1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2017-2018 Intel Corporation 5 */ 6 7 #include <linux/pm_runtime.h> 8 9 #include "gt/intel_engine.h" 10 #include "gt/intel_engine_pm.h" 11 #include "gt/intel_engine_regs.h" 12 #include "gt/intel_engine_user.h" 13 #include "gt/intel_gt_pm.h" 14 #include "gt/intel_gt_regs.h" 15 #include "gt/intel_rc6.h" 16 #include "gt/intel_rps.h" 17 18 #include "i915_drv.h" 19 #include "i915_pmu.h" 20 #include "intel_pm.h" 21 22 /* Frequency for the sampling timer for events which need it. */ 23 #define FREQUENCY 200 24 #define PERIOD max_t(u64, 10000, NSEC_PER_SEC / FREQUENCY) 25 26 #define ENGINE_SAMPLE_MASK \ 27 (BIT(I915_SAMPLE_BUSY) | \ 28 BIT(I915_SAMPLE_WAIT) | \ 29 BIT(I915_SAMPLE_SEMA)) 30 31 static cpumask_t i915_pmu_cpumask; 32 static unsigned int i915_pmu_target_cpu = -1; 33 34 static u8 engine_config_sample(u64 config) 35 { 36 return config & I915_PMU_SAMPLE_MASK; 37 } 38 39 static u8 engine_event_sample(struct perf_event *event) 40 { 41 return engine_config_sample(event->attr.config); 42 } 43 44 static u8 engine_event_class(struct perf_event *event) 45 { 46 return (event->attr.config >> I915_PMU_CLASS_SHIFT) & 0xff; 47 } 48 49 static u8 engine_event_instance(struct perf_event *event) 50 { 51 return (event->attr.config >> I915_PMU_SAMPLE_BITS) & 0xff; 52 } 53 54 static bool is_engine_config(u64 config) 55 { 56 return config < __I915_PMU_OTHER(0); 57 } 58 59 static unsigned int other_bit(const u64 config) 60 { 61 unsigned int val; 62 63 switch (config) { 64 case I915_PMU_ACTUAL_FREQUENCY: 65 val = __I915_PMU_ACTUAL_FREQUENCY_ENABLED; 66 break; 67 case I915_PMU_REQUESTED_FREQUENCY: 68 val = __I915_PMU_REQUESTED_FREQUENCY_ENABLED; 69 break; 70 case I915_PMU_RC6_RESIDENCY: 71 val = __I915_PMU_RC6_RESIDENCY_ENABLED; 72 break; 73 default: 74 /* 75 * Events that do not require sampling, or tracking state 76 * transitions between enabled and disabled can be ignored. 77 */ 78 return -1; 79 } 80 81 return I915_ENGINE_SAMPLE_COUNT + val; 82 } 83 84 static unsigned int config_bit(const u64 config) 85 { 86 if (is_engine_config(config)) 87 return engine_config_sample(config); 88 else 89 return other_bit(config); 90 } 91 92 static u64 config_mask(u64 config) 93 { 94 return BIT_ULL(config_bit(config)); 95 } 96 97 static bool is_engine_event(struct perf_event *event) 98 { 99 return is_engine_config(event->attr.config); 100 } 101 102 static unsigned int event_bit(struct perf_event *event) 103 { 104 return config_bit(event->attr.config); 105 } 106 107 static bool pmu_needs_timer(struct i915_pmu *pmu, bool gpu_active) 108 { 109 struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu); 110 u32 enable; 111 112 /* 113 * Only some counters need the sampling timer. 114 * 115 * We start with a bitmask of all currently enabled events. 116 */ 117 enable = pmu->enable; 118 119 /* 120 * Mask out all the ones which do not need the timer, or in 121 * other words keep all the ones that could need the timer. 122 */ 123 enable &= config_mask(I915_PMU_ACTUAL_FREQUENCY) | 124 config_mask(I915_PMU_REQUESTED_FREQUENCY) | 125 ENGINE_SAMPLE_MASK; 126 127 /* 128 * When the GPU is idle per-engine counters do not need to be 129 * running so clear those bits out. 130 */ 131 if (!gpu_active) 132 enable &= ~ENGINE_SAMPLE_MASK; 133 /* 134 * Also there is software busyness tracking available we do not 135 * need the timer for I915_SAMPLE_BUSY counter. 136 */ 137 else if (i915->caps.scheduler & I915_SCHEDULER_CAP_ENGINE_BUSY_STATS) 138 enable &= ~BIT(I915_SAMPLE_BUSY); 139 140 /* 141 * If some bits remain it means we need the sampling timer running. 142 */ 143 return enable; 144 } 145 146 static u64 __get_rc6(struct intel_gt *gt) 147 { 148 struct drm_i915_private *i915 = gt->i915; 149 u64 val; 150 151 val = intel_rc6_residency_ns(>->rc6, 152 IS_VALLEYVIEW(i915) ? 