xref: /openbmc/linux/drivers/gpu/drm/i915/i915_pmu.c (revision 61ae993c)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2017-2018 Intel Corporation
5  */
6 
7 #include <linux/pm_runtime.h>
8 
9 #include "gt/intel_engine.h"
10 #include "gt/intel_engine_pm.h"
11 #include "gt/intel_engine_regs.h"
12 #include "gt/intel_engine_user.h"
13 #include "gt/intel_gt.h"
14 #include "gt/intel_gt_pm.h"
15 #include "gt/intel_gt_regs.h"
16 #include "gt/intel_rc6.h"
17 #include "gt/intel_rps.h"
18 
19 #include "i915_drv.h"
20 #include "i915_pmu.h"
21 
22 /* Frequency for the sampling timer for events which need it. */
23 #define FREQUENCY 200
24 #define PERIOD max_t(u64, 10000, NSEC_PER_SEC / FREQUENCY)
25 
26 #define ENGINE_SAMPLE_MASK \
27 	(BIT(I915_SAMPLE_BUSY) | \
28 	 BIT(I915_SAMPLE_WAIT) | \
29 	 BIT(I915_SAMPLE_SEMA))
30 
31 static cpumask_t i915_pmu_cpumask;
32 static unsigned int i915_pmu_target_cpu = -1;
33 
34 static u8 engine_config_sample(u64 config)
35 {
36 	return config & I915_PMU_SAMPLE_MASK;
37 }
38 
39 static u8 engine_event_sample(struct perf_event *event)
40 {
41 	return engine_config_sample(event->attr.config);
42 }
43 
44 static u8 engine_event_class(struct perf_event *event)
45 {
46 	return (event->attr.config >> I915_PMU_CLASS_SHIFT) & 0xff;
47 }
48 
49 static u8 engine_event_instance(struct perf_event *event)
50 {
51 	return (event->attr.config >> I915_PMU_SAMPLE_BITS) & 0xff;
52 }
53 
54 static bool is_engine_config(const u64 config)
55 {
56 	return config < __I915_PMU_OTHER(0);
57 }
58 
59 static unsigned int config_gt_id(const u64 config)
60 {
61 	return config >> __I915_PMU_GT_SHIFT;
62 }
63 
64 static u64 config_counter(const u64 config)
65 {
66 	return config & ~(~0ULL << __I915_PMU_GT_SHIFT);
67 }
68 
69 static unsigned int other_bit(const u64 config)
70 {
71 	unsigned int val;
72 
73 	switch (config_counter(config)) {
74 	case I915_PMU_ACTUAL_FREQUENCY:
75 		val =  __I915_PMU_ACTUAL_FREQUENCY_ENABLED;
76 		break;
77 	case I915_PMU_REQUESTED_FREQUENCY:
78 		val = __I915_PMU_REQUESTED_FREQUENCY_ENABLED;
79 		break;
80 	case I915_PMU_RC6_RESIDENCY:
81 		val = __I915_PMU_RC6_RESIDENCY_ENABLED;
82 		break;
83 	default:
84 		/*
85 		 * Events that do not require sampling, or tracking state
86 		 * transitions between enabled and disabled can be ignored.
87 		 */
88 		return -1;
89 	}
90 
91 	return I915_ENGINE_SAMPLE_COUNT +
92 	       config_gt_id(config) * __I915_PMU_TRACKED_EVENT_COUNT +
93 	       val;
94 }
95 
96 static unsigned int config_bit(const u64 config)
97 {
98 	if (is_engine_config(config))
99 		return engine_config_sample(config);
100 	else
101 		return other_bit(config);
102 }
103 
104 static u32 config_mask(const u64 config)
105 {
106 	unsigned int bit = config_bit(config);
107 
108 	if (__builtin_constant_p(config))
109 		BUILD_BUG_ON(bit >
110 			     BITS_PER_TYPE(typeof_member(struct i915_pmu,
111 							 enable)) - 1);
112 	else
113 		WARN_ON_ONCE(bit >
114 			     BITS_PER_TYPE(typeof_member(struct i915_pmu,
115 							 enable)) - 1);
116 
117 	return BIT(config_bit(config));
118 }
119 
120 static bool is_engine_event(struct perf_event *event)
121 {
122 	return is_engine_config(event->attr.config);
123 }
124 
125 static unsigned int event_bit(struct perf_event *event)
126 {
127 	return config_bit(event->attr.config);
128 }
129 
130 static u32 frequency_enabled_mask(void)
131 {
132 	unsigned int i;
133 	u32 mask = 0;
134 
135 	for (i = 0; i < I915_PMU_MAX_GT; i++)
136 		mask |= config_mask(__I915_PMU_ACTUAL_FREQUENCY(i)) |
137 			config_mask(__I915_PMU_REQUESTED_FREQUENCY(i));
138 
139 	return mask;
140 }
141 
142 static bool pmu_needs_timer(struct i915_pmu *pmu)
143 {
144 	struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu);
145 	u32 enable;
146 
147 	/*
148 	 * Only some counters need the sampling timer.
149 	 *
150 	 * We start with a bitmask of all currently enabled events.
151 	 */
152 	enable = pmu->enable;
153 
154 	/*
155 	 * Mask out all the ones which do not need the timer, or in
156 	 * other words keep all the ones that could need the timer.
157 	 */
158 	enable &= frequency_enabled_mask() | ENGINE_SAMPLE_MASK;
159 
160 	/*
161 	 * Also there is software busyness tracking available we do not
162 	 * need the timer for I915_SAMPLE_BUSY counter.
163 	 */
164 	if (i915->caps.scheduler & I915_SCHEDULER_CAP_ENGINE_BUSY_STATS)
165 		enable &= ~BIT(I915_SAMPLE_BUSY);
166 
167 	/*
168 	 * If some bits remain it means we need the sampling timer running.
