1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2017-2018 Intel Corporation 5 */ 6 7 #include <linux/pm_runtime.h> 8 9 #include "gt/intel_engine.h" 10 #include "gt/intel_engine_pm.h" 11 #include "gt/intel_engine_regs.h" 12 #include "gt/intel_engine_user.h" 13 #include "gt/intel_gt_pm.h" 14 #include "gt/intel_gt_regs.h" 15 #include "gt/intel_rc6.h" 16 #include "gt/intel_rps.h" 17 18 #include "i915_drv.h" 19 #include "i915_pmu.h" 20 #include "intel_pm.h" 21 22 /* Frequency for the sampling timer for events which need it. */ 23 #define FREQUENCY 200 24 #define PERIOD max_t(u64, 10000, NSEC_PER_SEC / FREQUENCY) 25 26 #define ENGINE_SAMPLE_MASK \ 27 (BIT(I915_SAMPLE_BUSY) | \ 28 BIT(I915_SAMPLE_WAIT) | \ 29 BIT(I915_SAMPLE_SEMA)) 30 31 static cpumask_t i915_pmu_cpumask; 32 static unsigned int i915_pmu_target_cpu = -1; 33 34 static u8 engine_config_sample(u64 config) 35 { 36 return config & I915_PMU_SAMPLE_MASK; 37 } 38 39 static u8 engine_event_sample(struct perf_event *event) 40 { 41 return engine_config_sample(event->attr.config); 42 } 43 44 static u8 engine_event_class(struct perf_event *event) 45 { 46 return (event->attr.config >> I915_PMU_CLASS_SHIFT) & 0xff; 47 } 48 49 static u8 engine_event_instance(struct perf_event *event) 50 { 51 return (event->attr.config >> I915_PMU_SAMPLE_BITS) & 0xff; 52 } 53 54 static bool is_engine_config(u64 config) 55 { 56 return config < __I915_PMU_OTHER(0); 57 } 58 59 static unsigned int other_bit(const u64 config) 60 { 61 unsigned int val; 62 63 switch (config) { 64 case I915_PMU_ACTUAL_FREQUENCY: 65 val = __I915_PMU_ACTUAL_FREQUENCY_ENABLED; 66 break; 67 case I915_PMU_REQUESTED_FREQUENCY: 68 val = __I915_PMU_REQUESTED_FREQUENCY_ENABLED; 69 break; 70 case I915_PMU_RC6_RESIDENCY: 71 val = __I915_PMU_RC6_RESIDENCY_ENABLED; 72 break; 73 default: 74 /* 75 * Events that do not require sampling, or tracking state 76 * transitions between enabled and disabled can be ignored. 77 */ 78 return -1; 79 } 80 81 return I915_ENGINE_SAMPLE_COUNT + val; 82 } 83 84 static unsigned int config_bit(const u64 config) 85 { 86 if (is_engine_config(config)) 87 return engine_config_sample(config); 88 else 89 return other_bit(config); 90 } 91 92 static u64 config_mask(u64 config) 93 { 94 return BIT_ULL(config_bit(config)); 95 } 96 97 static bool is_engine_event(struct perf_event *event) 98 { 99 return is_engine_config(event->attr.config); 100 } 101 102 static unsigned int event_bit(struct perf_event *event) 103 { 104 return config_bit(event->attr.config); 105 } 106 107 static bool pmu_needs_timer(struct i915_pmu *pmu, bool gpu_active) 108 { 109 struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu); 110 u32 enable; 111 112 /* 113 * Only some counters need the sampling timer. 114 * 115 * We start with a bitmask of all currently enabled events. 116 */ 117 enable = pmu->enable; 118 119 /* 120 * Mask out all the ones which do not need the timer, or in 121 * other words keep all the ones that could need the timer. 122 */ 123 enable &= config_mask(I915_PMU_ACTUAL_FREQUENCY) | 124 config_mask(I915_PMU_REQUESTED_FREQUENCY) | 125 ENGINE_SAMPLE_MASK; 126 127 /* 128 * When the GPU is idle per-engine counters do not need to be 129 * running so clear those bits out. 130 */ 131 if (!gpu_active) 132 enable &= ~ENGINE_SAMPLE_MASK; 133 /* 134 * Also there is software busyness tracking available we do not 135 * need the timer for I915_SAMPLE_BUSY counter. 136 */ 137 else if (i915->caps.scheduler & I915_SCHEDULER_CAP_ENGINE_BUSY_STATS) 138 enable &= ~BIT(I915_SAMPLE_BUSY); 139 140 /* 141 * If some bits remain it means we need the sampling timer running. 142 */ 143 return enable; 144 } 145 146 static u64 __get_rc6(struct intel_gt *gt) 147 { 148 struct drm_i915_private *i915 = gt->i915; 149 u64 val; 150 151 val = intel_rc6_residency_ns(>->rc6, GEN6_GT_GFX_RC6); 152 153 if (HAS_RC6p(i915)) 154 val += intel_rc6_residency_ns(>->rc6, GEN6_GT_GFX_RC6p); 155 156 if (HAS_RC6pp(i915)) 157 val += intel_rc6_residency_ns(>->rc6, GEN6_GT_GFX_RC6pp); 158 159 return val; 160 } 161 162 static inline s64 ktime_since_raw(const ktime_t kt) 163 { 164 return ktime_to_ns(ktime_sub(ktime_get_raw(), kt)); 165 } 166 167 static u64 get_rc6(struct intel_gt *gt) 168 { 169 struct drm_i915_private *i915 = gt->i915; 170 struct i915_pmu *pmu = &i915->pmu; 171 unsigned long flags; 172 bool awake = false; 173 u64 val; 174 175 if (intel_gt_pm_get_if_awake(gt)) { 176 val = __get_rc6(gt); 177 intel_gt_pm_put_async(gt); 178 awake = true; 179 } 180 181 spin_lock_irqsave(&pmu->lock, flags); 182 183 if (awake) { 184 pmu->sample[__I915_SAMPLE_RC6].cur = val; 185 } else { 186 /* 187 * We think we are runtime suspended. 