xref: /openbmc/linux/drivers/gpu/drm/i915/i915_pmu.c (revision 00140a83)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2017-2018 Intel Corporation
5  */
6 
7 #include <linux/pm_runtime.h>
8 
9 #include "gt/intel_engine.h"
10 #include "gt/intel_engine_pm.h"
11 #include "gt/intel_engine_regs.h"
12 #include "gt/intel_engine_user.h"
13 #include "gt/intel_gt_pm.h"
14 #include "gt/intel_gt_regs.h"
15 #include "gt/intel_rc6.h"
16 #include "gt/intel_rps.h"
17 
18 #include "i915_drv.h"
19 #include "i915_pmu.h"
20 #include "intel_pm.h"
21 
22 /* Frequency for the sampling timer for events which need it. */
23 #define FREQUENCY 200
24 #define PERIOD max_t(u64, 10000, NSEC_PER_SEC / FREQUENCY)
25 
26 #define ENGINE_SAMPLE_MASK \
27 	(BIT(I915_SAMPLE_BUSY) | \
28 	 BIT(I915_SAMPLE_WAIT) | \
29 	 BIT(I915_SAMPLE_SEMA))
30 
31 static cpumask_t i915_pmu_cpumask;
32 static unsigned int i915_pmu_target_cpu = -1;
33 
34 static u8 engine_config_sample(u64 config)
35 {
36 	return config & I915_PMU_SAMPLE_MASK;
37 }
38 
39 static u8 engine_event_sample(struct perf_event *event)
40 {
41 	return engine_config_sample(event->attr.config);
42 }
43 
44 static u8 engine_event_class(struct perf_event *event)
45 {
46 	return (event->attr.config >> I915_PMU_CLASS_SHIFT) & 0xff;
47 }
48 
49 static u8 engine_event_instance(struct perf_event *event)
50 {
51 	return (event->attr.config >> I915_PMU_SAMPLE_BITS) & 0xff;
52 }
53 
54 static bool is_engine_config(u64 config)
55 {
56 	return config < __I915_PMU_OTHER(0);
57 }
58 
59 static unsigned int other_bit(const u64 config)
60 {
61 	unsigned int val;
62 
63 	switch (config) {
64 	case I915_PMU_ACTUAL_FREQUENCY:
65 		val =  __I915_PMU_ACTUAL_FREQUENCY_ENABLED;
66 		break;
67 	case I915_PMU_REQUESTED_FREQUENCY:
68 		val = __I915_PMU_REQUESTED_FREQUENCY_ENABLED;
69 		break;
70 	case I915_PMU_RC6_RESIDENCY:
71 		val = __I915_PMU_RC6_RESIDENCY_ENABLED;
72 		break;
73 	default:
74 		/*
75 		 * Events that do not require sampling, or tracking state
76 		 * transitions between enabled and disabled can be ignored.
77 		 */
78 		return -1;
79 	}
80 
81 	return I915_ENGINE_SAMPLE_COUNT + val;
82 }
83 
84 static unsigned int config_bit(const u64 config)
85 {
86 	if (is_engine_config(config))
87 		return engine_config_sample(config);
88 	else
89 		return other_bit(config);
90 }
91 
92 static u64 config_mask(u64 config)
93 {
94 	return BIT_ULL(config_bit(config));
95 }
96 
97 static bool is_engine_event(struct perf_event *event)
98 {
99 	return is_engine_config(event->attr.config);
100 }
101 
102 static unsigned int event_bit(struct perf_event *event)
103 {
104 	return config_bit(event->attr.config);
105 }
106 
107 static bool pmu_needs_timer(struct i915_pmu *pmu, bool gpu_active)
108 {
109 	struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu);
110 	u32 enable;
111 
112 	/*
113 	 * Only some counters need the sampling timer.
114 	 *
115 	 * We start with a bitmask of all currently enabled events.
116 	 */
117 	enable = pmu->enable;
118 
119 	/*
120 	 * Mask out all the ones which do not need the timer, or in
121 	 * other words keep all the ones that could need the timer.
122 	 */
123 	enable &= config_mask(I915_PMU_ACTUAL_FREQUENCY) |
124 		  config_mask(I915_PMU_REQUESTED_FREQUENCY) |
125 		  ENGINE_SAMPLE_MASK;
126 
127 	/*
128 	 * When the GPU is idle per-engine counters do not need to be
129 	 * running so clear those bits out.
130 	 */
131 	if (!gpu_active)
132 		enable &= ~ENGINE_SAMPLE_MASK;
133 	/*
134 	 * Also there is software busyness tracking available we do not
135 	 * need the timer for I915_SAMPLE_BUSY counter.
136 	 */
137 	else if (i915->caps.scheduler & I915_SCHEDULER_CAP_ENGINE_BUSY_STATS)
138 		enable &= ~BIT(I915_SAMPLE_BUSY);
139 
140 	/*
141 	 * If some bits remain it means we need the sampling timer running.
