xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision ffcdf473)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/nospec.h>
196 #include <linux/sizes.h>
197 #include <linux/uuid.h>
198 
199 #include "gem/i915_gem_context.h"
200 #include "gem/i915_gem_internal.h"
201 #include "gt/intel_engine_pm.h"
202 #include "gt/intel_engine_regs.h"
203 #include "gt/intel_engine_user.h"
204 #include "gt/intel_execlists_submission.h"
205 #include "gt/intel_gpu_commands.h"
206 #include "gt/intel_gt.h"
207 #include "gt/intel_gt_clock_utils.h"
208 #include "gt/intel_gt_mcr.h"
209 #include "gt/intel_gt_regs.h"
210 #include "gt/intel_lrc.h"
211 #include "gt/intel_lrc_reg.h"
212 #include "gt/intel_rc6.h"
213 #include "gt/intel_ring.h"
214 #include "gt/uc/intel_guc_slpc.h"
215 
216 #include "i915_drv.h"
217 #include "i915_file_private.h"
218 #include "i915_perf.h"
219 #include "i915_perf_oa_regs.h"
220 #include "i915_reg.h"
221 
222 /* HW requires this to be a power of two, between 128k and 16M, though driver
223  * is currently generally designed assuming the largest 16M size is used such
224  * that the overflow cases are unlikely in normal operation.
225  */
226 #define OA_BUFFER_SIZE		SZ_16M
227 
228 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
229 
230 /**
231  * DOC: OA Tail Pointer Race
232  *
233  * There's a HW race condition between OA unit tail pointer register updates and
234  * writes to memory whereby the tail pointer can sometimes get ahead of what's
235  * been written out to the OA buffer so far (in terms of what's visible to the
236  * CPU).
237  *
238  * Although this can be observed explicitly while copying reports to userspace
239  * by checking for a zeroed report-id field in tail reports, we want to account
240  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
241  * redundant read() attempts.
242  *
243  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
244  * in the OA buffer, starting from the tail reported by the HW until we find a
245  * report with its first 2 dwords not 0 meaning its previous report is
246  * completely in memory and ready to be read. Those dwords are also set to 0
247  * once read and the whole buffer is cleared upon OA buffer initialization. The
248  * first dword is the reason for this report while the second is the timestamp,
249  * making the chances of having those 2 fields at 0 fairly unlikely. A more
250  * detailed explanation is available in oa_buffer_check_unlocked().
251  *
252  * Most of the implementation details for this workaround are in
253  * oa_buffer_check_unlocked() and _append_oa_reports()
254  *
255  * Note for posterity: previously the driver used to define an effective tail
256  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
257  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
258  * This was flawed considering that the OA unit may also automatically generate
259  * non-periodic reports (such as on context switch) or the OA unit may be
260  * enabled without any periodic sampling.
261  */
262 #define OA_TAIL_MARGIN_NSEC	100000ULL
263 #define INVALID_TAIL_PTR	0xffffffff
264 
265 /* The default frequency for checking whether the OA unit has written new
266  * reports to the circular OA buffer...
267  */
268 #define DEFAULT_POLL_FREQUENCY_HZ 200
269 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
270 
271 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
272 static u32 i915_perf_stream_paranoid = true;
273 
274 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
275  * of the 64bit timestamp bits to trigger reports from) but there's currently
276  * no known use case for sampling as infrequently as once per 47 thousand years.
277  *
278  * Since the timestamps included in OA reports are only 32bits it seems
279  * reasonable to limit the OA exponent where it's still possible to account for
280  * overflow in OA report timestamps.
281  */
282 #define OA_EXPONENT_MAX 31
283 
284 #define INVALID_CTX_ID 0xffffffff
285 
286 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
287 #define OAREPORT_REASON_MASK           0x3f
288 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
289 #define OAREPORT_REASON_SHIFT          19
290 #define OAREPORT_REASON_TIMER          (1<<0)
291 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
292 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
293 
294 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
295 
296 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
297  *
298  * The highest sampling frequency we can theoretically program the OA unit
299  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
300  *
301  * Initialized just before we register the sysctl parameter.
302  */
303 static int oa_sample_rate_hard_limit;
304 
305 /* Theoretically we can program the OA unit to sample every 160ns but don't
306  * allow that by default unless root...
307  *
308  * The default threshold of 100000Hz is based on perf's similar
309  * kernel.perf_event_max_sample_rate sysctl parameter.
310  */
311 static u32 i915_oa_max_sample_rate = 100000;
312 
313 /* XXX: beware if future OA HW adds new report formats that the current
314  * code assumes all reports have a power-of-two size and ~(size - 1) can
315  * be used as a mask to align the OA tail pointer.
316  */
317 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
318 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
319 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
320 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
321 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
322 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
323 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
324 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
325 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
326 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
327 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
328 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
329 	[I915_OAR_FORMAT_A32u40_A4u32_B8_C8]    = { 5, 256 },
330 	[I915_OA_FORMAT_A24u40_A14u32_B8_C8]    = { 5, 256 },
331 	[I915_OAM_FORMAT_MPEC8u64_B8_C8]	= { 1, 192, TYPE_OAM, HDR_64_BIT },
332 	[I915_OAM_FORMAT_MPEC8u32_B8_C8]	= { 2, 128, TYPE_OAM, HDR_64_BIT },
333 };
334 
335 static const u32 mtl_oa_base[] = {
336 	[PERF_GROUP_OAM_SAMEDIA_0] = 0x393000,
337 };
338 
339 #define SAMPLE_OA_REPORT      (1<<0)
340 
341 /**
342  * struct perf_open_properties - for validated properties given to open a stream
343  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
344  * @single_context: Whether a single or all gpu contexts should be monitored
345  * @hold_preemption: Whether the preemption is disabled for the filtered
346  *                   context
347  * @ctx_handle: A gem ctx handle for use with @single_context
348  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
349  * @oa_format: An OA unit HW report format
350  * @oa_periodic: Whether to enable periodic OA unit sampling
351  * @oa_period_exponent: The OA unit sampling period is derived from this
352  * @engine: The engine (typically rcs0) being monitored by the OA unit
353  * @has_sseu: Whether @sseu was specified by userspace
354  * @sseu: internal SSEU configuration computed either from the userspace
355  *        specified configuration in the opening parameters or a default value
356  *        (see get_default_sseu_config())
357  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
358  * data availability
359  *
360  * As read_properties_unlocked() enumerates and validates the properties given
361  * to open a stream of metrics the configuration is built up in the structure
362  * which starts out zero initialized.
363  */
364 struct perf_open_properties {
365 	u32 sample_flags;
366 
367 	u64 single_context:1;
368 	u64 hold_preemption:1;
369 	u64 ctx_handle;
370 
371 	/* OA sampling state */
372 	int metrics_set;
373 	int oa_format;
374 	bool oa_periodic;
375 	int oa_period_exponent;
376 
377 	struct intel_engine_cs *engine;
378 
379 	bool has_sseu;
380 	struct intel_sseu sseu;
381 
382 	u64 poll_oa_period;
383 };
384 
385 struct i915_oa_config_bo {
386 	struct llist_node node;
387 
388 	struct i915_oa_config *oa_config;
389 	struct i915_vma *vma;
390 };
391 
392 static struct ctl_table_header *sysctl_header;
393 
394 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
395 
396 void i915_oa_config_release(struct kref *ref)
397 {
398 	struct i915_oa_config *oa_config =
399 		container_of(ref, typeof(*oa_config), ref);
400 
401 	kfree(oa_config->flex_regs);
402 	kfree(oa_config->b_counter_regs);
403 	kfree(oa_config->mux_regs);
404 
405 	kfree_rcu(oa_config, rcu);
406 }
407 
408 struct i915_oa_config *
409 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
410 {
411 	struct i915_oa_config *oa_config;
412 
413 	rcu_read_lock();
414 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
415 	if (oa_config)
416 		oa_config = i915_oa_config_get(oa_config);
417 	rcu_read_unlock();
418 
419 	return oa_config;
420 }
421 
422 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
423 {
424 	i915_oa_config_put(oa_bo->oa_config);
425 	i915_vma_put(oa_bo->vma);
426 	kfree(oa_bo);
427 }
428 
429 static inline const
430 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream)
431 {
432 	return &stream->engine->oa_group->regs;
433 }
434 
435 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
436 {
437 	struct intel_uncore *uncore = stream->uncore;
438 
439 	return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) &
440 	       GEN12_OAG_OATAILPTR_MASK;
441 }
442 
443 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
444 {
445 	struct intel_uncore *uncore = stream->uncore;
446 
447 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
448 }
449 
450 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
451 {
452 	struct intel_uncore *uncore = stream->uncore;
453 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
454 
455 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
456 }
457 
458 #define oa_report_header_64bit(__s) \
459 	((__s)->oa_buffer.format->header == HDR_64_BIT)
460 
461 static u64 oa_report_id(struct i915_perf_stream *stream, void *report)
462 {
463 	return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report;
464 }
465 
466 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report)
467 {
468 	return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) &
469 	       (GRAPHICS_VER(stream->perf->i915) == 12 ?
470 		OAREPORT_REASON_MASK_EXTENDED :
471 		OAREPORT_REASON_MASK);
472 }
473 
474 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report)
475 {
476 	if (oa_report_header_64bit(stream))
477 		*(u64 *)report = 0;
478 	else
479 		*report = 0;
480 }
481 
482 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report)
483 {
484 	return !(oa_report_id(stream, report) &
485 	       stream->perf->gen8_valid_ctx_bit) &&
486 	       GRAPHICS_VER(stream->perf->i915) <= 11;
487 }
488 
489 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report)
490 {
491 	return oa_report_header_64bit(stream) ?
492 		*((u64 *)report + 1) :
493 		*((u32 *)report + 1);
494 }
495 
496 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report)
497 {
498 	if (oa_report_header_64bit(stream))
499 		*(u64 *)&report[2] = 0;
500 	else
501 		report[1] = 0;
502 }
503 
504 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report)
505 {
506 	u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2];
507 
508 	return ctx_id & stream->specific_ctx_id_mask;
509 }
510 
511 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report)
512 {
513 	if (oa_report_header_64bit(stream))
514 		report[4] = INVALID_CTX_ID;
515 	else
516 		report[2] = INVALID_CTX_ID;
517 }
518 
519 /**
520  * oa_buffer_check_unlocked - check for data and update tail ptr state
521  * @stream: i915 stream instance
522  *
523  * This is either called via fops (for blocking reads in user ctx) or the poll
524  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
525  * if there is data available for userspace to read.
526  *
527  * This function is central to providing a workaround for the OA unit tail
528  * pointer having a race with respect to what data is visible to the CPU.
529  * It is responsible for reading tail pointers from the hardware and giving
530  * the pointers time to 'age' before they are made available for reading.
531  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
532  *
533  * Besides returning true when there is data available to read() this function
534  * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
535  * object.
536  *
537  * Note: It's safe to read OA config state here unlocked, assuming that this is
538  * only called while the stream is enabled, while the global OA configuration
539  * can't be modified.
540  *
541  * Returns: %true if the OA buffer contains data, else %false
542  */
543 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
544 {
545 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
546 	int report_size = stream->oa_buffer.format->size;
547 	unsigned long flags;
548 	bool pollin;
549 	u32 hw_tail;
550 	u64 now;
551 	u32 partial_report_size;
552 
553 	/* We have to consider the (unlikely) possibility that read() errors
554 	 * could result in an OA buffer reset which might reset the head and
555 	 * tail state.
556 	 */
557 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
558 
559 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
560 
561 	/* The tail pointer increases in 64 byte increments, not in report_size
562 	 * steps. Also the report size may not be a power of 2. Compute
563 	 * potentially partially landed report in the OA buffer
564 	 */
565 	partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail);
566 	partial_report_size %= report_size;
567 
568 	/* Subtract partial amount off the tail */
569 	hw_tail = gtt_offset + OA_TAKEN(hw_tail, partial_report_size);
570 
571 	now = ktime_get_mono_fast_ns();
572 
573 	if (hw_tail == stream->oa_buffer.aging_tail &&
574 	    (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
575 		/* If the HW tail hasn't move since the last check and the HW
576 		 * tail has been aging for long enough, declare it the new
577 		 * tail.
578 		 */
579 		stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
580 	} else {
581 		u32 head, tail, aged_tail;
582 
583 		/* NB: The head we observe here might effectively be a little
584 		 * out of date. If a read() is in progress, the head could be
585 		 * anywhere between this head and stream->oa_buffer.tail.
586 		 */
587 		head = stream->oa_buffer.head - gtt_offset;
588 		aged_tail = stream->oa_buffer.tail - gtt_offset;
589 
590 		hw_tail -= gtt_offset;
591 		tail = hw_tail;
592 
593 		/* Walk the stream backward until we find a report with report
594 		 * id and timestmap not at 0. Since the circular buffer pointers
595 		 * progress by increments of 64 bytes and that reports can be up
596 		 * to 256 bytes long, we can't tell whether a report has fully
597 		 * landed in memory before the report id and timestamp of the
598 		 * following report have effectively landed.
599 		 *
600 		 * This is assuming that the writes of the OA unit land in
601 		 * memory in the order they were written to.