153 VLV_GT_RENDER_RC6 : 154 GEN6_GT_GFX_RC6); 155 156 if (HAS_RC6p(i915)) 157 val += intel_rc6_residency_ns(>->rc6, GEN6_GT_GFX_RC6p); 158 159 if (HAS_RC6pp(i915)) 160 val += intel_rc6_residency_ns(>->rc6, GEN6_GT_GFX_RC6pp); 161 162 return val; 163 } 164 165 static inline s64 ktime_since_raw(const ktime_t kt) 166 { 167 return ktime_to_ns(ktime_sub(ktime_get_raw(), kt)); 168 } 169 170 static u64 get_rc6(struct intel_gt *gt) 171 { 172 struct drm_i915_private *i915 = gt->i915; 173 struct i915_pmu *pmu = &i915->pmu; 174 unsigned long flags; 175 bool awake = false; 176 u64 val; 177 178 if (intel_gt_pm_get_if_awake(gt)) { 179 val = __get_rc6(gt); 180 intel_gt_pm_put_async(gt); 181 awake = true; 182 } 183 184 spin_lock_irqsave(&pmu->lock, flags); 185 186 if (awake) { 187 pmu->sample[__I915_SAMPLE_RC6].cur = val; 188 } else { 189 /* 190 * We think we are runtime suspended. 191 * 192 * Report the delta from when the device was suspended to now, 193 * on top of the last known real value, as the approximated RC6 194 * counter value. 195 */ 196 val = ktime_since_raw(pmu->sleep_last); 197 val += pmu->sample[__I915_SAMPLE_RC6].cur; 198 } 199 200 if (val < pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur) 201 val = pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur; 202 else 203 pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur = val; 204 205 spin_unlock_irqrestore(&pmu->lock, flags); 206 207 return val; 208 } 209 210 static void init_rc6(struct i915_pmu *pmu) 211 { 212 struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu); 213 intel_wakeref_t wakeref; 214 215 with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref) { 216 pmu->sample[__I915_SAMPLE_RC6].cur = __get_rc6(to_gt(i915)); 217 pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur = 218 pmu->sample[__I915_SAMPLE_RC6].cur; 219 pmu->sleep_last = ktime_get_raw(); 220 } 221 } 222 223 static void park_rc6(struct drm_i915_private *i915) 224 { 225 struct i915_pmu *pmu = &i915->pmu; 226 227 pmu->sample[__I915_SAMPLE_RC6].cur = __get_rc6(to_gt(i915)); 228 pmu->sleep_last = ktime_get_raw(); 229 } 230 231 static void __i915_pmu_maybe_start_timer(struct i915_pmu *pmu) 232 { 233 if (!pmu->timer_enabled && pmu_needs_timer(pmu, true)) { 234 pmu->timer_enabled = true; 235 pmu->timer_last = ktime_get(); 236 hrtimer_start_range_ns(&pmu->timer, 237 ns_to_ktime(PERIOD), 0, 238 HRTIMER_MODE_REL_PINNED); 239 } 240 } 241 242 void i915_pmu_gt_parked(struct drm_i915_private *i915) 243 { 244 struct i915_pmu *pmu = &i915->pmu; 245 246 if (!pmu->base.event_init) 247 return; 248 249 spin_lock_irq(&pmu->lock); 250 251 park_rc6(i915); 252 253 /* 254 * Signal sampling timer to stop if only engine events are enabled and 255 * GPU went idle. 256 */ 257 pmu->timer_enabled = pmu_needs_timer(pmu, false); 258 259 spin_unlock_irq(&pmu->lock); 260 } 261 262 void i915_pmu_gt_unparked(struct drm_i915_private *i915) 263 { 264 struct i915_pmu *pmu = &i915->pmu; 265 266 if (!pmu->base.event_init) 267 return; 268 269 spin_lock_irq(&pmu->lock); 270 271 /* 272 * Re-enable sampling timer when GPU goes active. 273 */ 274 __i915_pmu_maybe_start_timer(pmu); 275 276 spin_unlock_irq(&pmu->lock); 277 } 278 279 static void 280 add_sample(struct i915_pmu_sample *sample, u32 val) 281 { 282 sample->cur += val; 283 } 284 285 static bool exclusive_mmio_access(const struct drm_i915_private *i915) 286 { 287 /* 288 * We have to avoid concurrent mmio cache line access on gen7 or 289 * risk a machine hang. For a fun history lesson dig out the old 290 * userspace intel_gpu_top and run it on Ivybridge or Haswell! 291 */ 292 return GRAPHICS_VER(i915) == 7; 293 } 294 295 static void engine_sample(struct intel_engine_cs *engine, unsigned int period_ns) 296 { 297 struct intel_engine_pmu *pmu = &engine->pmu; 298 bool busy; 299 u32 val; 300 301 val = ENGINE_READ_FW(engine, RING_CTL); 302 if (val == 0) /* powerwell off => engine idle */ 303 return; 304 305 if (val & RING_WAIT) 306 add_sample(&pmu->sample[I915_SAMPLE_WAIT], period_ns); 307 if (val & RING_WAIT_SEMAPHORE) 308 add_sample(&pmu->sample[I915_SAMPLE_SEMA], period_ns); 309 310 /* No need to sample when busy stats are supported. */ 311 if (intel_engine_supports_stats(engine)) 312 return; 313 314 /* 315 * While waiting on a semaphore or event, MI_MODE reports the 316 * ring as idle. However, previously using the seqno, and with 317 * execlists sampling, we account for the ring waiting as the 318 * engine being busy. Therefore, we record the sample as being 319 * busy if either waiting or !idle. 320 */ 321 busy = val & (RING_WAIT_SEMAPHORE | RING_WAIT); 322 if (!busy) { 323 val = ENGINE_READ_FW(engine, RING_MI_MODE); 324 busy = !