142 	 */
143 	return enable;
144 }
145 
146 static u64 __get_rc6(struct intel_gt *gt)
147 {
148 	struct drm_i915_private *i915 = gt->i915;
149 	u64 val;
150 
151 	val = intel_rc6_residency_ns(&gt->rc6, INTEL_RC6_RES_RC6);
152 
153 	if (HAS_RC6p(i915))
154 		val += intel_rc6_residency_ns(&gt->rc6, INTEL_RC6_RES_RC6p);
155 
156 	if (HAS_RC6pp(i915))
157 		val += intel_rc6_residency_ns(&gt->rc6, INTEL_RC6_RES_RC6pp);
158 
159 	return val;
160 }
161 
162 static inline s64 ktime_since_raw(const ktime_t kt)
163 {
164 	return ktime_to_ns(ktime_sub(ktime_get_raw(), kt));
165 }
166 
167 static u64 get_rc6(struct intel_gt *gt)
168 {
169 	struct drm_i915_private *i915 = gt->i915;
170 	struct i915_pmu *pmu = &i915->pmu;
171 	unsigned long flags;
172 	bool awake = false;
173 	u64 val;
174 
175 	if (intel_gt_pm_get_if_awake(gt)) {
176 		val = __get_rc6(gt);
177 		intel_gt_pm_put_async(gt);
178 		awake = true;
179 	}
180 
181 	spin_lock_irqsave(&pmu->lock, flags);
182 
183 	if (awake) {
184 		pmu->sample[__I915_SAMPLE_RC6].cur = val;
185 	} else {
186 		/*
187 		 * We think we are runtime suspended.
188 		 *
189 		 * Report the delta from when the device was suspended to now,
190 		 * on top of the last known real value, as the approximated RC6
191 		 * counter value.
192 		 */
193 		val = ktime_since_raw(pmu->sleep_last);
194 		val += pmu->sample[__I915_SAMPLE_RC6].cur;
195 	}
196 
197 	if (val < pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur)
198 		val = pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur;
199 	else
200 		pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur = val;
201 
202 	spin_unlock_irqrestore(&pmu->lock, flags);
203 
204 	return val;
205 }
206 
207 static void init_rc6(struct i915_pmu *pmu)
208 {
209 	struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu);
210 	intel_wakeref_t wakeref;
211 
212 	with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref) {
213 		pmu->sample[__I915_SAMPLE_RC6].cur = __get_rc6(to_gt(i915));
214 		pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur =
215 					pmu->sample[__I915_SAMPLE_RC6].cur;
216 		pmu->sleep_last = ktime_get_raw();
217 	}
218 }
219 
220 static void park_rc6(struct drm_i915_private *i915)
221 {
222 	struct i915_pmu *pmu = &i915->pmu;
223 
224 	pmu->sample[__I915_SAMPLE_RC6].cur = __get_rc6(to_gt(i915));
225 	pmu->sleep_last = ktime_get_raw();
226 }
227 
228 static void __i915_pmu_maybe_start_timer(struct i915_pmu *pmu)
229 {
230 	if (!pmu->timer_enabled && pmu_needs_timer(pmu, true)) {
231 		pmu->timer_enabled = true;
232 		pmu->timer_last = ktime_get();
233 		hrtimer_start_range_ns(&pmu->timer,
234 				       ns_to_ktime(PERIOD), 0,
235 				       HRTIMER_MODE_REL_PINNED);
236 	}
237 }
238 
239 void i915_pmu_gt_parked(struct drm_i915_private *i915)
240 {
241 	struct i915_pmu *pmu = &i915->pmu;
242 
243 	if (!pmu->base.event_init)
244 		return;
245 
246 	spin_lock_irq(&pmu->lock);
247 
248 	park_rc6(i915);
249 
250 	/*
251 	 * Signal sampling timer to stop if only engine events are enabled and
252 	 * GPU went idle.
253 	 */
254 	pmu->timer_enabled = pmu_needs_timer(pmu, false);
255 
256 	spin_unlock_irq(&pmu->lock);
257 }
258 
259 void i915_pmu_gt_unparked(struct drm_i915_private *i915)
260 {
261 	struct i915_pmu *pmu = &i915->pmu;
262 
263 	if (!pmu->base.event_init)
264 		return;
265 
266 	spin_lock_irq(&pmu->lock);
267 
268 	/*
269 	 * Re-enable sampling timer when GPU goes active.
270 	 */
271 	__i915_pmu_maybe_start_timer(pmu);
272 
273 	spin_unlock_irq(&pmu->lock);
274 }
275 
276 static void
277 add_sample(struct i915_pmu_sample *sample, u32 val)
278 {
279 	sample->cur += val;
280 }
281 
282 static bool exclusive_mmio_access(const struct drm_i915_private *i915)
283 {
284 	/*
285 	 * We have to avoid concurrent mmio cache line access on gen7 or
286 	 * risk a machine hang. For a fun history lesson dig out the old
287 	 * userspace intel_gpu_top and run it on Ivybridge or Haswell!
288 	 */
289 	return GRAPHICS_VER(i915) == 7;
290 }
291 
292 static void engine_sample(struct intel_engine_cs *engine, unsigned int period_ns)
293 {
294 	struct intel_engine_pmu *pmu = &engine->pmu;
295 	bool busy;
296 	u32 val;
297 
298 	val = ENGINE_READ_FW(engine, RING_CTL);
299 	if (val == 0) /* powerwell off => engine idle */
300 		return;
301 
302 	if (val & RING_WAIT)
303 		add_sample(&pmu->sample[I915_SAMPLE_WAIT], period_ns);
304 	if (val & RING_WAIT_SEMAPHORE)
305 		add_sample(&pmu->sample[I915_SAMPLE_SEMA], period_ns);
306 
307 	/* No need to sample when busy stats are supported. */
308 	if (intel_engine_supports_stats(engine))
309 		return;
310 
311 	/*
312 	 * While waiting on a semaphore or event, MI_MODE reports the
313 	 * ring as idle. However, previously using the seqno, and with
314 	 * execlists sampling, we account for the ring waiting as the
315 	 * engine being busy. Therefore, we record the sample as being
316 	 * busy if either waiting or !idle.
