1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31 
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 #include "gt/intel_ring.h"
35 #include "gt/intel_rps.h"
36 
37 #include "i915_active.h"
38 #include "i915_drv.h"
39 #include "i915_globals.h"
40 #include "i915_trace.h"
41 #include "intel_pm.h"
42 
43 struct execute_cb {
44 	struct list_head link;
45 	struct irq_work work;
46 	struct i915_sw_fence *fence;
47 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48 	struct i915_request *signal;
49 };
50 
51 static struct i915_global_request {
52 	struct i915_global base;
53 	struct kmem_cache *slab_requests;
54 	struct kmem_cache *slab_dependencies;
55 	struct kmem_cache *slab_execute_cbs;
56 } global;
57 
58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 {
60 	return dev_name(to_request(fence)->i915->drm.dev);
61 }
62 
63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 {
65 	const struct i915_gem_context *ctx;
66 
67 	/*
68 	 * The timeline struct (as part of the ppgtt underneath a context)
69 	 * may be freed when the request is no longer in use by the GPU.
70 	 * We could extend the life of a context to beyond that of all
71 	 * fences, possibly keeping the hw resource around indefinitely,
72 	 * or we just give them a false name. Since
73 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
74 	 * lie seems justifiable.
75 	 */
76 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
77 		return "signaled";
78 
79 	ctx = i915_request_gem_context(to_request(fence));
80 	if (!ctx)
81 		return "[" DRIVER_NAME "]";
82 
83 	return ctx->name;
84 }
85 
86 static bool i915_fence_signaled(struct dma_fence *fence)
87 {
88 	return i915_request_completed(to_request(fence));
89 }
90 
91 static bool i915_fence_enable_signaling(struct dma_fence *fence)
92 {
93 	return i915_request_enable_breadcrumb(to_request(fence));
94 }
95 
96 static signed long i915_fence_wait(struct dma_fence *fence,
97 				   bool interruptible,
98 				   signed long timeout)
99 {
100 	return i915_request_wait(to_request(fence),
101 				 interruptible | I915_WAIT_PRIORITY,
102 				 timeout);
103 }
104 
105 static void i915_fence_release(struct dma_fence *fence)
106 {
107 	struct i915_request *rq = to_request(fence);
108 
109 	/*
110 	 * The request is put onto a RCU freelist (i.e. the address
111 	 * is immediately reused), mark the fences as being freed now.
112 	 * Otherwise the debugobjects for the fences are only marked as
113 	 * freed when the slab cache itself is freed, and so we would get
114 	 * caught trying to reuse dead objects.
115 	 */
116 	i915_sw_fence_fini(&rq->submit);
117 	i915_sw_fence_fini(&rq->semaphore);
118 
119 	kmem_cache_free(global.slab_requests, rq);
120 }
121 
122 const struct dma_fence_ops i915_fence_ops = {
123 	.get_driver_name = i915_fence_get_driver_name,
124 	.get_timeline_name = i915_fence_get_timeline_name,
125 	.enable_signaling = i915_fence_enable_signaling,
126 	.signaled = i915_fence_signaled,
127 	.wait = i915_fence_wait,
128 	.release = i915_fence_release,
129 };
130 
131 static void irq_execute_cb(struct irq_work *wrk)
132 {
133 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
134 
135 	i915_sw_fence_complete(cb->fence);
136 	kmem_cache_free(global.slab_execute_cbs, cb);
137 }
138 
139 static void irq_execute_cb_hook(struct irq_work *wrk)
140 {
141 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
142 
143 	cb->hook(container_of(cb->fence, struct i915_request, submit),
144 		 &cb->signal->fence);
145 	i915_request_put(cb->signal);
146 
147 	irq_execute_cb(wrk);
148 }
149 
150 static void __notify_execute_cb(struct i915_request *rq)
151 {
152 	struct execute_cb *cb;
153 
154 	lockdep_assert_held(&rq->lock);
155 
156 	if (list_empty(&rq->execute_cb))
157 		return;
158 
159 	list_for_each_entry(cb, &rq->execute_cb, link)
160 		irq_work_queue(&cb->work);
161 
162 	/*
163 	 * XXX Rollback on __i915_request_unsubmit()
164 	 *
165 	 * In the future, perhaps when we have an active time-slicing scheduler,
166 	 * it will be interesting to unsubmit parallel execution and remove
167 	 * busywaits from the GPU until their master is restarted. This is
168 	 * quite hairy, we have to carefully rollback the fence and do a
169 	 * preempt-to-idle cycle on the target engine, all the while the
170 	 * master execute_cb may refire.
171 	 */
172 	INIT_LIST_HEAD(&rq->execute_cb);
173 }
174 
175 static inline void
176 remove_from_client(struct i915_request *request)
177 {
178 	struct drm_i915_file_private *file_priv;
179 
180 	if (!READ_ONCE(request->file_priv))
181 		return;
182 
183 	rcu_read_lock();
184 	file_priv = xchg(&request->file_priv, NULL);
185 	if (file_priv) {
186 		spin_lock(&file_priv->mm.lock);
187 		list_del(&request->client_link);
188 		spin_unlock(&file_priv->mm.lock);
189 	}
190 	rcu_read_unlock();
191 }
192 
193 static void free_capture_list(struct i915_request *request)
194 {
195 	struct i915_capture_list *capture;
196 
197 	capture = fetch_and_zero(&request->capture_list);
198 	while (capture) {
199 		struct i915_capture_list *next = capture->next;
200 
201 		kfree(capture);
202 		capture = next;
203 	}
204 }
205 
206 static void remove_from_engine(struct i915_request *rq)
207 {
208 	struct intel_engine_cs *engine, *locked;
209 
210 	/*
211 	 * Virtual engines complicate acquiring the engine timeline lock,
212 	 * as their rq->engine pointer is not stable until under that
213 	 * engine lock. The simple ploy we use is to take the lock then
214 	 * check that the rq still belongs to the newly locked engine.
215 	 */
216 	locked = READ_ONCE(rq->engine);
217 	spin_lock_irq(&locked->active.lock);
218 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
219 		spin_unlock(&locked->active.lock);
220 		spin_lock(&engine->active.lock);
221 		locked = engine;
222 	}
223 	list_del_init(&rq->sched.link);
224 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
225 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
226 	spin_unlock_irq(&locked->active.lock);
227 }
228 
229 bool i915_request_retire(struct i915_request *rq)
230 {
231 	if (!i915_request_completed(rq))
232 		return false;
233 
234 	RQ_TRACE(rq, "\n");
235 
236 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
237 	trace_i915_request_retire(rq);
238 
239 	/*
240 	 * We know the GPU must have read the request to have
241 	 * sent us the seqno + interrupt, so use the position
242 	 * of tail of the request to update the last known position
243 	 * of the GPU head.
244 	 *
245 	 * Note this requires that we are always called in request
246 	 * completion order.
