1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/irq_work.h> 27 #include <linux/prefetch.h> 28 #include <linux/sched.h> 29 #include <linux/sched/clock.h> 30 #include <linux/sched/signal.h> 31 32 #include "gem/i915_gem_context.h" 33 #include "gt/intel_context.h" 34 #include "gt/intel_ring.h" 35 #include "gt/intel_rps.h" 36 37 #include "i915_active.h" 38 #include "i915_drv.h" 39 #include "i915_globals.h" 40 #include "i915_trace.h" 41 #include "intel_pm.h" 42 43 struct execute_cb { 44 struct list_head link; 45 struct irq_work work; 46 struct i915_sw_fence *fence; 47 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 48 struct i915_request *signal; 49 }; 50 51 static struct i915_global_request { 52 struct i915_global base; 53 struct kmem_cache *slab_requests; 54 struct kmem_cache *slab_dependencies; 55 struct kmem_cache *slab_execute_cbs; 56 } global; 57 58 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 59 { 60 return dev_name(to_request(fence)->i915->drm.dev); 61 } 62 63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 64 { 65 const struct i915_gem_context *ctx; 66 67 /* 68 * The timeline struct (as part of the ppgtt underneath a context) 69 * may be freed when the request is no longer in use by the GPU. 70 * We could extend the life of a context to beyond that of all 71 * fences, possibly keeping the hw resource around indefinitely, 72 * or we just give them a false name. Since 73 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 74 * lie seems justifiable. 75 */ 76 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 77 return "signaled"; 78 79 ctx = i915_request_gem_context(to_request(fence)); 80 if (!ctx) 81 return "[" DRIVER_NAME "]"; 82 83 return ctx->name; 84 } 85 86 static bool i915_fence_signaled(struct dma_fence *fence) 87 { 88 return i915_request_completed(to_request(fence)); 89 } 90 91 static bool i915_fence_enable_signaling(struct dma_fence *fence) 92 { 93 return i915_request_enable_breadcrumb(to_request(fence)); 94 } 95 96 static signed long i915_fence_wait(struct dma_fence *fence, 97 bool interruptible, 98 signed long timeout) 99 { 100 return i915_request_wait(to_request(fence), 101 interruptible | I915_WAIT_PRIORITY, 102 timeout); 103 } 104 105 static void i915_fence_release(struct dma_fence *fence) 106 { 107 struct i915_request *rq = to_request(fence); 108 109 /* 110 * The request is put onto a RCU freelist (i.e. the address 111 * is immediately reused), mark the fences as being freed now. 112 * Otherwise the debugobjects for the fences are only marked as 113 * freed when the slab cache itself is freed, and so we would get 114 * caught trying to reuse dead objects. 115 */ 116 i915_sw_fence_fini(&rq->submit); 117 i915_sw_fence_fini(&rq->semaphore); 118 119 kmem_cache_free(global.slab_requests, rq); 120 } 121 122 const struct dma_fence_ops i915_fence_ops = { 123 .get_driver_name = i915_fence_get_driver_name, 124 .get_timeline_name = i915_fence_get_timeline_name, 125 .enable_signaling = i915_fence_enable_signaling, 126 .signaled = i915_fence_signaled, 127 .wait = i915_fence_wait, 128 .release = i915_fence_release, 129 }; 130 131 static void irq_execute_cb(struct irq_work *wrk) 132 { 133 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 134 135 i915_sw_fence_complete(cb->fence); 136 kmem_cache_free(global.slab_execute_cbs, cb); 137 } 138 139 static void irq_execute_cb_hook(struct irq_work *wrk) 140 { 141 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 142 143 cb->hook(container_of(cb->fence, struct i915_request, submit), 144 &cb->signal->fence); 145 i915_request_put(cb->signal); 146 147 irq_execute_cb(wrk); 148 } 149 150 static void __notify_execute_cb(struct i915_request *rq) 151 { 152 struct execute_cb *cb; 153 154 lockdep_assert_held(&rq->lock); 155 156 if (list_empty(&rq->execute_cb)) 157 return; 158 159 list_for_each_entry(cb, &rq->execute_cb, link) 160 irq_work_queue(&cb->work); 161 162 /* 163 * XXX Rollback on __i915_request_unsubmit() 164 * 165 * In the future, perhaps when we have an active time-slicing scheduler, 166 * it will be interesting to unsubmit parallel execution and remove 167 * busywaits from the GPU until their master is restarted. This is 168 * quite hairy, we have to carefully rollback the fence and do a 169 * preempt-to-idle cycle on the target engine, all the while the 170 * master execute_cb may refire. 171 */ 172 INIT_LIST_HEAD(&rq->execute_cb); 173 } 174 175 static inline void 176 remove_from_client(struct i915_request *request) 177 { 178 struct drm_i915_file_private *file_priv; 179 180 if (!READ_ONCE(request->file_priv)) 181 return; 182 183 rcu_read_lock(); 184 file_priv = xchg(&request->file_priv, NULL); 185 if (file_priv) { 186 spin_lock(&file_priv->mm.lock); 187 list_del(&request->client_link); 188 spin_unlock(&file_priv->mm.lock); 189 } 190 rcu_read_unlock(); 191 } 192 193 static void free_capture_list(struct i915_request *request) 194 { 195 struct i915_capture_list *capture; 196 197 capture = fetch_and_zero(&request->capture_list); 198 while (capture) { 199 struct i915_capture_list *next = capture->next; 200 201 kfree(capture); 202 capture = next; 203 } 204 } 205 206 static void remove_from_engine(struct i915_request *rq) 207 { 208 struct intel_engine_cs *engine, *locked; 209 210 /* 211 * Virtual engines complicate acquiring the engine timeline lock, 212 * as their rq->engine pointer is not stable until under that 213 * engine lock. The simple ploy we use is to take the lock then 214 * check that the rq still belongs to the newly locked engine. 215 */ 216 locked = READ_ONCE(rq->engine); 217 spin_lock_irq(&locked->active.lock); 218 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 219 spin_unlock(&locked->active.lock); 220 spin_lock(&engine->active.lock); 221 locked = engine; 222 } 223 list_del_init(&rq->sched.link); 224 spin_unlock_irq(&locked->active.lock); 225 } 226 227 bool i915_request_retire(struct i915_request *rq) 228 { 229 if (!i915_request_completed(rq)) 230 return false; 231 232 RQ_TRACE(rq, "\n"); 233 234 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 235 trace_i915_request_retire(rq); 236 237 /* 238 * We know the GPU must have read the request to have 239 * sent us the seqno + interrupt, so use the position 240 * of tail of the request to update the last known position 241 * of the GPU head. 242 * 243 * Note this requires that we are always called in request 244 * completion order. 