1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31 
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 #include "gt/intel_ring.h"
35 #include "gt/intel_rps.h"
36 
37 #include "i915_active.h"
38 #include "i915_drv.h"
39 #include "i915_globals.h"
40 #include "i915_trace.h"
41 #include "intel_pm.h"
42 
43 struct execute_cb {
44 	struct list_head link;
45 	struct irq_work work;
46 	struct i915_sw_fence *fence;
47 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48 	struct i915_request *signal;
49 };
50 
51 static struct i915_global_request {
52 	struct i915_global base;
53 	struct kmem_cache *slab_requests;
54 	struct kmem_cache *slab_dependencies;
55 	struct kmem_cache *slab_execute_cbs;
56 } global;
57 
58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 {
60 	return dev_name(to_request(fence)->i915->drm.dev);
61 }
62 
63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 {
65 	const struct i915_gem_context *ctx;
66 
67 	/*
68 	 * The timeline struct (as part of the ppgtt underneath a context)
69 	 * may be freed when the request is no longer in use by the GPU.
70 	 * We could extend the life of a context to beyond that of all
71 	 * fences, possibly keeping the hw resource around indefinitely,
72 	 * or we just give them a false name. Since
73 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
74 	 * lie seems justifiable.
75 	 */
76 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
77 		return "signaled";
78 
79 	ctx = i915_request_gem_context(to_request(fence));
80 	if (!ctx)
81 		return "[" DRIVER_NAME "]";
82 
83 	return ctx->name;
84 }
85 
86 static bool i915_fence_signaled(struct dma_fence *fence)
87 {
88 	return i915_request_completed(to_request(fence));
89 }
90 
91 static bool i915_fence_enable_signaling(struct dma_fence *fence)
92 {
93 	return i915_request_enable_breadcrumb(to_request(fence));
94 }
95 
96 static signed long i915_fence_wait(struct dma_fence *fence,
97 				   bool interruptible,
98 				   signed long timeout)
99 {
100 	return i915_request_wait(to_request(fence),
101 				 interruptible | I915_WAIT_PRIORITY,
102 				 timeout);
103 }
104 
105 static void i915_fence_release(struct dma_fence *fence)
106 {
107 	struct i915_request *rq = to_request(fence);
108 
109 	/*
110 	 * The request is put onto a RCU freelist (i.e. the address
111 	 * is immediately reused), mark the fences as being freed now.
112 	 * Otherwise the debugobjects for the fences are only marked as
113 	 * freed when the slab cache itself is freed, and so we would get
114 	 * caught trying to reuse dead objects.
115 	 */
116 	i915_sw_fence_fini(&rq->submit);
117 	i915_sw_fence_fini(&rq->semaphore);
118 
119 	kmem_cache_free(global.slab_requests, rq);
120 }
121 
122 const struct dma_fence_ops i915_fence_ops = {
123 	.get_driver_name = i915_fence_get_driver_name,
124 	.get_timeline_name = i915_fence_get_timeline_name,
125 	.enable_signaling = i915_fence_enable_signaling,
126 	.signaled = i915_fence_signaled,
127 	.wait = i915_fence_wait,
128 	.release = i915_fence_release,
129 };
130 
131 static void irq_execute_cb(struct irq_work *wrk)
132 {
133 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
134 
135 	i915_sw_fence_complete(cb->fence);
136 	kmem_cache_free(global.slab_execute_cbs, cb);
137 }
138 
139 static void irq_execute_cb_hook(struct irq_work *wrk)
140 {
141 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
142 
143 	cb->hook(container_of(cb->fence, struct i915_request, submit),
144 		 &cb->signal->fence);
145 	i915_request_put(cb->signal);
146 
147 	irq_execute_cb(wrk);
148 }
149 
150 static void __notify_execute_cb(struct i915_request *rq)
151 {
152 	struct execute_cb *cb;
153 
154 	lockdep_assert_held(&rq->lock);
155 
156 	if (list_empty(&rq->execute_cb))
157 		return;
158 
159 	list_for_each_entry(cb, &rq->execute_cb, link)
160 		irq_work_queue(&cb->work);
161 
162 	/*
163 	 * XXX Rollback on __i915_request_unsubmit()
164 	 *
165 	 * In the future, perhaps when we have an active time-slicing scheduler,
166 	 * it will be interesting to unsubmit parallel execution and remove
167 	 * busywaits from the GPU until their master is restarted. This is
168 	 * quite hairy, we have to carefully rollback the fence and do a
169 	 * preempt-to-idle cycle on the target engine, all the while the
170 	 * master execute_cb may refire.
171 	 */
172 	INIT_LIST_HEAD(&rq->execute_cb);
173 }
174 
175 static inline void
176 remove_from_client(struct i915_request *request)
177 {
178 	struct drm_i915_file_private *file_priv;
179 
180 	if (!READ_ONCE(request->file_priv))
181 		return;
182 
183 	rcu_read_lock();
184 	file_priv = xchg(&request->file_priv, NULL);
185 	if (file_priv) {
186 		spin_lock(&file_priv->mm.lock);
187 		list_del(&request->client_link);
188 		spin_unlock(&file_priv->mm.lock);
189 	}
190 	rcu_read_unlock();
191 }
192 
193 static void free_capture_list(struct i915_request *request)
194 {
195 	struct i915_capture_list *capture;
196 
197 	capture = fetch_and_zero(&request->capture_list);
198 	while (capture) {
199 		struct i915_capture_list *next = capture->next;
200 
201 		kfree(capture);
202 		capture = next;
203 	}
204 }
205 
206 static void remove_from_engine(struct i915_request *rq)
207 {
208 	struct intel_engine_cs *engine, *locked;
209 
210 	/*
211 	 * Virtual engines complicate acquiring the engine timeline lock,
212 	 * as their rq->engine pointer is not stable until under that
213 	 * engine lock. The simple ploy we use is to take the lock then
214 	 * check that the rq still belongs to the newly locked engine.
215 	 */
216 	locked = READ_ONCE(rq->engine);
217 	spin_lock_irq(&locked->active.lock);
218 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
219 		spin_unlock(&locked->active.lock);
220 		spin_lock(&engine->active.lock);
221 		locked = engine;
222 	}
223 	list_del_init(&rq->sched.link);
224 	spin_unlock_irq(&locked->active.lock);
225 }
226 
227 bool i915_request_retire(struct i915_request *rq)
228 {
229 	if (!i915_request_completed(rq))
230 		return false;
231 
232 	RQ_TRACE(rq, "\n");
233 
234 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
235 	trace_i915_request_retire(rq);
236 
237 	/*
238 	 * We know the GPU must have read the request to have
239 	 * sent us the seqno + interrupt, so use the position
240 	 * of tail of the request to update the last known position
241 	 * of the GPU head.
