1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/irq_work.h> 27 #include <linux/prefetch.h> 28 #include <linux/sched.h> 29 #include <linux/sched/clock.h> 30 #include <linux/sched/signal.h> 31 32 #include "gem/i915_gem_context.h" 33 #include "gt/intel_context.h" 34 #include "gt/intel_ring.h" 35 #include "gt/intel_rps.h" 36 37 #include "i915_active.h" 38 #include "i915_drv.h" 39 #include "i915_globals.h" 40 #include "i915_trace.h" 41 #include "intel_pm.h" 42 43 struct execute_cb { 44 struct list_head link; 45 struct irq_work work; 46 struct i915_sw_fence *fence; 47 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 48 struct i915_request *signal; 49 }; 50 51 static struct i915_global_request { 52 struct i915_global base; 53 struct kmem_cache *slab_requests; 54 struct kmem_cache *slab_dependencies; 55 struct kmem_cache *slab_execute_cbs; 56 } global; 57 58 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 59 { 60 return dev_name(to_request(fence)->i915->drm.dev); 61 } 62 63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 64 { 65 const struct i915_gem_context *ctx; 66 67 /* 68 * The timeline struct (as part of the ppgtt underneath a context) 69 * may be freed when the request is no longer in use by the GPU. 70 * We could extend the life of a context to beyond that of all 71 * fences, possibly keeping the hw resource around indefinitely, 72 * or we just give them a false name. Since 73 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 74 * lie seems justifiable. 75 */ 76 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 77 return "signaled"; 78 79 ctx = i915_request_gem_context(to_request(fence)); 80 if (!ctx) 81 return "[" DRIVER_NAME "]"; 82 83 return ctx->name; 84 } 85 86 static bool i915_fence_signaled(struct dma_fence *fence) 87 { 88 return i915_request_completed(to_request(fence)); 89 } 90 91 static bool i915_fence_enable_signaling(struct dma_fence *fence) 92 { 93 return i915_request_enable_breadcrumb(to_request(fence)); 94 } 95 96 static signed long i915_fence_wait(struct dma_fence *fence, 97 bool interruptible, 98 signed long timeout) 99 { 100 return i915_request_wait(to_request(fence), 101 interruptible | I915_WAIT_PRIORITY, 102 timeout); 103 } 104 105 static void i915_fence_release(struct dma_fence *fence) 106 { 107 struct i915_request *rq = to_request(fence); 108 109 /* 110 * The request is put onto a RCU freelist (i.e. the address 111 * is immediately reused), mark the fences as being freed now. 112 * Otherwise the debugobjects for the fences are only marked as 113 * freed when the slab cache itself is freed, and so we would get 114 * caught trying to reuse dead objects. 115 */ 116 i915_sw_fence_fini(&rq->submit); 117 i915_sw_fence_fini(&rq->semaphore); 118 119 kmem_cache_free(global.slab_requests, rq); 120 } 121 122 const struct dma_fence_ops i915_fence_ops = { 123 .get_driver_name = i915_fence_get_driver_name, 124 .get_timeline_name = i915_fence_get_timeline_name, 125 .enable_signaling = i915_fence_enable_signaling, 126 .signaled = i915_fence_signaled, 127 .wait = i915_fence_wait, 128 .release = i915_fence_release, 129 }; 130 131 static void irq_execute_cb(struct irq_work *wrk) 132 { 133 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 134 135 i915_sw_fence_complete(cb->fence); 136 kmem_cache_free(global.slab_execute_cbs, cb); 137 } 138 139 static void irq_execute_cb_hook(struct irq_work *wrk) 140 { 141 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 142 143 cb->hook(container_of(cb->fence, struct i915_request, submit), 144 &cb->signal->fence); 145 i915_request_put(cb->signal); 146 147 irq_execute_cb(wrk); 148 } 149 150 static void __notify_execute_cb(struct i915_request *rq) 151 { 152 struct execute_cb *cb; 153 154 lockdep_assert_held(&rq->lock); 155 156 if (list_empty(&rq->execute_cb)) 157 return; 158 159 list_for_each_entry(cb, &rq->execute_cb, link) 160 irq_work_queue(&cb->work); 161 162 /* 163 * XXX Rollback on __i915_request_unsubmit() 164 * 165 * In the future, perhaps when we have an active time-slicing scheduler, 166 * it will be interesting to unsubmit parallel execution and remove 167 * busywaits from the GPU until their master is restarted. This is 168 * quite hairy, we have to carefully rollback the fence and do a 169 * preempt-to-idle cycle on the target engine, all the while the 170 * master execute_cb may refire. 171 */ 172 INIT_LIST_HEAD(&rq->execute_cb); 173 } 174 175 static inline void 176 remove_from_client(struct i915_request *request) 177 { 178 struct drm_i915_file_private *file_priv; 179 180 if (!READ_ONCE(request->file_priv)) 181 return; 182 183 rcu_read_lock(); 184 file_priv = xchg(&request->file_priv, NULL); 185 if (file_priv) { 186 spin_lock(&file_priv->mm.lock); 187 list_del(&request->client_link); 188 spin_unlock(&file_priv->mm.lock); 189 } 190 rcu_read_unlock(); 191 } 192 193 static void free_capture_list(struct i915_request *request) 194 { 195 struct i915_capture_list *capture; 196 197 capture = fetch_and_zero(&request->capture_list); 198 while (capture) { 199 struct i915_capture_list *next = capture->next; 200 201 kfree(capture); 202 capture = next; 203 } 204 } 205 206 static void remove_from_engine(struct i915_request *rq) 207 { 208 struct intel_engine_cs *engine, *locked; 209 210 /* 211 * Virtual engines complicate acquiring the engine timeline lock, 212 * as their rq->engine pointer is not stable until under that 213 * engine lock. The simple ploy we use is to take the lock then 214 * check that the rq still belongs to the newly locked engine. 215 */ 216 locked = READ_ONCE(rq->engine); 217 spin_lock_irq(&locked->active.lock); 218 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 219 spin_unlock(&locked->active.lock); 220 spin_lock(&engine->active.lock); 221 locked = engine; 222 } 223 list_del_init(&rq->sched.link); 224 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 225 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 226 spin_unlock_irq(&locked->active.lock); 227 } 228 229 bool i915_request_retire(struct i915_request *rq) 230 { 231 if (!i915_request_completed(rq)) 232 return false; 233 234 RQ_TRACE(rq, "\n"); 235 236 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 237 trace_i915_request_retire(rq); 238 239 /* 240 * We know the GPU must have read the request to have 241 * sent us the seqno + interrupt, so use the position 242 * of tail of the request to update the last known position 243 * of the GPU head. 244 * 245 * Note this requires that we are always called in request 246 * completion order. 