(val & MODE_IDLE); 325 } 326 if (busy) 327 add_sample(&pmu->sample[I915_SAMPLE_BUSY], period_ns); 328 } 329 330 static void 331 engines_sample(struct intel_gt *gt, unsigned int period_ns) 332 { 333 struct drm_i915_private *i915 = gt->i915; 334 struct intel_engine_cs *engine; 335 enum intel_engine_id id; 336 unsigned long flags; 337 338 if ((i915->pmu.enable & ENGINE_SAMPLE_MASK) == 0) 339 return; 340 341 if (!intel_gt_pm_is_awake(gt)) 342 return; 343 344 for_each_engine(engine, gt, id) { 345 if (!intel_engine_pm_get_if_awake(engine)) 346 continue; 347 348 if (exclusive_mmio_access(i915)) { 349 spin_lock_irqsave(&engine->uncore->lock, flags); 350 engine_sample(engine, period_ns); 351 spin_unlock_irqrestore(&engine->uncore->lock, flags); 352 } else { 353 engine_sample(engine, period_ns); 354 } 355 356 intel_engine_pm_put_async(engine); 357 } 358 } 359 360 static void 361 add_sample_mult(struct i915_pmu_sample *sample, u32 val, u32 mul) 362 { 363 sample->cur += mul_u32_u32(val, mul); 364 } 365 366 static bool frequency_sampling_enabled(struct i915_pmu *pmu) 367 { 368 return pmu->enable & 369 (config_mask(I915_PMU_ACTUAL_FREQUENCY) | 370 config_mask(I915_PMU_REQUESTED_FREQUENCY)); 371 } 372 373 static void 374 frequency_sample(struct intel_gt *gt, unsigned int period_ns) 375 { 376 struct drm_i915_private *i915 = gt->i915; 377 struct intel_uncore *uncore = gt->uncore; 378 struct i915_pmu *pmu = &i915->pmu; 379 struct intel_rps *rps = >->rps; 380 381 if (!frequency_sampling_enabled(pmu)) 382 return; 383 384 /* Report 0/0 (actual/requested) frequency while parked. */ 385 if (!intel_gt_pm_get_if_awake(gt)) 386 return; 387 388 if (pmu->enable & config_mask(I915_PMU_ACTUAL_FREQUENCY)) { 389 u32 val; 390 391 /* 392 * We take a quick peek here without using forcewake 393 * so that we don't perturb the system under observation 394 * (forcewake => !rc6 => increased power use). We expect 395 * that if the read fails because it is outside of the 396 * mmio power well, then it will return 0 -- in which 397 * case we assume the system is running at the intended 398 * frequency. Fortunately, the read should rarely fail! 399 */ 400 val = intel_uncore_read_fw(uncore, GEN6_RPSTAT1); 401 if (val) 402 val = intel_rps_get_cagf(rps, val); 403 else 404 val = rps->cur_freq; 405 406 add_sample_mult(&pmu->sample[__I915_SAMPLE_FREQ_ACT], 407 intel_gpu_freq(rps, val), period_ns / 1000); 408 } 409 410 if (pmu->enable & config_mask(I915_PMU_REQUESTED_FREQUENCY)) { 411 add_sample_mult(&pmu->sample[__I915_SAMPLE_FREQ_REQ], 412 intel_rps_get_requested_frequency(rps), 413 period_ns / 1000); 414 } 415 416 intel_gt_pm_put_async(gt); 417 } 418 419 static enum hrtimer_restart i915_sample(struct hrtimer *hrtimer) 420 { 421 struct drm_i915_private *i915 = 422 container_of(hrtimer, struct drm_i915_private, pmu.timer); 423 struct i915_pmu *pmu = &i915->pmu; 424 struct intel_gt *gt = to_gt(i915); 425 unsigned int period_ns; 426 ktime_t now; 427 428 if (!READ_ONCE(pmu->timer_enabled)) 429 return HRTIMER_NORESTART; 430 431 now = ktime_get(); 432 period_ns = ktime_to_ns(ktime_sub(now, pmu->timer_last)); 433 pmu->timer_last = now; 434 435 /* 436 * Strictly speaking the passed in period may not be 100% accurate for 437 * all internal calculation, since some amount of time can be spent on 438 * grabbing the forcewake. However the potential error from timer call- 439 * back delay greatly dominates this so we keep it simple. 440 */ 441 engines_sample(gt, period_ns); 442 frequency_sample(gt, period_ns); 443 444 hrtimer_forward(hrtimer, now, ns_to_ktime(PERIOD)); 445 446 return HRTIMER_RESTART; 447 } 448 449 static void i915_pmu_event_destroy(struct perf_event *event) 450 { 451 struct drm_i915_private *i915 = 452 container_of(event->pmu, typeof(*i915), pmu.base); 453 454 drm_WARN_ON(&i915->drm, event->parent); 455 456 drm_dev_put(&i915->drm); 457 } 458 459 static int 460 engine_event_status(struct intel_engine_cs *engine, 461 enum drm_i915_pmu_engine_sample sample) 462 { 463 switch (sample) { 464 case I915_SAMPLE_BUSY: 465 case I915_SAMPLE_WAIT: 466 break; 467 case I915_SAMPLE_SEMA: 468 