247 	 */
248 	GEM_BUG_ON(!list_is_first(&rq->link,
249 				  &i915_request_timeline(rq)->requests));
250 	rq->ring->head = rq->postfix;
251 
252 	/*
253 	 * We only loosely track inflight requests across preemption,
254 	 * and so we may find ourselves attempting to retire a _completed_
255 	 * request that we have removed from the HW and put back on a run
256 	 * queue.
257 	 */
258 	remove_from_engine(rq);
259 
260 	spin_lock_irq(&rq->lock);
261 	i915_request_mark_complete(rq);
262 	if (!i915_request_signaled(rq))
263 		dma_fence_signal_locked(&rq->fence);
264 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
265 		i915_request_cancel_breadcrumb(rq);
266 	if (i915_request_has_waitboost(rq)) {
267 		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
268 		atomic_dec(&rq->engine->gt->rps.num_waiters);
269 	}
270 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
271 		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
272 		__notify_execute_cb(rq);
273 	}
274 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
275 	spin_unlock_irq(&rq->lock);
276 
277 	remove_from_client(rq);
278 	list_del_rcu(&rq->link);
279 
280 	intel_context_exit(rq->context);
281 	intel_context_unpin(rq->context);
282 
283 	free_capture_list(rq);
284 	i915_sched_node_fini(&rq->sched);
285 	i915_request_put(rq);
286 
287 	return true;
288 }
289 
290 void i915_request_retire_upto(struct i915_request *rq)
291 {
292 	struct intel_timeline * const tl = i915_request_timeline(rq);
293 	struct i915_request *tmp;
294 
295 	RQ_TRACE(rq, "\n");
296 
297 	GEM_BUG_ON(!i915_request_completed(rq));
298 
299 	do {
300 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
301 	} while (i915_request_retire(tmp) && tmp != rq);
302 }
303 
304 static int
305 __await_execution(struct i915_request *rq,
306 		  struct i915_request *signal,
307 		  void (*hook)(struct i915_request *rq,
308 			       struct dma_fence *signal),
309 		  gfp_t gfp)
310 {
311 	struct execute_cb *cb;
312 
313 	if (i915_request_is_active(signal)) {
314 		if (hook)
315 			hook(rq, &signal->fence);
316 		return 0;
317 	}
318 
319 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
320 	if (!cb)
321 		return -ENOMEM;
322 
323 	cb->fence = &rq->submit;
324 	i915_sw_fence_await(cb->fence);
325 	init_irq_work(&cb->work, irq_execute_cb);
326 
327 	if (hook) {
328 		cb->hook = hook;
329 		cb->signal = i915_request_get(signal);
330 		cb->work.func = irq_execute_cb_hook;
331 	}
332 
333 	spin_lock_irq(&signal->lock);
334 	if (i915_request_is_active(signal)) {
335 		if (hook) {
336 			hook(rq, &signal->fence);
337 			i915_request_put(signal);
338 		}
339 		i915_sw_fence_complete(cb->fence);
340 		kmem_cache_free(global.slab_execute_cbs, cb);
341 	} else {
342 		list_add_tail(&cb->link, &signal->execute_cb);
343 	}
344 	spin_unlock_irq(&signal->lock);
345 
346 	/* Copy across semaphore status as we need the same behaviour */
347 	rq->sched.flags |= signal->sched.flags;
348 	return 0;
349 }
350 
351 bool __i915_request_submit(struct i915_request *request)
352 {
353 	struct intel_engine_cs *engine = request->engine;
354 	bool result = false;
355 
356 	RQ_TRACE(request, "\n");
357 
358 	GEM_BUG_ON(!irqs_disabled());
359 	lockdep_assert_held(&engine->active.lock);
360 
361 	/*
362 	 * With the advent of preempt-to-busy, we frequently encounter
363 	 * requests that we have unsubmitted from HW, but left running
364 	 * until the next ack and so have completed in the meantime. On
365 	 * resubmission of that completed request, we can skip
366 	 * updating the payload, and execlists can even skip submitting
367 	 * the request.
368 	 *
369 	 * We must remove the request from the caller's priority queue,
370 	 * and the caller must only call us when the request is in their
371 	 * priority queue, under the active.lock. This ensures that the
372 	 * request has *not* yet been retired and we can safely move
373 	 * the request into the engine->active.list where it will be
374 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
375 	 * request, this would be a horrible use-after-free.)
376 	 */
377 	if (i915_request_completed(request))
378 		goto xfer;
379 
380 	if (intel_context_is_banned(request->context))
381 		i915_request_skip(request, -EIO);
382 
383 	/*
384 	 * Are we using semaphores when the gpu is already saturated?
385 	 *
386 	 * Using semaphores incurs a cost in having the GPU poll a
387 	 * memory location, busywaiting for it to change. The continual
388 	 * memory reads can have a noticeable impact on the rest of the
389 	 * system with the extra bus traffic, stalling the cpu as it too
390 	 * tries to access memory across the bus (perf stat -e bus-cycles).
391 	 *
392 	 * If we installed a semaphore on this request and we only submit
393 	 * the request after the signaler completed, that indicates the
394 	 * system is overloaded and using semaphores at this time only
395 	 * increases the amount of work we are doing. If so, we disable
396 	 * further use of semaphores until we are idle again, whence we
397 	 * optimistically try again.
398 	 */
399 	if (request->sched.semaphores &&
400 	    i915_sw_fence_signaled(&request->semaphore))
401 		engine->saturated |= request->sched.semaphores;
402 
403 	engine->emit_fini_breadcrumb(request,
404 				     request->ring->vaddr + request->postfix);
405 
406 	trace_i915_request_execute(request);
407 	engine->serial++;
408 	result = true;
409 
410 xfer:	/* We may be recursing from the signal callback of another i915 fence */
411 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
412 
413 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
414 		list_move_tail(&request->sched.link, &engine->active.requests);
415 		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
416 	}
417 
418 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
419 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
420 	    !i915_request_enable_breadcrumb(request))
421 		intel_engine_signal_breadcrumbs(engine);
422 
423 	__notify_execute_cb(request);
424 
425 	spin_unlock(&request->lock);
426 
427 	return result;
428 }
429 
430 void i915_request_submit(struct i915_request *request)
431 {
432 	struct intel_engine_cs *engine = request->engine;
433 	unsigned long flags;
434 
435 	/* Will be called from irq-context when using foreign fences. */
436 	spin_lock_irqsave(&engine->active.lock, flags);
437 
438 	__i915_request_submit(request);
439 
440 	spin_unlock_irqrestore(&engine->active.lock, flags);
441 }
442 
443 void __i915_request_unsubmit(struct i915_request *request)
444 {
445 	struct intel_engine_cs *engine = request->engine;
446 
447 	RQ_TRACE(request, "\n");
448 
449 	GEM_BUG_ON(!irqs_disabled());
450 	lockdep_assert_held(&engine->active.lock);
451 
452 	/*
453 	 * Only unwind in reverse order, required so that the per-context list
454 	 * is kept in seqno/ring order.