247 */ 248 GEM_BUG_ON(!list_is_first(&rq->link, 249 &i915_request_timeline(rq)->requests)); 250 rq->ring->head = rq->postfix; 251 252 /* 253 * We only loosely track inflight requests across preemption, 254 * and so we may find ourselves attempting to retire a _completed_ 255 * request that we have removed from the HW and put back on a run 256 * queue. 257 */ 258 remove_from_engine(rq); 259 260 spin_lock_irq(&rq->lock); 261 i915_request_mark_complete(rq); 262 if (!i915_request_signaled(rq)) 263 dma_fence_signal_locked(&rq->fence); 264 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 265 i915_request_cancel_breadcrumb(rq); 266 if (i915_request_has_waitboost(rq)) { 267 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters)); 268 atomic_dec(&rq->engine->gt->rps.num_waiters); 269 } 270 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) { 271 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 272 __notify_execute_cb(rq); 273 } 274 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 275 spin_unlock_irq(&rq->lock); 276 277 remove_from_client(rq); 278 list_del_rcu(&rq->link); 279 280 intel_context_exit(rq->context); 281 intel_context_unpin(rq->context); 282 283 free_capture_list(rq); 284 i915_sched_node_fini(&rq->sched); 285 i915_request_put(rq); 286 287 return true; 288 } 289 290 void i915_request_retire_upto(struct i915_request *rq) 291 { 292 struct intel_timeline * const tl = i915_request_timeline(rq); 293 struct i915_request *tmp; 294 295 RQ_TRACE(rq, "\n"); 296 297 GEM_BUG_ON(!i915_request_completed(rq)); 298 299 do { 300 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 301 } while (i915_request_retire(tmp) && tmp != rq); 302 } 303 304 static int 305 __await_execution(struct i915_request *rq, 306 struct i915_request *signal, 307 void (*hook)(struct i915_request *rq, 308 struct dma_fence *signal), 309 gfp_t gfp) 310 { 311 struct execute_cb *cb; 312 313 if (i915_request_is_active(signal)) { 314 if (hook) 315 hook(rq, &signal->fence); 316 return 0; 317 } 318 319 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 320 if (!cb) 321 return -ENOMEM; 322 323 cb->fence = &rq->submit; 324 i915_sw_fence_await(cb->fence); 325 init_irq_work(&cb->work, irq_execute_cb); 326 327 if (hook) { 328 cb->hook = hook; 329 cb->signal = i915_request_get(signal); 330 cb->work.func = irq_execute_cb_hook; 331 } 332 333 spin_lock_irq(&signal->lock); 334 if (i915_request_is_active(signal)) { 335 if (hook) { 336 hook(rq, &signal->fence); 337 i915_request_put(signal); 338 } 339 i915_sw_fence_complete(cb->fence); 340 kmem_cache_free(global.slab_execute_cbs, cb); 341 } else { 342 list_add_tail(&cb->link, &signal->execute_cb); 343 } 344 spin_unlock_irq(&signal->lock); 345 346 /* Copy across semaphore status as we need the same behaviour */ 347 rq->sched.flags |= signal->sched.flags; 348 return 0; 349 } 350 351 bool __i915_request_submit(struct i915_request *request) 352 { 353 struct intel_engine_cs *engine = request->engine; 354 bool result = false; 355 356 RQ_TRACE(request, "\n"); 357 358 GEM_BUG_ON(!irqs_disabled()); 359 lockdep_assert_held(&engine->active.lock); 360 361 /* 362 * With the advent of preempt-to-busy, we frequently encounter 363 * requests that we have unsubmitted from HW, but left running 364 * until the next ack and so have completed in the meantime. On 365 * resubmission of that completed request, we can skip 366 * updating the payload, and execlists can even skip submitting 367 * the request. 368 * 369 * We must remove the request from the caller's priority queue, 370 * and the caller must only call us when the request is in their 371 * priority queue, under the active.lock. This ensures that the 372 * request has *not* yet been retired and we can safely move 373 * the request into the engine->active.list where it will be 374 * dropped upon retiring. (Otherwise if resubmit a *retired* 375 * request, this would be a horrible use-after-free.) 376 */ 377 if (i915_request_completed(request)) 378 goto xfer; 379 380 if (intel_context_is_banned(request->context)) 381 i915_request_skip(request, -EIO); 382 383 /* 384 * Are we using semaphores when the gpu is already saturated? 385 * 386 * Using semaphores incurs a cost in having the GPU poll a 387 * memory location, busywaiting for it to change. The continual 388 * memory reads can have a noticeable impact on the rest of the 389 * system with the extra bus traffic, stalling the cpu as it too 390 * tries to access memory across the bus (perf stat -e bus-cycles). 391 * 392 * If we installed a semaphore on this request and we only submit 393 * the request after the signaler completed, that indicates the 394 * system is overloaded and using semaphores at this time only 395 * increases the amount of work we are doing. If so, we disable 396 * further use of semaphores until we are idle again, whence we 397 * optimistically try again. 398 */ 399 if (request->sched.semaphores && 400 i915_sw_fence_signaled(&request->semaphore)) 401 engine->saturated |= request->sched.semaphores; 402 403 engine->emit_fini_breadcrumb(request, 404 request->ring->vaddr + request->postfix); 405 406 trace_i915_request_execute(request); 407 engine->serial++; 408 result = true; 409 410 xfer: /* We may be recursing from the signal callback of another i915 fence */ 411 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 412 413 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) { 414 list_move_tail(&request->sched.link, &engine->active.requests); 415 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 416 } 417 418 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 419 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) && 420 !i915_request_enable_breadcrumb(request)) 421 intel_engine_signal_breadcrumbs(engine); 422 423 __notify_execute_cb(request); 424 425 spin_unlock(&request->lock); 426 427 return result; 428 } 429 430 void i915_request_submit(struct i915_request *request) 431 { 432 struct intel_engine_cs *engine = request->engine; 433 unsigned long flags; 434 435 /* Will be called from irq-context when using foreign fences. */ 436 spin_lock_irqsave(&engine->active.lock, flags); 437 438 __i915_request_submit(request); 439 440 spin_unlock_irqrestore(&engine->active.lock, flags); 441 } 442 443 void __i915_request_unsubmit(struct i915_request *request) 444 { 445 struct intel_engine_cs *engine = request->engine; 446 447 RQ_TRACE(request, "\n"); 448 449 GEM_BUG_ON(!irqs_disabled()); 450 lockdep_assert_held(&engine->active.lock); 451 452 /* 453 * Only unwind in reverse order, required so that the per-context list 454 * is kept in seqno/ring order. 