xref: /openbmc/linux/drivers/gpu/drm/i915/i915_pmu.c (revision e8001973)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2017-2018 Intel Corporation
5  */
6 
7 #include <linux/pm_runtime.h>
8 
9 #include "gt/intel_engine.h"
10 #include "gt/intel_engine_pm.h"
11 #include "gt/intel_engine_regs.h"
12 #include "gt/intel_engine_user.h"
13 #include "gt/intel_gt.h"
14 #include "gt/intel_gt_pm.h"
15 #include "gt/intel_gt_regs.h"
16 #include "gt/intel_rc6.h"
17 #include "gt/intel_rps.h"
18 
19 #include "i915_drv.h"
20 #include "i915_pmu.h"
21 
22 /* Frequency for the sampling timer for events which need it. */
23 #define FREQUENCY 200
24 #define PERIOD max_t(u64, 10000, NSEC_PER_SEC / FREQUENCY)
25 
26 #define ENGINE_SAMPLE_MASK \
27 	(BIT(I915_SAMPLE_BUSY) | \
28 	 BIT(I915_SAMPLE_WAIT) | \
29 	 BIT(I915_SAMPLE_SEMA))
30 
31 static cpumask_t i915_pmu_cpumask;
32 static unsigned int i915_pmu_target_cpu = -1;
33 
34 static u8 engine_config_sample(u64 config)
35 {
36 	return config & I915_PMU_SAMPLE_MASK;
37 }
38 
39 static u8 engine_event_sample(struct perf_event *event)
40 {
41 	return engine_config_sample(event->attr.config);
42 }
43 
44 static u8 engine_event_class(struct perf_event *event)
45 {
46 	return (event->attr.config >> I915_PMU_CLASS_SHIFT) & 0xff;
47 }
48 
49 static u8 engine_event_instance(struct perf_event *event)
50 {
51 	return (event->attr.config >> I915_PMU_SAMPLE_BITS) & 0xff;
52 }
53 
54 static bool is_engine_config(const u64 config)
55 {
56 	return config < __I915_PMU_OTHER(0);
57 }
58 
59 static unsigned int config_gt_id(const u64 config)
60 {
61 	return config >> __I915_PMU_GT_SHIFT;
62 }
63 
64 static u64 config_counter(const u64 config)
65 {
66 	return config & ~(~0ULL << __I915_PMU_GT_SHIFT);
67 }
68 
69 static unsigned int other_bit(const u64 config)
70 {
71 	unsigned int val;
72 
73 	switch (config_counter(config)) {
74 	case I915_PMU_ACTUAL_FREQUENCY:
75 		val =  __I915_PMU_ACTUAL_FREQUENCY_ENABLED;
76 		break;
77 	case I915_PMU_REQUESTED_FREQUENCY:
78 		val = __I915_PMU_REQUESTED_FREQUENCY_ENABLED;
79 		break;
80 	case I915_PMU_RC6_RESIDENCY:
81 		val = __I915_PMU_RC6_RESIDENCY_ENABLED;
82 		break;
83 	default:
84 		/*
85 		 * Events that do not require sampling, or tracking state
86 		 * transitions between enabled and disabled can be ignored.
87 		 */
88 		return -1;
89 	}
90 
91 	return I915_ENGINE_SAMPLE_COUNT +
92 	       config_gt_id(config) * __I915_PMU_TRACKED_EVENT_COUNT +
93 	       val;
94 }
95 
96 static unsigned int config_bit(const u64 config)
97 {
98 	if (is_engine_config(config))
99 		return engine_config_sample(config);
100 	else
101 		return other_bit(config);
102 }
103 
104 static u32 config_mask(const u64 config)
105 {
106 	unsigned int bit = config_bit(config);
107 
108 	if (__builtin_constant_p(config))
109 		BUILD_BUG_ON(bit >
110 			     BITS_PER_TYPE(typeof_member(struct i915_pmu,
111 							 enable)) - 1);
112 	else
113 		WARN_ON_ONCE(bit >
114 			     BITS_PER_TYPE(typeof_member(struct i915_pmu,
115 							 enable)) - 1);
116 
117 	return BIT(config_bit(config));
118 }
119 
120 static bool is_engine_event(struct perf_event *event)
121 {
122 	return is_engine_config(event->attr.config);
123 }
124 
125 static unsigned int event_bit(struct perf_event *event)
126 {
127 	return config_bit(event->attr.config);
128 }
129 
130 static u32 frequency_enabled_mask(void)
131 {
132 	unsigned int i;
133 	u32 mask = 0;
134 
135 	for (i = 0; i < I915_PMU_MAX_GTS; i++)
136 		mask |= config_mask(__I915_PMU_ACTUAL_FREQUENCY(i)) |
137 			config_mask(__I915_PMU_REQUESTED_FREQUENCY(i));
138 
139 	return mask;
140 }
141 
142 static bool pmu_needs_timer(struct i915_pmu *pmu, bool gpu_active)
143 {
144 	struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu);
145 	u32 enable;
146 
147 	/*
148 	 * Only some counters need the sampling timer.
149 	 *
150 	 * We start with a bitmask of all currently enabled events.
151 	 */
152 	enable = pmu->enable;
153 
154 	/*
155 	 * Mask out all the ones which do not need the timer, or in
156 	 * other words keep all the ones that could need the timer.
157 	 */
158 	enable &= frequency_enabled_mask() | ENGINE_SAMPLE_MASK;
159 
160 	/*
161 	 * When the GPU is idle per-engine counters do not need to be
162 	 * running so clear those bits out.
163 	 */
164 	if (!gpu_active)
165 		enable &= ~ENGINE_SAMPLE_MASK;
166 	/*
167 	 * Also there is software busyness tracking available we do not
168 	 * need the timer for I915_SAMPLE_BUSY counter.
169 	 */
170 	else if (i915->caps.scheduler & I915_SCHEDULER_CAP_ENGINE_BUSY_STATS)
171 		enable &= ~BIT(I915_SAMPLE_BUSY);
172 
173 	/*
174 	 * If some bits remain it means we need the sampling timer running.