317 	 */
318 	busy = val & (RING_WAIT_SEMAPHORE | RING_WAIT);
319 	if (!busy) {
320 		val = ENGINE_READ_FW(engine, RING_MI_MODE);
321 		busy = !(val & MODE_IDLE);
322 	}
323 	if (busy)
324 		add_sample(&pmu->sample[I915_SAMPLE_BUSY], period_ns);
325 }
326 
327 static void
328 engines_sample(struct intel_gt *gt, unsigned int period_ns)
329 {
330 	struct drm_i915_private *i915 = gt->i915;
331 	struct intel_engine_cs *engine;
332 	enum intel_engine_id id;
333 	unsigned long flags;
334 
335 	if ((i915->pmu.enable & ENGINE_SAMPLE_MASK) == 0)
336 		return;
337 
338 	if (!intel_gt_pm_is_awake(gt))
339 		return;
340 
341 	for_each_engine(engine, gt, id) {
342 		if (!intel_engine_pm_get_if_awake(engine))
343 			continue;
344 
345 		if (exclusive_mmio_access(i915)) {
346 			spin_lock_irqsave(&engine->uncore->lock, flags);
347 			engine_sample(engine, period_ns);
348 			spin_unlock_irqrestore(&engine->uncore->lock, flags);
349 		} else {
350 			engine_sample(engine, period_ns);
351 		}
352 
353 		intel_engine_pm_put_async(engine);
354 	}
355 }
356 
357 static void
358 add_sample_mult(struct i915_pmu_sample *sample, u32 val, u32 mul)
359 {
360 	sample->cur += mul_u32_u32(val, mul);
361 }
362 
363 static bool frequency_sampling_enabled(struct i915_pmu *pmu)
364 {
365 	return pmu->enable &
366 	       (config_mask(I915_PMU_ACTUAL_FREQUENCY) |
367 		config_mask(I915_PMU_REQUESTED_FREQUENCY));
368 }
369 
370 static void
371 frequency_sample(struct intel_gt *gt, unsigned int period_ns)
372 {
373 	struct drm_i915_private *i915 = gt->i915;
374 	struct i915_pmu *pmu = &i915->pmu;
375 	struct intel_rps *rps = &gt->rps;
376 
377 	if (!frequency_sampling_enabled(pmu))
378 		return;
379 
380 	/* Report 0/0 (actual/requested) frequency while parked. */
381 	if (!intel_gt_pm_get_if_awake(gt))
382 		return;
383 
384 	if (pmu->enable & config_mask(I915_PMU_ACTUAL_FREQUENCY)) {
385 		u32 val;
386 
387 		/*
388 		 * We take a quick peek here without using forcewake
389 		 * so that we don't perturb the system under observation
390 		 * (forcewake => !rc6 => increased power use). We expect
391 		 * that if the read fails because it is outside of the
392 		 * mmio power well, then it will return 0 -- in which
393 		 * case we assume the system is running at the intended
394 		 * frequency. Fortunately, the read should rarely fail!
395 		 */
396 		val = intel_rps_read_actual_frequency_fw(rps);
397 		if (!val)
398 			val = intel_gpu_freq(rps, rps->cur_freq);
399 
400 		add_sample_mult(&pmu->sample[__I915_SAMPLE_FREQ_ACT],
401 				val, period_ns / 1000);
402 	}
403 
404 	if (pmu->enable & config_mask(I915_PMU_REQUESTED_FREQUENCY)) {
405 		add_sample_mult(&pmu->sample[__I915_SAMPLE_FREQ_REQ],
406 				intel_rps_get_requested_frequency(rps),
407 				period_ns / 1000);
408 	}
409 
410 	intel_gt_pm_put_async(gt);
411 }
412 
413 static enum hrtimer_restart i915_sample(struct hrtimer *hrtimer)
414 {
415 	struct drm_i915_private *i915 =
416 		container_of(hrtimer, struct drm_i915_private, pmu.timer);
417 	struct i915_pmu *pmu = &i915->pmu;
418 	struct intel_gt *gt = to_gt(i915);
419 	unsigned int period_ns;
420 	ktime_t now;
421 
422 	if (!READ_ONCE(pmu->timer_enabled))
423 		return HRTIMER_NORESTART;
424 
425 	now = ktime_get();
426 	period_ns = ktime_to_ns(ktime_sub(now, pmu->timer_last));
427 	pmu->timer_last = now;
428 
429 	/*
430 	 * Strictly speaking the passed in period may not be 100% accurate for
431 	 * all internal calculation, since some amount of time can be spent on
432 	 * grabbing the forcewake. However the potential error from timer call-
433 	 * back delay greatly dominates this so we keep it simple.