245 */ 246 GEM_BUG_ON(!list_is_first(&rq->link, 247 &i915_request_timeline(rq)->requests)); 248 rq->ring->head = rq->postfix; 249 250 /* 251 * We only loosely track inflight requests across preemption, 252 * and so we may find ourselves attempting to retire a _completed_ 253 * request that we have removed from the HW and put back on a run 254 * queue. 255 */ 256 remove_from_engine(rq); 257 258 spin_lock_irq(&rq->lock); 259 i915_request_mark_complete(rq); 260 if (!i915_request_signaled(rq)) 261 dma_fence_signal_locked(&rq->fence); 262 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 263 i915_request_cancel_breadcrumb(rq); 264 if (i915_request_has_waitboost(rq)) { 265 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters)); 266 atomic_dec(&rq->engine->gt->rps.num_waiters); 267 } 268 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) { 269 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 270 __notify_execute_cb(rq); 271 } 272 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 273 spin_unlock_irq(&rq->lock); 274 275 remove_from_client(rq); 276 list_del(&rq->link); 277 278 intel_context_exit(rq->context); 279 intel_context_unpin(rq->context); 280 281 free_capture_list(rq); 282 i915_sched_node_fini(&rq->sched); 283 i915_request_put(rq); 284 285 return true; 286 } 287 288 void i915_request_retire_upto(struct i915_request *rq) 289 { 290 struct intel_timeline * const tl = i915_request_timeline(rq); 291 struct i915_request *tmp; 292 293 RQ_TRACE(rq, "\n"); 294 295 GEM_BUG_ON(!i915_request_completed(rq)); 296 297 do { 298 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 299 } while (i915_request_retire(tmp) && tmp != rq); 300 } 301 302 static int 303 __await_execution(struct i915_request *rq, 304 struct i915_request *signal, 305 void (*hook)(struct i915_request *rq, 306 struct dma_fence *signal), 307 gfp_t gfp) 308 { 309 struct execute_cb *cb; 310 311 if (i915_request_is_active(signal)) { 312 if (hook) 313 hook(rq, &signal->fence); 314 return 0; 315 } 316 317 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 318 if (!cb) 319 return -ENOMEM; 320 321 cb->fence = &rq->submit; 322 i915_sw_fence_await(cb->fence); 323 init_irq_work(&cb->work, irq_execute_cb); 324 325 if (hook) { 326 cb->hook = hook; 327 cb->signal = i915_request_get(signal); 328 cb->work.func = irq_execute_cb_hook; 329 } 330 331 spin_lock_irq(&signal->lock); 332 if (i915_request_is_active(signal)) { 333 if (hook) { 334 hook(rq, &signal->fence); 335 i915_request_put(signal); 336 } 337 i915_sw_fence_complete(cb->fence); 338 kmem_cache_free(global.slab_execute_cbs, cb); 339 } else { 340 list_add_tail(&cb->link, &signal->execute_cb); 341 } 342 spin_unlock_irq(&signal->lock); 343 344 /* Copy across semaphore status as we need the same behaviour */ 345 rq->sched.flags |= signal->sched.flags; 346 return 0; 347 } 348 349 bool __i915_request_submit(struct i915_request *request) 350 { 351 struct intel_engine_cs *engine = request->engine; 352 bool result = false; 353 354 RQ_TRACE(request, "\n"); 355 356 GEM_BUG_ON(!irqs_disabled()); 357 lockdep_assert_held(&engine->active.lock); 358 359 /* 360 * With the advent of preempt-to-busy, we frequently encounter 361 * requests that we have unsubmitted from HW, but left running 362 * until the next ack and so have completed in the meantime. On 363 * resubmission of that completed request, we can skip 364 * updating the payload, and execlists can even skip submitting 365 * the request. 366 * 367 * We must remove the request from the caller's priority queue, 368 * and the caller must only call us when the request is in their 369 * priority queue, under the active.lock. This ensures that the 370 * request has *not* yet been retired and we can safely move 371 * the request into the engine->active.list where it will be 372 * dropped upon retiring. (Otherwise if resubmit a *retired* 373 * request, this would be a horrible use-after-free.) 374 */ 375 if (i915_request_completed(request)) 376 goto xfer; 377 378 if (intel_context_is_banned(request->context)) 379 i915_request_skip(request, -EIO); 380 381 /* 382 * Are we using semaphores when the gpu is already saturated? 383 * 384 * Using semaphores incurs a cost in having the GPU poll a 385 * memory location, busywaiting for it to change. The continual 386 * memory reads can have a noticeable impact on the rest of the 387 * system with the extra bus traffic, stalling the cpu as it too 388 * tries to access memory across the bus (perf stat -e bus-cycles). 389 * 390 * If we installed a semaphore on this request and we only submit 391 * the request after the signaler completed, that indicates the 392 * system is overloaded and using semaphores at this time only 393 * increases the amount of work we are doing. If so, we disable 394 * further use of semaphores until we are idle again, whence we 395 * optimistically try again. 396 */ 397 if (request->sched.semaphores && 398 i915_sw_fence_signaled(&request->semaphore)) 399 engine->saturated |= request->sched.semaphores; 400 401 engine->emit_fini_breadcrumb(request, 402 request->ring->vaddr + request->postfix); 403 404 trace_i915_request_execute(request); 405 engine->serial++; 406 result = true; 407 408 xfer: /* We may be recursing from the signal callback of another i915 fence */ 409 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 410 411 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) 412 list_move_tail(&request->sched.link, &engine->active.requests); 413 414 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 415 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) && 416 !i915_request_enable_breadcrumb(request)) 417 intel_engine_signal_breadcrumbs(engine); 418 419 __notify_execute_cb(request); 420 421 spin_unlock(&request->lock); 422 423 return result; 424 } 425 426 void i915_request_submit(struct i915_request *request) 427 { 428 struct intel_engine_cs *engine = request->engine; 429 unsigned long flags; 430 431 /* Will be called from irq-context when using foreign fences. */ 432 spin_lock_irqsave(&engine->active.lock, flags); 433 434 __i915_request_submit(request); 435 436 spin_unlock_irqrestore(&engine->active.lock, flags); 437 } 438 439 void __i915_request_unsubmit(struct i915_request *request) 440 { 441 struct intel_engine_cs *engine = request->engine; 442 443 RQ_TRACE(request, "\n"); 444 445 GEM_BUG_ON(!irqs_disabled()); 446 lockdep_assert_held(&engine->active.lock); 447 448 /* 449 * Only unwind in reverse order, required so that the per-context list 450 * is kept in seqno/ring order. 