1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 
33 #include "gem/i915_gem_context.h"
34 #include "gt/intel_context.h"
35 #include "gt/intel_ring.h"
36 #include "gt/intel_rps.h"
37 
38 #include "i915_active.h"
39 #include "i915_drv.h"
40 #include "i915_globals.h"
41 #include "i915_trace.h"
42 #include "intel_pm.h"
43 
44 struct execute_cb {
45 	struct irq_work work;
46 	struct i915_sw_fence *fence;
47 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48 	struct i915_request *signal;
49 };
50 
51 static struct i915_global_request {
52 	struct i915_global base;
53 	struct kmem_cache *slab_requests;
54 	struct kmem_cache *slab_execute_cbs;
55 } global;
56 
57 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
58 {
59 	return dev_name(to_request(fence)->engine->i915->drm.dev);
60 }
61 
62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
63 {
64 	const struct i915_gem_context *ctx;
65 
66 	/*
67 	 * The timeline struct (as part of the ppgtt underneath a context)
68 	 * may be freed when the request is no longer in use by the GPU.
69 	 * We could extend the life of a context to beyond that of all
70 	 * fences, possibly keeping the hw resource around indefinitely,
71 	 * or we just give them a false name. Since
72 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
73 	 * lie seems justifiable.
74 	 */
75 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
76 		return "signaled";
77 
78 	ctx = i915_request_gem_context(to_request(fence));
79 	if (!ctx)
80 		return "[" DRIVER_NAME "]";
81 
82 	return ctx->name;
83 }
84 
85 static bool i915_fence_signaled(struct dma_fence *fence)
86 {
87 	return i915_request_completed(to_request(fence));
88 }
89 
90 static bool i915_fence_enable_signaling(struct dma_fence *fence)
91 {
92 	return i915_request_enable_breadcrumb(to_request(fence));
93 }
94 
95 static signed long i915_fence_wait(struct dma_fence *fence,
96 				   bool interruptible,
97 				   signed long timeout)
98 {
99 	return i915_request_wait(to_request(fence),
100 				 interruptible | I915_WAIT_PRIORITY,
101 				 timeout);
102 }
103 
104 struct kmem_cache *i915_request_slab_cache(void)
105 {
106 	return global.slab_requests;
107 }
108 
109 static void i915_fence_release(struct dma_fence *fence)
110 {
111 	struct i915_request *rq = to_request(fence);
112 
113 	/*
114 	 * The request is put onto a RCU freelist (i.e. the address
115 	 * is immediately reused), mark the fences as being freed now.
116 	 * Otherwise the debugobjects for the fences are only marked as
117 	 * freed when the slab cache itself is freed, and so we would get
118 	 * caught trying to reuse dead objects.
119 	 */
120 	i915_sw_fence_fini(&rq->submit);
121 	i915_sw_fence_fini(&rq->semaphore);
122 
123 	/*
124 	 * Keep one request on each engine for reserved use under mempressure
125 	 *
126 	 * We do not hold a reference to the engine here and so have to be
127 	 * very careful in what rq->engine we poke. The virtual engine is
128 	 * referenced via the rq->context and we released that ref during
129 	 * i915_request_retire(), ergo we must not dereference a virtual
130 	 * engine here. Not that we would want to, as the only consumer of
131 	 * the reserved engine->request_pool is the power management parking,
132 	 * which must-not-fail, and that is only run on the physical engines.
133 	 *
134 	 * Since the request must have been executed to be have completed,
135 	 * we know that it will have been processed by the HW and will
136 	 * not be unsubmitted again, so rq->engine and rq->execution_mask
137 	 * at this point is stable. rq->execution_mask will be a single
138 	 * bit if the last and _only_ engine it could execution on was a
139 	 * physical engine, if it's multiple bits then it started on and
140 	 * could still be on a virtual engine. Thus if the mask is not a
141 	 * power-of-two we assume that rq->engine may still be a virtual
142 	 * engine and so a dangling invalid pointer that we cannot dereference
143 	 *
144 	 * For example, consider the flow of a bonded request through a virtual
145 	 * engine. The request is created with a wide engine mask (all engines
146 	 * that we might execute on). On processing the bond, the request mask
147 	 * is reduced to one or more engines. If the request is subsequently
148 	 * bound to a single engine, it will then be constrained to only
149 	 * execute on that engine and never returned to the virtual engine
150 	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
151 	 * know that if the rq->execution_mask is a single bit, rq->engine
152 	 * can be a physical engine with the exact corresponding mask.
153 	 */
154 	if (is_power_of_2(rq->execution_mask) &&
155 	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
156 		return;
157 
158 	kmem_cache_free(global.slab_requests, rq);
159 }
160 
161 const struct dma_fence_ops i915_fence_ops = {
162 	.get_driver_name = i915_fence_get_driver_name,
163 	.get_timeline_name = i915_fence_get_timeline_name,
164 	.enable_signaling = i915_fence_enable_signaling,
165 	.signaled = i915_fence_signaled,
166 	.wait = i915_fence_wait,
167 	.release = i915_fence_release,
168 };
169 
170 static void irq_execute_cb(struct irq_work *wrk)
171 {
172 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
173 
174 	i915_sw_fence_complete(cb->fence);
175 	kmem_cache_free(global.slab_execute_cbs, cb);
176 }
177 
178 static void irq_execute_cb_hook(struct irq_work *wrk)
179 {
180 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
181 
182 	cb->hook(container_of(cb->fence, struct i915_request, submit),
183 		 &cb->signal->fence);
184 	i915_request_put(cb->signal);
185 
186 	irq_execute_cb(wrk);
187 }
188 
189 static void __notify_execute_cb(struct i915_request *rq)
190 {
191 	struct execute_cb *cb, *cn;
192 
193 	lockdep_assert_held(&rq->lock);
194 
195 	GEM_BUG_ON(!i915_request_is_active(rq));
196 	if (llist_empty(&rq->execute_cb))
197 		return;
198 
199 	llist_for_each_entry_safe(cb, cn, rq->execute_cb.first, work.llnode)
200 		irq_work_queue(&cb->work);
201 
202 	/*
203 	 * XXX Rollback on __i915_request_unsubmit()
204 	 *
205 	 * In the future, perhaps when we have an active time-slicing scheduler,
206 	 * it will be interesting to unsubmit parallel execution and remove
207 	 * busywaits from the GPU until their master is restarted. This is
208 	 * quite hairy, we have to carefully rollback the fence and do a
209 	 * preempt-to-idle cycle on the target engine, all the while the
210 	 * master execute_cb may refire.
211 	 */
212 	init_llist_head(&rq->execute_cb);
213 }
214 
215 static inline void
216 remove_from_client(struct i915_request *request)
217 {
218 	struct drm_i915_file_private *file_priv;
219 
220 	if (!READ_ONCE(request->file_priv))
221 		return;
222 
223 	rcu_read_lock();
224 	file_priv = xchg(&request->file_priv, NULL);
225 	if (file_priv) {
226 		spin_lock(&file_priv->mm.lock);
227 		list_del(&request->client_link);
228 		spin_unlock(&file_priv->mm.lock);
229 	}
230 	rcu_read_unlock();
231 }
232 
233 static void free_capture_list(struct i915_request *request)
234 {
235 	struct i915_capture_list *capture;
236 
237 	capture = fetch_and_zero(&request->capture_list);
238 	while (capture) {
239 		struct i915_capture_list *next = capture->next;
240 
241 		kfree(capture);
242 		capture = next;
243 	}
244 }
245 
246 static void __i915_request_fill(struct i915_request *rq, u8 val)
247 {
248 	void *vaddr = rq->ring->vaddr;
249 	u32 head;
250 
251 	head = rq->infix;
252 	if (rq->postfix < head) {
253 		memset(vaddr + head, val, rq->ring->size - head);
254 		head = 0;
255 	}
256 	memset(vaddr + head, val, rq->postfix - head);
257 }
258 
259 static void remove_from_engine(struct i915_request *rq)
260 {
261 	struct intel_engine_cs *engine, *locked;
262 
263 	/*
264 	 * Virtual engines complicate acquiring the engine timeline lock,
265 	 * as their rq->engine pointer is not stable until under that
266 	 * engine lock. The simple ploy we use is to take the lock then
267 	 * check that the rq still belongs to the newly locked engine.