434 	 */
435 	engines_sample(gt, period_ns);
436 	frequency_sample(gt, period_ns);
437 
438 	hrtimer_forward(hrtimer, now, ns_to_ktime(PERIOD));
439 
440 	return HRTIMER_RESTART;
441 }
442 
443 static void i915_pmu_event_destroy(struct perf_event *event)
444 {
445 	struct drm_i915_private *i915 =
446 		container_of(event->pmu, typeof(*i915), pmu.base);
447 
448 	drm_WARN_ON(&i915->drm, event->parent);
449 
450 	drm_dev_put(&i915->drm);
451 }
452 
453 static int
454 engine_event_status(struct intel_engine_cs *engine,
455 		    enum drm_i915_pmu_engine_sample sample)
456 {
457 	switch (sample) {
458 	case I915_SAMPLE_BUSY:
459 	case I915_SAMPLE_WAIT:
460 		break;
461 	case I915_SAMPLE_SEMA:
462 		if (GRAPHICS_VER(engine->i915) < 6)
463 			return -ENODEV;
464 		break;
465 	default:
466 		return -ENOENT;
467 	}
468 
469 	return 0;
470 }
471 
472 static int
473 config_status(struct drm_i915_private *i915, u64 config)
474 {
475 	struct intel_gt *gt = to_gt(i915);
476 
477 	switch (config) {
478 	case I915_PMU_ACTUAL_FREQUENCY:
479 		if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
480 			/* Requires a mutex for sampling! */
481 			return -ENODEV;
482 		fallthrough;
483 	case I915_PMU_REQUESTED_FREQUENCY:
484 		if (GRAPHICS_VER(i915) < 6)
485 			return -ENODEV;
486 		break;
487 	case I915_PMU_INTERRUPTS:
488 		break;
489 	case I915_PMU_RC6_RESIDENCY:
490 		if (!gt->rc6.supported)
491 			return -ENODEV;
492 		break;
493 	case I915_PMU_SOFTWARE_GT_AWAKE_TIME:
494 		break;
495 	default:
496 		return -ENOENT;
497 	}
498 
499 	return 0;
500 }
501 
502 static int engine_event_init(struct perf_event *event)
503 {
504 	struct drm_i915_private *i915 =
505 		container_of(event->pmu, typeof(*i915), pmu.base);
506 	struct intel_engine_cs *engine;
507 
508 	engine = intel_engine_lookup_user(i915, engine_event_class(event),
509 					  engine_event_instance(event));
510 	if (!engine)
511 		return -ENODEV;
512 
513 	return engine_event_status(engine, engine_event_sample(event));
514 }
515 
516 static int i915_pmu_event_init(struct perf_event *event)
517 {
518 	struct drm_i915_private *i915 =
519 		container_of(event->pmu, typeof(*i915), pmu.base);
520 	struct i915_pmu *pmu = &i915->pmu;
521 	int ret;
522 
523 	if (pmu->closed)
524 		return -ENODEV;
525 
526 	if (event->attr.type != event->pmu->type)
527 		return -ENOENT;
528 
529 	/* unsupported modes and filters */
530 	if (event->attr.sample_period) /* no sampling */
531 		return -EINVAL;
532 
533 	if (has_branch_stack(event))
534 		return -EOPNOTSUPP;
535 
536 	if (event->cpu < 0)
537 		return -EINVAL;
538 
539 	/* only allow running on one cpu at a time */
540 	if (!cpumask_test_cpu(event->cpu, &i915_pmu_cpumask))
541 		return -EINVAL;
542 
543 	if (is_engine_event(event))
544 		ret = engine_event_init(event);
545 	else
546 		ret = config_status(i915, event->attr.config);
547 	if (ret)
548 		return ret;
549 
550 	if (!event->parent) {
551 		drm_dev_get(&i915->drm);
552 		event->destroy = i915_pmu_event_destroy;
553 	}
554 
555 	return 0;
556 }
557 
558 static u64 __i915_pmu_event_read(struct perf_event *event)
559 {
560 	struct drm_i915_private *i915 =
561 		container_of(event->pmu, typeof(*i915), pmu.base);
562 	struct i915_pmu *pmu = &i915->pmu;
563 	u64 val = 0;
564 
565 	if (is_engine_event(event)) {
566 		u8 sample = engine_event_sample(event);
567 		struct intel_engine_cs *engine;
568 
569 		engine = intel_engine_lookup_user(i915,
570 						  engine_event_class(event),
571 						  engine_event_instance(event));
572 
573 		if (drm_WARN_ON_ONCE(&i915->drm, !engine)) {
574 			/* Do nothing */
575 		} else if (sample == I915_SAMPLE_BUSY &&
576 			   intel_engine_supports_stats(engine)) {
577 			ktime_t unused;
578 
579 			val = ktime_to_ns(intel_engine_get_busy_time(engine,
580 								     &unused));
581 		} else {
582 			val = engine->pmu.sample[sample].cur;
583 		}
584 	} else {
585 		switch (event->attr.config) {
586 		case I915_PMU_ACTUAL_FREQUENCY:
587 			val =
588 			   div_u64(pmu->sample[__I915_SAMPLE_FREQ_ACT].cur,
589 				   USEC_PER_SEC /* to MHz */);
590 			break;
591 		case I915_PMU_REQUESTED_FREQUENCY:
592 			val =
593 			   div_u64(pmu->sample[__I915_SAMPLE_FREQ_REQ].cur,
594 				   USEC_PER_SEC /* to MHz */);
595 			break;
596 		case I915_PMU_INTERRUPTS:
597 			val = READ_ONCE(pmu->irq_count);
598 			break;
599 		case I915_PMU_RC6_RESIDENCY:
600 			val = get_rc6(to_gt(i915));
601 			break;
602 		case I915_PMU_SOFTWARE_GT_AWAKE_TIME:
603 			val = ktime_to_ns(intel_gt_get_awake_time(to_gt(i915)));
604 			break;
605 		}
606 	}
607 
608 	return val;
609 }
610 
611 static void i915_pmu_event_read(struct perf_event *event)
612 {
613 	struct drm_i915_private *i915 =
614 		container_of(event->pmu, typeof(*i915), pmu.base);
615 	struct hw_perf_event *hwc = &event->hw;
616 	struct i915_pmu *pmu = &i915->pmu;
617 	u64 prev, new;
618 
619 	if (pmu->closed) {
620 		event->hw.state = PERF_HES_STOPPED;
621 		return;
622 	}
623 again:
624 	prev = local64_read(&hwc->prev_count);
625 	new = __i915_pmu_event_read(event);
626 
627 	if (local64_cmpxchg(&hwc->prev_count, prev, new) != prev)
628 		goto again;
629 
630 	local64_add(new - prev, &event->count);
631 }
632 
633 static void i915_pmu_enable(struct perf_event *event)
634 {
635 	struct drm_i915_private *i915 =
636 		container_of(event->pmu, typeof(*i915), pmu.base);
637 	struct i915_pmu *pmu = &i915->pmu;
638 	unsigned long flags;
639 	unsigned int bit;
640 
641 	bit = event_bit(event);
642 	if (bit == -1)
643 		goto update;
644 
645 	spin_lock_irqsave(&pmu->lock, flags);
646 
647 	/*
648 	 * Update the bitmask of enabled events and increment
649 	 * the event reference counter.
