1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 #include <linux/sched/mm.h> 33 34 #include "gem/i915_gem_context.h" 35 #include "gt/intel_breadcrumbs.h" 36 #include "gt/intel_context.h" 37 #include "gt/intel_engine.h" 38 #include "gt/intel_engine_heartbeat.h" 39 #include "gt/intel_engine_regs.h" 40 #include "gt/intel_gpu_commands.h" 41 #include "gt/intel_reset.h" 42 #include "gt/intel_ring.h" 43 #include "gt/intel_rps.h" 44 45 #include "i915_active.h" 46 #include "i915_config.h" 47 #include "i915_deps.h" 48 #include "i915_driver.h" 49 #include "i915_drv.h" 50 #include "i915_trace.h" 51 52 struct execute_cb { 53 struct irq_work work; 54 struct i915_sw_fence *fence; 55 struct i915_request *signal; 56 }; 57 58 static struct kmem_cache *slab_requests; 59 static struct kmem_cache *slab_execute_cbs; 60 61 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 62 { 63 return dev_name(to_request(fence)->i915->drm.dev); 64 } 65 66 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 67 { 68 const struct i915_gem_context *ctx; 69 70 /* 71 * The timeline struct (as part of the ppgtt underneath a context) 72 * may be freed when the request is no longer in use by the GPU. 73 * We could extend the life of a context to beyond that of all 74 * fences, possibly keeping the hw resource around indefinitely, 75 * or we just give them a false name. Since 76 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 77 * lie seems justifiable. 78 */ 79 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 80 return "signaled"; 81 82 ctx = i915_request_gem_context(to_request(fence)); 83 if (!ctx) 84 return "[" DRIVER_NAME "]"; 85 86 return ctx->name; 87 } 88 89 static bool i915_fence_signaled(struct dma_fence *fence) 90 { 91 return i915_request_completed(to_request(fence)); 92 } 93 94 static bool i915_fence_enable_signaling(struct dma_fence *fence) 95 { 96 return i915_request_enable_breadcrumb(to_request(fence)); 97 } 98 99 static signed long i915_fence_wait(struct dma_fence *fence, 100 bool interruptible, 101 signed long timeout) 102 { 103 return i915_request_wait_timeout(to_request(fence), 104 interruptible | I915_WAIT_PRIORITY, 105 timeout); 106 } 107 108 struct kmem_cache *i915_request_slab_cache(void) 109 { 110 return slab_requests; 111 } 112 113 static void i915_fence_release(struct dma_fence *fence) 114 { 115 struct i915_request *rq = to_request(fence); 116 117 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT && 118 rq->guc_prio != GUC_PRIO_FINI); 119 120 i915_request_free_capture_list(fetch_and_zero(&rq->capture_list)); 121 if (rq->batch_res) { 122 i915_vma_resource_put(rq->batch_res); 123 rq->batch_res = NULL; 124 } 125 126 /* 127 * The request is put onto a RCU freelist (i.e. the address 128 * is immediately reused), mark the fences as being freed now. 129 * Otherwise the debugobjects for the fences are only marked as 130 * freed when the slab cache itself is freed, and so we would get 131 * caught trying to reuse dead objects. 132 */ 133 i915_sw_fence_fini(&rq->submit); 134 i915_sw_fence_fini(&rq->semaphore); 135 136 /* 137 * Keep one request on each engine for reserved use under mempressure. 138 * 139 * We do not hold a reference to the engine here and so have to be 140 * very careful in what rq->engine we poke. The virtual engine is 141 * referenced via the rq->context and we released that ref during 142 * i915_request_retire(), ergo we must not dereference a virtual 143 * engine here. Not that we would want to, as the only consumer of 144 * the reserved engine->request_pool is the power management parking, 145 * which must-not-fail, and that is only run on the physical engines. 146 * 147 * Since the request must have been executed to be have completed, 148 * we know that it will have been processed by the HW and will 149 * not be unsubmitted again, so rq->engine and rq->execution_mask 150 * at this point is stable. rq->execution_mask will be a single 151 * bit if the last and _only_ engine it could execution on was a 152 * physical engine, if it's multiple bits then it started on and 153 * could still be on a virtual engine. Thus if the mask is not a 154 * power-of-two we assume that rq->engine may still be a virtual 155 * engine and so a dangling invalid pointer that we cannot dereference 156 * 157 * For example, consider the flow of a bonded request through a virtual 158 * engine. The request is created with a wide engine mask (all engines 159 * that we might execute on). On processing the bond, the request mask 160 * is reduced to one or more engines. If the request is subsequently 161 * bound to a single engine, it will then be constrained to only 162 * execute on that engine and never returned to the virtual engine 163 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 164 * know that if the rq->execution_mask is a single bit, rq->engine 165 * can be a physical engine with the exact corresponding mask. 166 */ 167 if (is_power_of_2(rq->execution_mask) && 168 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 169 return; 170 171 kmem_cache_free(slab_requests, rq); 172 } 173 174 const struct dma_fence_ops i915_fence_ops = { 175 .get_driver_name = i915_fence_get_driver_name, 176 .get_timeline_name = i915_fence_get_timeline_name, 177 .enable_signaling = i915_fence_enable_signaling, 178 .signaled = i915_fence_signaled, 179 .wait = i915_fence_wait, 180 .release = i915_fence_release, 181 }; 182 183 static void irq_execute_cb(struct irq_work *wrk) 184 { 185 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 186 187 i915_sw_fence_complete(cb->fence); 188 kmem_cache_free(slab_execute_cbs, cb); 189 } 190 191 static __always_inline void 192 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 193 { 194 struct execute_cb *cb, *cn; 195 196 if (llist_empty(&rq->execute_cb)) 197 return; 198 199 llist_for_each_entry_safe(cb, cn, 200 llist_del_all(&rq->execute_cb), 201 work.node.llist) 202 fn(&cb->work); 203 } 204 205 static void __notify_execute_cb_irq(struct i915_request *rq) 206 { 207 __notify_execute_cb(rq, irq_work_queue); 208 } 209 210 static bool irq_work_imm(struct irq_work *wrk) 211 { 212 wrk->func(wrk); 213 return false; 214 } 215 216 void i915_request_notify_execute_cb_imm(struct i915_request *rq) 217 { 218 __notify_execute_cb(rq, irq_work_imm); 219 } 220 221 static void __i915_request_fill(struct i915_request *rq, u8 val) 222 { 223 void *vaddr = rq->ring->vaddr; 224 u32 head; 225 226 head = rq->infix; 227 if (rq->postfix < head) { 228 memset(vaddr + head, val, rq->ring->size - head); 229 head = 0; 230 } 231 memset(vaddr + head, val, rq->postfix - head); 232 } 233 234 /** 235 * i915_request_active_engine 236 * @rq: request to inspect 237 * @active: pointer in which to return the active engine 238 * 239 * Fills the currently active engine to the @active pointer if the request 240 * is active and still not completed. 241 * 242 * Returns true if request was active or false otherwise. 243 */ 244 bool 245 i915_request_active_engine(struct i915_request *rq, 246 struct intel_engine_cs **active) 247 { 248 struct intel_engine_cs *engine, *locked; 249 bool ret = false; 250 251 /* 252 * Serialise with __i915_request_submit() so that it sees 253 * is-banned?, or we know the request is already inflight. 254 * 255 * Note that rq->engine is unstable, and so we double 256 * check that we have acquired the lock on the final engine. 257 */ 258 locked = READ_ONCE(rq->engine); 259 spin_lock_irq(&locked->sched_engine->lock); 260 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 261 spin_unlock(&locked->sched_engine->lock); 262 locked = engine; 263 spin_lock(&locked->sched_engine->lock); 264 } 265 266 if (i915_request_is_active(rq)) { 267 if (!__i915_request_is_complete(rq)) 268 *active = locked; 269 ret = true; 270 } 271 272 spin_unlock_irq(&locked->sched_engine->lock); 273 274 return ret; 275 } 276 277 static void __rq_init_watchdog(struct i915_request *rq) 278 { 279 rq->watchdog.timer.function = NULL; 280 } 281 282 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer) 283 { 284 struct i915_request *rq = 285 container_of(hrtimer, struct i915_request, watchdog.timer); 286 struct intel_gt *gt = rq->engine->gt; 287 288 if (!i915_request_completed(rq)) { 289 if (llist_add(&rq->watchdog.link, >->watchdog.list)) 290 queue_work(gt->i915->unordered_wq, >->watchdog.work); 291 } else { 292 i915_request_put(rq); 293 } 294 295 return HRTIMER_NORESTART; 296 } 297 298 static void __rq_arm_watchdog(struct i915_request *rq) 299 { 300 struct i915_request_watchdog *wdg = &rq->watchdog; 301 struct intel_context *ce = rq->context; 302 303 if (!ce->watchdog.timeout_us) 304 return; 305 306 i915_request_get(rq); 307 308 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 309 wdg->timer.function = __rq_watchdog_expired; 310 hrtimer_start_range_ns(&wdg->timer, 311 ns_to_ktime(ce->watchdog.timeout_us * 312 NSEC_PER_USEC), 313 NSEC_PER_MSEC, 314 HRTIMER_MODE_REL); 315 } 316 317 static void __rq_cancel_watchdog(struct i915_request *rq) 318 { 319 struct i915_request_watchdog *wdg = &rq->watchdog; 320 321 if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0) 322 i915_request_put(rq); 323 } 324 325 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 326 327 /** 328 * i915_request_free_capture_list - Free a capture list 329 * @capture: Pointer to the first list item or NULL 330 * 331 */ 332 void i915_request_free_capture_list(struct i915_capture_list *capture) 333 { 334 while (capture) { 335 struct i915_capture_list *next = capture->next; 336 337 i915_vma_resource_put(capture->vma_res); 338 kfree(capture); 339 capture = next; 340 } 341 } 342 343 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list) 344 345 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL) 346 347 #else 348 349 #define i915_request_free_capture_list(_a) do {} while (0) 350 351 #define assert_capture_list_is_null(_a) do {} while (0) 352 353 #define clear_capture_list(_rq) do {} while (0) 354 355 #endif 356 357 bool i915_request_retire(struct i915_request *rq) 358 { 359 if (!