602 		 * If not : (╯°□°)╯︵ ┻━┻
603 		 */
604 		while (OA_TAKEN(tail, aged_tail) >= report_size) {
605 			void *report = stream->oa_buffer.vaddr + tail;
606 
607 			if (oa_report_id(stream, report) ||
608 			    oa_timestamp(stream, report))
609 				break;
610 
611 			tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
612 		}
613 
614 		if (OA_TAKEN(hw_tail, tail) > report_size &&
615 		    __ratelimit(&stream->perf->tail_pointer_race))
616 			drm_notice(&stream->uncore->i915->drm,
617 				   "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n",
618 				   head, tail, hw_tail);
619 
620 		stream->oa_buffer.tail = gtt_offset + tail;
621 		stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
622 		stream->oa_buffer.aging_timestamp = now;
623 	}
624 
625 	pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
626 			  stream->oa_buffer.head - gtt_offset) >= report_size;
627 
628 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
629 
630 	return pollin;
631 }
632 
633 /**
634  * append_oa_status - Appends a status record to a userspace read() buffer.
635  * @stream: An i915-perf stream opened for OA metrics
636  * @buf: destination buffer given by userspace
637  * @count: the number of bytes userspace wants to read
638  * @offset: (inout): the current position for writing into @buf
639  * @type: The kind of status to report to userspace
640  *
641  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
642  * into the userspace read() buffer.
643  *
644  * The @buf @offset will only be updated on success.
645  *
646  * Returns: 0 on success, negative error code on failure.
647  */
648 static int append_oa_status(struct i915_perf_stream *stream,
649 			    char __user *buf,
650 			    size_t count,
651 			    size_t *offset,
652 			    enum drm_i915_perf_record_type type)
653 {
654 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
655 
656 	if ((count - *offset) < header.size)
657 		return -ENOSPC;
658 
659 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
660 		return -EFAULT;
661 
662 	(*offset) += header.size;
663 
664 	return 0;
665 }
666 
667 /**
668  * append_oa_sample - Copies single OA report into userspace read() buffer.
669  * @stream: An i915-perf stream opened for OA metrics
670  * @buf: destination buffer given by userspace
671  * @count: the number of bytes userspace wants to read
672  * @offset: (inout): the current position for writing into @buf
673  * @report: A single OA report to (optionally) include as part of the sample
674  *
675  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
676  * properties when opening a stream, tracked as `stream->sample_flags`. This
677  * function copies the requested components of a single sample to the given
678  * read() @buf.
679  *
680  * The @buf @offset will only be updated on success.
681  *
682  * Returns: 0 on success, negative error code on failure.
683  */
684 static int append_oa_sample(struct i915_perf_stream *stream,
685 			    char __user *buf,
686 			    size_t count,
687 			    size_t *offset,
688 			    const u8 *report)
689 {
690 	int report_size = stream->oa_buffer.format->size;
691 	struct drm_i915_perf_record_header header;
692 	int report_size_partial;
693 	u8 *oa_buf_end;
694 
695 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
696 	header.pad = 0;
697 	header.size = stream->sample_size;
698 
699 	if ((count - *offset) < header.size)
700 		return -ENOSPC;
701 
702 	buf += *offset;
703 	if (copy_to_user(buf, &header, sizeof(header)))
704 		return -EFAULT;
705 	buf += sizeof(header);
706 
707 	oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE;
708 	report_size_partial = oa_buf_end - report;
709 
710 	if (report_size_partial < report_size) {
711 		if (copy_to_user(buf, report, report_size_partial))
712 			return -EFAULT;
713 		buf += report_size_partial;
714 
715 		if (copy_to_user(buf, stream->oa_buffer.vaddr,
716 				 report_size - report_size_partial))
717 			return -EFAULT;
718 	} else if (copy_to_user(buf, report, report_size)) {
719 		return -EFAULT;
720 	}
721 
722 	(*offset) += header.size;
723 
724 	return 0;
725 }
726 
727 /**
728  * gen8_append_oa_reports - Copies all buffered OA reports into
729  *			    userspace read() buffer.
730  * @stream: An i915-perf stream opened for OA metrics
731  * @buf: destination buffer given by userspace
732  * @count: the number of bytes userspace wants to read
733  * @offset: (inout): the current position for writing into @buf
734  *
735  * Notably any error condition resulting in a short read (-%ENOSPC or
736  * -%EFAULT) will be returned even though one or more records may
737  * have been successfully copied. In this case it's up to the caller
738  * to decide if the error should be squashed before returning to
739  * userspace.
740  *
741  * Note: reports are consumed from the head, and appended to the
742  * tail, so the tail chases the head?... If you think that's mad
743  * and back-to-front you're not alone, but this follows the
744  * Gen PRM naming convention.
745  *
746  * Returns: 0 on success, negative error code on failure.
747  */
748 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
749 				  char __user *buf,
750 				  size_t count,
751 				  size_t *offset)
752 {
753 	struct intel_uncore *uncore = stream->uncore;
754 	int report_size = stream->oa_buffer.format->size;
755 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
756 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
757 	u32 mask = (OA_BUFFER_SIZE - 1);
758 	size_t start_offset = *offset;
759 	unsigned long flags;
760 	u32 head, tail;
761 	int ret = 0;
762 
763 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
764 		return -EIO;
765 
766 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
767 
768 	head = stream->oa_buffer.head;
769 	tail = stream->oa_buffer.tail;
770 
771 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
772 
773 	/*
774 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
775 	 * while indexing relative to oa_buf_base.
776 	 */
777 	head -= gtt_offset;
778 	tail -= gtt_offset;
779 
780 	/*
781 	 * An out of bounds or misaligned head or tail pointer implies a driver
782 	 * bug since we validate + align the tail pointers we read from the
783 	 * hardware and we are in full control of the head pointer which should
784 	 * only be incremented by multiples of the report size.
785 	 */
786 	if (drm_WARN_ONCE(&uncore->i915->drm,
787 			  head > OA_BUFFER_SIZE ||
788 			  tail > OA_BUFFER_SIZE,
789 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
790 			  head, tail))
791 		return -EIO;
792 
793 
794 	for (/* none */;
795 	     OA_TAKEN(tail, head);
796 	     head = (head + report_size) & mask) {
797 		u8 *report = oa_buf_base + head;
798 		u32 *report32 = (void *)report;
799 		u32 ctx_id;
800 		u64 reason;
801 
802 		/*
803 		 * The reason field includes flags identifying what
804 		 * triggered this specific report (mostly timer
805 		 * triggered or e.g. due to a context switch).
806 		 *
807 		 * In MMIO triggered reports, some platforms do not set the
808 		 * reason bit in this field and it is valid to have a reason
809 		 * field of zero.
810 		 */
811 		reason = oa_report_reason(stream, report);
812 		ctx_id = oa_context_id(stream, report32);
813 
814 		/*
815 		 * Squash whatever is in the CTX_ID field if it's marked as
816 		 * invalid to be sure we avoid false-positive, single-context
817 		 * filtering below...
818 		 *
819 		 * Note: that we don't clear the valid_ctx_bit so userspace can
820 		 * understand that the ID has been squashed by the kernel.
821 		 */
822 		if (oa_report_ctx_invalid(stream, report)) {
823 			ctx_id = INVALID_CTX_ID;
824 			oa_context_id_squash(stream, report32);
825 		}
826 
827 		/*
828 		 * NB: For Gen 8 the OA unit no longer supports clock gating
829 		 * off for a specific context and the kernel can't securely
830 		 * stop the counters from updating as system-wide / global
831 		 * values.
832 		 *
833 		 * Automatic reports now include a context ID so reports can be
834 		 * filtered on the cpu but it's not worth trying to
835 		 * automatically subtract/hide counter progress for other
836 		 * contexts while filtering since we can't stop userspace
837 		 * issuing MI_REPORT_PERF_COUNT commands which would still
838 		 * provide a side-band view of the real values.
839 		 *
840 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
841 		 * to normalize counters for a single filtered context then it
842 		 * needs be forwarded bookend context-switch reports so that it
843 		 * can track switches in between MI_REPORT_PERF_COUNT commands
844 		 * and can itself subtract/ignore the progress of counters
845 		 * associated with other contexts. Note that the hardware
846 		 * automatically triggers reports when switching to a new
847 		 * context which are tagged with the ID of the newly active
848 		 * context. To avoid the complexity (and likely fragility) of
849 		 * reading ahead while parsing reports to try and minimize
850 		 * forwarding redundant context switch reports (i.e. between
851 		 * other, unrelated contexts) we simply elect to forward them
852 		 * all.
853 		 *
854 		 * We don't rely solely on the reason field to identify context
855 		 * switches since it's not-uncommon for periodic samples to
856 		 * identify a switch before any 'context switch' report.
857 		 */
858 		if (!stream->ctx ||
859 		    stream->specific_ctx_id == ctx_id ||
860 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
861 		    reason & OAREPORT_REASON_CTX_SWITCH) {
862 
863 			/*
864 			 * While filtering for a single context we avoid
865 			 * leaking the IDs of other contexts.
866 			 */
867 			if (stream->ctx &&
868 			    stream->specific_ctx_id != ctx_id) {
869 				oa_context_id_squash(stream, report32);
870 			}
871 
872 			ret = append_oa_sample(stream, buf, count, offset,
873 					       report);
874 			if (ret)
875 				break;
876 
877 			stream->oa_buffer.last_ctx_id = ctx_id;
878 		}
879 
880 		/*
881 		 * Clear out the report id and timestamp as a means to detect unlanded
882 		 * reports.
883 		 */
884 		oa_report_id_clear(stream, report32);
885 		oa_timestamp_clear(stream, report32);
886 	}
887 
888 	if (start_offset != *offset) {
889 		i915_reg_t oaheadptr;
890 
891 		oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
892 			    __oa_regs(stream)->oa_head_ptr :
893 			    GEN8_OAHEADPTR;
894 
895 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
896 
897 		/*
898 		 * We removed the gtt_offset for the copy loop above, indexing
899 		 * relative to oa_buf_base so put back here...
900 		 */
901 		head += gtt_offset;
902 		intel_uncore_write(uncore, oaheadptr,
903 				   head & GEN12_OAG_OAHEADPTR_MASK);
904 		stream->oa_buffer.head = head;
905 
906 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
907 	}
908 
909 	return ret;
910 }
911 
912 /**
913  * gen8_oa_read - copy status records then buffered OA reports
914  * @stream: An i915-perf stream opened for OA metrics
915  * @buf: destination buffer given by userspace
916  * @count: the number of bytes userspace wants to read
917  * @offset: (inout): the current position for writing into @buf
918  *
919  * Checks OA unit status registers and if necessary appends corresponding
920  * status records for userspace (such as for a buffer full condition) and then
921  * initiate appending any buffered OA reports.
922  *
923  * Updates @offset according to the number of bytes successfully copied into
924  * the userspace buffer.
925  *
926  * NB: some data may be successfully copied to the userspace buffer
927  * even if an error is returned, and this is reflected in the
928  * updated @offset.
929  *
930  * Returns: zero on success or a negative error code
931  */
932 static int gen8_oa_read(struct i915_perf_stream *stream,
933 			char __user *buf,
934 			size_t count,
935 			size_t *offset)
936 {
937 	struct intel_uncore *uncore = stream->uncore;
938 	u32 oastatus;
939 	i915_reg_t oastatus_reg;
940 	int ret;
941 
942 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
943 		return -EIO;
944 
945 	oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
946 		       __oa_regs(stream)->oa_status :
947 		       GEN8_OASTATUS;
948 
949 	oastatus = intel_uncore_read(uncore, oastatus_reg);
950 
951 	/*
952 	 * We treat OABUFFER_OVERFLOW as a significant error:
953 	 *
954 	 * Although theoretically we could handle this more gracefully
955 	 * sometimes, some Gens don't correctly suppress certain
956 	 * automatically triggered reports in this condition and so we
957 	 * have to assume that old reports are now being trampled
958 	 * over.
959 	 *
960 	 * Considering how we don't currently give userspace control
961 	 * over the OA buffer size and always configure a large 16MB
962 	 * buffer, then a buffer overflow does anyway likely indicate
963 	 * that something has gone quite badly wrong.
964 	 */
965 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
966 		ret = append_oa_status(stream, buf, count, offset,
967 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
968 		if (ret)
969 			return ret;
970 
971 		drm_dbg(&stream->perf->i915->drm,
972 			"OA buffer overflow (exponent = %d): force restart\n",
973 			stream->period_exponent);
974 
975 		stream->perf->ops.oa_disable(stream);
976 		stream->perf->ops.oa_enable(stream);
977 
978 		/*
979 		 * Note: .oa_enable() is expected to re-init the oabuffer and
980 		 * reset GEN8_OASTATUS for us
981 		 */
982 		oastatus = intel_uncore_read(uncore, oastatus_reg);
983 	}
984 
985 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
986 		ret = append_oa_status(stream, buf, count, offset,
987 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
988 		if (ret)
989 			return ret;
990 
991 		intel_uncore_rmw(uncore, oastatus_reg,
992 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
993 				 GEN8_OASTATUS_REPORT_LOST,
994 				 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
995 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
996 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
997 	}
998 
999 	return gen8_append_oa_reports(stream, buf, count, offset);
1000 }
1001 
1002 /**
1003  * gen7_append_oa_reports - Copies all buffered OA reports into
1004  *			    userspace read() buffer.
1005  * @stream: An i915-perf stream opened for OA metrics
1006  * @buf: destination buffer given by userspace
1007  * @count: the number of bytes userspace wants to read
1008  * @offset: (inout): the current position for writing into @buf
1009  *
1010  * Notably any error condition resulting in a short read (-%ENOSPC or
1011  * -%EFAULT) will be returned even though one or more records may
1012  * have been successfully copied. In this case it's up to the caller
1013  * to decide if the error should be squashed before returning to
1014  * userspace.
