1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 33 #include "gem/i915_gem_context.h" 34 #include "gt/intel_context.h" 35 #include "gt/intel_ring.h" 36 #include "gt/intel_rps.h" 37 38 #include "i915_active.h" 39 #include "i915_drv.h" 40 #include "i915_globals.h" 41 #include "i915_trace.h" 42 #include "intel_pm.h" 43 44 struct execute_cb { 45 struct list_head link; 46 struct irq_work work; 47 struct i915_sw_fence *fence; 48 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 49 struct i915_request *signal; 50 }; 51 52 static struct i915_global_request { 53 struct i915_global base; 54 struct kmem_cache *slab_requests; 55 struct kmem_cache *slab_execute_cbs; 56 } global; 57 58 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 59 { 60 return dev_name(to_request(fence)->i915->drm.dev); 61 } 62 63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 64 { 65 const struct i915_gem_context *ctx; 66 67 /* 68 * The timeline struct (as part of the ppgtt underneath a context) 69 * may be freed when the request is no longer in use by the GPU. 70 * We could extend the life of a context to beyond that of all 71 * fences, possibly keeping the hw resource around indefinitely, 72 * or we just give them a false name. Since 73 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 74 * lie seems justifiable. 75 */ 76 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 77 return "signaled"; 78 79 ctx = i915_request_gem_context(to_request(fence)); 80 if (!ctx) 81 return "[" DRIVER_NAME "]"; 82 83 return ctx->name; 84 } 85 86 static bool i915_fence_signaled(struct dma_fence *fence) 87 { 88 return i915_request_completed(to_request(fence)); 89 } 90 91 static bool i915_fence_enable_signaling(struct dma_fence *fence) 92 { 93 return i915_request_enable_breadcrumb(to_request(fence)); 94 } 95 96 static signed long i915_fence_wait(struct dma_fence *fence, 97 bool interruptible, 98 signed long timeout) 99 { 100 return i915_request_wait(to_request(fence), 101 interruptible | I915_WAIT_PRIORITY, 102 timeout); 103 } 104 105 struct kmem_cache *i915_request_slab_cache(void) 106 { 107 return global.slab_requests; 108 } 109 110 static void i915_fence_release(struct dma_fence *fence) 111 { 112 struct i915_request *rq = to_request(fence); 113 114 /* 115 * The request is put onto a RCU freelist (i.e. the address 116 * is immediately reused), mark the fences as being freed now. 117 * Otherwise the debugobjects for the fences are only marked as 118 * freed when the slab cache itself is freed, and so we would get 119 * caught trying to reuse dead objects. 120 */ 121 i915_sw_fence_fini(&rq->submit); 122 i915_sw_fence_fini(&rq->semaphore); 123 124 /* 125 * Keep one request on each engine for reserved use under mempressure 126 * 127 * We do not hold a reference to the engine here and so have to be 128 * very careful in what rq->engine we poke. The virtual engine is 129 * referenced via the rq->context and we released that ref during 130 * i915_request_retire(), ergo we must not dereference a virtual 131 * engine here. Not that we would want to, as the only consumer of 132 * the reserved engine->request_pool is the power management parking, 133 * which must-not-fail, and that is only run on the physical engines. 134 * 135 * Since the request must have been executed to be have completed, 136 * we know that it will have been processed by the HW and will 137 * not be unsubmitted again, so rq->engine and rq->execution_mask 138 * at this point is stable. rq->execution_mask will be a single 139 * bit if the last and _only_ engine it could execution on was a 140 * physical engine, if it's multiple bits then it started on and 141 * could still be on a virtual engine. Thus if the mask is not a 142 * power-of-two we assume that rq->engine may still be a virtual 143 * engine and so a dangling invalid pointer that we cannot dereference 144 * 145 * For example, consider the flow of a bonded request through a virtual 146 * engine. The request is created with a wide engine mask (all engines 147 * that we might execute on). On processing the bond, the request mask 148 * is reduced to one or more engines. If the request is subsequently 149 * bound to a single engine, it will then be constrained to only 150 * execute on that engine and never returned to the virtual engine 151 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 152 * know that if the rq->execution_mask is a single bit, rq->engine 153 * can be a physical engine with the exact corresponding mask. 154 */ 155 if (is_power_of_2(rq->execution_mask) && 156 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 157 return; 158 159 kmem_cache_free(global.slab_requests, rq); 160 } 161 162 const struct dma_fence_ops i915_fence_ops = { 163 .get_driver_name = i915_fence_get_driver_name, 164 .get_timeline_name = i915_fence_get_timeline_name, 165 .enable_signaling = i915_fence_enable_signaling, 166 .signaled = i915_fence_signaled, 167 .wait = i915_fence_wait, 168 .release = i915_fence_release, 169 }; 170 171 static void irq_execute_cb(struct irq_work *wrk) 172 { 173 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 174 175 i915_sw_fence_complete(cb->fence); 176 kmem_cache_free(global.slab_execute_cbs, cb); 177 } 178 179 static void irq_execute_cb_hook(struct irq_work *wrk) 180 { 181 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 182 183 cb->hook(container_of(cb->fence, struct i915_request, submit), 184 &cb->signal->fence); 185 i915_request_put(cb->signal); 186 187 irq_execute_cb(wrk); 188 } 189 190 static void __notify_execute_cb(struct i915_request *rq) 191 { 192 struct execute_cb *cb; 193 194 lockdep_assert_held(&rq->lock); 195 196 if (list_empty(&rq->execute_cb)) 197 return; 198 199 list_for_each_entry(cb, &rq->execute_cb, link) 200 irq_work_queue(&cb->work); 201 202 /* 203 * XXX Rollback on __i915_request_unsubmit() 204 * 205 * In the future, perhaps when we have an active time-slicing scheduler, 206 * it will be interesting to unsubmit parallel execution and remove 207 * busywaits from the GPU until their master is restarted. This is 208 * quite hairy, we have to carefully rollback the fence and do a 209 * preempt-to-idle cycle on the target engine, all the while the 210 * master execute_cb may refire. 211 */ 212 INIT_LIST_HEAD(&rq->execute_cb); 213 } 214 215 static inline void 216 remove_from_client(struct i915_request *request) 217 { 218 struct drm_i915_file_private *file_priv; 219 220 if (!READ_ONCE(request->file_priv)) 221 return; 222 223 rcu_read_lock(); 224 file_priv = xchg(&request->file_priv, NULL); 225 if (file_priv) { 226 spin_lock(&file_priv->mm.lock); 227 list_del(&request->client_link); 228 spin_unlock(&file_priv->mm.lock); 229 } 230 rcu_read_unlock(); 231 } 232 233 static void free_capture_list(struct i915_request *request) 234 { 235 struct i915_capture_list *capture; 236 237 capture = fetch_and_zero(&request->capture_list); 238 while (capture) { 239 struct i915_capture_list *next = capture->next; 240 241 kfree(capture); 242 capture = next; 243 } 244 } 245 246 static void __i915_request_fill(struct i915_request *rq, u8 val) 247 { 248 void *vaddr = rq->ring->vaddr; 249 u32 head; 250 251 head = rq->infix; 252 if (rq->postfix < head) { 253 memset(vaddr + head, val, rq->ring->size - head); 254 head = 0; 255 } 256 memset(vaddr + head, val, rq->postfix - head); 257 } 258 259 static void remove_from_engine(struct i915_request *rq) 260 { 261 struct intel_engine_cs *engine, *locked; 262 263 /* 264 * Virtual engines complicate acquiring the engine timeline lock, 265 * as their rq->engine pointer is not stable until under that 266 * engine lock. The simple ploy we use is to take the lock then 267 * check that the rq still belongs to the newly locked engine. 