169 	 */
170 	return enable;
171 }
172 
173 static u64 __get_rc6(struct intel_gt *gt)
174 {
175 	struct drm_i915_private *i915 = gt->i915;
176 	u64 val;
177 
178 	val = intel_rc6_residency_ns(&gt->rc6, INTEL_RC6_RES_RC6);
179 
180 	if (HAS_RC6p(i915))
181 		val += intel_rc6_residency_ns(&gt->rc6, INTEL_RC6_RES_RC6p);
182 
183 	if (HAS_RC6pp(i915))
184 		val += intel_rc6_residency_ns(&gt->rc6, INTEL_RC6_RES_RC6pp);
185 
186 	return val;
187 }
188 
189 static inline s64 ktime_since_raw(const ktime_t kt)
190 {
191 	return ktime_to_ns(ktime_sub(ktime_get_raw(), kt));
192 }
193 
194 static u64 read_sample(struct i915_pmu *pmu, unsigned int gt_id, int sample)
195 {
196 	return pmu->sample[gt_id][sample].cur;
197 }
198 
199 static void
200 store_sample(struct i915_pmu *pmu, unsigned int gt_id, int sample, u64 val)
201 {
202 	pmu->sample[gt_id][sample].cur = val;
203 }
204 
205 static void
206 add_sample_mult(struct i915_pmu *pmu, unsigned int gt_id, int sample, u32 val, u32 mul)
207 {
208 	pmu->sample[gt_id][sample].cur += mul_u32_u32(val, mul);
209 }
210 
211 static u64 get_rc6(struct intel_gt *gt)
212 {
213 	struct drm_i915_private *i915 = gt->i915;
214 	const unsigned int gt_id = gt->info.id;
215 	struct i915_pmu *pmu = &i915->pmu;
216 	unsigned long flags;
217 	bool awake = false;
218 	u64 val;
219 
220 	if (intel_gt_pm_get_if_awake(gt)) {
221 		val = __get_rc6(gt);
222 		intel_gt_pm_put_async(gt);
223 		awake = true;
224 	}
225 
226 	spin_lock_irqsave(&pmu->lock, flags);
227 
228 	if (awake) {
229 		store_sample(pmu, gt_id, __I915_SAMPLE_RC6, val);
230 	} else {
231 		/*
232 		 * We think we are runtime suspended.
233 		 *
234 		 * Report the delta from when the device was suspended to now,
235 		 * on top of the last known real value, as the approximated RC6
236 		 * counter value.
237 		 */
238 		val = ktime_since_raw(pmu->sleep_last[gt_id]);
239 		val += read_sample(pmu, gt_id, __I915_SAMPLE_RC6);
240 	}
241 
242 	if (val < read_sample(pmu, gt_id, __I915_SAMPLE_RC6_LAST_REPORTED))
243 		val = read_sample(pmu, gt_id, __I915_SAMPLE_RC6_LAST_REPORTED);
244 	else
245 		store_sample(pmu, gt_id, __I915_SAMPLE_RC6_LAST_REPORTED, val);
246 
247 	spin_unlock_irqrestore(&pmu->lock, flags);
248 
249 	return val;
250 }
251 
252 static void init_rc6(struct i915_pmu *pmu)
253 {
254 	struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu);
255 	struct intel_gt *gt;
256 	unsigned int i;
257 
258 	for_each_gt(gt, i915, i) {
259 		intel_wakeref_t wakeref;
260 
261 		with_intel_runtime_pm(gt->uncore->rpm, wakeref) {
262 			u64 val = __get_rc6(gt);
263 
264 			store_sample(pmu, i, __I915_SAMPLE_RC6, val);
265 			store_sample(pmu, i, __I915_SAMPLE_RC6_LAST_REPORTED,
266 				     val);
267 			pmu->sleep_last[i] = ktime_get_raw();
268 		}
269 	}
270 }
271 
272 static void park_rc6(struct intel_gt *gt)
273 {
274 	struct i915_pmu *pmu = &gt->i915->pmu;
275 
276 	store_sample(pmu, gt->info.id, __I915_SAMPLE_RC6, __get_rc6(gt));
277 	pmu->sleep_last[gt->info.id] = ktime_get_raw();
278 }
279 
280 static void __i915_pmu_maybe_start_timer(struct i915_pmu *pmu)
281 {
282 	if (!pmu->timer_enabled && pmu_needs_timer(pmu)) {
283 		pmu->timer_enabled = true;
284 		pmu->timer_last = ktime_get();
285 		hrtimer_start_range_ns(&pmu->timer,
286 				       ns_to_ktime(PERIOD), 0,
287 				       HRTIMER_MODE_REL_PINNED);
288 	}
289 }
290 
291 void i915_pmu_gt_parked(struct intel_gt *gt)
292 {
293 	struct i915_pmu *pmu = &gt->i915->pmu;
294 
295 	if (!pmu->base.event_init)
296 		return;
297 
298 	spin_lock_irq(&pmu->lock);
299 
300 	park_rc6(gt);
301 
302 	/*
303 	 * Signal sampling timer to stop if only engine events are enabled and
304 	 * GPU went idle.
305 	 */
306 	pmu->unparked &= ~BIT(gt->info.id);
307 	if (pmu->unparked == 0)
308 		pmu->timer_enabled = false;
309 
310 	spin_unlock_irq(&pmu->lock);
311 }
312 
313 void i915_pmu_gt_unparked(struct intel_gt *gt)
314 {
315 	struct i915_pmu *pmu = &gt->i915->pmu;
316 
317 	if (!pmu->base.event_init)
318 		return;
319 
320 	spin_lock_irq(&pmu->lock);
321 
322 	/*
323 	 * Re-enable sampling timer when GPU goes active.
324 	 */
325 	if (pmu->unparked == 0)
326 		__i915_pmu_maybe_start_timer(pmu);
327 
328 	pmu->unparked |= BIT(gt->info.id);
329 
330 	spin_unlock_irq(&pmu->lock);
331 }
332 
333 static void
334 add_sample(struct i915_pmu_sample *sample, u32 val)
335 {
336 	sample->cur += val;
337 }
338 
339 static bool exclusive_mmio_access(const struct drm_i915_private *i915)
340 {
341 	/*
342 	 * We have to avoid concurrent mmio cache line access on gen7 or
343 	 * risk a machine hang. For a fun history lesson dig out the old
344 	 * userspace intel_gpu_top and run it on Ivybridge or Haswell!