455 */ 456 457 /* We may be recursing from the signal callback of another i915 fence */ 458 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 459 460 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 461 i915_request_cancel_breadcrumb(request); 462 463 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 464 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 465 466 spin_unlock(&request->lock); 467 468 /* We've already spun, don't charge on resubmitting. */ 469 if (request->sched.semaphores && i915_request_started(request)) { 470 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE; 471 request->sched.semaphores = 0; 472 } 473 474 /* 475 * We don't need to wake_up any waiters on request->execute, they 476 * will get woken by any other event or us re-adding this request 477 * to the engine timeline (__i915_request_submit()). The waiters 478 * should be quite adapt at finding that the request now has a new 479 * global_seqno to the one they went to sleep on. 480 */ 481 } 482 483 void i915_request_unsubmit(struct i915_request *request) 484 { 485 struct intel_engine_cs *engine = request->engine; 486 unsigned long flags; 487 488 /* Will be called from irq-context when using foreign fences. */ 489 spin_lock_irqsave(&engine->active.lock, flags); 490 491 __i915_request_unsubmit(request); 492 493 spin_unlock_irqrestore(&engine->active.lock, flags); 494 } 495 496 static int __i915_sw_fence_call 497 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 498 { 499 struct i915_request *request = 500 container_of(fence, typeof(*request), submit); 501 502 switch (state) { 503 case FENCE_COMPLETE: 504 trace_i915_request_submit(request); 505 506 if (unlikely(fence->error)) 507 i915_request_skip(request, fence->error); 508 509 /* 510 * We need to serialize use of the submit_request() callback 511 * with its hotplugging performed during an emergency 512 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 513 * critical section in order to force i915_gem_set_wedged() to 514 * wait until the submit_request() is completed before 515 * proceeding. 516 */ 517 rcu_read_lock(); 518 request->engine->submit_request(request); 519 rcu_read_unlock(); 520 break; 521 522 case FENCE_FREE: 523 i915_request_put(request); 524 break; 525 } 526 527 return NOTIFY_DONE; 528 } 529 530 static void irq_semaphore_cb(struct irq_work *wrk) 531 { 532 struct i915_request *rq = 533 container_of(wrk, typeof(*rq), semaphore_work); 534 535 i915_schedule_bump_priority(rq, I915_PRIORITY_NOSEMAPHORE); 536 i915_request_put(rq); 537 } 538 539 static int __i915_sw_fence_call 540 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 541 { 542 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 543 544 switch (state) { 545 case FENCE_COMPLETE: 546 if (!(READ_ONCE(rq->sched.attr.priority) & I915_PRIORITY_NOSEMAPHORE)) { 547 i915_request_get(rq); 548 init_irq_work(&rq->semaphore_work, irq_semaphore_cb); 549 irq_work_queue(&rq->semaphore_work); 550 } 551 break; 552 553 case FENCE_FREE: 554 i915_request_put(rq); 555 break; 556 } 557 558 return NOTIFY_DONE; 559 } 560 561 static void retire_requests(struct intel_timeline *tl) 562 { 563 struct i915_request *rq, *rn; 564 565 list_for_each_entry_safe(rq, rn, &tl->requests, link) 566 if (!i915_request_retire(rq)) 567 break; 568 } 569 570 static noinline struct i915_request * 571 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp) 572 { 573 struct i915_request *rq; 574 575 if (list_empty(&tl->requests)) 576 goto out; 577 578 if (!gfpflags_allow_blocking(gfp)) 579 goto out; 580 581 /* Move our oldest request to the slab-cache (if not in use!) */ 582 rq = list_first_entry(&tl->requests, typeof(*rq), link); 583 i915_request_retire(rq); 584 585 rq = kmem_cache_alloc(global.slab_requests, 586 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 587 if (rq) 588 return rq; 589 590 /* Ratelimit ourselves to prevent oom from malicious clients */ 591 rq = list_last_entry(&tl->requests, typeof(*rq), link); 592 cond_synchronize_rcu(rq->rcustate); 593 594 /* Retire our old requests in the hope that we free some */ 595 retire_requests(tl); 596 597 out: 598 return kmem_cache_alloc(global.slab_requests, gfp); 599 } 600 601 static void __i915_request_ctor(void *arg) 602 { 603 struct i915_request *rq = arg; 604 605 spin_lock_init(&rq->lock); 606 i915_sched_node_init(&rq->sched); 607 i915_sw_fence_init(&rq->submit, submit_notify); 608 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 609 610 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0); 611 612 rq->file_priv = NULL; 613 rq->capture_list = NULL; 614 615 INIT_LIST_HEAD(&rq->execute_cb); 616 } 617 618 struct i915_request * 619 __i915_request_create(struct intel_context *ce, gfp_t gfp) 620 { 621 struct intel_timeline *tl = ce->timeline; 622 struct i915_request *rq; 623 u32 seqno; 624 int ret; 625 626 might_sleep_if(gfpflags_allow_blocking(gfp)); 627 628 /* Check that the caller provided an already pinned context */ 629 __intel_context_pin(ce); 630 631 /* 632 * Beware: Dragons be flying overhead. 633 * 634 * We use RCU to look up requests in flight. The lookups may 635 * race with the request being allocated from the slab freelist. 636 * That is the request we are writing to here, may be in the process 637 * of being read by __i915_active_request_get_rcu(). As such, 638 * we have to be very careful when overwriting the contents. During 639 * the RCU lookup, we change chase the request->engine pointer, 640 * read the request->global_seqno and increment the reference count. 641 * 642 * The reference count is incremented atomically. If it is zero, 643 * the lookup knows the request is unallocated and complete. Otherwise, 644 * it is either still in use, or has been reallocated and reset 645 * with dma_fence_init(). This increment is safe for release as we 646 * check that the request we have a reference to and matches the active 647 * request. 648 * 649 * Before we increment the refcount, we chase the request->engine 650 * pointer. We must not call kmem_cache_zalloc() or else we set 651 * that pointer to NULL and cause a crash during the lookup. If 652 * we see the request is completed (based on the value of the 653 * old engine and seqno), the lookup is complete and reports NULL. 654 * If we decide the request is not completed (new engine or seqno), 655 * then we grab a reference and double check that it is still the 656 * active request - which it won't be and restart the lookup. 