268 */ 269 locked = READ_ONCE(rq->engine); 270 spin_lock_irq(&locked->active.lock); 271 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 272 spin_unlock(&locked->active.lock); 273 spin_lock(&engine->active.lock); 274 locked = engine; 275 } 276 list_del_init(&rq->sched.link); 277 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 278 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 279 spin_unlock_irq(&locked->active.lock); 280 } 281 282 bool i915_request_retire(struct i915_request *rq) 283 { 284 if (!i915_request_completed(rq)) 285 return false; 286 287 RQ_TRACE(rq, "\n"); 288 289 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 290 trace_i915_request_retire(rq); 291 292 /* 293 * We know the GPU must have read the request to have 294 * sent us the seqno + interrupt, so use the position 295 * of tail of the request to update the last known position 296 * of the GPU head. 297 * 298 * Note this requires that we are always called in request 299 * completion order. 300 */ 301 GEM_BUG_ON(!list_is_first(&rq->link, 302 &i915_request_timeline(rq)->requests)); 303 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 304 /* Poison before we release our space in the ring */ 305 __i915_request_fill(rq, POISON_FREE); 306 rq->ring->head = rq->postfix; 307 308 /* 309 * We only loosely track inflight requests across preemption, 310 * and so we may find ourselves attempting to retire a _completed_ 311 * request that we have removed from the HW and put back on a run 312 * queue. 313 */ 314 remove_from_engine(rq); 315 316 spin_lock_irq(&rq->lock); 317 i915_request_mark_complete(rq); 318 if (!i915_request_signaled(rq)) 319 dma_fence_signal_locked(&rq->fence); 320 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 321 i915_request_cancel_breadcrumb(rq); 322 if (i915_request_has_waitboost(rq)) { 323 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters)); 324 atomic_dec(&rq->engine->gt->rps.num_waiters); 325 } 326 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) { 327 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 328 __notify_execute_cb(rq); 329 } 330 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 331 spin_unlock_irq(&rq->lock); 332 333 remove_from_client(rq); 334 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 335 336 intel_context_exit(rq->context); 337 intel_context_unpin(rq->context); 338 339 free_capture_list(rq); 340 i915_sched_node_fini(&rq->sched); 341 i915_request_put(rq); 342 343 return true; 344 } 345 346 void i915_request_retire_upto(struct i915_request *rq) 347 { 348 struct intel_timeline * const tl = i915_request_timeline(rq); 349 struct i915_request *tmp; 350 351 RQ_TRACE(rq, "\n"); 352 353 GEM_BUG_ON(!i915_request_completed(rq)); 354 355 do { 356 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 357 } while (i915_request_retire(tmp) && tmp != rq); 358 } 359 360 static struct i915_request * const * 361 __engine_active(struct intel_engine_cs *engine) 362 { 363 return READ_ONCE(engine->execlists.active); 364 } 365 366 static bool __request_in_flight(const struct i915_request *signal) 367 { 368 struct i915_request * const *port, *rq; 369 bool inflight = false; 370 371 if (!i915_request_is_ready(signal)) 372 return false; 373 374 /* 375 * Even if we have unwound the request, it may still be on 376 * the GPU (preempt-to-busy). If that request is inside an 377 * unpreemptible critical section, it will not be removed. Some 378 * GPU functions may even be stuck waiting for the paired request 379 * (__await_execution) to be submitted and cannot be preempted 380 * until the bond is executing. 381 * 382 * As we know that there are always preemption points between 383 * requests, we know that only the currently executing request 384 * may be still active even though we have cleared the flag. 385 * However, we can't rely on our tracking of ELSP[0] to known 386 * which request is currently active and so maybe stuck, as 387 * the tracking maybe an event behind. Instead assume that 388 * if the context is still inflight, then it is still active 389 * even if the active flag has been cleared. 390 */ 391 if (!intel_context_inflight(signal->context)) 392 return false; 393 394 rcu_read_lock(); 395 for (port = __engine_active(signal->engine); (rq = *port); port++) { 396 if (rq->context == signal->context) { 397 inflight = i915_seqno_passed(rq->fence.seqno, 398 signal->fence.seqno); 399 break; 400 } 401 } 402 rcu_read_unlock(); 403 404 return inflight; 405 } 406 407 static int 408 __await_execution(struct i915_request *rq, 409 struct i915_request *signal, 410 void (*hook)(struct i915_request *rq, 411 struct dma_fence *signal), 412 gfp_t gfp) 413 { 414 struct execute_cb *cb; 415 416 if (i915_request_is_active(signal)) { 417 if (hook) 418 hook(rq, &signal->fence); 419 return 0; 420 } 421 422 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 423 if (!cb) 424 return -ENOMEM; 425 426 cb->fence = &rq->submit; 427 i915_sw_fence_await(cb->fence); 428 init_irq_work(&cb->work, irq_execute_cb); 429 430 if (hook) { 431 cb->hook = hook; 432 cb->signal = i915_request_get(signal); 433 cb->work.func = irq_execute_cb_hook; 434 } 435 436 spin_lock_irq(&signal->lock); 437 if (i915_request_is_active(signal) || __request_in_flight(signal)) { 438 if (hook) { 439 hook(rq, &signal->fence); 440 i915_request_put(signal); 441 } 442 i915_sw_fence_complete(cb->fence); 443 kmem_cache_free(global.slab_execute_cbs, cb); 444 } else { 445 list_add_tail(&cb->link, &signal->execute_cb); 446 } 447 spin_unlock_irq(&signal->lock); 448 449 return 0; 450 } 451 452 static bool fatal_error(int error) 453 { 454 switch (error) { 455 case 0: /* not an error! */ 456 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 457 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 458 return false; 459 default: 460 return true; 461 } 462 } 463 464 void __i915_request_skip(struct i915_request *rq) 465 { 466 GEM_BUG_ON(!fatal_error(rq->fence.error)); 467 468 if (rq->infix == rq->postfix) 469 return; 470 471 /* 472 * As this request likely depends on state from the lost 473 * context, clear out all the user operations leaving the 474 * breadcrumb at the end (so we get the fence notifications). 475 */ 476 __i915_request_fill(rq, 0); 477 rq->infix = rq->postfix; 478 } 479 480 void i915_request_set_error_once(struct i915_request *rq, int error) 481 { 482 int old; 483 484 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 485 486 if (i915_request_signaled(rq)) 487 return; 488 489 old = READ_ONCE(rq->fence.error); 490 do { 491 if (fatal_error(old)) 492 return; 493 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 494 } 495 496 bool __i915_request_submit(struct i915_request *request) 497 { 498 struct intel_engine_cs *engine = request->engine; 499 bool result = false; 500 501 RQ_TRACE(request, "\n"); 502 503 GEM_BUG_ON(!irqs_disabled()); 504 lockdep_assert_held(&engine->active.lock); 505 506 /* 507 * With the advent of preempt-to-busy, we frequently encounter 508 * requests that we have unsubmitted from HW, but left running 509 * until the next ack and so have completed in the meantime. On 510 * resubmission of that completed request, we can skip 511 * updating the payload, and execlists can even skip submitting 512 * the request. 