__i915_request_is_complete(rq)) 360 return false; 361 362 RQ_TRACE(rq, "\n"); 363 364 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 365 trace_i915_request_retire(rq); 366 i915_request_mark_complete(rq); 367 368 __rq_cancel_watchdog(rq); 369 370 /* 371 * We know the GPU must have read the request to have 372 * sent us the seqno + interrupt, so use the position 373 * of tail of the request to update the last known position 374 * of the GPU head. 375 * 376 * Note this requires that we are always called in request 377 * completion order. 378 */ 379 GEM_BUG_ON(!list_is_first(&rq->link, 380 &i915_request_timeline(rq)->requests)); 381 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 382 /* Poison before we release our space in the ring */ 383 __i915_request_fill(rq, POISON_FREE); 384 rq->ring->head = rq->postfix; 385 386 if (!i915_request_signaled(rq)) { 387 spin_lock_irq(&rq->lock); 388 dma_fence_signal_locked(&rq->fence); 389 spin_unlock_irq(&rq->lock); 390 } 391 392 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) 393 intel_rps_dec_waiters(&rq->engine->gt->rps); 394 395 /* 396 * We only loosely track inflight requests across preemption, 397 * and so we may find ourselves attempting to retire a _completed_ 398 * request that we have removed from the HW and put back on a run 399 * queue. 400 * 401 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 402 * after removing the breadcrumb and signaling it, so that we do not 403 * inadvertently attach the breadcrumb to a completed request. 404 */ 405 rq->engine->remove_active_request(rq); 406 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 407 408 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 409 410 intel_context_exit(rq->context); 411 intel_context_unpin(rq->context); 412 413 i915_sched_node_fini(&rq->sched); 414 i915_request_put(rq); 415 416 return true; 417 } 418 419 void i915_request_retire_upto(struct i915_request *rq) 420 { 421 struct intel_timeline * const tl = i915_request_timeline(rq); 422 struct i915_request *tmp; 423 424 RQ_TRACE(rq, "\n"); 425 GEM_BUG_ON(!__i915_request_is_complete(rq)); 426 427 do { 428 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 429 GEM_BUG_ON(!i915_request_completed(tmp)); 430 } while (i915_request_retire(tmp) && tmp != rq); 431 } 432 433 static struct i915_request * const * 434 __engine_active(struct intel_engine_cs *engine) 435 { 436 return READ_ONCE(engine->execlists.active); 437 } 438 439 static bool __request_in_flight(const struct i915_request *signal) 440 { 441 struct i915_request * const *port, *rq; 442 bool inflight = false; 443 444 if (!i915_request_is_ready(signal)) 445 return false; 446 447 /* 448 * Even if we have unwound the request, it may still be on 449 * the GPU (preempt-to-busy). If that request is inside an 450 * unpreemptible critical section, it will not be removed. Some 451 * GPU functions may even be stuck waiting for the paired request 452 * (__await_execution) to be submitted and cannot be preempted 453 * until the bond is executing. 454 * 455 * As we know that there are always preemption points between 456 * requests, we know that only the currently executing request 457 * may be still active even though we have cleared the flag. 458 * However, we can't rely on our tracking of ELSP[0] to know 459 * which request is currently active and so maybe stuck, as 460 * the tracking maybe an event behind. Instead assume that 461 * if the context is still inflight, then it is still active 462 * even if the active flag has been cleared. 463 * 464 * To further complicate matters, if there a pending promotion, the HW 465 * may either perform a context switch to the second inflight execlists, 466 * or it may switch to the pending set of execlists. In the case of the 467 * latter, it may send the ACK and we process the event copying the 468 * pending[] over top of inflight[], _overwriting_ our *active. Since 469 * this implies the HW is arbitrating and not struck in *active, we do 470 * not worry about complete accuracy, but we do require no read/write 471 * tearing of the pointer [the read of the pointer must be valid, even 472 * as the array is being overwritten, for which we require the writes 473 * to avoid tearing.] 474 * 475 * Note that the read of *execlists->active may race with the promotion 476 * of execlists->pending[] to execlists->inflight[], overwritting 477 * the value at *execlists->active. This is fine. The promotion implies 478 * that we received an ACK from the HW, and so the context is not 479 * stuck -- if we do not see ourselves in *active, the inflight status 480 * is valid. If instead we see ourselves being copied into *active, 481 * we are inflight and may signal the callback. 482 */ 483 if (!intel_context_inflight(signal->context)) 484 return false; 485 486 rcu_read_lock(); 487 for (port = __engine_active(signal->engine); 488 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 489 port++) { 490 if (rq->context == signal->context) { 491 inflight = i915_seqno_passed(rq->fence.seqno, 492 signal->fence.seqno); 493 break; 494 } 495 } 496 rcu_read_unlock(); 497 498 return inflight; 499 } 500 501 static int 502 __await_execution(struct i915_request *rq, 503 struct i915_request *signal, 504 gfp_t gfp) 505 { 506 struct execute_cb *cb; 507 508 if (i915_request_is_active(signal)) 509 return 0; 510 511 cb = kmem_cache_alloc(slab_execute_cbs, gfp); 512 if (!cb) 513 return -ENOMEM; 514 515 cb->fence = &rq->submit; 516 i915_sw_fence_await(cb->fence); 517 init_irq_work(&cb->work, irq_execute_cb); 518 519 /* 520 * Register the callback first, then see if the signaler is already 521 * active. This ensures that if we race with the 522 * __notify_execute_cb from i915_request_submit() and we are not 523 * included in that list, we get a second bite of the cherry and 524 * execute it ourselves. After this point, a future 525 * i915_request_submit() will notify us. 526 * 527 * In i915_request_retire() we set the ACTIVE bit on a completed 528 * request (then flush the execute_cb). So by registering the 529 * callback first, then checking the ACTIVE bit, we serialise with 530 * the completed/retired request. 531 */ 532 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) { 533 if (i915_request_is_active(signal) || 534 __request_in_flight(signal)) 535 i915_request_notify_execute_cb_imm(signal); 536 } 537 538 return 0; 539 } 540 541 static bool fatal_error(int error) 542 { 543 switch (error) { 544 case 0: /* not an error! */ 545 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 546 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 547 return false; 548 default: 549 return true; 550 } 551 } 552 553 void __i915_request_skip(struct i915_request *rq) 554 { 555 GEM_BUG_ON(!fatal_error(rq->fence.error)); 556 557 if (rq->infix == rq->postfix) 558 return; 559 560 RQ_TRACE(rq, "error: %d\n", rq->fence.error); 561 562 /* 563 * As this request likely depends on state from the lost 564 * context, clear out all the user operations leaving the 565 * breadcrumb at the end (so we get the fence notifications). 566 */ 567 __i915_request_fill(rq, 0); 568 rq->infix = rq->postfix; 569 } 570 571 bool i915_request_set_error_once(struct i915_request *rq, int error) 572 { 573 int old; 574 575 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 576 577 if (i915_request_signaled(rq)) 578 return false; 579 580 old = READ_ONCE(rq->fence.error); 581 do { 582 if (fatal_error(old)) 583 return false; 584 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 585 586 return true; 587 } 588 589 struct i915_request *i915_request_mark_eio(struct i915_request *rq) 590 { 591 if (__i915_request_is_complete(rq)) 592 return NULL; 593 594 GEM_BUG_ON(i915_request_signaled(rq)); 595 596 /* As soon as the request is completed, it may be retired */ 597 rq = i915_request_get(rq); 598 599 i915_request_set_error_once(rq, -EIO); 600 i915_request_mark_complete(rq); 601 602 return rq; 603 } 604 605 bool __i915_request_submit(struct i915_request *request) 606 { 607 struct intel_engine_cs *engine = request->engine; 608 bool result = false; 609 610 RQ_TRACE(request, "\n"); 611 612 GEM_BUG_ON(!irqs_disabled()); 613 lockdep_assert_held(&engine->sched_engine->lock); 614 615 /* 616 * With the advent of preempt-to-busy, we frequently encounter 617 * requests that we have unsubmitted from HW, but left running 618 * until the next ack and so have completed in the meantime. On 619 * resubmission of that completed request, we can skip 620 * updating the payload, and execlists can even skip submitting 621 * the request. 