242 	 *
243 	 * Note this requires that we are always called in request
244 	 * completion order.
245 	 */
246 	GEM_BUG_ON(!list_is_first(&rq->link,
247 				  &i915_request_timeline(rq)->requests));
248 	rq->ring->head = rq->postfix;
249 
250 	/*
251 	 * We only loosely track inflight requests across preemption,
252 	 * and so we may find ourselves attempting to retire a _completed_
253 	 * request that we have removed from the HW and put back on a run
254 	 * queue.
255 	 */
256 	remove_from_engine(rq);
257 
258 	spin_lock_irq(&rq->lock);
259 	i915_request_mark_complete(rq);
260 	if (!i915_request_signaled(rq))
261 		dma_fence_signal_locked(&rq->fence);
262 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
263 		i915_request_cancel_breadcrumb(rq);
264 	if (i915_request_has_waitboost(rq)) {
265 		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
266 		atomic_dec(&rq->engine->gt->rps.num_waiters);
267 	}
268 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
269 		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
270 		__notify_execute_cb(rq);
271 	}
272 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
273 	spin_unlock_irq(&rq->lock);
274 
275 	remove_from_client(rq);
276 	list_del(&rq->link);
277 
278 	intel_context_exit(rq->context);
279 	intel_context_unpin(rq->context);
280 
281 	free_capture_list(rq);
282 	i915_sched_node_fini(&rq->sched);
283 	i915_request_put(rq);
284 
285 	return true;
286 }
287 
288 void i915_request_retire_upto(struct i915_request *rq)
289 {
290 	struct intel_timeline * const tl = i915_request_timeline(rq);
291 	struct i915_request *tmp;
292 
293 	RQ_TRACE(rq, "\n");
294 
295 	GEM_BUG_ON(!i915_request_completed(rq));
296 
297 	do {
298 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
299 	} while (i915_request_retire(tmp) && tmp != rq);
300 }
301 
302 static int
303 __await_execution(struct i915_request *rq,
304 		  struct i915_request *signal,
305 		  void (*hook)(struct i915_request *rq,
306 			       struct dma_fence *signal),
307 		  gfp_t gfp)
308 {
309 	struct execute_cb *cb;
310 
311 	if (i915_request_is_active(signal)) {
312 		if (hook)
313 			hook(rq, &signal->fence);
314 		return 0;
315 	}
316 
317 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
318 	if (!cb)
319 		return -ENOMEM;
320 
321 	cb->fence = &rq->submit;
322 	i915_sw_fence_await(cb->fence);
323 	init_irq_work(&cb->work, irq_execute_cb);
324 
325 	if (hook) {
326 		cb->hook = hook;
327 		cb->signal = i915_request_get(signal);
328 		cb->work.func = irq_execute_cb_hook;
329 	}
330 
331 	spin_lock_irq(&signal->lock);
332 	if (i915_request_is_active(signal)) {
333 		if (hook) {
334 			hook(rq, &signal->fence);
335 			i915_request_put(signal);
336 		}
337 		i915_sw_fence_complete(cb->fence);
338 		kmem_cache_free(global.slab_execute_cbs, cb);
339 	} else {
340 		list_add_tail(&cb->link, &signal->execute_cb);
341 	}
342 	spin_unlock_irq(&signal->lock);
343 
344 	/* Copy across semaphore status as we need the same behaviour */
345 	rq->sched.flags |= signal->sched.flags;
346 	return 0;
347 }
348 
349 bool __i915_request_submit(struct i915_request *request)
350 {
351 	struct intel_engine_cs *engine = request->engine;
352 	bool result = false;
353 
354 	RQ_TRACE(request, "\n");
355 
356 	GEM_BUG_ON(!irqs_disabled());
357 	lockdep_assert_held(&engine->active.lock);
358 
359 	/*
360 	 * With the advent of preempt-to-busy, we frequently encounter
361 	 * requests that we have unsubmitted from HW, but left running
362 	 * until the next ack and so have completed in the meantime. On
363 	 * resubmission of that completed request, we can skip
364 	 * updating the payload, and execlists can even skip submitting
365 	 * the request.
366 	 *
367 	 * We must remove the request from the caller's priority queue,
368 	 * and the caller must only call us when the request is in their
369 	 * priority queue, under the active.lock. This ensures that the
370 	 * request has *not* yet been retired and we can safely move
371 	 * the request into the engine->active.list where it will be
372 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
373 	 * request, this would be a horrible use-after-free.)
374 	 */
375 	if (i915_request_completed(request))
376 		goto xfer;
377 
378 	if (intel_context_is_banned(request->context))
379 		i915_request_skip(request, -EIO);
380 
381 	/*
382 	 * Are we using semaphores when the gpu is already saturated?
383 	 *
384 	 * Using semaphores incurs a cost in having the GPU poll a
385 	 * memory location, busywaiting for it to change. The continual
386 	 * memory reads can have a noticeable impact on the rest of the
387 	 * system with the extra bus traffic, stalling the cpu as it too
388 	 * tries to access memory across the bus (perf stat -e bus-cycles).
389 	 *
390 	 * If we installed a semaphore on this request and we only submit
391 	 * the request after the signaler completed, that indicates the
392 	 * system is overloaded and using semaphores at this time only
393 	 * increases the amount of work we are doing. If so, we disable
394 	 * further use of semaphores until we are idle again, whence we
395 	 * optimistically try again.
396 	 */
397 	if (request->sched.semaphores &&
398 	    i915_sw_fence_signaled(&request->semaphore))
399 		engine->saturated |= request->sched.semaphores;
400 
401 	engine->emit_fini_breadcrumb(request,
402 				     request->ring->vaddr + request->postfix);
403 
404 	trace_i915_request_execute(request);
405 	engine->serial++;
406 	result = true;
407 
408 xfer:	/* We may be recursing from the signal callback of another i915 fence */
409 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
410 
411 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
412 		list_move_tail(&request->sched.link, &engine->active.requests);
413 
414 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
415 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
416 	    !i915_request_enable_breadcrumb(request))
417 		intel_engine_signal_breadcrumbs(engine);
418 
419 	__notify_execute_cb(request);
420 
421 	spin_unlock(&request->lock);
422 
423 	return result;
424 }
425 
426 void i915_request_submit(struct i915_request *request)
427 {
428 	struct intel_engine_cs *engine = request->engine;
429 	unsigned long flags;
430 
431 	/* Will be called from irq-context when using foreign fences. */
432 	spin_lock_irqsave(&engine->active.lock, flags);
433 
434 	__i915_request_submit(request);
435 
436 	spin_unlock_irqrestore(&engine->active.lock, flags);
437 }
438 
439 void __i915_request_unsubmit(struct i915_request *request)
440 {
441 	struct intel_engine_cs *engine = request->engine;
442 
443 	RQ_TRACE(request, "\n");
444 
445 	GEM_BUG_ON(!irqs_disabled());
446 	lockdep_assert_held(&engine->active.lock);
447 
448 	/*
449 	 * Only unwind in reverse order, required so that the per-context list
450 	 * is kept in seqno/ring order.