188 * 189 * Report the delta from when the device was suspended to now, 190 * on top of the last known real value, as the approximated RC6 191 * counter value. 192 */ 193 val = ktime_since_raw(pmu->sleep_last); 194 val += pmu->sample[__I915_SAMPLE_RC6].cur; 195 } 196 197 if (val < pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur) 198 val = pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur; 199 else 200 pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur = val; 201 202 spin_unlock_irqrestore(&pmu->lock, flags); 203 204 return val; 205 } 206 207 static void init_rc6(struct i915_pmu *pmu) 208 { 209 struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu); 210 intel_wakeref_t wakeref; 211 212 with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref) { 213 pmu->sample[__I915_SAMPLE_RC6].cur = __get_rc6(to_gt(i915)); 214 pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur = 215 pmu->sample[__I915_SAMPLE_RC6].cur; 216 pmu->sleep_last = ktime_get_raw(); 217 } 218 } 219 220 static void park_rc6(struct drm_i915_private *i915) 221 { 222 struct i915_pmu *pmu = &i915->pmu; 223 224 pmu->sample[__I915_SAMPLE_RC6].cur = __get_rc6(to_gt(i915)); 225 pmu->sleep_last = ktime_get_raw(); 226 } 227 228 static void __i915_pmu_maybe_start_timer(struct i915_pmu *pmu) 229 { 230 if (!pmu->timer_enabled && pmu_needs_timer(pmu, true)) { 231 pmu->timer_enabled = true; 232 pmu->timer_last = ktime_get(); 233 hrtimer_start_range_ns(&pmu->timer, 234 ns_to_ktime(PERIOD), 0, 235 HRTIMER_MODE_REL_PINNED); 236 } 237 } 238 239 void i915_pmu_gt_parked(struct drm_i915_private *i915) 240 { 241 struct i915_pmu *pmu = &i915->pmu; 242 243 if (!pmu->base.event_init) 244 return; 245 246 spin_lock_irq(&pmu->lock); 247 248 park_rc6(i915); 249 250 /* 251 * Signal sampling timer to stop if only engine events are enabled and 252 * GPU went idle. 253 */ 254 pmu->timer_enabled = pmu_needs_timer(pmu, false); 255 256 spin_unlock_irq(&pmu->lock); 257 } 258 259 void i915_pmu_gt_unparked(struct drm_i915_private *i915) 260 { 261 struct i915_pmu *pmu = &i915->pmu; 262 263 if (!pmu->base.event_init) 264 return; 265 266 spin_lock_irq(&pmu->lock); 267 268 /* 269 * Re-enable sampling timer when GPU goes active. 270 */ 271 __i915_pmu_maybe_start_timer(pmu); 272 273 spin_unlock_irq(&pmu->lock); 274 } 275 276 static void 277 add_sample(struct i915_pmu_sample *sample, u32 val) 278 { 279 sample->cur += val; 280 } 281 282 static bool exclusive_mmio_access(const struct drm_i915_private *i915) 283 { 284 /* 285 * We have to avoid concurrent mmio cache line access on gen7 or 286 * risk a machine hang. For a fun history lesson dig out the old 287 * userspace intel_gpu_top and run it on Ivybridge or Haswell! 288 */ 289 return GRAPHICS_VER(i915) == 7; 290 } 291 292 static void engine_sample(struct intel_engine_cs *engine, unsigned int period_ns) 293 { 294 struct intel_engine_pmu *pmu = &engine->pmu; 295 bool busy; 296 u32 val; 297 298 val = ENGINE_READ_FW(engine, RING_CTL); 299 if (val == 0) /* powerwell off => engine idle */ 300 return; 301 302 if (val & RING_WAIT) 303 add_sample(&pmu->sample[I915_SAMPLE_WAIT], period_ns); 304 if (val & RING_WAIT_SEMAPHORE) 305 add_sample(&pmu->sample[I915_SAMPLE_SEMA], period_ns); 306 307 /* No need to sample when busy stats are supported. */ 308 if (intel_engine_supports_stats(engine)) 309 return; 310 311 /* 312 * While waiting on a semaphore or event, MI_MODE reports the 313 * ring as idle. However, previously using the seqno, and with 314 * execlists sampling, we account for the ring waiting as the 315 * engine being busy. Therefore, we record the sample as being 316 * busy if either waiting or !idle. 317 */ 318 busy = val & (RING_WAIT_SEMAPHORE | RING_WAIT); 319 if (!busy) { 320 val = ENGINE_READ_FW(engine, RING_MI_MODE); 321 busy = !