657 * 658 * Do not use kmem_cache_zalloc() here! 659 */ 660 rq = kmem_cache_alloc(global.slab_requests, 661 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 662 if (unlikely(!rq)) { 663 rq = request_alloc_slow(tl, gfp); 664 if (!rq) { 665 ret = -ENOMEM; 666 goto err_unreserve; 667 } 668 } 669 670 rq->i915 = ce->engine->i915; 671 rq->context = ce; 672 rq->engine = ce->engine; 673 rq->ring = ce->ring; 674 rq->execution_mask = ce->engine->mask; 675 676 kref_init(&rq->fence.refcount); 677 rq->fence.flags = 0; 678 rq->fence.error = 0; 679 INIT_LIST_HEAD(&rq->fence.cb_list); 680 681 ret = intel_timeline_get_seqno(tl, rq, &seqno); 682 if (ret) 683 goto err_free; 684 685 rq->fence.context = tl->fence_context; 686 rq->fence.seqno = seqno; 687 688 RCU_INIT_POINTER(rq->timeline, tl); 689 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 690 rq->hwsp_seqno = tl->hwsp_seqno; 691 692 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 693 694 /* We bump the ref for the fence chain */ 695 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 696 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 697 698 i915_sched_node_reinit(&rq->sched); 699 700 /* No zalloc, everything must be cleared after use */ 701 rq->batch = NULL; 702 GEM_BUG_ON(rq->file_priv); 703 GEM_BUG_ON(rq->capture_list); 704 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 705 706 /* 707 * Reserve space in the ring buffer for all the commands required to 708 * eventually emit this request. This is to guarantee that the 709 * i915_request_add() call can't fail. Note that the reserve may need 710 * to be redone if the request is not actually submitted straight 711 * away, e.g. because a GPU scheduler has deferred it. 712 * 713 * Note that due to how we add reserved_space to intel_ring_begin() 714 * we need to double our request to ensure that if we need to wrap 715 * around inside i915_request_add() there is sufficient space at 716 * the beginning of the ring as well. 717 */ 718 rq->reserved_space = 719 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 720 721 /* 722 * Record the position of the start of the request so that 723 * should we detect the updated seqno part-way through the 724 * GPU processing the request, we never over-estimate the 725 * position of the head. 726 */ 727 rq->head = rq->ring->emit; 728 729 ret = rq->engine->request_alloc(rq); 730 if (ret) 731 goto err_unwind; 732 733 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 734 735 intel_context_mark_active(ce); 736 list_add_tail_rcu(&rq->link, &tl->requests); 737 738 return rq; 739 740 err_unwind: 741 ce->ring->emit = rq->head; 742 743 /* Make sure we didn't add ourselves to external state before freeing */ 744 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 745 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 746 747 err_free: 748 kmem_cache_free(global.slab_requests, rq); 749 err_unreserve: 750 intel_context_unpin(ce); 751 return ERR_PTR(ret); 752 } 753 754 struct i915_request * 755 i915_request_create(struct intel_context *ce) 756 { 757 struct i915_request *rq; 758 struct intel_timeline *tl; 759 760 tl = intel_context_timeline_lock(ce); 761 if (IS_ERR(tl)) 762 return ERR_CAST(tl); 763 764 /* Move our oldest request to the slab-cache (if not in use!) */ 765 rq = list_first_entry(&tl->requests, typeof(*rq), link); 766 if (!list_is_last(&rq->link, &tl->requests)) 767 i915_request_retire(rq); 768 769 intel_context_enter(ce); 770 rq = __i915_request_create(ce, GFP_KERNEL); 771 intel_context_exit(ce); /* active reference transferred to request */ 772 if (IS_ERR(rq)) 773 goto err_unlock; 774 775 /* Check that we do not interrupt ourselves with a new request */ 776 rq->cookie = lockdep_pin_lock(&tl->mutex); 777 778 return rq; 779 780 err_unlock: 781 intel_context_timeline_unlock(tl); 782 return rq; 783 } 784 785 static int 786 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 787 { 788 struct dma_fence *fence; 789 int err; 790 791 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 792 return 0; 793 794 if (i915_request_started(signal)) 795 return 0; 796 797 fence = NULL; 798 rcu_read_lock(); 799 spin_lock_irq(&signal->lock); 800 do { 801 struct list_head *pos = READ_ONCE(signal->link.prev); 802 struct i915_request *prev; 803 804 /* Confirm signal has not been retired, the link is valid */ 805 if (unlikely(i915_request_started(signal))) 806 break; 807 808 /* Is signal the earliest request on its timeline? */ 809 if (pos == &rcu_dereference(signal->timeline)->requests) 810 break; 811 812 /* 813 * Peek at the request before us in the timeline. That 814 * request will only be valid before it is retired, so 815 * after acquiring a reference to it, confirm that it is 816 * still part of the signaler's timeline. 817 */ 818 prev = list_entry(pos, typeof(*prev), link); 819 if (!i915_request_get_rcu(prev)) 820 break; 821 822 /* After the strong barrier, confirm prev is still attached */ 823 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 824 i915_request_put(prev); 825 break; 826 } 827 828 fence = &prev->fence; 829 } while (0); 830 spin_unlock_irq(&signal->lock); 831 rcu_read_unlock(); 832 if (!fence) 833 return 0; 834 835 err = 0; 836 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 837 err = i915_sw_fence_await_dma_fence(&rq->submit, 838 fence, 0, 839 I915_FENCE_GFP); 840 dma_fence_put(fence); 841 842 return err; 843 } 844 845 static intel_engine_mask_t 846 already_busywaiting(struct i915_request *rq) 847 { 848 /* 849 * Polling a semaphore causes bus traffic, delaying other users of 850 * both the GPU and CPU. We want to limit the impact on others, 851 * while taking advantage of early submission to reduce GPU 852 * latency. Therefore we restrict ourselves to not using more 853 * than one semaphore from each source, and not using a semaphore 854 * if we have detected the engine is saturated (i.e. would not be 855 * submitted early and cause bus traffic reading an already passed 856 * semaphore). 857 * 858 * See the are-we-too-late? check in __i915_request_submit(). 