650 	 */
651 	BUILD_BUG_ON(ARRAY_SIZE(pmu->enable_count) != I915_PMU_MASK_BITS);
652 	GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count));
653 	GEM_BUG_ON(pmu->enable_count[bit] == ~0);
654 
655 	pmu->enable |= BIT_ULL(bit);
656 	pmu->enable_count[bit]++;
657 
658 	/*
659 	 * Start the sampling timer if needed and not already enabled.
660 	 */
661 	__i915_pmu_maybe_start_timer(pmu);
662 
663 	/*
664 	 * For per-engine events the bitmask and reference counting
665 	 * is stored per engine.
666 	 */
667 	if (is_engine_event(event)) {
668 		u8 sample = engine_event_sample(event);
669 		struct intel_engine_cs *engine;
670 
671 		engine = intel_engine_lookup_user(i915,
672 						  engine_event_class(event),
673 						  engine_event_instance(event));
674 
675 		BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.enable_count) !=
676 			     I915_ENGINE_SAMPLE_COUNT);
677 		BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.sample) !=
678 			     I915_ENGINE_SAMPLE_COUNT);
679 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count));
680 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample));
681 		GEM_BUG_ON(engine->pmu.enable_count[sample] == ~0);
682 
683 		engine->pmu.enable |= BIT(sample);
684 		engine->pmu.enable_count[sample]++;
685 	}
686 
687 	spin_unlock_irqrestore(&pmu->lock, flags);
688 
689 update:
690 	/*
691 	 * Store the current counter value so we can report the correct delta
692 	 * for all listeners. Even when the event was already enabled and has
693 	 * an existing non-zero value.
694 	 */
695 	local64_set(&event->hw.prev_count, __i915_pmu_event_read(event));
696 }
697 
698 static void i915_pmu_disable(struct perf_event *event)
699 {
700 	struct drm_i915_private *i915 =
701 		container_of(event->pmu, typeof(*i915), pmu.base);
702 	unsigned int bit = event_bit(event);
703 	struct i915_pmu *pmu = &i915->pmu;
704 	unsigned long flags;
705 
706 	if (bit == -1)
707 		return;
708 
709 	spin_lock_irqsave(&pmu->lock, flags);
710 
711 	if (is_engine_event(event)) {
712 		u8 sample = engine_event_sample(event);
713 		struct intel_engine_cs *engine;
714 
715 		engine = intel_engine_lookup_user(i915,
716 						  engine_event_class(event),
717 						  engine_event_instance(event));
718 
719 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count));
720 		GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample));
721 		GEM_BUG_ON(engine->pmu.enable_count[sample] == 0);
722 
723 		/*
724 		 * Decrement the reference count and clear the enabled
725 		 * bitmask when the last listener on an event goes away.
726 		 */
727 		if (--engine->pmu.enable_count[sample] == 0)
728 			engine->pmu.enable &= ~BIT(sample);
729 	}
730 
731 	GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count));
732 	GEM_BUG_ON(pmu->enable_count[bit] == 0);
733 	/*
734 	 * Decrement the reference count and clear the enabled
735 	 * bitmask when the last listener on an event goes away.
736 	 */
737 	if (--pmu->enable_count[bit] == 0) {
738 		pmu->enable &= ~BIT_ULL(bit);
739 		pmu->timer_enabled &= pmu_needs_timer(pmu, true);
740 	}
741 
742 	spin_unlock_irqrestore(&pmu->lock, flags);
743 }
744 
745 static void i915_pmu_event_start(struct perf_event *event, int flags)
746 {
747 	struct drm_i915_private *i915 =
748 		container_of(event->pmu, typeof(*i915), pmu.base);
749 	struct i915_pmu *pmu = &i915->pmu;
750 
751 	if (pmu->closed)
752 		return;
753 
754 	i915_pmu_enable(event);
755 	event->hw.state = 0;
756 }
757 
758 static void i915_pmu_event_stop(struct perf_event *event, int flags)
759 {
760 	if (flags & PERF_EF_UPDATE)
761 		i915_pmu_event_read(event);
762 	i915_pmu_disable(event);
763 	event->hw.state = PERF_HES_STOPPED;
764 }
765 
766 static int i915_pmu_event_add(struct perf_event *event, int flags)
767 {
768 	struct drm_i915_private *i915 =
769 		container_of(event->pmu, typeof(*i915), pmu.base);
770 	struct i915_pmu *pmu = &i915->pmu;
771 
772 	if (pmu->closed)
773 		return -ENODEV;
774 
775 	if (flags & PERF_EF_START)
776 		i915_pmu_event_start(event, flags);
777 
778 	return 0;
779 }