622 * 623 * We must remove the request from the caller's priority queue, 624 * and the caller must only call us when the request is in their 625 * priority queue, under the sched_engine->lock. This ensures that the 626 * request has *not* yet been retired and we can safely move 627 * the request into the engine->active.list where it will be 628 * dropped upon retiring. (Otherwise if resubmit a *retired* 629 * request, this would be a horrible use-after-free.) 630 */ 631 if (__i915_request_is_complete(request)) { 632 list_del_init(&request->sched.link); 633 goto active; 634 } 635 636 if (unlikely(!intel_context_is_schedulable(request->context))) 637 i915_request_set_error_once(request, -EIO); 638 639 if (unlikely(fatal_error(request->fence.error))) 640 __i915_request_skip(request); 641 642 /* 643 * Are we using semaphores when the gpu is already saturated? 644 * 645 * Using semaphores incurs a cost in having the GPU poll a 646 * memory location, busywaiting for it to change. The continual 647 * memory reads can have a noticeable impact on the rest of the 648 * system with the extra bus traffic, stalling the cpu as it too 649 * tries to access memory across the bus (perf stat -e bus-cycles). 650 * 651 * If we installed a semaphore on this request and we only submit 652 * the request after the signaler completed, that indicates the 653 * system is overloaded and using semaphores at this time only 654 * increases the amount of work we are doing. If so, we disable 655 * further use of semaphores until we are idle again, whence we 656 * optimistically try again. 657 */ 658 if (request->sched.semaphores && 659 i915_sw_fence_signaled(&request->semaphore)) 660 engine->saturated |= request->sched.semaphores; 661 662 engine->emit_fini_breadcrumb(request, 663 request->ring->vaddr + request->postfix); 664 665 trace_i915_request_execute(request); 666 if (engine->bump_serial) 667 engine->bump_serial(engine); 668 else 669 engine->serial++; 670 671 result = true; 672 673 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 674 engine->add_active_request(request); 675 active: 676 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 677 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 678 679 /* 680 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 681 * 682 * In the future, perhaps when we have an active time-slicing scheduler, 683 * it will be interesting to unsubmit parallel execution and remove 684 * busywaits from the GPU until their master is restarted. This is 685 * quite hairy, we have to carefully rollback the fence and do a 686 * preempt-to-idle cycle on the target engine, all the while the 687 * master execute_cb may refire. 688 */ 689 __notify_execute_cb_irq(request); 690 691 /* We may be recursing from the signal callback of another i915 fence */ 692 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 693 i915_request_enable_breadcrumb(request); 694 695 return result; 696 } 697 698 void i915_request_submit(struct i915_request *request) 699 { 700 struct intel_engine_cs *engine = request->engine; 701 unsigned long flags; 702 703 /* Will be called from irq-context when using foreign fences. */ 704 spin_lock_irqsave(&engine->sched_engine->lock, flags); 705 706 __i915_request_submit(request); 707 708 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 709 } 710 711 void __i915_request_unsubmit(struct i915_request *request) 712 { 713 struct intel_engine_cs *engine = request->engine; 714 715 /* 716 * Only unwind in reverse order, required so that the per-context list 717 * is kept in seqno/ring order. 718 */ 719 RQ_TRACE(request, "\n"); 720 721 GEM_BUG_ON(!irqs_disabled()); 722 lockdep_assert_held(&engine->sched_engine->lock); 723 724 /* 725 * Before we remove this breadcrumb from the signal list, we have 726 * to ensure that a concurrent dma_fence_enable_signaling() does not 727 * attach itself. We first mark the request as no longer active and 728 * make sure that is visible to other cores, and then remove the 729 * breadcrumb if attached. 730 */ 731 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 732 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 733 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 734 i915_request_cancel_breadcrumb(request); 735 736 /* We've already spun, don't charge on resubmitting. */ 737 if (request->sched.semaphores && __i915_request_has_started(request)) 738 request->sched.semaphores = 0; 739 740 /* 741 * We don't need to wake_up any waiters on request->execute, they 742 * will get woken by any other event or us re-adding this request 743 * to the engine timeline (__i915_request_submit()). The waiters 744 * should be quite adapt at finding that the request now has a new 745 * global_seqno to the one they went to sleep on. 746 */ 747 } 748 749 void i915_request_unsubmit(struct i915_request *request) 750 { 751 struct intel_engine_cs *engine = request->engine; 752 unsigned long flags; 753 754 /* Will be called from irq-context when using foreign fences. */ 755 spin_lock_irqsave(&engine->sched_engine->lock, flags); 756 757 __i915_request_unsubmit(request); 758 759 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 760 } 761 762 void i915_request_cancel(struct i915_request *rq, int error) 763 { 764 if (!i915_request_set_error_once(rq, error)) 765 return; 766 767 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags); 768 769 intel_context_cancel_request(rq->context, rq); 770 } 771 772 static int 773 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 774 { 775 struct i915_request *request = 776 container_of(fence, typeof(*request), submit); 777 778 switch (state) { 779 case FENCE_COMPLETE: 780 trace_i915_request_submit(request); 781 782 if (unlikely(fence->error)) 783 i915_request_set_error_once(request, fence->error); 784 else 785 __rq_arm_watchdog(request); 786 787 /* 788 * We need to serialize use of the submit_request() callback 789 * with its hotplugging performed during an emergency 790 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 791 * critical section in order to force i915_gem_set_wedged() to 792 * wait until the submit_request() is completed before 793 * proceeding. 794 */ 795 rcu_read_lock(); 796 request->engine->submit_request(request); 797 rcu_read_unlock(); 798 break; 799 800 case FENCE_FREE: 801 i915_request_put(request); 802 break; 803 } 804 805 return NOTIFY_DONE; 806 } 807 808 static int 809 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 810 { 811 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 812 813 switch (state) { 814 case FENCE_COMPLETE: 815 break; 816 817 case FENCE_FREE: 818 i915_request_put(rq); 819 break; 820 } 821 822 return NOTIFY_DONE; 823 } 824 825 static void retire_requests(struct intel_timeline *tl) 826 { 827 struct i915_request *rq, *rn; 828 829 list_for_each_entry_safe(rq, rn, &tl->requests, link) 830 if (!i915_request_retire(rq)) 831 break; 832 } 833 834 static noinline struct i915_request * 835 request_alloc_slow(struct intel_timeline *tl, 836 struct i915_request **rsvd, 837 gfp_t gfp) 838 { 839 struct i915_request *rq; 840 841 /* If we cannot wait, dip into our reserves */ 842 if (!gfpflags_allow_blocking(gfp)) { 843 rq = xchg(rsvd, NULL); 844 if (!rq) /* Use the normal failure path for one final WARN */ 845 goto out; 846 847 return rq; 848 } 849 850 if (list_empty(&tl->requests)) 851 goto out; 852 853 /* Move our oldest request to the slab-cache (if not in use!) */ 854 rq = list_first_entry(&tl->requests, typeof(*rq), link); 855 i915_request_retire(rq); 856 857 rq = kmem_cache_alloc(slab_requests, 858 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 859 if (rq) 860 return rq; 861 862 /* Ratelimit ourselves to prevent oom from malicious clients */ 863 rq = list_last_entry(&tl->requests, typeof(*rq), link); 864 cond_synchronize_rcu(rq->rcustate); 865 866 /* Retire our old requests in the hope that we free some */ 867 retire_requests(tl); 868 869 out: 870 return kmem_cache_alloc(slab_requests, gfp); 871 } 872 873 static void __i915_request_ctor(void *arg) 874 { 875 struct i915_request *rq = arg; 876 877 spin_lock_init(&rq->lock); 878 i915_sched_node_init(&rq->sched); 879 i915_sw_fence_init(&rq->submit, submit_notify); 880 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 881 882 clear_capture_list(rq); 883 rq->batch_res = NULL; 884 885 init_llist_head(&rq->execute_cb); 886 } 887 888 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 889 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL) 890 #else 891 #define clear_batch_ptr(_a) do {} while (0) 892 #endif 893 894 struct i915_request * 895 __i915_request_create(struct intel_context *ce, gfp_t gfp) 896 { 897 struct intel_timeline *tl = ce->timeline; 898 struct i915_request *rq; 899 u32 seqno; 900 int ret; 901 902 might_alloc(gfp); 903 904 /* Check that the caller provided an already pinned context */ 905 __intel_context_pin(ce); 906 907 /* 908 * Beware: Dragons be flying overhead. 