451 	 */
452 
453 	/* We may be recursing from the signal callback of another i915 fence */
454 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
455 
456 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
457 		i915_request_cancel_breadcrumb(request);
458 
459 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
460 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
461 
462 	spin_unlock(&request->lock);
463 
464 	/* We've already spun, don't charge on resubmitting. */
465 	if (request->sched.semaphores && i915_request_started(request)) {
466 		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
467 		request->sched.semaphores = 0;
468 	}
469 
470 	/*
471 	 * We don't need to wake_up any waiters on request->execute, they
472 	 * will get woken by any other event or us re-adding this request
473 	 * to the engine timeline (__i915_request_submit()). The waiters
474 	 * should be quite adapt at finding that the request now has a new
475 	 * global_seqno to the one they went to sleep on.
476 	 */
477 }
478 
479 void i915_request_unsubmit(struct i915_request *request)
480 {
481 	struct intel_engine_cs *engine = request->engine;
482 	unsigned long flags;
483 
484 	/* Will be called from irq-context when using foreign fences. */
485 	spin_lock_irqsave(&engine->active.lock, flags);
486 
487 	__i915_request_unsubmit(request);
488 
489 	spin_unlock_irqrestore(&engine->active.lock, flags);
490 }
491 
492 static int __i915_sw_fence_call
493 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
494 {
495 	struct i915_request *request =
496 		container_of(fence, typeof(*request), submit);
497 
498 	switch (state) {
499 	case FENCE_COMPLETE:
500 		trace_i915_request_submit(request);
501 
502 		if (unlikely(fence->error))
503 			i915_request_skip(request, fence->error);
504 
505 		/*
506 		 * We need to serialize use of the submit_request() callback
507 		 * with its hotplugging performed during an emergency
508 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
509 		 * critical section in order to force i915_gem_set_wedged() to
510 		 * wait until the submit_request() is completed before
511 		 * proceeding.
512 		 */
513 		rcu_read_lock();
514 		request->engine->submit_request(request);
515 		rcu_read_unlock();
516 		break;
517 
518 	case FENCE_FREE:
519 		i915_request_put(request);
520 		break;
521 	}
522 
523 	return NOTIFY_DONE;
524 }
525 
526 static int __i915_sw_fence_call
527 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
528 {
529 	struct i915_request *request =
530 		container_of(fence, typeof(*request), semaphore);
531 
532 	switch (state) {
533 	case FENCE_COMPLETE:
534 		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
535 		break;
536 
537 	case FENCE_FREE:
538 		i915_request_put(request);
539 		break;
540 	}
541 
542 	return NOTIFY_DONE;
543 }
544 
545 static void retire_requests(struct intel_timeline *tl)
546 {
547 	struct i915_request *rq, *rn;
548 
549 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
550 		if (!i915_request_retire(rq))
551 			break;
552 }
553 
554 static noinline struct i915_request *
555 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
556 {
557 	struct i915_request *rq;
558 
559 	if (list_empty(&tl->requests))
560 		goto out;
561 
562 	if (!gfpflags_allow_blocking(gfp))
563 		goto out;
564 
565 	/* Move our oldest request to the slab-cache (if not in use!) */
566 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
567 	i915_request_retire(rq);
568 
569 	rq = kmem_cache_alloc(global.slab_requests,
570 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
571 	if (rq)
572 		return rq;
573 
574 	/* Ratelimit ourselves to prevent oom from malicious clients */
575 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
576 	cond_synchronize_rcu(rq->rcustate);
577 
578 	/* Retire our old requests in the hope that we free some */
579 	retire_requests(tl);
580 
581 out:
582 	return kmem_cache_alloc(global.slab_requests, gfp);
583 }
584 
585 static void __i915_request_ctor(void *arg)
586 {
587 	struct i915_request *rq = arg;
588 
589 	spin_lock_init(&rq->lock);
590 	i915_sched_node_init(&rq->sched);
591 	i915_sw_fence_init(&rq->submit, submit_notify);
592 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
593 
594 	rq->file_priv = NULL;
595 	rq->capture_list = NULL;
596 
597 	INIT_LIST_HEAD(&rq->execute_cb);
598 }
599 
600 struct i915_request *
601 __i915_request_create(struct intel_context *ce, gfp_t gfp)
602 {
603 	struct intel_timeline *tl = ce->timeline;
604 	struct i915_request *rq;
605 	u32 seqno;
606 	int ret;
607 
608 	might_sleep_if(gfpflags_allow_blocking(gfp));
609 
610 	/* Check that the caller provided an already pinned context */
611 	__intel_context_pin(ce);
612 
613 	/*
614 	 * Beware: Dragons be flying overhead.
615 	 *
616 	 * We use RCU to look up requests in flight. The lookups may
617 	 * race with the request being allocated from the slab freelist.
618 	 * That is the request we are writing to here, may be in the process
619 	 * of being read by __i915_active_request_get_rcu(). As such,
620 	 * we have to be very careful when overwriting the contents. During
621 	 * the RCU lookup, we change chase the request->engine pointer,
622 	 * read the request->global_seqno and increment the reference count.
623 	 *
624 	 * The reference count is incremented atomically. If it is zero,
625 	 * the lookup knows the request is unallocated and complete. Otherwise,
626 	 * it is either still in use, or has been reallocated and reset
627 	 * with dma_fence_init(). This increment is safe for release as we
628 	 * check that the request we have a reference to and matches the active
629 	 * request.
630 	 *
631 	 * Before we increment the refcount, we chase the request->engine
632 	 * pointer. We must not call kmem_cache_zalloc() or else we set
633 	 * that pointer to NULL and cause a crash during the lookup. If
634 	 * we see the request is completed (based on the value of the
635 	 * old engine and seqno), the lookup is complete and reports NULL.
636 	 * If we decide the request is not completed (new engine or seqno),
637 	 * then we grab a reference and double check that it is still the
638 	 * active request - which it won't be and restart the lookup.
639 	 *
640 	 * Do not use kmem_cache_zalloc() here!