(val & MODE_IDLE); 322 } 323 if (busy) 324 add_sample(&pmu->sample[I915_SAMPLE_BUSY], period_ns); 325 } 326 327 static void 328 engines_sample(struct intel_gt *gt, unsigned int period_ns) 329 { 330 struct drm_i915_private *i915 = gt->i915; 331 struct intel_engine_cs *engine; 332 enum intel_engine_id id; 333 unsigned long flags; 334 335 if ((i915->pmu.enable & ENGINE_SAMPLE_MASK) == 0) 336 return; 337 338 if (!intel_gt_pm_is_awake(gt)) 339 return; 340 341 for_each_engine(engine, gt, id) { 342 if (!intel_engine_pm_get_if_awake(engine)) 343 continue; 344 345 if (exclusive_mmio_access(i915)) { 346 spin_lock_irqsave(&engine->uncore->lock, flags); 347 engine_sample(engine, period_ns); 348 spin_unlock_irqrestore(&engine->uncore->lock, flags); 349 } else { 350 engine_sample(engine, period_ns); 351 } 352 353 intel_engine_pm_put_async(engine); 354 } 355 } 356 357 static void 358 add_sample_mult(struct i915_pmu_sample *sample, u32 val, u32 mul) 359 { 360 sample->cur += mul_u32_u32(val, mul); 361 } 362 363 static bool frequency_sampling_enabled(struct i915_pmu *pmu) 364 { 365 return pmu->enable & 366 (config_mask(I915_PMU_ACTUAL_FREQUENCY) | 367 config_mask(I915_PMU_REQUESTED_FREQUENCY)); 368 } 369 370 static void 371 frequency_sample(struct intel_gt *gt, unsigned int period_ns) 372 { 373 struct drm_i915_private *i915 = gt->i915; 374 struct intel_uncore *uncore = gt->uncore; 375 struct i915_pmu *pmu = &i915->pmu; 376 struct intel_rps *rps = >->rps; 377 378 if (!frequency_sampling_enabled(pmu)) 379 return; 380 381 /* Report 0/0 (actual/requested) frequency while parked. */ 382 if (!intel_gt_pm_get_if_awake(gt)) 383 return; 384 385 if (pmu->enable & config_mask(I915_PMU_ACTUAL_FREQUENCY)) { 386 u32 val; 387 388 /* 389 * We take a quick peek here without using forcewake 390 * so that we don't perturb the system under observation 391 * (forcewake => !rc6 => increased power use). We expect 392 * that if the read fails because it is outside of the 393 * mmio power well, then it will return 0 -- in which 394 * case we assume the system is running at the intended 395 * frequency. Fortunately, the read should rarely fail! 396 */ 397 val = intel_uncore_read_fw(uncore, GEN6_RPSTAT1); 398 if (val) 399 val = intel_rps_get_cagf(rps, val); 400 else 401 val = rps->cur_freq; 402 403 add_sample_mult(&pmu->sample[__I915_SAMPLE_FREQ_ACT], 404 intel_gpu_freq(rps, val), period_ns / 1000); 405 } 406 407 if (pmu->enable & config_mask(I915_PMU_REQUESTED_FREQUENCY)) { 408 add_sample_mult(&pmu->sample[__I915_SAMPLE_FREQ_REQ], 409 intel_rps_get_requested_frequency(rps), 410 period_ns / 1000); 411 } 412 413 intel_gt_pm_put_async(gt); 414 } 415 416 static enum hrtimer_restart i915_sample(struct hrtimer *hrtimer) 417 { 418 struct drm_i915_private *i915 = 419 container_of(hrtimer, struct drm_i915_private, pmu.timer); 420 struct i915_pmu *pmu = &i915->pmu; 421 struct intel_gt *gt = to_gt(i915); 422 unsigned int period_ns; 423 ktime_t now; 424 425 if (!READ_ONCE(pmu->timer_enabled)) 426 return HRTIMER_NORESTART; 427 428 now = ktime_get(); 429 period_ns = ktime_to_ns(ktime_sub(now, pmu->timer_last)); 430 pmu->timer_last = now; 431 432 /* 433 * Strictly speaking the passed in period may not be 100% accurate for 434 * all internal calculation, since some amount of time can be spent on 435 * grabbing the forcewake. However the potential error from timer call- 436 * back delay greatly dominates this so we keep it simple. 437 */ 438 engines_sample(gt, period_ns); 439 frequency_sample(gt, period_ns); 440 441 hrtimer_forward(hrtimer, now, ns_to_ktime(PERIOD)); 442 443 return HRTIMER_RESTART; 444 } 445 446 static void i915_pmu_event_destroy(struct perf_event *event) 447 { 448 struct drm_i915_private *i915 = 449 container_of(event->pmu, typeof(*i915), pmu.base); 450 451 drm_WARN_ON(&i915->drm, event->parent); 452 453 drm_dev_put(&i915->drm); 454 } 455 456 static int 457 engine_event_status(struct intel_engine_cs *engine, 458 enum drm_i915_pmu_engine_sample sample) 459 { 460 switch (sample) { 461 case I915_SAMPLE_BUSY: 462 case I915_SAMPLE_WAIT: 463 break; 464 case I915_SAMPLE_SEMA: 465 if (GRAPHICS_VER(engine->i915) < 