909 * 910 * We use RCU to look up requests in flight. The lookups may 911 * race with the request being allocated from the slab freelist. 912 * That is the request we are writing to here, may be in the process 913 * of being read by __i915_active_request_get_rcu(). As such, 914 * we have to be very careful when overwriting the contents. During 915 * the RCU lookup, we change chase the request->engine pointer, 916 * read the request->global_seqno and increment the reference count. 917 * 918 * The reference count is incremented atomically. If it is zero, 919 * the lookup knows the request is unallocated and complete. Otherwise, 920 * it is either still in use, or has been reallocated and reset 921 * with dma_fence_init(). This increment is safe for release as we 922 * check that the request we have a reference to and matches the active 923 * request. 924 * 925 * Before we increment the refcount, we chase the request->engine 926 * pointer. We must not call kmem_cache_zalloc() or else we set 927 * that pointer to NULL and cause a crash during the lookup. If 928 * we see the request is completed (based on the value of the 929 * old engine and seqno), the lookup is complete and reports NULL. 930 * If we decide the request is not completed (new engine or seqno), 931 * then we grab a reference and double check that it is still the 932 * active request - which it won't be and restart the lookup. 933 * 934 * Do not use kmem_cache_zalloc() here! 935 */ 936 rq = kmem_cache_alloc(slab_requests, 937 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 938 if (unlikely(!rq)) { 939 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 940 if (!rq) { 941 ret = -ENOMEM; 942 goto err_unreserve; 943 } 944 } 945 946 rq->context = ce; 947 rq->engine = ce->engine; 948 rq->ring = ce->ring; 949 rq->execution_mask = ce->engine->mask; 950 rq->i915 = ce->engine->i915; 951 952 ret = intel_timeline_get_seqno(tl, rq, &seqno); 953 if (ret) 954 goto err_free; 955 956 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 957 tl->fence_context, seqno); 958 959 RCU_INIT_POINTER(rq->timeline, tl); 960 rq->hwsp_seqno = tl->hwsp_seqno; 961 GEM_BUG_ON(__i915_request_is_complete(rq)); 962 963 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 964 965 rq->guc_prio = GUC_PRIO_INIT; 966 967 /* We bump the ref for the fence chain */ 968 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 969 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 970 971 i915_sched_node_reinit(&rq->sched); 972 973 /* No zalloc, everything must be cleared after use */ 974 clear_batch_ptr(rq); 975 __rq_init_watchdog(rq); 976 assert_capture_list_is_null(rq); 977 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 978 GEM_BUG_ON(rq->batch_res); 979 980 /* 981 * Reserve space in the ring buffer for all the commands required to 982 * eventually emit this request. This is to guarantee that the 983 * i915_request_add() call can't fail. Note that the reserve may need 984 * to be redone if the request is not actually submitted straight 985 * away, e.g. because a GPU scheduler has deferred it. 986 * 987 * Note that due to how we add reserved_space to intel_ring_begin() 988 * we need to double our request to ensure that if we need to wrap 989 * around inside i915_request_add() there is sufficient space at 990 * the beginning of the ring as well. 991 */ 992 rq->reserved_space = 993 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 994 995 /* 996 * Record the position of the start of the request so that 997 * should we detect the updated seqno part-way through the 998 * GPU processing the request, we never over-estimate the 999 * position of the head. 1000 */ 1001 rq->head = rq->ring->emit; 1002 1003 ret = rq->engine->request_alloc(rq); 1004 if (ret) 1005 goto err_unwind; 1006 1007 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 1008 1009 intel_context_mark_active(ce); 1010 list_add_tail_rcu(&rq->link, &tl->requests); 1011 1012 return rq; 1013 1014 err_unwind: 1015 ce->ring->emit = rq->head; 1016 1017 /* Make sure we didn't add ourselves to external state before freeing */ 1018 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 1019 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 1020 1021 err_free: 1022 kmem_cache_free(slab_requests, rq); 1023 err_unreserve: 1024 intel_context_unpin(ce); 1025 return ERR_PTR(ret); 1026 } 1027 1028 struct i915_request * 1029 i915_request_create(struct intel_context *ce) 1030 { 1031 struct i915_request *rq; 1032 struct intel_timeline *tl; 1033 1034 tl = intel_context_timeline_lock(ce); 1035 if (IS_ERR(tl)) 1036 return ERR_CAST(tl); 1037 1038 /* Move our oldest request to the slab-cache (if not in use!) */ 1039 rq = list_first_entry(&tl->requests, typeof(*rq), link); 1040 if (!list_is_last(&rq->link, &tl->requests)) 1041 i915_request_retire(rq); 1042 1043 intel_context_enter(ce); 1044 rq = __i915_request_create(ce, GFP_KERNEL); 1045 intel_context_exit(ce); /* active reference transferred to request */ 1046 if (IS_ERR(rq)) 1047 goto err_unlock; 1048 1049 /* Check that we do not interrupt ourselves with a new request */ 1050 rq->cookie = lockdep_pin_lock(&tl->mutex); 1051 1052 return rq; 1053 1054 err_unlock: 1055 intel_context_timeline_unlock(tl); 1056 return rq; 1057 } 1058 1059 static int 1060 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 1061 { 1062 struct dma_fence *fence; 1063 int err; 1064 1065 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 1066 return 0; 1067 1068 if (i915_request_started(signal)) 1069 return 0; 1070 1071 /* 1072 * The caller holds a reference on @signal, but we do not serialise 1073 * against it being retired and removed from the lists. 1074 * 1075 * We do not hold a reference to the request before @signal, and 1076 * so must be very careful to ensure that it is not _recycled_ as 1077 * we follow the link backwards. 1078 */ 1079 fence = NULL; 1080 rcu_read_lock(); 1081 do { 1082 struct list_head *pos = READ_ONCE(signal->link.prev); 1083 struct i915_request *prev; 1084 1085 /* Confirm signal has not been retired, the link is valid */ 1086 if (unlikely(__i915_request_has_started(signal))) 1087 break; 1088 1089 /* Is signal the earliest request on its timeline? */ 1090 if (pos == &rcu_dereference(signal->timeline)->requests) 1091 break; 1092 1093 /* 1094 * Peek at the request before us in the timeline. That 1095 * request will only be valid before it is retired, so 1096 * after acquiring a reference to it, confirm that it is 1097 * still part of the signaler's timeline. 1098 */ 1099 prev = list_entry(pos, typeof(*prev), link); 1100 if (!i915_request_get_rcu(prev)) 1101 break; 1102 1103 /* After the strong barrier, confirm prev is still attached */ 1104 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 1105 i915_request_put(prev); 1106 break; 1107 } 1108 1109 fence = &prev->fence; 1110 } while (0); 1111 rcu_read_unlock(); 1112 if (!fence) 1113 return 0; 1114 1115 err = 0; 1116 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1117 err = i915_sw_fence_await_dma_fence(&rq->submit, 1118 fence, 0, 1119 I915_FENCE_GFP); 1120 dma_fence_put(fence); 1121 1122 return err; 1123 } 1124 1125 static intel_engine_mask_t 1126 already_busywaiting(struct i915_request *rq) 1127 { 1128 /* 1129 * Polling a semaphore causes bus traffic, delaying other users of 1130 * both the GPU and CPU. We want to limit the impact on others, 1131 * while taking advantage of early submission to reduce GPU 1132 * latency. Therefore we restrict ourselves to not using more 1133 * than one semaphore from each source, and not using a semaphore 1134 * if we have detected the engine is saturated (i.e. would not be 1135 * submitted early and cause bus traffic reading an already passed 1136 * semaphore). 1137 * 1138 * See the are-we-too-late? check in __i915_request_submit(). 1139 */ 1140 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1141 } 1142 1143 static int 1144 __emit_semaphore_wait(struct i915_request *to, 1145 struct i915_request *from, 1146 u32 seqno) 1147 { 1148 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12; 1149 u32 hwsp_offset; 1150 int len, err; 1151 u32 *cs; 1152 1153 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8); 1154 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1155 1156 /* We need to pin the signaler's HWSP until we are finished reading. */ 1157 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1158 if (err) 1159 return err; 1160 1161 len = 4; 1162 if (has_token) 1163 len += 2; 1164 1165 cs = intel_ring_begin(to, len); 1166 if (IS_ERR(cs)) 1167 return PTR_ERR(cs); 1168 1169 /* 1170 * Using greater-than-or-equal here means we have to worry 1171 * about seqno wraparound. To side step that issue, we swap 1172 * the timeline HWSP upon wrapping, so that everyone listening 1173 * for the old (pre-wrap) values do not see the much smaller 1174 * (post-wrap) values than they were expecting (and so wait 1175 * forever). 