455 	 */
456 
457 	/* We may be recursing from the signal callback of another i915 fence */
458 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
459 
460 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
461 		i915_request_cancel_breadcrumb(request);
462 
463 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
464 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
465 
466 	spin_unlock(&request->lock);
467 
468 	/* We've already spun, don't charge on resubmitting. */
469 	if (request->sched.semaphores && i915_request_started(request)) {
470 		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
471 		request->sched.semaphores = 0;
472 	}
473 
474 	/*
475 	 * We don't need to wake_up any waiters on request->execute, they
476 	 * will get woken by any other event or us re-adding this request
477 	 * to the engine timeline (__i915_request_submit()). The waiters
478 	 * should be quite adapt at finding that the request now has a new
479 	 * global_seqno to the one they went to sleep on.
480 	 */
481 }
482 
483 void i915_request_unsubmit(struct i915_request *request)
484 {
485 	struct intel_engine_cs *engine = request->engine;
486 	unsigned long flags;
487 
488 	/* Will be called from irq-context when using foreign fences. */
489 	spin_lock_irqsave(&engine->active.lock, flags);
490 
491 	__i915_request_unsubmit(request);
492 
493 	spin_unlock_irqrestore(&engine->active.lock, flags);
494 }
495 
496 static int __i915_sw_fence_call
497 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
498 {
499 	struct i915_request *request =
500 		container_of(fence, typeof(*request), submit);
501 
502 	switch (state) {
503 	case FENCE_COMPLETE:
504 		trace_i915_request_submit(request);
505 
506 		if (unlikely(fence->error))
507 			i915_request_skip(request, fence->error);
508 
509 		/*
510 		 * We need to serialize use of the submit_request() callback
511 		 * with its hotplugging performed during an emergency
512 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
513 		 * critical section in order to force i915_gem_set_wedged() to
514 		 * wait until the submit_request() is completed before
515 		 * proceeding.
516 		 */
517 		rcu_read_lock();
518 		request->engine->submit_request(request);
519 		rcu_read_unlock();
520 		break;
521 
522 	case FENCE_FREE:
523 		i915_request_put(request);
524 		break;
525 	}
526 
527 	return NOTIFY_DONE;
528 }
529 
530 static void irq_semaphore_cb(struct irq_work *wrk)
531 {
532 	struct i915_request *rq =
533 		container_of(wrk, typeof(*rq), semaphore_work);
534 
535 	i915_schedule_bump_priority(rq, I915_PRIORITY_NOSEMAPHORE);
536 	i915_request_put(rq);
537 }
538 
539 static int __i915_sw_fence_call
540 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
541 {
542 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
543 
544 	switch (state) {
545 	case FENCE_COMPLETE:
546 		if (!(READ_ONCE(rq->sched.attr.priority) & I915_PRIORITY_NOSEMAPHORE)) {
547 			i915_request_get(rq);
548 			init_irq_work(&rq->semaphore_work, irq_semaphore_cb);
549 			irq_work_queue(&rq->semaphore_work);
550 		}
551 		break;
552 
553 	case FENCE_FREE:
554 		i915_request_put(rq);
555 		break;
556 	}
557 
558 	return NOTIFY_DONE;
559 }
560 
561 static void retire_requests(struct intel_timeline *tl)
562 {
563 	struct i915_request *rq, *rn;
564 
565 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
566 		if (!i915_request_retire(rq))
567 			break;
568 }
569 
570 static noinline struct i915_request *
571 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
572 {
573 	struct i915_request *rq;
574 
575 	if (list_empty(&tl->requests))
576 		goto out;
577 
578 	if (!gfpflags_allow_blocking(gfp))
579 		goto out;
580 
581 	/* Move our oldest request to the slab-cache (if not in use!) */
582 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
583 	i915_request_retire(rq);
584 
585 	rq = kmem_cache_alloc(global.slab_requests,
586 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
587 	if (rq)
588 		return rq;
589 
590 	/* Ratelimit ourselves to prevent oom from malicious clients */
591 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
592 	cond_synchronize_rcu(rq->rcustate);
593 
594 	/* Retire our old requests in the hope that we free some */
595 	retire_requests(tl);
596 
597 out:
598 	return kmem_cache_alloc(global.slab_requests, gfp);
599 }
600 
601 static void __i915_request_ctor(void *arg)
602 {
603 	struct i915_request *rq = arg;
604 
605 	spin_lock_init(&rq->lock);
606 	i915_sched_node_init(&rq->sched);
607 	i915_sw_fence_init(&rq->submit, submit_notify);
608 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
609 
610 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
611 
612 	rq->file_priv = NULL;
613 	rq->capture_list = NULL;
614 
615 	INIT_LIST_HEAD(&rq->execute_cb);
616 }
617 
618 struct i915_request *
619 __i915_request_create(struct intel_context *ce, gfp_t gfp)
620 {
621 	struct intel_timeline *tl = ce->timeline;
622 	struct i915_request *rq;
623 	u32 seqno;
624 	int ret;
625 
626 	might_sleep_if(gfpflags_allow_blocking(gfp));
627 
628 	/* Check that the caller provided an already pinned context */
629 	__intel_context_pin(ce);
630 
631 	/*
632 	 * Beware: Dragons be flying overhead.
633 	 *
634 	 * We use RCU to look up requests in flight. The lookups may
635 	 * race with the request being allocated from the slab freelist.
636 	 * That is the request we are writing to here, may be in the process
637 	 * of being read by __i915_active_request_get_rcu(). As such,
638 	 * we have to be very careful when overwriting the contents. During
639 	 * the RCU lookup, we change chase the request->engine pointer,
640 	 * read the request->global_seqno and increment the reference count.
641 	 *
642 	 * The reference count is incremented atomically. If it is zero,
643 	 * the lookup knows the request is unallocated and complete. Otherwise,
644 	 * it is either still in use, or has been reallocated and reset
645 	 * with dma_fence_init(). This increment is safe for release as we
646 	 * check that the request we have a reference to and matches the active
647 	 * request.
648 	 *
649 	 * Before we increment the refcount, we chase the request->engine
650 	 * pointer. We must not call kmem_cache_zalloc() or else we set
651 	 * that pointer to NULL and cause a crash during the lookup. If
652 	 * we see the request is completed (based on the value of the
653 	 * old engine and seqno), the lookup is complete and reports NULL.
654 	 * If we decide the request is not completed (new engine or seqno),
655 	 * then we grab a reference and double check that it is still the
656 	 * active request - which it won't be and restart the lookup.
657 	 *
658 	 * Do not use kmem_cache_zalloc() here!