641 	 */
642 	rq = kmem_cache_alloc(global.slab_requests,
643 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
644 	if (unlikely(!rq)) {
645 		rq = request_alloc_slow(tl, gfp);
646 		if (!rq) {
647 			ret = -ENOMEM;
648 			goto err_unreserve;
649 		}
650 	}
651 
652 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
653 	if (ret)
654 		goto err_free;
655 
656 	rq->i915 = ce->engine->i915;
657 	rq->context = ce;
658 	rq->engine = ce->engine;
659 	rq->ring = ce->ring;
660 	rq->execution_mask = ce->engine->mask;
661 
662 	RCU_INIT_POINTER(rq->timeline, tl);
663 	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
664 	rq->hwsp_seqno = tl->hwsp_seqno;
665 
666 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
667 
668 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
669 		       tl->fence_context, seqno);
670 
671 	/* We bump the ref for the fence chain */
672 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
673 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
674 
675 	i915_sched_node_reinit(&rq->sched);
676 
677 	/* No zalloc, everything must be cleared after use */
678 	rq->batch = NULL;
679 	GEM_BUG_ON(rq->file_priv);
680 	GEM_BUG_ON(rq->capture_list);
681 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
682 
683 	/*
684 	 * Reserve space in the ring buffer for all the commands required to
685 	 * eventually emit this request. This is to guarantee that the
686 	 * i915_request_add() call can't fail. Note that the reserve may need
687 	 * to be redone if the request is not actually submitted straight
688 	 * away, e.g. because a GPU scheduler has deferred it.
689 	 *
690 	 * Note that due to how we add reserved_space to intel_ring_begin()
691 	 * we need to double our request to ensure that if we need to wrap
692 	 * around inside i915_request_add() there is sufficient space at
693 	 * the beginning of the ring as well.
694 	 */
695 	rq->reserved_space =
696 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
697 
698 	/*
699 	 * Record the position of the start of the request so that
700 	 * should we detect the updated seqno part-way through the
701 	 * GPU processing the request, we never over-estimate the
702 	 * position of the head.
703 	 */
704 	rq->head = rq->ring->emit;
705 
706 	ret = rq->engine->request_alloc(rq);
707 	if (ret)
708 		goto err_unwind;
709 
710 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
711 
712 	intel_context_mark_active(ce);
713 	return rq;
714 
715 err_unwind:
716 	ce->ring->emit = rq->head;
717 
718 	/* Make sure we didn't add ourselves to external state before freeing */
719 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
720 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
721 
722 err_free:
723 	kmem_cache_free(global.slab_requests, rq);
724 err_unreserve:
725 	intel_context_unpin(ce);
726 	return ERR_PTR(ret);
727 }
728 
729 struct i915_request *
730 i915_request_create(struct intel_context *ce)
731 {
732 	struct i915_request *rq;
733 	struct intel_timeline *tl;
734 
735 	tl = intel_context_timeline_lock(ce);
736 	if (IS_ERR(tl))
737 		return ERR_CAST(tl);
738 
739 	/* Move our oldest request to the slab-cache (if not in use!) */
740 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
741 	if (!list_is_last(&rq->link, &tl->requests))
742 		i915_request_retire(rq);
743 
744 	intel_context_enter(ce);
745 	rq = __i915_request_create(ce, GFP_KERNEL);
746 	intel_context_exit(ce); /* active reference transferred to request */
747 	if (IS_ERR(rq))
748 		goto err_unlock;
749 
750 	/* Check that we do not interrupt ourselves with a new request */
751 	rq->cookie = lockdep_pin_lock(&tl->mutex);
752 
753 	return rq;
754 
755 err_unlock:
756 	intel_context_timeline_unlock(tl);
757 	return rq;
758 }
759 
760 static int
761 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
762 {
763 	struct dma_fence *fence;
764 	int err;
765 
766 	GEM_BUG_ON(i915_request_timeline(rq) ==
767 		   rcu_access_pointer(signal->timeline));
768 
769 	fence = NULL;
770 	rcu_read_lock();
771 	spin_lock_irq(&signal->lock);
772 	if (!i915_request_started(signal) &&
773 	    !list_is_first(&signal->link,
774 			   &rcu_dereference(signal->timeline)->requests)) {
775 		struct i915_request *prev = list_prev_entry(signal, link);
776 
777 		/*
778 		 * Peek at the request before us in the timeline. That
779 		 * request will only be valid before it is retired, so
780 		 * after acquiring a reference to it, confirm that it is
781 		 * still part of the signaler's timeline.
782 		 */
783 		if (i915_request_get_rcu(prev)) {
784 			if (list_next_entry(prev, link) == signal)
785 				fence = &prev->fence;
786 			else
787 				i915_request_put(prev);
788 		}
789 	}
790 	spin_unlock_irq(&signal->lock);
791 	rcu_read_unlock();
792 	if (!fence)
793 		return 0;
794 
795 	err = 0;
796 	if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
797 		err = i915_sw_fence_await_dma_fence(&rq->submit,
798 						    fence, 0,
799 						    I915_FENCE_GFP);
800 	dma_fence_put(fence);
801 
802 	return err;
803 }
804 
805 static intel_engine_mask_t
806 already_busywaiting(struct i915_request *rq)
807 {
808 	/*
809 	 * Polling a semaphore causes bus traffic, delaying other users of
810 	 * both the GPU and CPU. We want to limit the impact on others,
811 	 * while taking advantage of early submission to reduce GPU
812 	 * latency. Therefore we restrict ourselves to not using more
813 	 * than one semaphore from each source, and not using a semaphore
814 	 * if we have detected the engine is saturated (i.e. would not be
815 	 * submitted early and cause bus traffic reading an already passed
816 	 * semaphore).
817 	 *
818 	 * See the are-we-too-late? check in __i915_request_submit().
819 	 */
820 	return rq->sched.semaphores | rq->engine->saturated;
821 }
822 
823 static int
824 __emit_semaphore_wait(struct i915_request *to,
825 		      struct i915_request *from,
826 		      u32 seqno)
827 {
828 	const int has_token = INTEL_GEN(to->i915) >= 12;
829 	u32 hwsp_offset;
830 	int len, err;
831 	u32 *cs;
832 
833 	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
834 
835 	/* We need to pin the signaler's HWSP until we are finished reading. */
836 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
837 	if (err)
838 		return err;
839 
840 	len = 4;
841 	if (has_token)
842 		len += 2;
843 
844 	cs = intel_ring_begin(to, len);
845 	if (IS_ERR(cs))
846 		return PTR_ERR(cs);
847 
848 	/*
849 	 * Using greater-than-or-equal here means we have to worry
850 	 * about seqno wraparound. To side step that issue, we swap
851 	 * the timeline HWSP upon wrapping, so that everyone listening
852 	 * for the old (pre-wrap) values do not see the much smaller
853 	 * (post-wrap) values than they were expecting (and so wait
854 	 * forever).