175 	 */
176 	return enable;
177 }
178 
179 static u64 __get_rc6(struct intel_gt *gt)
180 {
181 	struct drm_i915_private *i915 = gt->i915;
182 	u64 val;
183 
184 	val = intel_rc6_residency_ns(&gt->rc6, INTEL_RC6_RES_RC6);
185 
186 	if (HAS_RC6p(i915))
187 		val += intel_rc6_residency_ns(&gt->rc6, INTEL_RC6_RES_RC6p);
188 
189 	if (HAS_RC6pp(i915))
190 		val += intel_rc6_residency_ns(&gt->rc6, INTEL_RC6_RES_RC6pp);
191 
192 	return val;
193 }
194 
195 static inline s64 ktime_since_raw(const ktime_t kt)
196 {
197 	return ktime_to_ns(ktime_sub(ktime_get_raw(), kt));
198 }
199 
200 static unsigned int
201 __sample_idx(struct i915_pmu *pmu, unsigned int gt_id, int sample)
202 {
203 	unsigned int idx = gt_id * __I915_NUM_PMU_SAMPLERS + sample;
204 
205 	GEM_BUG_ON(idx >= ARRAY_SIZE(pmu->sample));
206 
207 	return idx;
208 }
209 
210 static u64 read_sample(struct i915_pmu *pmu, unsigned int gt_id, int sample)
211 {
212 	return pmu->sample[__sample_idx(pmu, gt_id, sample)].cur;
213 }
214 
215 static void
216 store_sample(struct i915_pmu *pmu, unsigned int gt_id, int sample, u64 val)
217 {
218 	pmu->sample[__sample_idx(pmu, gt_id, sample)].cur = val;
219 }
220 
221 static void
222 add_sample_mult(struct i915_pmu *pmu, unsigned int gt_id, int sample, u32 val, u32 mul)
223 {
224 	pmu->sample[__sample_idx(pmu, gt_id, sample)].cur += mul_u32_u32(val, mul);
225 }
226 
227 static u64 get_rc6(struct intel_gt *gt)
228 {
229 	struct drm_i915_private *i915 = gt->i915;
230 	const unsigned int gt_id = gt->info.id;
231 	struct i915_pmu *pmu = &i915->pmu;
232 	unsigned long flags;
233 	bool awake = false;
234 	u64 val;
235 
236 	if (intel_gt_pm_get_if_awake(gt)) {
237 		val = __get_rc6(gt);
238 		intel_gt_pm_put_async(gt);
239 		awake = true;
240 	}
241 
242 	spin_lock_irqsave(&pmu->lock, flags);
243 
244 	if (awake) {
245 		store_sample(pmu, gt_id, __I915_SAMPLE_RC6, val);
246 	} else {
247 		/*
248 		 * We think we are runtime suspended.
249 		 *
250 		 * Report the delta from when the device was suspended to now,
251 		 * on top of the last known real value, as the approximated RC6
252 		 * counter value.
253 		 */
254 		val = ktime_since_raw(pmu->sleep_last[gt_id]);
255 		val += read_sample(pmu, gt_id, __I915_SAMPLE_RC6);
256 	}
257 
258 	if (val < read_sample(pmu, gt_id, __I915_SAMPLE_RC6_LAST_REPORTED))
259 		val = read_sample(pmu, gt_id, __I915_SAMPLE_RC6_LAST_REPORTED);
260 	else
261 		store_sample(pmu, gt_id, __I915_SAMPLE_RC6_LAST_REPORTED, val);
262 
263 	spin_unlock_irqrestore(&pmu->lock, flags);
264 
265 	return val;
266 }
267 
268 static void init_rc6(struct i915_pmu *pmu)
269 {
270 	struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu);
271 	struct intel_gt *gt;
272 	unsigned int i;
273 
274 	for_each_gt(gt, i915, i) {
275 		intel_wakeref_t wakeref;
276 
277 		with_intel_runtime_pm(gt->uncore->rpm, wakeref) {
278 			u64 val = __get_rc6(gt);
279 
280 			store_sample(pmu, i, __I915_SAMPLE_RC6, val);
281 			store_sample(pmu, i, __I915_SAMPLE_RC6_LAST_REPORTED,
282 				     val);
283 			pmu->sleep_last[i] = ktime_get_raw();
284 		}
285 	}
286 }
287 
288 static void park_rc6(struct intel_gt *gt)
289 {
290 	struct i915_pmu *pmu = &gt->i915->pmu;
291 
292 	store_sample(pmu, gt->info.id, __I915_SAMPLE_RC6, __get_rc6(gt));
293 	pmu->sleep_last[gt->info.id] = ktime_get_raw();
294 }
295 
296 static void __i915_pmu_maybe_start_timer(struct i915_pmu *pmu)
297 {
298 	if (!pmu->timer_enabled && pmu_needs_timer(pmu, true)) {
299 		pmu->timer_enabled = true;
300 		pmu->timer_last = ktime_get();
301 		hrtimer_start_range_ns(&pmu->timer,
302 				       ns_to_ktime(PERIOD), 0,
303 				       HRTIMER_MODE_REL_PINNED);
304 	}
305 }
306 
307 void i915_pmu_gt_parked(struct intel_gt *gt)
308 {
309 	struct i915_pmu *pmu = &gt->i915->pmu;
310 
311 	if (!pmu->base.event_init)
312 		return;
313 
314 	spin_lock_irq(&pmu->lock);
315 
316 	park_rc6(gt);
317 
318 	/*
319 	 * Signal sampling timer to stop if only engine events are enabled and
320 	 * GPU went idle.
321 	 */
322 	pmu->unparked &= ~BIT(gt->info.id);
323 	if (pmu->unparked == 0)
324 		pmu->timer_enabled = pmu_needs_timer(pmu, false);
325 
326 	spin_unlock_irq(&pmu->lock);
327 }
328 
329 void i915_pmu_gt_unparked(struct intel_gt *gt)
330 {
331 	struct i915_pmu *pmu = &gt->i915->pmu;
332 
333 	if (!pmu->base.event_init)
334 		return;
335 
336 	spin_lock_irq(&pmu->lock);
337 
338 	/*
339 	 * Re-enable sampling timer when GPU goes active.