1015  *
1016  * Note: reports are consumed from the head, and appended to the
1017  * tail, so the tail chases the head?... If you think that's mad
1018  * and back-to-front you're not alone, but this follows the
1019  * Gen PRM naming convention.
1020  *
1021  * Returns: 0 on success, negative error code on failure.
1022  */
1023 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
1024 				  char __user *buf,
1025 				  size_t count,
1026 				  size_t *offset)
1027 {
1028 	struct intel_uncore *uncore = stream->uncore;
1029 	int report_size = stream->oa_buffer.format->size;
1030 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
1031 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1032 	u32 mask = (OA_BUFFER_SIZE - 1);
1033 	size_t start_offset = *offset;
1034 	unsigned long flags;
1035 	u32 head, tail;
1036 	int ret = 0;
1037 
1038 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
1039 		return -EIO;
1040 
1041 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1042 
1043 	head = stream->oa_buffer.head;
1044 	tail = stream->oa_buffer.tail;
1045 
1046 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1047 
1048 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
1049 	 * while indexing relative to oa_buf_base.
1050 	 */
1051 	head -= gtt_offset;
1052 	tail -= gtt_offset;
1053 
1054 	/* An out of bounds or misaligned head or tail pointer implies a driver
1055 	 * bug since we validate + align the tail pointers we read from the
1056 	 * hardware and we are in full control of the head pointer which should
1057 	 * only be incremented by multiples of the report size (notably also
1058 	 * all a power of two).
1059 	 */
1060 	if (drm_WARN_ONCE(&uncore->i915->drm,
1061 			  head > OA_BUFFER_SIZE || head % report_size ||
1062 			  tail > OA_BUFFER_SIZE || tail % report_size,
1063 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1064 			  head, tail))
1065 		return -EIO;
1066 
1067 
1068 	for (/* none */;
1069 	     OA_TAKEN(tail, head);
1070 	     head = (head + report_size) & mask) {
1071 		u8 *report = oa_buf_base + head;
1072 		u32 *report32 = (void *)report;
1073 
1074 		/* All the report sizes factor neatly into the buffer
1075 		 * size so we never expect to see a report split
1076 		 * between the beginning and end of the buffer.
1077 		 *
1078 		 * Given the initial alignment check a misalignment
1079 		 * here would imply a driver bug that would result
1080 		 * in an overrun.
1081 		 */
1082 		if (drm_WARN_ON(&uncore->i915->drm,
1083 				(OA_BUFFER_SIZE - head) < report_size)) {
1084 			drm_err(&uncore->i915->drm,
1085 				"Spurious OA head ptr: non-integral report offset\n");
1086 			break;
1087 		}
1088 
1089 		/* The report-ID field for periodic samples includes
1090 		 * some undocumented flags related to what triggered
1091 		 * the report and is never expected to be zero so we
1092 		 * can check that the report isn't invalid before
1093 		 * copying it to userspace...
1094 		 */
1095 		if (report32[0] == 0) {
1096 			if (__ratelimit(&stream->perf->spurious_report_rs))
1097 				drm_notice(&uncore->i915->drm,
1098 					   "Skipping spurious, invalid OA report\n");
1099 			continue;
1100 		}
1101 
1102 		ret = append_oa_sample(stream, buf, count, offset, report);
1103 		if (ret)
1104 			break;
1105 
1106 		/* Clear out the first 2 dwords as a mean to detect unlanded
1107 		 * reports.
1108 		 */
1109 		report32[0] = 0;
1110 		report32[1] = 0;
1111 	}
1112 
1113 	if (start_offset != *offset) {
1114 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1115 
1116 		/* We removed the gtt_offset for the copy loop above, indexing
1117 		 * relative to oa_buf_base so put back here...
1118 		 */
1119 		head += gtt_offset;
1120 
1121 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1122 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1123 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1124 		stream->oa_buffer.head = head;
1125 
1126 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1127 	}
1128 
1129 	return ret;
1130 }
1131 
1132 /**
1133  * gen7_oa_read - copy status records then buffered OA reports
1134  * @stream: An i915-perf stream opened for OA metrics
1135  * @buf: destination buffer given by userspace
1136  * @count: the number of bytes userspace wants to read
1137  * @offset: (inout): the current position for writing into @buf
1138  *
1139  * Checks Gen 7 specific OA unit status registers and if necessary appends
1140  * corresponding status records for userspace (such as for a buffer full
1141  * condition) and then initiate appending any buffered OA reports.
1142  *
1143  * Updates @offset according to the number of bytes successfully copied into
1144  * the userspace buffer.
1145  *
1146  * Returns: zero on success or a negative error code
1147  */
1148 static int gen7_oa_read(struct i915_perf_stream *stream,
1149 			char __user *buf,
1150 			size_t count,
1151 			size_t *offset)
1152 {
1153 	struct intel_uncore *uncore = stream->uncore;
1154 	u32 oastatus1;
1155 	int ret;
1156 
1157 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1158 		return -EIO;
1159 
1160 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1161 
1162 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1163 	 * bits while the OA unit is enabled (while the tail pointer
1164 	 * may be updated asynchronously) so we ignore status bits
1165 	 * that have already been reported to userspace.
1166 	 */
1167 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1168 
1169 	/* We treat OABUFFER_OVERFLOW as a significant error:
1170 	 *
1171 	 * - The status can be interpreted to mean that the buffer is
1172 	 *   currently full (with a higher precedence than OA_TAKEN()
1173 	 *   which will start to report a near-empty buffer after an
1174 	 *   overflow) but it's awkward that we can't clear the status
1175 	 *   on Haswell, so without a reset we won't be able to catch
1176 	 *   the state again.
1177 	 *
1178 	 * - Since it also implies the HW has started overwriting old
1179 	 *   reports it may also affect our sanity checks for invalid
1180 	 *   reports when copying to userspace that assume new reports
1181 	 *   are being written to cleared memory.
1182 	 *
1183 	 * - In the future we may want to introduce a flight recorder
1184 	 *   mode where the driver will automatically maintain a safe
1185 	 *   guard band between head/tail, avoiding this overflow
1186 	 *   condition, but we avoid the added driver complexity for
1187 	 *   now.
1188 	 */
1189 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1190 		ret = append_oa_status(stream, buf, count, offset,
1191 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1192 		if (ret)
1193 			return ret;
1194 
1195 		drm_dbg(&stream->perf->i915->drm,
1196 			"OA buffer overflow (exponent = %d): force restart\n",
1197 			stream->period_exponent);
1198 
1199 		stream->perf->ops.oa_disable(stream);
1200 		stream->perf->ops.oa_enable(stream);
1201 
1202 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1203 	}
1204 
1205 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1206 		ret = append_oa_status(stream, buf, count, offset,
1207 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1208 		if (ret)
1209 			return ret;
1210 		stream->perf->gen7_latched_oastatus1 |=
1211 			GEN7_OASTATUS1_REPORT_LOST;
1212 	}
1213 
1214 	return gen7_append_oa_reports(stream, buf, count, offset);
1215 }
1216 
1217 /**
1218  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1219  * @stream: An i915-perf stream opened for OA metrics
1220  *
1221  * Called when userspace tries to read() from a blocking stream FD opened
1222  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1223  * OA buffer and wakes us.
1224  *
1225  * Note: it's acceptable to have this return with some false positives
1226  * since any subsequent read handling will return -EAGAIN if there isn't
1227  * really data ready for userspace yet.
1228  *
1229  * Returns: zero on success or a negative error code
1230  */
1231 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1232 {
1233 	/* We would wait indefinitely if periodic sampling is not enabled */
1234 	if (!stream->periodic)
1235 		return -EIO;
1236 
1237 	return wait_event_interruptible(stream->poll_wq,
1238 					oa_buffer_check_unlocked(stream));
1239 }
1240 
1241 /**
1242  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1243  * @stream: An i915-perf stream opened for OA metrics
1244  * @file: An i915 perf stream file
1245  * @wait: poll() state table
1246  *
1247  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1248  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1249  * when it sees data ready to read in the circular OA buffer.
1250  */
1251 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1252 			      struct file *file,
1253 			      poll_table *wait)
1254 {
1255 	poll_wait(file, &stream->poll_wq, wait);
1256 }
1257 
1258 /**
1259  * i915_oa_read - just calls through to &i915_oa_ops->read
1260  * @stream: An i915-perf stream opened for OA metrics
1261  * @buf: destination buffer given by userspace
1262  * @count: the number of bytes userspace wants to read
1263  * @offset: (inout): the current position for writing into @buf
1264  *
1265  * Updates @offset according to the number of bytes successfully copied into
1266  * the userspace buffer.
1267  *
1268  * Returns: zero on success or a negative error code
1269  */
1270 static int i915_oa_read(struct i915_perf_stream *stream,
1271 			char __user *buf,
1272 			size_t count,
1273 			size_t *offset)
1274 {
1275 	return stream->perf->ops.read(stream, buf, count, offset);
1276 }
1277 
1278 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1279 {
1280 	struct i915_gem_engines_iter it;
1281 	struct i915_gem_context *ctx = stream->ctx;
1282 	struct intel_context *ce;
1283 	struct i915_gem_ww_ctx ww;
1284 	int err = -ENODEV;
1285 
1286 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1287 		if (ce->engine != stream->engine) /* first match! */
1288 			continue;
1289 
1290 		err = 0;
1291 		break;
1292 	}
1293 	i915_gem_context_unlock_engines(ctx);
1294 
1295 	if (err)
1296 		return ERR_PTR(err);
1297 
1298 	i915_gem_ww_ctx_init(&ww, true);
1299 retry:
1300 	/*
1301 	 * As the ID is the gtt offset of the context's vma we
1302 	 * pin the vma to ensure the ID remains fixed.
1303 	 */
1304 	err = intel_context_pin_ww(ce, &ww);
1305 	if (err == -EDEADLK) {
1306 		err = i915_gem_ww_ctx_backoff(&ww);
1307 		if (!err)
1308 			goto retry;
1309 	}
1310 	i915_gem_ww_ctx_fini(&ww);
1311 
1312 	if (err)
1313 		return ERR_PTR(err);
1314 
1315 	stream->pinned_ctx = ce;
1316 	return stream->pinned_ctx;
1317 }
1318 
1319 static int
1320 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset)
1321 {
1322 	u32 *cs, cmd;
1323 
1324 	cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1325 	if (GRAPHICS_VER(rq->engine->i915) >= 8)
1326 		cmd++;
1327 
1328 	cs = intel_ring_begin(rq, 4);
1329 	if (IS_ERR(cs))
1330 		return PTR_ERR(cs);
1331 
1332 	*cs++ = cmd;
1333 	*cs++ = i915_mmio_reg_offset(reg);
1334 	*cs++ = ggtt_offset;
1335 	*cs++ = 0;
1336 
1337 	intel_ring_advance(rq, cs);
1338 
1339 	return 0;
1340 }
1341 
1342 static int
1343 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset)
1344 {
1345 	struct i915_request *rq;
1346 	int err;
1347 
1348 	rq = i915_request_create(ce);
1349 	if (IS_ERR(rq))
1350 		return PTR_ERR(rq);
1351 
1352 	i915_request_get(rq);
1353 
1354 	err = __store_reg_to_mem(rq, reg, ggtt_offset);
1355 
1356 	i915_request_add(rq);
1357 	if (!err && i915_request_wait(rq, 0, HZ / 2) < 0)
1358 		err = -ETIME;
1359 
1360 	i915_request_put(rq);
1361 
1362 	return err;
1363 }
1364 
1365 static int
1366 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id)
1367 {
1368 	struct i915_vma *scratch;
1369 	u32 *val;
1370 	int err;
1371 
1372 	scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4);
1373 	if (IS_ERR(scratch))
1374 		return PTR_ERR(scratch);
1375 
1376 	err = i915_vma_sync(scratch);
1377 	if (err)
1378 		goto err_scratch;
1379 
1380 	err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base),
1381 			 i915_ggtt_offset(scratch));
1382 	if (err)
1383 		goto err_scratch;
1384 
1385 	val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB);
1386 	if (IS_ERR(val)) {
1387 		err = PTR_ERR(val);
1388 		goto err_scratch;
1389 	}
1390 
1391 	*ctx_id = *val;
1392 	i915_gem_object_unpin_map(scratch->obj);
1393 
1394 err_scratch:
1395 	i915_vma_unpin_and_release(&scratch, 0);
1396 	return err;
1397 }
1398 
1399 /*
1400  * For execlist mode of submission, pick an unused context id
1401  * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts
1402  * XXX_MAX_CONTEXT_HW_ID is used by idle context
1403  *
1404  * For GuC mode of submission read context id from the upper dword of the
1405  * EXECLIST_STATUS register. Note that we read this value only once and expect
1406  * that the value stays fixed for the entire OA use case. There are cases where
1407  * GuC KMD implementation may deregister a context to reuse it's context id, but
1408  * we prevent that from happening to the OA context by pinning it.