855 	 */
856 	*cs++ = (MI_SEMAPHORE_WAIT |
857 		 MI_SEMAPHORE_GLOBAL_GTT |
858 		 MI_SEMAPHORE_POLL |
859 		 MI_SEMAPHORE_SAD_GTE_SDD) +
860 		has_token;
861 	*cs++ = seqno;
862 	*cs++ = hwsp_offset;
863 	*cs++ = 0;
864 	if (has_token) {
865 		*cs++ = 0;
866 		*cs++ = MI_NOOP;
867 	}
868 
869 	intel_ring_advance(to, cs);
870 	return 0;
871 }
872 
873 static int
874 emit_semaphore_wait(struct i915_request *to,
875 		    struct i915_request *from,
876 		    gfp_t gfp)
877 {
878 	/* Just emit the first semaphore we see as request space is limited. */
879 	if (already_busywaiting(to) & from->engine->mask)
880 		goto await_fence;
881 
882 	if (i915_request_await_start(to, from) < 0)
883 		goto await_fence;
884 
885 	/* Only submit our spinner after the signaler is running! */
886 	if (__await_execution(to, from, NULL, gfp))
887 		goto await_fence;
888 
889 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
890 		goto await_fence;
891 
892 	to->sched.semaphores |= from->engine->mask;
893 	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
894 	return 0;
895 
896 await_fence:
897 	return i915_sw_fence_await_dma_fence(&to->submit,
898 					     &from->fence, 0,
899 					     I915_FENCE_GFP);
900 }
901 
902 static int
903 i915_request_await_request(struct i915_request *to, struct i915_request *from)
904 {
905 	int ret;
906 
907 	GEM_BUG_ON(to == from);
908 	GEM_BUG_ON(to->timeline == from->timeline);
909 
910 	if (i915_request_completed(from))
911 		return 0;
912 
913 	if (to->engine->schedule) {
914 		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
915 		if (ret < 0)
916 			return ret;
917 	}
918 
919 	if (to->engine == from->engine)
920 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
921 						       &from->submit,
922 						       I915_FENCE_GFP);
923 	else if (intel_context_use_semaphores(to->context))
924 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
925 	else
926 		ret = i915_sw_fence_await_dma_fence(&to->submit,
927 						    &from->fence, 0,
928 						    I915_FENCE_GFP);
929 	if (ret < 0)
930 		return ret;
931 
932 	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
933 		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
934 						    &from->fence, 0,
935 						    I915_FENCE_GFP);
936 		if (ret < 0)
937 			return ret;
938 	}
939 
940 	return 0;
941 }
942 
943 int
944 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
945 {
946 	struct dma_fence **child = &fence;
947 	unsigned int nchild = 1;
948 	int ret;
949 
950 	/*
951 	 * Note that if the fence-array was created in signal-on-any mode,
952 	 * we should *not* decompose it into its individual fences. However,
953 	 * we don't currently store which mode the fence-array is operating
954 	 * in. Fortunately, the only user of signal-on-any is private to
955 	 * amdgpu and we should not see any incoming fence-array from
956 	 * sync-file being in signal-on-any mode.
957 	 */
958 	if (dma_fence_is_array(fence)) {
959 		struct dma_fence_array *array = to_dma_fence_array(fence);
960 
961 		child = array->fences;
962 		nchild = array->num_fences;
963 		GEM_BUG_ON(!nchild);
964 	}
965 
966 	do {
967 		fence = *child++;
968 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
969 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
970 			continue;
971 		}
972 
973 		/*
974 		 * Requests on the same timeline are explicitly ordered, along
975 		 * with their dependencies, by i915_request_add() which ensures
976 		 * that requests are submitted in-order through each ring.
977 		 */
978 		if (fence->context == rq->fence.context)
979 			continue;
980 
981 		/* Squash repeated waits to the same timelines */
982 		if (fence->context &&
983 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
984 						 fence))
985 			continue;
986 
987 		if (dma_fence_is_i915(fence))
988 			ret = i915_request_await_request(rq, to_request(fence));
989 		else
990 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
991 							    fence->context ? I915_FENCE_TIMEOUT : 0,
992 							    I915_FENCE_GFP);
993 		if (ret < 0)
994 			return ret;
995 
996 		/* Record the latest fence used against each timeline */
997 		if (fence->context)
998 			intel_timeline_sync_set(i915_request_timeline(rq),
999 						fence);
1000 	} while (--nchild);
1001 
1002 	return 0;
1003 }
1004 
1005 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1006 					  struct dma_fence *fence)
1007 {
1008 	return __intel_timeline_sync_is_later(tl,
1009 					      fence->context,
1010 					      fence->seqno - 1);
1011 }
1012 
1013 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1014 					 const struct dma_fence *fence)
1015 {
1016 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1017 }
1018 
1019 static int
1020 __i915_request_await_execution(struct i915_request *to,
1021 			       struct i915_request *from,
1022 			       void (*hook)(struct i915_request *rq,
1023 					    struct dma_fence *signal))
1024 {
1025 	int err;
1026 
1027 	/* Submit both requests at the same time */
1028 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1029 	if (err)
1030 		return err;
1031 
1032 	/* Squash repeated depenendices to the same timelines */
1033 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1034 					  &from->fence))
1035 		return 0;
1036 
1037 	/* Ensure both start together [after all semaphores in signal] */
1038 	if (intel_engine_has_semaphores(to->engine))
1039 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1040 	else
1041 		err = i915_request_await_start(to, from);
1042 	if (err < 0)
1043 		return err;
1044 
1045 	/* Couple the dependency tree for PI on this exposed to->fence */
1046 	if (to->engine->schedule) {
1047 		err = i915_sched_node_add_dependency(&to->sched, &from->sched);
1048 		if (err < 0)
1049 			return err;
1050 	}
1051 
1052 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1053 					     &from->fence);
1054 }
1055 
1056 int
1057 i915_request_await_execution(struct i915_request *rq,
1058 			     struct dma_fence *fence,
1059 			     void (*hook)(struct i915_request *rq,
1060 					  struct dma_fence *signal))
1061 {
1062 	struct dma_fence **child = &fence;
1063 	unsigned int nchild = 1;
1064 	int ret;
1065 
1066 	if (dma_fence_is_array(fence)) {
1067 		struct dma_fence_array *array = to_dma_fence_array(fence);
1068 
1069 		/* XXX Error for signal-on-any fence arrays */
1070 
1071 		child = array->fences;
1072 		nchild = array->num_fences;
1073 		GEM_BUG_ON(!nchild);
1074 	}
1075 
1076 	do {
1077 		fence = *child++;
1078 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1079 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1080 			continue;
1081 		}
1082 
1083 		/*
1084 		 * We don't squash repeated fence dependencies here as we
1085 		 * want to run our callback in all cases.