if (GRAPHICS_VER(engine->i915) < 6) 469 return -ENODEV; 470 break; 471 default: 472 return -ENOENT; 473 } 474 475 return 0; 476 } 477 478 static int 479 config_status(struct drm_i915_private *i915, u64 config) 480 { 481 struct intel_gt *gt = to_gt(i915); 482 483 switch (config) { 484 case I915_PMU_ACTUAL_FREQUENCY: 485 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) 486 /* Requires a mutex for sampling! */ 487 return -ENODEV; 488 fallthrough; 489 case I915_PMU_REQUESTED_FREQUENCY: 490 if (GRAPHICS_VER(i915) < 6) 491 return -ENODEV; 492 break; 493 case I915_PMU_INTERRUPTS: 494 break; 495 case I915_PMU_RC6_RESIDENCY: 496 if (!gt->rc6.supported) 497 return -ENODEV; 498 break; 499 case I915_PMU_SOFTWARE_GT_AWAKE_TIME: 500 break; 501 default: 502 return -ENOENT; 503 } 504 505 return 0; 506 } 507 508 static int engine_event_init(struct perf_event *event) 509 { 510 struct drm_i915_private *i915 = 511 container_of(event->pmu, typeof(*i915), pmu.base); 512 struct intel_engine_cs *engine; 513 514 engine = intel_engine_lookup_user(i915, engine_event_class(event), 515 engine_event_instance(event)); 516 if (!engine) 517 return -ENODEV; 518 519 return engine_event_status(engine, engine_event_sample(event)); 520 } 521 522 static int i915_pmu_event_init(struct perf_event *event) 523 { 524 struct drm_i915_private *i915 = 525 container_of(event->pmu, typeof(*i915), pmu.base); 526 struct i915_pmu *pmu = &i915->pmu; 527 int ret; 528 529 if (pmu->closed) 530 return -ENODEV; 531 532 if (event->attr.type != event->pmu->type) 533 return -ENOENT; 534 535 /* unsupported modes and filters */ 536 if (event->attr.sample_period) /* no sampling */ 537 return -EINVAL; 538 539 if (has_branch_stack(event)) 540 return -EOPNOTSUPP; 541 542 if (event->cpu < 0) 543 return -EINVAL; 544 545 /* only allow running on one cpu at a time */ 546 if (!cpumask_test_cpu(event->cpu, &i915_pmu_cpumask)) 547 return -EINVAL; 548 549 if (is_engine_event(event)) 550 ret = engine_event_init(event); 551 else 552 ret = config_status(i915, event->attr.config); 553 if (ret) 554 return ret; 555 556 if (!event->parent) { 557 drm_dev_get(&i915->drm); 558 event->destroy = i915_pmu_event_destroy; 559 } 560 561 return 0; 562 } 563 564 static u64 __i915_pmu_event_read(struct perf_event *event) 565 { 566 struct drm_i915_private *i915 = 567 container_of(event->pmu, typeof(*i915), pmu.base); 568 struct i915_pmu *pmu = &i915->pmu; 569 u64 val = 0; 570 571 if (is_engine_event(event)) { 572 u8 sample = engine_event_sample(event); 573 struct intel_engine_cs *engine; 574 575 engine = intel_engine_lookup_user(i915, 576 engine_event_class(event), 577 engine_event_instance(event)); 578 579 if (drm_WARN_ON_ONCE(&i915->drm, !engine)) { 580 /* Do nothing */ 581 } else if (sample == I915_SAMPLE_BUSY && 582 intel_engine_supports_stats(engine)) { 583 ktime_t unused; 584 585 val = ktime_to_ns(intel_engine_get_busy_time(engine, 586 &unused)); 587 } else { 588 val = engine->pmu.sample[sample].cur; 589 } 590 } else { 591 switch (event->attr.config) { 592 case I915_PMU_ACTUAL_FREQUENCY: 593 val = 594 div_u64(pmu->sample[__I915_SAMPLE_FREQ_ACT].cur, 595 USEC_PER_SEC /* to MHz */); 596 break; 597 case I915_PMU_REQUESTED_FREQUENCY: 598 val = 599 div_u64(pmu->sample[__I915_SAMPLE_FREQ_REQ].cur, 600 USEC_PER_SEC /* to MHz */); 601 break; 602 case I915_PMU_INTERRUPTS: 603 val = READ_ONCE(pmu->irq_count); 604 break; 605 case I915_PMU_RC6_RESIDENCY: 606 val = get_rc6(to_gt(i915)); 607 break; 608 case I915_PMU_SOFTWARE_GT_AWAKE_TIME: 609 val = ktime_to_ns(intel_gt_get_awake_time(to_gt(i915))); 610 break; 611 } 612 } 613 614 return val; 615 } 616 617 static void i915_pmu_event_read(struct perf_event *event) 618 { 619 struct drm_i915_private *i915 = 620 container_of(event->pmu, typeof(*i915), pmu.base); 621 struct hw_perf_event *hwc = &event->hw; 622 struct i915_pmu *pmu = &i915->pmu; 623 u64 prev, new; 624 625 if (pmu->closed) { 626 event->hw.state = PERF_HES_STOPPED; 627 return; 628 } 629 again: 630 prev = local64_read(&hwc->prev_count); 631 new = __i915_pmu_event_read(event); 632 633 if (local64_cmpxchg(&hwc->prev_count, prev, new) != prev) 634 goto again; 635 636 local64_add(new - prev, &event->count); 637 } 638 639 static void i915_pmu_enable(struct perf_event *event) 640 { 641 struct drm_i915_private *i915 = 642 container_of(event->pmu, typeof(*i915), pmu.base); 643 struct i915_pmu *pmu = &i915->pmu; 644 unsigned long flags; 645 unsigned int bit; 646 647 bit = event_bit(event); 648 if (bit == -1) 649 goto update; 650 651 spin_lock_irqsave(&pmu->lock, flags); 652 653 /* 654 * Update the bitmask of enabled events and increment 655 * the event reference counter. 