345 	 */
346 	return GRAPHICS_VER(i915) == 7;
347 }
348 
349 static void engine_sample(struct intel_engine_cs *engine, unsigned int period_ns)
350 {
351 	struct intel_engine_pmu *pmu = &engine->pmu;
352 	bool busy;
353 	u32 val;
354 
355 	val = ENGINE_READ_FW(engine, RING_CTL);
356 	if (val == 0) /* powerwell off => engine idle */
357 		return;
358 
359 	if (val & RING_WAIT)
360 		add_sample(&pmu->sample[I915_SAMPLE_WAIT], period_ns);
361 	if (val & RING_WAIT_SEMAPHORE)
362 		add_sample(&pmu->sample[I915_SAMPLE_SEMA], period_ns);
363 
364 	/* No need to sample when busy stats are supported. */
365 	if (intel_engine_supports_stats(engine))
366 		return;
367 
368 	/*
369 	 * While waiting on a semaphore or event, MI_MODE reports the
370 	 * ring as idle. However, previously using the seqno, and with
371 	 * execlists sampling, we account for the ring waiting as the
372 	 * engine being busy. Therefore, we record the sample as being
373 	 * busy if either waiting or !idle.
374 	 */
375 	busy = val & (RING_WAIT_SEMAPHORE | RING_WAIT);
376 	if (!busy) {
377 		val = ENGINE_READ_FW(engine, RING_MI_MODE);
378 		busy = !(val & MODE_IDLE);
379 	}
380 	if (busy)
381 		add_sample(&pmu->sample[I915_SAMPLE_BUSY], period_ns);
382 }
383 
384 static void
385 engines_sample(struct intel_gt *gt, unsigned int period_ns)
386 {
387 	struct drm_i915_private *i915 = gt->i915;
388 	struct intel_engine_cs *engine;
389 	enum intel_engine_id id;
390 	unsigned long flags;
391 
392 	if ((i915->pmu.enable & ENGINE_SAMPLE_MASK) == 0)
393 		return;
394 
395 	if (!intel_gt_pm_is_awake(gt))
396 		return;
397 
398 	for_each_engine(engine, gt, id) {
399 		if (!engine->pmu.enable)
400 			continue;
401 
402 		if (!intel_engine_pm_get_if_awake(engine))
403 			continue;
404 
405 		if (exclusive_mmio_access(i915)) {
406 			spin_lock_irqsave(&engine->uncore->lock, flags);
407 			engine_sample(engine, period_ns);
408 			spin_unlock_irqrestore(&engine->uncore->lock, flags);
409 		} else {
410 			engine_sample(engine, period_ns);
411 		}
412 
413 		intel_engine_pm_put_async(engine);
414 	}
415 }
416 
417 static bool
418 frequency_sampling_enabled(struct i915_pmu *pmu, unsigned int gt)
419 {
420 	return pmu->enable &
421 	       (config_mask(__I915_PMU_ACTUAL_FREQUENCY(gt)) |
422 		config_mask(__I915_PMU_REQUESTED_FREQUENCY(gt)));
423 }
424 
425 static void
426 frequency_sample(struct intel_gt *gt, unsigned int period_ns)
427 {
428 	struct drm_i915_private *i915 = gt->i915;
429 	const unsigned int gt_id = gt->info.id;
430 	struct i915_pmu *pmu = &i915->pmu;
431 	struct intel_rps *rps = &gt->rps;
432 
433 	if (!frequency_sampling_enabled(pmu, gt_id))
434 		return;
435 
436 	/* Report 0/0 (actual/requested) frequency while parked. */
437 	if (!intel_gt_pm_get_if_awake(gt))
438 		return;
439 
440 	if (pmu->enable & config_mask(__I915_PMU_ACTUAL_FREQUENCY(gt_id))) {
441 		u32 val;
442 
443 		/*
444 		 * We take a quick peek here without using forcewake
445 		 * so that we don't perturb the system under observation
446 		 * (forcewake => !rc6 => increased power use). We expect
447 		 * that if the read fails because it is outside of the
448 		 * mmio power well, then it will return 0 -- in which
449 		 * case we assume the system is running at the intended
450 		 * frequency. Fortunately, the read should rarely fail!
451 		 */
452 		val = intel_rps_read_actual_frequency_fw(rps);
453 		if (!val)
454 			val = intel_gpu_freq(rps, rps->cur_freq);
455 
456 		add_sample_mult(pmu, gt_id, __I915_SAMPLE_FREQ_ACT,
457 				val, period_ns / 1000);
458 	}
459 
460 	if (pmu->enable & config_mask(__I915_PMU_REQUESTED_FREQUENCY(gt_id))) {
461 		add_sample_mult(pmu, gt_id, __I915_SAMPLE_FREQ_REQ,
462 				intel_rps_get_requested_frequency(rps),
463 				period_ns / 1000);
464 	}
465 
466 	intel_gt_pm_put_async(gt);
467 }
468 
469 static enum hrtimer_restart i915_sample(struct hrtimer *hrtimer)
470 {
471 	struct drm_i915_private *i915 =
472 		container_of(hrtimer, struct drm_i915_private, pmu.timer);
473 	struct i915_pmu *pmu = &i915->pmu;
474 	unsigned int period_ns;
475 	struct intel_gt *gt;
476 	unsigned int i;
477 	ktime_t now;
478 
479 	if (!READ_ONCE(pmu->timer_enabled))
480 		return HRTIMER_NORESTART;
481 
482 	now = ktime_get();
483 	period_ns = ktime_to_ns(ktime_sub(now, pmu->timer_last));
484 	pmu->timer_last = now;
485 
486 	/*
487 	 * Strictly speaking the passed in period may not be 100% accurate for
488 	 * all internal calculation, since some amount of time can be spent on
489 	 * grabbing the forcewake. However the potential error from timer call-
490 	 * back delay greatly dominates this so we keep it simple.