451 */ 452 453 /* We may be recursing from the signal callback of another i915 fence */ 454 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 455 456 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 457 i915_request_cancel_breadcrumb(request); 458 459 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 460 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 461 462 spin_unlock(&request->lock); 463 464 /* We've already spun, don't charge on resubmitting. */ 465 if (request->sched.semaphores && i915_request_started(request)) { 466 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE; 467 request->sched.semaphores = 0; 468 } 469 470 /* 471 * We don't need to wake_up any waiters on request->execute, they 472 * will get woken by any other event or us re-adding this request 473 * to the engine timeline (__i915_request_submit()). The waiters 474 * should be quite adapt at finding that the request now has a new 475 * global_seqno to the one they went to sleep on. 476 */ 477 } 478 479 void i915_request_unsubmit(struct i915_request *request) 480 { 481 struct intel_engine_cs *engine = request->engine; 482 unsigned long flags; 483 484 /* Will be called from irq-context when using foreign fences. */ 485 spin_lock_irqsave(&engine->active.lock, flags); 486 487 __i915_request_unsubmit(request); 488 489 spin_unlock_irqrestore(&engine->active.lock, flags); 490 } 491 492 static int __i915_sw_fence_call 493 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 494 { 495 struct i915_request *request = 496 container_of(fence, typeof(*request), submit); 497 498 switch (state) { 499 case FENCE_COMPLETE: 500 trace_i915_request_submit(request); 501 502 if (unlikely(fence->error)) 503 i915_request_skip(request, fence->error); 504 505 /* 506 * We need to serialize use of the submit_request() callback 507 * with its hotplugging performed during an emergency 508 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 509 * critical section in order to force i915_gem_set_wedged() to 510 * wait until the submit_request() is completed before 511 * proceeding. 512 */ 513 rcu_read_lock(); 514 request->engine->submit_request(request); 515 rcu_read_unlock(); 516 break; 517 518 case FENCE_FREE: 519 i915_request_put(request); 520 break; 521 } 522 523 return NOTIFY_DONE; 524 } 525 526 static int __i915_sw_fence_call 527 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 528 { 529 struct i915_request *request = 530 container_of(fence, typeof(*request), semaphore); 531 532 switch (state) { 533 case FENCE_COMPLETE: 534 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE); 535 break; 536 537 case FENCE_FREE: 538 i915_request_put(request); 539 break; 540 } 541 542 return NOTIFY_DONE; 543 } 544 545 static void retire_requests(struct intel_timeline *tl) 546 { 547 struct i915_request *rq, *rn; 548 549 list_for_each_entry_safe(rq, rn, &tl->requests, link) 550 if (!i915_request_retire(rq)) 551 break; 552 } 553 554 static noinline struct i915_request * 555 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp) 556 { 557 struct i915_request *rq; 558 559 if (list_empty(&tl->requests)) 560 goto out; 561 562 if (!gfpflags_allow_blocking(gfp)) 563 goto out; 564 565 /* Move our oldest request to the slab-cache (if not in use!) */ 566 rq = list_first_entry(&tl->requests, typeof(*rq), link); 567 i915_request_retire(rq); 568 569 rq = kmem_cache_alloc(global.slab_requests, 570 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 571 if (rq) 572 return rq; 573 574 /* Ratelimit ourselves to prevent oom from malicious clients */ 575 rq = list_last_entry(&tl->requests, typeof(*rq), link); 576 cond_synchronize_rcu(rq->rcustate); 577 578 /* Retire our old requests in the hope that we free some */ 579 retire_requests(tl); 580 581 out: 582 return kmem_cache_alloc(global.slab_requests, gfp); 583 } 584 585 static void __i915_request_ctor(void *arg) 586 { 587 struct i915_request *rq = arg; 588 589 spin_lock_init(&rq->lock); 590 i915_sched_node_init(&rq->sched); 591 i915_sw_fence_init(&rq->submit, submit_notify); 592 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 593 594 rq->file_priv = NULL; 595 rq->capture_list = NULL; 596 597 INIT_LIST_HEAD(&rq->execute_cb); 598 } 599 600 struct i915_request * 601 __i915_request_create(struct intel_context *ce, gfp_t gfp) 602 { 603 struct intel_timeline *tl = ce->timeline; 604 struct i915_request *rq; 605 u32 seqno; 606 int ret; 607 608 might_sleep_if(gfpflags_allow_blocking(gfp)); 609 610 /* Check that the caller provided an already pinned context */ 611 __intel_context_pin(ce); 612 613 /* 614 * Beware: Dragons be flying overhead. 615 * 616 * We use RCU to look up requests in flight. The lookups may 617 * race with the request being allocated from the slab freelist. 618 * That is the request we are writing to here, may be in the process 619 * of being read by __i915_active_request_get_rcu(). As such, 620 * we have to be very careful when overwriting the contents. During 621 * the RCU lookup, we change chase the request->engine pointer, 622 * read the request->global_seqno and increment the reference count. 623 * 624 * The reference count is incremented atomically. If it is zero, 625 * the lookup knows the request is unallocated and complete. Otherwise, 626 * it is either still in use, or has been reallocated and reset 627 * with dma_fence_init(). This increment is safe for release as we 628 * check that the request we have a reference to and matches the active 629 * request. 630 * 631 * Before we increment the refcount, we chase the request->engine 632 * pointer. We must not call kmem_cache_zalloc() or else we set 633 * that pointer to NULL and cause a crash during the lookup. If 634 * we see the request is completed (based on the value of the 635 * old engine and seqno), the lookup is complete and reports NULL. 636 * If we decide the request is not completed (new engine or seqno), 637 * then we grab a reference and double check that it is still the 638 * active request - which it won't be and restart the lookup. 