340 	 */
341 	if (pmu->unparked == 0)
342 		__i915_pmu_maybe_start_timer(pmu);
343 
344 	pmu->unparked |= BIT(gt->info.id);
345 
346 	spin_unlock_irq(&pmu->lock);
347 }
348 
349 static void
350 add_sample(struct i915_pmu_sample *sample, u32 val)
351 {
352 	sample->cur += val;
353 }
354 
355 static bool exclusive_mmio_access(const struct drm_i915_private *i915)
356 {
357 	/*
358 	 * We have to avoid concurrent mmio cache line access on gen7 or
359 	 * risk a machine hang. For a fun history lesson dig out the old
360 	 * userspace intel_gpu_top and run it on Ivybridge or Haswell!
361 	 */
362 	return GRAPHICS_VER(i915) == 7;
363 }
364 
365 static void engine_sample(struct intel_engine_cs *engine, unsigned int period_ns)
366 {
367 	struct intel_engine_pmu *pmu = &engine->pmu;
368 	bool busy;
369 	u32 val;
370 
371 	val = ENGINE_READ_FW(engine, RING_CTL);
372 	if (val == 0) /* powerwell off => engine idle */
373 		return;
374 
375 	if (val & RING_WAIT)
376 		add_sample(&pmu->sample[I915_SAMPLE_WAIT], period_ns);
377 	if (val & RING_WAIT_SEMAPHORE)
378 		add_sample(&pmu->sample[I915_SAMPLE_SEMA], period_ns);
379 
380 	/* No need to sample when busy stats are supported. */
381 	if (intel_engine_supports_stats(engine))
382 		return;
383 
384 	/*
385 	 * While waiting on a semaphore or event, MI_MODE reports the
386 	 * ring as idle. However, previously using the seqno, and with
387 	 * execlists sampling, we account for the ring waiting as the
388 	 * engine being busy. Therefore, we record the sample as being
389 	 * busy if either waiting or !idle.
390 	 */
391 	busy = val & (RING_WAIT_SEMAPHORE | RING_WAIT);
392 	if (!busy) {
393 		val = ENGINE_READ_FW(engine, RING_MI_MODE);
394 		busy = !(val & MODE_IDLE);
395 	}
396 	if (busy)
397 		add_sample(&pmu->sample[I915_SAMPLE_BUSY], period_ns);
398 }
399 
400 static void
401 engines_sample(struct intel_gt *gt, unsigned int period_ns)
402 {
403 	struct drm_i915_private *i915 = gt->i915;
404 	struct intel_engine_cs *engine;
405 	enum intel_engine_id id;
406 	unsigned long flags;
407 
408 	if ((i915->pmu.enable & ENGINE_SAMPLE_MASK) == 0)
409 		return;
410 
411 	if (!intel_gt_pm_is_awake(gt))
412 		return;
413 
414 	for_each_engine(engine, gt, id) {
415 		if (!engine->pmu.enable)
416 			continue;
417 
418 		if (!intel_engine_pm_get_if_awake(engine))
419 			continue;
420 
421 		if (exclusive_mmio_access(i915)) {
422 			spin_lock_irqsave(&engine->uncore->lock, flags);
423 			engine_sample(engine, period_ns);
424 			spin_unlock_irqrestore(&engine->uncore->lock, flags);
425 		} else {
426 			engine_sample(engine, period_ns);
427 		}
428 
429 		intel_engine_pm_put_async(engine);
430 	}
431 }
432 
433 static bool
434 frequency_sampling_enabled(struct i915_pmu *pmu, unsigned int gt)
435 {
436 	return pmu->enable &
437 	       (config_mask(__I915_PMU_ACTUAL_FREQUENCY(gt)) |
438 		config_mask(__I915_PMU_REQUESTED_FREQUENCY(gt)));
439 }
440 
441 static void
442 frequency_sample(struct intel_gt *gt, unsigned int period_ns)
443 {
444 	struct drm_i915_private *i915 = gt->i915;
445 	const unsigned int gt_id = gt->info.id;
446 	struct i915_pmu *pmu = &i915->pmu;
447 	struct intel_rps *rps = &gt->rps;
448 
449 	if (!frequency_sampling_enabled(pmu, gt_id))
450 		return;
451 
452 	/* Report 0/0 (actual/requested) frequency while parked. */
453 	if (!intel_gt_pm_get_if_awake(gt))
454 		return;
455 
456 	if (pmu->enable & config_mask(__I915_PMU_ACTUAL_FREQUENCY(gt_id))) {
457 		u32 val;
458 
459 		/*
460 		 * We take a quick peek here without using forcewake
461 		 * so that we don't perturb the system under observation
462 		 * (forcewake => !rc6 => increased power use). We expect
463 		 * that if the read fails because it is outside of the
464 		 * mmio power well, then it will return 0 -- in which
465 		 * case we assume the system is running at the intended
466 		 * frequency. Fortunately, the read should rarely fail!
467 		 */
468 		val = intel_rps_read_actual_frequency_fw(rps);
469 		if (!val)
470 			val = intel_gpu_freq(rps, rps->cur_freq);
471 
472 		add_sample_mult(pmu, gt_id, __I915_SAMPLE_FREQ_ACT,
473 				val, period_ns / 1000);
474 	}
475 
476 	if (pmu->enable & config_mask(__I915_PMU_REQUESTED_FREQUENCY(gt_id))) {
477 		add_sample_mult(pmu, gt_id, __I915_SAMPLE_FREQ_REQ,
478 				intel_rps_get_requested_frequency(rps),
479 				period_ns / 1000);
480 	}
481 
482 	intel_gt_pm_put_async(gt);
483 }
484 
485 static enum hrtimer_restart i915_sample(struct hrtimer *hrtimer)
486 {
487 	struct drm_i915_private *i915 =
488 		container_of(hrtimer, struct drm_i915_private, pmu.timer);
489 	struct i915_pmu *pmu = &i915->pmu;
490 	unsigned int period_ns;
491 	struct intel_gt *gt;
492 	unsigned int i;
493 	ktime_t now;
494 
495 	if (!READ_ONCE(pmu->timer_enabled))
496 		return HRTIMER_NORESTART;
497 
498 	now = ktime_get();
499 	period_ns = ktime_to_ns(ktime_sub(now, pmu->timer_last));
500 	pmu->timer_last = now;
501 
502 	/*
503 	 * Strictly speaking the passed in period may not be 100% accurate for
504 	 * all internal calculation, since some amount of time can be spent on
505 	 * grabbing the forcewake. However the potential error from timer call-
506 	 * back delay greatly dominates this so we keep it simple.