513 * 514 * We must remove the request from the caller's priority queue, 515 * and the caller must only call us when the request is in their 516 * priority queue, under the active.lock. This ensures that the 517 * request has *not* yet been retired and we can safely move 518 * the request into the engine->active.list where it will be 519 * dropped upon retiring. (Otherwise if resubmit a *retired* 520 * request, this would be a horrible use-after-free.) 521 */ 522 if (i915_request_completed(request)) 523 goto xfer; 524 525 if (unlikely(intel_context_is_banned(request->context))) 526 i915_request_set_error_once(request, -EIO); 527 if (unlikely(fatal_error(request->fence.error))) 528 __i915_request_skip(request); 529 530 /* 531 * Are we using semaphores when the gpu is already saturated? 532 * 533 * Using semaphores incurs a cost in having the GPU poll a 534 * memory location, busywaiting for it to change. The continual 535 * memory reads can have a noticeable impact on the rest of the 536 * system with the extra bus traffic, stalling the cpu as it too 537 * tries to access memory across the bus (perf stat -e bus-cycles). 538 * 539 * If we installed a semaphore on this request and we only submit 540 * the request after the signaler completed, that indicates the 541 * system is overloaded and using semaphores at this time only 542 * increases the amount of work we are doing. If so, we disable 543 * further use of semaphores until we are idle again, whence we 544 * optimistically try again. 545 */ 546 if (request->sched.semaphores && 547 i915_sw_fence_signaled(&request->semaphore)) 548 engine->saturated |= request->sched.semaphores; 549 550 engine->emit_fini_breadcrumb(request, 551 request->ring->vaddr + request->postfix); 552 553 trace_i915_request_execute(request); 554 engine->serial++; 555 result = true; 556 557 xfer: /* We may be recursing from the signal callback of another i915 fence */ 558 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 559 560 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) { 561 list_move_tail(&request->sched.link, &engine->active.requests); 562 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 563 } 564 565 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 566 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) && 567 !i915_request_enable_breadcrumb(request)) 568 intel_engine_signal_breadcrumbs(engine); 569 570 __notify_execute_cb(request); 571 572 spin_unlock(&request->lock); 573 574 return result; 575 } 576 577 void i915_request_submit(struct i915_request *request) 578 { 579 struct intel_engine_cs *engine = request->engine; 580 unsigned long flags; 581 582 /* Will be called from irq-context when using foreign fences. */ 583 spin_lock_irqsave(&engine->active.lock, flags); 584 585 __i915_request_submit(request); 586 587 spin_unlock_irqrestore(&engine->active.lock, flags); 588 } 589 590 void __i915_request_unsubmit(struct i915_request *request) 591 { 592 struct intel_engine_cs *engine = request->engine; 593 594 RQ_TRACE(request, "\n"); 595 596 GEM_BUG_ON(!irqs_disabled()); 597 lockdep_assert_held(&engine->active.lock); 598 599 /* 600 * Only unwind in reverse order, required so that the per-context list 601 * is kept in seqno/ring order. 602 */ 603 604 /* We may be recursing from the signal callback of another i915 fence */ 605 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 606 607 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 608 i915_request_cancel_breadcrumb(request); 609 610 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 611 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 612 613 spin_unlock(&request->lock); 614 615 /* We've already spun, don't charge on resubmitting. */ 616 if (request->sched.semaphores && i915_request_started(request)) 617 request->sched.semaphores = 0; 618 619 /* 620 * We don't need to wake_up any waiters on request->execute, they 621 * will get woken by any other event or us re-adding this request 622 * to the engine timeline (__i915_request_submit()). The waiters 623 * should be quite adapt at finding that the request now has a new 624 * global_seqno to the one they went to sleep on. 625 */ 626 } 627 628 void i915_request_unsubmit(struct i915_request *request) 629 { 630 struct intel_engine_cs *engine = request->engine; 631 unsigned long flags; 632 633 /* Will be called from irq-context when using foreign fences. */ 634 spin_lock_irqsave(&engine->active.lock, flags); 635 636 __i915_request_unsubmit(request); 637 638 spin_unlock_irqrestore(&engine->active.lock, flags); 639 } 640 641 static int __i915_sw_fence_call 642 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 643 { 644 struct i915_request *request = 645 container_of(fence, typeof(*request), submit); 646 647 switch (state) { 648 case FENCE_COMPLETE: 649 trace_i915_request_submit(request); 650 651 if (unlikely(fence->error)) 652 i915_request_set_error_once(request, fence->error); 653 654 /* 655 * We need to serialize use of the submit_request() callback 656 * with its hotplugging performed during an emergency 657 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 658 * critical section in order to force i915_gem_set_wedged() to 659 * wait until the submit_request() is completed before 660 * proceeding. 661 */ 662 rcu_read_lock(); 663 request->engine->submit_request(request); 664 rcu_read_unlock(); 665 break; 666 667 case FENCE_FREE: 668 i915_request_put(request); 669 break; 670 } 671 672 return NOTIFY_DONE; 673 } 674 675 static int __i915_sw_fence_call 676 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 677 { 678 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 679 680 switch (state) { 681 case FENCE_COMPLETE: 682 break; 683 684 case FENCE_FREE: 685 i915_request_put(rq); 686 break; 687 } 688 689 return NOTIFY_DONE; 690 } 691 692 static void retire_requests(struct intel_timeline *tl) 693 { 694 struct i915_request *rq, *rn; 695 696 list_for_each_entry_safe(rq, rn, &tl->requests, link) 697 if (!i915_request_retire(rq)) 698 break; 699 } 700 701 static noinline struct i915_request * 702 request_alloc_slow(struct intel_timeline *tl, 703 struct i915_request **rsvd, 704 gfp_t gfp) 705 { 706 struct i915_request *rq; 707 708 /* If we cannot wait, dip into our reserves */ 709 if (!gfpflags_allow_blocking(gfp)) { 710 rq = xchg(rsvd, NULL); 711 if (!rq) /* Use the normal failure path for one final WARN */ 712 goto out; 713 714 return rq; 715 } 716 717 if (list_empty(&tl->requests)) 718 goto out; 719 720 /* Move our oldest request to the slab-cache (if not in use!) */ 721 rq = list_first_entry(&tl->requests, typeof(*rq), link); 722 i915_request_retire(rq); 723 724 rq = kmem_cache_alloc(global.slab_requests, 725 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 726 if (rq) 727 return rq; 728 729 /* Ratelimit ourselves to prevent oom from