859 */ 860 return rq->sched.semaphores | rq->engine->saturated; 861 } 862 863 static int 864 __emit_semaphore_wait(struct i915_request *to, 865 struct i915_request *from, 866 u32 seqno) 867 { 868 const int has_token = INTEL_GEN(to->i915) >= 12; 869 u32 hwsp_offset; 870 int len, err; 871 u32 *cs; 872 873 GEM_BUG_ON(INTEL_GEN(to->i915) < 8); 874 875 /* We need to pin the signaler's HWSP until we are finished reading. */ 876 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 877 if (err) 878 return err; 879 880 len = 4; 881 if (has_token) 882 len += 2; 883 884 cs = intel_ring_begin(to, len); 885 if (IS_ERR(cs)) 886 return PTR_ERR(cs); 887 888 /* 889 * Using greater-than-or-equal here means we have to worry 890 * about seqno wraparound. To side step that issue, we swap 891 * the timeline HWSP upon wrapping, so that everyone listening 892 * for the old (pre-wrap) values do not see the much smaller 893 * (post-wrap) values than they were expecting (and so wait 894 * forever). 895 */ 896 *cs++ = (MI_SEMAPHORE_WAIT | 897 MI_SEMAPHORE_GLOBAL_GTT | 898 MI_SEMAPHORE_POLL | 899 MI_SEMAPHORE_SAD_GTE_SDD) + 900 has_token; 901 *cs++ = seqno; 902 *cs++ = hwsp_offset; 903 *cs++ = 0; 904 if (has_token) { 905 *cs++ = 0; 906 *cs++ = MI_NOOP; 907 } 908 909 intel_ring_advance(to, cs); 910 return 0; 911 } 912 913 static int 914 emit_semaphore_wait(struct i915_request *to, 915 struct i915_request *from, 916 gfp_t gfp) 917 { 918 /* Just emit the first semaphore we see as request space is limited. */ 919 if (already_busywaiting(to) & from->engine->mask) 920 goto await_fence; 921 922 if (i915_request_await_start(to, from) < 0) 923 goto await_fence; 924 925 /* Only submit our spinner after the signaler is running! */ 926 if (__await_execution(to, from, NULL, gfp)) 927 goto await_fence; 928 929 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 930 goto await_fence; 931 932 to->sched.semaphores |= from->engine->mask; 933 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; 934 return 0; 935 936 await_fence: 937 return i915_sw_fence_await_dma_fence(&to->submit, 938 &from->fence, 0, 939 I915_FENCE_GFP); 940 } 941 942 static int 943 i915_request_await_request(struct i915_request *to, struct i915_request *from) 944 { 945 int ret; 946 947 GEM_BUG_ON(to == from); 948 GEM_BUG_ON(to->timeline == from->timeline); 949 950 if (i915_request_completed(from)) 951 return 0; 952 953 if (to->engine->schedule) { 954 ret = i915_sched_node_add_dependency(&to->sched, &from->sched); 955 if (ret < 0) 956 return ret; 957 } 958 959 if (to->engine == from->engine) 960 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, 961 &from->submit, 962 I915_FENCE_GFP); 963 else if (intel_context_use_semaphores(to->context)) 964 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 965 else 966 ret = i915_sw_fence_await_dma_fence(&to->submit, 967 &from->fence, 0, 968 I915_FENCE_GFP); 969 if (ret < 0) 970 return ret; 971 972 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) { 973 ret = i915_sw_fence_await_dma_fence(&to->semaphore, 974 &from->fence, 0, 975 I915_FENCE_GFP); 976 if (ret < 0) 977 return ret; 978 } 979 980 return 0; 981 } 982 983 int 984 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 985 { 986 struct dma_fence **child = &fence; 987 unsigned int nchild = 1; 988 int ret; 989 990 /* 991 * Note that if the fence-array was created in signal-on-any mode, 992 * we should *not* decompose it into its individual fences. However, 993 * we don't currently store which mode the fence-array is operating 994 * in. Fortunately, the only user of signal-on-any is private to 995 * amdgpu and we should not see any incoming fence-array from 996 * sync-file being in signal-on-any mode. 997 */ 998 if (dma_fence_is_array(fence)) { 999 struct dma_fence_array *array = to_dma_fence_array(fence); 1000 1001 child = array->fences; 1002 nchild = array->num_fences; 1003 GEM_BUG_ON(!nchild); 1004 } 1005 1006 do { 1007 fence = *child++; 1008 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1009 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1010 continue; 1011 } 1012 1013 /* 1014 * Requests on the same timeline are explicitly ordered, along 1015 * with their dependencies, by i915_request_add() which ensures 1016 * that requests are submitted in-order through each ring. 1017 */ 1018 if (fence->context == rq->fence.context) 1019 continue; 1020 1021 /* Squash repeated waits to the same timelines */ 1022 if (fence->context && 1023 intel_timeline_sync_is_later(i915_request_timeline(rq), 1024 fence)) 1025 continue; 1026 1027 if (dma_fence_is_i915(fence)) 1028 ret = i915_request_await_request(rq, to_request(fence)); 1029 else 1030 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 1031 fence->context ? I915_FENCE_TIMEOUT : 0, 1032 I915_FENCE_GFP); 1033 if (ret < 0) 1034 return ret; 1035 1036 /* Record the latest fence used against each timeline */ 1037 if (fence->context) 1038 intel_timeline_sync_set(i915_request_timeline(rq), 1039 fence); 1040 } while (--nchild); 1041 1042 return 0; 1043 } 1044 1045 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1046 struct dma_fence *fence) 1047 { 1048 return __intel_timeline_sync_is_later(tl, 1049 fence->context, 1050 fence->seqno - 1); 1051 } 1052 1053 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1054 const struct dma_fence *fence) 1055 { 1056 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1057 } 1058 1059 static int 1060 __i915_request_await_execution(struct i915_request *to, 1061 struct i915_request *from, 1062 void (*hook)(struct i915_request *rq, 1063 struct dma_fence *signal)) 1064 { 1065 int err; 1066 1067 /* Submit both requests at the same time */ 1068 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1069 if (err) 1070 return err; 1071 1072 /* Squash repeated depenendices to the same timelines */ 1073 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1074 &from->fence)) 1075 return 0; 1076 1077 /* Ensure both start together [after all semaphores in signal] */ 1078 if (intel_engine_has_semaphores(to->engine)) 1079 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1080 else 1081 err = i915_request_await_start(to, from); 1082 if (err < 0) 1083 return err; 1084 1085 /* Couple the dependency tree for PI on this exposed to->fence */ 1086 if (to->engine->schedule) { 1087 err = i915_sched_node_add_dependency(&to->sched, &from->sched); 1088 if (err < 0) 1089 return err; 1090 } 1091 1092 return intel_timeline_sync_set_start(i915_request_timeline(to), 1093 &from->fence); 1094 } 1095 1096 int 1097 i915_request_await_execution(struct i915_request *rq, 1098 struct dma_fence *fence, 1099 void (*hook)(struct i915_request *rq, 1100 struct dma_fence *signal)) 1101 { 1102 struct dma_fence **child = &fence; 1103 unsigned int nchild = 1; 1104 int ret; 1105 1106 if (dma_fence_is_array(fence)) { 1107 struct dma_fence_array *array = to_dma_fence_array(fence); 1108 1109 /* XXX Error for signal-on-any fence arrays */ 1110 1111 child = array->fences; 1112 nchild = array->num_fences; 1113 GEM_BUG_ON(!nchild); 1114 } 1115 1116 do { 1117 fence = *child++; 1118 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1119 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1120 continue; 1121 } 1122 1123 /* 1124 * We don't squash repeated fence dependencies here as we 1125 * want to run our callback in all cases. 