6) 466 return -ENODEV; 467 break; 468 default: 469 return -ENOENT; 470 } 471 472 return 0; 473 } 474 475 static int 476 config_status(struct drm_i915_private *i915, u64 config) 477 { 478 struct intel_gt *gt = to_gt(i915); 479 480 switch (config) { 481 case I915_PMU_ACTUAL_FREQUENCY: 482 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) 483 /* Requires a mutex for sampling! */ 484 return -ENODEV; 485 fallthrough; 486 case I915_PMU_REQUESTED_FREQUENCY: 487 if (GRAPHICS_VER(i915) < 6) 488 return -ENODEV; 489 break; 490 case I915_PMU_INTERRUPTS: 491 break; 492 case I915_PMU_RC6_RESIDENCY: 493 if (!gt->rc6.supported) 494 return -ENODEV; 495 break; 496 case I915_PMU_SOFTWARE_GT_AWAKE_TIME: 497 break; 498 default: 499 return -ENOENT; 500 } 501 502 return 0; 503 } 504 505 static int engine_event_init(struct perf_event *event) 506 { 507 struct drm_i915_private *i915 = 508 container_of(event->pmu, typeof(*i915), pmu.base); 509 struct intel_engine_cs *engine; 510 511 engine = intel_engine_lookup_user(i915, engine_event_class(event), 512 engine_event_instance(event)); 513 if (!engine) 514 return -ENODEV; 515 516 return engine_event_status(engine, engine_event_sample(event)); 517 } 518 519 static int i915_pmu_event_init(struct perf_event *event) 520 { 521 struct drm_i915_private *i915 = 522 container_of(event->pmu, typeof(*i915), pmu.base); 523 struct i915_pmu *pmu = &i915->pmu; 524 int ret; 525 526 if (pmu->closed) 527 return -ENODEV; 528 529 if (event->attr.type != event->pmu->type) 530 return -ENOENT; 531 532 /* unsupported modes and filters */ 533 if (event->attr.sample_period) /* no sampling */ 534 return -EINVAL; 535 536 if (has_branch_stack(event)) 537 return -EOPNOTSUPP; 538 539 if (event->cpu < 0) 540 return -EINVAL; 541 542 /* only allow running on one cpu at a time */ 543 if (!cpumask_test_cpu(event->cpu, &i915_pmu_cpumask)) 544 return -EINVAL; 545 546 if (is_engine_event(event)) 547 ret = engine_event_init(event); 548 else 549 ret = config_status(i915, event->attr.config); 550 if (ret) 551 return ret; 552 553 if (!event->parent) { 554 drm_dev_get(&i915->drm); 555 event->destroy = i915_pmu_event_destroy; 556 } 557 558 return 0; 559 } 560 561 static u64 __i915_pmu_event_read(struct perf_event *event) 562 { 563 struct drm_i915_private *i915 = 564 container_of(event->pmu, typeof(*i915), pmu.base); 565 struct i915_pmu *pmu = &i915->pmu; 566 u64 val = 0; 567 568 if (is_engine_event(event)) { 569 u8 sample = engine_event_sample(event); 570 struct intel_engine_cs *engine; 571 572 engine = intel_engine_lookup_user(i915, 573 engine_event_class(event), 574 engine_event_instance(event)); 575 576 if (drm_WARN_ON_ONCE(&i915->drm, !engine)) { 577 /* Do nothing */ 578 } else if (sample == I915_SAMPLE_BUSY && 579 intel_engine_supports_stats(engine)) { 580 ktime_t unused; 581 582 val = ktime_to_ns(intel_engine_get_busy_time(engine, 583 &unused)); 584 } else { 585 val = engine->pmu.sample[sample].cur; 586 } 587 } else { 588 switch (event->attr.config) { 589 case I915_PMU_ACTUAL_FREQUENCY: 590 val = 591 div_u64(pmu->sample[__I915_SAMPLE_FREQ_ACT].cur, 592 USEC_PER_SEC /* to MHz */); 593 break; 594 case I915_PMU_REQUESTED_FREQUENCY: 595 val = 596 div_u64(pmu->sample[__I915_SAMPLE_FREQ_REQ].cur, 597 USEC_PER_SEC /* to MHz */); 598 break; 599 case I915_PMU_INTERRUPTS: 600 val = READ_ONCE(pmu->irq_count); 601 break; 602 case I915_PMU_RC6_RESIDENCY: 603 val = get_rc6(to_gt(i915)); 604 break; 605 case I915_PMU_SOFTWARE_GT_AWAKE_TIME: 606 val = ktime_to_ns(intel_gt_get_awake_time(to_gt(i915))); 607 break; 608 } 609 } 610 611 return val; 612 } 613 614 static void i915_pmu_event_read(struct perf_event *event) 615 { 616 struct drm_i915_private *i915 = 617 container_of(event->pmu, typeof(*i915), pmu.base); 618 struct hw_perf_event *hwc = &event->hw; 619 struct i915_pmu *pmu = &i915->pmu; 620 u64 prev, new; 621 622 if (pmu->closed) { 623 event->hw.state = PERF_HES_STOPPED; 624 return; 625 } 626 again: 627 prev = local64_read(&hwc->prev_count); 628 new = __i915_pmu_event_read(event); 629 630 if (local64_cmpxchg(&hwc->prev_count, prev, new) != prev) 631 goto again; 632 633 local64_add(new - prev, &event->count); 634 } 635 636 static void i915_pmu_enable(struct perf_event *event) 637 { 638 struct drm_i915_private *i915 = 639 container_of(event->pmu, typeof(*i915), pmu.base); 640 struct i915_pmu *pmu = &i915->pmu; 641 unsigned long flags; 642 unsigned int bit; 643 644 bit = event_bit(event); 645 if (bit == -1) 646 goto update; 647 648 spin_lock_irqsave(&pmu->lock, flags); 649 650 /* 651 * Update the bitmask of enabled events and increment 652 * the event reference counter. 