659 	 */
660 	rq = kmem_cache_alloc(global.slab_requests,
661 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
662 	if (unlikely(!rq)) {
663 		rq = request_alloc_slow(tl, gfp);
664 		if (!rq) {
665 			ret = -ENOMEM;
666 			goto err_unreserve;
667 		}
668 	}
669 
670 	rq->i915 = ce->engine->i915;
671 	rq->context = ce;
672 	rq->engine = ce->engine;
673 	rq->ring = ce->ring;
674 	rq->execution_mask = ce->engine->mask;
675 
676 	kref_init(&rq->fence.refcount);
677 	rq->fence.flags = 0;
678 	rq->fence.error = 0;
679 	INIT_LIST_HEAD(&rq->fence.cb_list);
680 
681 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
682 	if (ret)
683 		goto err_free;
684 
685 	rq->fence.context = tl->fence_context;
686 	rq->fence.seqno = seqno;
687 
688 	RCU_INIT_POINTER(rq->timeline, tl);
689 	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
690 	rq->hwsp_seqno = tl->hwsp_seqno;
691 
692 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
693 
694 	/* We bump the ref for the fence chain */
695 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
696 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
697 
698 	i915_sched_node_reinit(&rq->sched);
699 
700 	/* No zalloc, everything must be cleared after use */
701 	rq->batch = NULL;
702 	GEM_BUG_ON(rq->file_priv);
703 	GEM_BUG_ON(rq->capture_list);
704 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
705 
706 	/*
707 	 * Reserve space in the ring buffer for all the commands required to
708 	 * eventually emit this request. This is to guarantee that the
709 	 * i915_request_add() call can't fail. Note that the reserve may need
710 	 * to be redone if the request is not actually submitted straight
711 	 * away, e.g. because a GPU scheduler has deferred it.
712 	 *
713 	 * Note that due to how we add reserved_space to intel_ring_begin()
714 	 * we need to double our request to ensure that if we need to wrap
715 	 * around inside i915_request_add() there is sufficient space at
716 	 * the beginning of the ring as well.
717 	 */
718 	rq->reserved_space =
719 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
720 
721 	/*
722 	 * Record the position of the start of the request so that
723 	 * should we detect the updated seqno part-way through the
724 	 * GPU processing the request, we never over-estimate the
725 	 * position of the head.
726 	 */
727 	rq->head = rq->ring->emit;
728 
729 	ret = rq->engine->request_alloc(rq);
730 	if (ret)
731 		goto err_unwind;
732 
733 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
734 
735 	intel_context_mark_active(ce);
736 	list_add_tail_rcu(&rq->link, &tl->requests);
737 
738 	return rq;
739 
740 err_unwind:
741 	ce->ring->emit = rq->head;
742 
743 	/* Make sure we didn't add ourselves to external state before freeing */
744 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
745 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
746 
747 err_free:
748 	kmem_cache_free(global.slab_requests, rq);
749 err_unreserve:
750 	intel_context_unpin(ce);
751 	return ERR_PTR(ret);
752 }
753 
754 struct i915_request *
755 i915_request_create(struct intel_context *ce)
756 {
757 	struct i915_request *rq;
758 	struct intel_timeline *tl;
759 
760 	tl = intel_context_timeline_lock(ce);
761 	if (IS_ERR(tl))
762 		return ERR_CAST(tl);
763 
764 	/* Move our oldest request to the slab-cache (if not in use!) */
765 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
766 	if (!list_is_last(&rq->link, &tl->requests))
767 		i915_request_retire(rq);
768 
769 	intel_context_enter(ce);
770 	rq = __i915_request_create(ce, GFP_KERNEL);
771 	intel_context_exit(ce); /* active reference transferred to request */
772 	if (IS_ERR(rq))
773 		goto err_unlock;
774 
775 	/* Check that we do not interrupt ourselves with a new request */
776 	rq->cookie = lockdep_pin_lock(&tl->mutex);
777 
778 	return rq;
779 
780 err_unlock:
781 	intel_context_timeline_unlock(tl);
782 	return rq;
783 }
784 
785 static int
786 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
787 {
788 	struct dma_fence *fence;
789 	int err;
790 
791 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
792 		return 0;
793 
794 	if (i915_request_started(signal))
795 		return 0;
796 
797 	fence = NULL;
798 	rcu_read_lock();
799 	spin_lock_irq(&signal->lock);
800 	do {
801 		struct list_head *pos = READ_ONCE(signal->link.prev);
802 		struct i915_request *prev;
803 
804 		/* Confirm signal has not been retired, the link is valid */
805 		if (unlikely(i915_request_started(signal)))
806 			break;
807 
808 		/* Is signal the earliest request on its timeline? */
809 		if (pos == &rcu_dereference(signal->timeline)->requests)
810 			break;
811 
812 		/*
813 		 * Peek at the request before us in the timeline. That
814 		 * request will only be valid before it is retired, so
815 		 * after acquiring a reference to it, confirm that it is
816 		 * still part of the signaler's timeline.
817 		 */
818 		prev = list_entry(pos, typeof(*prev), link);
819 		if (!i915_request_get_rcu(prev))
820 			break;
821 
822 		/* After the strong barrier, confirm prev is still attached */
823 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
824 			i915_request_put(prev);
825 			break;
826 		}
827 
828 		fence = &prev->fence;
829 	} while (0);
830 	spin_unlock_irq(&signal->lock);
831 	rcu_read_unlock();
832 	if (!fence)
833 		return 0;
834 
835 	err = 0;
836 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
837 		err = i915_sw_fence_await_dma_fence(&rq->submit,
838 						    fence, 0,
839 						    I915_FENCE_GFP);
840 	dma_fence_put(fence);
841 
842 	return err;
843 }
844 
845 static intel_engine_mask_t
846 already_busywaiting(struct i915_request *rq)
847 {
848 	/*
849 	 * Polling a semaphore causes bus traffic, delaying other users of
850 	 * both the GPU and CPU. We want to limit the impact on others,
851 	 * while taking advantage of early submission to reduce GPU
852 	 * latency. Therefore we restrict ourselves to not using more
853 	 * than one semaphore from each source, and not using a semaphore
854 	 * if we have detected the engine is saturated (i.e. would not be
855 	 * submitted early and cause bus traffic reading an already passed
856 	 * semaphore).
857 	 *
858 	 * See the are-we-too-late? check in __i915_request_submit().
859 	 */
860 	return rq->sched.semaphores | rq->engine->saturated;
861 }
862 
863 static int
864 __emit_semaphore_wait(struct i915_request *to,
865 		      struct i915_request *from,
866 		      u32 seqno)
867 {
868 	const int has_token = INTEL_GEN(to->i915) >= 12;
869 	u32 hwsp_offset;
870 	int len, err;
871 	u32 *cs;
872 
873 	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
874 
875 	/* We need to pin the signaler's HWSP until we are finished reading. */
876 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
877 	if (err)
878 		return err;
879 
880 	len = 4;
881 	if (has_token)
882 		len += 2;
883 
884 	cs = intel_ring_begin(to, len);
885 	if (IS_ERR(cs))
886 		return PTR_ERR(cs);
887 
888 	/*
889 	 * Using greater-than-or-equal here means we have to worry
890 	 * about seqno wraparound. To side step that issue, we swap
891 	 * the timeline HWSP upon wrapping, so that everyone listening
892 	 * for the old (pre-wrap) values do not see the much smaller
893 	 * (post-wrap) values than they were expecting (and so wait
894 	 * forever).