656 */ 657 BUILD_BUG_ON(ARRAY_SIZE(pmu->enable_count) != I915_PMU_MASK_BITS); 658 GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count)); 659 GEM_BUG_ON(pmu->enable_count[bit] == ~0); 660 661 pmu->enable |= BIT_ULL(bit); 662 pmu->enable_count[bit]++; 663 664 /* 665 * Start the sampling timer if needed and not already enabled. 666 */ 667 __i915_pmu_maybe_start_timer(pmu); 668 669 /* 670 * For per-engine events the bitmask and reference counting 671 * is stored per engine. 672 */ 673 if (is_engine_event(event)) { 674 u8 sample = engine_event_sample(event); 675 struct intel_engine_cs *engine; 676 677 engine = intel_engine_lookup_user(i915, 678 engine_event_class(event), 679 engine_event_instance(event)); 680 681 BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.enable_count) != 682 I915_ENGINE_SAMPLE_COUNT); 683 BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.sample) != 684 I915_ENGINE_SAMPLE_COUNT); 685 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count)); 686 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample)); 687 GEM_BUG_ON(engine->pmu.enable_count[sample] == ~0); 688 689 engine->pmu.enable |= BIT(sample); 690 engine->pmu.enable_count[sample]++; 691 } 692 693 spin_unlock_irqrestore(&pmu->lock, flags); 694 695 update: 696 /* 697 * Store the current counter value so we can report the correct delta 698 * for all listeners. Even when the event was already enabled and has 699 * an existing non-zero value. 700 */ 701 local64_set(&event->hw.prev_count, __i915_pmu_event_read(event)); 702 } 703 704 static void i915_pmu_disable(struct perf_event *event) 705 { 706 struct drm_i915_private *i915 = 707 container_of(event->pmu, typeof(*i915), pmu.base); 708 unsigned int bit = event_bit(event); 709 struct i915_pmu *pmu = &i915->pmu; 710 unsigned long flags; 711 712 if (bit == -1) 713 return; 714 715 spin_lock_irqsave(&pmu->lock, flags); 716 717 if (is_engine_event(event)) { 718 u8 sample = engine_event_sample(event); 719 struct intel_engine_cs *engine; 720 721 engine = intel_engine_lookup_user(i915, 722 engine_event_class(event), 723 engine_event_instance(event)); 724 725 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count)); 726 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample)); 727 GEM_BUG_ON(engine->pmu.enable_count[sample] == 0); 728 729 /* 730 * Decrement the reference count and clear the enabled 731 * bitmask when the last listener on an event goes away. 732 */ 733 if (--engine->pmu.enable_count[sample] == 0) 734 engine->pmu.enable &= ~BIT(sample); 735 } 736 737 GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count)); 738 GEM_BUG_ON(pmu->enable_count[bit] == 0); 739 /* 740 * Decrement the reference count and clear the enabled 741 * bitmask when the last listener on an event goes away. 742 */ 743 if (--pmu->enable_count[bit] == 0) { 744 pmu->enable &= ~BIT_ULL(bit); 745 pmu->timer_enabled &= pmu_needs_timer(pmu, true); 746 } 747 748 spin_unlock_irqrestore(&pmu->lock, flags); 749 } 750 751 static void i915_pmu_event_start(struct perf_event *event, int flags) 752 { 753 struct drm_i915_private *i915 = 754 container_of(event->pmu, typeof(*i915), pmu.base); 755 struct i915_pmu *pmu = &i915->pmu; 756 757 if (pmu->closed) 758 return; 759 760 i915_pmu_enable(event); 761 event->hw.state = 0; 762 } 763 764 static void i915_pmu_event_stop(struct perf_event *event, int flags) 765 { 766 if (flags & PERF_EF_UPDATE) 767 i915_pmu_event_read(event); 768 i915_pmu_disable(event); 769 event->hw.state = PERF_HES_STOPPED; 770 } 771 772 static int i915_pmu_event_add(struct perf_event *event, int flags) 773 { 774 struct drm_i915_private *i915 = 775 container_of(event->pmu, typeof(*i915), pmu.base); 776 struct i915_pmu *pmu = &i915->pmu; 777 778 if (pmu->closed) 