653 */ 654 BUILD_BUG_ON(ARRAY_SIZE(pmu->enable_count) != I915_PMU_MASK_BITS); 655 GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count)); 656 GEM_BUG_ON(pmu->enable_count[bit] == ~0); 657 658 pmu->enable |= BIT_ULL(bit); 659 pmu->enable_count[bit]++; 660 661 /* 662 * Start the sampling timer if needed and not already enabled. 663 */ 664 __i915_pmu_maybe_start_timer(pmu); 665 666 /* 667 * For per-engine events the bitmask and reference counting 668 * is stored per engine. 669 */ 670 if (is_engine_event(event)) { 671 u8 sample = engine_event_sample(event); 672 struct intel_engine_cs *engine; 673 674 engine = intel_engine_lookup_user(i915, 675 engine_event_class(event), 676 engine_event_instance(event)); 677 678 BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.enable_count) != 679 I915_ENGINE_SAMPLE_COUNT); 680 BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.sample) != 681 I915_ENGINE_SAMPLE_COUNT); 682 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count)); 683 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample)); 684 GEM_BUG_ON(engine->pmu.enable_count[sample] == ~0); 685 686 engine->pmu.enable |= BIT(sample); 687 engine->pmu.enable_count[sample]++; 688 } 689 690 spin_unlock_irqrestore(&pmu->lock, flags); 691 692 update: 693 /* 694 * Store the current counter value so we can report the correct delta 695 * for all listeners. Even when the event was already enabled and has 696 * an existing non-zero value. 697 */ 698 local64_set(&event->hw.prev_count, __i915_pmu_event_read(event)); 699 } 700 701 static void i915_pmu_disable(struct perf_event *event) 702 { 703 struct drm_i915_private *i915 = 704 container_of(event->pmu, typeof(*i915), pmu.base); 705 unsigned int bit = event_bit(event); 706 struct i915_pmu *pmu = &i915->pmu; 707 unsigned long flags; 708 709 if (bit == -1) 710 return; 711 712 spin_lock_irqsave(&pmu->lock, flags); 713 714 if (is_engine_event(event)) { 715 u8 sample = engine_event_sample(event); 716 struct intel_engine_cs *engine; 717 718 engine = intel_engine_lookup_user(i915, 719 engine_event_class(event), 720 engine_event_instance(event)); 721 722 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count)); 723 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample)); 724 GEM_BUG_ON(engine->pmu.enable_count[sample] == 0); 725 726 /* 727 * Decrement the reference count and clear the enabled 728 * bitmask when the last listener on an event goes away. 729 */ 730 if (--engine->pmu.enable_count[sample] == 0) 731 engine->pmu.enable &= ~BIT(sample); 732 } 733 734 GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count)); 735 GEM_BUG_ON(pmu->enable_count[bit] == 0); 736 /* 737 * Decrement the reference count and clear the enabled 738 * bitmask when the last listener on an event goes away. 739 */ 740 if (--pmu->enable_count[bit] == 0) { 741 pmu->enable &= ~BIT_ULL(bit); 742 pmu->timer_enabled &= pmu_needs_timer(pmu, true); 743 } 744 745 spin_unlock_irqrestore(&pmu->lock, flags); 746 } 747 748 static void i915_pmu_event_start(struct perf_event *event, int flags) 749 { 750 struct drm_i915_private *i915 = 751 container_of(event->pmu, typeof(*i915), pmu.base); 752 struct i915_pmu *pmu = &i915->pmu; 753 754 if (pmu->closed) 755 return; 756 757 i915_pmu_enable(event); 758 event->hw.state = 0; 759 } 760 761 static void i915_pmu_event_stop(struct perf_event *event, int flags) 762 { 763 if (flags & PERF_EF_UPDATE) 764 i915_pmu_event_read(event); 765 i915_pmu_disable(event); 766 event->hw.state = PERF_HES_STOPPED; 767 } 768 769 static int i915_pmu_event_add(struct perf_event *event, int flags) 770 { 771 struct drm_i915_private *i915 = 772 container_of(event->pmu, typeof(*i915), pmu.base); 773 struct i915_pmu *pmu = &i915->pmu; 774 775 if (pmu->closed) 776 return -ENODEV; 777 778 if (flags & PERF_EF_START) 779 i915_pmu_event_start(event, flags); 780 781 return 0; 782 } 783 784 static void i915_pmu_event_del(struct perf_event *event, int flags) 785 { 786 i915_pmu_event_stop(event, PERF_EF_UPDATE); 787 } 788 789 static int i915_pmu_event_event_idx(struct perf_event *event) 790 { 791 return 0; 792 } 793 794 struct i915_str_attribute { 795 struct device_attribute attr; 796 const char *str; 797 }; 798 799 static ssize_t i915_pmu_format_show(struct device *dev, 800 struct device_attribute *attr, char *buf) 801 { 802 struct i915_str_attribute *eattr; 803 804 eattr = container_of(attr, struct i915_str_attribute, attr); 805 return sprintf(buf, "%s\n", eattr->str); 806 } 807 808 #define I915_PMU_FORMAT_ATTR(_name, _config) \ 809 (&((struct i915_str_attribute[]) { \ 810 { .attr = __ATTR(_name, 0444, i915_pmu_format_show, NULL), \ 811 .str = _config, } \ 812 })[0].attr.attr) 813 814 static struct attribute *i915_pmu_format_attrs[] = { 815 I915_PMU_FORMAT_ATTR(i915_eventid, "config:0-20"), 816 NULL, 817 }; 818 819 static const struct attribute_group i915_pmu_format_attr_group = { 820 .name = "format", 821 .attrs = i915_pmu_format_attrs, 822 }; 823 824 struct i915_ext_attribute { 825 struct device_attribute attr; 826 unsigned long val; 827 }; 828 829 static ssize_t i915_pmu_event_show(struct device *dev, 830 struct device_attribute *attr, char *buf) 831 { 832 struct i915_ext_attribute *eattr; 833 834 eattr = container_of(attr, struct i915_ext_attribute, attr); 835 return sprintf(buf, "config=0x%lx\n", eattr->val); 836 } 837 838 static ssize_t cpumask_show(struct device *dev, 839 struct device_attribute *attr, char *buf) 840 { 841 return cpumap_print_to_pagebuf(true, buf, &i915_pmu_cpumask); 842 } 843 844 static DEVICE_ATTR_RO(cpumask); 845 846 static struct attribute *i915_cpumask_attrs[] = { 847 &dev_attr_cpumask.attr, 848 NULL, 849 }; 850 851 static const struct attribute_group i915_pmu_cpumask_attr_group = { 852 .attrs = i915_cpumask_attrs, 853 }; 854 855 #define __event(__config, __name, __unit) \ 856 { \ 857 .config = (__config), \ 858 .name = (__name), \ 859 .unit = (__unit), \ 860 } 861 862 #define __engine_event(__sample, __name) \ 863 { \ 864 .sample = (__sample), \ 865 .name = (__name), \ 866 } 867 868 static struct i915_ext_attribute * 869 add_i915_attr(struct i915_ext_attribute *attr, const char *name, u64 config) 870 { 871 sysfs_attr_init(&attr->attr.attr); 872 attr->attr.attr.name = name; 873 attr->attr.attr.mode = 0444; 874 attr->attr.show = i915_pmu_event_show; 875 attr->val = config; 876 877 return ++attr; 878 } 879 880 static struct perf_pmu_events_attr * 881 add_pmu_attr(struct perf_pmu_events_attr *attr, const char *name, 882 const char *str) 883 { 884 sysfs_attr_init(&attr->attr.attr); 885 attr->attr.attr.name = name; 886 attr->attr.attr.mode = 0444; 887 attr->attr.show = perf_event_sysfs_show; 888 attr->event_str = str; 889 890 return ++attr; 891 } 892 893 static struct attribute ** 894 create_event_attributes(struct i915_pmu *pmu) 895 { 896 struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu); 897 static const struct { 898 u64 config; 899 const char *name; 900 const char *unit; 901 } events[] = { 902 __event(I915_PMU_ACTUAL_FREQUENCY, "actual-frequency", "M"), 903 __event(I915_PMU_REQUESTED_FREQUENCY, "requested-frequency", "M"), 904 __event(I915_PMU_INTERRUPTS, "interrupts", NULL), 905 __event(I915_PMU_RC6_RESIDENCY, "rc6-residency", "ns"), 906 __event(I915_PMU_SOFTWARE_GT_AWAKE_TIME, "software-gt-awake-time", "ns"), 907 }; 908 static const struct { 909 enum drm_i915_pmu_engine_sample sample; 910 char *name; 911 } engine_events[] = { 912 __engine_event(I915_SAMPLE_BUSY, "busy"), 913 __engine_event(I915_SAMPLE_SEMA, "sema"), 914 __engine_event(I915_SAMPLE_WAIT, "wait"), 915 }; 916 unsigned int count = 0; 917 struct perf_pmu_events_attr *pmu_attr = NULL, *pmu_iter; 918 struct i915_ext_attribute *i915_attr = NULL, *i915_iter; 919 struct attribute **attr = NULL, **attr_iter; 920 struct intel_engine_cs *engine; 921 unsigned int i; 922 923 /* Count how many counters we will be exposing. */ 924 for (i = 0; i < ARRAY_SIZE(events); i++) { 925 if (!config_status(i915, events[i].config)) 