491 	 */
492 
493 	for_each_gt(gt, i915, i) {
494 		if (!(pmu->unparked & BIT(i)))
495 			continue;
496 
497 		engines_sample(gt, period_ns);
498 		frequency_sample(gt, period_ns);
499 	}
500 
501 	hrtimer_forward(hrtimer, now, ns_to_ktime(PERIOD));
502 
503 	return HRTIMER_RESTART;
504 }
505 
506 static void i915_pmu_event_destroy(struct perf_event *event)
507 {
508 	struct drm_i915_private *i915 =
509 		container_of(event->pmu, typeof(*i915), pmu.base);
510 
511 	drm_WARN_ON(&i915->drm, event->parent);
512 
513 	drm_dev_put(&i915->drm);
514 }
515 
516 static int
517 engine_event_status(struct intel_engine_cs *engine,
518 		    enum drm_i915_pmu_engine_sample sample)
519 {
520 	switch (sample) {
521 	case I915_SAMPLE_BUSY:
522 	case I915_SAMPLE_WAIT:
523 		break;
524 	case I915_SAMPLE_SEMA:
525 		if (GRAPHICS_VER(engine->i915) < 6)
526 			return -ENODEV;
527 		break;
528 	default:
529 		return -ENOENT;
530 	}
531 
532 	return 0;
533 }
534 
535 static int
536 config_status(struct drm_i915_private *i915, u64 config)
537 {
538 	struct intel_gt *gt = to_gt(i915);
539 
540 	unsigned int gt_id = config_gt_id(config);
541 	unsigned int max_gt_id = HAS_EXTRA_GT_LIST(i915) ? 1 : 0;
542 
543 	if (gt_id > max_gt_id)
544 		return -ENOENT;
545 
546 	switch (config_counter(config)) {
547 	case I915_PMU_ACTUAL_FREQUENCY:
548 		if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
549 			/* Requires a mutex for sampling! */
550 			return -ENODEV;
551 		fallthrough;
552 	case I915_PMU_REQUESTED_FREQUENCY:
553 		if (GRAPHICS_VER(i915) < 6)
554 			return -ENODEV;
555 		break;
556 	case I915_PMU_INTERRUPTS:
557 		if (gt_id)
558 			return -ENOENT;
559 		break;
560 	case I915_PMU_RC6_RESIDENCY:
561 		if (!gt->rc6.supported)
562 			return -ENODEV;
563 		break;
564 	case I915_PMU_SOFTWARE_GT_AWAKE_TIME:
565 		break;
566 	default:
567 		return -ENOENT;
568 	}
569 
570 	return 0;
571 }
572 
573 static int engine_event_init(struct perf_event *event)
574 {
575 	struct drm_i915_private *i915 =
576 		container_of(event->pmu, typeof(*i915), pmu.base);
577 	struct intel_engine_cs *engine;
578 
579 	engine = intel_engine_lookup_user(i915, engine_event_class(event),
580 					  engine_event_instance(event));
581 	if (!engine)
582 		return -ENODEV;
583 
584 	return engine_event_status(engine, engine_event_sample(event));
585 }
586 
587 static int i915_pmu_event_init(struct perf_event *event)
588 {
589 	struct drm_i915_private *i915 =
590 		container_of(event->pmu, typeof(*i915), pmu.base);
591 	struct i915_pmu *pmu = &i915->pmu;
592 	int ret;
593 
594 	if (pmu->closed)
595 		return -ENODEV;
596 
597 	if (event->attr.type != event->pmu->type)
598 		return -ENOENT;
599 
600 	/* unsupported modes and filters */
601 	if (event->attr.sample_period) /* no sampling */
602 		return -EINVAL;
603 
604 	if (has_branch_stack(event))
605 		return -EOPNOTSUPP;
606 
607 	if (event->cpu < 0)
608 		return -EINVAL;
609 
610 	/* only allow running on one cpu at a time */
611 	if (!cpumask_test_cpu(event->cpu, &i915_pmu_cpumask))
612 		return -EINVAL;
613 
614 	if (is_engine_event(event))
615 		ret = engine_event_init(event);
616 	else
617 		ret = config_status(i915, event->attr.config);
618 	if (ret)
619 		return ret;
620 
621 	if (!event->parent) {
622 		drm_dev_get(&i915->drm);
623 		event->destroy = i915_pmu_event_destroy;
624 	}
625 
626 	return 0;
627 }
628 
629 static u64 __i915_pmu_event_read(struct perf_event *event)
630 {
631 	struct drm_i915_private *i915 =
632 		container_of(event->pmu, typeof(*i915), pmu.base);
633 	struct i915_pmu *pmu = &i915->pmu;
634 	u64 val = 0;
635 
636 	if (is_engine_event(event)) {
637 		u8 sample = engine_event_sample(event);
638 		struct intel_engine_cs *engine;
639 
640 		engine = intel_engine_lookup_user(i915,
641 						  engine_event_class(event),
642 						  engine_event_instance(event));
643 
644 		if (drm_WARN_ON_ONCE(&i915->drm, !engine)) {
645 			/* Do nothing */
646 		} else if (sample == I915_SAMPLE_BUSY &&
647 			   intel_engine_supports_stats(engine)) {
648 			ktime_t unused;
649 
650 			val = ktime_to_ns(intel_engine_get_busy_time(engine,
651 								     &unused));
652 		} else {
653 			val = engine->pmu.sample[sample].cur;
654 		}
655 	} else {
656 		const unsigned int gt_id = config_gt_id(event->attr.config);
657 		const u64 config = config_counter(event->attr.config);
658 
659 		switch (config) {
660 		case I915_PMU_ACTUAL_FREQUENCY:
661 			val =
662 			   div_u64(read_sample(pmu, gt_id,
663 					       __I915_SAMPLE_FREQ_ACT),
664 				   USEC_PER_SEC /* to MHz */);
665 			break;
666 		case I915_PMU_REQUESTED_FREQUENCY:
667 			val =
668 			   div_u64(read_sample(pmu, gt_id,
669 					       __I915_SAMPLE_FREQ_REQ),
670 				   USEC_PER_SEC /* to MHz */);
671 			break;
672 		case I915_PMU_INTERRUPTS:
673 			val = READ_ONCE(pmu->irq_count);
674 			break;
675 		case I915_PMU_RC6_RESIDENCY:
676 			val = get_rc6(i915->gt[gt_id]);
677 			break;
678 		case I915_PMU_SOFTWARE_GT_AWAKE_TIME:
679 			val = ktime_to_ns(intel_gt_get_awake_time(to_gt(i915)));
680 			break;
681 		}
682 	}
683 
684 	return val;
685 }
686 
687 static void i915_pmu_event_read(struct perf_event *event)
688 {
689 	struct drm_i915_private *i915 =
690 		container_of(event->pmu, typeof(*i915), pmu.base);
691 	struct hw_perf_event *hwc = &event->hw;
692 	struct i915_pmu *pmu = &i915->pmu;
693 	u64 prev, new;
694 
695 	if (pmu->closed) {
696 		event->hw.state = PERF_HES_STOPPED;
697 		return;
698 	}
699 again:
700 	prev = local64_read(&hwc->prev_count);
701 	new = __i915_pmu_event_read(event);
702 
703 	if (local64_cmpxchg(&hwc->prev_count, prev, new) != prev)
704 		goto again;
705 
706 	local64_add(new - prev, &event->count);
707 }
708 
709 static void i915_pmu_enable(struct perf_event *event)
710 {
711 	struct drm_i915_private *i915 =
712 		container_of(event->pmu, typeof(*i915), pmu.base);
713 	const unsigned int bit = event_bit(event);
714 	struct i915_pmu *pmu = &i915->pmu;
715 	unsigned long flags;
716 
717 	if (bit == -1)
718 		goto update;
719 
720 	spin_lock_irqsave(&pmu->lock, flags);
721 
722 	/*
723 	 * Update the bitmask of enabled events and increment
724 	 * the event reference counter.