507 	 */
508 
509 	for_each_gt(gt, i915, i) {
510 		if (!(pmu->unparked & BIT(i)))
511 			continue;
512 
513 		engines_sample(gt, period_ns);
514 		frequency_sample(gt, period_ns);
515 	}
516 
517 	hrtimer_forward(hrtimer, now, ns_to_ktime(PERIOD));
518 
519 	return HRTIMER_RESTART;
520 }
521 
522 static void i915_pmu_event_destroy(struct perf_event *event)
523 {
524 	struct drm_i915_private *i915 =
525 		container_of(event->pmu, typeof(*i915), pmu.base);
526 
527 	drm_WARN_ON(&i915->drm, event->parent);
528 
529 	drm_dev_put(&i915->drm);
530 }
531 
532 static int
533 engine_event_status(struct intel_engine_cs *engine,
534 		    enum drm_i915_pmu_engine_sample sample)
535 {
536 	switch (sample) {
537 	case I915_SAMPLE_BUSY:
538 	case I915_SAMPLE_WAIT:
539 		break;
540 	case I915_SAMPLE_SEMA:
541 		if (GRAPHICS_VER(engine->i915) < 6)
542 			return -ENODEV;
543 		break;
544 	default:
545 		return -ENOENT;
546 	}
547 
548 	return 0;
549 }
550 
551 static int
552 config_status(struct drm_i915_private *i915, u64 config)
553 {
554 	struct intel_gt *gt = to_gt(i915);
555 
556 	unsigned int gt_id = config_gt_id(config);
557 	unsigned int max_gt_id = HAS_EXTRA_GT_LIST(i915) ? 1 : 0;
558 
559 	if (gt_id > max_gt_id)
560 		return -ENOENT;
561 
562 	switch (config_counter(config)) {
563 	case I915_PMU_ACTUAL_FREQUENCY:
564 		if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
565 			/* Requires a mutex for sampling! */
566 			return -ENODEV;
567 		fallthrough;
568 	case I915_PMU_REQUESTED_FREQUENCY:
569 		if (GRAPHICS_VER(i915) < 6)
570 			return -ENODEV;
571 		break;
572 	case I915_PMU_INTERRUPTS:
573 		if (gt_id)
574 			return -ENOENT;
575 		break;
576 	case I915_PMU_RC6_RESIDENCY:
577 		if (!gt->rc6.supported)
578 			return -ENODEV;
579 		break;
580 	case I915_PMU_SOFTWARE_GT_AWAKE_TIME:
581 		break;
582 	default:
583 		return -ENOENT;
584 	}
585 
586 	return 0;
587 }
588 
589 static int engine_event_init(struct perf_event *event)
590 {
591 	struct drm_i915_private *i915 =
592 		container_of(event->pmu, typeof(*i915), pmu.base);
593 	struct intel_engine_cs *engine;
594 
595 	engine = intel_engine_lookup_user(i915, engine_event_class(event),
596 					  engine_event_instance(event));
597 	if (!engine)
598 		return -ENODEV;
599 
600 	return engine_event_status(engine, engine_event_sample(event));
601 }
602 
603 static int i915_pmu_event_init(struct perf_event *event)
604 {
605 	struct drm_i915_private *i915 =
606 		container_of(event->pmu, typeof(*i915), pmu.base);
607 	struct i915_pmu *pmu = &i915->pmu;
608 	int ret;
609 
610 	if (pmu->closed)
611 		return -ENODEV;
612 
613 	if (event->attr.type != event->pmu->type)
614 		return -ENOENT;
615 
616 	/* unsupported modes and filters */
617 	if (event->attr.sample_period) /* no sampling */
618 		return -EINVAL;
619 
620 	if (has_branch_stack(event))
621 		return -EOPNOTSUPP;
622 
623 	if (event->cpu < 0)
624 		return -EINVAL;
625 
626 	/* only allow running on one cpu at a time */
627 	if (!cpumask_test_cpu(event->cpu, &i915_pmu_cpumask))
628 		return -EINVAL;
629 
630 	if (is_engine_event(event))
631 		ret = engine_event_init(event);
632 	else
633 		ret = config_status(i915, event->attr.config);
634 	if (ret)
635 		return ret;
636 
637 	if (!event->parent) {
638 		drm_dev_get(&i915->drm);
639 		event->destroy = i915_pmu_event_destroy;
640 	}
641 
642 	return 0;
643 }
644 
645 static u64 __i915_pmu_event_read(struct perf_event *event)
646 {
647 	struct drm_i915_private *i915 =
648 		container_of(event->pmu, typeof(*i915), pmu.base);
649 	struct i915_pmu *pmu = &i915->pmu;
650 	u64 val = 0;
651 
652 	if (is_engine_event(event)) {
653 		u8 sample = engine_event_sample(event);
654 		struct intel_engine_cs *engine;
655 
656 		engine = intel_engine_lookup_user(i915,
657 						  engine_event_class(event),
658 						  engine_event_instance(event));
659 
660 		if (drm_WARN_ON_ONCE(&i915->drm, !engine)) {
661 			/* Do nothing */
662 		} else if (sample == I915_SAMPLE_BUSY &&
663 			   intel_engine_supports_stats(engine)) {
664 			ktime_t unused;
665 
666 			val = ktime_to_ns(intel_engine_get_busy_time(engine,
667 								     &unused));
668 		} else {
669 			val = engine->pmu.sample[sample].cur;
670 		}
671 	} else {
672 		const unsigned int gt_id = config_gt_id(event->attr.config);
673 		const u64 config = config_counter(event->attr.config);
674 
675 		switch (config) {
676 		case I915_PMU_ACTUAL_FREQUENCY:
677 			val =
678 			   div_u64(read_sample(pmu, gt_id,
679 					       __I915_SAMPLE_FREQ_ACT),
680 				   USEC_PER_SEC /* to MHz */);