1086 		 */
1087 
1088 		if (dma_fence_is_i915(fence))
1089 			ret = __i915_request_await_execution(rq,
1090 							     to_request(fence),
1091 							     hook);
1092 		else
1093 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1094 							    I915_FENCE_TIMEOUT,
1095 							    GFP_KERNEL);
1096 		if (ret < 0)
1097 			return ret;
1098 	} while (--nchild);
1099 
1100 	return 0;
1101 }
1102 
1103 /**
1104  * i915_request_await_object - set this request to (async) wait upon a bo
1105  * @to: request we are wishing to use
1106  * @obj: object which may be in use on another ring.
1107  * @write: whether the wait is on behalf of a writer
1108  *
1109  * This code is meant to abstract object synchronization with the GPU.
1110  * Conceptually we serialise writes between engines inside the GPU.
1111  * We only allow one engine to write into a buffer at any time, but
1112  * multiple readers. To ensure each has a coherent view of memory, we must:
1113  *
1114  * - If there is an outstanding write request to the object, the new
1115  *   request must wait for it to complete (either CPU or in hw, requests
1116  *   on the same ring will be naturally ordered).
1117  *
1118  * - If we are a write request (pending_write_domain is set), the new
1119  *   request must wait for outstanding read requests to complete.
1120  *
1121  * Returns 0 if successful, else propagates up the lower layer error.
1122  */
1123 int
1124 i915_request_await_object(struct i915_request *to,
1125 			  struct drm_i915_gem_object *obj,
1126 			  bool write)
1127 {
1128 	struct dma_fence *excl;
1129 	int ret = 0;
1130 
1131 	if (write) {
1132 		struct dma_fence **shared;
1133 		unsigned int count, i;
1134 
1135 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1136 							&excl, &count, &shared);
1137 		if (ret)
1138 			return ret;
1139 
1140 		for (i = 0; i < count; i++) {
1141 			ret = i915_request_await_dma_fence(to, shared[i]);
1142 			if (ret)
1143 				break;
1144 
1145 			dma_fence_put(shared[i]);
1146 		}
1147 
1148 		for (; i < count; i++)
1149 			dma_fence_put(shared[i]);
1150 		kfree(shared);
1151 	} else {
1152 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1153 	}
1154 
1155 	if (excl) {
1156 		if (ret == 0)
1157 			ret = i915_request_await_dma_fence(to, excl);
1158 
1159 		dma_fence_put(excl);
1160 	}
1161 
1162 	return ret;
1163 }
1164 
1165 void i915_request_skip(struct i915_request *rq, int error)
1166 {
1167 	void *vaddr = rq->ring->vaddr;
1168 	u32 head;
1169 
1170 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1171 	dma_fence_set_error(&rq->fence, error);
1172 
1173 	if (rq->infix == rq->postfix)
1174 		return;
1175 
1176 	/*
1177 	 * As this request likely depends on state from the lost
1178 	 * context, clear out all the user operations leaving the
1179 	 * breadcrumb at the end (so we get the fence notifications).
1180 	 */
1181 	head = rq->infix;
1182 	if (rq->postfix < head) {
1183 		memset(vaddr + head, 0, rq->ring->size - head);
1184 		head = 0;
1185 	}
1186 	memset(vaddr + head, 0, rq->postfix - head);
1187 	rq->infix = rq->postfix;
1188 }
1189 
1190 static struct i915_request *
1191 __i915_request_add_to_timeline(struct i915_request *rq)
1192 {
1193 	struct intel_timeline *timeline = i915_request_timeline(rq);
1194 	struct i915_request *prev;
1195 
1196 	/*
1197 	 * Dependency tracking and request ordering along the timeline
1198 	 * is special cased so that we can eliminate redundant ordering
1199 	 * operations while building the request (we know that the timeline
1200 	 * itself is ordered, and here we guarantee it).
1201 	 *
1202 	 * As we know we will need to emit tracking along the timeline,
1203 	 * we embed the hooks into our request struct -- at the cost of
1204 	 * having to have specialised no-allocation interfaces (which will
1205 	 * be beneficial elsewhere).
1206 	 *
1207 	 * A second benefit to open-coding i915_request_await_request is
1208 	 * that we can apply a slight variant of the rules specialised
1209 	 * for timelines that jump between engines (such as virtual engines).
1210 	 * If we consider the case of virtual engine, we must emit a dma-fence
1211 	 * to prevent scheduling of the second request until the first is
1212 	 * complete (to maximise our greedy late load balancing) and this
1213 	 * precludes optimising to use semaphores serialisation of a single
1214 	 * timeline across engines.
1215 	 */
1216 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1217 						  &rq->fence));
1218 	if (prev && !i915_request_completed(prev)) {
1219 		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1220 			i915_sw_fence_await_sw_fence(&rq->submit,
1221 						     &prev->submit,
1222 						     &rq->submitq);
1223 		else
1224 			__i915_sw_fence_await_dma_fence(&rq->submit,
1225 							&prev->fence,
1226 							&rq->dmaq);
1227 		if (rq->engine->schedule)
1228 			__i915_sched_node_add_dependency(&rq->sched,
1229 							 &prev->sched,
1230 							 &rq->dep,
1231 							 0);
1232 	}
1233 
1234 	list_add_tail(&rq->link, &timeline->requests);
1235 
1236 	/*
1237 	 * Make sure that no request gazumped us - if it was allocated after
1238 	 * our i915_request_alloc() and called __i915_request_add() before
1239 	 * us, the timeline will hold its seqno which is later than ours.
1240 	 */
1241 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1242 
1243 	return prev;
1244 }
1245 
1246 /*
1247  * NB: This function is not allowed to fail. Doing so would mean the the
1248  * request is not being tracked for completion but the work itself is
1249  * going to happen on the hardware. This would be a Bad Thing(tm).
1250  */
1251 struct i915_request *__i915_request_commit(struct i915_request *rq)
1252 {
1253 	struct intel_engine_cs *engine = rq->engine;
1254 	struct intel_ring *ring = rq->ring;
1255 	u32 *cs;
1256 
1257 	RQ_TRACE(rq, "\n");
1258 
1259 	/*
1260 	 * To ensure that this call will not fail, space for its emissions
1261 	 * should already have been reserved in the ring buffer. Let the ring
1262 	 * know that it is time to use that space up.
1263 	 */
1264 	GEM_BUG_ON(rq->reserved_space > ring->space);
1265 	rq->reserved_space = 0;
1266 	rq->emitted_jiffies = jiffies;
1267 
1268 	/*
1269 	 * Record the position of the start of the breadcrumb so that
1270 	 * should we detect the updated seqno part-way through the
1271 	 * GPU processing the request, we never over-estimate the
1272 	 * position of the ring's HEAD.