268 	 */
269 	locked = READ_ONCE(rq->engine);
270 	spin_lock_irq(&locked->active.lock);
271 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
272 		spin_unlock(&locked->active.lock);
273 		spin_lock(&engine->active.lock);
274 		locked = engine;
275 	}
276 	list_del_init(&rq->sched.link);
277 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
278 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
279 	spin_unlock_irq(&locked->active.lock);
280 }
281 
282 bool i915_request_retire(struct i915_request *rq)
283 {
284 	if (!i915_request_completed(rq))
285 		return false;
286 
287 	RQ_TRACE(rq, "\n");
288 
289 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
290 	trace_i915_request_retire(rq);
291 
292 	/*
293 	 * We know the GPU must have read the request to have
294 	 * sent us the seqno + interrupt, so use the position
295 	 * of tail of the request to update the last known position
296 	 * of the GPU head.
297 	 *
298 	 * Note this requires that we are always called in request
299 	 * completion order.
300 	 */
301 	GEM_BUG_ON(!list_is_first(&rq->link,
302 				  &i915_request_timeline(rq)->requests));
303 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
304 		/* Poison before we release our space in the ring */
305 		__i915_request_fill(rq, POISON_FREE);
306 	rq->ring->head = rq->postfix;
307 
308 	/*
309 	 * We only loosely track inflight requests across preemption,
310 	 * and so we may find ourselves attempting to retire a _completed_
311 	 * request that we have removed from the HW and put back on a run
312 	 * queue.
313 	 */
314 	remove_from_engine(rq);
315 
316 	spin_lock_irq(&rq->lock);
317 	i915_request_mark_complete(rq);
318 	if (!i915_request_signaled(rq))
319 		dma_fence_signal_locked(&rq->fence);
320 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
321 		i915_request_cancel_breadcrumb(rq);
322 	if (i915_request_has_waitboost(rq)) {
323 		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
324 		atomic_dec(&rq->engine->gt->rps.num_waiters);
325 	}
326 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
327 		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
328 		__notify_execute_cb(rq);
329 	}
330 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
331 	spin_unlock_irq(&rq->lock);
332 
333 	remove_from_client(rq);
334 	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
335 
336 	intel_context_exit(rq->context);
337 	intel_context_unpin(rq->context);
338 
339 	free_capture_list(rq);
340 	i915_sched_node_fini(&rq->sched);
341 	i915_request_put(rq);
342 
343 	return true;
344 }
345 
346 void i915_request_retire_upto(struct i915_request *rq)
347 {
348 	struct intel_timeline * const tl = i915_request_timeline(rq);
349 	struct i915_request *tmp;
350 
351 	RQ_TRACE(rq, "\n");
352 
353 	GEM_BUG_ON(!i915_request_completed(rq));
354 
355 	do {
356 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
357 	} while (i915_request_retire(tmp) && tmp != rq);
358 }
359 
360 static void __llist_add(struct llist_node *node, struct llist_head *head)
361 {
362 	node->next = head->first;
363 	head->first = node;
364 }
365 
366 static struct i915_request * const *
367 __engine_active(struct intel_engine_cs *engine)
368 {
369 	return READ_ONCE(engine->execlists.active);
370 }
371 
372 static bool __request_in_flight(const struct i915_request *signal)
373 {
374 	struct i915_request * const *port, *rq;
375 	bool inflight = false;
376 
377 	if (!i915_request_is_ready(signal))
378 		return false;
379 
380 	/*
381 	 * Even if we have unwound the request, it may still be on
382 	 * the GPU (preempt-to-busy). If that request is inside an
383 	 * unpreemptible critical section, it will not be removed. Some
384 	 * GPU functions may even be stuck waiting for the paired request
385 	 * (__await_execution) to be submitted and cannot be preempted
386 	 * until the bond is executing.
387 	 *
388 	 * As we know that there are always preemption points between
389 	 * requests, we know that only the currently executing request
390 	 * may be still active even though we have cleared the flag.
391 	 * However, we can't rely on our tracking of ELSP[0] to known
392 	 * which request is currently active and so maybe stuck, as
393 	 * the tracking maybe an event behind. Instead assume that
394 	 * if the context is still inflight, then it is still active
395 	 * even if the active flag has been cleared.
396 	 */
397 	if (!intel_context_inflight(signal->context))
398 		return false;
399 
400 	rcu_read_lock();
401 	for (port = __engine_active(signal->engine); (rq = *port); port++) {
402 		if (rq->context == signal->context) {
403 			inflight = i915_seqno_passed(rq->fence.seqno,
404 						     signal->fence.seqno);
405 			break;
406 		}
407 	}
408 	rcu_read_unlock();
409 
410 	return inflight;
411 }
412 
413 static int
414 __await_execution(struct i915_request *rq,
415 		  struct i915_request *signal,
416 		  void (*hook)(struct i915_request *rq,
417 			       struct dma_fence *signal),
418 		  gfp_t gfp)
419 {
420 	struct execute_cb *cb;
421 
422 	if (i915_request_is_active(signal)) {
423 		if (hook)
424 			hook(rq, &signal->fence);
425 		return 0;
426 	}
427 
428 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
429 	if (!cb)
430 		return -ENOMEM;
431 
432 	cb->fence = &rq->submit;
433 	i915_sw_fence_await(cb->fence);
434 	init_irq_work(&cb->work, irq_execute_cb);
435 
436 	if (hook) {
437 		cb->hook = hook;
438 		cb->signal = i915_request_get(signal);
439 		cb->work.func = irq_execute_cb_hook;
440 	}
441 
442 	spin_lock_irq(&signal->lock);
443 	if (i915_request_is_active(signal) || __request_in_flight(signal)) {
444 		if (hook) {
445 			hook(rq, &signal->fence);
446 			i915_request_put(signal);
447 		}
448 		i915_sw_fence_complete(cb->fence);
449 		kmem_cache_free(global.slab_execute_cbs, cb);
450 	} else {
451 		__llist_add(&cb->work.llnode, &signal->execute_cb);
452 	}
453 	spin_unlock_irq(&signal->lock);
454 
455 	return 0;
456 }
457 
458 static bool fatal_error(int error)
459 {
460 	switch (error) {
461 	case 0: /* not an error! */
462 	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
463 	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
464 		return false;
465 	default:
466 		return true;
467 	}
468 }
469 
470 void __i915_request_skip(struct i915_request *rq)
471 {
472 	GEM_BUG_ON(!fatal_error(rq->fence.error));
473 
474 	if (rq->infix == rq->postfix)
475 		return;
476 
477 	/*
478 	 * As this request likely depends on state from the lost
479 	 * context, clear out all the user operations leaving the
480 	 * breadcrumb at the end (so we get the fence notifications).
