * 1748 * We may use a rather large value here to offset the penalty of 1749 * switching away from the active task. Frequently, the client will 1750 * wait upon an old swapbuffer to throttle itself to remain within a 1751 * frame of the gpu. If the client is running in lockstep with the gpu, 1752 * then it should not be waiting long at all, and a sleep now will incur 1753 * extra scheduler latency in producing the next frame. To try to 1754 * avoid adding the cost of enabling/disabling the interrupt to the 1755 * short wait, we first spin to see if the request would have completed 1756 * in the time taken to setup the interrupt. 1757 * 1758 * We need upto 5us to enable the irq, and upto 20us to hide the 1759 * scheduler latency of a context switch, ignoring the secondary 1760 * impacts from a context switch such as cache eviction. 1761 * 1762 * The scheme used for low-latency IO is called "hybrid interrupt 1763 * polling". The suggestion there is to sleep until just before you 1764 * expect to be woken by the device interrupt and then poll for its 1765 * completion. That requires having a good predictor for the request 1766 * duration, which we currently lack. 1767 */ 1768 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) && 1769 __i915_spin_request(rq, state)) { 1770 dma_fence_signal(&rq->fence); 1771 goto out; 1772 } 1773 1774 /* 1775 * This client is about to stall waiting for the GPU. In many cases 1776 * this is undesirable and limits the throughput of the system, as 1777 * many clients cannot continue processing user input/output whilst 1778 * blocked. RPS autotuning may take tens of milliseconds to respond 1779 * to the GPU load and thus incurs additional latency for the client. 1780 * We can circumvent that by promoting the GPU frequency to maximum 1781 * before we sleep. This makes the GPU throttle up much more quickly 1782 * (good for benchmarks and user experience, e.g. window animations), 1783 * but at a cost of spending more power processing the workload 1784 * (bad for battery). 1785 */ 1786 if (flags & I915_WAIT_PRIORITY) { 1787 if (!i915_request_started(rq) && 1788 INTEL_GEN(rq->engine->i915) >= 6) 1789 intel_rps_boost(rq); 1790 } 1791 1792 wait.tsk = current; 1793 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1794 goto out; 1795 1796 for (;;) { 1797 set_current_state(state); 1798 1799 if (i915_request_completed(rq)) { 1800 dma_fence_signal(&rq->fence); 1801 break; 1802 } 1803 1804 intel_engine_flush_submission(rq->engine); 1805 1806 if (signal_pending_state(state, current)) { 1807 timeout = -ERESTARTSYS; 1808 break; 1809 } 1810 1811 if (!timeout) { 1812 timeout = -ETIME; 1813 break; 1814 } 1815 1816 timeout = io_schedule_timeout(timeout); 1817 } 1818 __set_current_state(TASK_RUNNING); 1819 1820 dma_fence_remove_callback(&rq->fence, &wait.cb); 1821 1822 out: 1823 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1824 trace_i915_request_wait_end(rq); 1825 return timeout; 1826 } 1827 1828 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1829 #include "selftests/mock_request.c" 1830 #include "selftests/i915_request.c" 1831 #endif 1832 1833 static void i915_global_request_shrink(void) 1834 { 1835 kmem_cache_shrink(global.slab_execute_cbs); 1836 kmem_cache_shrink(global.slab_requests); 1837 } 1838 1839 static void i915_global_request_exit(void) 1840 { 1841 kmem_cache_destroy(global.slab_execute_cbs); 1842 kmem_cache_destroy(global.slab_requests); 1843 } 1844 1845 static struct i915_global_request global = { { 1846 .shrink = i915_global_request_shrink, 1847 .exit = i915_global_request_exit, 1848 } }; 1849 1850 int __init i915_global_request_init(void) 1851 { 1852 global.slab_requests = 1853 kmem_cache_create("i915_request", 1854 sizeof(struct i915_request), 1855 __alignof__(struct i915_request), 1856 SLAB_HWCACHE_ALIGN | 1857 SLAB_RECLAIM_ACCOUNT | 1858 SLAB_TYPESAFE_BY_RCU, 1859 __i915_request_ctor); 1860 if (!global.slab_requests) 1861 return -ENOMEM; 1862 1863 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1864 SLAB_HWCACHE_ALIGN | 1865 SLAB_RECLAIM_ACCOUNT | 1866 SLAB_TYPESAFE_BY_RCU); 1867 if (!global.slab_execute_cbs) 1868 goto err_requests; 1869 1870 i915_global_register(&global.base); 1871 return 0; 1872 1873 err_requests: 1874 kmem_cache_destroy(global.slab_requests); 1875 return -ENOMEM; 1876 } 1877