1409  */
1410 static int gen12_get_render_context_id(struct i915_perf_stream *stream)
1411 {
1412 	u32 ctx_id, mask;
1413 	int ret;
1414 
1415 	if (intel_engine_uses_guc(stream->engine)) {
1416 		ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id);
1417 		if (ret)
1418 			return ret;
1419 
1420 		mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) <<
1421 			(GEN12_GUC_SW_CTX_ID_SHIFT - 32);
1422 	} else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) {
1423 		ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) <<
1424 			(XEHP_SW_CTX_ID_SHIFT - 32);
1425 
1426 		mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1427 			(XEHP_SW_CTX_ID_SHIFT - 32);
1428 	} else {
1429 		ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) <<
1430 			 (GEN11_SW_CTX_ID_SHIFT - 32);
1431 
1432 		mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) <<
1433 			(GEN11_SW_CTX_ID_SHIFT - 32);
1434 	}
1435 	stream->specific_ctx_id = ctx_id & mask;
1436 	stream->specific_ctx_id_mask = mask;
1437 
1438 	return 0;
1439 }
1440 
1441 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end)
1442 {
1443 	u32 idx = *offset;
1444 	u32 len = min(MI_LRI_LEN(state[idx]) + idx, end);
1445 	bool found = false;
1446 
1447 	idx++;
1448 	for (; idx < len; idx += 2) {
1449 		if (state[idx] == reg) {
1450 			found = true;
1451 			break;
1452 		}
1453 	}
1454 
1455 	*offset = idx;
1456 	return found;
1457 }
1458 
1459 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg)
1460 {
1461 	u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4;
1462 	u32 *state = ce->lrc_reg_state;
1463 
1464 	if (drm_WARN_ON(&ce->engine->i915->drm, !state))
1465 		return U32_MAX;
1466 
1467 	for (offset = 0; offset < len; ) {
1468 		if (IS_MI_LRI_CMD(state[offset])) {
1469 			/*
1470 			 * We expect reg-value pairs in MI_LRI command, so
1471 			 * MI_LRI_LEN() should be even, if not, issue a warning.
1472 			 */
1473 			drm_WARN_ON(&ce->engine->i915->drm,
1474 				    MI_LRI_LEN(state[offset]) & 0x1);
1475 
1476 			if (oa_find_reg_in_lri(state, reg, &offset, len))
1477 				break;
1478 		} else {
1479 			offset++;
1480 		}
1481 	}
1482 
1483 	return offset < len ? offset : U32_MAX;
1484 }
1485 
1486 static int set_oa_ctx_ctrl_offset(struct intel_context *ce)
1487 {
1488 	i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base);
1489 	struct i915_perf *perf = &ce->engine->i915->perf;
1490 	u32 offset = perf->ctx_oactxctrl_offset;
1491 
1492 	/* Do this only once. Failure is stored as offset of U32_MAX */
1493 	if (offset)
1494 		goto exit;
1495 
1496 	offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg));
1497 	perf->ctx_oactxctrl_offset = offset;
1498 
1499 	drm_dbg(&ce->engine->i915->drm,
1500 		"%s oa ctx control at 0x%08x dword offset\n",
1501 		ce->engine->name, offset);
1502 
1503 exit:
1504 	return offset && offset != U32_MAX ? 0 : -ENODEV;
1505 }
1506 
1507 static bool engine_supports_mi_query(struct intel_engine_cs *engine)
1508 {
1509 	return engine->class == RENDER_CLASS;
1510 }
1511 
1512 /**
1513  * oa_get_render_ctx_id - determine and hold ctx hw id
1514  * @stream: An i915-perf stream opened for OA metrics
1515  *
1516  * Determine the render context hw id, and ensure it remains fixed for the
1517  * lifetime of the stream. This ensures that we don't have to worry about
1518  * updating the context ID in OACONTROL on the fly.
1519  *
1520  * Returns: zero on success or a negative error code
1521  */
1522 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1523 {
1524 	struct intel_context *ce;
1525 	int ret = 0;
1526 
1527 	ce = oa_pin_context(stream);
1528 	if (IS_ERR(ce))
1529 		return PTR_ERR(ce);
1530 
1531 	if (engine_supports_mi_query(stream->engine) &&
1532 	    HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) {
1533 		/*
1534 		 * We are enabling perf query here. If we don't find the context
1535 		 * offset here, just return an error.
1536 		 */
1537 		ret = set_oa_ctx_ctrl_offset(ce);
1538 		if (ret) {
1539 			intel_context_unpin(ce);
1540 			drm_err(&stream->perf->i915->drm,
1541 				"Enabling perf query failed for %s\n",
1542 				stream->engine->name);
1543 			return ret;
1544 		}
1545 	}
1546 
1547 	switch (GRAPHICS_VER(ce->engine->i915)) {
1548 	case 7: {
1549 		/*
1550 		 * On Haswell we don't do any post processing of the reports
1551 		 * and don't need to use the mask.
1552 		 */
1553 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1554 		stream->specific_ctx_id_mask = 0;
1555 		break;
1556 	}
1557 
1558 	case 8:
1559 	case 9:
1560 		if (intel_engine_uses_guc(ce->engine)) {
1561 			/*
1562 			 * When using GuC, the context descriptor we write in
1563 			 * i915 is read by GuC and rewritten before it's
1564 			 * actually written into the hardware. The LRCA is
1565 			 * what is put into the context id field of the
1566 			 * context descriptor by GuC. Because it's aligned to
1567 			 * a page, the lower 12bits are always at 0 and
1568 			 * dropped by GuC. They won't be part of the context
1569 			 * ID in the OA reports, so squash those lower bits.
1570 			 */
1571 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1572 
1573 			/*
1574 			 * GuC uses the top bit to signal proxy submission, so
1575 			 * ignore that bit.
1576 			 */
1577 			stream->specific_ctx_id_mask =
1578 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1579 		} else {
1580 			stream->specific_ctx_id_mask =
1581 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1582 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1583 		}
1584 		break;
1585 
1586 	case 11:
1587 	case 12:
1588 		ret = gen12_get_render_context_id(stream);
1589 		break;
1590 
1591 	default:
1592 		MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1593 	}
1594 
1595 	ce->tag = stream->specific_ctx_id;
1596 
1597 	drm_dbg(&stream->perf->i915->drm,
1598 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1599 		stream->specific_ctx_id,
1600 		stream->specific_ctx_id_mask);
1601 
1602 	return ret;
1603 }
1604 
1605 /**
1606  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1607  * @stream: An i915-perf stream opened for OA metrics
1608  *
1609  * In case anything needed doing to ensure the context HW ID would remain valid
1610  * for the lifetime of the stream, then that can be undone here.
1611  */
1612 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1613 {
1614 	struct intel_context *ce;
1615 
1616 	ce = fetch_and_zero(&stream->pinned_ctx);
1617 	if (ce) {
1618 		ce->tag = 0; /* recomputed on next submission after parking */
1619 		intel_context_unpin(ce);
1620 	}
1621 
1622 	stream->specific_ctx_id = INVALID_CTX_ID;
1623 	stream->specific_ctx_id_mask = 0;
1624 }
1625 
1626 static void
1627 free_oa_buffer(struct i915_perf_stream *stream)
1628 {
1629 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1630 				   I915_VMA_RELEASE_MAP);
1631 
1632 	stream->oa_buffer.vaddr = NULL;
1633 }
1634 
1635 static void
1636 free_oa_configs(struct i915_perf_stream *stream)
1637 {
1638 	struct i915_oa_config_bo *oa_bo, *tmp;
1639 
1640 	i915_oa_config_put(stream->oa_config);
1641 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1642 		free_oa_config_bo(oa_bo);
1643 }
1644 
1645 static void
1646 free_noa_wait(struct i915_perf_stream *stream)
1647 {
1648 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1649 }
1650 
1651 static bool engine_supports_oa(const struct intel_engine_cs *engine)
1652 {
1653 	return engine->oa_group;
1654 }
1655 
1656 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type)
1657 {
1658 	return engine->oa_group && engine->oa_group->type == type;
1659 }
1660 
1661 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1662 {
1663 	struct i915_perf *perf = stream->perf;
1664 	struct intel_gt *gt = stream->engine->gt;
1665 	struct i915_perf_group *g = stream->engine->oa_group;
1666 
1667 	if (WARN_ON(stream != g->exclusive_stream))
1668 		return;
1669 
1670 	/*
1671 	 * Unset exclusive_stream first, it will be checked while disabling
1672 	 * the metric set on gen8+.
1673 	 *
1674 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1675 	 */
1676 	WRITE_ONCE(g->exclusive_stream, NULL);
1677 	perf->ops.disable_metric_set(stream);
1678 
1679 	free_oa_buffer(stream);
1680 
1681 	/*
1682 	 * Wa_16011777198:dg2: Unset the override of GUCRC mode to enable rc6.
1683 	 */
1684 	if (stream->override_gucrc)
1685 		drm_WARN_ON(&gt->i915->drm,
1686 			    intel_guc_slpc_unset_gucrc_mode(&gt->uc.guc.slpc));
1687 
1688 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1689 	intel_engine_pm_put(stream->engine);
1690 
1691 	if (stream->ctx)
1692 		oa_put_render_ctx_id(stream);
1693 
1694 	free_oa_configs(stream);
1695 	free_noa_wait(stream);
1696 
1697 	if (perf->spurious_report_rs.missed) {
1698 		drm_notice(&gt->i915->drm,
1699 			   "%d spurious OA report notices suppressed due to ratelimiting\n",
1700 			   perf->spurious_report_rs.missed);
1701 	}
1702 }
1703 
1704 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1705 {
1706 	struct intel_uncore *uncore = stream->uncore;
1707 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1708 	unsigned long flags;
1709 
1710 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1711 
1712 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1713 	 * before OASTATUS1, but after OASTATUS2
1714 	 */
1715 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1716 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1717 	stream->oa_buffer.head = gtt_offset;
1718 
1719 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1720 
1721 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1722 			   gtt_offset | OABUFFER_SIZE_16M);
1723 
1724 	/* Mark that we need updated tail pointers to read from... */
1725 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1726 	stream->oa_buffer.tail = gtt_offset;
1727 
1728 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1729 
1730 	/* On Haswell we have to track which OASTATUS1 flags we've
1731 	 * already seen since they can't be cleared while periodic
1732 	 * sampling is enabled.
1733 	 */
1734 	stream->perf->gen7_latched_oastatus1 = 0;
1735 
1736 	/* NB: although the OA buffer will initially be allocated
1737 	 * zeroed via shmfs (and so this memset is redundant when
1738 	 * first allocating), we may re-init the OA buffer, either
1739 	 * when re-enabling a stream or in error/reset paths.
1740 	 *
1741 	 * The reason we clear the buffer for each re-init is for the
1742 	 * sanity check in gen7_append_oa_reports() that looks at the
1743 	 * report-id field to make sure it's non-zero which relies on
1744 	 * the assumption that new reports are being written to zeroed
1745 	 * memory...
1746 	 */
1747 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1748 }
1749 
1750 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1751 {
1752 	struct intel_uncore *uncore = stream->uncore;
1753 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1754 	unsigned long flags;
1755 
1756 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1757 
1758 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1759 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1760 	stream->oa_buffer.head = gtt_offset;
1761 
1762 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1763 
1764 	/*
1765 	 * PRM says:
1766 	 *
1767 	 *  "This MMIO must be set before the OATAILPTR
1768 	 *  register and after the OAHEADPTR register. This is
1769 	 *  to enable proper functionality of the overflow
1770 	 *  bit."
1771 	 */
1772 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1773 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1774 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1775 
1776 	/* Mark that we need updated tail pointers to read from... */
1777 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1778 	stream->oa_buffer.tail = gtt_offset;
1779 
1780 	/*
1781 	 * Reset state used to recognise context switches, affecting which
1782 	 * reports we will forward to userspace while filtering for a single
1783 	 * context.
1784 	 */
1785 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1786 
1787 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1788 
1789 	/*
1790 	 * NB: although the OA buffer will initially be allocated
1791 	 * zeroed via shmfs (and so this memset is redundant when
1792 	 * first allocating), we may re-init the OA buffer, either
1793 	 * when re-enabling a stream or in error/reset paths.
1794 	 *
1795 	 * The reason we clear the buffer for each re-init is for the
1796 	 * sanity check in gen8_append_oa_reports() that looks at the
1797 	 * reason field to make sure it's non-zero which relies on
1798 	 * the assumption that new reports are being written to zeroed
1799 	 * memory...
1800 	 */
1801 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1802 }
1803 
1804 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1805 {
1806 	struct intel_uncore *uncore = stream->uncore;
1807 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1808 	unsigned long flags;
1809 
1810 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1811 
1812 	intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0);
1813 	intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr,
1814 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1815 	stream->oa_buffer.head = gtt_offset;
1816 
1817 	/*
1818 	 * PRM says:
1819 	 *
1820 	 *  "This MMIO must be set before the OATAILPTR
1821 	 *  register and after the OAHEADPTR register. This is
1822 	 *  to enable proper functionality of the overflow
1823 	 *  bit."
1824 	 */
1825 	intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset |
1826 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1827 	intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr,
1828 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1829 
1830 	/* Mark that we need updated tail pointers to read from... */
1831 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1832 	stream->oa_buffer.tail = gtt_offset;
1833 
1834 	/*
1835 	 * Reset state used to recognise context switches, affecting which
1836 	 * reports we will forward to userspace while filtering for a single
1837 	 * context.
1838 	 */
1839 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1840 
1841 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1842 
1843 	/*
1844 	 * NB: although the OA buffer will initially be allocated
1845 	 * zeroed via shmfs (and so this memset is redundant when
1846 	 * first allocating), we may re-init the OA buffer, either
1847 	 * when re-enabling a stream or in error/reset paths.
1848 	 *
1849 	 * The reason we clear the buffer for each re-init is for the
1850 	 * sanity check in gen8_append_oa_reports() that looks at the
1851 	 * reason field to make sure it's non-zero which relies on
1852 	 * the assumption that new reports are being written to zeroed
1853 	 * memory...