481 	 */
482 	__i915_request_fill(rq, 0);
483 	rq->infix = rq->postfix;
484 }
485 
486 void i915_request_set_error_once(struct i915_request *rq, int error)
487 {
488 	int old;
489 
490 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
491 
492 	if (i915_request_signaled(rq))
493 		return;
494 
495 	old = READ_ONCE(rq->fence.error);
496 	do {
497 		if (fatal_error(old))
498 			return;
499 	} while (!try_cmpxchg(&rq->fence.error, &old, error));
500 }
501 
502 bool __i915_request_submit(struct i915_request *request)
503 {
504 	struct intel_engine_cs *engine = request->engine;
505 	bool result = false;
506 
507 	RQ_TRACE(request, "\n");
508 
509 	GEM_BUG_ON(!irqs_disabled());
510 	lockdep_assert_held(&engine->active.lock);
511 
512 	/*
513 	 * With the advent of preempt-to-busy, we frequently encounter
514 	 * requests that we have unsubmitted from HW, but left running
515 	 * until the next ack and so have completed in the meantime. On
516 	 * resubmission of that completed request, we can skip
517 	 * updating the payload, and execlists can even skip submitting
518 	 * the request.
519 	 *
520 	 * We must remove the request from the caller's priority queue,
521 	 * and the caller must only call us when the request is in their
522 	 * priority queue, under the active.lock. This ensures that the
523 	 * request has *not* yet been retired and we can safely move
524 	 * the request into the engine->active.list where it will be
525 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
526 	 * request, this would be a horrible use-after-free.)
527 	 */
528 	if (i915_request_completed(request))
529 		goto xfer;
530 
531 	if (unlikely(intel_context_is_banned(request->context)))
532 		i915_request_set_error_once(request, -EIO);
533 	if (unlikely(fatal_error(request->fence.error)))
534 		__i915_request_skip(request);
535 
536 	/*
537 	 * Are we using semaphores when the gpu is already saturated?
538 	 *
539 	 * Using semaphores incurs a cost in having the GPU poll a
540 	 * memory location, busywaiting for it to change. The continual
541 	 * memory reads can have a noticeable impact on the rest of the
542 	 * system with the extra bus traffic, stalling the cpu as it too
543 	 * tries to access memory across the bus (perf stat -e bus-cycles).
544 	 *
545 	 * If we installed a semaphore on this request and we only submit
546 	 * the request after the signaler completed, that indicates the
547 	 * system is overloaded and using semaphores at this time only
548 	 * increases the amount of work we are doing. If so, we disable
549 	 * further use of semaphores until we are idle again, whence we
550 	 * optimistically try again.
551 	 */
552 	if (request->sched.semaphores &&
553 	    i915_sw_fence_signaled(&request->semaphore))
554 		engine->saturated |= request->sched.semaphores;
555 
556 	engine->emit_fini_breadcrumb(request,
557 				     request->ring->vaddr + request->postfix);
558 
559 	trace_i915_request_execute(request);
560 	engine->serial++;
561 	result = true;
562 
563 xfer:
564 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
565 		list_move_tail(&request->sched.link, &engine->active.requests);
566 		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
567 	}
568 
569 	/* We may be recursing from the signal callback of another i915 fence */
570 	if (!i915_request_signaled(request)) {
571 		spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
572 
573 		__notify_execute_cb(request);
574 		if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
575 			     &request->fence.flags) &&
576 		    !i915_request_enable_breadcrumb(request))
577 			intel_engine_signal_breadcrumbs(engine);
578 
579 		spin_unlock(&request->lock);
580 		GEM_BUG_ON(!llist_empty(&request->execute_cb));
581 	}
582 
583 	return result;
584 }
585 
586 void i915_request_submit(struct i915_request *request)
587 {
588 	struct intel_engine_cs *engine = request->engine;
589 	unsigned long flags;
590 
591 	/* Will be called from irq-context when using foreign fences. */
592 	spin_lock_irqsave(&engine->active.lock, flags);
593 
594 	__i915_request_submit(request);
595 
596 	spin_unlock_irqrestore(&engine->active.lock, flags);
597 }
598 
599 void __i915_request_unsubmit(struct i915_request *request)
600 {
601 	struct intel_engine_cs *engine = request->engine;
602 
603 	RQ_TRACE(request, "\n");
604 
605 	GEM_BUG_ON(!irqs_disabled());
606 	lockdep_assert_held(&engine->active.lock);
607 
608 	/*
609 	 * Only unwind in reverse order, required so that the per-context list
610 	 * is kept in seqno/ring order.
611 	 */
612 
613 	/* We may be recursing from the signal callback of another i915 fence */
614 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
615 
616 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
617 		i915_request_cancel_breadcrumb(request);
618 
619 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
620 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
621 
622 	spin_unlock(&request->lock);
623 
624 	/* We've already spun, don't charge on resubmitting. */
625 	if (request->sched.semaphores && i915_request_started(request))
626 		request->sched.semaphores = 0;
627 
628 	/*
629 	 * We don't need to wake_up any waiters on request->execute, they
630 	 * will get woken by any other event or us re-adding this request
631 	 * to the engine timeline (__i915_request_submit()). The waiters
632 	 * should be quite adapt at finding that the request now has a new
633 	 * global_seqno to the one they went to sleep on.
634 	 */
635 }
636 
637 void i915_request_unsubmit(struct i915_request *request)
638 {
639 	struct intel_engine_cs *engine = request->engine;
640 	unsigned long flags;
641 
642 	/* Will be called from irq-context when using foreign fences. */
643 	spin_lock_irqsave(&engine->active.lock, flags);
644 
645 	__i915_request_unsubmit(request);
646 
647 	spin_unlock_irqrestore(&engine->active.lock, flags);
648 }
649 
650 static int __i915_sw_fence_call
651 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
652 {
653 	struct i915_request *request =
654 		container_of(fence, typeof(*request), submit);
655 
656 	switch (state) {
657 	case FENCE_COMPLETE:
658 		trace_i915_request_submit(request);
659 
660 		if (unlikely(fence->error))
661 			i915_request_set_error_once(request, fence->error);
662 
663 		/*
664 		 * We need to serialize use of the submit_request() callback
665 		 * with its hotplugging performed during an emergency
666 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
667 		 * critical section in order to force i915_gem_set_wedged() to
668 		 * wait until the submit_request() is completed before
669 		 * proceeding.
670 		 */
671 		rcu_read_lock();
672 		request->engine->submit_request(request);
673 		rcu_read_unlock();
674 		break;
675 
676 	case FENCE_FREE:
677 		i915_request_put(request);
678 		break;
679 	}
680 
681 	return NOTIFY_DONE;
682 }
683 
684 static int __i915_sw_fence_call
685 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
686 {
687 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
688 
689 	switch (state) {
690 	case FENCE_COMPLETE:
691 		break;
692 
693 	case FENCE_FREE:
694 		i915_request_put(rq);
695 		break;
696 	}
697 
698 	return NOTIFY_DONE;
699 }
700 
701 static void retire_requests(struct intel_timeline *tl)
702 {
703 	struct i915_request *rq, *rn;
704 
705 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
706 		if (!i915_request_retire(rq))
707 			break;
708 }
709 
710 static noinline struct i915_request *
711 request_alloc_slow(struct intel_timeline *tl,
712 		   struct i915_request **rsvd,
713 		   gfp_t gfp)
714 {
715 	struct i915_request *rq;
716 
717 	/* If we cannot wait, dip into our reserves */
718 	if (!gfpflags_allow_blocking(gfp)) {
719 		rq = xchg(rsvd, NULL);
720 		if (!rq) /* Use the normal failure path for one final WARN */
721 			goto out;
722 
723 		return rq;
724 	}
725 
726 	if (list_empty(&tl->requests))
727 		goto out;
728 
729 	/* Move our oldest request to the slab-cache (if not in use!) */
730 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
731 	i915_request_retire(rq);
732 
733 	rq = kmem_cache_alloc(global.slab_requests,
734 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
735 	if (rq)
736 		return rq;
737 
738 	/* Ratelimit ourselves to prevent oom from malicious clients */
739 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
740 	cond_synchronize_rcu(rq->rcustate);
741 
742 	/* Retire our old requests in the hope that we free some */
743 	retire_requests(tl);
744 
745 out:
746 	return kmem_cache_alloc(global.slab_requests, gfp);
747 }
748 
749 static void __i915_request_ctor(void *arg)
750 {
751 	struct i915_request *rq = arg;
752 
753 	spin_lock_init(&rq->lock);
754 	i915_sched_node_init(&rq->sched);
755 	i915_sw_fence_init(&rq->submit, submit_notify);
756 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
757 
758 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
759 
760 	rq->file_priv = NULL;
761 	rq->capture_list = NULL;
762 
763 	init_llist_head(&rq->execute_cb);
764 }
765 
766 struct i915_request *
767 __i915_request_create(struct intel_context *ce, gfp_t gfp)
768 {
769 	struct intel_timeline *tl = ce->timeline;
770 	struct i915_request *rq;
771 	u32 seqno;
772 	int ret;
773 
774 	might_sleep_if(gfpflags_allow_blocking(gfp));
775 
776 	/* Check that the caller provided an already pinned context */
777 	__intel_context_pin(ce);
778 
779 	/*
780 	 * Beware: Dragons be flying overhead.