1176 */ 1177 *cs++ = (MI_SEMAPHORE_WAIT | 1178 MI_SEMAPHORE_GLOBAL_GTT | 1179 MI_SEMAPHORE_POLL | 1180 MI_SEMAPHORE_SAD_GTE_SDD) + 1181 has_token; 1182 *cs++ = seqno; 1183 *cs++ = hwsp_offset; 1184 *cs++ = 0; 1185 if (has_token) { 1186 *cs++ = 0; 1187 *cs++ = MI_NOOP; 1188 } 1189 1190 intel_ring_advance(to, cs); 1191 return 0; 1192 } 1193 1194 static bool 1195 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from) 1196 { 1197 return to->engine->gt->ggtt == from->engine->gt->ggtt; 1198 } 1199 1200 static int 1201 emit_semaphore_wait(struct i915_request *to, 1202 struct i915_request *from, 1203 gfp_t gfp) 1204 { 1205 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1206 struct i915_sw_fence *wait = &to->submit; 1207 1208 if (!can_use_semaphore_wait(to, from)) 1209 goto await_fence; 1210 1211 if (!intel_context_use_semaphores(to->context)) 1212 goto await_fence; 1213 1214 if (i915_request_has_initial_breadcrumb(to)) 1215 goto await_fence; 1216 1217 /* 1218 * If this or its dependents are waiting on an external fence 1219 * that may fail catastrophically, then we want to avoid using 1220 * semaphores as they bypass the fence signaling metadata, and we 1221 * lose the fence->error propagation. 1222 */ 1223 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1224 goto await_fence; 1225 1226 /* Just emit the first semaphore we see as request space is limited. */ 1227 if (already_busywaiting(to) & mask) 1228 goto await_fence; 1229 1230 if (i915_request_await_start(to, from) < 0) 1231 goto await_fence; 1232 1233 /* Only submit our spinner after the signaler is running! */ 1234 if (__await_execution(to, from, gfp)) 1235 goto await_fence; 1236 1237 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1238 goto await_fence; 1239 1240 to->sched.semaphores |= mask; 1241 wait = &to->semaphore; 1242 1243 await_fence: 1244 return i915_sw_fence_await_dma_fence(wait, 1245 &from->fence, 0, 1246 I915_FENCE_GFP); 1247 } 1248 1249 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1250 struct dma_fence *fence) 1251 { 1252 return __intel_timeline_sync_is_later(tl, 1253 fence->context, 1254 fence->seqno - 1); 1255 } 1256 1257 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1258 const struct dma_fence *fence) 1259 { 1260 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1261 } 1262 1263 static int 1264 __i915_request_await_execution(struct i915_request *to, 1265 struct i915_request *from) 1266 { 1267 int err; 1268 1269 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1270 1271 /* Submit both requests at the same time */ 1272 err = __await_execution(to, from, I915_FENCE_GFP); 1273 if (err) 1274 return err; 1275 1276 /* Squash repeated depenendices to the same timelines */ 1277 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1278 &from->fence)) 1279 return 0; 1280 1281 /* 1282 * Wait until the start of this request. 1283 * 1284 * The execution cb fires when we submit the request to HW. But in 1285 * many cases this may be long before the request itself is ready to 1286 * run (consider that we submit 2 requests for the same context, where 1287 * the request of interest is behind an indefinite spinner). So we hook 1288 * up to both to reduce our queues and keep the execution lag minimised 1289 * in the worst case, though we hope that the await_start is elided. 1290 */ 1291 err = i915_request_await_start(to, from); 1292 if (err < 0) 1293 return err; 1294 1295 /* 1296 * Ensure both start together [after all semaphores in signal] 1297 * 1298 * Now that we are queued to the HW at roughly the same time (thanks 1299 * to the execute cb) and are ready to run at roughly the same time 1300 * (thanks to the await start), our signaler may still be indefinitely 1301 * delayed by waiting on a semaphore from a remote engine. If our 1302 * signaler depends on a semaphore, so indirectly do we, and we do not 1303 * want to start our payload until our signaler also starts theirs. 1304 * So we wait. 1305 * 1306 * However, there is also a second condition for which we need to wait 1307 * for the precise start of the signaler. Consider that the signaler 1308 * was submitted in a chain of requests following another context 1309 * (with just an ordinary intra-engine fence dependency between the 1310 * two). In this case the signaler is queued to HW, but not for 1311 * immediate execution, and so we must wait until it reaches the 1312 * active slot. 1313 */ 1314 if (can_use_semaphore_wait(to, from) && 1315 intel_engine_has_semaphores(to->engine) && 1316 !i915_request_has_initial_breadcrumb(to)) { 1317 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1318 if (err < 0) 1319 return err; 1320 } 1321 1322 /* Couple the dependency tree for PI on this exposed to->fence */ 1323 if (to->engine->sched_engine->schedule) { 1324 err = i915_sched_node_add_dependency(&to->sched, 1325 &from->sched, 1326 I915_DEPENDENCY_WEAK); 1327 if (err < 0) 1328 return err; 1329 } 1330 1331 return intel_timeline_sync_set_start(i915_request_timeline(to), 1332 &from->fence); 1333 } 1334 1335 static void mark_external(struct i915_request *rq) 1336 { 1337 /* 1338 * The downside of using semaphores is that we lose metadata passing 1339 * along the signaling chain. This is particularly nasty when we 1340 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1341 * fatal errors we want to scrub the request before it is executed, 1342 * which means that we cannot preload the request onto HW and have 1343 * it wait upon a semaphore. 1344 */ 1345 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1346 } 1347 1348 static int 1349 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1350 { 1351 mark_external(rq); 1352 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1353 i915_fence_context_timeout(rq->i915, 1354 fence->context), 1355 I915_FENCE_GFP); 1356 } 1357 1358 static int 1359 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1360 { 1361 struct dma_fence *iter; 1362 int err = 0; 1363 1364 if (!to_dma_fence_chain(fence)) 1365 return __i915_request_await_external(rq, fence); 1366 1367 dma_fence_chain_for_each(iter, fence) { 1368 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1369 1370 if (!dma_fence_is_i915(chain->fence)) { 1371 err = __i915_request_await_external(rq, iter); 1372 break; 1373 } 1374 1375 err = i915_request_await_dma_fence(rq, chain->fence); 1376 if (err < 0) 1377 break; 1378 } 1379 1380 dma_fence_put(iter); 1381 return err; 1382 } 1383 1384 static inline bool is_parallel_rq(struct i915_request *rq) 1385 { 1386 return intel_context_is_parallel(rq->context); 1387 } 1388 1389 static inline struct intel_context *request_to_parent(struct i915_request *rq) 1390 { 1391 return intel_context_to_parent(rq->context); 1392 } 1393 1394 static bool is_same_parallel_context(struct i915_request *to, 1395 struct i915_request *from) 1396 { 1397 if (is_parallel_rq(to)) 1398 return request_to_parent(to) == request_to_parent(from); 1399 1400 return false; 1401 } 1402 1403 int 1404 i915_request_await_execution(struct i915_request *rq, 1405 struct dma_fence *fence) 1406 { 1407 struct dma_fence **child = &fence; 1408 unsigned int nchild = 1; 1409 int ret; 1410 1411 if (dma_fence_is_array(fence)) { 1412 struct dma_fence_array *array = to_dma_fence_array(fence); 1413 1414 /* XXX Error for signal-on-any fence arrays */ 1415 1416 child = array->fences; 1417 nchild = array->num_fences; 1418 GEM_BUG_ON(!nchild); 1419 } 1420 1421 do { 1422 fence = *child++; 1423 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1424 continue; 1425 1426 if (fence->context == rq->fence.context) 1427 continue; 1428 1429 /* 1430 * We don't squash repeated fence dependencies here as we 1431 * want to run our callback in all cases. 1432 */ 1433 1434 if (dma_fence_is_i915(fence)) { 1435 if (is_same_parallel_context(rq, to_request(fence))) 1436 continue; 1437 ret = __i915_request_await_execution(rq, 1438 to_request(fence)); 1439 } else { 1440 ret = i915_request_await_external(rq, fence); 1441 } 1442 if (ret < 0) 1443 return ret; 1444 } while (--nchild); 1445 1446 return 0; 1447 } 1448 1449 static int 1450 await_request_submit(struct i915_request *to, struct i915_request *from) 1451 { 1452 /* 1453 * If we are waiting on a virtual engine, then it may be 1454 * constrained to execute on a single engine *prior* to submission. 1455 * When it is submitted, it will be first submitted to the virtual 1456 * engine and then passed to the physical engine. We cannot allow 1457 * the waiter to be submitted immediately to the physical engine 1458 * as it may then bypass the virtual request. 