779 return -ENODEV; 780 781 if (flags & PERF_EF_START) 782 i915_pmu_event_start(event, flags); 783 784 return 0; 785 } 786 787 static void i915_pmu_event_del(struct perf_event *event, int flags) 788 { 789 i915_pmu_event_stop(event, PERF_EF_UPDATE); 790 } 791 792 static int i915_pmu_event_event_idx(struct perf_event *event) 793 { 794 return 0; 795 } 796 797 struct i915_str_attribute { 798 struct device_attribute attr; 799 const char *str; 800 }; 801 802 static ssize_t i915_pmu_format_show(struct device *dev, 803 struct device_attribute *attr, char *buf) 804 { 805 struct i915_str_attribute *eattr; 806 807 eattr = container_of(attr, struct i915_str_attribute, attr); 808 return sprintf(buf, "%s\n", eattr->str); 809 } 810 811 #define I915_PMU_FORMAT_ATTR(_name, _config) \ 812 (&((struct i915_str_attribute[]) { \ 813 { .attr = __ATTR(_name, 0444, i915_pmu_format_show, NULL), \ 814 .str = _config, } \ 815 })[0].attr.attr) 816 817 static struct attribute *i915_pmu_format_attrs[] = { 818 I915_PMU_FORMAT_ATTR(i915_eventid, "config:0-20"), 819 NULL, 820 }; 821 822 static const struct attribute_group i915_pmu_format_attr_group = { 823 .name = "format", 824 .attrs = i915_pmu_format_attrs, 825 }; 826 827 struct i915_ext_attribute { 828 struct device_attribute attr; 829 unsigned long val; 830 }; 831 832 static ssize_t i915_pmu_event_show(struct device *dev, 833 struct device_attribute *attr, char *buf) 834 { 835 struct i915_ext_attribute *eattr; 836 837 eattr = container_of(attr, struct i915_ext_attribute, attr); 838 return sprintf(buf, "config=0x%lx\n", eattr->val); 839 } 840 841 static ssize_t cpumask_show(struct device *dev, 842 struct device_attribute *attr, char *buf) 843 { 844 return cpumap_print_to_pagebuf(true, buf, &i915_pmu_cpumask); 845 } 846 847 static DEVICE_ATTR_RO(cpumask); 848 849 static struct attribute *i915_cpumask_attrs[] = { 850 &dev_attr_cpumask.attr, 851 NULL, 852 }; 853 854 static const struct attribute_group i915_pmu_cpumask_attr_group = { 855 .attrs = i915_cpumask_attrs, 856 }; 857 858 #define __event(__config, __name, __unit) \ 859 { \ 860 .config = (__config), \ 861 .name = (__name), \ 862 .unit = (__unit), \ 863 } 864 865 #define __engine_event(__sample, __name) \ 866 { \ 867 .sample = (__sample), \ 868 .name = (__name), \ 869 } 870 871 static struct i915_ext_attribute * 872 add_i915_attr(struct i915_ext_attribute *attr, const char *name, u64 config) 873 { 874 sysfs_attr_init(&attr->attr.attr); 875 attr->attr.attr.name = name; 876 attr->attr.attr.mode = 0444; 877 attr->attr.show = i915_pmu_event_show; 878 attr->val = config; 879 880 return ++attr; 881 } 882 883 static struct perf_pmu_events_attr * 884 add_pmu_attr(struct perf_pmu_events_attr *attr, const char *name, 885 const char *str) 886 { 887 sysfs_attr_init(&attr->attr.attr); 888 attr->attr.attr.name = name; 889 attr->attr.attr.mode = 0444; 890 attr->attr.show = perf_event_sysfs_show; 891 attr->event_str = str; 892 893 return ++attr; 894 } 895 896 static struct attribute ** 897 create_event_attributes(struct i915_pmu *pmu) 898 { 899 struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu); 900 static const struct { 901 u64 config; 902 const char *name; 903 const char *unit; 904 } events[] = { 905 __event(I915_PMU_ACTUAL_FREQUENCY, "actual-frequency", "M"), 906 __event(I915_PMU_REQUESTED_FREQUENCY, "requested-frequency", "M"), 907 __event(I915_PMU_INTERRUPTS, "interrupts", NULL), 908 __event(I915_PMU_RC6_RESIDENCY, "rc6-residency", "ns"), 909 __event(I915_PMU_SOFTWARE_GT_AWAKE_TIME, "software-gt-awake-time", "ns"), 910 }; 911 static const struct { 912 enum drm_i915_pmu_engine_sample sample; 913 char *name; 914 } engine_events[] = { 915 __engine_event(I915_SAMPLE_BUSY, "busy"), 916 __engine_event(I915_SAMPLE_SEMA, "sema"), 917 __engine_event(I915_SAMPLE_WAIT, "wait"), 918 }; 919 unsigned int count = 0; 920 struct perf_pmu_events_attr *pmu_attr = NULL, *pmu_iter; 921 struct i915_ext_attribute *i915_attr = NULL, *i915_iter; 922 struct attribute **attr = NULL, **attr_iter; 923 struct intel_engine_cs *engine; 924 unsigned int i; 925 926 /* Count how many counters we will be exposing. */ 927 for (i = 0; i < ARRAY_SIZE(events); i++) { 928 if (!config_status(i915, events[i].config)) 929 count++; 930 } 931 932 for_each_uabi_engine(engine, i915) { 933 for (i = 0; i < ARRAY_SIZE(engine_events); i++) { 934 if (!engine_event_status(engine, 935 engine_events[i].sample)) 936 count++; 937 } 938 } 939 940 /* Allocate attribute objects and table. */ 941 i915_attr = kcalloc(count, sizeof(*i915_attr), GFP_KERNEL); 942 if (!i915_attr) 943 goto err_alloc; 944 945 pmu_attr = kcalloc(count, sizeof(*pmu_attr), GFP_KERNEL); 946 if (!pmu_attr) 947 goto err_alloc; 948 949 /* Max one pointer of each attribute type plus a termination entry. */ 950 attr = kcalloc(count * 2 + 1, sizeof(*attr), GFP_KERNEL); 951 if (!attr) 952 goto err_alloc; 953 954 i915_iter = i915_attr; 955 pmu_iter = pmu_attr; 956 attr_iter = attr; 957 958 /* Initialize supported non-engine counters. */ 959 for (i = 0; i < ARRAY_SIZE(events); i++) { 960 char *str; 961 962 if (config_status(i915, events[i].config)) 963 continue; 964 965 str = kstrdup(events[i].name, GFP_KERNEL); 966 if (!str) 967 goto err; 968 969 *attr_iter++ = &i915_iter->attr.attr; 970 i915_iter = add_i915_attr(i915_iter, str, events[i].config); 971 972 if (events[i].unit) { 973 str = kasprintf(GFP_KERNEL, "%s.unit", events[i].name); 974 if (!str) 975 goto err; 976 977 *attr_iter++ = &pmu_iter->attr.attr; 978 pmu_iter = add_pmu_attr(pmu_iter, str, events[i].unit); 979 } 980 } 981 982 /* Initialize supported engine counters. */ 983 for_each_uabi_engine(engine, i915) { 984 for (i = 0; i < ARRAY_SIZE(engine_events); i++) { 985 char *str; 986 987 if (engine_event_status(engine, 988 engine_events[i].sample)) 989 continue; 990 991 str = kasprintf(GFP_KERNEL, "%s-%s", 992 engine->name, engine_events[i].name); 993 if (!str) 994 goto err; 995 996 *attr_iter++ = &i915_iter->attr.attr; 997 i915_iter = 998 add_i915_attr(i915_iter, str, 999 __I915_PMU_ENGINE(engine->uabi_class, 1000 engine->uabi_instance, 1001 engine_events[i].sample)); 1002 1003 str = kasprintf(GFP_KERNEL, "%s-%s.unit", 1004 engine->name, engine_events[i].name); 1005 if (!str) 1006 goto err; 1007 1008 *attr_iter++ = &pmu_iter->attr.attr; 1009 pmu_iter = add_pmu_attr(pmu_iter, str, "ns"); 1010 } 1011 } 1012 1013 pmu->i915_attr = i915_attr; 1014 pmu->pmu_attr = pmu_attr; 1015 1016 return attr; 1017 1018 err:; 1019 for (attr_iter = attr; *attr_iter; attr_iter++) 1020 kfree((*attr_iter)->name); 1021 1022 err_alloc: 1023 kfree(attr); 1024 kfree(i915_attr); 1025 kfree(pmu_attr); 1026 1027 return NULL; 1028 } 1029 1030 static void free_event_attributes(struct i915_pmu *pmu) 1031 { 1032 struct attribute **attr_iter = pmu->events_attr_group.attrs; 1033 1034 for (; *attr_iter; attr_iter++) 1035 kfree((*attr_iter)->name); 1036 1037 kfree(pmu->events_attr_group.attrs); 1038 kfree(pmu->i915_attr); 1039 kfree(pmu->pmu_attr); 1040 1041 pmu->events_attr_group.attrs = NULL; 1042 pmu->i915_attr = NULL; 1043 pmu->pmu_attr = NULL; 1044 } 1045 1046 static int i915_pmu_cpu_online(unsigned int cpu, struct hlist_node *node) 1047 { 1048 struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node); 1049 1050 GEM_BUG_ON(!pmu->base.event_init); 1051 1052 /* Select the first online CPU as a designated reader. */ 1053 if (!cpumask_weight(&i915_pmu_cpumask)) 1054 cpumask_set_cpu(cpu, &i915_pmu_cpumask); 1055 1056 return 0; 1057 } 1058 1059 static int i915_pmu_cpu_offline(unsigned int cpu, struct hlist_node *node) 1060 { 1061 struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node); 1062 unsigned int target = i915_pmu_target_cpu; 1063 1064 GEM_BUG_ON(!pmu->base.event_init); 1065 1066 /* 1067 * Unregistering an instance generates a CPU offline event which we must 1068 * ignore to avoid incorrectly modifying the shared i915_pmu_cpumask. 