1854 	 */
1855 	memset(stream->oa_buffer.vaddr, 0,
1856 	       stream->oa_buffer.vma->size);
1857 }
1858 
1859 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1860 {
1861 	struct drm_i915_private *i915 = stream->perf->i915;
1862 	struct intel_gt *gt = stream->engine->gt;
1863 	struct drm_i915_gem_object *bo;
1864 	struct i915_vma *vma;
1865 	int ret;
1866 
1867 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1868 		return -ENODEV;
1869 
1870 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1871 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1872 
1873 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1874 	if (IS_ERR(bo)) {
1875 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1876 		return PTR_ERR(bo);
1877 	}
1878 
1879 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1880 
1881 	/* PreHSW required 512K alignment, HSW requires 16M */
1882 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1883 	if (IS_ERR(vma)) {
1884 		ret = PTR_ERR(vma);
1885 		goto err_unref;
1886 	}
1887 
1888 	/*
1889 	 * PreHSW required 512K alignment.
1890 	 * HSW and onwards, align to requested size of OA buffer.
1891 	 */
1892 	ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH);
1893 	if (ret) {
1894 		drm_err(&gt->i915->drm, "Failed to pin OA buffer %d\n", ret);
1895 		goto err_unref;
1896 	}
1897 
1898 	stream->oa_buffer.vma = vma;
1899 
1900 	stream->oa_buffer.vaddr =
1901 		i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1902 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1903 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1904 		goto err_unpin;
1905 	}
1906 
1907 	return 0;
1908 
1909 err_unpin:
1910 	__i915_vma_unpin(vma);
1911 
1912 err_unref:
1913 	i915_gem_object_put(bo);
1914 
1915 	stream->oa_buffer.vaddr = NULL;
1916 	stream->oa_buffer.vma = NULL;
1917 
1918 	return ret;
1919 }
1920 
1921 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1922 				  bool save, i915_reg_t reg, u32 offset,
1923 				  u32 dword_count)
1924 {
1925 	u32 cmd;
1926 	u32 d;
1927 
1928 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1929 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1930 	if (GRAPHICS_VER(stream->perf->i915) >= 8)
1931 		cmd++;
1932 
1933 	for (d = 0; d < dword_count; d++) {
1934 		*cs++ = cmd;
1935 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1936 		*cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d;
1937 		*cs++ = 0;
1938 	}
1939 
1940 	return cs;
1941 }
1942 
1943 static int alloc_noa_wait(struct i915_perf_stream *stream)
1944 {
1945 	struct drm_i915_private *i915 = stream->perf->i915;
1946 	struct intel_gt *gt = stream->engine->gt;
1947 	struct drm_i915_gem_object *bo;
1948 	struct i915_vma *vma;
1949 	const u64 delay_ticks = 0xffffffffffffffff -
1950 		intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1951 		atomic64_read(&stream->perf->noa_programming_delay));
1952 	const u32 base = stream->engine->mmio_base;
1953 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1954 	u32 *batch, *ts0, *cs, *jump;
1955 	struct i915_gem_ww_ctx ww;
1956 	int ret, i;
1957 	enum {
1958 		START_TS,
1959 		NOW_TS,
1960 		DELTA_TS,
1961 		JUMP_PREDICATE,
1962 		DELTA_TARGET,
1963 		N_CS_GPR
1964 	};
1965 	i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ?
1966 					  MI_PREDICATE_RESULT_2_ENGINE(base) :
1967 					  MI_PREDICATE_RESULT_1(RENDER_RING_BASE);
1968 
1969 	/*
1970 	 * gt->scratch was being used to save/restore the GPR registers, but on
1971 	 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region
1972 	 * causes an engine hang. Instead allocate an additional page here to
1973 	 * save/restore GPR registers
1974 	 */
1975 	bo = i915_gem_object_create_internal(i915, 8192);
1976 	if (IS_ERR(bo)) {
1977 		drm_err(&i915->drm,
1978 			"Failed to allocate NOA wait batchbuffer\n");
1979 		return PTR_ERR(bo);
1980 	}
1981 
1982 	i915_gem_ww_ctx_init(&ww, true);
1983 retry:
1984 	ret = i915_gem_object_lock(bo, &ww);
1985 	if (ret)
1986 		goto out_ww;
1987 
1988 	/*
1989 	 * We pin in GGTT because we jump into this buffer now because
1990 	 * multiple OA config BOs will have a jump to this address and it
1991 	 * needs to be fixed during the lifetime of the i915/perf stream.
1992 	 */
1993 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1994 	if (IS_ERR(vma)) {
1995 		ret = PTR_ERR(vma);
1996 		goto out_ww;
1997 	}
1998 
1999 	ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
2000 	if (ret)
2001 		goto out_ww;
2002 
2003 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
2004 	if (IS_ERR(batch)) {
2005 		ret = PTR_ERR(batch);
2006 		goto err_unpin;
2007 	}
2008 
2009 	stream->noa_wait = vma;
2010 
2011 #define GPR_SAVE_OFFSET 4096
2012 #define PREDICATE_SAVE_OFFSET 4160
2013 
2014 	/* Save registers. */
2015 	for (i = 0; i < N_CS_GPR; i++)
2016 		cs = save_restore_register(
2017 			stream, cs, true /* save */, CS_GPR(i),
2018 			GPR_SAVE_OFFSET + 8 * i, 2);
2019 	cs = save_restore_register(
2020 		stream, cs, true /* save */, mi_predicate_result,
2021 		PREDICATE_SAVE_OFFSET, 1);
2022 
2023 	/* First timestamp snapshot location. */
2024 	ts0 = cs;
2025 
2026 	/*
2027 	 * Initial snapshot of the timestamp register to implement the wait.
2028 	 * We work with 32b values, so clear out the top 32b bits of the
2029 	 * register because the ALU works 64bits.
2030 	 */
2031 	*cs++ = MI_LOAD_REGISTER_IMM(1);
2032 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
2033 	*cs++ = 0;
2034 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2035 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2036 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
2037 
2038 	/*
2039 	 * This is the location we're going to jump back into until the
2040 	 * required amount of time has passed.
2041 	 */
2042 	jump = cs;
2043 
2044 	/*
2045 	 * Take another snapshot of the timestamp register. Take care to clear
2046 	 * up the top 32bits of CS_GPR(1) as we're using it for other
2047 	 * operations below.
2048 	 */
2049 	*cs++ = MI_LOAD_REGISTER_IMM(1);
2050 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
2051 	*cs++ = 0;
2052 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2053 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2054 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
2055 
2056 	/*
2057 	 * Do a diff between the 2 timestamps and store the result back into
2058 	 * CS_GPR(1).
2059 	 */
2060 	*cs++ = MI_MATH(5);
2061 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
2062 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
2063 	*cs++ = MI_MATH_SUB;
2064 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
2065 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2066 
2067 	/*
2068 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
2069 	 * timestamp have rolled over the 32bits) into the predicate register
2070 	 * to be used for the predicated jump.
2071 	 */
2072 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2073 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2074 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2075 
2076 	if (HAS_MI_SET_PREDICATE(i915))
2077 		*cs++ = MI_SET_PREDICATE | 1;
2078 
2079 	/* Restart from the beginning if we had timestamps roll over. */
2080 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2081 		 MI_BATCH_BUFFER_START :
2082 		 MI_BATCH_BUFFER_START_GEN8) |
2083 		MI_BATCH_PREDICATE;
2084 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
2085 	*cs++ = 0;
2086 
2087 	if (HAS_MI_SET_PREDICATE(i915))
2088 		*cs++ = MI_SET_PREDICATE;
2089 
2090 	/*
2091 	 * Now add the diff between to previous timestamps and add it to :
2092 	 *      (((1 * << 64) - 1) - delay_ns)
2093 	 *
2094 	 * When the Carry Flag contains 1 this means the elapsed time is
2095 	 * longer than the expected delay, and we can exit the wait loop.
2096 	 */
2097 	*cs++ = MI_LOAD_REGISTER_IMM(2);
2098 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
2099 	*cs++ = lower_32_bits(delay_ticks);
2100 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
2101 	*cs++ = upper_32_bits(delay_ticks);
2102 
2103 	*cs++ = MI_MATH(4);
2104 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
2105 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
2106 	*cs++ = MI_MATH_ADD;
2107 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2108 
2109 	*cs++ = MI_ARB_CHECK;
2110 
2111 	/*
2112 	 * Transfer the result into the predicate register to be used for the
2113 	 * predicated jump.
2114 	 */
2115 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2116 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2117 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2118 
2119 	if (HAS_MI_SET_PREDICATE(i915))
2120 		*cs++ = MI_SET_PREDICATE | 1;
2121 
2122 	/* Predicate the jump.  */
2123 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2124 		 MI_BATCH_BUFFER_START :
2125 		 MI_BATCH_BUFFER_START_GEN8) |
2126 		MI_BATCH_PREDICATE;
2127 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
2128 	*cs++ = 0;
2129 
2130 	if (HAS_MI_SET_PREDICATE(i915))
2131 		*cs++ = MI_SET_PREDICATE;
2132 
2133 	/* Restore registers. */
2134 	for (i = 0; i < N_CS_GPR; i++)
2135 		cs = save_restore_register(
2136 			stream, cs, false /* restore */, CS_GPR(i),
2137 			GPR_SAVE_OFFSET + 8 * i, 2);
2138 	cs = save_restore_register(
2139 		stream, cs, false /* restore */, mi_predicate_result,
2140 		PREDICATE_SAVE_OFFSET, 1);
2141 
2142 	/* And return to the ring. */
2143 	*cs++ = MI_BATCH_BUFFER_END;
2144 
2145 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
2146 
2147 	i915_gem_object_flush_map(bo);
2148 	__i915_gem_object_release_map(bo);
2149 
2150 	goto out_ww;
2151 
2152 err_unpin:
2153 	i915_vma_unpin_and_release(&vma, 0);
2154 out_ww:
2155 	if (ret == -EDEADLK) {
2156 		ret = i915_gem_ww_ctx_backoff(&ww);
2157 		if (!ret)
2158 			goto retry;
2159 	}
2160 	i915_gem_ww_ctx_fini(&ww);
2161 	if (ret)
2162 		i915_gem_object_put(bo);
2163 	return ret;
2164 }
2165 
2166 static u32 *write_cs_mi_lri(u32 *cs,
2167 			    const struct i915_oa_reg *reg_data,
2168 			    u32 n_regs)
2169 {
2170 	u32 i;
2171 
2172 	for (i = 0; i < n_regs; i++) {
2173 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
2174 			u32 n_lri = min_t(u32,
2175 					  n_regs - i,
2176 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
2177 
2178 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
2179 		}
2180 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
2181 		*cs++ = reg_data[i].value;
2182 	}
2183 
2184 	return cs;
2185 }
2186 
2187 static int num_lri_dwords(int num_regs)
2188 {
2189 	int count = 0;
2190 
2191 	if (num_regs > 0) {
2192 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
2193 		count += num_regs * 2;
2194 	}
2195 
2196 	return count;
2197 }
2198 
2199 static struct i915_oa_config_bo *
2200 alloc_oa_config_buffer(struct i915_perf_stream *stream,
2201 		       struct i915_oa_config *oa_config)
2202 {
2203 	struct drm_i915_gem_object *obj;
2204 	struct i915_oa_config_bo *oa_bo;
2205 	struct i915_gem_ww_ctx ww;
2206 	size_t config_length = 0;
2207 	u32 *cs;
2208 	int err;
2209 
2210 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
2211 	if (!oa_bo)
2212 		return ERR_PTR(-ENOMEM);
2213 
2214 	config_length += num_lri_dwords(oa_config->mux_regs_len);
2215 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
2216 	config_length += num_lri_dwords(oa_config->flex_regs_len);
2217 	config_length += 3; /* MI_BATCH_BUFFER_START */
2218 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
2219 
2220 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
2221 	if (IS_ERR(obj)) {
2222 		err = PTR_ERR(obj);
2223 		goto err_free;
2224 	}
2225 
2226 	i915_gem_ww_ctx_init(&ww, true);
2227 retry:
2228 	err = i915_gem_object_lock(obj, &ww);
2229 	if (err)
2230 		goto out_ww;
2231 
2232 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
2233 	if (IS_ERR(cs)) {
2234 		err = PTR_ERR(cs);
2235 		goto out_ww;
2236 	}
2237 
2238 	cs = write_cs_mi_lri(cs,
2239 			     oa_config->mux_regs,
2240 			     oa_config->mux_regs_len);
2241 	cs = write_cs_mi_lri(cs,
2242 			     oa_config->b_counter_regs,
2243 			     oa_config->b_counter_regs_len);
2244 	cs = write_cs_mi_lri(cs,
2245 			     oa_config->flex_regs,
2246 			     oa_config->flex_regs_len);
2247 
2248 	/* Jump into the active wait. */
2249 	*cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
2250 		 MI_BATCH_BUFFER_START :
2251 		 MI_BATCH_BUFFER_START_GEN8);
2252 	*cs++ = i915_ggtt_offset(stream->noa_wait);
2253 	*cs++ = 0;
2254 
2255 	i915_gem_object_flush_map(obj);
2256 	__i915_gem_object_release_map(obj);
2257 
2258 	oa_bo->vma = i915_vma_instance(obj,
2259 				       &stream->engine->gt->ggtt->vm,
2260 				       NULL);
2261 	if (IS_ERR(oa_bo->vma)) {
2262 		err = PTR_ERR(oa_bo->vma);
2263 		goto out_ww;
2264 	}
2265 
2266 	oa_bo->oa_config = i915_oa_config_get(oa_config);
2267 	llist_add(&oa_bo->node, &stream->oa_config_bos);
2268 
2269 out_ww:
2270 	if (err == -EDEADLK) {
2271 		err = i915_gem_ww_ctx_backoff(&ww);
2272 		if (!err)
2273 			goto retry;
2274 	}
2275 	i915_gem_ww_ctx_fini(&ww);
2276 
2277 	if (err)
2278 		i915_gem_object_put(obj);
2279 err_free:
2280 	if (err) {
2281 		kfree(oa_bo);
2282 		return ERR_PTR(err);
2283 	}
2284 	return oa_bo;
2285 }
2286 
2287 static struct i915_vma *
2288 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
2289 {
2290 	struct i915_oa_config_bo *oa_bo;
2291 
2292 	/*
2293 	 * Look for the buffer in the already allocated BOs attached
2294 	 * to the stream.