926 count++; 927 } 928 929 for_each_uabi_engine(engine, i915) { 930 for (i = 0; i < ARRAY_SIZE(engine_events); i++) { 931 if (!engine_event_status(engine, 932 engine_events[i].sample)) 933 count++; 934 } 935 } 936 937 /* Allocate attribute objects and table. */ 938 i915_attr = kcalloc(count, sizeof(*i915_attr), GFP_KERNEL); 939 if (!i915_attr) 940 goto err_alloc; 941 942 pmu_attr = kcalloc(count, sizeof(*pmu_attr), GFP_KERNEL); 943 if (!pmu_attr) 944 goto err_alloc; 945 946 /* Max one pointer of each attribute type plus a termination entry. */ 947 attr = kcalloc(count * 2 + 1, sizeof(*attr), GFP_KERNEL); 948 if (!attr) 949 goto err_alloc; 950 951 i915_iter = i915_attr; 952 pmu_iter = pmu_attr; 953 attr_iter = attr; 954 955 /* Initialize supported non-engine counters. */ 956 for (i = 0; i < ARRAY_SIZE(events); i++) { 957 char *str; 958 959 if (config_status(i915, events[i].config)) 960 continue; 961 962 str = kstrdup(events[i].name, GFP_KERNEL); 963 if (!str) 964 goto err; 965 966 *attr_iter++ = &i915_iter->attr.attr; 967 i915_iter = add_i915_attr(i915_iter, str, events[i].config); 968 969 if (events[i].unit) { 970 str = kasprintf(GFP_KERNEL, "%s.unit", events[i].name); 971 if (!str) 972 goto err; 973 974 *attr_iter++ = &pmu_iter->attr.attr; 975 pmu_iter = add_pmu_attr(pmu_iter, str, events[i].unit); 976 } 977 } 978 979 /* Initialize supported engine counters. */ 980 for_each_uabi_engine(engine, i915) { 981 for (i = 0; i < ARRAY_SIZE(engine_events); i++) { 982 char *str; 983 984 if (engine_event_status(engine, 985 engine_events[i].sample)) 986 continue; 987 988 str = kasprintf(GFP_KERNEL, "%s-%s", 989 engine->name, engine_events[i].name); 990 if (!str) 991 goto err; 992 993 *attr_iter++ = &i915_iter->attr.attr; 994 i915_iter = 995 add_i915_attr(i915_iter, str, 996 __I915_PMU_ENGINE(engine->uabi_class, 997 engine->uabi_instance, 998 engine_events[i].sample)); 999 1000 str = kasprintf(GFP_KERNEL, "%s-%s.unit", 1001 engine->name, engine_events[i].name); 1002 if (!str) 1003 goto err; 1004 1005 *attr_iter++ = &pmu_iter->attr.attr; 1006 pmu_iter = add_pmu_attr(pmu_iter, str, "ns"); 1007 } 1008 } 1009 1010 pmu->i915_attr = i915_attr; 1011 pmu->pmu_attr = pmu_attr; 1012 1013 return attr; 1014 1015 err:; 1016 for (attr_iter = attr; *attr_iter; attr_iter++) 1017 kfree((*attr_iter)->name); 1018 1019 err_alloc: 1020 kfree(attr); 1021 kfree(i915_attr); 1022 kfree(pmu_attr); 1023 1024 return NULL; 1025 } 1026 1027 static void free_event_attributes(struct i915_pmu *pmu) 1028 { 1029 struct attribute **attr_iter = pmu->events_attr_group.attrs; 1030 1031 for (; *attr_iter; attr_iter++) 1032 kfree((*attr_iter)->name); 1033 1034 kfree(pmu->events_attr_group.attrs); 1035 kfree(pmu->i915_attr); 1036 kfree(pmu->pmu_attr); 1037 1038 pmu->events_attr_group.attrs = NULL; 1039 pmu->i915_attr = NULL; 1040 pmu->pmu_attr = NULL; 1041 } 1042 1043 static int i915_pmu_cpu_online(unsigned int cpu, struct hlist_node *node) 1044 { 1045 struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node); 1046 1047 GEM_BUG_ON(!pmu->base.event_init); 1048 1049 /* Select the first online CPU as a designated reader. */ 1050 if (cpumask_empty(&i915_pmu_cpumask)) 1051 cpumask_set_cpu(cpu, &i915_pmu_cpumask); 1052 1053 return 0; 1054 } 1055 1056 static int i915_pmu_cpu_offline(unsigned int cpu, struct hlist_node *node) 1057 { 1058 struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node); 1059 unsigned int target = i915_pmu_target_cpu; 1060 1061 GEM_BUG_ON(!pmu->base.event_init); 1062 1063 /* 1064 * Unregistering an instance generates a CPU offline event which we must 1065 * ignore to avoid incorrectly modifying the shared i915_pmu_cpumask. 