681 			break;
682 		case I915_PMU_REQUESTED_FREQUENCY:
683 			val =
684 			   div_u64(read_sample(pmu, gt_id,
685 					       __I915_SAMPLE_FREQ_REQ),
686 				   USEC_PER_SEC /* to MHz */);
687 			break;
688 		case I915_PMU_INTERRUPTS:
689 			val = READ_ONCE(pmu->irq_count);
690 			break;
691 		case I915_PMU_RC6_RESIDENCY:
692 			val = get_rc6(i915->gt[gt_id]);
693 			break;
694 		case I915_PMU_SOFTWARE_GT_AWAKE_TIME:
695 			val = ktime_to_ns(intel_gt_get_awake_time(to_gt(i915)));
696 			break;
697 		}
698 	}
699 
700 	return val;
701 }
702 
703 static void i915_pmu_event_read(struct perf_event *event)
704 {
705 	struct drm_i915_private *i915 =
706 		container_of(event->pmu, typeof(*i915), pmu.base);
707 	struct hw_perf_event *hwc = &event->hw;
708 	struct i915_pmu *pmu = &i915->pmu;
709 	u64 prev, new;
710 
711 	if (pmu->closed) {
712 		event->hw.state = PERF_HES_STOPPED;
713 		return;
714 	}
715 again:
716 	prev = local64_read(&hwc->prev_count);
717 	new = __i915_pmu_event_read(event);
718 
719 	if (local64_cmpxchg(&hwc->prev_count, prev, new) != prev)
720 		goto again;
721 
722 	local64_add(new - prev, &event->count);
723 }
724 
725 static void i915_pmu_enable(struct perf_event *event)
726 {
727 	struct drm_i915_private *i915 =
728 		container_of(event->pmu, typeof(*i915), pmu.base);
729 	const unsigned int bit = event_bit(event);
730 	struct i915_pmu *pmu = &i915->pmu;
731 	unsigned long flags;
732 
733 	if (bit == -1)
734 		goto update;
735 
736 	spin_lock_irqsave(&pmu->lock, flags);
737 
738 	/*
739 	 * Update the bitmask of enabled events and increment
740 	 * the event reference counter.
741 	 */
742 	BUILD_BUG_ON(ARRAY_SIZE(pmu->enable_count) != I915_PMU_MASK_BITS);
743 	GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count));
744 	GEM_BUG_ON(pmu->enable_count[bit] == ~0);
745 
746 	pmu->enable |= BIT(bit);
747 	pmu->enable_count[bit]++;
748 
749 	/*
750 	 * Start the sampling timer if needed and not already enabled.
751 	 */
752 	__i915_pmu_maybe_start_timer(pmu);
753 
754 	/*
755 	 * For per-engine events the bitmask and reference counting
756 	 * is stored per engine.
757 	 */
758 	if (is_engine_event(event)) {
759 		u8 sample = engine_event_sample(event);
760 		struct intel_engine_cs *engine;
761 
762 		engine = intel_engine_lookup_user(i915,
763 						  engine_event_class(event),
764 						  engine_event_instance(event));
765 
766 		BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.enable_count) !=
767 			     I915_ENGINE_SAMPLE_COUNT);
768 		BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.sample) !=
769 			     I915_ENGINE_SAMPLE_COUNT);
770 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count));
771 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample));
772 		GEM_BUG_ON(engine->pmu.enable_count[sample] == ~0);
773 
774 		engine->pmu.enable |= BIT(sample);
775 		engine->pmu.enable_count[sample]++;
776 	}
777 
778 	spin_unlock_irqrestore(&pmu->lock, flags);
779 
780 update:
781 	/*
782 	 * Store the current counter value so we can report the correct delta
783 	 * for all listeners. Even when the event was already enabled and has
784 	 * an existing non-zero value.
785 	 */
786 	local64_set(&event->hw.prev_count, __i915_pmu_event_read(event));
787 }
788 
789 static void i915_pmu_disable(struct perf_event *event)
790 {
791 	struct drm_i915_private *i915 =
792 		container_of(event->pmu, typeof(*i915), pmu.base);
793 	const unsigned int bit = event_bit(event);
794 	struct i915_pmu *pmu = &i915->pmu;
795 	unsigned long flags;
796 
797 	if (bit == -1)
798 		return;
799 
800 	spin_lock_irqsave(&pmu->lock, flags);
801 
802 	if (is_engine_event(event)) {
803 		u8 sample = engine_event_sample(event);
804 		struct intel_engine_cs *engine;
805 
806 		engine = intel_engine_lookup_user(i915,
807 						  engine_event_class(event),
808 						  engine_event_instance(event));
809 
810 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count));
811 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample));
812 		GEM_BUG_ON(engine->pmu.enable_count[sample] == 0);
813 
814 		/*
815 		 * Decrement the reference count and clear the enabled
816 		 * bitmask when the last listener on an event goes away.
817 		 */
818 		if (--engine->pmu.enable_count[sample] == 0)
819 			engine->pmu.enable &= ~BIT(sample);
820 	}
821 
822 	GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count));
823 	GEM_BUG_ON(pmu->enable_count[bit] == 0);
824 	/*
825 	 * Decrement the reference count and clear the enabled
826 	 * bitmask when the last listener on an event goes away.