1273 	 */
1274 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1275 	GEM_BUG_ON(IS_ERR(cs));
1276 	rq->postfix = intel_ring_offset(rq, cs);
1277 
1278 	return __i915_request_add_to_timeline(rq);
1279 }
1280 
1281 void __i915_request_queue(struct i915_request *rq,
1282 			  const struct i915_sched_attr *attr)
1283 {
1284 	/*
1285 	 * Let the backend know a new request has arrived that may need
1286 	 * to adjust the existing execution schedule due to a high priority
1287 	 * request - i.e. we may want to preempt the current request in order
1288 	 * to run a high priority dependency chain *before* we can execute this
1289 	 * request.
1290 	 *
1291 	 * This is called before the request is ready to run so that we can
1292 	 * decide whether to preempt the entire chain so that it is ready to
1293 	 * run at the earliest possible convenience.
1294 	 */
1295 	i915_sw_fence_commit(&rq->semaphore);
1296 	if (attr && rq->engine->schedule)
1297 		rq->engine->schedule(rq, attr);
1298 	i915_sw_fence_commit(&rq->submit);
1299 }
1300 
1301 void i915_request_add(struct i915_request *rq)
1302 {
1303 	struct intel_timeline * const tl = i915_request_timeline(rq);
1304 	struct i915_sched_attr attr = {};
1305 	struct i915_request *prev;
1306 
1307 	lockdep_assert_held(&tl->mutex);
1308 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1309 
1310 	trace_i915_request_add(rq);
1311 
1312 	prev = __i915_request_commit(rq);
1313 
1314 	if (rcu_access_pointer(rq->context->gem_context))
1315 		attr = i915_request_gem_context(rq)->sched;
1316 
1317 	/*
1318 	 * Boost actual workloads past semaphores!
1319 	 *
1320 	 * With semaphores we spin on one engine waiting for another,
1321 	 * simply to reduce the latency of starting our work when
1322 	 * the signaler completes. However, if there is any other
1323 	 * work that we could be doing on this engine instead, that
1324 	 * is better utilisation and will reduce the overall duration
1325 	 * of the current work. To avoid PI boosting a semaphore
1326 	 * far in the distance past over useful work, we keep a history
1327 	 * of any semaphore use along our dependency chain.
1328 	 */
1329 	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1330 		attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1331 
1332 	/*
1333 	 * Boost priorities to new clients (new request flows).
1334 	 *
1335 	 * Allow interactive/synchronous clients to jump ahead of
1336 	 * the bulk clients. (FQ_CODEL)
1337 	 */
1338 	if (list_empty(&rq->sched.signalers_list))
1339 		attr.priority |= I915_PRIORITY_WAIT;
1340 
1341 	local_bh_disable();
1342 	__i915_request_queue(rq, &attr);
1343 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1344 
1345 	/*
1346 	 * In typical scenarios, we do not expect the previous request on
1347 	 * the timeline to be still tracked by timeline->last_request if it
1348 	 * has been completed. If the completed request is still here, that
1349 	 * implies that request retirement is a long way behind submission,
1350 	 * suggesting that we haven't been retiring frequently enough from
1351 	 * the combination of retire-before-alloc, waiters and the background
1352 	 * retirement worker. So if the last request on this timeline was
1353 	 * already completed, do a catch up pass, flushing the retirement queue
1354 	 * up to this client. Since we have now moved the heaviest operations
1355 	 * during retirement onto secondary workers, such as freeing objects
1356 	 * or contexts, retiring a bunch of requests is mostly list management
1357 	 * (and cache misses), and so we should not be overly penalizing this
1358 	 * client by performing excess work, though we may still performing
1359 	 * work on behalf of others -- but instead we should benefit from
1360 	 * improved resource management. (Well, that's the theory at least.)
1361 	 */
1362 	if (prev &&
1363 	    i915_request_completed(prev) &&
1364 	    rcu_access_pointer(prev->timeline) == tl)
1365 		i915_request_retire_upto(prev);
1366 
1367 	mutex_unlock(&tl->mutex);
1368 }
1369 
1370 static unsigned long local_clock_us(unsigned int *cpu)
1371 {
1372 	unsigned long t;
1373 
1374 	/*
1375 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1376 	 * The result and subsequent calculations are also defined in the same
1377 	 * approximate microseconds units. The principal source of timing
1378 	 * error here is from the simple truncation.
1379 	 *
1380 	 * Note that local_clock() is only defined wrt to the current CPU;
1381 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1382 	 * blocking preemption for the entire busywait, we can detect the CPU
1383 	 * switch and use that as indicator of system load and a reason to
1384 	 * stop busywaiting, see busywait_stop().
1385 	 */
1386 	*cpu = get_cpu();
1387 	t = local_clock() >> 10;
1388 	put_cpu();
1389 
1390 	return t;
1391 }
1392 
1393 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1394 {
1395 	unsigned int this_cpu;
1396 
1397 	if (time_after(local_clock_us(&this_cpu), timeout))
1398 		return true;
1399 
1400 	return this_cpu != cpu;
1401 }
1402 
1403 static bool __i915_spin_request(const struct i915_request * const rq,
1404 				int state, unsigned long timeout_us)
1405 {
1406 	unsigned int cpu;
1407 
1408 	/*
1409 	 * Only wait for the request if we know it is likely to complete.
1410 	 *
1411 	 * We don't track the timestamps around requests, nor the average
1412 	 * request length, so we do not have a good indicator that this
1413 	 * request will complete within the timeout. What we do know is the
1414 	 * order in which requests are executed by the context and so we can
1415 	 * tell if the request has been started. If the request is not even
1416 	 * running yet, it is a fair assumption that it will not complete
1417 	 * within our relatively short timeout.
1418 	 */
1419 	if (!i915_request_is_running(rq))
1420 		return false;
1421 
1422 	/*
1423 	 * When waiting for high frequency requests, e.g. during synchronous
1424 	 * rendering split between the CPU and GPU, the finite amount of time
1425 	 * required to set up the irq and wait upon it limits the response
1426 	 * rate. By busywaiting on the request completion for a short while we
1427 	 * can service the high frequency waits as quick as possible. However,
1428 	 * if it is a slow request, we want to sleep as quickly as possible.
1429 	 * The tradeoff between waiting and sleeping is roughly the time it
1430 	 * takes to sleep on a request, on the order of a microsecond.
1431 	 */
1432 
1433 	timeout_us += local_clock_us(&cpu);
1434 	do {
1435 		if (i915_request_completed(rq))
1436 			return true;
1437 
1438 		if (signal_pending_state(state, current))
1439 			break;
1440 
1441 		if (busywait_stop(timeout_us, cpu))
1442 			break;
1443 
1444 		cpu_relax();
1445 	} while (!need_resched());
1446 
1447 	return false;
1448 }
1449 
1450 struct request_wait {
1451 	struct dma_fence_cb cb;
1452 	struct task_struct *tsk;
1453 };
1454 
1455 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1456 {
1457 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1458 
1459 	wake_up_process(wait->tsk);
1460 }
1461 
1462 /**
1463  * i915_request_wait - wait until execution of request has finished
1464  * @rq: the request to wait upon
1465  * @flags: how to wait
1466  * @timeout: how long to wait in jiffies
1467  *
1468  * i915_request_wait() waits for the request to be completed, for a
1469  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1470  * unbounded wait).