1126 */ 1127 1128 if (dma_fence_is_i915(fence)) 1129 ret = __i915_request_await_execution(rq, 1130 to_request(fence), 1131 hook); 1132 else 1133 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 1134 I915_FENCE_TIMEOUT, 1135 GFP_KERNEL); 1136 if (ret < 0) 1137 return ret; 1138 } while (--nchild); 1139 1140 return 0; 1141 } 1142 1143 /** 1144 * i915_request_await_object - set this request to (async) wait upon a bo 1145 * @to: request we are wishing to use 1146 * @obj: object which may be in use on another ring. 1147 * @write: whether the wait is on behalf of a writer 1148 * 1149 * This code is meant to abstract object synchronization with the GPU. 1150 * Conceptually we serialise writes between engines inside the GPU. 1151 * We only allow one engine to write into a buffer at any time, but 1152 * multiple readers. To ensure each has a coherent view of memory, we must: 1153 * 1154 * - If there is an outstanding write request to the object, the new 1155 * request must wait for it to complete (either CPU or in hw, requests 1156 * on the same ring will be naturally ordered). 1157 * 1158 * - If we are a write request (pending_write_domain is set), the new 1159 * request must wait for outstanding read requests to complete. 1160 * 1161 * Returns 0 if successful, else propagates up the lower layer error. 1162 */ 1163 int 1164 i915_request_await_object(struct i915_request *to, 1165 struct drm_i915_gem_object *obj, 1166 bool write) 1167 { 1168 struct dma_fence *excl; 1169 int ret = 0; 1170 1171 if (write) { 1172 struct dma_fence **shared; 1173 unsigned int count, i; 1174 1175 ret = dma_resv_get_fences_rcu(obj->base.resv, 1176 &excl, &count, &shared); 1177 if (ret) 1178 return ret; 1179 1180 for (i = 0; i < count; i++) { 1181 ret = i915_request_await_dma_fence(to, shared[i]); 1182 if (ret) 1183 break; 1184 1185 dma_fence_put(shared[i]); 1186 } 1187 1188 for (; i < count; i++) 1189 dma_fence_put(shared[i]); 1190 kfree(shared); 1191 } else { 1192 excl = dma_resv_get_excl_rcu(obj->base.resv); 1193 } 1194 1195 if (excl) { 1196 if (ret == 0) 1197 ret = i915_request_await_dma_fence(to, excl); 1198 1199 dma_fence_put(excl); 1200 } 1201 1202 return ret; 1203 } 1204 1205 void i915_request_skip(struct i915_request *rq, int error) 1206 { 1207 void *vaddr = rq->ring->vaddr; 1208 u32 head; 1209 1210 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 1211 dma_fence_set_error(&rq->fence, error); 1212 1213 if (rq->infix == rq->postfix) 1214 return; 1215 1216 /* 1217 * As this request likely depends on state from the lost 1218 * context, clear out all the user operations leaving the 1219 * breadcrumb at the end (so we get the fence notifications). 1220 */ 1221 head = rq->infix; 1222 if (rq->postfix < head) { 1223 memset(vaddr + head, 0, rq->ring->size - head); 1224 head = 0; 1225 } 1226 memset(vaddr + head, 0, rq->postfix - head); 1227 rq->infix = rq->postfix; 1228 } 1229 1230 static struct i915_request * 1231 __i915_request_add_to_timeline(struct i915_request *rq) 1232 { 1233 struct intel_timeline *timeline = i915_request_timeline(rq); 1234 struct i915_request *prev; 1235 1236 /* 1237 * Dependency tracking and request ordering along the timeline 1238 * is special cased so that we can eliminate redundant ordering 1239 * operations while building the request (we know that the timeline 1240 * itself is ordered, and here we guarantee it). 1241 * 1242 * As we know we will need to emit tracking along the timeline, 1243 * we embed the hooks into our request struct -- at the cost of 1244 * having to have specialised no-allocation interfaces (which will 1245 * be beneficial elsewhere). 1246 * 1247 * A second benefit to open-coding i915_request_await_request is 1248 * that we can apply a slight variant of the rules specialised 1249 * for timelines that jump between engines (such as virtual engines). 1250 * If we consider the case of virtual engine, we must emit a dma-fence 1251 * to prevent scheduling of the second request until the first is 1252 * complete (to maximise our greedy late load balancing) and this 1253 * precludes optimising to use semaphores serialisation of a single 1254 * timeline across engines. 1255 */ 1256 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1257 &rq->fence)); 1258 if (prev && !i915_request_completed(prev)) { 1259 if (is_power_of_2(prev->engine->mask | rq->engine->mask)) 1260 i915_sw_fence_await_sw_fence(&rq->submit, 1261 &prev->submit, 1262 &rq->submitq); 1263 else 1264 __i915_sw_fence_await_dma_fence(&rq->submit, 1265 &prev->fence, 1266 &rq->dmaq); 1267 if (rq->engine->schedule) 1268 __i915_sched_node_add_dependency(&rq->sched, 1269 &prev->sched, 1270 &rq->dep, 1271 0); 1272 } 1273 1274 /* 1275 * Make sure that no request gazumped us - if it was allocated after 1276 * our i915_request_alloc() and called __i915_request_add() before 1277 * us, the timeline will hold its seqno which is later than ours. 1278 */ 1279 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1280 1281 return prev; 1282 } 1283 1284 /* 1285 * NB: This function is not allowed to fail. Doing so would mean the the 1286 * request is not being tracked for completion but the work itself is 1287 * going to happen on the hardware. This would be a Bad Thing(tm). 1288 */ 1289 struct i915_request *__i915_request_commit(struct i915_request *rq) 1290 { 1291 struct intel_engine_cs *engine = rq->engine; 1292 struct intel_ring *ring = rq->ring; 1293 u32 *cs; 1294 1295 RQ_TRACE(rq, "\n"); 1296 1297 /* 1298 * To ensure that this call will not fail, space for its emissions 1299 * should already have been reserved in the ring buffer. Let the ring 1300 * know that it is time to use that space up. 1301 */ 1302 GEM_BUG_ON(rq->reserved_space > ring->space); 1303 rq->reserved_space = 0; 1304 rq->emitted_jiffies = jiffies; 1305 1306 /* 1307 * Record the position of the start of the breadcrumb so that 1308 * should we detect the updated seqno part-way through the 1309 * GPU processing the request, we never over-estimate the 1310 * position of the ring's HEAD. 1311 */ 1312 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1313 GEM_BUG_ON(IS_ERR(cs)); 1314 rq->postfix = intel_ring_offset(rq, cs); 1315 1316 return __i915_request_add_to_timeline(rq); 1317 } 1318 1319 void __i915_request_queue(struct i915_request *rq, 1320 const struct i915_sched_attr *attr) 1321 { 1322 /* 1323 * Let the backend know a new request has arrived that may need 1324 * to adjust the existing execution schedule due to a high priority 1325 * request - i.e. we may want to preempt the current request in order 1326 * to run a high priority dependency chain *before* we can execute this 1327 * request. 