725 	 */
726 	BUILD_BUG_ON(ARRAY_SIZE(pmu->enable_count) != I915_PMU_MASK_BITS);
727 	GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count));
728 	GEM_BUG_ON(pmu->enable_count[bit] == ~0);
729 
730 	pmu->enable |= BIT(bit);
731 	pmu->enable_count[bit]++;
732 
733 	/*
734 	 * Start the sampling timer if needed and not already enabled.
735 	 */
736 	__i915_pmu_maybe_start_timer(pmu);
737 
738 	/*
739 	 * For per-engine events the bitmask and reference counting
740 	 * is stored per engine.
741 	 */
742 	if (is_engine_event(event)) {
743 		u8 sample = engine_event_sample(event);
744 		struct intel_engine_cs *engine;
745 
746 		engine = intel_engine_lookup_user(i915,
747 						  engine_event_class(event),
748 						  engine_event_instance(event));
749 
750 		BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.enable_count) !=
751 			     I915_ENGINE_SAMPLE_COUNT);
752 		BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.sample) !=
753 			     I915_ENGINE_SAMPLE_COUNT);
754 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count));
755 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample));
756 		GEM_BUG_ON(engine->pmu.enable_count[sample] == ~0);
757 
758 		engine->pmu.enable |= BIT(sample);
759 		engine->pmu.enable_count[sample]++;
760 	}
761 
762 	spin_unlock_irqrestore(&pmu->lock, flags);
763 
764 update:
765 	/*
766 	 * Store the current counter value so we can report the correct delta
767 	 * for all listeners. Even when the event was already enabled and has
768 	 * an existing non-zero value.
769 	 */
770 	local64_set(&event->hw.prev_count, __i915_pmu_event_read(event));
771 }
772 
773 static void i915_pmu_disable(struct perf_event *event)
774 {
775 	struct drm_i915_private *i915 =
776 		container_of(event->pmu, typeof(*i915), pmu.base);
777 	const unsigned int bit = event_bit(event);
778 	struct i915_pmu *pmu = &i915->pmu;
779 	unsigned long flags;
780 
781 	if (bit == -1)
782 		return;
783 
784 	spin_lock_irqsave(&pmu->lock, flags);
785 
786 	if (is_engine_event(event)) {
787 		u8 sample = engine_event_sample(event);
788 		struct intel_engine_cs *engine;
789 
790 		engine = intel_engine_lookup_user(i915,
791 						  engine_event_class(event),
792 						  engine_event_instance(event));
793 
794 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count));
795 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample));
796 		GEM_BUG_ON(engine->pmu.enable_count[sample] == 0);
797 
798 		/*
799 		 * Decrement the reference count and clear the enabled
800 		 * bitmask when the last listener on an event goes away.
801 		 */
802 		if (--engine->pmu.enable_count[sample] == 0)
803 			engine->pmu.enable &= ~BIT(sample);
804 	}
805 
806 	GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count));
807 	GEM_BUG_ON(pmu->enable_count[bit] == 0);
808 	/*
809 	 * Decrement the reference count and clear the enabled
810 	 * bitmask when the last listener on an event goes away.