780 
781 static void i915_pmu_event_del(struct perf_event *event, int flags)
782 {
783 	i915_pmu_event_stop(event, PERF_EF_UPDATE);
784 }
785 
786 static int i915_pmu_event_event_idx(struct perf_event *event)
787 {
788 	return 0;
789 }
790 
791 struct i915_str_attribute {
792 	struct device_attribute attr;
793 	const char *str;
794 };
795 
796 static ssize_t i915_pmu_format_show(struct device *dev,
797 				    struct device_attribute *attr, char *buf)
798 {
799 	struct i915_str_attribute *eattr;
800 
801 	eattr = container_of(attr, struct i915_str_attribute, attr);
802 	return sprintf(buf, "%s\n", eattr->str);
803 }
804 
805 #define I915_PMU_FORMAT_ATTR(_name, _config) \
806 	(&((struct i915_str_attribute[]) { \
807 		{ .attr = __ATTR(_name, 0444, i915_pmu_format_show, NULL), \
808 		  .str = _config, } \
809 	})[0].attr.attr)
810 
811 static struct attribute *i915_pmu_format_attrs[] = {
812 	I915_PMU_FORMAT_ATTR(i915_eventid, "config:0-20"),
813 	NULL,
814 };
815 
816 static const struct attribute_group i915_pmu_format_attr_group = {
817 	.name = "format",
818 	.attrs = i915_pmu_format_attrs,
819 };
820 
821 struct i915_ext_attribute {
822 	struct device_attribute attr;
823 	unsigned long val;
824 };
825 
826 static ssize_t i915_pmu_event_show(struct device *dev,
827 				   struct device_attribute *attr, char *buf)
828 {
829 	struct i915_ext_attribute *eattr;
830 
831 	eattr = container_of(attr, struct i915_ext_attribute, attr);
832 	return sprintf(buf, "config=0x%lx\n", eattr->val);
833 }
834 
835 static ssize_t cpumask_show(struct device *dev,
836 			    struct device_attribute *attr, char *buf)
837 {
838 	return cpumap_print_to_pagebuf(true, buf, &i915_pmu_cpumask);
839 }
840 
841 static DEVICE_ATTR_RO(cpumask);
842 
843 static struct attribute *i915_cpumask_attrs[] = {
844 	&dev_attr_cpumask.attr,
845 	NULL,
846 };
847 
848 static const struct attribute_group i915_pmu_cpumask_attr_group = {
849 	.attrs = i915_cpumask_attrs,
850 };
851 
852 #define __event(__config, __name, __unit) \
853 { \
854 	.config = (__config), \
855 	.name = (__name), \
856 	.unit = (__unit), \
857 }
858 
859 #define __engine_event(__sample, __name) \
860 { \
861 	.sample = (__sample), \
862 	.name = (__name), \
863 }
864 
865 static struct i915_ext_attribute *
866 add_i915_attr(struct i915_ext_attribute *attr, const char *name, u64 config)
867 {
868 	sysfs_attr_init(&attr->attr.attr);
869 	attr->attr.attr.name = name;
870 	attr->attr.attr.mode = 0444;
871 	attr->attr.show = i915_pmu_event_show;
872 	attr->val = config;
873 
874 	return ++attr;
875 }
876 
877 static struct perf_pmu_events_attr *
878 add_pmu_attr(struct perf_pmu_events_attr *attr, const char *name,
879 	     const char *str)
880 {
881 	sysfs_attr_init(&attr->attr.attr);
882 	attr->attr.attr.name = name;
883 	attr->attr.attr.mode = 0444;
884 	attr->attr.show = perf_event_sysfs_show;
885 	attr->event_str = str;
886 
887 	return ++attr;
888 }
889 
890 static struct attribute **
891 create_event_attributes(struct i915_pmu *pmu)
892 {
893 	struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu);
894 	static const struct {
895 		u64 config;
896 		const char *name;
897 		const char *unit;
898 	} events[] = {
899 		__event(I915_PMU_ACTUAL_FREQUENCY, "actual-frequency", "M"),
900 		__event(I915_PMU_REQUESTED_FREQUENCY, "requested-frequency", "M"),
901 		__event(I915_PMU_INTERRUPTS, "interrupts", NULL),
902 		__event(I915_PMU_RC6_RESIDENCY, "rc6-residency", "ns"),
903 		__event(I915_PMU_SOFTWARE_GT_AWAKE_TIME, "software-gt-awake-time", "ns"),
904 	};
905 	static const struct {
906 		enum drm_i915_pmu_engine_sample sample;
907 		char *name;
908 	} engine_events[] = {
909 		__engine_event(I915_SAMPLE_BUSY, "busy"),
910 		__engine_event(I915_SAMPLE_SEMA, "sema"),
911 		__engine_event(I915_SAMPLE_WAIT, "wait"),
912 	};
913 	unsigned int count = 0;
914 	struct perf_pmu_events_attr *pmu_attr = NULL, *pmu_iter;
915 	struct i915_ext_attribute *i915_attr = NULL, *i915_iter;
916 	struct attribute **attr = NULL, **attr_iter;
917 	struct intel_engine_cs *engine;