895 	 */
896 	*cs++ = (MI_SEMAPHORE_WAIT |
897 		 MI_SEMAPHORE_GLOBAL_GTT |
898 		 MI_SEMAPHORE_POLL |
899 		 MI_SEMAPHORE_SAD_GTE_SDD) +
900 		has_token;
901 	*cs++ = seqno;
902 	*cs++ = hwsp_offset;
903 	*cs++ = 0;
904 	if (has_token) {
905 		*cs++ = 0;
906 		*cs++ = MI_NOOP;
907 	}
908 
909 	intel_ring_advance(to, cs);
910 	return 0;
911 }
912 
913 static int
914 emit_semaphore_wait(struct i915_request *to,
915 		    struct i915_request *from,
916 		    gfp_t gfp)
917 {
918 	/* Just emit the first semaphore we see as request space is limited. */
919 	if (already_busywaiting(to) & from->engine->mask)
920 		goto await_fence;
921 
922 	if (i915_request_await_start(to, from) < 0)
923 		goto await_fence;
924 
925 	/* Only submit our spinner after the signaler is running! */
926 	if (__await_execution(to, from, NULL, gfp))
927 		goto await_fence;
928 
929 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
930 		goto await_fence;
931 
932 	to->sched.semaphores |= from->engine->mask;
933 	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
934 	return 0;
935 
936 await_fence:
937 	return i915_sw_fence_await_dma_fence(&to->submit,
938 					     &from->fence, 0,
939 					     I915_FENCE_GFP);
940 }
941 
942 static int
943 i915_request_await_request(struct i915_request *to, struct i915_request *from)
944 {
945 	int ret;
946 
947 	GEM_BUG_ON(to == from);
948 	GEM_BUG_ON(to->timeline == from->timeline);
949 
950 	if (i915_request_completed(from))
951 		return 0;
952 
953 	if (to->engine->schedule) {
954 		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
955 		if (ret < 0)
956 			return ret;
957 	}
958 
959 	if (to->engine == from->engine)
960 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
961 						       &from->submit,
962 						       I915_FENCE_GFP);
963 	else if (intel_context_use_semaphores(to->context))
964 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
965 	else
966 		ret = i915_sw_fence_await_dma_fence(&to->submit,
967 						    &from->fence, 0,
968 						    I915_FENCE_GFP);
969 	if (ret < 0)
970 		return ret;
971 
972 	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
973 		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
974 						    &from->fence, 0,
975 						    I915_FENCE_GFP);
976 		if (ret < 0)
977 			return ret;
978 	}
979 
980 	return 0;
981 }
982 
983 int
984 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
985 {
986 	struct dma_fence **child = &fence;
987 	unsigned int nchild = 1;
988 	int ret;
989 
990 	/*
991 	 * Note that if the fence-array was created in signal-on-any mode,
992 	 * we should *not* decompose it into its individual fences. However,
993 	 * we don't currently store which mode the fence-array is operating
994 	 * in. Fortunately, the only user of signal-on-any is private to
995 	 * amdgpu and we should not see any incoming fence-array from
996 	 * sync-file being in signal-on-any mode.
997 	 */
998 	if (dma_fence_is_array(fence)) {
999 		struct dma_fence_array *array = to_dma_fence_array(fence);
1000 
1001 		child = array->fences;
1002 		nchild = array->num_fences;
1003 		GEM_BUG_ON(!nchild);
1004 	}
1005 
1006 	do {
1007 		fence = *child++;
1008 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1009 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1010 			continue;
1011 		}
1012 
1013 		/*
1014 		 * Requests on the same timeline are explicitly ordered, along
1015 		 * with their dependencies, by i915_request_add() which ensures
1016 		 * that requests are submitted in-order through each ring.
1017 		 */
1018 		if (fence->context == rq->fence.context)
1019 			continue;
1020 
1021 		/* Squash repeated waits to the same timelines */
1022 		if (fence->context &&
1023 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1024 						 fence))
1025 			continue;
1026 
1027 		if (dma_fence_is_i915(fence))
1028 			ret = i915_request_await_request(rq, to_request(fence));
1029 		else
1030 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1031 							    fence->context ? I915_FENCE_TIMEOUT : 0,
1032 							    I915_FENCE_GFP);
1033 		if (ret < 0)
1034 			return ret;
1035 
1036 		/* Record the latest fence used against each timeline */
1037 		if (fence->context)
1038 			intel_timeline_sync_set(i915_request_timeline(rq),
1039 						fence);
1040 	} while (--nchild);
1041 
1042 	return 0;
1043 }
1044 
1045 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1046 					  struct dma_fence *fence)
1047 {
1048 	return __intel_timeline_sync_is_later(tl,
1049 					      fence->context,
1050 					      fence->seqno - 1);
1051 }
1052 
1053 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1054 					 const struct dma_fence *fence)
1055 {
1056 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1057 }
1058 
1059 static int
1060 __i915_request_await_execution(struct i915_request *to,
1061 			       struct i915_request *from,
1062 			       void (*hook)(struct i915_request *rq,
1063 					    struct dma_fence *signal))
1064 {
1065 	int err;
1066 
1067 	/* Submit both requests at the same time */
1068 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1069 	if (err)
1070 		return err;
1071 
1072 	/* Squash repeated depenendices to the same timelines */
1073 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1074 					  &from->fence))
1075 		return 0;
1076 
1077 	/* Ensure both start together [after all semaphores in signal] */
1078 	if (intel_engine_has_semaphores(to->engine))
1079 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1080 	else
1081 		err = i915_request_await_start(to, from);
1082 	if (err < 0)
1083 		return err;
1084 
1085 	/* Couple the dependency tree for PI on this exposed to->fence */
1086 	if (to->engine->schedule) {
1087 		err = i915_sched_node_add_dependency(&to->sched, &from->sched);
1088 		if (err < 0)
1089 			return err;
1090 	}
1091 
1092 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1093 					     &from->fence);
1094 }
1095 
1096 int
1097 i915_request_await_execution(struct i915_request *rq,
1098 			     struct dma_fence *fence,
1099 			     void (*hook)(struct i915_request *rq,
1100 					  struct dma_fence *signal))
1101 {
1102 	struct dma_fence **child = &fence;
1103 	unsigned int nchild = 1;
1104 	int ret;
1105 
1106 	if (dma_fence_is_array(fence)) {
1107 		struct dma_fence_array *array = to_dma_fence_array(fence);
1108 
1109 		/* XXX Error for signal-on-any fence arrays */
1110 
1111 		child = array->fences;
1112 		nchild = array->num_fences;
1113 		GEM_BUG_ON(!nchild);
1114 	}
1115 
1116 	do {
1117 		fence = *child++;
1118 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1119 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1120 			continue;
1121 		}
1122 
1123 		/*
1124 		 * We don't squash repeated fence dependencies here as we
1125 		 * want to run our callback in all cases.