811 	 */
812 	if (--pmu->enable_count[bit] == 0) {
813 		pmu->enable &= ~BIT(bit);
814 		pmu->timer_enabled &= pmu_needs_timer(pmu);
815 	}
816 
817 	spin_unlock_irqrestore(&pmu->lock, flags);
818 }
819 
820 static void i915_pmu_event_start(struct perf_event *event, int flags)
821 {
822 	struct drm_i915_private *i915 =
823 		container_of(event->pmu, typeof(*i915), pmu.base);
824 	struct i915_pmu *pmu = &i915->pmu;
825 
826 	if (pmu->closed)
827 		return;
828 
829 	i915_pmu_enable(event);
830 	event->hw.state = 0;
831 }
832 
833 static void i915_pmu_event_stop(struct perf_event *event, int flags)
834 {
835 	struct drm_i915_private *i915 =
836 		container_of(event->pmu, typeof(*i915), pmu.base);
837 	struct i915_pmu *pmu = &i915->pmu;
838 
839 	if (pmu->closed)
840 		goto out;
841 
842 	if (flags & PERF_EF_UPDATE)
843 		i915_pmu_event_read(event);
844 	i915_pmu_disable(event);
845 
846 out:
847 	event->hw.state = PERF_HES_STOPPED;
848 }
849 
850 static int i915_pmu_event_add(struct perf_event *event, int flags)
851 {
852 	struct drm_i915_private *i915 =
853 		container_of(event->pmu, typeof(*i915), pmu.base);
854 	struct i915_pmu *pmu = &i915->pmu;
855 
856 	if (pmu->closed)
857 		return -ENODEV;
858 
859 	if (flags & PERF_EF_START)
860 		i915_pmu_event_start(event, flags);
861 
862 	return 0;
863 }
864 
865 static void i915_pmu_event_del(struct perf_event *event, int flags)
866 {
867 	i915_pmu_event_stop(event, PERF_EF_UPDATE);
868 }
869 
870 static int i915_pmu_event_event_idx(struct perf_event *event)
871 {
872 	return 0;
873 }
874 
875 struct i915_str_attribute {
876 	struct device_attribute attr;
877 	const char *str;
878 };
879 
880 static ssize_t i915_pmu_format_show(struct device *dev,
881 				    struct device_attribute *attr, char *buf)
882 {
883 	struct i915_str_attribute *eattr;
884 
885 	eattr = container_of(attr, struct i915_str_attribute, attr);
886 	return sprintf(buf, "%s\n", eattr->str);
887 }
888 
889 #define I915_PMU_FORMAT_ATTR(_name, _config) \
890 	(&((struct i915_str_attribute[]) { \
891 		{ .attr = __ATTR(_name, 0444, i915_pmu_format_show, NULL), \
892 		  .str = _config, } \
893 	})[0].attr.attr)
894 
895 static struct attribute *i915_pmu_format_attrs[] = {
896 	I915_PMU_FORMAT_ATTR(i915_eventid, "config:0-20"),
897 	NULL,
898 };
899 
900 static const struct attribute_group i915_pmu_format_attr_group = {
901 	.name = "format",
902 	.attrs = i915_pmu_format_attrs,
903 };
904 
905 struct i915_ext_attribute {
906 	struct device_attribute attr;
907 	unsigned long val;
908 };
909 
910 static ssize_t i915_pmu_event_show(struct device *dev,
911 				   struct device_attribute *attr, char *buf)
912 {
913 	struct i915_ext_attribute *eattr;
914 
915 	eattr = container_of(attr, struct i915_ext_attribute, attr);
916 	return sprintf(buf, "config=0x%lx\n", eattr->val);
917 }
918 
919 static ssize_t cpumask_show(struct device *dev,
920 			    struct device_attribute *attr, char *buf)
921 {
922 	return cpumap_print_to_pagebuf(true, buf, &i915_pmu_cpumask);
923 }
924 
925 static DEVICE_ATTR_RO(cpumask);
926 
927 static struct attribute *i915_cpumask_attrs[] = {
928 	&dev_attr_cpumask.attr,
929 	NULL,
930 };
931 
932 static const struct attribute_group i915_pmu_cpumask_attr_group = {
933 	.attrs = i915_cpumask_attrs,
934 };
935 
936 #define __event(__counter, __name, __unit) \
937 { \
938 	.counter = (__counter), \
939 	.name = (__name), \
940 	.unit = (__unit), \
941 	.global = false, \
942 }
943 
944 #define __global_event(__counter, __name, __unit) \
945 { \
946 	.counter = (__counter), \
947 	.name = (__name), \
948 	.unit = (__unit), \
949 	.global = true, \
950 }
951 
952 #define __engine_event(__sample, __name) \
953 { \
954 	.sample = (__sample), \
955 	.name = (__name), \
956 }
957 
958 static struct i915_ext_attribute *
959 add_i915_attr(struct i915_ext_attribute *attr, const char *name, u64 config)
960 {
961 	sysfs_attr_init(&attr->attr.attr);
962 	attr->attr.attr.name = name;
963 	attr->attr.attr.mode = 0444;
964 	attr->attr.show = i915_pmu_event_show;
965 	attr->val = config;
966 
967 	return ++attr;
968 }
969 
970 static struct perf_pmu_events_attr *
971 add_pmu_attr(struct perf_pmu_events_attr *attr, const char *name,
972 	     const char *str)
973 {
974 	sysfs_attr_init(&attr->attr.attr);
975 	attr->attr.attr.name = name;
976 	attr->attr.attr.mode = 0444;
977 	attr->attr.show = perf_event_sysfs_show;
978 	attr->event_str = str;
979 
980 	return ++attr;
981 }
982 
983 static struct attribute **
984 create_event_attributes(struct i915_pmu *pmu)
985 {
986 	struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu);
987 	static const struct {
988 		unsigned int counter;
989 		const char *name;
990 		const char *unit;
991 		bool global;
992 	} events[] = {
993 		__event(0, "actual-frequency", "M"),
994 		__event(1, "requested-frequency", "M"),
995 		__global_event(2, "interrupts", NULL),
996 		__event(3, "rc6-residency", "ns"),
997 		__event(4, "software-gt-awake-time", "ns"),
998 	};
999 	static const struct {
1000 		enum drm_i915_pmu_engine_sample sample;
1001 		char *name;
1002 	} engine_events[] = {