827 	 */
828 	if (--pmu->enable_count[bit] == 0) {
829 		pmu->enable &= ~BIT(bit);
830 		pmu->timer_enabled &= pmu_needs_timer(pmu, true);
831 	}
832 
833 	spin_unlock_irqrestore(&pmu->lock, flags);
834 }
835 
836 static void i915_pmu_event_start(struct perf_event *event, int flags)
837 {
838 	struct drm_i915_private *i915 =
839 		container_of(event->pmu, typeof(*i915), pmu.base);
840 	struct i915_pmu *pmu = &i915->pmu;
841 
842 	if (pmu->closed)
843 		return;
844 
845 	i915_pmu_enable(event);
846 	event->hw.state = 0;
847 }
848 
849 static void i915_pmu_event_stop(struct perf_event *event, int flags)
850 {
851 	if (flags & PERF_EF_UPDATE)
852 		i915_pmu_event_read(event);
853 	i915_pmu_disable(event);
854 	event->hw.state = PERF_HES_STOPPED;
855 }
856 
857 static int i915_pmu_event_add(struct perf_event *event, int flags)
858 {
859 	struct drm_i915_private *i915 =
860 		container_of(event->pmu, typeof(*i915), pmu.base);
861 	struct i915_pmu *pmu = &i915->pmu;
862 
863 	if (pmu->closed)
864 		return -ENODEV;
865 
866 	if (flags & PERF_EF_START)
867 		i915_pmu_event_start(event, flags);
868 
869 	return 0;
870 }
871 
872 static void i915_pmu_event_del(struct perf_event *event, int flags)
873 {
874 	i915_pmu_event_stop(event, PERF_EF_UPDATE);
875 }
876 
877 static int i915_pmu_event_event_idx(struct perf_event *event)
878 {
879 	return 0;
880 }
881 
882 struct i915_str_attribute {
883 	struct device_attribute attr;
884 	const char *str;
885 };
886 
887 static ssize_t i915_pmu_format_show(struct device *dev,
888 				    struct device_attribute *attr, char *buf)
889 {
890 	struct i915_str_attribute *eattr;
891 
892 	eattr = container_of(attr, struct i915_str_attribute, attr);
893 	return sprintf(buf, "%s\n", eattr->str);
894 }
895 
896 #define I915_PMU_FORMAT_ATTR(_name, _config) \
897 	(&((struct i915_str_attribute[]) { \
898 		{ .attr = __ATTR(_name, 0444, i915_pmu_format_show, NULL), \
899 		  .str = _config, } \
900 	})[0].attr.attr)
901 
902 static struct attribute *i915_pmu_format_attrs[] = {
903 	I915_PMU_FORMAT_ATTR(i915_eventid, "config:0-20"),
904 	NULL,
905 };
906 
907 static const struct attribute_group i915_pmu_format_attr_group = {
908 	.name = "format",
909 	.attrs = i915_pmu_format_attrs,
910 };
911 
912 struct i915_ext_attribute {
913 	struct device_attribute attr;
914 	unsigned long val;
915 };
916 
917 static ssize_t i915_pmu_event_show(struct device *dev,
918 				   struct device_attribute *attr, char *buf)
919 {
920 	struct i915_ext_attribute *eattr;
921 
922 	eattr = container_of(attr, struct i915_ext_attribute, attr);
923 	return sprintf(buf, "config=0x%lx\n", eattr->val);
924 }
925 
926 static ssize_t cpumask_show(struct device *dev,
927 			    struct device_attribute *attr, char *buf)
928 {
929 	return cpumap_print_to_pagebuf(true, buf, &i915_pmu_cpumask);
930 }
931 
932 static DEVICE_ATTR_RO(cpumask);
933 
934 static struct attribute *i915_cpumask_attrs[] = {
935 	&dev_attr_cpumask.attr,
936 	NULL,
937 };
938 
939 static const struct attribute_group i915_pmu_cpumask_attr_group = {
940 	.attrs = i915_cpumask_attrs,
941 };
942 
943 #define __event(__counter, __name, __unit) \
944 { \
945 	.counter = (__counter), \
946 	.name = (__name), \
947 	.unit = (__unit), \
948 	.global = false, \
949 }
950 
951 #define __global_event(__counter, __name, __unit) \
952 { \
953 	.counter = (__counter), \
954 	.name = (__name), \
955 	.unit = (__unit), \
956 	.global = true, \
957 }
958 
959 #define __engine_event(__sample, __name) \
960 { \
961 	.sample = (__sample), \
962 	.name = (__name), \
963 }
964 
965 static struct i915_ext_attribute *
966 add_i915_attr(struct i915_ext_attribute *attr, const char *name, u64 config)
967 {
968 	sysfs_attr_init(&attr->attr.attr);
969 	attr->attr.attr.name = name;
970 	attr->attr.attr.mode = 0444;
971 	attr->attr.show = i915_pmu_event_show;
972 	attr->val = config;
973 
974 	return ++attr;
975 }
976 
977 static struct perf_pmu_events_attr *
978 add_pmu_attr(struct perf_pmu_events_attr *attr, const char *name,
979 	     const char *str)
980 {
981 	sysfs_attr_init(&attr->attr.attr);
982 	attr->attr.attr.name = name;
983 	attr->attr.attr.mode = 0444;
984 	attr->attr.show = perf_event_sysfs_show;
985 	attr->event_str = str;
986 
987 	return ++attr;
988 }
989 
990 static struct attribute **
991 create_event_attributes(struct i915_pmu *pmu)
992 {
993 	struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu);
994 	static const struct {
995 		unsigned int counter;
996 		const char *name;
997 		const char *unit;
998 		bool global;
999 	} events[] = {
1000 		__event(0, "actual-frequency", "M"),
1001 		__event(1, "requested-frequency", "M"),
1002 		__global_event(2, "interrupts", NULL),
1003 		__event(3, "rc6-residency", "ns"),
1004 		__event(4, "software-gt-awake-time", "ns"),
1005 	};
1006 	static const struct {
1007 		enum drm_i915_pmu_engine_sample sample;
1008 		char *name;
1009 	} engine_events[] = {
1010 		__engine_event(I915_SAMPLE_BUSY, "busy"),
1011 		__engine_event(I915_SAMPLE_SEMA, "sema"),