781 	 *
782 	 * We use RCU to look up requests in flight. The lookups may
783 	 * race with the request being allocated from the slab freelist.
784 	 * That is the request we are writing to here, may be in the process
785 	 * of being read by __i915_active_request_get_rcu(). As such,
786 	 * we have to be very careful when overwriting the contents. During
787 	 * the RCU lookup, we change chase the request->engine pointer,
788 	 * read the request->global_seqno and increment the reference count.
789 	 *
790 	 * The reference count is incremented atomically. If it is zero,
791 	 * the lookup knows the request is unallocated and complete. Otherwise,
792 	 * it is either still in use, or has been reallocated and reset
793 	 * with dma_fence_init(). This increment is safe for release as we
794 	 * check that the request we have a reference to and matches the active
795 	 * request.
796 	 *
797 	 * Before we increment the refcount, we chase the request->engine
798 	 * pointer. We must not call kmem_cache_zalloc() or else we set
799 	 * that pointer to NULL and cause a crash during the lookup. If
800 	 * we see the request is completed (based on the value of the
801 	 * old engine and seqno), the lookup is complete and reports NULL.
802 	 * If we decide the request is not completed (new engine or seqno),
803 	 * then we grab a reference and double check that it is still the
804 	 * active request - which it won't be and restart the lookup.
805 	 *
806 	 * Do not use kmem_cache_zalloc() here!
807 	 */
808 	rq = kmem_cache_alloc(global.slab_requests,
809 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
810 	if (unlikely(!rq)) {
811 		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
812 		if (!rq) {
813 			ret = -ENOMEM;
814 			goto err_unreserve;
815 		}
816 	}
817 
818 	rq->context = ce;
819 	rq->engine = ce->engine;
820 	rq->ring = ce->ring;
821 	rq->execution_mask = ce->engine->mask;
822 
823 	kref_init(&rq->fence.refcount);
824 	rq->fence.flags = 0;
825 	rq->fence.error = 0;
826 	INIT_LIST_HEAD(&rq->fence.cb_list);
827 
828 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
829 	if (ret)
830 		goto err_free;
831 
832 	rq->fence.context = tl->fence_context;
833 	rq->fence.seqno = seqno;
834 
835 	RCU_INIT_POINTER(rq->timeline, tl);
836 	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
837 	rq->hwsp_seqno = tl->hwsp_seqno;
838 	GEM_BUG_ON(i915_request_completed(rq));
839 
840 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
841 
842 	/* We bump the ref for the fence chain */
843 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
844 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
845 
846 	i915_sched_node_reinit(&rq->sched);
847 
848 	/* No zalloc, everything must be cleared after use */
849 	rq->batch = NULL;
850 	GEM_BUG_ON(rq->file_priv);
851 	GEM_BUG_ON(rq->capture_list);
852 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
853 
854 	/*
855 	 * Reserve space in the ring buffer for all the commands required to
856 	 * eventually emit this request. This is to guarantee that the
857 	 * i915_request_add() call can't fail. Note that the reserve may need
858 	 * to be redone if the request is not actually submitted straight
859 	 * away, e.g. because a GPU scheduler has deferred it.
860 	 *
861 	 * Note that due to how we add reserved_space to intel_ring_begin()
862 	 * we need to double our request to ensure that if we need to wrap
863 	 * around inside i915_request_add() there is sufficient space at
864 	 * the beginning of the ring as well.
865 	 */
866 	rq->reserved_space =
867 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
868 
869 	/*
870 	 * Record the position of the start of the request so that
871 	 * should we detect the updated seqno part-way through the
872 	 * GPU processing the request, we never over-estimate the
873 	 * position of the head.
874 	 */
875 	rq->head = rq->ring->emit;
876 
877 	ret = rq->engine->request_alloc(rq);
878 	if (ret)
879 		goto err_unwind;
880 
881 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
882 
883 	intel_context_mark_active(ce);
884 	list_add_tail_rcu(&rq->link, &tl->requests);
885 
886 	return rq;
887 
888 err_unwind:
889 	ce->ring->emit = rq->head;
890 
891 	/* Make sure we didn't add ourselves to external state before freeing */
892 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
893 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
894 
895 err_free:
896 	kmem_cache_free(global.slab_requests, rq);
897 err_unreserve:
898 	intel_context_unpin(ce);
899 	return ERR_PTR(ret);
900 }
901 
902 struct i915_request *
903 i915_request_create(struct intel_context *ce)
904 {
905 	struct i915_request *rq;
906 	struct intel_timeline *tl;
907 
908 	tl = intel_context_timeline_lock(ce);
909 	if (IS_ERR(tl))
910 		return ERR_CAST(tl);
911 
912 	/* Move our oldest request to the slab-cache (if not in use!) */
913 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
914 	if (!list_is_last(&rq->link, &tl->requests))
915 		i915_request_retire(rq);
916 
917 	intel_context_enter(ce);
918 	rq = __i915_request_create(ce, GFP_KERNEL);
919 	intel_context_exit(ce); /* active reference transferred to request */
920 	if (IS_ERR(rq))
921 		goto err_unlock;
922 
923 	/* Check that we do not interrupt ourselves with a new request */
924 	rq->cookie = lockdep_pin_lock(&tl->mutex);
925 
926 	return rq;
927 
928 err_unlock:
929 	intel_context_timeline_unlock(tl);
930 	return rq;
931 }
932 
933 static int
934 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
935 {
936 	struct dma_fence *fence;
937 	int err;
938 
939 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
940 		return 0;
941 
942 	if (i915_request_started(signal))
943 		return 0;
944 
945 	fence = NULL;
946 	rcu_read_lock();
947 	spin_lock_irq(&signal->lock);
948 	do {
949 		struct list_head *pos = READ_ONCE(signal->link.prev);
950 		struct i915_request *prev;
951 
952 		/* Confirm signal has not been retired, the link is valid */
953 		if (unlikely(i915_request_started(signal)))
954 			break;
955 
956 		/* Is signal the earliest request on its timeline? */
957 		if (pos == &rcu_dereference(signal->timeline)->requests)
958 			break;
959 
960 		/*
961 		 * Peek at the request before us in the timeline. That
962 		 * request will only be valid before it is retired, so
963 		 * after acquiring a reference to it, confirm that it is
964 		 * still part of the signaler's timeline.