1003 		__engine_event(I915_SAMPLE_BUSY, "busy"),
1004 		__engine_event(I915_SAMPLE_SEMA, "sema"),
1005 		__engine_event(I915_SAMPLE_WAIT, "wait"),
1006 	};
1007 	unsigned int count = 0;
1008 	struct perf_pmu_events_attr *pmu_attr = NULL, *pmu_iter;
1009 	struct i915_ext_attribute *i915_attr = NULL, *i915_iter;
1010 	struct attribute **attr = NULL, **attr_iter;
1011 	struct intel_engine_cs *engine;
1012 	struct intel_gt *gt;
1013 	unsigned int i, j;
1014 
1015 	/* Count how many counters we will be exposing. */
1016 	for_each_gt(gt, i915, j) {
1017 		for (i = 0; i < ARRAY_SIZE(events); i++) {
1018 			u64 config = ___I915_PMU_OTHER(j, events[i].counter);
1019 
1020 			if (!config_status(i915, config))
1021 				count++;
1022 		}
1023 	}
1024 
1025 	for_each_uabi_engine(engine, i915) {
1026 		for (i = 0; i < ARRAY_SIZE(engine_events); i++) {
1027 			if (!engine_event_status(engine,
1028 						 engine_events[i].sample))
1029 				count++;
1030 		}
1031 	}
1032 
1033 	/* Allocate attribute objects and table. */
1034 	i915_attr = kcalloc(count, sizeof(*i915_attr), GFP_KERNEL);
1035 	if (!i915_attr)
1036 		goto err_alloc;
1037 
1038 	pmu_attr = kcalloc(count, sizeof(*pmu_attr), GFP_KERNEL);
1039 	if (!pmu_attr)
1040 		goto err_alloc;
1041 
1042 	/* Max one pointer of each attribute type plus a termination entry. */
1043 	attr = kcalloc(count * 2 + 1, sizeof(*attr), GFP_KERNEL);
1044 	if (!attr)
1045 		goto err_alloc;
1046 
1047 	i915_iter = i915_attr;
1048 	pmu_iter = pmu_attr;
1049 	attr_iter = attr;
1050 
1051 	/* Initialize supported non-engine counters. */
1052 	for_each_gt(gt, i915, j) {
1053 		for (i = 0; i < ARRAY_SIZE(events); i++) {
1054 			u64 config = ___I915_PMU_OTHER(j, events[i].counter);
1055 			char *str;
1056 
1057 			if (config_status(i915, config))
1058 				continue;
1059 
1060 			if (events[i].global || !HAS_EXTRA_GT_LIST(i915))
1061 				str = kstrdup(events[i].name, GFP_KERNEL);
1062 			else
1063 				str = kasprintf(GFP_KERNEL, "%s-gt%u",
1064 						events[i].name, j);
1065 			if (!str)
1066 				goto err;
1067 
1068 			*attr_iter++ = &i915_iter->attr.attr;
1069 			i915_iter = add_i915_attr(i915_iter, str, config);
1070 
1071 			if (events[i].unit) {
1072 				if (events[i].global || !HAS_EXTRA_GT_LIST(i915))
1073 					str = kasprintf(GFP_KERNEL, "%s.unit",
1074 							events[i].name);
1075 				else
1076 					str = kasprintf(GFP_KERNEL, "%s-gt%u.unit",
1077 							events[i].name, j);
1078 				if (!str)
1079 					goto err;
1080 
1081 				*attr_iter++ = &pmu_iter->attr.attr;
1082 				pmu_iter = add_pmu_attr(pmu_iter, str,
1083 							events[i].unit);
1084 			}
1085 		}
1086 	}
1087 
1088 	/* Initialize supported engine counters. */
1089 	for_each_uabi_engine(engine, i915) {
1090 		for (i = 0; i < ARRAY_SIZE(engine_events); i++) {
1091 			char *str;
1092 
1093 			if (engine_event_status(engine,
1094 						engine_events[i].sample))
1095 				continue;
1096 
1097 			str = kasprintf(GFP_KERNEL, "%s-%s",
1098 					engine->name, engine_events[i].name);
1099 			if (!str)
1100 				goto err;
1101 
1102 			*attr_iter++ = &i915_iter->attr.attr;
1103 			i915_iter =
1104 				add_i915_attr(i915_iter, str,
1105 					      __I915_PMU_ENGINE(engine->uabi_class,
1106 								engine->uabi_instance,
1107 								engine_events[i].sample));
1108 
1109 			str = kasprintf(GFP_KERNEL, "%s-%s.unit",
1110 					engine->name, engine_events[i].name);
1111 			if (!str)
1112 				goto err;
1113 
1114 			*attr_iter++ = &pmu_iter->attr.attr;
1115 			pmu_iter = add_pmu_attr(pmu_iter, str, "ns");
1116 		}
1117 	}
1118 
1119 	pmu->i915_attr = i915_attr;
1120 	pmu->pmu_attr = pmu_attr;
1121 
1122 	return attr;
1123 
1124 err:;
1125 	for (attr_iter = attr; *attr_iter; attr_iter++)
1126 		kfree((*attr_iter)->name);
1127 
1128 err_alloc:
1129 	kfree(attr);
1130 	kfree(i915_attr);
1131 	kfree(pmu_attr);
1132 
1133 	return NULL;
1134 }
1135 
1136 static void free_event_attributes(struct i915_pmu *pmu)
1137 {
1138 	struct attribute **attr_iter = pmu->events_attr_group.attrs;
1139 
1140 	for (; *attr_iter; attr_iter++)
1141 		kfree((*attr_iter)->name);
1142 
1143 	kfree(pmu->events_attr_group.attrs);
1144 	kfree(pmu->i915_attr);
1145 	kfree(pmu->pmu_attr);
1146 
1147 	pmu->events_attr_group.attrs = NULL;
1148 	pmu->i915_attr = NULL;
1149 	pmu->pmu_attr = NULL;
1150 }
1151 
1152 static int i915_pmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1153 {
1154 	struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node);
1155 
1156 	GEM_BUG_ON(!pmu->base.event_init);
1157 
1158 	/* Select the first online CPU as a designated reader. */
1159 	if (cpumask_empty(&i915_pmu_cpumask))
1160 		cpumask_set_cpu(cpu, &i915_pmu_cpumask);
1161 
1162 	return 0;
1163 }
1164 
1165 static int i915_pmu_cpu_offline(unsigned int cpu, struct hlist_node *node)
1166 {
1167 	struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node);
1168 	unsigned int target = i915_pmu_target_cpu;
1169 
1170 	GEM_BUG_ON(!pmu->base.event_init);
1171 
1172 	/*
1173 	 * Unregistering an instance generates a CPU offline event which we must
1174 	 * ignore to avoid incorrectly modifying the shared i915_pmu_cpumask.