1012 		__engine_event(I915_SAMPLE_WAIT, "wait"),
1013 	};
1014 	unsigned int count = 0;
1015 	struct perf_pmu_events_attr *pmu_attr = NULL, *pmu_iter;
1016 	struct i915_ext_attribute *i915_attr = NULL, *i915_iter;
1017 	struct attribute **attr = NULL, **attr_iter;
1018 	struct intel_engine_cs *engine;
1019 	struct intel_gt *gt;
1020 	unsigned int i, j;
1021 
1022 	/* Count how many counters we will be exposing. */
1023 	for_each_gt(gt, i915, j) {
1024 		for (i = 0; i < ARRAY_SIZE(events); i++) {
1025 			u64 config = ___I915_PMU_OTHER(j, events[i].counter);
1026 
1027 			if (!config_status(i915, config))
1028 				count++;
1029 		}
1030 	}
1031 
1032 	for_each_uabi_engine(engine, i915) {
1033 		for (i = 0; i < ARRAY_SIZE(engine_events); i++) {
1034 			if (!engine_event_status(engine,
1035 						 engine_events[i].sample))
1036 				count++;
1037 		}
1038 	}
1039 
1040 	/* Allocate attribute objects and table. */
1041 	i915_attr = kcalloc(count, sizeof(*i915_attr), GFP_KERNEL);
1042 	if (!i915_attr)
1043 		goto err_alloc;
1044 
1045 	pmu_attr = kcalloc(count, sizeof(*pmu_attr), GFP_KERNEL);
1046 	if (!pmu_attr)
1047 		goto err_alloc;
1048 
1049 	/* Max one pointer of each attribute type plus a termination entry. */
1050 	attr = kcalloc(count * 2 + 1, sizeof(*attr), GFP_KERNEL);
1051 	if (!attr)
1052 		goto err_alloc;
1053 
1054 	i915_iter = i915_attr;
1055 	pmu_iter = pmu_attr;
1056 	attr_iter = attr;
1057 
1058 	/* Initialize supported non-engine counters. */
1059 	for_each_gt(gt, i915, j) {
1060 		for (i = 0; i < ARRAY_SIZE(events); i++) {
1061 			u64 config = ___I915_PMU_OTHER(j, events[i].counter);
1062 			char *str;
1063 
1064 			if (config_status(i915, config))
1065 				continue;
1066 
1067 			if (events[i].global || !HAS_EXTRA_GT_LIST(i915))
1068 				str = kstrdup(events[i].name, GFP_KERNEL);
1069 			else
1070 				str = kasprintf(GFP_KERNEL, "%s-gt%u",
1071 						events[i].name, j);
1072 			if (!str)
1073 				goto err;
1074 
1075 			*attr_iter++ = &i915_iter->attr.attr;
1076 			i915_iter = add_i915_attr(i915_iter, str, config);
1077 
1078 			if (events[i].unit) {
1079 				if (events[i].global || !HAS_EXTRA_GT_LIST(i915))
1080 					str = kasprintf(GFP_KERNEL, "%s.unit",
1081 							events[i].name);
1082 				else
1083 					str = kasprintf(GFP_KERNEL, "%s-gt%u.unit",
1084 							events[i].name, j);
1085 				if (!str)
1086 					goto err;
1087 
1088 				*attr_iter++ = &pmu_iter->attr.attr;
1089 				pmu_iter = add_pmu_attr(pmu_iter, str,
1090 							events[i].unit);
1091 			}
1092 		}
1093 	}
1094 
1095 	/* Initialize supported engine counters. */
1096 	for_each_uabi_engine(engine, i915) {
1097 		for (i = 0; i < ARRAY_SIZE(engine_events); i++) {
1098 			char *str;
1099 
1100 			if (engine_event_status(engine,
1101 						engine_events[i].sample))
1102 				continue;
1103 
1104 			str = kasprintf(GFP_KERNEL, "%s-%s",
1105 					engine->name, engine_events[i].name);
1106 			if (!str)
1107 				goto err;
1108 
1109 			*attr_iter++ = &i915_iter->attr.attr;
1110 			i915_iter =
1111 				add_i915_attr(i915_iter, str,
1112 					      __I915_PMU_ENGINE(engine->uabi_class,
1113 								engine->uabi_instance,
1114 								engine_events[i].sample));
1115 
1116 			str = kasprintf(GFP_KERNEL, "%s-%s.unit",
1117 					engine->name, engine_events[i].name);
1118 			if (!str)
1119 				goto err;
1120 
1121 			*attr_iter++ = &pmu_iter->attr.attr;
1122 			pmu_iter = add_pmu_attr(pmu_iter, str, "ns");
1123 		}
1124 	}
1125 
1126 	pmu->i915_attr = i915_attr;
1127 	pmu->pmu_attr = pmu_attr;
1128 
1129 	return attr;
1130 
1131 err:;
1132 	for (attr_iter = attr; *attr_iter; attr_iter++)
1133 		kfree((*attr_iter)->name);
1134 
1135 err_alloc:
1136 	kfree(attr);
1137 	kfree(i915_attr);
1138 	kfree(pmu_attr);
1139 
1140 	return NULL;
1141 }
1142 
1143 static void free_event_attributes(struct i915_pmu *pmu)
1144 {
1145 	struct attribute **attr_iter = pmu->events_attr_group.attrs;
1146 
1147 	for (; *attr_iter; attr_iter++)
1148 		kfree((*attr_iter)->name);
1149 
1150 	kfree(pmu->events_attr_group.attrs);
1151 	kfree(pmu->i915_attr);
1152 	kfree(pmu->pmu_attr);
1153 
1154 	pmu->events_attr_group.attrs = NULL;
1155 	pmu->i915_attr = NULL;
1156 	pmu->pmu_attr = NULL;
1157 }
1158 
1159 static int i915_pmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1160 {
1161 	struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node);
1162 
1163 	GEM_BUG_ON(!pmu->base.event_init);
1164 
1165 	/* Select the first online CPU as a designated reader. */
1166 	if (cpumask_empty(&i915_pmu_cpumask))
1167 		cpumask_set_cpu(cpu, &i915_pmu_cpumask);
1168 
1169 	return 0;
1170 }
1171 
1172 static int i915_pmu_cpu_offline(unsigned int cpu, struct hlist_node *node)
1173 {
1174 	struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node);
1175 	unsigned int target = i915_pmu_target_cpu;
1176 
1177 	GEM_BUG_ON(!pmu->base.event_init);
1178 
1179 	/*
1180 	 * Unregistering an instance generates a CPU offline event which we must
1181 	 * ignore to avoid incorrectly modifying the shared i915_pmu_cpumask.