malicious clients */ 730 rq = list_last_entry(&tl->requests, typeof(*rq), link); 731 cond_synchronize_rcu(rq->rcustate); 732 733 /* Retire our old requests in the hope that we free some */ 734 retire_requests(tl); 735 736 out: 737 return kmem_cache_alloc(global.slab_requests, gfp); 738 } 739 740 static void __i915_request_ctor(void *arg) 741 { 742 struct i915_request *rq = arg; 743 744 spin_lock_init(&rq->lock); 745 i915_sched_node_init(&rq->sched); 746 i915_sw_fence_init(&rq->submit, submit_notify); 747 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 748 749 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0); 750 751 rq->file_priv = NULL; 752 rq->capture_list = NULL; 753 754 INIT_LIST_HEAD(&rq->execute_cb); 755 } 756 757 struct i915_request * 758 __i915_request_create(struct intel_context *ce, gfp_t gfp) 759 { 760 struct intel_timeline *tl = ce->timeline; 761 struct i915_request *rq; 762 u32 seqno; 763 int ret; 764 765 might_sleep_if(gfpflags_allow_blocking(gfp)); 766 767 /* Check that the caller provided an already pinned context */ 768 __intel_context_pin(ce); 769 770 /* 771 * Beware: Dragons be flying overhead. 772 * 773 * We use RCU to look up requests in flight. The lookups may 774 * race with the request being allocated from the slab freelist. 775 * That is the request we are writing to here, may be in the process 776 * of being read by __i915_active_request_get_rcu(). As such, 777 * we have to be very careful when overwriting the contents. During 778 * the RCU lookup, we change chase the request->engine pointer, 779 * read the request->global_seqno and increment the reference count. 780 * 781 * The reference count is incremented atomically. If it is zero, 782 * the lookup knows the request is unallocated and complete. Otherwise, 783 * it is either still in use, or has been reallocated and reset 784 * with dma_fence_init(). This increment is safe for release as we 785 * check that the request we have a reference to and matches the active 786 * request. 787 * 788 * Before we increment the refcount, we chase the request->engine 789 * pointer. We must not call kmem_cache_zalloc() or else we set 790 * that pointer to NULL and cause a crash during the lookup. If 791 * we see the request is completed (based on the value of the 792 * old engine and seqno), the lookup is complete and reports NULL. 793 * If we decide the request is not completed (new engine or seqno), 794 * then we grab a reference and double check that it is still the 795 * active request - which it won't be and restart the lookup. 796 * 797 * Do not use kmem_cache_zalloc() here! 798 */ 799 rq = kmem_cache_alloc(global.slab_requests, 800 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 801 if (unlikely(!rq)) { 802 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 803 if (!rq) { 804 ret = -ENOMEM; 805 goto err_unreserve; 806 } 807 } 808 809 rq->i915 = ce->engine->i915; 810 rq->context = ce; 811 rq->engine = ce->engine; 812 rq->ring = ce->ring; 813 rq->execution_mask = ce->engine->mask; 814 815 kref_init(&rq->fence.refcount); 816 rq->fence.flags = 0; 817 rq->fence.error = 0; 818 INIT_LIST_HEAD(&rq->fence.cb_list); 819 820 ret = intel_timeline_get_seqno(tl, rq, &seqno); 821 if (ret) 822 goto err_free; 823 824 rq->fence.context = tl->fence_context; 825 rq->fence.seqno = seqno; 826 827 RCU_INIT_POINTER(rq->timeline, tl); 828 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 829 rq->hwsp_seqno = tl->hwsp_seqno; 830 GEM_BUG_ON(i915_request_completed(rq)); 831 832 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 833 834 /* We bump the ref for the fence chain */ 835 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 836 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 837 838 i915_sched_node_reinit(&rq->sched); 839 840 /* No zalloc, everything must be cleared after use */ 841 rq->batch = NULL; 842 GEM_BUG_ON(rq->file_priv); 843 GEM_BUG_ON(rq->capture_list); 844 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 845 846 /* 847 * Reserve space in the ring buffer for all the commands required to 848 * eventually emit this request. This is to guarantee that the 849 * i915_request_add() call can't fail. Note that the reserve may need 850 * to be redone if the request is not actually submitted straight 851 * away, e.g. because a GPU scheduler has deferred it. 852 * 853 * Note that due to how we add reserved_space to intel_ring_begin() 854 * we need to double our request to ensure that if we need to wrap 855 * around inside i915_request_add() there is sufficient space at 856 * the beginning of the ring as well. 857 */ 858 rq->reserved_space = 859 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 860 861 /* 862 * Record the position of the start of the request so that 863 * should we detect the updated seqno part-way through the 864 * GPU processing the request, we never over-estimate the 865 * position of the head. 866 */ 867 rq->head = rq->ring->emit; 868 869 ret = rq->engine->request_alloc(rq); 870 if (ret) 871 goto err_unwind; 872 873 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 874 875 intel_context_mark_active(ce); 876 list_add_tail_rcu(&rq->link, &tl->requests); 877 878 return rq; 879 880 err_unwind: 881 ce->ring->emit = rq->head; 882 883 /* Make sure we didn't add ourselves to external state before freeing */ 884 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 885 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 886 887 err_free: 888 kmem_cache_free(global.slab_requests, rq); 889 err_unreserve: 890 intel_context_unpin(ce); 891 return ERR_PTR(ret); 892 } 893 894 struct i915_request * 895 i915_request_create(struct intel_context *ce) 896 { 897 struct i915_request *rq; 898 struct intel_timeline *tl; 899 900 tl = intel_context_timeline_lock(ce); 901 if (IS_ERR(tl)) 902 return ERR_CAST(tl); 903 904 /* Move our oldest request to the slab-cache (if not in use!) */ 905 rq = list_first_entry(&tl->requests, typeof(*rq), link); 906 if (!list_is_last(&rq->link, &tl->requests)) 907 i915_request_retire(rq); 908 909 intel_context_enter(ce); 910 rq = __i915_request_create(ce, GFP_KERNEL); 911 intel_context_exit(ce); /* active reference transferred to request */ 912 if (IS_ERR(rq)) 913 goto err_unlock; 914 915 /* Check that we do not interrupt ourselves with a new request */ 916 rq->cookie = lockdep_pin_lock(&tl->mutex); 917 918 return rq; 919 920 err_unlock: 921 intel_context_timeline_unlock(tl); 922 return rq; 923 } 924 925 static int 926 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 927 { 928 struct dma_fence *fence; 929 int err; 930 931 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 932 return 0; 933 934 if (i915_request_started(signal)) 935 return 0; 936 937 fence = NULL; 938 rcu_read_lock(); 939 spin_lock_irq(&signal->lock); 940 do { 941 struct list_head *pos = READ_ONCE(signal->link.prev); 942 struct i915_request *prev; 943 944 /* Confirm signal has not been retired, the link is valid */ 945 if (unlikely(i915_request_started(signal))) 946 break; 947 948 /* Is signal the earliest request on its timeline? */ 949 if (pos == &rcu_dereference(signal->timeline)->requests) 950 break; 951 952 /* 953 * Peek at the request before us in the timeline. That 954 * request will only be valid before it is retired, so 955 * after acquiring a reference to it, confirm that it is 956 * still part of the signaler's timeline. 