1471  *
1472  * Returns the remaining time (in jiffies) if the request completed, which may
1473  * be zero or -ETIME if the request is unfinished after the timeout expires.
1474  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1475  * pending before the request completes.
1476  */
1477 long i915_request_wait(struct i915_request *rq,
1478 		       unsigned int flags,
1479 		       long timeout)
1480 {
1481 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1482 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1483 	struct request_wait wait;
1484 
1485 	might_sleep();
1486 	GEM_BUG_ON(timeout < 0);
1487 
1488 	if (dma_fence_is_signaled(&rq->fence))
1489 		return timeout;
1490 
1491 	if (!timeout)
1492 		return -ETIME;
1493 
1494 	trace_i915_request_wait_begin(rq, flags);
1495 
1496 	/*
1497 	 * We must never wait on the GPU while holding a lock as we
1498 	 * may need to perform a GPU reset. So while we don't need to
1499 	 * serialise wait/reset with an explicit lock, we do want
1500 	 * lockdep to detect potential dependency cycles.
1501 	 */
1502 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1503 
1504 	/*
1505 	 * Optimistic spin before touching IRQs.
1506 	 *
1507 	 * We may use a rather large value here to offset the penalty of
1508 	 * switching away from the active task. Frequently, the client will
1509 	 * wait upon an old swapbuffer to throttle itself to remain within a
1510 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1511 	 * then it should not be waiting long at all, and a sleep now will incur
1512 	 * extra scheduler latency in producing the next frame. To try to
1513 	 * avoid adding the cost of enabling/disabling the interrupt to the
1514 	 * short wait, we first spin to see if the request would have completed
1515 	 * in the time taken to setup the interrupt.
1516 	 *
1517 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1518 	 * scheduler latency of a context switch, ignoring the secondary
1519 	 * impacts from a context switch such as cache eviction.
1520 	 *
1521 	 * The scheme used for low-latency IO is called "hybrid interrupt
1522 	 * polling". The suggestion there is to sleep until just before you
1523 	 * expect to be woken by the device interrupt and then poll for its
1524 	 * completion. That requires having a good predictor for the request
1525 	 * duration, which we currently lack.
1526 	 */
1527 	if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1528 	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1529 		dma_fence_signal(&rq->fence);
1530 		goto out;
1531 	}
1532 
1533 	/*
1534 	 * This client is about to stall waiting for the GPU. In many cases
1535 	 * this is undesirable and limits the throughput of the system, as
1536 	 * many clients cannot continue processing user input/output whilst
1537 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1538 	 * to the GPU load and thus incurs additional latency for the client.
1539 	 * We can circumvent that by promoting the GPU frequency to maximum
1540 	 * before we sleep. This makes the GPU throttle up much more quickly
1541 	 * (good for benchmarks and user experience, e.g. window animations),
1542 	 * but at a cost of spending more power processing the workload
1543 	 * (bad for battery).
1544 	 */
1545 	if (flags & I915_WAIT_PRIORITY) {
1546 		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1547 			intel_rps_boost(rq);
1548 		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1549 	}
1550 
1551 	wait.tsk = current;
1552 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1553 		goto out;
1554 
1555 	for (;;) {
1556 		set_current_state(state);
1557 
1558 		if (i915_request_completed(rq)) {
1559 			dma_fence_signal(&rq->fence);
1560 			break;
1561 		}
1562 
1563 		if (signal_pending_state(state, current)) {
1564 			timeout = -ERESTARTSYS;
1565 			break;
1566 		}
1567 
1568 		if (!timeout) {
1569 			timeout = -ETIME;
1570 			break;
1571 		}
1572 
1573 		intel_engine_flush_submission(rq->engine);
1574 		timeout = io_schedule_timeout(timeout);
1575 	}
1576 	__set_current_state(TASK_RUNNING);
1577 
1578 	dma_fence_remove_callback(&rq->fence, &wait.cb);
1579 
1580 out:
1581 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1582 	trace_i915_request_wait_end(rq);
1583 	return timeout;
1584 }
1585 
1586 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1587 #include "selftests/mock_request.c"
1588 #include "selftests/i915_request.c"
1589 #endif
1590 
1591 static void i915_global_request_shrink(void)
1592 {
1593 	kmem_cache_shrink(global.slab_dependencies);
1594 	kmem_cache_shrink(global.slab_execute_cbs);
1595 	kmem_cache_shrink(global.slab_requests);
1596 }
1597 
1598 static void i915_global_request_exit(void)
1599 {
1600 	kmem_cache_destroy(global.slab_dependencies);
1601 	kmem_cache_destroy(global.slab_execute_cbs);
1602 	kmem_cache_destroy(global.slab_requests);
1603 }
1604 
1605 static struct i915_global_request global = { {
1606 	.shrink = i915_global_request_shrink,
1607 	.exit = i915_global_request_exit,
1608 } };
1609 
1610 int __init i915_global_request_init(void)
1611 {
1612 	global.slab_requests =
1613 		kmem_cache_create("i915_request",
1614 				  sizeof(struct i915_request),
1615 				  __alignof__(struct i915_request),
1616 				  SLAB_HWCACHE_ALIGN |
1617 				  SLAB_RECLAIM_ACCOUNT |
1618 				  SLAB_TYPESAFE_BY_RCU,
1619 				  __i915_request_ctor);
1620 	if (!global.slab_requests)
1621 		return -ENOMEM;
1622 
1623 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1624 					     SLAB_HWCACHE_ALIGN |
1625 					     SLAB_RECLAIM_ACCOUNT |
1626 					     SLAB_TYPESAFE_BY_RCU);
1627 	if (!global.slab_execute_cbs)
1628 		goto err_requests;
1629 
1630 	global.slab_dependencies = KMEM_CACHE(i915_dependency,
1631 					      SLAB_HWCACHE_ALIGN |
1632 					      SLAB_RECLAIM_ACCOUNT);
1633 	if (!global.slab_dependencies)
1634 		goto err_execute_cbs;
1635 
1636 	i915_global_register(&global.base);
1637 	return 0;
1638 
1639 err_execute_cbs:
1640 	kmem_cache_destroy(global.slab_execute_cbs);
1641 err_requests:
1642 	kmem_cache_destroy(global.slab_requests);
1643 	return -ENOMEM;
1644 }
1645