1126 		 */
1127 
1128 		if (dma_fence_is_i915(fence))
1129 			ret = __i915_request_await_execution(rq,
1130 							     to_request(fence),
1131 							     hook);
1132 		else
1133 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1134 							    I915_FENCE_TIMEOUT,
1135 							    GFP_KERNEL);
1136 		if (ret < 0)
1137 			return ret;
1138 	} while (--nchild);
1139 
1140 	return 0;
1141 }
1142 
1143 /**
1144  * i915_request_await_object - set this request to (async) wait upon a bo
1145  * @to: request we are wishing to use
1146  * @obj: object which may be in use on another ring.
1147  * @write: whether the wait is on behalf of a writer
1148  *
1149  * This code is meant to abstract object synchronization with the GPU.
1150  * Conceptually we serialise writes between engines inside the GPU.
1151  * We only allow one engine to write into a buffer at any time, but
1152  * multiple readers. To ensure each has a coherent view of memory, we must:
1153  *
1154  * - If there is an outstanding write request to the object, the new
1155  *   request must wait for it to complete (either CPU or in hw, requests
1156  *   on the same ring will be naturally ordered).
1157  *
1158  * - If we are a write request (pending_write_domain is set), the new
1159  *   request must wait for outstanding read requests to complete.
1160  *
1161  * Returns 0 if successful, else propagates up the lower layer error.
1162  */
1163 int
1164 i915_request_await_object(struct i915_request *to,
1165 			  struct drm_i915_gem_object *obj,
1166 			  bool write)
1167 {
1168 	struct dma_fence *excl;
1169 	int ret = 0;
1170 
1171 	if (write) {
1172 		struct dma_fence **shared;
1173 		unsigned int count, i;
1174 
1175 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1176 							&excl, &count, &shared);
1177 		if (ret)
1178 			return ret;
1179 
1180 		for (i = 0; i < count; i++) {
1181 			ret = i915_request_await_dma_fence(to, shared[i]);
1182 			if (ret)
1183 				break;
1184 
1185 			dma_fence_put(shared[i]);
1186 		}
1187 
1188 		for (; i < count; i++)
1189 			dma_fence_put(shared[i]);
1190 		kfree(shared);
1191 	} else {
1192 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1193 	}
1194 
1195 	if (excl) {
1196 		if (ret == 0)
1197 			ret = i915_request_await_dma_fence(to, excl);
1198 
1199 		dma_fence_put(excl);
1200 	}
1201 
1202 	return ret;
1203 }
1204 
1205 void i915_request_skip(struct i915_request *rq, int error)
1206 {
1207 	void *vaddr = rq->ring->vaddr;
1208 	u32 head;
1209 
1210 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1211 	dma_fence_set_error(&rq->fence, error);
1212 
1213 	if (rq->infix == rq->postfix)
1214 		return;
1215 
1216 	/*
1217 	 * As this request likely depends on state from the lost
1218 	 * context, clear out all the user operations leaving the
1219 	 * breadcrumb at the end (so we get the fence notifications).
1220 	 */
1221 	head = rq->infix;
1222 	if (rq->postfix < head) {
1223 		memset(vaddr + head, 0, rq->ring->size - head);
1224 		head = 0;
1225 	}
1226 	memset(vaddr + head, 0, rq->postfix - head);
1227 	rq->infix = rq->postfix;
1228 }
1229 
1230 static struct i915_request *
1231 __i915_request_add_to_timeline(struct i915_request *rq)
1232 {
1233 	struct intel_timeline *timeline = i915_request_timeline(rq);
1234 	struct i915_request *prev;
1235 
1236 	/*
1237 	 * Dependency tracking and request ordering along the timeline
1238 	 * is special cased so that we can eliminate redundant ordering
1239 	 * operations while building the request (we know that the timeline
1240 	 * itself is ordered, and here we guarantee it).
1241 	 *
1242 	 * As we know we will need to emit tracking along the timeline,
1243 	 * we embed the hooks into our request struct -- at the cost of
1244 	 * having to have specialised no-allocation interfaces (which will
1245 	 * be beneficial elsewhere).
1246 	 *
1247 	 * A second benefit to open-coding i915_request_await_request is
1248 	 * that we can apply a slight variant of the rules specialised
1249 	 * for timelines that jump between engines (such as virtual engines).
1250 	 * If we consider the case of virtual engine, we must emit a dma-fence
1251 	 * to prevent scheduling of the second request until the first is
1252 	 * complete (to maximise our greedy late load balancing) and this
1253 	 * precludes optimising to use semaphores serialisation of a single
1254 	 * timeline across engines.
1255 	 */
1256 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1257 						  &rq->fence));
1258 	if (prev && !i915_request_completed(prev)) {
1259 		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1260 			i915_sw_fence_await_sw_fence(&rq->submit,
1261 						     &prev->submit,
1262 						     &rq->submitq);
1263 		else
1264 			__i915_sw_fence_await_dma_fence(&rq->submit,
1265 							&prev->fence,
1266 							&rq->dmaq);
1267 		if (rq->engine->schedule)
1268 			__i915_sched_node_add_dependency(&rq->sched,
1269 							 &prev->sched,
1270 							 &rq->dep,
1271 							 0);
1272 	}
1273 
1274 	/*
1275 	 * Make sure that no request gazumped us - if it was allocated after
1276 	 * our i915_request_alloc() and called __i915_request_add() before
1277 	 * us, the timeline will hold its seqno which is later than ours.
1278 	 */
1279 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1280 
1281 	return prev;
1282 }
1283 
1284 /*
1285  * NB: This function is not allowed to fail. Doing so would mean the the
1286  * request is not being tracked for completion but the work itself is
1287  * going to happen on the hardware. This would be a Bad Thing(tm).
1288  */
1289 struct i915_request *__i915_request_commit(struct i915_request *rq)
1290 {
1291 	struct intel_engine_cs *engine = rq->engine;
1292 	struct intel_ring *ring = rq->ring;
1293 	u32 *cs;
1294 
1295 	RQ_TRACE(rq, "\n");
1296 
1297 	/*
1298 	 * To ensure that this call will not fail, space for its emissions
1299 	 * should already have been reserved in the ring buffer. Let the ring
1300 	 * know that it is time to use that space up.
1301 	 */
1302 	GEM_BUG_ON(rq->reserved_space > ring->space);
1303 	rq->reserved_space = 0;
1304 	rq->emitted_jiffies = jiffies;
1305 
1306 	/*
1307 	 * Record the position of the start of the breadcrumb so that
1308 	 * should we detect the updated seqno part-way through the
1309 	 * GPU processing the request, we never over-estimate the
1310 	 * position of the ring's HEAD.