957 */ 958 prev = list_entry(pos, typeof(*prev), link); 959 if (!i915_request_get_rcu(prev)) 960 break; 961 962 /* After the strong barrier, confirm prev is still attached */ 963 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 964 i915_request_put(prev); 965 break; 966 } 967 968 fence = &prev->fence; 969 } while (0); 970 spin_unlock_irq(&signal->lock); 971 rcu_read_unlock(); 972 if (!fence) 973 return 0; 974 975 err = 0; 976 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 977 err = i915_sw_fence_await_dma_fence(&rq->submit, 978 fence, 0, 979 I915_FENCE_GFP); 980 dma_fence_put(fence); 981 982 return err; 983 } 984 985 static intel_engine_mask_t 986 already_busywaiting(struct i915_request *rq) 987 { 988 /* 989 * Polling a semaphore causes bus traffic, delaying other users of 990 * both the GPU and CPU. We want to limit the impact on others, 991 * while taking advantage of early submission to reduce GPU 992 * latency. Therefore we restrict ourselves to not using more 993 * than one semaphore from each source, and not using a semaphore 994 * if we have detected the engine is saturated (i.e. would not be 995 * submitted early and cause bus traffic reading an already passed 996 * semaphore). 997 * 998 * See the are-we-too-late? check in __i915_request_submit(). 999 */ 1000 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1001 } 1002 1003 static int 1004 __emit_semaphore_wait(struct i915_request *to, 1005 struct i915_request *from, 1006 u32 seqno) 1007 { 1008 const int has_token = INTEL_GEN(to->i915) >= 12; 1009 u32 hwsp_offset; 1010 int len, err; 1011 u32 *cs; 1012 1013 GEM_BUG_ON(INTEL_GEN(to->i915) < 8); 1014 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1015 1016 /* We need to pin the signaler's HWSP until we are finished reading. */ 1017 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1018 if (err) 1019 return err; 1020 1021 len = 4; 1022 if (has_token) 1023 len += 2; 1024 1025 cs = intel_ring_begin(to, len); 1026 if (IS_ERR(cs)) 1027 return PTR_ERR(cs); 1028 1029 /* 1030 * Using greater-than-or-equal here means we have to worry 1031 * about seqno wraparound. To side step that issue, we swap 1032 * the timeline HWSP upon wrapping, so that everyone listening 1033 * for the old (pre-wrap) values do not see the much smaller 1034 * (post-wrap) values than they were expecting (and so wait 1035 * forever). 1036 */ 1037 *cs++ = (MI_SEMAPHORE_WAIT | 1038 MI_SEMAPHORE_GLOBAL_GTT | 1039 MI_SEMAPHORE_POLL | 1040 MI_SEMAPHORE_SAD_GTE_SDD) + 1041 has_token; 1042 *cs++ = seqno; 1043 *cs++ = hwsp_offset; 1044 *cs++ = 0; 1045 if (has_token) { 1046 *cs++ = 0; 1047 *cs++ = MI_NOOP; 1048 } 1049 1050 intel_ring_advance(to, cs); 1051 return 0; 1052 } 1053 1054 static int 1055 emit_semaphore_wait(struct i915_request *to, 1056 struct i915_request *from, 1057 gfp_t gfp) 1058 { 1059 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1060 struct i915_sw_fence *wait = &to->submit; 1061 1062 if (!intel_context_use_semaphores(to->context)) 1063 goto await_fence; 1064 1065 if (i915_request_has_initial_breadcrumb(to)) 1066 goto await_fence; 1067 1068 if (!rcu_access_pointer(from->hwsp_cacheline)) 1069 goto await_fence; 1070 1071 /* 1072 * If this or its dependents are waiting on an external fence 1073 * that may fail catastrophically, then we want to avoid using 1074 * sempahores as they bypass the fence signaling metadata, and we 1075 * lose the fence->error propagation. 1076 */ 1077 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1078 goto await_fence; 1079 1080 /* Just emit the first semaphore we see as request space is limited. */ 1081 if (already_busywaiting(to) & mask) 1082 goto await_fence; 1083 1084 if (i915_request_await_start(to, from) < 0) 1085 goto await_fence; 1086 1087 /* Only submit our spinner after the signaler is running! */ 1088 if (__await_execution(to, from, NULL, gfp)) 1089 goto await_fence; 1090 1091 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1092 goto await_fence; 1093 1094 to->sched.semaphores |= mask; 1095 wait = &to->semaphore; 1096 1097 await_fence: 1098 return i915_sw_fence_await_dma_fence(wait, 1099 &from->fence, 0, 1100 I915_FENCE_GFP); 1101 } 1102 1103 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1104 struct dma_fence *fence) 1105 { 1106 return __intel_timeline_sync_is_later(tl, 1107 fence->context, 1108 fence->seqno - 1); 1109 } 1110 1111 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1112 const struct dma_fence *fence) 1113 { 1114 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1115 } 1116 1117 static int 1118 __i915_request_await_execution(struct i915_request *to, 1119 struct i915_request *from, 1120 void (*hook)(struct i915_request *rq, 1121 struct dma_fence *signal)) 1122 { 1123 int err; 1124 1125 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1126 1127 /* Submit both requests at the same time */ 1128 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1129 if (err) 1130 return err; 1131 1132 /* Squash repeated depenendices to the same timelines */ 1133 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1134 &from->fence)) 1135 return 0; 1136 1137 /* 1138 * Wait until the start of this request. 1139 * 1140 * The execution cb fires when we submit the request to HW. But in 1141 * many cases this may be long before the request itself is ready to 1142 * run (consider that we submit 2 requests for the same context, where 1143 * the request of interest is behind an indefinite spinner). So we hook 1144 * up to both to reduce our queues and keep the execution lag minimised 1145 * in the worst case, though we hope that the await_start is elided. 1146 */ 1147 err = i915_request_await_start(to, from); 1148 if (err < 0) 1149 return err; 1150 1151 /* 1152 * Ensure both start together [after all semaphores in signal] 1153 * 1154 * Now that we are queued to the HW at roughly the same time (thanks 1155 * to the execute cb) and are ready to run at roughly the same time 1156 * (thanks to the await start), our signaler may still be indefinitely 1157 * delayed by waiting on a semaphore from a remote engine. If our 1158 * signaler depends on a semaphore, so indirectly do we, and we do not 1159 * want to start our payload until our signaler also starts theirs. 1160 * So we wait. 1161 * 1162 * However, there is also a second condition for which we need to wait 1163 * for the precise start of the signaler. Consider that the signaler 1164 * was submitted in a chain of requests following another context 1165 * (with just an ordinary intra-engine fence dependency between the 1166 * two). In this case the signaler is queued to HW, but not for 1167 * immediate execution, and so we must wait until it reaches the 1168 * active slot. 1169 */ 1170 if (intel_engine_has_semaphores(to->engine) && 1171 !i915_request_has_initial_breadcrumb(to)) { 1172 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1173 if (err < 0) 1174 return err; 1175 } 1176 1177 /* Couple the dependency tree for PI on this exposed to->fence */ 1178 if (to->engine->schedule) { 1179 err = i915_sched_node_add_dependency(&to->sched, 1180 &from->sched, 1181 I915_DEPENDENCY_WEAK); 1182 if (err < 0) 1183 return err; 1184 } 1185 1186 return intel_timeline_sync_set_start(i915_request_timeline(to), 1187 &from->fence); 1188 } 1189 1190 static void mark_external(struct i915_request *rq) 1191 { 1192 /* 1193 * The downside of using semaphores is that we lose metadata passing 1194 * along the signaling chain. This is particularly nasty when we 1195 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1196 * fatal errors we want to scrub the request before it is executed, 1197 * which means that we cannot preload the request onto HW and have 1198 * it wait upon a semaphore. 