2295 	 */
2296 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
2297 		if (oa_bo->oa_config == oa_config &&
2298 		    memcmp(oa_bo->oa_config->uuid,
2299 			   oa_config->uuid,
2300 			   sizeof(oa_config->uuid)) == 0)
2301 			goto out;
2302 	}
2303 
2304 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
2305 	if (IS_ERR(oa_bo))
2306 		return ERR_CAST(oa_bo);
2307 
2308 out:
2309 	return i915_vma_get(oa_bo->vma);
2310 }
2311 
2312 static int
2313 emit_oa_config(struct i915_perf_stream *stream,
2314 	       struct i915_oa_config *oa_config,
2315 	       struct intel_context *ce,
2316 	       struct i915_active *active)
2317 {
2318 	struct i915_request *rq;
2319 	struct i915_vma *vma;
2320 	struct i915_gem_ww_ctx ww;
2321 	int err;
2322 
2323 	vma = get_oa_vma(stream, oa_config);
2324 	if (IS_ERR(vma))
2325 		return PTR_ERR(vma);
2326 
2327 	i915_gem_ww_ctx_init(&ww, true);
2328 retry:
2329 	err = i915_gem_object_lock(vma->obj, &ww);
2330 	if (err)
2331 		goto err;
2332 
2333 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
2334 	if (err)
2335 		goto err;
2336 
2337 	intel_engine_pm_get(ce->engine);
2338 	rq = i915_request_create(ce);
2339 	intel_engine_pm_put(ce->engine);
2340 	if (IS_ERR(rq)) {
2341 		err = PTR_ERR(rq);
2342 		goto err_vma_unpin;
2343 	}
2344 
2345 	if (!IS_ERR_OR_NULL(active)) {
2346 		/* After all individual context modifications */
2347 		err = i915_request_await_active(rq, active,
2348 						I915_ACTIVE_AWAIT_ACTIVE);
2349 		if (err)
2350 			goto err_add_request;
2351 
2352 		err = i915_active_add_request(active, rq);
2353 		if (err)
2354 			goto err_add_request;
2355 	}
2356 
2357 	err = i915_vma_move_to_active(vma, rq, 0);
2358 	if (err)
2359 		goto err_add_request;
2360 
2361 	err = rq->engine->emit_bb_start(rq,
2362 					i915_vma_offset(vma), 0,
2363 					I915_DISPATCH_SECURE);
2364 	if (err)
2365 		goto err_add_request;
2366 
2367 err_add_request:
2368 	i915_request_add(rq);
2369 err_vma_unpin:
2370 	i915_vma_unpin(vma);
2371 err:
2372 	if (err == -EDEADLK) {
2373 		err = i915_gem_ww_ctx_backoff(&ww);
2374 		if (!err)
2375 			goto retry;
2376 	}
2377 
2378 	i915_gem_ww_ctx_fini(&ww);
2379 	i915_vma_put(vma);
2380 	return err;
2381 }
2382 
2383 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2384 {
2385 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2386 }
2387 
2388 static int
2389 hsw_enable_metric_set(struct i915_perf_stream *stream,
2390 		      struct i915_active *active)
2391 {
2392 	struct intel_uncore *uncore = stream->uncore;
2393 
2394 	/*
2395 	 * PRM:
2396 	 *
2397 	 * OA unit is using “crclk” for its functionality. When trunk
2398 	 * level clock gating takes place, OA clock would be gated,
2399 	 * unable to count the events from non-render clock domain.
2400 	 * Render clock gating must be disabled when OA is enabled to
2401 	 * count the events from non-render domain. Unit level clock
2402 	 * gating for RCS should also be disabled.
2403 	 */
2404 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2405 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2406 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2407 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2408 
2409 	return emit_oa_config(stream,
2410 			      stream->oa_config, oa_context(stream),
2411 			      active);
2412 }
2413 
2414 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2415 {
2416 	struct intel_uncore *uncore = stream->uncore;
2417 
2418 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2419 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2420 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2421 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2422 
2423 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2424 }
2425 
2426 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2427 			      i915_reg_t reg)
2428 {
2429 	u32 mmio = i915_mmio_reg_offset(reg);
2430 	int i;
2431 
2432 	/*
2433 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2434 	 * Active' event. In the future it's anticipated that there
2435 	 * will be an explicit 'No Event' we can select, but not yet...
2436 	 */
2437 	if (!oa_config)
2438 		return 0;
2439 
2440 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2441 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2442 			return oa_config->flex_regs[i].value;
2443 	}
2444 
2445 	return 0;
2446 }
2447 /*
2448  * NB: It must always remain pointer safe to run this even if the OA unit
2449  * has been disabled.
2450  *
2451  * It's fine to put out-of-date values into these per-context registers
2452  * in the case that the OA unit has been disabled.
2453  */
2454 static void
2455 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2456 			       const struct i915_perf_stream *stream)
2457 {
2458 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2459 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2460 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2461 	static const i915_reg_t flex_regs[] = {
2462 		EU_PERF_CNTL0,
2463 		EU_PERF_CNTL1,
2464 		EU_PERF_CNTL2,
2465 		EU_PERF_CNTL3,
2466 		EU_PERF_CNTL4,
2467 		EU_PERF_CNTL5,
2468 		EU_PERF_CNTL6,
2469 	};
2470 	u32 *reg_state = ce->lrc_reg_state;
2471 	int i;
2472 
2473 	reg_state[ctx_oactxctrl + 1] =
2474 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2475 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2476 		GEN8_OA_COUNTER_RESUME;
2477 
2478 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2479 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2480 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2481 }
2482 
2483 struct flex {
2484 	i915_reg_t reg;
2485 	u32 offset;
2486 	u32 value;
2487 };
2488 
2489 static int
2490 gen8_store_flex(struct i915_request *rq,
2491 		struct intel_context *ce,
2492 		const struct flex *flex, unsigned int count)
2493 {
2494 	u32 offset;
2495 	u32 *cs;
2496 
2497 	cs = intel_ring_begin(rq, 4 * count);
2498 	if (IS_ERR(cs))
2499 		return PTR_ERR(cs);
2500 
2501 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2502 	do {
2503 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2504 		*cs++ = offset + flex->offset * sizeof(u32);
2505 		*cs++ = 0;
2506 		*cs++ = flex->value;
2507 	} while (flex++, --count);
2508 
2509 	intel_ring_advance(rq, cs);
2510 
2511 	return 0;
2512 }
2513 
2514 static int
2515 gen8_load_flex(struct i915_request *rq,
2516 	       struct intel_context *ce,
2517 	       const struct flex *flex, unsigned int count)
2518 {
2519 	u32 *cs;
2520 
2521 	GEM_BUG_ON(!count || count > 63);
2522 
2523 	cs = intel_ring_begin(rq, 2 * count + 2);
2524 	if (IS_ERR(cs))
2525 		return PTR_ERR(cs);
2526 
2527 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2528 	do {
2529 		*cs++ = i915_mmio_reg_offset(flex->reg);
2530 		*cs++ = flex->value;
2531 	} while (flex++, --count);
2532 	*cs++ = MI_NOOP;
2533 
2534 	intel_ring_advance(rq, cs);
2535 
2536 	return 0;
2537 }
2538 
2539 static int gen8_modify_context(struct intel_context *ce,
2540 			       const struct flex *flex, unsigned int count)
2541 {
2542 	struct i915_request *rq;
2543 	int err;
2544 
2545 	rq = intel_engine_create_kernel_request(ce->engine);
2546 	if (IS_ERR(rq))
2547 		return PTR_ERR(rq);
2548 
2549 	/* Serialise with the remote context */
2550 	err = intel_context_prepare_remote_request(ce, rq);
2551 	if (err == 0)
2552 		err = gen8_store_flex(rq, ce, flex, count);
2553 
2554 	i915_request_add(rq);
2555 	return err;
2556 }
2557 
2558 static int
2559 gen8_modify_self(struct intel_context *ce,
2560 		 const struct flex *flex, unsigned int count,
2561 		 struct i915_active *active)
2562 {
2563 	struct i915_request *rq;
2564 	int err;
2565 
2566 	intel_engine_pm_get(ce->engine);
2567 	rq = i915_request_create(ce);
2568 	intel_engine_pm_put(ce->engine);
2569 	if (IS_ERR(rq))
2570 		return PTR_ERR(rq);
2571 
2572 	if (!IS_ERR_OR_NULL(active)) {
2573 		err = i915_active_add_request(active, rq);
2574 		if (err)
2575 			goto err_add_request;
2576 	}
2577 
2578 	err = gen8_load_flex(rq, ce, flex, count);
2579 	if (err)
2580 		goto err_add_request;
2581 
2582 err_add_request:
2583 	i915_request_add(rq);
2584 	return err;
2585 }
2586 
2587 static int gen8_configure_context(struct i915_perf_stream *stream,
2588 				  struct i915_gem_context *ctx,
2589 				  struct flex *flex, unsigned int count)
2590 {
2591 	struct i915_gem_engines_iter it;
2592 	struct intel_context *ce;
2593 	int err = 0;
2594 
2595 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2596 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2597 
2598 		if (ce->engine->class != RENDER_CLASS)
2599 			continue;
2600 
2601 		/* Otherwise OA settings will be set upon first use */
2602 		if (!intel_context_pin_if_active(ce))
2603 			continue;
2604 
2605 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2606 		err = gen8_modify_context(ce, flex, count);
2607 
2608 		intel_context_unpin(ce);
2609 		if (err)
2610 			break;
2611 	}
2612 	i915_gem_context_unlock_engines(ctx);
2613 
2614 	return err;
2615 }
2616 
2617 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2618 				       struct i915_active *active)
2619 {
2620 	int err;
2621 	struct intel_context *ce = stream->pinned_ctx;
2622 	u32 format = stream->oa_buffer.format->format;
2623 	u32 offset = stream->perf->ctx_oactxctrl_offset;
2624 	struct flex regs_context[] = {
2625 		{
2626 			GEN8_OACTXCONTROL,
2627 			offset + 1,
2628 			active ? GEN8_OA_COUNTER_RESUME : 0,
2629 		},
2630 	};
2631 	/* Offsets in regs_lri are not used since this configuration is only
2632 	 * applied using LRI. Initialize the correct offsets for posterity.
2633 	 */
2634 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2635 	struct flex regs_lri[] = {
2636 		{
2637 			GEN12_OAR_OACONTROL,
2638 			GEN12_OAR_OACONTROL_OFFSET + 1,
2639 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2640 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2641 		},
2642 		{
2643 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2644 			CTX_CONTEXT_CONTROL,
2645 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2646 				      active ?
2647 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2648 				      0)
2649 		},
2650 	};
2651 
2652 	/* Modify the context image of pinned context with regs_context */
2653 	err = intel_context_lock_pinned(ce);
2654 	if (err)
2655 		return err;
2656 
2657 	err = gen8_modify_context(ce, regs_context,
2658 				  ARRAY_SIZE(regs_context));
2659 	intel_context_unlock_pinned(ce);
2660 	if (err)
2661 		return err;
2662 
2663 	/* Apply regs_lri using LRI with pinned context */
2664 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2665 }
2666 
2667 /*
2668  * Manages updating the per-context aspects of the OA stream
2669  * configuration across all contexts.
2670  *
2671  * The awkward consideration here is that OACTXCONTROL controls the
2672  * exponent for periodic sampling which is primarily used for system
2673  * wide profiling where we'd like a consistent sampling period even in
2674  * the face of context switches.
2675  *
2676  * Our approach of updating the register state context (as opposed to
2677  * say using a workaround batch buffer) ensures that the hardware
2678  * won't automatically reload an out-of-date timer exponent even
2679  * transiently before a WA BB could be parsed.
2680  *
2681  * This function needs to:
2682  * - Ensure the currently running context's per-context OA state is
2683  *   updated
2684  * - Ensure that all existing contexts will have the correct per-context
2685  *   OA state if they are scheduled for use.
2686  * - Ensure any new contexts will be initialized with the correct
2687  *   per-context OA state.
2688  *
2689  * Note: it's only the RCS/Render context that has any OA state.
2690  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2691  */
2692 static int
2693 oa_configure_all_contexts(struct i915_perf_stream *stream,
2694 			  struct flex *regs,
2695 			  size_t num_regs,
2696 			  struct i915_active *active)
2697 {
2698 	struct drm_i915_private *i915 = stream->perf->i915;
2699 	struct intel_engine_cs *engine;
2700 	struct intel_gt *gt = stream->engine->gt;
2701 	struct i915_gem_context *ctx, *cn;
2702 	int err;
2703 
2704 	lockdep_assert_held(&gt->perf.lock);
2705 
2706 	/*
2707 	 * The OA register config is setup through the context image. This image
2708 	 * might be written to by the GPU on context switch (in particular on
2709 	 * lite-restore). This means we can't safely update a context's image,
2710 	 * if this context is scheduled/submitted to run on the GPU.