965 		 */
966 		prev = list_entry(pos, typeof(*prev), link);
967 		if (!i915_request_get_rcu(prev))
968 			break;
969 
970 		/* After the strong barrier, confirm prev is still attached */
971 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
972 			i915_request_put(prev);
973 			break;
974 		}
975 
976 		fence = &prev->fence;
977 	} while (0);
978 	spin_unlock_irq(&signal->lock);
979 	rcu_read_unlock();
980 	if (!fence)
981 		return 0;
982 
983 	err = 0;
984 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
985 		err = i915_sw_fence_await_dma_fence(&rq->submit,
986 						    fence, 0,
987 						    I915_FENCE_GFP);
988 	dma_fence_put(fence);
989 
990 	return err;
991 }
992 
993 static intel_engine_mask_t
994 already_busywaiting(struct i915_request *rq)
995 {
996 	/*
997 	 * Polling a semaphore causes bus traffic, delaying other users of
998 	 * both the GPU and CPU. We want to limit the impact on others,
999 	 * while taking advantage of early submission to reduce GPU
1000 	 * latency. Therefore we restrict ourselves to not using more
1001 	 * than one semaphore from each source, and not using a semaphore
1002 	 * if we have detected the engine is saturated (i.e. would not be
1003 	 * submitted early and cause bus traffic reading an already passed
1004 	 * semaphore).
1005 	 *
1006 	 * See the are-we-too-late? check in __i915_request_submit().
1007 	 */
1008 	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1009 }
1010 
1011 static int
1012 __emit_semaphore_wait(struct i915_request *to,
1013 		      struct i915_request *from,
1014 		      u32 seqno)
1015 {
1016 	const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1017 	u32 hwsp_offset;
1018 	int len, err;
1019 	u32 *cs;
1020 
1021 	GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1022 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1023 
1024 	/* We need to pin the signaler's HWSP until we are finished reading. */
1025 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1026 	if (err)
1027 		return err;
1028 
1029 	len = 4;
1030 	if (has_token)
1031 		len += 2;
1032 
1033 	cs = intel_ring_begin(to, len);
1034 	if (IS_ERR(cs))
1035 		return PTR_ERR(cs);
1036 
1037 	/*
1038 	 * Using greater-than-or-equal here means we have to worry
1039 	 * about seqno wraparound. To side step that issue, we swap
1040 	 * the timeline HWSP upon wrapping, so that everyone listening
1041 	 * for the old (pre-wrap) values do not see the much smaller
1042 	 * (post-wrap) values than they were expecting (and so wait
1043 	 * forever).
1044 	 */
1045 	*cs++ = (MI_SEMAPHORE_WAIT |
1046 		 MI_SEMAPHORE_GLOBAL_GTT |
1047 		 MI_SEMAPHORE_POLL |
1048 		 MI_SEMAPHORE_SAD_GTE_SDD) +
1049 		has_token;
1050 	*cs++ = seqno;
1051 	*cs++ = hwsp_offset;
1052 	*cs++ = 0;
1053 	if (has_token) {
1054 		*cs++ = 0;
1055 		*cs++ = MI_NOOP;
1056 	}
1057 
1058 	intel_ring_advance(to, cs);
1059 	return 0;
1060 }
1061 
1062 static int
1063 emit_semaphore_wait(struct i915_request *to,
1064 		    struct i915_request *from,
1065 		    gfp_t gfp)
1066 {
1067 	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1068 	struct i915_sw_fence *wait = &to->submit;
1069 
1070 	if (!intel_context_use_semaphores(to->context))
1071 		goto await_fence;
1072 
1073 	if (i915_request_has_initial_breadcrumb(to))
1074 		goto await_fence;
1075 
1076 	if (!rcu_access_pointer(from->hwsp_cacheline))
1077 		goto await_fence;
1078 
1079 	/*
1080 	 * If this or its dependents are waiting on an external fence
1081 	 * that may fail catastrophically, then we want to avoid using
1082 	 * sempahores as they bypass the fence signaling metadata, and we
1083 	 * lose the fence->error propagation.
1084 	 */
1085 	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1086 		goto await_fence;
1087 
1088 	/* Just emit the first semaphore we see as request space is limited. */
1089 	if (already_busywaiting(to) & mask)
1090 		goto await_fence;
1091 
1092 	if (i915_request_await_start(to, from) < 0)
1093 		goto await_fence;
1094 
1095 	/* Only submit our spinner after the signaler is running! */
1096 	if (__await_execution(to, from, NULL, gfp))
1097 		goto await_fence;
1098 
1099 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1100 		goto await_fence;
1101 
1102 	to->sched.semaphores |= mask;
1103 	wait = &to->semaphore;
1104 
1105 await_fence:
1106 	return i915_sw_fence_await_dma_fence(wait,
1107 					     &from->fence, 0,
1108 					     I915_FENCE_GFP);
1109 }
1110 
1111 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1112 					  struct dma_fence *fence)
1113 {
1114 	return __intel_timeline_sync_is_later(tl,
1115 					      fence->context,
1116 					      fence->seqno - 1);
1117 }
1118 
1119 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1120 					 const struct dma_fence *fence)
1121 {
1122 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1123 }
1124 
1125 static int
1126 __i915_request_await_execution(struct i915_request *to,
1127 			       struct i915_request *from,
1128 			       void (*hook)(struct i915_request *rq,
1129 					    struct dma_fence *signal))
1130 {
1131 	int err;
1132 
1133 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1134 
1135 	/* Submit both requests at the same time */
1136 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1137 	if (err)
1138 		return err;
1139 
1140 	/* Squash repeated depenendices to the same timelines */
1141 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1142 					  &from->fence))
1143 		return 0;
1144 
1145 	/*
1146 	 * Wait until the start of this request.
1147 	 *
1148 	 * The execution cb fires when we submit the request to HW. But in
1149 	 * many cases this may be long before the request itself is ready to
1150 	 * run (consider that we submit 2 requests for the same context, where
1151 	 * the request of interest is behind an indefinite spinner). So we hook
1152 	 * up to both to reduce our queues and keep the execution lag minimised
1153 	 * in the worst case, though we hope that the await_start is elided.
1154 	 */
1155 	err = i915_request_await_start(to, from);
1156 	if (err < 0)
1157 		return err;
1158 
1159 	/*
1160 	 * Ensure both start together [after all semaphores in signal]
1161 	 *
1162 	 * Now that we are queued to the HW at roughly the same time (thanks
1163 	 * to the execute cb) and are ready to run at roughly the same time
1164 	 * (thanks to the await start), our signaler may still be indefinitely
1165 	 * delayed by waiting on a semaphore from a remote engine. If our
1166 	 * signaler depends on a semaphore, so indirectly do we, and we do not
1167 	 * want to start our payload until our signaler also starts theirs.
1168 	 * So we wait.
1169 	 *
1170 	 * However, there is also a second condition for which we need to wait
1171 	 * for the precise start of the signaler. Consider that the signaler
1172 	 * was submitted in a chain of requests following another context
1173 	 * (with just an ordinary intra-engine fence dependency between the
1174 	 * two). In this case the signaler is queued to HW, but not for
1175 	 * immediate execution, and so we must wait until it reaches the
1176 	 * active slot.
1177 	 */
1178 	if (intel_engine_has_semaphores(to->engine) &&
1179 	    !i915_request_has_initial_breadcrumb(to)) {
1180 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1181 		if (err < 0)
1182 			return err;
1183 	}
1184 
1185 	/* Couple the dependency tree for PI on this exposed to->fence */
1186 	if (to->engine->schedule) {
1187 		err = i915_sched_node_add_dependency(&to->sched,
1188 						     &from->sched,
1189 						     I915_DEPENDENCY_WEAK);
1190 		if (err < 0)
1191 			return err;
1192 	}
1193 
1194 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1195 					     &from->fence);
1196 }
1197 
1198 static void mark_external(struct i915_request *rq)
1199 {
1200 	/*
1201 	 * The downside of using semaphores is that we lose metadata passing
1202 	 * along the signaling chain. This is particularly nasty when we
1203 	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1204 	 * fatal errors we want to scrub the request before it is executed,
1205 	 * which means that we cannot preload the request onto HW and have
1206 	 * it wait upon a semaphore.