1328 * 1329 * This is called before the request is ready to run so that we can 1330 * decide whether to preempt the entire chain so that it is ready to 1331 * run at the earliest possible convenience. 1332 */ 1333 if (attr && rq->engine->schedule) 1334 rq->engine->schedule(rq, attr); 1335 i915_sw_fence_commit(&rq->semaphore); 1336 i915_sw_fence_commit(&rq->submit); 1337 } 1338 1339 void i915_request_add(struct i915_request *rq) 1340 { 1341 struct intel_timeline * const tl = i915_request_timeline(rq); 1342 struct i915_sched_attr attr = {}; 1343 struct i915_request *prev; 1344 1345 lockdep_assert_held(&tl->mutex); 1346 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1347 1348 trace_i915_request_add(rq); 1349 1350 prev = __i915_request_commit(rq); 1351 1352 if (rcu_access_pointer(rq->context->gem_context)) 1353 attr = i915_request_gem_context(rq)->sched; 1354 1355 /* 1356 * Boost actual workloads past semaphores! 1357 * 1358 * With semaphores we spin on one engine waiting for another, 1359 * simply to reduce the latency of starting our work when 1360 * the signaler completes. However, if there is any other 1361 * work that we could be doing on this engine instead, that 1362 * is better utilisation and will reduce the overall duration 1363 * of the current work. To avoid PI boosting a semaphore 1364 * far in the distance past over useful work, we keep a history 1365 * of any semaphore use along our dependency chain. 1366 */ 1367 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN)) 1368 attr.priority |= I915_PRIORITY_NOSEMAPHORE; 1369 1370 /* 1371 * Boost priorities to new clients (new request flows). 1372 * 1373 * Allow interactive/synchronous clients to jump ahead of 1374 * the bulk clients. (FQ_CODEL) 1375 */ 1376 if (list_empty(&rq->sched.signalers_list)) 1377 attr.priority |= I915_PRIORITY_WAIT; 1378 1379 local_bh_disable(); 1380 __i915_request_queue(rq, &attr); 1381 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 1382 1383 /* 1384 * In typical scenarios, we do not expect the previous request on 1385 * the timeline to be still tracked by timeline->last_request if it 1386 * has been completed. If the completed request is still here, that 1387 * implies that request retirement is a long way behind submission, 1388 * suggesting that we haven't been retiring frequently enough from 1389 * the combination of retire-before-alloc, waiters and the background 1390 * retirement worker. So if the last request on this timeline was 1391 * already completed, do a catch up pass, flushing the retirement queue 1392 * up to this client. Since we have now moved the heaviest operations 1393 * during retirement onto secondary workers, such as freeing objects 1394 * or contexts, retiring a bunch of requests is mostly list management 1395 * (and cache misses), and so we should not be overly penalizing this 1396 * client by performing excess work, though we may still performing 1397 * work on behalf of others -- but instead we should benefit from 1398 * improved resource management. (Well, that's the theory at least.) 1399 */ 1400 if (prev && 1401 i915_request_completed(prev) && 1402 rcu_access_pointer(prev->timeline) == tl) 1403 i915_request_retire_upto(prev); 1404 1405 mutex_unlock(&tl->mutex); 1406 } 1407 1408 static unsigned long local_clock_us(unsigned int *cpu) 1409 { 1410 unsigned long t; 1411 1412 /* 1413 * Cheaply and approximately convert from nanoseconds to microseconds. 1414 * The result and subsequent calculations are also defined in the same 1415 * approximate microseconds units. The principal source of timing 1416 * error here is from the simple truncation. 1417 * 1418 * Note that local_clock() is only defined wrt to the current CPU; 1419 * the comparisons are no longer valid if we switch CPUs. Instead of 1420 * blocking preemption for the entire busywait, we can detect the CPU 1421 * switch and use that as indicator of system load and a reason to 1422 * stop busywaiting, see busywait_stop(). 1423 */ 1424 *cpu = get_cpu(); 1425 t = local_clock() >> 10; 1426 put_cpu(); 1427 1428 return t; 1429 } 1430 1431 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1432 { 1433 unsigned int this_cpu; 1434 1435 if (time_after(local_clock_us(&this_cpu), timeout)) 1436 return true; 1437 1438 return this_cpu != cpu; 1439 } 1440 1441 static bool __i915_spin_request(const struct i915_request * const rq, 1442 int state, unsigned long timeout_us) 1443 { 1444 unsigned int cpu; 1445 1446 /* 1447 * Only wait for the request if we know it is likely to complete. 1448 * 1449 * We don't track the timestamps around requests, nor the average 1450 * request length, so we do not have a good indicator that this 1451 * request will complete within the timeout. What we do know is the 1452 * order in which requests are executed by the context and so we can 1453 * tell if the request has been started. If the request is not even 1454 * running yet, it is a fair assumption that it will not complete 1455 * within our relatively short timeout. 1456 */ 1457 if (!i915_request_is_running(rq)) 1458 return false; 1459 1460 /* 1461 * When waiting for high frequency requests, e.g. during synchronous 1462 * rendering split between the CPU and GPU, the finite amount of time 1463 * required to set up the irq and wait upon it limits the response 1464 * rate. By busywaiting on the request completion for a short while we 1465 * can service the high frequency waits as quick as possible. However, 1466 * if it is a slow request, we want to sleep as quickly as possible. 1467 * The tradeoff between waiting and sleeping is roughly the time it 1468 * takes to sleep on a request, on the order of a microsecond. 