639 * 640 * Do not use kmem_cache_zalloc() here! 641 */ 642 rq = kmem_cache_alloc(global.slab_requests, 643 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 644 if (unlikely(!rq)) { 645 rq = request_alloc_slow(tl, gfp); 646 if (!rq) { 647 ret = -ENOMEM; 648 goto err_unreserve; 649 } 650 } 651 652 ret = intel_timeline_get_seqno(tl, rq, &seqno); 653 if (ret) 654 goto err_free; 655 656 rq->i915 = ce->engine->i915; 657 rq->context = ce; 658 rq->engine = ce->engine; 659 rq->ring = ce->ring; 660 rq->execution_mask = ce->engine->mask; 661 662 RCU_INIT_POINTER(rq->timeline, tl); 663 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 664 rq->hwsp_seqno = tl->hwsp_seqno; 665 666 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 667 668 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 669 tl->fence_context, seqno); 670 671 /* We bump the ref for the fence chain */ 672 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 673 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 674 675 i915_sched_node_reinit(&rq->sched); 676 677 /* No zalloc, everything must be cleared after use */ 678 rq->batch = NULL; 679 GEM_BUG_ON(rq->file_priv); 680 GEM_BUG_ON(rq->capture_list); 681 GEM_BUG_ON(!list_empty(&rq->execute_cb)); 682 683 /* 684 * Reserve space in the ring buffer for all the commands required to 685 * eventually emit this request. This is to guarantee that the 686 * i915_request_add() call can't fail. Note that the reserve may need 687 * to be redone if the request is not actually submitted straight 688 * away, e.g. because a GPU scheduler has deferred it. 689 * 690 * Note that due to how we add reserved_space to intel_ring_begin() 691 * we need to double our request to ensure that if we need to wrap 692 * around inside i915_request_add() there is sufficient space at 693 * the beginning of the ring as well. 694 */ 695 rq->reserved_space = 696 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 697 698 /* 699 * Record the position of the start of the request so that 700 * should we detect the updated seqno part-way through the 701 * GPU processing the request, we never over-estimate the 702 * position of the head. 703 */ 704 rq->head = rq->ring->emit; 705 706 ret = rq->engine->request_alloc(rq); 707 if (ret) 708 goto err_unwind; 709 710 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 711 712 intel_context_mark_active(ce); 713 return rq; 714 715 err_unwind: 716 ce->ring->emit = rq->head; 717 718 /* Make sure we didn't add ourselves to external state before freeing */ 719 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 720 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 721 722 err_free: 723 kmem_cache_free(global.slab_requests, rq); 724 err_unreserve: 725 intel_context_unpin(ce); 726 return ERR_PTR(ret); 727 } 728 729 struct i915_request * 730 i915_request_create(struct intel_context *ce) 731 { 732 struct i915_request *rq; 733 struct intel_timeline *tl; 734 735 tl = intel_context_timeline_lock(ce); 736 if (IS_ERR(tl)) 737 return ERR_CAST(tl); 738 739 /* Move our oldest request to the slab-cache (if not in use!) */ 740 rq = list_first_entry(&tl->requests, typeof(*rq), link); 741 if (!list_is_last(&rq->link, &tl->requests)) 742 i915_request_retire(rq); 743 744 intel_context_enter(ce); 745 rq = __i915_request_create(ce, GFP_KERNEL); 746 intel_context_exit(ce); /* active reference transferred to request */ 747 if (IS_ERR(rq)) 748 goto err_unlock; 749 750 /* Check that we do not interrupt ourselves with a new request */ 751 rq->cookie = lockdep_pin_lock(&tl->mutex); 752 753 return rq; 754 755 err_unlock: 756 intel_context_timeline_unlock(tl); 757 return rq; 758 } 759 760 static int 761 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 762 { 763 struct dma_fence *fence; 764 int err; 765 766 GEM_BUG_ON(i915_request_timeline(rq) == 767 rcu_access_pointer(signal->timeline)); 768 769 fence = NULL; 770 rcu_read_lock(); 771 spin_lock_irq(&signal->lock); 772 if (!i915_request_started(signal) && 773 !list_is_first(&signal->link, 774 &rcu_dereference(signal->timeline)->requests)) { 775 struct i915_request *prev = list_prev_entry(signal, link); 776 777 /* 778 * Peek at the request before us in the timeline. That 779 * request will only be valid before it is retired, so 780 * after acquiring a reference to it, confirm that it is 781 * still part of the signaler's timeline. 782 */ 783 if (i915_request_get_rcu(prev)) { 784 if (list_next_entry(prev, link) == signal) 785 fence = &prev->fence; 786 else 787 i915_request_put(prev); 788 } 789 } 790 spin_unlock_irq(&signal->lock); 791 rcu_read_unlock(); 792 if (!fence) 793 return 0; 794 795 err = 0; 796 if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 797 err = i915_sw_fence_await_dma_fence(&rq->submit, 798 fence, 0, 799 I915_FENCE_GFP); 800 dma_fence_put(fence); 801 802 return err; 803 } 804 805 static intel_engine_mask_t 806 already_busywaiting(struct i915_request *rq) 807 { 808 /* 809 * Polling a semaphore causes bus traffic, delaying other users of 810 * both the GPU and CPU. We want to limit the impact on others, 811 * while taking advantage of early submission to reduce GPU 812 * latency. Therefore we restrict ourselves to not using more 813 * than one semaphore from each source, and not using a semaphore 814 * if we have detected the engine is saturated (i.e. would not be 815 * submitted early and cause bus traffic reading an already passed 816 * semaphore). 817 * 818 * See the are-we-too-late? check in __i915_request_submit(). 819 */ 820 return rq->sched.semaphores | rq->engine->saturated; 821 } 822 823 static int 824 __emit_semaphore_wait(struct i915_request *to, 825 struct i915_request *from, 826 u32 seqno) 827 { 828 const int has_token = INTEL_GEN(to->i915) >= 12; 829 u32 hwsp_offset; 830 int len, err; 831 u32 *cs; 832 833 GEM_BUG_ON(INTEL_GEN(to->i915) < 8); 834 835 /* We need to pin the signaler's HWSP until we are finished reading. */ 836 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 837 if (err) 838 return err; 839 840 len = 4; 841 if (has_token) 842 len += 2; 843 844 cs = intel_ring_begin(to, len); 845 if (IS_ERR(cs)) 846 return PTR_ERR(cs); 847 848 /* 849 * Using greater-than-or-equal here means we have to worry 850 * about seqno wraparound. To side step that issue, we swap 851 * the timeline HWSP upon wrapping, so that everyone listening 852 * for the old (pre-wrap) values do not see the much smaller 853 * (post-wrap) values than they were expecting (and so wait 854 * forever). 