1069 */ 1070 if (pmu->closed) 1071 return 0; 1072 1073 if (cpumask_test_and_clear_cpu(cpu, &i915_pmu_cpumask)) { 1074 target = cpumask_any_but(topology_sibling_cpumask(cpu), cpu); 1075 1076 /* Migrate events if there is a valid target */ 1077 if (target < nr_cpu_ids) { 1078 cpumask_set_cpu(target, &i915_pmu_cpumask); 1079 i915_pmu_target_cpu = target; 1080 } 1081 } 1082 1083 if (target < nr_cpu_ids && target != pmu->cpuhp.cpu) { 1084 perf_pmu_migrate_context(&pmu->base, cpu, target); 1085 pmu->cpuhp.cpu = target; 1086 } 1087 1088 return 0; 1089 } 1090 1091 static enum cpuhp_state cpuhp_slot = CPUHP_INVALID; 1092 1093 int i915_pmu_init(void) 1094 { 1095 int ret; 1096 1097 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 1098 "perf/x86/intel/i915:online", 1099 i915_pmu_cpu_online, 1100 i915_pmu_cpu_offline); 1101 if (ret < 0) 1102 pr_notice("Failed to setup cpuhp state for i915 PMU! (%d)\n", 1103 ret); 1104 else 1105 cpuhp_slot = ret; 1106 1107 return 0; 1108 } 1109 1110 void i915_pmu_exit(void) 1111 { 1112 if (cpuhp_slot != CPUHP_INVALID) 1113 cpuhp_remove_multi_state(cpuhp_slot); 1114 } 1115 1116 static int i915_pmu_register_cpuhp_state(struct i915_pmu *pmu) 1117 { 1118 if (cpuhp_slot == CPUHP_INVALID) 1119 return -EINVAL; 1120 1121 return cpuhp_state_add_instance(cpuhp_slot, &pmu->cpuhp.node); 1122 } 1123 1124 static void i915_pmu_unregister_cpuhp_state(struct i915_pmu *pmu) 1125 { 1126 cpuhp_state_remove_instance(cpuhp_slot, &pmu->cpuhp.node); 1127 } 1128 1129 static bool is_igp(struct drm_i915_private *i915) 1130 { 1131 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1132 1133 /* IGP is 0000:00:02.0 */ 1134 return pci_domain_nr(pdev->bus) == 0 && 1135 pdev->bus->number == 0 && 1136 PCI_SLOT(pdev->devfn) == 2 && 1137 PCI_FUNC(pdev->devfn) == 0; 1138 } 1139 1140 void i915_pmu_register(struct drm_i915_private *i915) 1141 { 1142 struct i915_pmu *pmu = &i915->pmu; 1143 const struct attribute_group *attr_groups[] = { 1144 &i915_pmu_format_attr_group, 1145 &pmu->events_attr_group, 1146 &i915_pmu_cpumask_attr_group, 1147 NULL 1148 }; 1149 1150 int ret = -ENOMEM; 1151 1152 if (GRAPHICS_VER(i915) <= 2) { 1153 drm_info(&i915->drm, "PMU not supported for this GPU."); 1154 return; 1155 } 1156 1157 spin_lock_init(&pmu->lock); 1158 hrtimer_init(&pmu->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1159 pmu->timer.function = i915_sample; 1160 pmu->cpuhp.cpu = -1; 1161 init_rc6(pmu); 1162 1163 if (!is_igp(i915)) { 1164 pmu->name = kasprintf(GFP_KERNEL, 1165 "i915_%s", 1166 dev_name(i915->drm.dev)); 1167 if (pmu->name) { 1168 /* tools/perf reserves colons as special. */ 1169 strreplace((char *)pmu->name, ':', '_'); 1170 } 1171 } else { 1172 pmu->name = "i915"; 1173 } 1174 if (!pmu->name) 1175 goto err; 1176 1177 pmu->events_attr_group.name = "events"; 1178 pmu->events_attr_group.attrs = create_event_attributes(pmu); 1179 if (!pmu->events_attr_group.attrs) 1180 goto err_name; 1181 1182 pmu->base.attr_groups = kmemdup(attr_groups, sizeof(attr_groups), 1183 GFP_KERNEL); 1184 if (!pmu->base.attr_groups) 1185 goto err_attr; 1186 1187 pmu->base.module = THIS_MODULE; 1188 pmu->base.task_ctx_nr = perf_invalid_context; 1189 pmu->base.event_init = i915_pmu_event_init; 1190 pmu->base.add = i915_pmu_event_add; 1191 pmu->base.del = i915_pmu_event_del; 1192 pmu->base.start = i915_pmu_event_start; 1193 pmu->base.stop = i915_pmu_event_stop; 1194 pmu->base.read = i915_pmu_event_read; 1195 pmu->base.event_idx = i915_pmu_event_event_idx; 1196 1197 ret = perf_pmu_register(&pmu->base, pmu->name, -1); 1198 if (ret) 1199 goto err_groups; 1200 1201 ret = i915_pmu_register_cpuhp_state(pmu); 1202 if (ret) 1203 goto err_unreg; 1204 1205 return; 1206 1207 err_unreg: 1208 perf_pmu_unregister(&pmu->base); 1209 err_groups: 1210 kfree(pmu->base.attr_groups); 1211 err_attr: 1212 pmu->base.event_init = NULL; 1213 free_event_attributes(pmu); 1214 err_name: 1215 if (!is_igp(i915)) 1216 kfree(pmu->name); 1217 err: 1218 drm_notice(&i915->drm, "Failed to register PMU!\n"); 1219 } 1220 1221 void i915_pmu_unregister(struct drm_i915_private *i915) 1222 { 1223 struct i915_pmu *pmu = &i915->pmu; 1224 1225 if (!pmu->base.event_init) 1226 return; 1227 1228 /* 1229 * "Disconnect" the PMU callbacks - since all are atomic synchronize_rcu 1230 * ensures all currently executing ones will have exited before we 1231 * proceed with unregistration. 1232 */ 1233 pmu->closed = true; 1234 synchronize_rcu(); 1235 1236 hrtimer_cancel(&pmu->timer); 1237 1238 i915_pmu_unregister_cpuhp_state(pmu); 1239 1240 perf_pmu_unregister(&pmu->base); 1241 pmu->base.event_init = NULL; 1242 kfree(pmu->base.attr_groups); 1243 if (!is_igp(i915)) 1244 kfree(pmu->name); 1245 free_event_attributes(pmu); 1246 } 1247