1199 */ 1200 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1201 } 1202 1203 static int 1204 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1205 { 1206 mark_external(rq); 1207 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1208 i915_fence_context_timeout(rq->i915, 1209 fence->context), 1210 I915_FENCE_GFP); 1211 } 1212 1213 static int 1214 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1215 { 1216 struct dma_fence *iter; 1217 int err = 0; 1218 1219 if (!to_dma_fence_chain(fence)) 1220 return __i915_request_await_external(rq, fence); 1221 1222 dma_fence_chain_for_each(iter, fence) { 1223 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1224 1225 if (!dma_fence_is_i915(chain->fence)) { 1226 err = __i915_request_await_external(rq, iter); 1227 break; 1228 } 1229 1230 err = i915_request_await_dma_fence(rq, chain->fence); 1231 if (err < 0) 1232 break; 1233 } 1234 1235 dma_fence_put(iter); 1236 return err; 1237 } 1238 1239 int 1240 i915_request_await_execution(struct i915_request *rq, 1241 struct dma_fence *fence, 1242 void (*hook)(struct i915_request *rq, 1243 struct dma_fence *signal)) 1244 { 1245 struct dma_fence **child = &fence; 1246 unsigned int nchild = 1; 1247 int ret; 1248 1249 if (dma_fence_is_array(fence)) { 1250 struct dma_fence_array *array = to_dma_fence_array(fence); 1251 1252 /* XXX Error for signal-on-any fence arrays */ 1253 1254 child = array->fences; 1255 nchild = array->num_fences; 1256 GEM_BUG_ON(!nchild); 1257 } 1258 1259 do { 1260 fence = *child++; 1261 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1262 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1263 continue; 1264 } 1265 1266 if (fence->context == rq->fence.context) 1267 continue; 1268 1269 /* 1270 * We don't squash repeated fence dependencies here as we 1271 * want to run our callback in all cases. 1272 */ 1273 1274 if (dma_fence_is_i915(fence)) 1275 ret = __i915_request_await_execution(rq, 1276 to_request(fence), 1277 hook); 1278 else 1279 ret = i915_request_await_external(rq, fence); 1280 if (ret < 0) 1281 return ret; 1282 } while (--nchild); 1283 1284 return 0; 1285 } 1286 1287 static int 1288 await_request_submit(struct i915_request *to, struct i915_request *from) 1289 { 1290 /* 1291 * If we are waiting on a virtual engine, then it may be 1292 * constrained to execute on a single engine *prior* to submission. 1293 * When it is submitted, it will be first submitted to the virtual 1294 * engine and then passed to the physical engine. We cannot allow 1295 * the waiter to be submitted immediately to the physical engine 1296 * as it may then bypass the virtual request. 1297 */ 1298 if (to->engine == READ_ONCE(from->engine)) 1299 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1300 &from->submit, 1301 I915_FENCE_GFP); 1302 else 1303 return __i915_request_await_execution(to, from, NULL); 1304 } 1305 1306 static int 1307 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1308 { 1309 int ret; 1310 1311 GEM_BUG_ON(to == from); 1312 GEM_BUG_ON(to->timeline == from->timeline); 1313 1314 if (i915_request_completed(from)) { 1315 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1316 return 0; 1317 } 1318 1319 if (to->engine->schedule) { 1320 ret = i915_sched_node_add_dependency(&to->sched, 1321 &from->sched, 1322 I915_DEPENDENCY_EXTERNAL); 1323 if (ret < 0) 1324 return ret; 1325 } 1326 1327 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1328 ret = await_request_submit(to, from); 1329 else 1330 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1331 if (ret < 0) 1332 return ret; 1333 1334 return 0; 1335 } 1336 1337 int 1338 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1339 { 1340 struct dma_fence **child = &fence; 1341 unsigned int nchild = 1; 1342 int ret; 1343 1344 /* 1345 * Note that if the fence-array was created in signal-on-any mode, 1346 * we should *not* decompose it into its individual fences. However, 1347 * we don't currently store which mode the fence-array is operating 1348 * in. Fortunately, the only user of signal-on-any is private to 1349 * amdgpu and we should not see any incoming fence-array from 1350 * sync-file being in signal-on-any mode. 1351 */ 1352 if (dma_fence_is_array(fence)) { 1353 struct dma_fence_array *array = to_dma_fence_array(fence); 1354 1355 child = array->fences; 1356 nchild = array->num_fences; 1357 GEM_BUG_ON(!nchild); 1358 } 1359 1360 do { 1361 fence = *child++; 1362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1363 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1364 continue; 1365 } 1366 1367 /* 1368 * Requests on the same timeline are explicitly ordered, along 1369 * with their dependencies, by i915_request_add() which ensures 1370 * that requests are submitted in-order through each ring. 1371 */ 1372 if (fence->context == rq->fence.context) 1373 continue; 1374 1375 /* Squash repeated waits to the same timelines */ 1376 if (fence->context && 1377 intel_timeline_sync_is_later(i915_request_timeline(rq), 1378 fence)) 1379 continue; 1380 1381 if (dma_fence_is_i915(fence)) 1382 ret = i915_request_await_request(rq, to_request(fence)); 1383 else 1384 ret = i915_request_await_external(rq, fence); 1385 if (ret < 0) 1386 return ret; 1387 1388 /* Record the latest fence used against each timeline */ 1389 if (fence->context) 1390 intel_timeline_sync_set(i915_request_timeline(rq), 1391 fence); 1392 } while (--nchild); 1393 1394 return 0; 1395 } 1396 1397 /** 1398 * i915_request_await_object - set this request to (async) wait upon a bo 1399 * @to: request we are wishing to use 1400 * @obj: object which may be in use on another ring. 1401 * @write: whether the wait is on behalf of a writer 1402 * 1403 * This code is meant to abstract object synchronization with the GPU. 1404 * Conceptually we serialise writes between engines inside the GPU. 1405 * We only allow one engine to write into a buffer at any time, but 1406 * multiple readers. To ensure each has a coherent view of memory, we must: 1407 * 1408 * - If there is an outstanding write request to the object, the new 1409 * request must wait for it to complete (either CPU or in hw, requests 1410 * on the same ring will be naturally ordered). 1411 * 1412 * - If we are a write request (pending_write_domain is set), the new 1413 * request must wait for outstanding read requests to complete. 1414 * 1415 * Returns 0 if successful, else propagates up the lower layer error. 