1311 	 */
1312 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1313 	GEM_BUG_ON(IS_ERR(cs));
1314 	rq->postfix = intel_ring_offset(rq, cs);
1315 
1316 	return __i915_request_add_to_timeline(rq);
1317 }
1318 
1319 void __i915_request_queue(struct i915_request *rq,
1320 			  const struct i915_sched_attr *attr)
1321 {
1322 	/*
1323 	 * Let the backend know a new request has arrived that may need
1324 	 * to adjust the existing execution schedule due to a high priority
1325 	 * request - i.e. we may want to preempt the current request in order
1326 	 * to run a high priority dependency chain *before* we can execute this
1327 	 * request.
1328 	 *
1329 	 * This is called before the request is ready to run so that we can
1330 	 * decide whether to preempt the entire chain so that it is ready to
1331 	 * run at the earliest possible convenience.
1332 	 */
1333 	if (attr && rq->engine->schedule)
1334 		rq->engine->schedule(rq, attr);
1335 	i915_sw_fence_commit(&rq->semaphore);
1336 	i915_sw_fence_commit(&rq->submit);
1337 }
1338 
1339 void i915_request_add(struct i915_request *rq)
1340 {
1341 	struct intel_timeline * const tl = i915_request_timeline(rq);
1342 	struct i915_sched_attr attr = {};
1343 	struct i915_request *prev;
1344 
1345 	lockdep_assert_held(&tl->mutex);
1346 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1347 
1348 	trace_i915_request_add(rq);
1349 
1350 	prev = __i915_request_commit(rq);
1351 
1352 	if (rcu_access_pointer(rq->context->gem_context))
1353 		attr = i915_request_gem_context(rq)->sched;
1354 
1355 	/*
1356 	 * Boost actual workloads past semaphores!
1357 	 *
1358 	 * With semaphores we spin on one engine waiting for another,
1359 	 * simply to reduce the latency of starting our work when
1360 	 * the signaler completes. However, if there is any other
1361 	 * work that we could be doing on this engine instead, that
1362 	 * is better utilisation and will reduce the overall duration
1363 	 * of the current work. To avoid PI boosting a semaphore
1364 	 * far in the distance past over useful work, we keep a history
1365 	 * of any semaphore use along our dependency chain.
1366 	 */
1367 	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1368 		attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1369 
1370 	/*
1371 	 * Boost priorities to new clients (new request flows).
1372 	 *
1373 	 * Allow interactive/synchronous clients to jump ahead of
1374 	 * the bulk clients. (FQ_CODEL)
1375 	 */
1376 	if (list_empty(&rq->sched.signalers_list))
1377 		attr.priority |= I915_PRIORITY_WAIT;
1378 
1379 	local_bh_disable();
1380 	__i915_request_queue(rq, &attr);
1381 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1382 
1383 	/*
1384 	 * In typical scenarios, we do not expect the previous request on
1385 	 * the timeline to be still tracked by timeline->last_request if it
1386 	 * has been completed. If the completed request is still here, that
1387 	 * implies that request retirement is a long way behind submission,
1388 	 * suggesting that we haven't been retiring frequently enough from
1389 	 * the combination of retire-before-alloc, waiters and the background
1390 	 * retirement worker. So if the last request on this timeline was
1391 	 * already completed, do a catch up pass, flushing the retirement queue
1392 	 * up to this client. Since we have now moved the heaviest operations
1393 	 * during retirement onto secondary workers, such as freeing objects
1394 	 * or contexts, retiring a bunch of requests is mostly list management
1395 	 * (and cache misses), and so we should not be overly penalizing this
1396 	 * client by performing excess work, though we may still performing
1397 	 * work on behalf of others -- but instead we should benefit from
1398 	 * improved resource management. (Well, that's the theory at least.)
1399 	 */
1400 	if (prev &&
1401 	    i915_request_completed(prev) &&
1402 	    rcu_access_pointer(prev->timeline) == tl)
1403 		i915_request_retire_upto(prev);
1404 
1405 	mutex_unlock(&tl->mutex);
1406 }
1407 
1408 static unsigned long local_clock_us(unsigned int *cpu)
1409 {
1410 	unsigned long t;
1411 
1412 	/*
1413 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1414 	 * The result and subsequent calculations are also defined in the same
1415 	 * approximate microseconds units. The principal source of timing
1416 	 * error here is from the simple truncation.
1417 	 *
1418 	 * Note that local_clock() is only defined wrt to the current CPU;
1419 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1420 	 * blocking preemption for the entire busywait, we can detect the CPU
1421 	 * switch and use that as indicator of system load and a reason to
1422 	 * stop busywaiting, see busywait_stop().
1423 	 */
1424 	*cpu = get_cpu();
1425 	t = local_clock() >> 10;
1426 	put_cpu();
1427 
1428 	return t;
1429 }
1430 
1431 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1432 {
1433 	unsigned int this_cpu;
1434 
1435 	if (time_after(local_clock_us(&this_cpu), timeout))
1436 		return true;
1437 
1438 	return this_cpu != cpu;
1439 }
1440 
1441 static bool __i915_spin_request(const struct i915_request * const rq,
1442 				int state, unsigned long timeout_us)
1443 {
1444 	unsigned int cpu;
1445 
1446 	/*
1447 	 * Only wait for the request if we know it is likely to complete.
1448 	 *
1449 	 * We don't track the timestamps around requests, nor the average
1450 	 * request length, so we do not have a good indicator that this
1451 	 * request will complete within the timeout. What we do know is the
1452 	 * order in which requests are executed by the context and so we can
1453 	 * tell if the request has been started. If the request is not even
1454 	 * running yet, it is a fair assumption that it will not complete
1455 	 * within our relatively short timeout.
1456 	 */
1457 	if (!i915_request_is_running(rq))
1458 		return false;
1459 
1460 	/*
1461 	 * When waiting for high frequency requests, e.g. during synchronous
1462 	 * rendering split between the CPU and GPU, the finite amount of time
1463 	 * required to set up the irq and wait upon it limits the response
1464 	 * rate. By busywaiting on the request completion for a short while we
1465 	 * can service the high frequency waits as quick as possible. However,
1466 	 * if it is a slow request, we want to sleep as quickly as possible.
1467 	 * The tradeoff between waiting and sleeping is roughly the time it
1468 	 * takes to sleep on a request, on the order of a microsecond.