1207 	 */
1208 	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1209 }
1210 
1211 static int
1212 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1213 {
1214 	mark_external(rq);
1215 	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1216 					     i915_fence_context_timeout(rq->engine->i915,
1217 									fence->context),
1218 					     I915_FENCE_GFP);
1219 }
1220 
1221 static int
1222 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1223 {
1224 	struct dma_fence *iter;
1225 	int err = 0;
1226 
1227 	if (!to_dma_fence_chain(fence))
1228 		return __i915_request_await_external(rq, fence);
1229 
1230 	dma_fence_chain_for_each(iter, fence) {
1231 		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1232 
1233 		if (!dma_fence_is_i915(chain->fence)) {
1234 			err = __i915_request_await_external(rq, iter);
1235 			break;
1236 		}
1237 
1238 		err = i915_request_await_dma_fence(rq, chain->fence);
1239 		if (err < 0)
1240 			break;
1241 	}
1242 
1243 	dma_fence_put(iter);
1244 	return err;
1245 }
1246 
1247 int
1248 i915_request_await_execution(struct i915_request *rq,
1249 			     struct dma_fence *fence,
1250 			     void (*hook)(struct i915_request *rq,
1251 					  struct dma_fence *signal))
1252 {
1253 	struct dma_fence **child = &fence;
1254 	unsigned int nchild = 1;
1255 	int ret;
1256 
1257 	if (dma_fence_is_array(fence)) {
1258 		struct dma_fence_array *array = to_dma_fence_array(fence);
1259 
1260 		/* XXX Error for signal-on-any fence arrays */
1261 
1262 		child = array->fences;
1263 		nchild = array->num_fences;
1264 		GEM_BUG_ON(!nchild);
1265 	}
1266 
1267 	do {
1268 		fence = *child++;
1269 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1270 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1271 			continue;
1272 		}
1273 
1274 		if (fence->context == rq->fence.context)
1275 			continue;
1276 
1277 		/*
1278 		 * We don't squash repeated fence dependencies here as we
1279 		 * want to run our callback in all cases.
1280 		 */
1281 
1282 		if (dma_fence_is_i915(fence))
1283 			ret = __i915_request_await_execution(rq,
1284 							     to_request(fence),
1285 							     hook);
1286 		else
1287 			ret = i915_request_await_external(rq, fence);
1288 		if (ret < 0)
1289 			return ret;
1290 	} while (--nchild);
1291 
1292 	return 0;
1293 }
1294 
1295 static int
1296 await_request_submit(struct i915_request *to, struct i915_request *from)
1297 {
1298 	/*
1299 	 * If we are waiting on a virtual engine, then it may be
1300 	 * constrained to execute on a single engine *prior* to submission.
1301 	 * When it is submitted, it will be first submitted to the virtual
1302 	 * engine and then passed to the physical engine. We cannot allow
1303 	 * the waiter to be submitted immediately to the physical engine
1304 	 * as it may then bypass the virtual request.
1305 	 */
1306 	if (to->engine == READ_ONCE(from->engine))
1307 		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1308 							&from->submit,
1309 							I915_FENCE_GFP);
1310 	else
1311 		return __i915_request_await_execution(to, from, NULL);
1312 }
1313 
1314 static int
1315 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1316 {
1317 	int ret;
1318 
1319 	GEM_BUG_ON(to == from);
1320 	GEM_BUG_ON(to->timeline == from->timeline);
1321 
1322 	if (i915_request_completed(from)) {
1323 		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1324 		return 0;
1325 	}
1326 
1327 	if (to->engine->schedule) {
1328 		ret = i915_sched_node_add_dependency(&to->sched,
1329 						     &from->sched,
1330 						     I915_DEPENDENCY_EXTERNAL);
1331 		if (ret < 0)
1332 			return ret;
1333 	}
1334 
1335 	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1336 		ret = await_request_submit(to, from);
1337 	else
1338 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1339 	if (ret < 0)
1340 		return ret;
1341 
1342 	return 0;
1343 }
1344 
1345 int
1346 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1347 {
1348 	struct dma_fence **child = &fence;
1349 	unsigned int nchild = 1;
1350 	int ret;
1351 
1352 	/*
1353 	 * Note that if the fence-array was created in signal-on-any mode,
1354 	 * we should *not* decompose it into its individual fences. However,
1355 	 * we don't currently store which mode the fence-array is operating
1356 	 * in. Fortunately, the only user of signal-on-any is private to
1357 	 * amdgpu and we should not see any incoming fence-array from
1358 	 * sync-file being in signal-on-any mode.
1359 	 */
1360 	if (dma_fence_is_array(fence)) {
1361 		struct dma_fence_array *array = to_dma_fence_array(fence);
1362 
1363 		child = array->fences;
1364 		nchild = array->num_fences;
1365 		GEM_BUG_ON(!nchild);
1366 	}
1367 
1368 	do {
1369 		fence = *child++;
1370 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1371 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1372 			continue;
1373 		}
1374 
1375 		/*
1376 		 * Requests on the same timeline are explicitly ordered, along
1377 		 * with their dependencies, by i915_request_add() which ensures
1378 		 * that requests are submitted in-order through each ring.
1379 		 */
1380 		if (fence->context == rq->fence.context)
1381 			continue;
1382 
1383 		/* Squash repeated waits to the same timelines */
1384 		if (fence->context &&
1385 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1386 						 fence))
1387 			continue;
1388 
1389 		if (dma_fence_is_i915(fence))
1390 			ret = i915_request_await_request(rq, to_request(fence));
1391 		else
1392 			ret = i915_request_await_external(rq, fence);
1393 		if (ret < 0)
1394 			return ret;
1395 
1396 		/* Record the latest fence used against each timeline */
1397 		if (fence->context)
1398 			intel_timeline_sync_set(i915_request_timeline(rq),
1399 						fence);
1400 	} while (--nchild);
1401 
1402 	return 0;
1403 }
1404 
1405 /**
1406  * i915_request_await_object - set this request to (async) wait upon a bo
1407  * @to: request we are wishing to use
1408  * @obj: object which may be in use on another ring.
1409  * @write: whether the wait is on behalf of a writer
1410  *
1411  * This code is meant to abstract object synchronization with the GPU.
1412  * Conceptually we serialise writes between engines inside the GPU.
1413  * We only allow one engine to write into a buffer at any time, but
1414  * multiple readers. To ensure each has a coherent view of memory, we must:
1415  *
1416  * - If there is an outstanding write request to the object, the new
1417  *   request must wait for it to complete (either CPU or in hw, requests
1418  *   on the same ring will be naturally ordered).
1419  *
1420  * - If we are a write request (pending_write_domain is set), the new
1421  *   request must wait for outstanding read requests to complete.
1422  *
1423  * Returns 0 if successful, else propagates up the lower layer error.