1175 	 */
1176 	if (pmu->closed)
1177 		return 0;
1178 
1179 	if (cpumask_test_and_clear_cpu(cpu, &i915_pmu_cpumask)) {
1180 		target = cpumask_any_but(topology_sibling_cpumask(cpu), cpu);
1181 
1182 		/* Migrate events if there is a valid target */
1183 		if (target < nr_cpu_ids) {
1184 			cpumask_set_cpu(target, &i915_pmu_cpumask);
1185 			i915_pmu_target_cpu = target;
1186 		}
1187 	}
1188 
1189 	if (target < nr_cpu_ids && target != pmu->cpuhp.cpu) {
1190 		perf_pmu_migrate_context(&pmu->base, cpu, target);
1191 		pmu->cpuhp.cpu = target;
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 static enum cpuhp_state cpuhp_slot = CPUHP_INVALID;
1198 
1199 int i915_pmu_init(void)
1200 {
1201 	int ret;
1202 
1203 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1204 				      "perf/x86/intel/i915:online",
1205 				      i915_pmu_cpu_online,
1206 				      i915_pmu_cpu_offline);
1207 	if (ret < 0)
1208 		pr_notice("Failed to setup cpuhp state for i915 PMU! (%d)\n",
1209 			  ret);
1210 	else
1211 		cpuhp_slot = ret;
1212 
1213 	return 0;
1214 }
1215 
1216 void i915_pmu_exit(void)
1217 {
1218 	if (cpuhp_slot != CPUHP_INVALID)
1219 		cpuhp_remove_multi_state(cpuhp_slot);
1220 }
1221 
1222 static int i915_pmu_register_cpuhp_state(struct i915_pmu *pmu)
1223 {
1224 	if (cpuhp_slot == CPUHP_INVALID)
1225 		return -EINVAL;
1226 
1227 	return cpuhp_state_add_instance(cpuhp_slot, &pmu->cpuhp.node);
1228 }
1229 
1230 static void i915_pmu_unregister_cpuhp_state(struct i915_pmu *pmu)
1231 {
1232 	cpuhp_state_remove_instance(cpuhp_slot, &pmu->cpuhp.node);
1233 }
1234 
1235 static bool is_igp(struct drm_i915_private *i915)
1236 {
1237 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1238 
1239 	/* IGP is 0000:00:02.0 */
1240 	return pci_domain_nr(pdev->bus) == 0 &&
1241 	       pdev->bus->number == 0 &&
1242 	       PCI_SLOT(pdev->devfn) == 2 &&
1243 	       PCI_FUNC(pdev->devfn) == 0;
1244 }
1245 
1246 void i915_pmu_register(struct drm_i915_private *i915)
1247 {
1248 	struct i915_pmu *pmu = &i915->pmu;
1249 	const struct attribute_group *attr_groups[] = {
1250 		&i915_pmu_format_attr_group,
1251 		&pmu->events_attr_group,
1252 		&i915_pmu_cpumask_attr_group,
1253 		NULL
1254 	};
1255 
1256 	int ret = -ENOMEM;
1257 
1258 	if (GRAPHICS_VER(i915) <= 2) {
1259 		drm_info(&i915->drm, "PMU not supported for this GPU.");
1260 		return;
1261 	}
1262 
1263 	spin_lock_init(&pmu->lock);
1264 	hrtimer_init(&pmu->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1265 	pmu->timer.function = i915_sample;
1266 	pmu->cpuhp.cpu = -1;
1267 	init_rc6(pmu);
1268 
1269 	if (!is_igp(i915)) {
1270 		pmu->name = kasprintf(GFP_KERNEL,
1271 				      "i915_%s",
1272 				      dev_name(i915->drm.dev));
1273 		if (pmu->name) {
1274 			/* tools/perf reserves colons as special. */
1275 			strreplace((char *)pmu->name, ':', '_');
1276 		}
1277 	} else {
1278 		pmu->name = "i915";
1279 	}
1280 	if (!pmu->name)
1281 		goto err;
1282 
1283 	pmu->events_attr_group.name = "events";
1284 	pmu->events_attr_group.attrs = create_event_attributes(pmu);
1285 	if (!pmu->events_attr_group.attrs)
1286 		goto err_name;
1287 
1288 	pmu->base.attr_groups = kmemdup(attr_groups, sizeof(attr_groups),
1289 					GFP_KERNEL);
1290 	if (!pmu->base.attr_groups)
1291 		goto err_attr;
1292 
1293 	pmu->base.module	= THIS_MODULE;
1294 	pmu->base.task_ctx_nr	= perf_invalid_context;
1295 	pmu->base.event_init	= i915_pmu_event_init;
1296 	pmu->base.add		= i915_pmu_event_add;
1297 	pmu->base.del		= i915_pmu_event_del;
1298 	pmu->base.start		= i915_pmu_event_start;
1299 	pmu->base.stop		= i915_pmu_event_stop;
1300 	pmu->base.read		= i915_pmu_event_read;
1301 	pmu->base.event_idx	= i915_pmu_event_event_idx;
1302 
1303 	ret = perf_pmu_register(&pmu->base, pmu->name, -1);
1304 	if (ret)
1305 		goto err_groups;
1306 
1307 	ret = i915_pmu_register_cpuhp_state(pmu);
1308 	if (ret)
1309 		goto err_unreg;
1310 
1311 	return;
1312 
1313 err_unreg:
1314 	perf_pmu_unregister(&pmu->base);
1315 err_groups:
1316 	kfree(pmu->base.attr_groups);
1317 err_attr:
1318 	pmu->base.event_init = NULL;
1319 	free_event_attributes(pmu);
1320 err_name:
1321 	if (!is_igp(i915))
1322 		kfree(pmu->name);
1323 err:
1324 	drm_notice(&i915->drm, "Failed to register PMU!\n");
1325 }
1326 
1327 void i915_pmu_unregister(struct drm_i915_private *i915)
1328 {
1329 	struct i915_pmu *pmu = &i915->pmu;
1330 
1331 	if (!pmu->base.event_init)
1332 		return;
1333 
1334 	/*
1335 	 * "Disconnect" the PMU callbacks - since all are atomic synchronize_rcu
1336 	 * ensures all currently executing ones will have exited before we
1337 	 * proceed with unregistration.
1338 	 */
1339 	pmu->closed = true;
1340 	synchronize_rcu();
1341 
1342 	hrtimer_cancel(&pmu->timer);
1343 
1344 	i915_pmu_unregister_cpuhp_state(pmu);
1345 
1346 	perf_pmu_unregister(&pmu->base);
1347 	pmu->base.event_init = NULL;
1348 	kfree(pmu->base.attr_groups);
1349 	if (!is_igp(i915))
1350 		kfree(pmu->name);
1351 	free_event_attributes(pmu);
1352 }
1353