2711 	 *
2712 	 * We could emit the OA register config through the batch buffer but
2713 	 * this might leave small interval of time where the OA unit is
2714 	 * configured at an invalid sampling period.
2715 	 *
2716 	 * Note that since we emit all requests from a single ring, there
2717 	 * is still an implicit global barrier here that may cause a high
2718 	 * priority context to wait for an otherwise independent low priority
2719 	 * context. Contexts idle at the time of reconfiguration are not
2720 	 * trapped behind the barrier.
2721 	 */
2722 	spin_lock(&i915->gem.contexts.lock);
2723 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2724 		if (!kref_get_unless_zero(&ctx->ref))
2725 			continue;
2726 
2727 		spin_unlock(&i915->gem.contexts.lock);
2728 
2729 		err = gen8_configure_context(stream, ctx, regs, num_regs);
2730 		if (err) {
2731 			i915_gem_context_put(ctx);
2732 			return err;
2733 		}
2734 
2735 		spin_lock(&i915->gem.contexts.lock);
2736 		list_safe_reset_next(ctx, cn, link);
2737 		i915_gem_context_put(ctx);
2738 	}
2739 	spin_unlock(&i915->gem.contexts.lock);
2740 
2741 	/*
2742 	 * After updating all other contexts, we need to modify ourselves.
2743 	 * If we don't modify the kernel_context, we do not get events while
2744 	 * idle.
2745 	 */
2746 	for_each_uabi_engine(engine, i915) {
2747 		struct intel_context *ce = engine->kernel_context;
2748 
2749 		if (engine->class != RENDER_CLASS)
2750 			continue;
2751 
2752 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2753 
2754 		err = gen8_modify_self(ce, regs, num_regs, active);
2755 		if (err)
2756 			return err;
2757 	}
2758 
2759 	return 0;
2760 }
2761 
2762 static int
2763 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2764 			     const struct i915_oa_config *oa_config,
2765 			     struct i915_active *active)
2766 {
2767 	struct flex regs[] = {
2768 		{
2769 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2770 			CTX_R_PWR_CLK_STATE,
2771 		},
2772 	};
2773 
2774 	if (stream->engine->class != RENDER_CLASS)
2775 		return 0;
2776 
2777 	return oa_configure_all_contexts(stream,
2778 					 regs, ARRAY_SIZE(regs),
2779 					 active);
2780 }
2781 
2782 static int
2783 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2784 			   const struct i915_oa_config *oa_config,
2785 			   struct i915_active *active)
2786 {
2787 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2788 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2789 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2790 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2791 	struct flex regs[] = {
2792 		{
2793 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2794 			CTX_R_PWR_CLK_STATE,
2795 		},
2796 		{
2797 			GEN8_OACTXCONTROL,
2798 			ctx_oactxctrl + 1,
2799 		},
2800 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2801 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2802 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2803 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2804 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2805 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2806 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2807 	};
2808 #undef ctx_flexeuN
2809 	int i;
2810 
2811 	regs[1].value =
2812 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2813 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2814 		GEN8_OA_COUNTER_RESUME;
2815 
2816 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2817 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2818 
2819 	return oa_configure_all_contexts(stream,
2820 					 regs, ARRAY_SIZE(regs),
2821 					 active);
2822 }
2823 
2824 static int
2825 gen8_enable_metric_set(struct i915_perf_stream *stream,
2826 		       struct i915_active *active)
2827 {
2828 	struct intel_uncore *uncore = stream->uncore;
2829 	struct i915_oa_config *oa_config = stream->oa_config;
2830 	int ret;
2831 
2832 	/*
2833 	 * We disable slice/unslice clock ratio change reports on SKL since
2834 	 * they are too noisy. The HW generates a lot of redundant reports
2835 	 * where the ratio hasn't really changed causing a lot of redundant
2836 	 * work to processes and increasing the chances we'll hit buffer
2837 	 * overruns.
2838 	 *
2839 	 * Although we don't currently use the 'disable overrun' OABUFFER
2840 	 * feature it's worth noting that clock ratio reports have to be
2841 	 * disabled before considering to use that feature since the HW doesn't
2842 	 * correctly block these reports.
2843 	 *
2844 	 * Currently none of the high-level metrics we have depend on knowing
2845 	 * this ratio to normalize.
2846 	 *
2847 	 * Note: This register is not power context saved and restored, but
2848 	 * that's OK considering that we disable RC6 while the OA unit is
2849 	 * enabled.
2850 	 *
2851 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2852 	 * be read back from automatically triggered reports, as part of the
2853 	 * RPT_ID field.
2854 	 */
2855 	if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2856 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2857 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2858 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2859 	}
2860 
2861 	/*
2862 	 * Update all contexts prior writing the mux configurations as we need
2863 	 * to make sure all slices/subslices are ON before writing to NOA
2864 	 * registers.
2865 	 */
2866 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2867 	if (ret)
2868 		return ret;
2869 
2870 	return emit_oa_config(stream,
2871 			      stream->oa_config, oa_context(stream),
2872 			      active);
2873 }
2874 
2875 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2876 {
2877 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2878 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2879 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2880 }
2881 
2882 static int
2883 gen12_enable_metric_set(struct i915_perf_stream *stream,
2884 			struct i915_active *active)
2885 {
2886 	struct drm_i915_private *i915 = stream->perf->i915;
2887 	struct intel_uncore *uncore = stream->uncore;
2888 	struct i915_oa_config *oa_config = stream->oa_config;
2889 	bool periodic = stream->periodic;
2890 	u32 period_exponent = stream->period_exponent;
2891 	u32 sqcnt1;
2892 	int ret;
2893 
2894 	/*
2895 	 * Wa_1508761755:xehpsdv, dg2
2896 	 * EU NOA signals behave incorrectly if EU clock gating is enabled.
2897 	 * Disable thread stall DOP gating and EU DOP gating.
2898 	 */
2899 	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2900 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2901 					     _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
2902 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2903 				   _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING));
2904 	}
2905 
2906 	intel_uncore_write(uncore, __oa_regs(stream)->oa_debug,
2907 			   /* Disable clk ratio reports, like previous Gens. */
2908 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2909 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2910 			   /*
2911 			    * If the user didn't require OA reports, instruct
2912 			    * the hardware not to emit ctx switch reports.
2913 			    */
2914 			   oag_report_ctx_switches(stream));
2915 
2916 	intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ?
2917 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2918 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2919 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2920 			    : 0);
2921 
2922 	/*
2923 	 * Initialize Super Queue Internal Cnt Register
2924 	 * Set PMON Enable in order to collect valid metrics.
2925 	 * Enable byets per clock reporting in OA for XEHPSDV onward.
2926 	 */
2927 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2928 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2929 
2930 	intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1);
2931 
2932 	/*
2933 	 * Update all contexts prior writing the mux configurations as we need
2934 	 * to make sure all slices/subslices are ON before writing to NOA
2935 	 * registers.
2936 	 */
2937 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2938 	if (ret)
2939 		return ret;
2940 
2941 	/*
2942 	 * For Gen12, performance counters are context
2943 	 * saved/restored. Only enable it for the context that
2944 	 * requested this.
2945 	 */
2946 	if (stream->ctx) {
2947 		ret = gen12_configure_oar_context(stream, active);
2948 		if (ret)
2949 			return ret;
2950 	}
2951 
2952 	return emit_oa_config(stream,
2953 			      stream->oa_config, oa_context(stream),
2954 			      active);
2955 }
2956 
2957 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2958 {
2959 	struct intel_uncore *uncore = stream->uncore;
2960 
2961 	/* Reset all contexts' slices/subslices configurations. */
2962 	lrc_configure_all_contexts(stream, NULL, NULL);
2963 
2964 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2965 }
2966 
2967 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2968 {
2969 	struct intel_uncore *uncore = stream->uncore;
2970 
2971 	/* Reset all contexts' slices/subslices configurations. */
2972 	lrc_configure_all_contexts(stream, NULL, NULL);
2973 
2974 	/* Make sure we disable noa to save power. */
2975 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2976 }
2977 
2978 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2979 {
2980 	struct intel_uncore *uncore = stream->uncore;
2981 	struct drm_i915_private *i915 = stream->perf->i915;
2982 	u32 sqcnt1;
2983 
2984 	/*
2985 	 * Wa_1508761755:xehpsdv, dg2
2986 	 * Enable thread stall DOP gating and EU DOP gating.
2987 	 */
2988 	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2989 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2990 					     _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE));
2991 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2992 				   _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING));
2993 	}
2994 
2995 	/* Reset all contexts' slices/subslices configurations. */
2996 	gen12_configure_all_contexts(stream, NULL, NULL);
2997 
2998 	/* disable the context save/restore or OAR counters */
2999 	if (stream->ctx)
3000 		gen12_configure_oar_context(stream, NULL);
3001 
3002 	/* Make sure we disable noa to save power. */
3003 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
3004 
3005 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
3006 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
3007 
3008 	/* Reset PMON Enable to save power. */
3009 	intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0);
3010 }
3011 
3012 static void gen7_oa_enable(struct i915_perf_stream *stream)
3013 {
3014 	struct intel_uncore *uncore = stream->uncore;
3015 	struct i915_gem_context *ctx = stream->ctx;
3016 	u32 ctx_id = stream->specific_ctx_id;
3017 	bool periodic = stream->periodic;
3018 	u32 period_exponent = stream->period_exponent;
3019 	u32 report_format = stream->oa_buffer.format->format;
3020 
3021 	/*
3022 	 * Reset buf pointers so we don't forward reports from before now.
3023 	 *
3024 	 * Think carefully if considering trying to avoid this, since it
3025 	 * also ensures status flags and the buffer itself are cleared
3026 	 * in error paths, and we have checks for invalid reports based
3027 	 * on the assumption that certain fields are written to zeroed
3028 	 * memory which this helps maintains.
3029 	 */
3030 	gen7_init_oa_buffer(stream);
3031 
3032 	intel_uncore_write(uncore, GEN7_OACONTROL,
3033 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
3034 			   (period_exponent <<
3035 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
3036 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
3037 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
3038 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
3039 			   GEN7_OACONTROL_ENABLE);
3040 }
3041 
3042 static void gen8_oa_enable(struct i915_perf_stream *stream)
3043 {
3044 	struct intel_uncore *uncore = stream->uncore;
3045 	u32 report_format = stream->oa_buffer.format->format;
3046 
3047 	/*
3048 	 * Reset buf pointers so we don't forward reports from before now.
3049 	 *
3050 	 * Think carefully if considering trying to avoid this, since it
3051 	 * also ensures status flags and the buffer itself are cleared
3052 	 * in error paths, and we have checks for invalid reports based
3053 	 * on the assumption that certain fields are written to zeroed
3054 	 * memory which this helps maintains.
3055 	 */
3056 	gen8_init_oa_buffer(stream);
3057 
3058 	/*
3059 	 * Note: we don't rely on the hardware to perform single context
3060 	 * filtering and instead filter on the cpu based on the context-id
3061 	 * field of reports
3062 	 */
3063 	intel_uncore_write(uncore, GEN8_OACONTROL,
3064 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
3065 			   GEN8_OA_COUNTER_ENABLE);
3066 }
3067 
3068 static void gen12_oa_enable(struct i915_perf_stream *stream)
3069 {
3070 	const struct i915_perf_regs *regs;
3071 	u32 val;
3072 
3073 	/*
3074 	 * If we don't want OA reports from the OA buffer, then we don't even
3075 	 * need to program the OAG unit.
3076 	 */
3077 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
3078 		return;
3079 
3080 	gen12_init_oa_buffer(stream);
3081 
3082 	regs = __oa_regs(stream);
3083 	val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) |
3084 	      GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE;
3085 
3086 	intel_uncore_write(stream->uncore, regs->oa_ctrl, val);
3087 }
3088 
3089 /**
3090  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
3091  * @stream: An i915 perf stream opened for OA metrics
3092  *
3093  * [Re]enables hardware periodic sampling according to the period configured
3094  * when opening the stream. This also starts a hrtimer that will periodically
3095  * check for data in the circular OA buffer for notifying userspace (e.g.
3096  * during a read() or poll()).
3097  */
3098 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
3099 {
3100 	stream->pollin = false;
3101 
3102 	stream->perf->ops.oa_enable(stream);
3103 
3104 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3105 		hrtimer_start(&stream->poll_check_timer,
3106 			      ns_to_ktime(stream->poll_oa_period),
3107 			      HRTIMER_MODE_REL_PINNED);
3108 }
3109 
3110 static void gen7_oa_disable(struct i915_perf_stream *stream)
3111 {
3112 	struct intel_uncore *uncore = stream->uncore;
3113 
3114 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
3115 	if (intel_wait_for_register(uncore,
3116 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
3117 				    50))
3118 		drm_err(&stream->perf->i915->drm,
3119 			"wait for OA to be disabled timed out\n");
3120 }
3121 
3122 static void gen8_oa_disable(struct i915_perf_stream *stream)
3123 {
3124 	struct intel_uncore *uncore = stream->uncore;
3125 
3126 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
3127 	if (intel_wait_for_register(uncore,
3128 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
3129 				    50))
3130 		drm_err(&stream->perf->i915->drm,
3131 			"wait for OA to be disabled timed out\n");
3132 }
3133 
3134 static void gen12_oa_disable(struct i915_perf_stream *stream)
3135 {
3136 	struct intel_uncore *uncore = stream->uncore;
3137 
3138 	intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0);
3139 	if (intel_wait_for_register(uncore,
3140 				    __oa_regs(stream)->oa_ctrl,
3141 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
3142 				    50))
3143 		drm_err(&stream->perf->i915->drm,
3144 			"wait for OA to be disabled timed out\n");
3145 
3146 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
3147 	if (intel_wait_for_register(uncore,
3148 				    GEN12_OA_TLB_INV_CR,
3149 				    1, 0,
3150 				    50))
3151 		drm_err(&stream->perf->i915->drm,
3152 			"wait for OA tlb invalidate timed out\n");
3153 }
3154 
3155 /**
3156  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
3157  * @stream: An i915 perf stream opened for OA metrics
3158  *
3159  * Stops the OA unit from periodically writing counter reports into the
3160  * circular OA buffer. This also stops the hrtimer that periodically checks for
3161  * data in the circular OA buffer, for notifying userspace.