1416 */ 1417 int 1418 i915_request_await_object(struct i915_request *to, 1419 struct drm_i915_gem_object *obj, 1420 bool write) 1421 { 1422 struct dma_fence *excl; 1423 int ret = 0; 1424 1425 if (write) { 1426 struct dma_fence **shared; 1427 unsigned int count, i; 1428 1429 ret = dma_resv_get_fences_rcu(obj->base.resv, 1430 &excl, &count, &shared); 1431 if (ret) 1432 return ret; 1433 1434 for (i = 0; i < count; i++) { 1435 ret = i915_request_await_dma_fence(to, shared[i]); 1436 if (ret) 1437 break; 1438 1439 dma_fence_put(shared[i]); 1440 } 1441 1442 for (; i < count; i++) 1443 dma_fence_put(shared[i]); 1444 kfree(shared); 1445 } else { 1446 excl = dma_resv_get_excl_rcu(obj->base.resv); 1447 } 1448 1449 if (excl) { 1450 if (ret == 0) 1451 ret = i915_request_await_dma_fence(to, excl); 1452 1453 dma_fence_put(excl); 1454 } 1455 1456 return ret; 1457 } 1458 1459 static struct i915_request * 1460 __i915_request_add_to_timeline(struct i915_request *rq) 1461 { 1462 struct intel_timeline *timeline = i915_request_timeline(rq); 1463 struct i915_request *prev; 1464 1465 /* 1466 * Dependency tracking and request ordering along the timeline 1467 * is special cased so that we can eliminate redundant ordering 1468 * operations while building the request (we know that the timeline 1469 * itself is ordered, and here we guarantee it). 1470 * 1471 * As we know we will need to emit tracking along the timeline, 1472 * we embed the hooks into our request struct -- at the cost of 1473 * having to have specialised no-allocation interfaces (which will 1474 * be beneficial elsewhere). 1475 * 1476 * A second benefit to open-coding i915_request_await_request is 1477 * that we can apply a slight variant of the rules specialised 1478 * for timelines that jump between engines (such as virtual engines). 1479 * If we consider the case of virtual engine, we must emit a dma-fence 1480 * to prevent scheduling of the second request until the first is 1481 * complete (to maximise our greedy late load balancing) and this 1482 * precludes optimising to use semaphores serialisation of a single 1483 * timeline across engines. 1484 */ 1485 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1486 &rq->fence)); 1487 if (prev && !i915_request_completed(prev)) { 1488 /* 1489 * The requests are supposed to be kept in order. However, 1490 * we need to be wary in case the timeline->last_request 1491 * is used as a barrier for external modification to this 1492 * context. 1493 */ 1494 GEM_BUG_ON(prev->context == rq->context && 1495 i915_seqno_passed(prev->fence.seqno, 1496 rq->fence.seqno)); 1497 1498 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)) 1499 i915_sw_fence_await_sw_fence(&rq->submit, 1500 &prev->submit, 1501 &rq->submitq); 1502 else 1503 __i915_sw_fence_await_dma_fence(&rq->submit, 1504 &prev->fence, 1505 &rq->dmaq); 1506 if (rq->engine->schedule) 1507 __i915_sched_node_add_dependency(&rq->sched, 1508 &prev->sched, 1509 &rq->dep, 1510 0); 1511 } 1512 1513 /* 1514 * Make sure that no request gazumped us - if it was allocated after 1515 * our i915_request_alloc() and called __i915_request_add() before 1516 * us, the timeline will hold its seqno which is later than ours. 1517 */ 1518 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1519 1520 return prev; 1521 } 1522 1523 /* 1524 * NB: This function is not allowed to fail. Doing so would mean the the 1525 * request is not being tracked for completion but the work itself is 1526 * going to happen on the hardware. This would be a Bad Thing(tm). 1527 */ 1528 struct i915_request *__i915_request_commit(struct i915_request *rq) 1529 { 1530 struct intel_engine_cs *engine = rq->engine; 1531 struct intel_ring *ring = rq->ring; 1532 u32 *cs; 1533 1534 RQ_TRACE(rq, "\n"); 1535 1536 /* 1537 * To ensure that this call will not fail, space for its emissions 1538 * should already have been reserved in the ring buffer. Let the ring 1539 * know that it is time to use that space up. 1540 */ 1541 GEM_BUG_ON(rq->reserved_space > ring->space); 1542 rq->reserved_space = 0; 1543 rq->emitted_jiffies = jiffies; 1544 1545 /* 1546 * Record the position of the start of the breadcrumb so that 1547 * should we detect the updated seqno part-way through the 1548 * GPU processing the request, we never over-estimate the 1549 * position of the ring's HEAD. 1550 */ 1551 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1552 GEM_BUG_ON(IS_ERR(cs)); 1553 rq->postfix = intel_ring_offset(rq, cs); 1554 1555 return __i915_request_add_to_timeline(rq); 1556 } 1557 1558 void __i915_request_queue(struct i915_request *rq, 1559 const struct i915_sched_attr *attr) 1560 { 1561 /* 1562 * Let the backend know a new request has arrived that may need 1563 * to adjust the existing execution schedule due to a high priority 1564 * request - i.e. we may want to preempt the current request in order 1565 * to run a high priority dependency chain *before* we can execute this 1566 * request. 1567 * 1568 * This is called before the request is ready to run so that we can 1569 * decide whether to preempt the entire chain so that it is ready to 1570 * run at the earliest possible convenience. 1571 */ 1572 if (attr && rq->engine->schedule) 1573 rq->engine->schedule(rq, attr); 1574 i915_sw_fence_commit(&rq->semaphore); 1575 i915_sw_fence_commit(&rq->submit); 1576 } 1577 1578 void i915_request_add(struct i915_request *rq) 1579 { 1580 struct intel_timeline * const tl = i915_request_timeline(rq); 1581 struct i915_sched_attr attr = {}; 1582 struct i915_gem_context *ctx; 1583 1584 lockdep_assert_held(&tl->mutex); 1585 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1586 1587 trace_i915_request_add(rq); 1588 __i915_request_commit(rq); 1589 1590 /* XXX placeholder for selftests */ 1591 rcu_read_lock(); 1592 ctx = rcu_dereference(rq->context->gem_context); 1593 if (ctx) 1594 attr = ctx->sched; 1595 rcu_read_unlock(); 1596 1597 __i915_request_queue(rq, &attr); 1598 1599 mutex_unlock(&tl->mutex); 1600 } 1601 1602 static unsigned long local_clock_ns(unsigned int *cpu) 1603 { 1604 unsigned long t; 1605 1606 /* 1607 * Cheaply and approximately convert from nanoseconds to microseconds. 1608 * The result and subsequent calculations are also defined in the same 1609 * approximate microseconds units. The principal source of timing 1610 * error here is from the simple truncation. 1611 * 1612 * Note that local_clock() is only defined wrt to the current CPU; 1613 * the comparisons are no longer valid if we switch CPUs. Instead of 1614 * blocking preemption for the entire busywait, we can detect the CPU 1615 * switch and use that as indicator of system load and a reason to 1616 * stop busywaiting, see busywait_stop(). 1617 */ 1618 *cpu = get_cpu(); 1619 t = local_clock(); 1620 put_cpu(); 1621 1622 return t; 1623 } 1624 1625 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1626 { 1627 unsigned int this_cpu; 1628 1629 if (time_after(local_clock_ns(&this_cpu), timeout)) 1630 return true; 1631 1632 return this_cpu != cpu; 1633 } 1634 1635 static bool __i915_spin_request(const struct i915_request * const rq, int state) 1636 { 1637 unsigned long timeout_ns; 1638 unsigned int cpu; 1639 1640 /* 1641 * Only wait for the request if we know it is likely to complete. 1642 * 1643 * We don't track the timestamps around requests, nor the average 1644 * request length, so we do not have a good indicator that this 1645 * request will complete within the timeout. What we do know is the 1646 * order in which requests are executed by the context and so we can 1647 * tell if the request has been started. If the request is not even 1648 * running yet, it is a fair assumption that it will not complete 1649 * within our relatively short timeout. 