918 	unsigned int i;
919 
920 	/* Count how many counters we will be exposing. */
921 	for (i = 0; i < ARRAY_SIZE(events); i++) {
922 		if (!config_status(i915, events[i].config))
923 			count++;
924 	}
925 
926 	for_each_uabi_engine(engine, i915) {
927 		for (i = 0; i < ARRAY_SIZE(engine_events); i++) {
928 			if (!engine_event_status(engine,
929 						 engine_events[i].sample))
930 				count++;
931 		}
932 	}
933 
934 	/* Allocate attribute objects and table. */
935 	i915_attr = kcalloc(count, sizeof(*i915_attr), GFP_KERNEL);
936 	if (!i915_attr)
937 		goto err_alloc;
938 
939 	pmu_attr = kcalloc(count, sizeof(*pmu_attr), GFP_KERNEL);
940 	if (!pmu_attr)
941 		goto err_alloc;
942 
943 	/* Max one pointer of each attribute type plus a termination entry. */
944 	attr = kcalloc(count * 2 + 1, sizeof(*attr), GFP_KERNEL);
945 	if (!attr)
946 		goto err_alloc;
947 
948 	i915_iter = i915_attr;
949 	pmu_iter = pmu_attr;
950 	attr_iter = attr;
951 
952 	/* Initialize supported non-engine counters. */
953 	for (i = 0; i < ARRAY_SIZE(events); i++) {
954 		char *str;
955 
956 		if (config_status(i915, events[i].config))
957 			continue;
958 
959 		str = kstrdup(events[i].name, GFP_KERNEL);
960 		if (!str)
961 			goto err;
962 
963 		*attr_iter++ = &i915_iter->attr.attr;
964 		i915_iter = add_i915_attr(i915_iter, str, events[i].config);
965 
966 		if (events[i].unit) {
967 			str = kasprintf(GFP_KERNEL, "%s.unit", events[i].name);
968 			if (!str)
969 				goto err;
970 
971 			*attr_iter++ = &pmu_iter->attr.attr;
972 			pmu_iter = add_pmu_attr(pmu_iter, str, events[i].unit);
973 		}
974 	}
975 
976 	/* Initialize supported engine counters. */
977 	for_each_uabi_engine(engine, i915) {
978 		for (i = 0; i < ARRAY_SIZE(engine_events); i++) {
979 			char *str;
980 
981 			if (engine_event_status(engine,
982 						engine_events[i].sample))
983 				continue;
984 
985 			str = kasprintf(GFP_KERNEL, "%s-%s",
986 					engine->name, engine_events[i].name);
987 			if (!str)
988 				goto err;
989 
990 			*attr_iter++ = &i915_iter->attr.attr;
991 			i915_iter =
992 				add_i915_attr(i915_iter, str,
993 					      __I915_PMU_ENGINE(engine->uabi_class,
994 								engine->uabi_instance,
995 								engine_events[i].sample));
996 
997 			str = kasprintf(GFP_KERNEL, "%s-%s.unit",
998 					engine->name, engine_events[i].name);
999 			if (!str)
1000 				goto err;
1001 
1002 			*attr_iter++ = &pmu_iter->attr.attr;
1003 			pmu_iter = add_pmu_attr(pmu_iter, str, "ns");
1004 		}
1005 	}
1006 
1007 	pmu->i915_attr = i915_attr;
1008 	pmu->pmu_attr = pmu_attr;
1009 
1010 	return attr;
1011 
1012 err:;
1013 	for (attr_iter = attr; *attr_iter; attr_iter++)
1014 		kfree((*attr_iter)->name);
1015 
1016 err_alloc:
1017 	kfree(attr);
1018 	kfree(i915_attr);
1019 	kfree(pmu_attr);
1020 
1021 	return NULL;
1022 }
1023 
1024 static void free_event_attributes(struct i915_pmu *pmu)
1025 {
1026 	struct attribute **attr_iter = pmu->events_attr_group.attrs;
1027 
1028 	for (; *attr_iter; attr_iter++)
1029 		kfree((*attr_iter)->name);
1030 
1031 	kfree(pmu->events_attr_group.attrs);
1032 	kfree(pmu->i915_attr);
1033 	kfree(pmu->pmu_attr);
1034 
1035 	pmu->events_attr_group.attrs = NULL;
1036 	pmu->i915_attr = NULL;
1037 	pmu->pmu_attr = NULL;
1038 }
1039 
1040 static int i915_pmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1041 {
1042 	struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node);
1043 
1044 	GEM_BUG_ON(!pmu->base.event_init);
1045 
1046 	/* Select the first online CPU as a designated reader. */
1047 	if (cpumask_empty(&i915_pmu_cpumask))
1048 		cpumask_set_cpu(cpu, &i915_pmu_cpumask);
1049 
1050 	return 0;
1051 }
1052 
1053 static int i915_pmu_cpu_offline(unsigned int cpu, struct hlist_node *node)
1054 {
1055 	struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node);
1056 	unsigned int target = i915_pmu_target_cpu;
1057 
1058 	GEM_BUG_ON(!pmu->base.event_init);
1059 
1060 	/*
1061 	 * Unregistering an instance generates a CPU offline event which we must
1062 	 * ignore to avoid incorrectly modifying the shared i915_pmu_cpumask.