855 */ 856 *cs++ = (MI_SEMAPHORE_WAIT | 857 MI_SEMAPHORE_GLOBAL_GTT | 858 MI_SEMAPHORE_POLL | 859 MI_SEMAPHORE_SAD_GTE_SDD) + 860 has_token; 861 *cs++ = seqno; 862 *cs++ = hwsp_offset; 863 *cs++ = 0; 864 if (has_token) { 865 *cs++ = 0; 866 *cs++ = MI_NOOP; 867 } 868 869 intel_ring_advance(to, cs); 870 return 0; 871 } 872 873 static int 874 emit_semaphore_wait(struct i915_request *to, 875 struct i915_request *from, 876 gfp_t gfp) 877 { 878 /* Just emit the first semaphore we see as request space is limited. */ 879 if (already_busywaiting(to) & from->engine->mask) 880 goto await_fence; 881 882 if (i915_request_await_start(to, from) < 0) 883 goto await_fence; 884 885 /* Only submit our spinner after the signaler is running! */ 886 if (__await_execution(to, from, NULL, gfp)) 887 goto await_fence; 888 889 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 890 goto await_fence; 891 892 to->sched.semaphores |= from->engine->mask; 893 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; 894 return 0; 895 896 await_fence: 897 return i915_sw_fence_await_dma_fence(&to->submit, 898 &from->fence, 0, 899 I915_FENCE_GFP); 900 } 901 902 static int 903 i915_request_await_request(struct i915_request *to, struct i915_request *from) 904 { 905 int ret; 906 907 GEM_BUG_ON(to == from); 908 GEM_BUG_ON(to->timeline == from->timeline); 909 910 if (i915_request_completed(from)) 911 return 0; 912 913 if (to->engine->schedule) { 914 ret = i915_sched_node_add_dependency(&to->sched, &from->sched); 915 if (ret < 0) 916 return ret; 917 } 918 919 if (to->engine == from->engine) 920 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, 921 &from->submit, 922 I915_FENCE_GFP); 923 else if (intel_context_use_semaphores(to->context)) 924 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 925 else 926 ret = i915_sw_fence_await_dma_fence(&to->submit, 927 &from->fence, 0, 928 I915_FENCE_GFP); 929 if (ret < 0) 930 return ret; 931 932 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) { 933 ret = i915_sw_fence_await_dma_fence(&to->semaphore, 934 &from->fence, 0, 935 I915_FENCE_GFP); 936 if (ret < 0) 937 return ret; 938 } 939 940 return 0; 941 } 942 943 int 944 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 945 { 946 struct dma_fence **child = &fence; 947 unsigned int nchild = 1; 948 int ret; 949 950 /* 951 * Note that if the fence-array was created in signal-on-any mode, 952 * we should *not* decompose it into its individual fences. However, 953 * we don't currently store which mode the fence-array is operating 954 * in. Fortunately, the only user of signal-on-any is private to 955 * amdgpu and we should not see any incoming fence-array from 956 * sync-file being in signal-on-any mode. 957 */ 958 if (dma_fence_is_array(fence)) { 959 struct dma_fence_array *array = to_dma_fence_array(fence); 960 961 child = array->fences; 962 nchild = array->num_fences; 963 GEM_BUG_ON(!nchild); 964 } 965 966 do { 967 fence = *child++; 968 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 969 i915_sw_fence_set_error_once(&rq->submit, fence->error); 970 continue; 971 } 972 973 /* 974 * Requests on the same timeline are explicitly ordered, along 975 * with their dependencies, by i915_request_add() which ensures 976 * that requests are submitted in-order through each ring. 977 */ 978 if (fence->context == rq->fence.context) 979 continue; 980 981 /* Squash repeated waits to the same timelines */ 982 if (fence->context && 983 intel_timeline_sync_is_later(i915_request_timeline(rq), 984 fence)) 985 continue; 986 987 if (dma_fence_is_i915(fence)) 988 ret = i915_request_await_request(rq, to_request(fence)); 989 else 990 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 991 fence->context ? I915_FENCE_TIMEOUT : 0, 992 I915_FENCE_GFP); 993 if (ret < 0) 994 return ret; 995 996 /* Record the latest fence used against each timeline */ 997 if (fence->context) 998 intel_timeline_sync_set(i915_request_timeline(rq), 999 fence); 1000 } while (--nchild); 1001 1002 return 0; 1003 } 1004 1005 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1006 struct dma_fence *fence) 1007 { 1008 return __intel_timeline_sync_is_later(tl, 1009 fence->context, 1010 fence->seqno - 1); 1011 } 1012 1013 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1014 const struct dma_fence *fence) 1015 { 1016 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1017 } 1018 1019 static int 1020 __i915_request_await_execution(struct i915_request *to, 1021 struct i915_request *from, 1022 void (*hook)(struct i915_request *rq, 1023 struct dma_fence *signal)) 1024 { 1025 int err; 1026 1027 /* Submit both requests at the same time */ 1028 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1029 if (err) 1030 return err; 1031 1032 /* Squash repeated depenendices to the same timelines */ 1033 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1034 &from->fence)) 1035 return 0; 1036 1037 /* Ensure both start together [after all semaphores in signal] */ 1038 if (intel_engine_has_semaphores(to->engine)) 1039 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1040 else 1041 err = i915_request_await_start(to, from); 1042 if (err < 0) 1043 return err; 1044 1045 /* Couple the dependency tree for PI on this exposed to->fence */ 1046 if (to->engine->schedule) { 1047 err = i915_sched_node_add_dependency(&to->sched, &from->sched); 1048 if (err < 0) 1049 return err; 1050 } 1051 1052 return intel_timeline_sync_set_start(i915_request_timeline(to), 1053 &from->fence); 1054 } 1055 1056 int 1057 i915_request_await_execution(struct i915_request *rq, 1058 struct dma_fence *fence, 1059 void (*hook)(struct i915_request *rq, 1060 struct dma_fence *signal)) 1061 { 1062 struct dma_fence **child = &fence; 1063 unsigned int nchild = 1; 1064 int ret; 1065 1066 if (dma_fence_is_array(fence)) { 1067 struct dma_fence_array *array = to_dma_fence_array(fence); 1068 1069 /* XXX Error for signal-on-any fence arrays */ 1070 1071 child = array->fences; 1072 nchild = array->num_fences; 1073 GEM_BUG_ON(!nchild); 1074 } 1075 1076 do { 1077 fence = *child++; 1078 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1079 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1080 continue; 1081 } 1082 1083 /* 1084 * We don't squash repeated fence dependencies here as we 1085 * want to run our callback in all cases. 