1650 */ 1651 if (!i915_request_is_running(rq)) 1652 return false; 1653 1654 /* 1655 * When waiting for high frequency requests, e.g. during synchronous 1656 * rendering split between the CPU and GPU, the finite amount of time 1657 * required to set up the irq and wait upon it limits the response 1658 * rate. By busywaiting on the request completion for a short while we 1659 * can service the high frequency waits as quick as possible. However, 1660 * if it is a slow request, we want to sleep as quickly as possible. 1661 * The tradeoff between waiting and sleeping is roughly the time it 1662 * takes to sleep on a request, on the order of a microsecond. 1663 */ 1664 1665 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1666 timeout_ns += local_clock_ns(&cpu); 1667 do { 1668 if (i915_request_completed(rq)) 1669 return true; 1670 1671 if (signal_pending_state(state, current)) 1672 break; 1673 1674 if (busywait_stop(timeout_ns, cpu)) 1675 break; 1676 1677 cpu_relax(); 1678 } while (!need_resched()); 1679 1680 return false; 1681 } 1682 1683 struct request_wait { 1684 struct dma_fence_cb cb; 1685 struct task_struct *tsk; 1686 }; 1687 1688 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1689 { 1690 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1691 1692 wake_up_process(wait->tsk); 1693 } 1694 1695 /** 1696 * i915_request_wait - wait until execution of request has finished 1697 * @rq: the request to wait upon 1698 * @flags: how to wait 1699 * @timeout: how long to wait in jiffies 1700 * 1701 * i915_request_wait() waits for the request to be completed, for a 1702 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1703 * unbounded wait). 1704 * 1705 * Returns the remaining time (in jiffies) if the request completed, which may 1706 * be zero or -ETIME if the request is unfinished after the timeout expires. 1707 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1708 * pending before the request completes. 1709 */ 1710 long i915_request_wait(struct i915_request *rq, 1711 unsigned int flags, 1712 long timeout) 1713 { 1714 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1715 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1716 struct request_wait wait; 1717 1718 might_sleep(); 1719 GEM_BUG_ON(timeout < 0); 1720 1721 if (dma_fence_is_signaled(&rq->fence)) 1722 return timeout; 1723 1724 if (!timeout) 1725 return -ETIME; 1726 1727 trace_i915_request_wait_begin(rq, flags); 1728 1729 /* 1730 * We must never wait on the GPU while holding a lock as we 1731 * may need to perform a GPU reset. So while we don't need to 1732 * serialise wait/reset with an explicit lock, we do want 1733 * lockdep to detect potential dependency cycles. 1734 */ 1735 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1736 1737 /* 1738 * Optimistic spin before touching IRQs. 1739 * 1740 * We may use a rather large value here to offset the penalty of 1741 * switching away from the active task. Frequently, the client will 1742 * wait upon an old swapbuffer to throttle itself to remain within a 1743 * frame of the gpu. If the client is running in lockstep with the gpu, 1744 * then it should not be waiting long at all, and a sleep now will incur 1745 * extra scheduler latency in producing the next frame. To try to 1746 * avoid adding the cost of enabling/disabling the interrupt to the 1747 * short wait, we first spin to see if the request would have completed 1748 * in the time taken to setup the interrupt. 1749 * 1750 * We need upto 5us to enable the irq, and upto 20us to hide the 1751 * scheduler latency of a context switch, ignoring the secondary 1752 * impacts from a context switch such as cache eviction. 1753 * 1754 * The scheme used for low-latency IO is called "hybrid interrupt 1755 * polling". The suggestion there is to sleep until just before you 1756 * expect to be woken by the device interrupt and then poll for its 1757 * completion. That requires having a good predictor for the request 1758 * duration, which we currently lack. 1759 */ 1760 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) && 1761 __i915_spin_request(rq, state)) { 1762 dma_fence_signal(&rq->fence); 1763 goto out; 1764 } 1765 1766 /* 1767 * This client is about to stall waiting for the GPU. In many cases 1768 * this is undesirable and limits the throughput of the system, as 1769 * many clients cannot continue processing user input/output whilst 1770 * blocked. RPS autotuning may take tens of milliseconds to respond 1771 * to the GPU load and thus incurs additional latency for the client. 1772 * We can circumvent that by promoting the GPU frequency to maximum 1773 * before we sleep. This makes the GPU throttle up much more quickly 1774 * (good for benchmarks and user experience, e.g. window animations), 1775 * but at a cost of spending more power processing the workload 1776 * (bad for battery). 1777 */ 1778 if (flags & I915_WAIT_PRIORITY) { 1779 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6) 1780 intel_rps_boost(rq); 1781 } 1782 1783 wait.tsk = current; 1784 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1785 goto out; 1786 1787 for (;;) { 1788 set_current_state(state); 1789 1790 if (i915_request_completed(rq)) { 1791 dma_fence_signal(&rq->fence); 1792 break; 1793 } 1794 1795 intel_engine_flush_submission(rq->engine); 1796 1797 if (signal_pending_state(state, current)) { 1798 timeout = -ERESTARTSYS; 1799 break; 1800 } 1801 1802 if (!timeout) { 1803 timeout = -ETIME; 1804 break; 1805 } 1806 1807 timeout = io_schedule_timeout(timeout); 1808 } 1809 __set_current_state(TASK_RUNNING); 1810 1811 dma_fence_remove_callback(&rq->fence, &wait.cb); 1812 1813 out: 1814 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1815 trace_i915_request_wait_end(rq); 1816 return timeout; 1817 } 1818 1819 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1820 #include "selftests/mock_request.c" 1821 #include "selftests/i915_request.c" 1822 #endif 1823 1824 static void i915_global_request_shrink(void) 1825 { 1826 kmem_cache_shrink(global.slab_execute_cbs); 1827 kmem_cache_shrink(global.slab_requests); 1828 } 1829 1830 static void i915_global_request_exit(void) 1831 { 1832 kmem_cache_destroy(global.slab_execute_cbs); 1833 kmem_cache_destroy(global.slab_requests); 1834 } 1835 1836 static struct i915_global_request global = { { 1837 .shrink = i915_global_request_shrink, 1838 .exit = i915_global_request_exit, 1839 } }; 1840 1841 int __init i915_global_request_init(void) 1842 { 1843 global.slab_requests = 1844 kmem_cache_create("i915_request", 1845 sizeof(struct i915_request), 1846 __alignof__(struct i915_request), 1847 SLAB_HWCACHE_ALIGN | 1848 SLAB_RECLAIM_ACCOUNT | 1849 SLAB_TYPESAFE_BY_RCU, 1850 __i915_request_ctor); 1851 if (!global.slab_requests) 1852 return -ENOMEM; 1853 1854 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1855 SLAB_HWCACHE_ALIGN | 1856 SLAB_RECLAIM_ACCOUNT | 1857 SLAB_TYPESAFE_BY_RCU); 1858 if (!global.slab_execute_cbs) 1859 goto err_requests; 1860 1861 i915_global_register(&global.base); 1862 return 0; 1863 1864 err_requests: 1865 kmem_cache_destroy(global.slab_requests); 1866 return -ENOMEM; 1867 } 1868