1469 	 */
1470 
1471 	timeout_us += local_clock_us(&cpu);
1472 	do {
1473 		if (i915_request_completed(rq))
1474 			return true;
1475 
1476 		if (signal_pending_state(state, current))
1477 			break;
1478 
1479 		if (busywait_stop(timeout_us, cpu))
1480 			break;
1481 
1482 		cpu_relax();
1483 	} while (!need_resched());
1484 
1485 	return false;
1486 }
1487 
1488 struct request_wait {
1489 	struct dma_fence_cb cb;
1490 	struct task_struct *tsk;
1491 };
1492 
1493 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1494 {
1495 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1496 
1497 	wake_up_process(wait->tsk);
1498 }
1499 
1500 /**
1501  * i915_request_wait - wait until execution of request has finished
1502  * @rq: the request to wait upon
1503  * @flags: how to wait
1504  * @timeout: how long to wait in jiffies
1505  *
1506  * i915_request_wait() waits for the request to be completed, for a
1507  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1508  * unbounded wait).
1509  *
1510  * Returns the remaining time (in jiffies) if the request completed, which may
1511  * be zero or -ETIME if the request is unfinished after the timeout expires.
1512  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1513  * pending before the request completes.
1514  */
1515 long i915_request_wait(struct i915_request *rq,
1516 		       unsigned int flags,
1517 		       long timeout)
1518 {
1519 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1520 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1521 	struct request_wait wait;
1522 
1523 	might_sleep();
1524 	GEM_BUG_ON(timeout < 0);
1525 
1526 	if (dma_fence_is_signaled(&rq->fence))
1527 		return timeout;
1528 
1529 	if (!timeout)
1530 		return -ETIME;
1531 
1532 	trace_i915_request_wait_begin(rq, flags);
1533 
1534 	/*
1535 	 * We must never wait on the GPU while holding a lock as we
1536 	 * may need to perform a GPU reset. So while we don't need to
1537 	 * serialise wait/reset with an explicit lock, we do want
1538 	 * lockdep to detect potential dependency cycles.
1539 	 */
1540 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1541 
1542 	/*
1543 	 * Optimistic spin before touching IRQs.
1544 	 *
1545 	 * We may use a rather large value here to offset the penalty of
1546 	 * switching away from the active task. Frequently, the client will
1547 	 * wait upon an old swapbuffer to throttle itself to remain within a
1548 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1549 	 * then it should not be waiting long at all, and a sleep now will incur
1550 	 * extra scheduler latency in producing the next frame. To try to
1551 	 * avoid adding the cost of enabling/disabling the interrupt to the
1552 	 * short wait, we first spin to see if the request would have completed
1553 	 * in the time taken to setup the interrupt.
1554 	 *
1555 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1556 	 * scheduler latency of a context switch, ignoring the secondary
1557 	 * impacts from a context switch such as cache eviction.
1558 	 *
1559 	 * The scheme used for low-latency IO is called "hybrid interrupt
1560 	 * polling". The suggestion there is to sleep until just before you
1561 	 * expect to be woken by the device interrupt and then poll for its
1562 	 * completion. That requires having a good predictor for the request
1563 	 * duration, which we currently lack.
1564 	 */
1565 	if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1566 	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1567 		dma_fence_signal(&rq->fence);
1568 		goto out;
1569 	}
1570 
1571 	/*
1572 	 * This client is about to stall waiting for the GPU. In many cases
1573 	 * this is undesirable and limits the throughput of the system, as
1574 	 * many clients cannot continue processing user input/output whilst
1575 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1576 	 * to the GPU load and thus incurs additional latency for the client.
1577 	 * We can circumvent that by promoting the GPU frequency to maximum
1578 	 * before we sleep. This makes the GPU throttle up much more quickly
1579 	 * (good for benchmarks and user experience, e.g. window animations),
1580 	 * but at a cost of spending more power processing the workload
1581 	 * (bad for battery).
1582 	 */
1583 	if (flags & I915_WAIT_PRIORITY) {
1584 		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1585 			intel_rps_boost(rq);
1586 		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1587 	}
1588 
1589 	wait.tsk = current;
1590 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1591 		goto out;
1592 
1593 	for (;;) {
1594 		set_current_state(state);
1595 
1596 		if (i915_request_completed(rq)) {
1597 			dma_fence_signal(&rq->fence);
1598 			break;
1599 		}
1600 
1601 		if (signal_pending_state(state, current)) {
1602 			timeout = -ERESTARTSYS;
1603 			break;
1604 		}
1605 
1606 		if (!timeout) {
1607 			timeout = -ETIME;
1608 			break;
1609 		}
1610 
1611 		intel_engine_flush_submission(rq->engine);
1612 		timeout = io_schedule_timeout(timeout);
1613 	}
1614 	__set_current_state(TASK_RUNNING);
1615 
1616 	dma_fence_remove_callback(&rq->fence, &wait.cb);
1617 
1618 out:
1619 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1620 	trace_i915_request_wait_end(rq);
1621 	return timeout;
1622 }
1623 
1624 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1625 #include "selftests/mock_request.c"
1626 #include "selftests/i915_request.c"
1627 #endif
1628 
1629 static void i915_global_request_shrink(void)
1630 {
1631 	kmem_cache_shrink(global.slab_dependencies);
1632 	kmem_cache_shrink(global.slab_execute_cbs);
1633 	kmem_cache_shrink(global.slab_requests);
1634 }
1635 
1636 static void i915_global_request_exit(void)
1637 {
1638 	kmem_cache_destroy(global.slab_dependencies);
1639 	kmem_cache_destroy(global.slab_execute_cbs);
1640 	kmem_cache_destroy(global.slab_requests);
1641 }
1642 
1643 static struct i915_global_request global = { {
1644 	.shrink = i915_global_request_shrink,
1645 	.exit = i915_global_request_exit,
1646 } };
1647 
1648 int __init i915_global_request_init(void)
1649 {
1650 	global.slab_requests =
1651 		kmem_cache_create("i915_request",
1652 				  sizeof(struct i915_request),
1653 				  __alignof__(struct i915_request),
1654 				  SLAB_HWCACHE_ALIGN |
1655 				  SLAB_RECLAIM_ACCOUNT |
1656 				  SLAB_TYPESAFE_BY_RCU,
1657 				  __i915_request_ctor);
1658 	if (!global.slab_requests)
1659 		return -ENOMEM;
1660 
1661 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1662 					     SLAB_HWCACHE_ALIGN |
1663 					     SLAB_RECLAIM_ACCOUNT |
1664 					     SLAB_TYPESAFE_BY_RCU);
1665 	if (!global.slab_execute_cbs)
1666 		goto err_requests;
1667 
1668 	global.slab_dependencies = KMEM_CACHE(i915_dependency,
1669 					      SLAB_HWCACHE_ALIGN |
1670 					      SLAB_RECLAIM_ACCOUNT);
1671 	if (!global.slab_dependencies)
1672 		goto err_execute_cbs;
1673 
1674 	i915_global_register(&global.base);
1675 	return 0;
1676 
1677 err_execute_cbs:
1678 	kmem_cache_destroy(global.slab_execute_cbs);
1679 err_requests:
1680 	kmem_cache_destroy(global.slab_requests);
1681 	return -ENOMEM;
1682 }
1683