1086 */ 1087 1088 if (dma_fence_is_i915(fence)) 1089 ret = __i915_request_await_execution(rq, 1090 to_request(fence), 1091 hook); 1092 else 1093 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 1094 I915_FENCE_TIMEOUT, 1095 GFP_KERNEL); 1096 if (ret < 0) 1097 return ret; 1098 } while (--nchild); 1099 1100 return 0; 1101 } 1102 1103 /** 1104 * i915_request_await_object - set this request to (async) wait upon a bo 1105 * @to: request we are wishing to use 1106 * @obj: object which may be in use on another ring. 1107 * @write: whether the wait is on behalf of a writer 1108 * 1109 * This code is meant to abstract object synchronization with the GPU. 1110 * Conceptually we serialise writes between engines inside the GPU. 1111 * We only allow one engine to write into a buffer at any time, but 1112 * multiple readers. To ensure each has a coherent view of memory, we must: 1113 * 1114 * - If there is an outstanding write request to the object, the new 1115 * request must wait for it to complete (either CPU or in hw, requests 1116 * on the same ring will be naturally ordered). 1117 * 1118 * - If we are a write request (pending_write_domain is set), the new 1119 * request must wait for outstanding read requests to complete. 1120 * 1121 * Returns 0 if successful, else propagates up the lower layer error. 1122 */ 1123 int 1124 i915_request_await_object(struct i915_request *to, 1125 struct drm_i915_gem_object *obj, 1126 bool write) 1127 { 1128 struct dma_fence *excl; 1129 int ret = 0; 1130 1131 if (write) { 1132 struct dma_fence **shared; 1133 unsigned int count, i; 1134 1135 ret = dma_resv_get_fences_rcu(obj->base.resv, 1136 &excl, &count, &shared); 1137 if (ret) 1138 return ret; 1139 1140 for (i = 0; i < count; i++) { 1141 ret = i915_request_await_dma_fence(to, shared[i]); 1142 if (ret) 1143 break; 1144 1145 dma_fence_put(shared[i]); 1146 } 1147 1148 for (; i < count; i++) 1149 dma_fence_put(shared[i]); 1150 kfree(shared); 1151 } else { 1152 excl = dma_resv_get_excl_rcu(obj->base.resv); 1153 } 1154 1155 if (excl) { 1156 if (ret == 0) 1157 ret = i915_request_await_dma_fence(to, excl); 1158 1159 dma_fence_put(excl); 1160 } 1161 1162 return ret; 1163 } 1164 1165 void i915_request_skip(struct i915_request *rq, int error) 1166 { 1167 void *vaddr = rq->ring->vaddr; 1168 u32 head; 1169 1170 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 1171 dma_fence_set_error(&rq->fence, error); 1172 1173 if (rq->infix == rq->postfix) 1174 return; 1175 1176 /* 1177 * As this request likely depends on state from the lost 1178 * context, clear out all the user operations leaving the 1179 * breadcrumb at the end (so we get the fence notifications). 1180 */ 1181 head = rq->infix; 1182 if (rq->postfix < head) { 1183 memset(vaddr + head, 0, rq->ring->size - head); 1184 head = 0; 1185 } 1186 memset(vaddr + head, 0, rq->postfix - head); 1187 rq->infix = rq->postfix; 1188 } 1189 1190 static struct i915_request * 1191 __i915_request_add_to_timeline(struct i915_request *rq) 1192 { 1193 struct intel_timeline *timeline = i915_request_timeline(rq); 1194 struct i915_request *prev; 1195 1196 /* 1197 * Dependency tracking and request ordering along the timeline 1198 * is special cased so that we can eliminate redundant ordering 1199 * operations while building the request (we know that the timeline 1200 * itself is ordered, and here we guarantee it). 1201 * 1202 * As we know we will need to emit tracking along the timeline, 1203 * we embed the hooks into our request struct -- at the cost of 1204 * having to have specialised no-allocation interfaces (which will 1205 * be beneficial elsewhere). 1206 * 1207 * A second benefit to open-coding i915_request_await_request is 1208 * that we can apply a slight variant of the rules specialised 1209 * for timelines that jump between engines (such as virtual engines). 1210 * If we consider the case of virtual engine, we must emit a dma-fence 1211 * to prevent scheduling of the second request until the first is 1212 * complete (to maximise our greedy late load balancing) and this 1213 * precludes optimising to use semaphores serialisation of a single 1214 * timeline across engines. 1215 */ 1216 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1217 &rq->fence)); 1218 if (prev && !i915_request_completed(prev)) { 1219 if (is_power_of_2(prev->engine->mask | rq->engine->mask)) 1220 i915_sw_fence_await_sw_fence(&rq->submit, 1221 &prev->submit, 1222 &rq->submitq); 1223 else 1224 __i915_sw_fence_await_dma_fence(&rq->submit, 1225 &prev->fence, 1226 &rq->dmaq); 1227 if (rq->engine->schedule) 1228 __i915_sched_node_add_dependency(&rq->sched, 1229 &prev->sched, 1230 &rq->dep, 1231 0); 1232 } 1233 1234 list_add_tail(&rq->link, &timeline->requests); 1235 1236 /* 1237 * Make sure that no request gazumped us - if it was allocated after 1238 * our i915_request_alloc() and called __i915_request_add() before 1239 * us, the timeline will hold its seqno which is later than ours. 1240 */ 1241 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1242 1243 return prev; 1244 } 1245 1246 /* 1247 * NB: This function is not allowed to fail. Doing so would mean the the 1248 * request is not being tracked for completion but the work itself is 1249 * going to happen on the hardware. This would be a Bad Thing(tm). 1250 */ 1251 struct i915_request *__i915_request_commit(struct i915_request *rq) 1252 { 1253 struct intel_engine_cs *engine = rq->engine; 1254 struct intel_ring *ring = rq->ring; 1255 u32 *cs; 1256 1257 RQ_TRACE(rq, "\n"); 1258 1259 /* 1260 * To ensure that this call will not fail, space for its emissions 1261 * should already have been reserved in the ring buffer. Let the ring 1262 * know that it is time to use that space up. 1263 */ 1264 GEM_BUG_ON(rq->reserved_space > ring->space); 1265 rq->reserved_space = 0; 1266 rq->emitted_jiffies = jiffies; 1267 1268 /* 1269 * Record the position of the start of the breadcrumb so that 1270 * should we detect the updated seqno part-way through the 1271 * GPU processing the request, we never over-estimate the 1272 * position of the ring's HEAD. 1273 */ 1274 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1275 GEM_BUG_ON(IS_ERR(cs)); 1276 rq->postfix = intel_ring_offset(rq, cs); 1277 1278 return __i915_request_add_to_timeline(rq); 1279 } 1280 1281 void __i915_request_queue(struct i915_request *rq, 1282 const struct i915_sched_attr *attr) 1283 { 1284 /* 1285 * Let the backend know a new request has arrived that may need 1286 * to adjust the existing execution schedule due to a high priority 1287 * request - i.e. we may want to preempt the current request in order 1288 * to run a high priority dependency chain *before* we can execute this 1289 * request. 