1063 	 */
1064 	if (pmu->closed)
1065 		return 0;
1066 
1067 	if (cpumask_test_and_clear_cpu(cpu, &i915_pmu_cpumask)) {
1068 		target = cpumask_any_but(topology_sibling_cpumask(cpu), cpu);
1069 
1070 		/* Migrate events if there is a valid target */
1071 		if (target < nr_cpu_ids) {
1072 			cpumask_set_cpu(target, &i915_pmu_cpumask);
1073 			i915_pmu_target_cpu = target;
1074 		}
1075 	}
1076 
1077 	if (target < nr_cpu_ids && target != pmu->cpuhp.cpu) {
1078 		perf_pmu_migrate_context(&pmu->base, cpu, target);
1079 		pmu->cpuhp.cpu = target;
1080 	}
1081 
1082 	return 0;
1083 }
1084 
1085 static enum cpuhp_state cpuhp_slot = CPUHP_INVALID;
1086 
1087 int i915_pmu_init(void)
1088 {
1089 	int ret;
1090 
1091 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1092 				      "perf/x86/intel/i915:online",
1093 				      i915_pmu_cpu_online,
1094 				      i915_pmu_cpu_offline);
1095 	if (ret < 0)
1096 		pr_notice("Failed to setup cpuhp state for i915 PMU! (%d)\n",
1097 			  ret);
1098 	else
1099 		cpuhp_slot = ret;
1100 
1101 	return 0;
1102 }
1103 
1104 void i915_pmu_exit(void)
1105 {
1106 	if (cpuhp_slot != CPUHP_INVALID)
1107 		cpuhp_remove_multi_state(cpuhp_slot);
1108 }
1109 
1110 static int i915_pmu_register_cpuhp_state(struct i915_pmu *pmu)
1111 {
1112 	if (cpuhp_slot == CPUHP_INVALID)
1113 		return -EINVAL;
1114 
1115 	return cpuhp_state_add_instance(cpuhp_slot, &pmu->cpuhp.node);
1116 }
1117 
1118 static void i915_pmu_unregister_cpuhp_state(struct i915_pmu *pmu)
1119 {
1120 	cpuhp_state_remove_instance(cpuhp_slot, &pmu->cpuhp.node);
1121 }
1122 
1123 static bool is_igp(struct drm_i915_private *i915)
1124 {
1125 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1126 
1127 	/* IGP is 0000:00:02.0 */
1128 	return pci_domain_nr(pdev->bus) == 0 &&
1129 	       pdev->bus->number == 0 &&
1130 	       PCI_SLOT(pdev->devfn) == 2 &&
1131 	       PCI_FUNC(pdev->devfn) == 0;
1132 }
1133 
1134 void i915_pmu_register(struct drm_i915_private *i915)
1135 {
1136 	struct i915_pmu *pmu = &i915->pmu;
1137 	const struct attribute_group *attr_groups[] = {
1138 		&i915_pmu_format_attr_group,
1139 		&pmu->events_attr_group,
1140 		&i915_pmu_cpumask_attr_group,
1141 		NULL
1142 	};
1143 
1144 	int ret = -ENOMEM;
1145 
1146 	if (GRAPHICS_VER(i915) <= 2) {
1147 		drm_info(&i915->drm, "PMU not supported for this GPU.");
1148 		return;
1149 	}
1150 
1151 	spin_lock_init(&pmu->lock);
1152 	hrtimer_init(&pmu->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1153 	pmu->timer.function = i915_sample;
1154 	pmu->cpuhp.cpu = -1;
1155 	init_rc6(pmu);
1156 
1157 	if (!is_igp(i915)) {
1158 		pmu->name = kasprintf(GFP_KERNEL,
1159 				      "i915_%s",
1160 				      dev_name(i915->drm.dev));
1161 		if (pmu->name) {
1162 			/* tools/perf reserves colons as special. */
1163 			strreplace((char *)pmu->name, ':', '_');
1164 		}
1165 	} else {
1166 		pmu->name = "i915";
1167 	}
1168 	if (!pmu->name)
1169 		goto err;
1170 
1171 	pmu->events_attr_group.name = "events";
1172 	pmu->events_attr_group.attrs = create_event_attributes(pmu);
1173 	if (!pmu->events_attr_group.attrs)
1174 		goto err_name;
1175 
1176 	pmu->base.attr_groups = kmemdup(attr_groups, sizeof(attr_groups),
1177 					GFP_KERNEL);
1178 	if (!pmu->base.attr_groups)
1179 		goto err_attr;
1180 
1181 	pmu->base.module	= THIS_MODULE;
1182 	pmu->base.task_ctx_nr	= perf_invalid_context;
1183 	pmu->base.event_init	= i915_pmu_event_init;
1184 	pmu->base.add		= i915_pmu_event_add;
1185 	pmu->base.del		= i915_pmu_event_del;
1186 	pmu->base.start		= i915_pmu_event_start;
1187 	pmu->base.stop		= i915_pmu_event_stop;
1188 	pmu->base.read		= i915_pmu_event_read;
1189 	pmu->base.event_idx	= i915_pmu_event_event_idx;
1190 
1191 	ret = perf_pmu_register(&pmu->base, pmu->name, -1);
1192 	if (ret)
1193 		goto err_groups;
1194 
1195 	ret = i915_pmu_register_cpuhp_state(pmu);
1196 	if (ret)
1197 		goto err_unreg;
1198 
1199 	return;
1200 
1201 err_unreg:
1202 	perf_pmu_unregister(&pmu->base);
1203 err_groups:
1204 	kfree(pmu->base.attr_groups);
1205 err_attr:
1206 	pmu->base.event_init = NULL;
1207 	free_event_attributes(pmu);
1208 err_name:
1209 	if (!is_igp(i915))
1210 		kfree(pmu->name);
1211 err:
1212 	drm_notice(&i915->drm, "Failed to register PMU!\n");
1213 }
1214 
1215 void i915_pmu_unregister(struct drm_i915_private *i915)
1216 {
1217 	struct i915_pmu *pmu = &i915->pmu;
1218 
1219 	if (!pmu->base.event_init)
1220 		return;
1221 
1222 	/*
1223 	 * "Disconnect" the PMU callbacks - since all are atomic synchronize_rcu
1224 	 * ensures all currently executing ones will have exited before we
1225 	 * proceed with unregistration.
1226 	 */
1227 	pmu->closed = true;
1228 	synchronize_rcu();
1229 
1230 	hrtimer_cancel(&pmu->timer);
1231 
1232 	i915_pmu_unregister_cpuhp_state(pmu);
1233 
1234 	perf_pmu_unregister(&pmu->base);
1235 	pmu->base.event_init = NULL;
1236 	kfree(pmu->base.attr_groups);
1237 	if (!is_igp(i915))
1238 		kfree(pmu->name);
1239 	free_event_attributes(pmu);
1240 }
1241