1459 */ 1460 if (to->engine == READ_ONCE(from->engine)) 1461 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1462 &from->submit, 1463 I915_FENCE_GFP); 1464 else 1465 return __i915_request_await_execution(to, from); 1466 } 1467 1468 static int 1469 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1470 { 1471 int ret; 1472 1473 GEM_BUG_ON(to == from); 1474 GEM_BUG_ON(to->timeline == from->timeline); 1475 1476 if (i915_request_completed(from)) { 1477 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1478 return 0; 1479 } 1480 1481 if (to->engine->sched_engine->schedule) { 1482 ret = i915_sched_node_add_dependency(&to->sched, 1483 &from->sched, 1484 I915_DEPENDENCY_EXTERNAL); 1485 if (ret < 0) 1486 return ret; 1487 } 1488 1489 if (!intel_engine_uses_guc(to->engine) && 1490 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1491 ret = await_request_submit(to, from); 1492 else 1493 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1494 if (ret < 0) 1495 return ret; 1496 1497 return 0; 1498 } 1499 1500 int 1501 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1502 { 1503 struct dma_fence **child = &fence; 1504 unsigned int nchild = 1; 1505 int ret; 1506 1507 /* 1508 * Note that if the fence-array was created in signal-on-any mode, 1509 * we should *not* decompose it into its individual fences. However, 1510 * we don't currently store which mode the fence-array is operating 1511 * in. Fortunately, the only user of signal-on-any is private to 1512 * amdgpu and we should not see any incoming fence-array from 1513 * sync-file being in signal-on-any mode. 1514 */ 1515 if (dma_fence_is_array(fence)) { 1516 struct dma_fence_array *array = to_dma_fence_array(fence); 1517 1518 child = array->fences; 1519 nchild = array->num_fences; 1520 GEM_BUG_ON(!nchild); 1521 } 1522 1523 do { 1524 fence = *child++; 1525 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1526 continue; 1527 1528 /* 1529 * Requests on the same timeline are explicitly ordered, along 1530 * with their dependencies, by i915_request_add() which ensures 1531 * that requests are submitted in-order through each ring. 1532 */ 1533 if (fence->context == rq->fence.context) 1534 continue; 1535 1536 /* Squash repeated waits to the same timelines */ 1537 if (fence->context && 1538 intel_timeline_sync_is_later(i915_request_timeline(rq), 1539 fence)) 1540 continue; 1541 1542 if (dma_fence_is_i915(fence)) { 1543 if (is_same_parallel_context(rq, to_request(fence))) 1544 continue; 1545 ret = i915_request_await_request(rq, to_request(fence)); 1546 } else { 1547 ret = i915_request_await_external(rq, fence); 1548 } 1549 if (ret < 0) 1550 return ret; 1551 1552 /* Record the latest fence used against each timeline */ 1553 if (fence->context) 1554 intel_timeline_sync_set(i915_request_timeline(rq), 1555 fence); 1556 } while (--nchild); 1557 1558 return 0; 1559 } 1560 1561 /** 1562 * i915_request_await_deps - set this request to (async) wait upon a struct 1563 * i915_deps dma_fence collection 1564 * @rq: request we are wishing to use 1565 * @deps: The struct i915_deps containing the dependencies. 1566 * 1567 * Returns 0 if successful, negative error code on error. 1568 */ 1569 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps) 1570 { 1571 int i, err; 1572 1573 for (i = 0; i < deps->num_deps; ++i) { 1574 err = i915_request_await_dma_fence(rq, deps->fences[i]); 1575 if (err) 1576 return err; 1577 } 1578 1579 return 0; 1580 } 1581 1582 /** 1583 * i915_request_await_object - set this request to (async) wait upon a bo 1584 * @to: request we are wishing to use 1585 * @obj: object which may be in use on another ring. 1586 * @write: whether the wait is on behalf of a writer 1587 * 1588 * This code is meant to abstract object synchronization with the GPU. 1589 * Conceptually we serialise writes between engines inside the GPU. 1590 * We only allow one engine to write into a buffer at any time, but 1591 * multiple readers. To ensure each has a coherent view of memory, we must: 1592 * 1593 * - If there is an outstanding write request to the object, the new 1594 * request must wait for it to complete (either CPU or in hw, requests 1595 * on the same ring will be naturally ordered). 1596 * 1597 * - If we are a write request (pending_write_domain is set), the new 1598 * request must wait for outstanding read requests to complete. 1599 * 1600 * Returns 0 if successful, else propagates up the lower layer error. 1601 */ 1602 int 1603 i915_request_await_object(struct i915_request *to, 1604 struct drm_i915_gem_object *obj, 1605 bool write) 1606 { 1607 struct dma_resv_iter cursor; 1608 struct dma_fence *fence; 1609 int ret = 0; 1610 1611 dma_resv_for_each_fence(&cursor, obj->base.resv, 1612 dma_resv_usage_rw(write), fence) { 1613 ret = i915_request_await_dma_fence(to, fence); 1614 if (ret) 1615 break; 1616 } 1617 1618 return ret; 1619 } 1620 1621 static void i915_request_await_huc(struct i915_request *rq) 1622 { 1623 struct intel_huc *huc = &rq->context->engine->gt->uc.huc; 1624 1625 /* don't stall kernel submissions! */ 1626 if (!rcu_access_pointer(rq->context->gem_context)) 1627 return; 1628 1629 if (intel_huc_wait_required(huc)) 1630 i915_sw_fence_await_sw_fence(&rq->submit, 1631 &huc->delayed_load.fence, 1632 &rq->hucq); 1633 } 1634 1635 static struct i915_request * 1636 __i915_request_ensure_parallel_ordering(struct i915_request *rq, 1637 struct intel_timeline *timeline) 1638 { 1639 struct i915_request *prev; 1640 1641 GEM_BUG_ON(!is_parallel_rq(rq)); 1642 1643 prev = request_to_parent(rq)->parallel.last_rq; 1644 if (prev) { 1645 if (!__i915_request_is_complete(prev)) { 1646 i915_sw_fence_await_sw_fence(&rq->submit, 1647 &prev->submit, 1648 &rq->submitq); 1649 1650 if (rq->engine->sched_engine->schedule) 1651 __i915_sched_node_add_dependency(&rq->sched, 1652 &prev->sched, 1653 &rq->dep, 1654 0); 1655 } 1656 i915_request_put(prev); 1657 } 1658 1659 request_to_parent(rq)->parallel.last_rq = i915_request_get(rq); 1660 1661 /* 1662 * Users have to put a reference potentially got by 1663 * __i915_active_fence_set() to the returned request 1664 * when no longer needed 1665 */ 1666 return to_request(__i915_active_fence_set(&timeline->last_request, 1667 &rq->fence)); 1668 } 1669 1670 static struct i915_request * 1671 __i915_request_ensure_ordering(struct i915_request *rq, 1672 struct intel_timeline *timeline) 1673 { 1674 struct i915_request *prev; 1675 1676 GEM_BUG_ON(is_parallel_rq(rq)); 1677 1678 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1679 &rq->fence)); 1680 1681 if (prev && !__i915_request_is_complete(prev)) { 1682 bool uses_guc = intel_engine_uses_guc(rq->engine); 1683 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask | 1684 rq->engine->mask); 1685 bool same_context = prev->context == rq->context; 1686 1687 /* 1688 * The requests are supposed to be kept in order. However, 1689 * we need to be wary in case the timeline->last_request 1690 * is used as a barrier for external modification to this 1691 * context. 1692 */ 1693 GEM_BUG_ON(same_context && 1694 i915_seqno_passed(prev->fence.seqno, 1695 rq->fence.seqno)); 1696 1697 if ((same_context && uses_guc) || (!uses_guc && pow2)) 1698 i915_sw_fence_await_sw_fence(&rq->submit, 1699 &prev->submit, 1700 &rq->submitq); 1701 else 1702 __i915_sw_fence_await_dma_fence(&rq->submit, 1703 &prev->fence, 1704 &rq->dmaq); 1705 if (rq->engine->sched_engine->schedule) 1706 __i915_sched_node_add_dependency(&rq->sched, 1707 &prev->sched, 1708 &rq->dep, 1709 0); 1710 } 1711 1712 /* 1713 * Users have to put the reference to prev potentially got 1714 * by __i915_active_fence_set() when no longer needed 1715 */ 1716 return prev; 1717 } 1718 1719 static struct i915_request * 1720 __i915_request_add_to_timeline(struct i915_request *rq) 1721 { 1722 struct intel_timeline *timeline = i915_request_timeline(rq); 1723 struct i915_request *prev; 1724 1725 /* 1726 * Media workloads may require HuC, so stall them until HuC loading is 1727 * complete. Note that HuC not being loaded when a user submission 1728 * arrives can only happen when HuC is loaded via GSC and in that case 1729 * we still expect the window between us starting to accept submissions 1730 * and HuC loading completion to be small (a few hundred ms). 1731 */ 1732 if (rq->engine->class == VIDEO_DECODE_CLASS) 1733 i915_request_await_huc(rq); 1734 1735 /* 1736 * Dependency tracking and request ordering along the timeline 1737 * is special cased so that we can eliminate redundant ordering 1738 * operations while building the request (we know that the timeline 1739 * itself is ordered, and here we guarantee it). 1740 * 1741 * As we know we will need to emit tracking along the timeline, 1742 * we embed the hooks into our request struct -- at the cost of 1743 * having to have specialised no-allocation interfaces (which will 1744 * be beneficial elsewhere). 1745 * 1746 * A second benefit to open-coding i915_request_await_request is 1747 * that we can apply a slight variant of the rules specialised 1748 * for timelines that jump between engines (such as virtual engines). 1749 * If we consider the case of virtual engine, we must emit a dma-fence 1750 * to prevent scheduling of the second request until the first is 1751 * complete (to maximise our greedy late load balancing) and this 1752 * precludes optimising to use semaphores serialisation of a single 1753 * timeline across engines. 