1290 * 1291 * This is called before the request is ready to run so that we can 1292 * decide whether to preempt the entire chain so that it is ready to 1293 * run at the earliest possible convenience. 1294 */ 1295 i915_sw_fence_commit(&rq->semaphore); 1296 if (attr && rq->engine->schedule) 1297 rq->engine->schedule(rq, attr); 1298 i915_sw_fence_commit(&rq->submit); 1299 } 1300 1301 void i915_request_add(struct i915_request *rq) 1302 { 1303 struct intel_timeline * const tl = i915_request_timeline(rq); 1304 struct i915_sched_attr attr = {}; 1305 struct i915_request *prev; 1306 1307 lockdep_assert_held(&tl->mutex); 1308 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1309 1310 trace_i915_request_add(rq); 1311 1312 prev = __i915_request_commit(rq); 1313 1314 if (rcu_access_pointer(rq->context->gem_context)) 1315 attr = i915_request_gem_context(rq)->sched; 1316 1317 /* 1318 * Boost actual workloads past semaphores! 1319 * 1320 * With semaphores we spin on one engine waiting for another, 1321 * simply to reduce the latency of starting our work when 1322 * the signaler completes. However, if there is any other 1323 * work that we could be doing on this engine instead, that 1324 * is better utilisation and will reduce the overall duration 1325 * of the current work. To avoid PI boosting a semaphore 1326 * far in the distance past over useful work, we keep a history 1327 * of any semaphore use along our dependency chain. 1328 */ 1329 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN)) 1330 attr.priority |= I915_PRIORITY_NOSEMAPHORE; 1331 1332 /* 1333 * Boost priorities to new clients (new request flows). 1334 * 1335 * Allow interactive/synchronous clients to jump ahead of 1336 * the bulk clients. (FQ_CODEL) 1337 */ 1338 if (list_empty(&rq->sched.signalers_list)) 1339 attr.priority |= I915_PRIORITY_WAIT; 1340 1341 local_bh_disable(); 1342 __i915_request_queue(rq, &attr); 1343 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 1344 1345 /* 1346 * In typical scenarios, we do not expect the previous request on 1347 * the timeline to be still tracked by timeline->last_request if it 1348 * has been completed. If the completed request is still here, that 1349 * implies that request retirement is a long way behind submission, 1350 * suggesting that we haven't been retiring frequently enough from 1351 * the combination of retire-before-alloc, waiters and the background 1352 * retirement worker. So if the last request on this timeline was 1353 * already completed, do a catch up pass, flushing the retirement queue 1354 * up to this client. Since we have now moved the heaviest operations 1355 * during retirement onto secondary workers, such as freeing objects 1356 * or contexts, retiring a bunch of requests is mostly list management 1357 * (and cache misses), and so we should not be overly penalizing this 1358 * client by performing excess work, though we may still performing 1359 * work on behalf of others -- but instead we should benefit from 1360 * improved resource management. (Well, that's the theory at least.) 1361 */ 1362 if (prev && 1363 i915_request_completed(prev) && 1364 rcu_access_pointer(prev->timeline) == tl) 1365 i915_request_retire_upto(prev); 1366 1367 mutex_unlock(&tl->mutex); 1368 } 1369 1370 static unsigned long local_clock_us(unsigned int *cpu) 1371 { 1372 unsigned long t; 1373 1374 /* 1375 * Cheaply and approximately convert from nanoseconds to microseconds. 1376 * The result and subsequent calculations are also defined in the same 1377 * approximate microseconds units. The principal source of timing 1378 * error here is from the simple truncation. 1379 * 1380 * Note that local_clock() is only defined wrt to the current CPU; 1381 * the comparisons are no longer valid if we switch CPUs. Instead of 1382 * blocking preemption for the entire busywait, we can detect the CPU 1383 * switch and use that as indicator of system load and a reason to 1384 * stop busywaiting, see busywait_stop(). 1385 */ 1386 *cpu = get_cpu(); 1387 t = local_clock() >> 10; 1388 put_cpu(); 1389 1390 return t; 1391 } 1392 1393 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1394 { 1395 unsigned int this_cpu; 1396 1397 if (time_after(local_clock_us(&this_cpu), timeout)) 1398 return true; 1399 1400 return this_cpu != cpu; 1401 } 1402 1403 static bool __i915_spin_request(const struct i915_request * const rq, 1404 int state, unsigned long timeout_us) 1405 { 1406 unsigned int cpu; 1407 1408 /* 1409 * Only wait for the request if we know it is likely to complete. 1410 * 1411 * We don't track the timestamps around requests, nor the average 1412 * request length, so we do not have a good indicator that this 1413 * request will complete within the timeout. What we do know is the 1414 * order in which requests are executed by the context and so we can 1415 * tell if the request has been started. If the request is not even 1416 * running yet, it is a fair assumption that it will not complete 1417 * within our relatively short timeout. 1418 */ 1419 if (!i915_request_is_running(rq)) 1420 return false; 1421 1422 /* 1423 * When waiting for high frequency requests, e.g. during synchronous 1424 * rendering split between the CPU and GPU, the finite amount of time 1425 * required to set up the irq and wait upon it limits the response 1426 * rate. By busywaiting on the request completion for a short while we 1427 * can service the high frequency waits as quick as possible. However, 1428 * if it is a slow request, we want to sleep as quickly as possible. 1429 * The tradeoff between waiting and sleeping is roughly the time it 1430 * takes to sleep on a request, on the order of a microsecond. 