1469 */ 1470 1471 timeout_us += local_clock_us(&cpu); 1472 do { 1473 if (i915_request_completed(rq)) 1474 return true; 1475 1476 if (signal_pending_state(state, current)) 1477 break; 1478 1479 if (busywait_stop(timeout_us, cpu)) 1480 break; 1481 1482 cpu_relax(); 1483 } while (!need_resched()); 1484 1485 return false; 1486 } 1487 1488 struct request_wait { 1489 struct dma_fence_cb cb; 1490 struct task_struct *tsk; 1491 }; 1492 1493 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1494 { 1495 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1496 1497 wake_up_process(wait->tsk); 1498 } 1499 1500 /** 1501 * i915_request_wait - wait until execution of request has finished 1502 * @rq: the request to wait upon 1503 * @flags: how to wait 1504 * @timeout: how long to wait in jiffies 1505 * 1506 * i915_request_wait() waits for the request to be completed, for a 1507 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1508 * unbounded wait). 1509 * 1510 * Returns the remaining time (in jiffies) if the request completed, which may 1511 * be zero or -ETIME if the request is unfinished after the timeout expires. 1512 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1513 * pending before the request completes. 1514 */ 1515 long i915_request_wait(struct i915_request *rq, 1516 unsigned int flags, 1517 long timeout) 1518 { 1519 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1520 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1521 struct request_wait wait; 1522 1523 might_sleep(); 1524 GEM_BUG_ON(timeout < 0); 1525 1526 if (dma_fence_is_signaled(&rq->fence)) 1527 return timeout; 1528 1529 if (!timeout) 1530 return -ETIME; 1531 1532 trace_i915_request_wait_begin(rq, flags); 1533 1534 /* 1535 * We must never wait on the GPU while holding a lock as we 1536 * may need to perform a GPU reset. So while we don't need to 1537 * serialise wait/reset with an explicit lock, we do want 1538 * lockdep to detect potential dependency cycles. 1539 */ 1540 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1541 1542 /* 1543 * Optimistic spin before touching IRQs. 1544 * 1545 * We may use a rather large value here to offset the penalty of 1546 * switching away from the active task. Frequently, the client will 1547 * wait upon an old swapbuffer to throttle itself to remain within a 1548 * frame of the gpu. If the client is running in lockstep with the gpu, 1549 * then it should not be waiting long at all, and a sleep now will incur 1550 * extra scheduler latency in producing the next frame. To try to 1551 * avoid adding the cost of enabling/disabling the interrupt to the 1552 * short wait, we first spin to see if the request would have completed 1553 * in the time taken to setup the interrupt. 1554 * 1555 * We need upto 5us to enable the irq, and upto 20us to hide the 1556 * scheduler latency of a context switch, ignoring the secondary 1557 * impacts from a context switch such as cache eviction. 1558 * 1559 * The scheme used for low-latency IO is called "hybrid interrupt 1560 * polling". The suggestion there is to sleep until just before you 1561 * expect to be woken by the device interrupt and then poll for its 1562 * completion. That requires having a good predictor for the request 1563 * duration, which we currently lack. 1564 */ 1565 if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) && 1566 __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) { 1567 dma_fence_signal(&rq->fence); 1568 goto out; 1569 } 1570 1571 /* 1572 * This client is about to stall waiting for the GPU. In many cases 1573 * this is undesirable and limits the throughput of the system, as 1574 * many clients cannot continue processing user input/output whilst 1575 * blocked. RPS autotuning may take tens of milliseconds to respond 1576 * to the GPU load and thus incurs additional latency for the client. 1577 * We can circumvent that by promoting the GPU frequency to maximum 1578 * before we sleep. This makes the GPU throttle up much more quickly 1579 * (good for benchmarks and user experience, e.g. window animations), 1580 * but at a cost of spending more power processing the workload 1581 * (bad for battery). 1582 */ 1583 if (flags & I915_WAIT_PRIORITY) { 1584 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6) 1585 intel_rps_boost(rq); 1586 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT); 1587 } 1588 1589 wait.tsk = current; 1590 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1591 goto out; 1592 1593 for (;;) { 1594 set_current_state(state); 1595 1596 if (i915_request_completed(rq)) { 1597 dma_fence_signal(&rq->fence); 1598 break; 1599 } 1600 1601 if (signal_pending_state(state, current)) { 1602 timeout = -ERESTARTSYS; 1603 break; 1604 } 1605 1606 if (!timeout) { 1607 timeout = -ETIME; 1608 break; 1609 } 1610 1611 intel_engine_flush_submission(rq->engine); 1612 timeout = io_schedule_timeout(timeout); 1613 } 1614 __set_current_state(TASK_RUNNING); 1615 1616 dma_fence_remove_callback(&rq->fence, &wait.cb); 1617 1618 out: 1619 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1620 trace_i915_request_wait_end(rq); 1621 return timeout; 1622 } 1623 1624 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1625 #include "selftests/mock_request.c" 1626 #include "selftests/i915_request.c" 1627 #endif 1628 1629 static void i915_global_request_shrink(void) 1630 { 1631 kmem_cache_shrink(global.slab_dependencies); 1632 kmem_cache_shrink(global.slab_execute_cbs); 1633 kmem_cache_shrink(global.slab_requests); 1634 } 1635 1636 static void i915_global_request_exit(void) 1637 { 1638 kmem_cache_destroy(global.slab_dependencies); 1639 kmem_cache_destroy(global.slab_execute_cbs); 1640 kmem_cache_destroy(global.slab_requests); 1641 } 1642 1643 static struct i915_global_request global = { { 1644 .shrink = i915_global_request_shrink, 1645 .exit = i915_global_request_exit, 1646 } }; 1647 1648 int __init i915_global_request_init(void) 1649 { 1650 global.slab_requests = 1651 kmem_cache_create("i915_request", 1652 sizeof(struct i915_request), 1653 __alignof__(struct i915_request), 1654 SLAB_HWCACHE_ALIGN | 1655 SLAB_RECLAIM_ACCOUNT | 1656 SLAB_TYPESAFE_BY_RCU, 1657 __i915_request_ctor); 1658 if (!global.slab_requests) 1659 return -ENOMEM; 1660 1661 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1662 SLAB_HWCACHE_ALIGN | 1663 SLAB_RECLAIM_ACCOUNT | 1664 SLAB_TYPESAFE_BY_RCU); 1665 if (!global.slab_execute_cbs) 1666 goto err_requests; 1667 1668 global.slab_dependencies = KMEM_CACHE(i915_dependency, 1669 SLAB_HWCACHE_ALIGN | 1670 SLAB_RECLAIM_ACCOUNT); 1671 if (!global.slab_dependencies) 1672 goto err_execute_cbs; 1673 1674 i915_global_register(&global.base); 1675 return 0; 1676 1677 err_execute_cbs: 1678 kmem_cache_destroy(global.slab_execute_cbs); 1679 err_requests: 1680 kmem_cache_destroy(global.slab_requests); 1681 return -ENOMEM; 1682 } 1683