1424  */
1425 int
1426 i915_request_await_object(struct i915_request *to,
1427 			  struct drm_i915_gem_object *obj,
1428 			  bool write)
1429 {
1430 	struct dma_fence *excl;
1431 	int ret = 0;
1432 
1433 	if (write) {
1434 		struct dma_fence **shared;
1435 		unsigned int count, i;
1436 
1437 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1438 							&excl, &count, &shared);
1439 		if (ret)
1440 			return ret;
1441 
1442 		for (i = 0; i < count; i++) {
1443 			ret = i915_request_await_dma_fence(to, shared[i]);
1444 			if (ret)
1445 				break;
1446 
1447 			dma_fence_put(shared[i]);
1448 		}
1449 
1450 		for (; i < count; i++)
1451 			dma_fence_put(shared[i]);
1452 		kfree(shared);
1453 	} else {
1454 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1455 	}
1456 
1457 	if (excl) {
1458 		if (ret == 0)
1459 			ret = i915_request_await_dma_fence(to, excl);
1460 
1461 		dma_fence_put(excl);
1462 	}
1463 
1464 	return ret;
1465 }
1466 
1467 static struct i915_request *
1468 __i915_request_add_to_timeline(struct i915_request *rq)
1469 {
1470 	struct intel_timeline *timeline = i915_request_timeline(rq);
1471 	struct i915_request *prev;
1472 
1473 	/*
1474 	 * Dependency tracking and request ordering along the timeline
1475 	 * is special cased so that we can eliminate redundant ordering
1476 	 * operations while building the request (we know that the timeline
1477 	 * itself is ordered, and here we guarantee it).
1478 	 *
1479 	 * As we know we will need to emit tracking along the timeline,
1480 	 * we embed the hooks into our request struct -- at the cost of
1481 	 * having to have specialised no-allocation interfaces (which will
1482 	 * be beneficial elsewhere).
1483 	 *
1484 	 * A second benefit to open-coding i915_request_await_request is
1485 	 * that we can apply a slight variant of the rules specialised
1486 	 * for timelines that jump between engines (such as virtual engines).
1487 	 * If we consider the case of virtual engine, we must emit a dma-fence
1488 	 * to prevent scheduling of the second request until the first is
1489 	 * complete (to maximise our greedy late load balancing) and this
1490 	 * precludes optimising to use semaphores serialisation of a single
1491 	 * timeline across engines.
1492 	 */
1493 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1494 						  &rq->fence));
1495 	if (prev && !i915_request_completed(prev)) {
1496 		/*
1497 		 * The requests are supposed to be kept in order. However,
1498 		 * we need to be wary in case the timeline->last_request
1499 		 * is used as a barrier for external modification to this
1500 		 * context.
1501 		 */
1502 		GEM_BUG_ON(prev->context == rq->context &&
1503 			   i915_seqno_passed(prev->fence.seqno,
1504 					     rq->fence.seqno));
1505 
1506 		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1507 			i915_sw_fence_await_sw_fence(&rq->submit,
1508 						     &prev->submit,
1509 						     &rq->submitq);
1510 		else
1511 			__i915_sw_fence_await_dma_fence(&rq->submit,
1512 							&prev->fence,
1513 							&rq->dmaq);
1514 		if (rq->engine->schedule)
1515 			__i915_sched_node_add_dependency(&rq->sched,
1516 							 &prev->sched,
1517 							 &rq->dep,
1518 							 0);
1519 	}
1520 
1521 	/*
1522 	 * Make sure that no request gazumped us - if it was allocated after
1523 	 * our i915_request_alloc() and called __i915_request_add() before
1524 	 * us, the timeline will hold its seqno which is later than ours.
1525 	 */
1526 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1527 
1528 	return prev;
1529 }
1530 
1531 /*
1532  * NB: This function is not allowed to fail. Doing so would mean the the
1533  * request is not being tracked for completion but the work itself is
1534  * going to happen on the hardware. This would be a Bad Thing(tm).
1535  */
1536 struct i915_request *__i915_request_commit(struct i915_request *rq)
1537 {
1538 	struct intel_engine_cs *engine = rq->engine;
1539 	struct intel_ring *ring = rq->ring;
1540 	u32 *cs;
1541 
1542 	RQ_TRACE(rq, "\n");
1543 
1544 	/*
1545 	 * To ensure that this call will not fail, space for its emissions
1546 	 * should already have been reserved in the ring buffer. Let the ring
1547 	 * know that it is time to use that space up.
1548 	 */
1549 	GEM_BUG_ON(rq->reserved_space > ring->space);
1550 	rq->reserved_space = 0;
1551 	rq->emitted_jiffies = jiffies;
1552 
1553 	/*
1554 	 * Record the position of the start of the breadcrumb so that
1555 	 * should we detect the updated seqno part-way through the
1556 	 * GPU processing the request, we never over-estimate the
1557 	 * position of the ring's HEAD.
1558 	 */
1559 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1560 	GEM_BUG_ON(IS_ERR(cs));
1561 	rq->postfix = intel_ring_offset(rq, cs);
1562 
1563 	return __i915_request_add_to_timeline(rq);
1564 }
1565 
1566 void __i915_request_queue(struct i915_request *rq,
1567 			  const struct i915_sched_attr *attr)
1568 {
1569 	/*
1570 	 * Let the backend know a new request has arrived that may need
1571 	 * to adjust the existing execution schedule due to a high priority
1572 	 * request - i.e. we may want to preempt the current request in order
1573 	 * to run a high priority dependency chain *before* we can execute this
1574 	 * request.
1575 	 *
1576 	 * This is called before the request is ready to run so that we can
1577 	 * decide whether to preempt the entire chain so that it is ready to
1578 	 * run at the earliest possible convenience.
1579 	 */
1580 	if (attr && rq->engine->schedule)
1581 		rq->engine->schedule(rq, attr);
1582 	i915_sw_fence_commit(&rq->semaphore);
1583 	i915_sw_fence_commit(&rq->submit);
1584 }
1585 
1586 void i915_request_add(struct i915_request *rq)
1587 {
1588 	struct intel_timeline * const tl = i915_request_timeline(rq);
1589 	struct i915_sched_attr attr = {};
1590 	struct i915_gem_context *ctx;
1591 
1592 	lockdep_assert_held(&tl->mutex);
1593 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1594 
1595 	trace_i915_request_add(rq);
1596 	__i915_request_commit(rq);
1597 
1598 	/* XXX placeholder for selftests */
1599 	rcu_read_lock();
1600 	ctx = rcu_dereference(rq->context->gem_context);
1601 	if (ctx)
1602 		attr = ctx->sched;
1603 	rcu_read_unlock();
1604 
1605 	__i915_request_queue(rq, &attr);
1606 
1607 	mutex_unlock(&tl->mutex);
1608 }
1609 
1610 static unsigned long local_clock_ns(unsigned int *cpu)
1611 {
1612 	unsigned long t;
1613 
1614 	/*
1615 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1616 	 * The result and subsequent calculations are also defined in the same
1617 	 * approximate microseconds units. The principal source of timing
1618 	 * error here is from the simple truncation.
1619 	 *
1620 	 * Note that local_clock() is only defined wrt to the current CPU;
1621 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1622 	 * blocking preemption for the entire busywait, we can detect the CPU
1623 	 * switch and use that as indicator of system load and a reason to
1624 	 * stop busywaiting, see busywait_stop().
1625 	 */
1626 	*cpu = get_cpu();
1627 	t = local_clock();
1628 	put_cpu();
1629 
1630 	return t;
1631 }
1632 
1633 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1634 {
1635 	unsigned int this_cpu;
1636 
1637 	if (time_after(local_clock_ns(&this_cpu), timeout))
1638 		return true;
1639 
1640 	return this_cpu != cpu;
1641 }
1642 
1643 static bool __i915_spin_request(const struct i915_request * const rq, int state)
1644 {
1645 	unsigned long timeout_ns;
1646 	unsigned int cpu;
1647 
1648 	/*
1649 	 * Only wait for the request if we know it is likely to complete.
1650 	 *
1651 	 * We don't track the timestamps around requests, nor the average
1652 	 * request length, so we do not have a good indicator that this
1653 	 * request will complete within the timeout. What we do know is the
1654 	 * order in which requests are executed by the context and so we can
1655 	 * tell if the request has been started. If the request is not even
1656 	 * running yet, it is a fair assumption that it will not complete
1657 	 * within our relatively short timeout.