1182 	 */
1183 	if (pmu->closed)
1184 		return 0;
1185 
1186 	if (cpumask_test_and_clear_cpu(cpu, &i915_pmu_cpumask)) {
1187 		target = cpumask_any_but(topology_sibling_cpumask(cpu), cpu);
1188 
1189 		/* Migrate events if there is a valid target */
1190 		if (target < nr_cpu_ids) {
1191 			cpumask_set_cpu(target, &i915_pmu_cpumask);
1192 			i915_pmu_target_cpu = target;
1193 		}
1194 	}
1195 
1196 	if (target < nr_cpu_ids && target != pmu->cpuhp.cpu) {
1197 		perf_pmu_migrate_context(&pmu->base, cpu, target);
1198 		pmu->cpuhp.cpu = target;
1199 	}
1200 
1201 	return 0;
1202 }
1203 
1204 static enum cpuhp_state cpuhp_slot = CPUHP_INVALID;
1205 
1206 int i915_pmu_init(void)
1207 {
1208 	int ret;
1209 
1210 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1211 				      "perf/x86/intel/i915:online",
1212 				      i915_pmu_cpu_online,
1213 				      i915_pmu_cpu_offline);
1214 	if (ret < 0)
1215 		pr_notice("Failed to setup cpuhp state for i915 PMU! (%d)\n",
1216 			  ret);
1217 	else
1218 		cpuhp_slot = ret;
1219 
1220 	return 0;
1221 }
1222 
1223 void i915_pmu_exit(void)
1224 {
1225 	if (cpuhp_slot != CPUHP_INVALID)
1226 		cpuhp_remove_multi_state(cpuhp_slot);
1227 }
1228 
1229 static int i915_pmu_register_cpuhp_state(struct i915_pmu *pmu)
1230 {
1231 	if (cpuhp_slot == CPUHP_INVALID)
1232 		return -EINVAL;
1233 
1234 	return cpuhp_state_add_instance(cpuhp_slot, &pmu->cpuhp.node);
1235 }
1236 
1237 static void i915_pmu_unregister_cpuhp_state(struct i915_pmu *pmu)
1238 {
1239 	cpuhp_state_remove_instance(cpuhp_slot, &pmu->cpuhp.node);
1240 }
1241 
1242 static bool is_igp(struct drm_i915_private *i915)
1243 {
1244 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1245 
1246 	/* IGP is 0000:00:02.0 */
1247 	return pci_domain_nr(pdev->bus) == 0 &&
1248 	       pdev->bus->number == 0 &&
1249 	       PCI_SLOT(pdev->devfn) == 2 &&
1250 	       PCI_FUNC(pdev->devfn) == 0;
1251 }
1252 
1253 void i915_pmu_register(struct drm_i915_private *i915)
1254 {
1255 	struct i915_pmu *pmu = &i915->pmu;
1256 	const struct attribute_group *attr_groups[] = {
1257 		&i915_pmu_format_attr_group,
1258 		&pmu->events_attr_group,
1259 		&i915_pmu_cpumask_attr_group,
1260 		NULL
1261 	};
1262 
1263 	int ret = -ENOMEM;
1264 
1265 	if (GRAPHICS_VER(i915) <= 2) {
1266 		drm_info(&i915->drm, "PMU not supported for this GPU.");
1267 		return;
1268 	}
1269 
1270 	spin_lock_init(&pmu->lock);
1271 	hrtimer_init(&pmu->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1272 	pmu->timer.function = i915_sample;
1273 	pmu->cpuhp.cpu = -1;
1274 	init_rc6(pmu);
1275 
1276 	if (!is_igp(i915)) {
1277 		pmu->name = kasprintf(GFP_KERNEL,
1278 				      "i915_%s",
1279 				      dev_name(i915->drm.dev));
1280 		if (pmu->name) {
1281 			/* tools/perf reserves colons as special. */
1282 			strreplace((char *)pmu->name, ':', '_');
1283 		}
1284 	} else {
1285 		pmu->name = "i915";
1286 	}
1287 	if (!pmu->name)
1288 		goto err;
1289 
1290 	pmu->events_attr_group.name = "events";
1291 	pmu->events_attr_group.attrs = create_event_attributes(pmu);
1292 	if (!pmu->events_attr_group.attrs)
1293 		goto err_name;
1294 
1295 	pmu->base.attr_groups = kmemdup(attr_groups, sizeof(attr_groups),
1296 					GFP_KERNEL);
1297 	if (!pmu->base.attr_groups)
1298 		goto err_attr;
1299 
1300 	pmu->base.module	= THIS_MODULE;
1301 	pmu->base.task_ctx_nr	= perf_invalid_context;
1302 	pmu->base.event_init	= i915_pmu_event_init;
1303 	pmu->base.add		= i915_pmu_event_add;
1304 	pmu->base.del		= i915_pmu_event_del;
1305 	pmu->base.start		= i915_pmu_event_start;
1306 	pmu->base.stop		= i915_pmu_event_stop;
1307 	pmu->base.read		= i915_pmu_event_read;
1308 	pmu->base.event_idx	= i915_pmu_event_event_idx;
1309 
1310 	ret = perf_pmu_register(&pmu->base, pmu->name, -1);
1311 	if (ret)
1312 		goto err_groups;
1313 
1314 	ret = i915_pmu_register_cpuhp_state(pmu);
1315 	if (ret)
1316 		goto err_unreg;
1317 
1318 	return;
1319 
1320 err_unreg:
1321 	perf_pmu_unregister(&pmu->base);
1322 err_groups:
1323 	kfree(pmu->base.attr_groups);
1324 err_attr:
1325 	pmu->base.event_init = NULL;
1326 	free_event_attributes(pmu);
1327 err_name:
1328 	if (!is_igp(i915))
1329 		kfree(pmu->name);
1330 err:
1331 	drm_notice(&i915->drm, "Failed to register PMU!\n");
1332 }
1333 
1334 void i915_pmu_unregister(struct drm_i915_private *i915)
1335 {
1336 	struct i915_pmu *pmu = &i915->pmu;
1337 
1338 	if (!pmu->base.event_init)
1339 		return;
1340 
1341 	/*
1342 	 * "Disconnect" the PMU callbacks - since all are atomic synchronize_rcu
1343 	 * ensures all currently executing ones will have exited before we
1344 	 * proceed with unregistration.
1345 	 */
1346 	pmu->closed = true;
1347 	synchronize_rcu();
1348 
1349 	hrtimer_cancel(&pmu->timer);
1350 
1351 	i915_pmu_unregister_cpuhp_state(pmu);
1352 
1353 	perf_pmu_unregister(&pmu->base);
1354 	pmu->base.event_init = NULL;
1355 	kfree(pmu->base.attr_groups);
1356 	if (!is_igp(i915))
1357 		kfree(pmu->name);
1358 	free_event_attributes(pmu);
1359 }
1360