1431 */ 1432 1433 timeout_us += local_clock_us(&cpu); 1434 do { 1435 if (i915_request_completed(rq)) 1436 return true; 1437 1438 if (signal_pending_state(state, current)) 1439 break; 1440 1441 if (busywait_stop(timeout_us, cpu)) 1442 break; 1443 1444 cpu_relax(); 1445 } while (!need_resched()); 1446 1447 return false; 1448 } 1449 1450 struct request_wait { 1451 struct dma_fence_cb cb; 1452 struct task_struct *tsk; 1453 }; 1454 1455 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1456 { 1457 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1458 1459 wake_up_process(wait->tsk); 1460 } 1461 1462 /** 1463 * i915_request_wait - wait until execution of request has finished 1464 * @rq: the request to wait upon 1465 * @flags: how to wait 1466 * @timeout: how long to wait in jiffies 1467 * 1468 * i915_request_wait() waits for the request to be completed, for a 1469 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1470 * unbounded wait). 1471 * 1472 * Returns the remaining time (in jiffies) if the request completed, which may 1473 * be zero or -ETIME if the request is unfinished after the timeout expires. 1474 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1475 * pending before the request completes. 1476 */ 1477 long i915_request_wait(struct i915_request *rq, 1478 unsigned int flags, 1479 long timeout) 1480 { 1481 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1482 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1483 struct request_wait wait; 1484 1485 might_sleep(); 1486 GEM_BUG_ON(timeout < 0); 1487 1488 if (dma_fence_is_signaled(&rq->fence)) 1489 return timeout; 1490 1491 if (!timeout) 1492 return -ETIME; 1493 1494 trace_i915_request_wait_begin(rq, flags); 1495 1496 /* 1497 * We must never wait on the GPU while holding a lock as we 1498 * may need to perform a GPU reset. So while we don't need to 1499 * serialise wait/reset with an explicit lock, we do want 1500 * lockdep to detect potential dependency cycles. 1501 */ 1502 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1503 1504 /* 1505 * Optimistic spin before touching IRQs. 1506 * 1507 * We may use a rather large value here to offset the penalty of 1508 * switching away from the active task. Frequently, the client will 1509 * wait upon an old swapbuffer to throttle itself to remain within a 1510 * frame of the gpu. If the client is running in lockstep with the gpu, 1511 * then it should not be waiting long at all, and a sleep now will incur 1512 * extra scheduler latency in producing the next frame. To try to 1513 * avoid adding the cost of enabling/disabling the interrupt to the 1514 * short wait, we first spin to see if the request would have completed 1515 * in the time taken to setup the interrupt. 1516 * 1517 * We need upto 5us to enable the irq, and upto 20us to hide the 1518 * scheduler latency of a context switch, ignoring the secondary 1519 * impacts from a context switch such as cache eviction. 1520 * 1521 * The scheme used for low-latency IO is called "hybrid interrupt 1522 * polling". The suggestion there is to sleep until just before you 1523 * expect to be woken by the device interrupt and then poll for its 1524 * completion. That requires having a good predictor for the request 1525 * duration, which we currently lack. 1526 */ 1527 if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) && 1528 __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) { 1529 dma_fence_signal(&rq->fence); 1530 goto out; 1531 } 1532 1533 /* 1534 * This client is about to stall waiting for the GPU. In many cases 1535 * this is undesirable and limits the throughput of the system, as 1536 * many clients cannot continue processing user input/output whilst 1537 * blocked. RPS autotuning may take tens of milliseconds to respond 1538 * to the GPU load and thus incurs additional latency for the client. 1539 * We can circumvent that by promoting the GPU frequency to maximum 1540 * before we sleep. This makes the GPU throttle up much more quickly 1541 * (good for benchmarks and user experience, e.g. window animations), 1542 * but at a cost of spending more power processing the workload 1543 * (bad for battery). 1544 */ 1545 if (flags & I915_WAIT_PRIORITY) { 1546 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6) 1547 intel_rps_boost(rq); 1548 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT); 1549 } 1550 1551 wait.tsk = current; 1552 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1553 goto out; 1554 1555 for (;;) { 1556 set_current_state(state); 1557 1558 if (i915_request_completed(rq)) { 1559 dma_fence_signal(&rq->fence); 1560 break; 1561 } 1562 1563 if (signal_pending_state(state, current)) { 1564 timeout = -ERESTARTSYS; 1565 break; 1566 } 1567 1568 if (!timeout) { 1569 timeout = -ETIME; 1570 break; 1571 } 1572 1573 intel_engine_flush_submission(rq->engine); 1574 timeout = io_schedule_timeout(timeout); 1575 } 1576 __set_current_state(TASK_RUNNING); 1577 1578 dma_fence_remove_callback(&rq->fence, &wait.cb); 1579 1580 out: 1581 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1582 trace_i915_request_wait_end(rq); 1583 return timeout; 1584 } 1585 1586 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1587 #include "selftests/mock_request.c" 1588 #include "selftests/i915_request.c" 1589 #endif 1590 1591 static void i915_global_request_shrink(void) 1592 { 1593 kmem_cache_shrink(global.slab_dependencies); 1594 kmem_cache_shrink(global.slab_execute_cbs); 1595 kmem_cache_shrink(global.slab_requests); 1596 } 1597 1598 static void i915_global_request_exit(void) 1599 { 1600 kmem_cache_destroy(global.slab_dependencies); 1601 kmem_cache_destroy(global.slab_execute_cbs); 1602 kmem_cache_destroy(global.slab_requests); 1603 } 1604 1605 static struct i915_global_request global = { { 1606 .shrink = i915_global_request_shrink, 1607 .exit = i915_global_request_exit, 1608 } }; 1609 1610 int __init i915_global_request_init(void) 1611 { 1612 global.slab_requests = 1613 kmem_cache_create("i915_request", 1614 sizeof(struct i915_request), 1615 __alignof__(struct i915_request), 1616 SLAB_HWCACHE_ALIGN | 1617 SLAB_RECLAIM_ACCOUNT | 1618 SLAB_TYPESAFE_BY_RCU, 1619 __i915_request_ctor); 1620 if (!global.slab_requests) 1621 return -ENOMEM; 1622 1623 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1624 SLAB_HWCACHE_ALIGN | 1625 SLAB_RECLAIM_ACCOUNT | 1626 SLAB_TYPESAFE_BY_RCU); 1627 if (!global.slab_execute_cbs) 1628 goto err_requests; 1629 1630 global.slab_dependencies = KMEM_CACHE(i915_dependency, 1631 SLAB_HWCACHE_ALIGN | 1632 SLAB_RECLAIM_ACCOUNT); 1633 if (!global.slab_dependencies) 1634 goto err_execute_cbs; 1635 1636 i915_global_register(&global.base); 1637 return 0; 1638 1639 err_execute_cbs: 1640 kmem_cache_destroy(global.slab_execute_cbs); 1641 err_requests: 1642 kmem_cache_destroy(global.slab_requests); 1643 return -ENOMEM; 1644 } 1645