1754 * 1755 * We do not order parallel submission requests on the timeline as each 1756 * parallel submission context has its own timeline and the ordering 1757 * rules for parallel requests are that they must be submitted in the 1758 * order received from the execbuf IOCTL. So rather than using the 1759 * timeline we store a pointer to last request submitted in the 1760 * relationship in the gem context and insert a submission fence 1761 * between that request and request passed into this function or 1762 * alternatively we use completion fence if gem context has a single 1763 * timeline and this is the first submission of an execbuf IOCTL. 1764 */ 1765 if (likely(!is_parallel_rq(rq))) 1766 prev = __i915_request_ensure_ordering(rq, timeline); 1767 else 1768 prev = __i915_request_ensure_parallel_ordering(rq, timeline); 1769 if (prev) 1770 i915_request_put(prev); 1771 1772 /* 1773 * Make sure that no request gazumped us - if it was allocated after 1774 * our i915_request_alloc() and called __i915_request_add() before 1775 * us, the timeline will hold its seqno which is later than ours. 1776 */ 1777 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1778 1779 return prev; 1780 } 1781 1782 /* 1783 * NB: This function is not allowed to fail. Doing so would mean the the 1784 * request is not being tracked for completion but the work itself is 1785 * going to happen on the hardware. This would be a Bad Thing(tm). 1786 */ 1787 struct i915_request *__i915_request_commit(struct i915_request *rq) 1788 { 1789 struct intel_engine_cs *engine = rq->engine; 1790 struct intel_ring *ring = rq->ring; 1791 u32 *cs; 1792 1793 RQ_TRACE(rq, "\n"); 1794 1795 /* 1796 * To ensure that this call will not fail, space for its emissions 1797 * should already have been reserved in the ring buffer. Let the ring 1798 * know that it is time to use that space up. 1799 */ 1800 GEM_BUG_ON(rq->reserved_space > ring->space); 1801 rq->reserved_space = 0; 1802 rq->emitted_jiffies = jiffies; 1803 1804 /* 1805 * Record the position of the start of the breadcrumb so that 1806 * should we detect the updated seqno part-way through the 1807 * GPU processing the request, we never over-estimate the 1808 * position of the ring's HEAD. 1809 */ 1810 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1811 GEM_BUG_ON(IS_ERR(cs)); 1812 rq->postfix = intel_ring_offset(rq, cs); 1813 1814 return __i915_request_add_to_timeline(rq); 1815 } 1816 1817 void __i915_request_queue_bh(struct i915_request *rq) 1818 { 1819 i915_sw_fence_commit(&rq->semaphore); 1820 i915_sw_fence_commit(&rq->submit); 1821 } 1822 1823 void __i915_request_queue(struct i915_request *rq, 1824 const struct i915_sched_attr *attr) 1825 { 1826 /* 1827 * Let the backend know a new request has arrived that may need 1828 * to adjust the existing execution schedule due to a high priority 1829 * request - i.e. we may want to preempt the current request in order 1830 * to run a high priority dependency chain *before* we can execute this 1831 * request. 1832 * 1833 * This is called before the request is ready to run so that we can 1834 * decide whether to preempt the entire chain so that it is ready to 1835 * run at the earliest possible convenience. 1836 */ 1837 if (attr && rq->engine->sched_engine->schedule) 1838 rq->engine->sched_engine->schedule(rq, attr); 1839 1840 local_bh_disable(); 1841 __i915_request_queue_bh(rq); 1842 local_bh_enable(); /* kick tasklets */ 1843 } 1844 1845 void i915_request_add(struct i915_request *rq) 1846 { 1847 struct intel_timeline * const tl = i915_request_timeline(rq); 1848 struct i915_sched_attr attr = {}; 1849 struct i915_gem_context *ctx; 1850 1851 lockdep_assert_held(&tl->mutex); 1852 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1853 1854 trace_i915_request_add(rq); 1855 __i915_request_commit(rq); 1856 1857 /* XXX placeholder for selftests */ 1858 rcu_read_lock(); 1859 ctx = rcu_dereference(rq->context->gem_context); 1860 if (ctx) 1861 attr = ctx->sched; 1862 rcu_read_unlock(); 1863 1864 __i915_request_queue(rq, &attr); 1865 1866 mutex_unlock(&tl->mutex); 1867 } 1868 1869 static unsigned long local_clock_ns(unsigned int *cpu) 1870 { 1871 unsigned long t; 1872 1873 /* 1874 * Cheaply and approximately convert from nanoseconds to microseconds. 1875 * The result and subsequent calculations are also defined in the same 1876 * approximate microseconds units. The principal source of timing 1877 * error here is from the simple truncation. 1878 * 1879 * Note that local_clock() is only defined wrt to the current CPU; 1880 * the comparisons are no longer valid if we switch CPUs. Instead of 1881 * blocking preemption for the entire busywait, we can detect the CPU 1882 * switch and use that as indicator of system load and a reason to 1883 * stop busywaiting, see busywait_stop(). 1884 */ 1885 *cpu = get_cpu(); 1886 t = local_clock(); 1887 put_cpu(); 1888 1889 return t; 1890 } 1891 1892 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1893 { 1894 unsigned int this_cpu; 1895 1896 if (time_after(local_clock_ns(&this_cpu), timeout)) 1897 return true; 1898 1899 return this_cpu != cpu; 1900 } 1901 1902 static bool __i915_spin_request(struct i915_request * const rq, int state) 1903 { 1904 unsigned long timeout_ns; 1905 unsigned int cpu; 1906 1907 /* 1908 * Only wait for the request if we know it is likely to complete. 1909 * 1910 * We don't track the timestamps around requests, nor the average 1911 * request length, so we do not have a good indicator that this 1912 * request will complete within the timeout. What we do know is the 1913 * order in which requests are executed by the context and so we can 1914 * tell if the request has been started. If the request is not even 1915 * running yet, it is a fair assumption that it will not complete 1916 * within our relatively short timeout. 1917 */ 1918 if (!i915_request_is_running(rq)) 1919 return false; 1920 1921 /* 1922 * When waiting for high frequency requests, e.g. during synchronous 1923 * rendering split between the CPU and GPU, the finite amount of time 1924 * required to set up the irq and wait upon it limits the response 1925 * rate. By busywaiting on the request completion for a short while we 1926 * can service the high frequency waits as quick as possible. However, 1927 * if it is a slow request, we want to sleep as quickly as possible. 1928 * The tradeoff between waiting and sleeping is roughly the time it 1929 * takes to sleep on a request, on the order of a microsecond. 1930 */ 1931 1932 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1933 timeout_ns += local_clock_ns(&cpu); 1934 do { 1935 if (dma_fence_is_signaled(&rq->fence)) 1936 return true; 1937 1938 if (signal_pending_state(state, current)) 1939 break; 1940 1941 if (busywait_stop(timeout_ns, cpu)) 1942 break; 1943 1944 cpu_relax(); 1945 } while (!need_resched()); 1946 1947 return false; 1948 } 1949 1950 struct request_wait { 1951 struct dma_fence_cb cb; 1952 struct task_struct *tsk; 1953 }; 1954 1955 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1956 { 1957 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1958 1959 wake_up_process(fetch_and_zero(&wait->tsk)); 1960 } 1961 1962 /** 1963 * i915_request_wait_timeout - wait until execution of request has finished 1964 * @rq: the request to wait upon 1965 * @flags: how to wait 1966 * @timeout: how long to wait in jiffies 1967 * 1968 * i915_request_wait_timeout() waits for the request to be completed, for a 1969 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1970 * unbounded wait). 1971 * 1972 * Returns the remaining time (in jiffies) if the request completed, which may 1973 * be zero if the request is unfinished after the timeout expires. 1974 * If the timeout is 0, it will return 1 if the fence is signaled. 1975 * 1976 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1977 * pending before the request completes. 1978 * 1979 * NOTE: This function has the same wait semantics as dma-fence. 1980 */ 1981 long i915_request_wait_timeout(struct i915_request *rq, 1982 unsigned int flags, 1983 long timeout) 1984 { 1985 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1986 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1987 struct request_wait wait; 1988 1989 might_sleep(); 1990 GEM_BUG_ON(timeout < 0); 1991 1992 if (dma_fence_is_signaled(&rq->fence)) 1993 return timeout ?: 1; 1994 1995 if (!timeout) 1996 return -ETIME; 1997 1998 trace_i915_request_wait_begin(rq, flags); 1999 2000 /* 2001 * We must never wait on the GPU while holding a lock as we 2002 * may need to perform a GPU reset. So while we don't need to 2003 * serialise wait/reset with an explicit lock, we do want 2004 * lockdep to detect potential dependency cycles. 2005 */ 2006 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 2007 2008 /* 2009 * Optimistic spin before touching IRQs. 2010 * 2011 * We may use a rather large value here to offset the penalty of 2012 * switching away from the active task. Frequently, the client will 2013 * wait upon an old swapbuffer to throttle itself to remain within a 2014 * frame of the gpu. If the client is running in lockstep with the gpu, 2015 * then it should not be waiting long at all, and a sleep now will incur 2016 * extra scheduler latency in producing the next frame. To try to 2017 * avoid adding the cost of enabling/disabling the interrupt to the 2018 * short wait, we first spin to see if the request would have completed 2019 * in the time taken to setup the interrupt. 