1066 */ 1067 if (pmu->closed) 1068 return 0; 1069 1070 if (cpumask_test_and_clear_cpu(cpu, &i915_pmu_cpumask)) { 1071 target = cpumask_any_but(topology_sibling_cpumask(cpu), cpu); 1072 1073 /* Migrate events if there is a valid target */ 1074 if (target < nr_cpu_ids) { 1075 cpumask_set_cpu(target, &i915_pmu_cpumask); 1076 i915_pmu_target_cpu = target; 1077 } 1078 } 1079 1080 if (target < nr_cpu_ids && target != pmu->cpuhp.cpu) { 1081 perf_pmu_migrate_context(&pmu->base, cpu, target); 1082 pmu->cpuhp.cpu = target; 1083 } 1084 1085 return 0; 1086 } 1087 1088 static enum cpuhp_state cpuhp_slot = CPUHP_INVALID; 1089 1090 int i915_pmu_init(void) 1091 { 1092 int ret; 1093 1094 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 1095 "perf/x86/intel/i915:online", 1096 i915_pmu_cpu_online, 1097 i915_pmu_cpu_offline); 1098 if (ret < 0) 1099 pr_notice("Failed to setup cpuhp state for i915 PMU! (%d)\n", 1100 ret); 1101 else 1102 cpuhp_slot = ret; 1103 1104 return 0; 1105 } 1106 1107 void i915_pmu_exit(void) 1108 { 1109 if (cpuhp_slot != CPUHP_INVALID) 1110 cpuhp_remove_multi_state(cpuhp_slot); 1111 } 1112 1113 static int i915_pmu_register_cpuhp_state(struct i915_pmu *pmu) 1114 { 1115 if (cpuhp_slot == CPUHP_INVALID) 1116 return -EINVAL; 1117 1118 return cpuhp_state_add_instance(cpuhp_slot, &pmu->cpuhp.node); 1119 } 1120 1121 static void i915_pmu_unregister_cpuhp_state(struct i915_pmu *pmu) 1122 { 1123 cpuhp_state_remove_instance(cpuhp_slot, &pmu->cpuhp.node); 1124 } 1125 1126 static bool is_igp(struct drm_i915_private *i915) 1127 { 1128 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1129 1130 /* IGP is 0000:00:02.0 */ 1131 return pci_domain_nr(pdev->bus) == 0 && 1132 pdev->bus->number == 0 && 1133 PCI_SLOT(pdev->devfn) == 2 && 1134 PCI_FUNC(pdev->devfn) == 0; 1135 } 1136 1137 void i915_pmu_register(struct drm_i915_private *i915) 1138 { 1139 struct i915_pmu *pmu = &i915->pmu; 1140 const struct attribute_group *attr_groups[] = { 1141 &i915_pmu_format_attr_group, 1142 &pmu->events_attr_group, 1143 &i915_pmu_cpumask_attr_group, 1144 NULL 1145 }; 1146 1147 int ret = -ENOMEM; 1148 1149 if (GRAPHICS_VER(i915) <= 2) { 1150 drm_info(&i915->drm, "PMU not supported for this GPU."); 1151 return; 1152 } 1153 1154 spin_lock_init(&pmu->lock); 1155 hrtimer_init(&pmu->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1156 pmu->timer.function = i915_sample; 1157 pmu->cpuhp.cpu = -1; 1158 init_rc6(pmu); 1159 1160 if (!is_igp(i915)) { 1161 pmu->name = kasprintf(GFP_KERNEL, 1162 "i915_%s", 1163 dev_name(i915->drm.dev)); 1164 if (pmu->name) { 1165 /* tools/perf reserves colons as special. */ 1166 strreplace((char *)pmu->name, ':', '_'); 1167 } 1168 } else { 1169 pmu->name = "i915"; 1170 } 1171 if (!pmu->name) 1172 goto err; 1173 1174 pmu->events_attr_group.name = "events"; 1175 pmu->events_attr_group.attrs = create_event_attributes(pmu); 1176 if (!pmu->events_attr_group.attrs) 1177 goto err_name; 1178 1179 pmu->base.attr_groups = kmemdup(attr_groups, sizeof(attr_groups), 1180 GFP_KERNEL); 1181 if (!pmu->base.attr_groups) 1182 goto err_attr; 1183 1184 pmu->base.module = THIS_MODULE; 1185 pmu->base.task_ctx_nr = perf_invalid_context; 1186 pmu->base.event_init = i915_pmu_event_init; 1187 pmu->base.add = i915_pmu_event_add; 1188 pmu->base.del = i915_pmu_event_del; 1189 pmu->base.start = i915_pmu_event_start; 1190 pmu->base.stop = i915_pmu_event_stop; 1191 pmu->base.read = i915_pmu_event_read; 1192 pmu->base.event_idx = i915_pmu_event_event_idx; 1193 1194 ret = perf_pmu_register(&pmu->base, pmu->name, -1); 1195 if (ret) 1196 goto err_groups; 1197 1198 ret = i915_pmu_register_cpuhp_state(pmu); 1199 if (ret) 1200 goto err_unreg; 1201 1202 return; 1203 1204 err_unreg: 1205 perf_pmu_unregister(&pmu->base); 1206 err_groups: 1207 kfree(pmu->base.attr_groups); 1208 err_attr: 1209 pmu->base.event_init = NULL; 1210 free_event_attributes(pmu); 1211 err_name: 1212 if (!is_igp(i915)) 1213 kfree(pmu->name); 1214 err: 1215 drm_notice(&i915->drm, "Failed to register PMU!\n"); 1216 } 1217 1218 void i915_pmu_unregister(struct drm_i915_private *i915) 1219 { 1220 struct i915_pmu *pmu = &i915->pmu; 1221 1222 if (!pmu->base.event_init) 1223 return; 1224 1225 /* 1226 * "Disconnect" the PMU callbacks - since all are atomic synchronize_rcu 1227 * ensures all currently executing ones will have exited before we 1228 * proceed with unregistration. 1229 */ 1230 pmu->closed = true; 1231 synchronize_rcu(); 1232 1233 hrtimer_cancel(&pmu->timer); 1234 1235 i915_pmu_unregister_cpuhp_state(pmu); 1236 1237 perf_pmu_unregister(&pmu->base); 1238 pmu->base.event_init = NULL; 1239 kfree(pmu->base.attr_groups); 1240 if (!is_igp(i915)) 1241 kfree(pmu->name); 1242 free_event_attributes(pmu); 1243 } 1244