1658 	 */
1659 	if (!i915_request_is_running(rq))
1660 		return false;
1661 
1662 	/*
1663 	 * When waiting for high frequency requests, e.g. during synchronous
1664 	 * rendering split between the CPU and GPU, the finite amount of time
1665 	 * required to set up the irq and wait upon it limits the response
1666 	 * rate. By busywaiting on the request completion for a short while we
1667 	 * can service the high frequency waits as quick as possible. However,
1668 	 * if it is a slow request, we want to sleep as quickly as possible.
1669 	 * The tradeoff between waiting and sleeping is roughly the time it
1670 	 * takes to sleep on a request, on the order of a microsecond.
1671 	 */
1672 
1673 	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1674 	timeout_ns += local_clock_ns(&cpu);
1675 	do {
1676 		if (i915_request_completed(rq))
1677 			return true;
1678 
1679 		if (signal_pending_state(state, current))
1680 			break;
1681 
1682 		if (busywait_stop(timeout_ns, cpu))
1683 			break;
1684 
1685 		cpu_relax();
1686 	} while (!need_resched());
1687 
1688 	return false;
1689 }
1690 
1691 struct request_wait {
1692 	struct dma_fence_cb cb;
1693 	struct task_struct *tsk;
1694 };
1695 
1696 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1697 {
1698 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1699 
1700 	wake_up_process(wait->tsk);
1701 }
1702 
1703 /**
1704  * i915_request_wait - wait until execution of request has finished
1705  * @rq: the request to wait upon
1706  * @flags: how to wait
1707  * @timeout: how long to wait in jiffies
1708  *
1709  * i915_request_wait() waits for the request to be completed, for a
1710  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1711  * unbounded wait).
1712  *
1713  * Returns the remaining time (in jiffies) if the request completed, which may
1714  * be zero or -ETIME if the request is unfinished after the timeout expires.
1715  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1716  * pending before the request completes.
1717  */
1718 long i915_request_wait(struct i915_request *rq,
1719 		       unsigned int flags,
1720 		       long timeout)
1721 {
1722 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1723 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1724 	struct request_wait wait;
1725 
1726 	might_sleep();
1727 	GEM_BUG_ON(timeout < 0);
1728 
1729 	if (dma_fence_is_signaled(&rq->fence))
1730 		return timeout;
1731 
1732 	if (!timeout)
1733 		return -ETIME;
1734 
1735 	trace_i915_request_wait_begin(rq, flags);
1736 
1737 	/*
1738 	 * We must never wait on the GPU while holding a lock as we
1739 	 * may need to perform a GPU reset. So while we don't need to
1740 	 * serialise wait/reset with an explicit lock, we do want
1741 	 * lockdep to detect potential dependency cycles.
1742 	 */
1743 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1744 
1745 	/*
1746 	 * Optimistic spin before touching IRQs.
1747 	 *
1748 	 * We may use a rather large value here to offset the penalty of
1749 	 * switching away from the active task. Frequently, the client will
1750 	 * wait upon an old swapbuffer to throttle itself to remain within a
1751 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1752 	 * then it should not be waiting long at all, and a sleep now will incur
1753 	 * extra scheduler latency in producing the next frame. To try to
1754 	 * avoid adding the cost of enabling/disabling the interrupt to the
1755 	 * short wait, we first spin to see if the request would have completed
1756 	 * in the time taken to setup the interrupt.
1757 	 *
1758 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1759 	 * scheduler latency of a context switch, ignoring the secondary
1760 	 * impacts from a context switch such as cache eviction.
1761 	 *
1762 	 * The scheme used for low-latency IO is called "hybrid interrupt
1763 	 * polling". The suggestion there is to sleep until just before you
1764 	 * expect to be woken by the device interrupt and then poll for its
1765 	 * completion. That requires having a good predictor for the request
1766 	 * duration, which we currently lack.
1767 	 */
1768 	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1769 	    __i915_spin_request(rq, state)) {
1770 		dma_fence_signal(&rq->fence);
1771 		goto out;
1772 	}
1773 
1774 	/*
1775 	 * This client is about to stall waiting for the GPU. In many cases
1776 	 * this is undesirable and limits the throughput of the system, as
1777 	 * many clients cannot continue processing user input/output whilst
1778 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1779 	 * to the GPU load and thus incurs additional latency for the client.
1780 	 * We can circumvent that by promoting the GPU frequency to maximum
1781 	 * before we sleep. This makes the GPU throttle up much more quickly
1782 	 * (good for benchmarks and user experience, e.g. window animations),
1783 	 * but at a cost of spending more power processing the workload
1784 	 * (bad for battery).
1785 	 */
1786 	if (flags & I915_WAIT_PRIORITY) {
1787 		if (!i915_request_started(rq) &&
1788 		    INTEL_GEN(rq->engine->i915) >= 6)
1789 			intel_rps_boost(rq);
1790 	}
1791 
1792 	wait.tsk = current;
1793 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1794 		goto out;
1795 
1796 	for (;;) {
1797 		set_current_state(state);
1798 
1799 		if (i915_request_completed(rq)) {
1800 			dma_fence_signal(&rq->fence);
1801 			break;
1802 		}
1803 
1804 		intel_engine_flush_submission(rq->engine);
1805 
1806 		if (signal_pending_state(state, current)) {
1807 			timeout = -ERESTARTSYS;
1808 			break;
1809 		}
1810 
1811 		if (!timeout) {
1812 			timeout = -ETIME;
1813 			break;
1814 		}
1815 
1816 		timeout = io_schedule_timeout(timeout);
1817 	}
1818 	__set_current_state(TASK_RUNNING);
1819 
1820 	dma_fence_remove_callback(&rq->fence, &wait.cb);
1821 
1822 out:
1823 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1824 	trace_i915_request_wait_end(rq);
1825 	return timeout;
1826 }
1827 
1828 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1829 #include "selftests/mock_request.c"
1830 #include "selftests/i915_request.c"
1831 #endif
1832 
1833 static void i915_global_request_shrink(void)
1834 {
1835 	kmem_cache_shrink(global.slab_execute_cbs);
1836 	kmem_cache_shrink(global.slab_requests);
1837 }
1838 
1839 static void i915_global_request_exit(void)
1840 {
1841 	kmem_cache_destroy(global.slab_execute_cbs);
1842 	kmem_cache_destroy(global.slab_requests);
1843 }
1844 
1845 static struct i915_global_request global = { {
1846 	.shrink = i915_global_request_shrink,
1847 	.exit = i915_global_request_exit,
1848 } };
1849 
1850 int __init i915_global_request_init(void)
1851 {
1852 	global.slab_requests =
1853 		kmem_cache_create("i915_request",
1854 				  sizeof(struct i915_request),
1855 				  __alignof__(struct i915_request),
1856 				  SLAB_HWCACHE_ALIGN |
1857 				  SLAB_RECLAIM_ACCOUNT |
1858 				  SLAB_TYPESAFE_BY_RCU,
1859 				  __i915_request_ctor);
1860 	if (!global.slab_requests)
1861 		return -ENOMEM;
1862 
1863 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1864 					     SLAB_HWCACHE_ALIGN |
1865 					     SLAB_RECLAIM_ACCOUNT |
1866 					     SLAB_TYPESAFE_BY_RCU);
1867 	if (!global.slab_execute_cbs)
1868 		goto err_requests;
1869 
1870 	i915_global_register(&global.base);
1871 	return 0;
1872 
1873 err_requests:
1874 	kmem_cache_destroy(global.slab_requests);
1875 	return -ENOMEM;
1876 }
1877