2020 * 2021 * We need upto 5us to enable the irq, and upto 20us to hide the 2022 * scheduler latency of a context switch, ignoring the secondary 2023 * impacts from a context switch such as cache eviction. 2024 * 2025 * The scheme used for low-latency IO is called "hybrid interrupt 2026 * polling". The suggestion there is to sleep until just before you 2027 * expect to be woken by the device interrupt and then poll for its 2028 * completion. That requires having a good predictor for the request 2029 * duration, which we currently lack. 2030 */ 2031 if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT && 2032 __i915_spin_request(rq, state)) 2033 goto out; 2034 2035 /* 2036 * This client is about to stall waiting for the GPU. In many cases 2037 * this is undesirable and limits the throughput of the system, as 2038 * many clients cannot continue processing user input/output whilst 2039 * blocked. RPS autotuning may take tens of milliseconds to respond 2040 * to the GPU load and thus incurs additional latency for the client. 2041 * We can circumvent that by promoting the GPU frequency to maximum 2042 * before we sleep. This makes the GPU throttle up much more quickly 2043 * (good for benchmarks and user experience, e.g. window animations), 2044 * but at a cost of spending more power processing the workload 2045 * (bad for battery). 2046 */ 2047 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 2048 intel_rps_boost(rq); 2049 2050 wait.tsk = current; 2051 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 2052 goto out; 2053 2054 /* 2055 * Flush the submission tasklet, but only if it may help this request. 2056 * 2057 * We sometimes experience some latency between the HW interrupts and 2058 * tasklet execution (mostly due to ksoftirqd latency, but it can also 2059 * be due to lazy CS events), so lets run the tasklet manually if there 2060 * is a chance it may submit this request. If the request is not ready 2061 * to run, as it is waiting for other fences to be signaled, flushing 2062 * the tasklet is busy work without any advantage for this client. 2063 * 2064 * If the HW is being lazy, this is the last chance before we go to 2065 * sleep to catch any pending events. We will check periodically in 2066 * the heartbeat to flush the submission tasklets as a last resort 2067 * for unhappy HW. 2068 */ 2069 if (i915_request_is_ready(rq)) 2070 __intel_engine_flush_submission(rq->engine, false); 2071 2072 for (;;) { 2073 set_current_state(state); 2074 2075 if (dma_fence_is_signaled(&rq->fence)) 2076 break; 2077 2078 if (signal_pending_state(state, current)) { 2079 timeout = -ERESTARTSYS; 2080 break; 2081 } 2082 2083 if (!timeout) { 2084 timeout = -ETIME; 2085 break; 2086 } 2087 2088 timeout = io_schedule_timeout(timeout); 2089 } 2090 __set_current_state(TASK_RUNNING); 2091 2092 if (READ_ONCE(wait.tsk)) 2093 dma_fence_remove_callback(&rq->fence, &wait.cb); 2094 GEM_BUG_ON(!list_empty(&wait.cb.node)); 2095 2096 out: 2097 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 2098 trace_i915_request_wait_end(rq); 2099 return timeout; 2100 } 2101 2102 /** 2103 * i915_request_wait - wait until execution of request has finished 2104 * @rq: the request to wait upon 2105 * @flags: how to wait 2106 * @timeout: how long to wait in jiffies 2107 * 2108 * i915_request_wait() waits for the request to be completed, for a 2109 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 2110 * unbounded wait). 2111 * 2112 * Returns the remaining time (in jiffies) if the request completed, which may 2113 * be zero or -ETIME if the request is unfinished after the timeout expires. 2114 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 2115 * pending before the request completes. 2116 * 2117 * NOTE: This function behaves differently from dma-fence wait semantics for 2118 * timeout = 0. It returns 0 on success, and -ETIME if not signaled. 2119 */ 2120 long i915_request_wait(struct i915_request *rq, 2121 unsigned int flags, 2122 long timeout) 2123 { 2124 long ret = i915_request_wait_timeout(rq, flags, timeout); 2125 2126 if (!ret) 2127 return -ETIME; 2128 2129 if (ret > 0 && !timeout) 2130 return 0; 2131 2132 return ret; 2133 } 2134 2135 static int print_sched_attr(const struct i915_sched_attr *attr, 2136 char *buf, int x, int len) 2137 { 2138 if (attr->priority == I915_PRIORITY_INVALID) 2139 return x; 2140 2141 x += snprintf(buf + x, len - x, 2142 " prio=%d", attr->priority); 2143 2144 return x; 2145 } 2146 2147 static char queue_status(const struct i915_request *rq) 2148 { 2149 if (i915_request_is_active(rq)) 2150 return 'E'; 2151 2152 if (i915_request_is_ready(rq)) 2153 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R'; 2154 2155 return 'U'; 2156 } 2157 2158 static const char *run_status(const struct i915_request *rq) 2159 { 2160 if (__i915_request_is_complete(rq)) 2161 return "!"; 2162 2163 if (__i915_request_has_started(rq)) 2164 return "*"; 2165 2166 if (!i915_sw_fence_signaled(&rq->semaphore)) 2167 return "&"; 2168 2169 return ""; 2170 } 2171 2172 static const char *fence_status(const struct i915_request *rq) 2173 { 2174 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 2175 return "+"; 2176 2177 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 2178 return "-"; 2179 2180 return ""; 2181 } 2182 2183 void i915_request_show(struct drm_printer *m, 2184 const struct i915_request *rq, 2185 const char *prefix, 2186 int indent) 2187 { 2188 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence); 2189 char buf[80] = ""; 2190 int x = 0; 2191 2192 /* 2193 * The prefix is used to show the queue status, for which we use 2194 * the following flags: 2195 * 2196 * U [Unready] 2197 * - initial status upon being submitted by the user 2198 * 2199 * - the request is not ready for execution as it is waiting 2200 * for external fences 2201 * 2202 * R [Ready] 2203 * - all fences the request was waiting on have been signaled, 2204 * and the request is now ready for execution and will be 2205 * in a backend queue 2206 * 2207 * - a ready request may still need to wait on semaphores 2208 * [internal fences] 2209 * 2210 * V [Ready/virtual] 2211 * - same as ready, but queued over multiple backends 2212 * 2213 * E [Executing] 2214 * - the request has been transferred from the backend queue and 2215 * submitted for execution on HW 2216 * 2217 * - a completed request may still be regarded as executing, its 2218 * status may not be updated until it is retired and removed 2219 * from the lists 2220 */ 2221 2222 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); 2223 2224 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n", 2225 prefix, indent, " ", 2226 queue_status(rq), 2227 rq->fence.context, rq->fence.seqno, 2228 run_status(rq), 2229 fence_status(rq), 2230 buf, 2231 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 2232 name); 2233 } 2234 2235 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq) 2236 { 2237 u32 ring = ENGINE_READ(engine, RING_START); 2238 2239 return ring == i915_ggtt_offset(rq->ring->vma); 2240 } 2241 2242 static bool match_ring(struct i915_request *rq) 2243 { 2244 struct intel_engine_cs *engine; 2245 bool found; 2246 int i; 2247 2248 if (!intel_engine_is_virtual(rq->engine)) 2249 return engine_match_ring(rq->engine, rq); 2250 2251 found = false; 2252 i = 0; 2253 while ((engine = intel_engine_get_sibling(rq->engine, i++))) { 2254 found = engine_match_ring(engine, rq); 2255 if (found) 2256 break; 2257 } 2258 2259 return found; 2260 } 2261 2262 enum i915_request_state i915_test_request_state(struct i915_request *rq) 2263 { 2264 if (i915_request_completed(rq)) 2265 return I915_REQUEST_COMPLETE; 2266 2267 if (!i915_request_started(rq)) 2268 return I915_REQUEST_PENDING; 2269 2270 if (match_ring(rq)) 2271 return I915_REQUEST_ACTIVE; 2272 2273 return I915_REQUEST_QUEUED; 2274 } 2275 2276 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2277 #include "selftests/mock_request.c" 2278 #include "selftests/i915_request.c" 2279 #endif 2280 2281 void i915_request_module_exit(void) 2282 { 2283 kmem_cache_destroy(slab_execute_cbs); 2284 kmem_cache_destroy(slab_requests); 2285 } 2286 2287 int __init i915_request_module_init(void) 2288 { 2289 slab_requests = 2290 kmem_cache_create("i915_request", 2291 sizeof(struct i915_request), 2292 __alignof__(struct i915_request), 2293 SLAB_HWCACHE_ALIGN | 2294 SLAB_RECLAIM_ACCOUNT | 2295 SLAB_TYPESAFE_BY_RCU, 2296 __i915_request_ctor); 2297 if (!slab_requests) 2298 return -ENOMEM; 2299 2300 slab_execute_cbs = KMEM_CACHE(execute_cb, 2301 SLAB_HWCACHE_ALIGN | 2302 SLAB_RECLAIM_ACCOUNT | 2303 SLAB_TYPESAFE_BY_RCU); 2304 if (!slab_execute_cbs) 2305 goto err_requests; 2306 2307 return 0; 2308 2309 err_requests: 2310 kmem_cache_destroy(slab_requests); 2311 return -ENOMEM; 2312 } 2313