3162  */
3163 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
3164 {
3165 	stream->perf->ops.oa_disable(stream);
3166 
3167 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3168 		hrtimer_cancel(&stream->poll_check_timer);
3169 }
3170 
3171 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
3172 	.destroy = i915_oa_stream_destroy,
3173 	.enable = i915_oa_stream_enable,
3174 	.disable = i915_oa_stream_disable,
3175 	.wait_unlocked = i915_oa_wait_unlocked,
3176 	.poll_wait = i915_oa_poll_wait,
3177 	.read = i915_oa_read,
3178 };
3179 
3180 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
3181 {
3182 	struct i915_active *active;
3183 	int err;
3184 
3185 	active = i915_active_create();
3186 	if (!active)
3187 		return -ENOMEM;
3188 
3189 	err = stream->perf->ops.enable_metric_set(stream, active);
3190 	if (err == 0)
3191 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
3192 
3193 	i915_active_put(active);
3194 	return err;
3195 }
3196 
3197 static void
3198 get_default_sseu_config(struct intel_sseu *out_sseu,
3199 			struct intel_engine_cs *engine)
3200 {
3201 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
3202 
3203 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
3204 
3205 	if (GRAPHICS_VER(engine->i915) == 11) {
3206 		/*
3207 		 * We only need subslice count so it doesn't matter which ones
3208 		 * we select - just turn off low bits in the amount of half of
3209 		 * all available subslices per slice.
3210 		 */
3211 		out_sseu->subslice_mask =
3212 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
3213 		out_sseu->slice_mask = 0x1;
3214 	}
3215 }
3216 
3217 static int
3218 get_sseu_config(struct intel_sseu *out_sseu,
3219 		struct intel_engine_cs *engine,
3220 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
3221 {
3222 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
3223 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
3224 		return -EINVAL;
3225 
3226 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
3227 }
3228 
3229 /*
3230  * OA timestamp frequency = CS timestamp frequency in most platforms. On some
3231  * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such
3232  * cases, return the adjusted CS timestamp frequency to the user.
3233  */
3234 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915)
3235 {
3236 	/*
3237 	 * Wa_18013179988:dg2
3238 	 * Wa_14015846243:mtl
3239 	 */
3240 	if (IS_DG2(i915) || IS_METEORLAKE(i915)) {
3241 		intel_wakeref_t wakeref;
3242 		u32 reg, shift;
3243 
3244 		with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref)
3245 			reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0);
3246 
3247 		shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK,
3248 				      reg);
3249 
3250 		return to_gt(i915)->clock_frequency << (3 - shift);
3251 	}
3252 
3253 	return to_gt(i915)->clock_frequency;
3254 }
3255 
3256 /**
3257  * i915_oa_stream_init - validate combined props for OA stream and init
3258  * @stream: An i915 perf stream
3259  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
3260  * @props: The property state that configures stream (individually validated)
3261  *
3262  * While read_properties_unlocked() validates properties in isolation it
3263  * doesn't ensure that the combination necessarily makes sense.
3264  *
3265  * At this point it has been determined that userspace wants a stream of
3266  * OA metrics, but still we need to further validate the combined
3267  * properties are OK.
3268  *
3269  * If the configuration makes sense then we can allocate memory for
3270  * a circular OA buffer and apply the requested metric set configuration.
3271  *
3272  * Returns: zero on success or a negative error code.
3273  */
3274 static int i915_oa_stream_init(struct i915_perf_stream *stream,
3275 			       struct drm_i915_perf_open_param *param,
3276 			       struct perf_open_properties *props)
3277 {
3278 	struct drm_i915_private *i915 = stream->perf->i915;
3279 	struct i915_perf *perf = stream->perf;
3280 	struct i915_perf_group *g;
3281 	struct intel_gt *gt;
3282 	int ret;
3283 
3284 	if (!props->engine) {
3285 		drm_dbg(&stream->perf->i915->drm,
3286 			"OA engine not specified\n");
3287 		return -EINVAL;
3288 	}
3289 	gt = props->engine->gt;
3290 	g = props->engine->oa_group;
3291 
3292 	/*
3293 	 * If the sysfs metrics/ directory wasn't registered for some
3294 	 * reason then don't let userspace try their luck with config
3295 	 * IDs
3296 	 */
3297 	if (!perf->metrics_kobj) {
3298 		drm_dbg(&stream->perf->i915->drm,
3299 			"OA metrics weren't advertised via sysfs\n");
3300 		return -EINVAL;
3301 	}
3302 
3303 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
3304 	    (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
3305 		drm_dbg(&stream->perf->i915->drm,
3306 			"Only OA report sampling supported\n");
3307 		return -EINVAL;
3308 	}
3309 
3310 	if (!perf->ops.enable_metric_set) {
3311 		drm_dbg(&stream->perf->i915->drm,
3312 			"OA unit not supported\n");
3313 		return -ENODEV;
3314 	}
3315 
3316 	/*
3317 	 * To avoid the complexity of having to accurately filter
3318 	 * counter reports and marshal to the appropriate client
3319 	 * we currently only allow exclusive access
3320 	 */
3321 	if (g->exclusive_stream) {
3322 		drm_dbg(&stream->perf->i915->drm,
3323 			"OA unit already in use\n");
3324 		return -EBUSY;
3325 	}
3326 
3327 	if (!props->oa_format) {
3328 		drm_dbg(&stream->perf->i915->drm,
3329 			"OA report format not specified\n");
3330 		return -EINVAL;
3331 	}
3332 
3333 	stream->engine = props->engine;
3334 	stream->uncore = stream->engine->gt->uncore;
3335 
3336 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
3337 
3338 	stream->oa_buffer.format = &perf->oa_formats[props->oa_format];
3339 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0))
3340 		return -EINVAL;
3341 
3342 	stream->sample_flags = props->sample_flags;
3343 	stream->sample_size += stream->oa_buffer.format->size;
3344 
3345 	stream->hold_preemption = props->hold_preemption;
3346 
3347 	stream->periodic = props->oa_periodic;
3348 	if (stream->periodic)
3349 		stream->period_exponent = props->oa_period_exponent;
3350 
3351 	if (stream->ctx) {
3352 		ret = oa_get_render_ctx_id(stream);
3353 		if (ret) {
3354 			drm_dbg(&stream->perf->i915->drm,
3355 				"Invalid context id to filter with\n");
3356 			return ret;
3357 		}
3358 	}
3359 
3360 	ret = alloc_noa_wait(stream);
3361 	if (ret) {
3362 		drm_dbg(&stream->perf->i915->drm,
3363 			"Unable to allocate NOA wait batch buffer\n");
3364 		goto err_noa_wait_alloc;
3365 	}
3366 
3367 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
3368 	if (!stream->oa_config) {
3369 		drm_dbg(&stream->perf->i915->drm,
3370 			"Invalid OA config id=%i\n", props->metrics_set);
3371 		ret = -EINVAL;
3372 		goto err_config;
3373 	}
3374 
3375 	/* PRM - observability performance counters:
3376 	 *
3377 	 *   OACONTROL, performance counter enable, note:
3378 	 *
3379 	 *   "When this bit is set, in order to have coherent counts,
3380 	 *   RC6 power state and trunk clock gating must be disabled.
3381 	 *   This can be achieved by programming MMIO registers as
3382 	 *   0xA094=0 and 0xA090[31]=1"
3383 	 *
3384 	 *   In our case we are expecting that taking pm + FORCEWAKE
3385 	 *   references will effectively disable RC6.
3386 	 */
3387 	intel_engine_pm_get(stream->engine);
3388 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
3389 
3390 	/*
3391 	 * Wa_16011777198:dg2: GuC resets render as part of the Wa. This causes
3392 	 * OA to lose the configuration state. Prevent this by overriding GUCRC
3393 	 * mode.
3394 	 */
3395 	if (intel_uc_uses_guc_rc(&gt->uc) &&
3396 	    (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
3397 	     IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))) {
3398 		ret = intel_guc_slpc_override_gucrc_mode(&gt->uc.guc.slpc,
3399 							 SLPC_GUCRC_MODE_GUCRC_NO_RC6);
3400 		if (ret) {
3401 			drm_dbg(&stream->perf->i915->drm,
3402 				"Unable to override gucrc mode\n");
3403 			goto err_gucrc;
3404 		}
3405 
3406 		stream->override_gucrc = true;
3407 	}
3408 
3409 	ret = alloc_oa_buffer(stream);
3410 	if (ret)
3411 		goto err_oa_buf_alloc;
3412 
3413 	stream->ops = &i915_oa_stream_ops;
3414 
3415 	stream->engine->gt->perf.sseu = props->sseu;
3416 	WRITE_ONCE(g->exclusive_stream, stream);
3417 
3418 	ret = i915_perf_stream_enable_sync(stream);
3419 	if (ret) {
3420 		drm_dbg(&stream->perf->i915->drm,
3421 			"Unable to enable metric set\n");
3422 		goto err_enable;
3423 	}
3424 
3425 	drm_dbg(&stream->perf->i915->drm,
3426 		"opening stream oa config uuid=%s\n",
3427 		  stream->oa_config->uuid);
3428 
3429 	hrtimer_init(&stream->poll_check_timer,
3430 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3431 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
3432 	init_waitqueue_head(&stream->poll_wq);
3433 	spin_lock_init(&stream->oa_buffer.ptr_lock);
3434 	mutex_init(&stream->lock);
3435 
3436 	return 0;
3437 
3438 err_enable:
3439 	WRITE_ONCE(g->exclusive_stream, NULL);
3440 	perf->ops.disable_metric_set(stream);
3441 
3442 	free_oa_buffer(stream);
3443 
3444 err_oa_buf_alloc:
3445 	if (stream->override_gucrc)
3446 		intel_guc_slpc_unset_gucrc_mode(&gt->uc.guc.slpc);
3447 
3448 err_gucrc:
3449 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3450 	intel_engine_pm_put(stream->engine);
3451 
3452 	free_oa_configs(stream);
3453 
3454 err_config:
3455 	free_noa_wait(stream);
3456 
3457 err_noa_wait_alloc:
3458 	if (stream->ctx)
3459 		oa_put_render_ctx_id(stream);
3460 
3461 	return ret;
3462 }
3463 
3464 void i915_oa_init_reg_state(const struct intel_context *ce,
3465 			    const struct intel_engine_cs *engine)
3466 {
3467 	struct i915_perf_stream *stream;
3468 
3469 	if (engine->class != RENDER_CLASS)
3470 		return;
3471 
3472 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3473 	stream = READ_ONCE(engine->oa_group->exclusive_stream);
3474 	if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3475 		gen8_update_reg_state_unlocked(ce, stream);
3476 }
3477 
3478 /**
3479  * i915_perf_read - handles read() FOP for i915 perf stream FDs
3480  * @file: An i915 perf stream file
3481  * @buf: destination buffer given by userspace
3482  * @count: the number of bytes userspace wants to read
3483  * @ppos: (inout) file seek position (unused)
3484  *
3485  * The entry point for handling a read() on a stream file descriptor from
3486  * userspace. Most of the work is left to the i915_perf_read_locked() and
3487  * &i915_perf_stream_ops->read but to save having stream implementations (of
3488  * which we might have multiple later) we handle blocking read here.
3489  *
3490  * We can also consistently treat trying to read from a disabled stream
3491  * as an IO error so implementations can assume the stream is enabled
3492  * while reading.
3493  *
3494  * Returns: The number of bytes copied or a negative error code on failure.
3495  */
3496 static ssize_t i915_perf_read(struct file *file,
3497 			      char __user *buf,
3498 			      size_t count,
3499 			      loff_t *ppos)
3500 {
3501 	struct i915_perf_stream *stream = file->private_data;
3502 	size_t offset = 0;
3503 	int ret;
3504 
3505 	/* To ensure it's handled consistently we simply treat all reads of a
3506 	 * disabled stream as an error. In particular it might otherwise lead
3507 	 * to a deadlock for blocking file descriptors...
3508 	 */
3509 	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3510 		return -EIO;
3511 
3512 	if (!(file->f_flags & O_NONBLOCK)) {
3513 		/* There's the small chance of false positives from
3514 		 * stream->ops->wait_unlocked.
3515 		 *
3516 		 * E.g. with single context filtering since we only wait until
3517 		 * oabuffer has >= 1 report we don't immediately know whether
3518 		 * any reports really belong to the current context
3519 		 */
3520 		do {
3521 			ret = stream->ops->wait_unlocked(stream);
3522 			if (ret)
3523 				return ret;
3524 
3525 			mutex_lock(&stream->lock);
3526 			ret = stream->ops->read(stream, buf, count, &offset);
3527 			mutex_unlock(&stream->lock);
3528 		} while (!offset && !ret);
3529 	} else {
3530 		mutex_lock(&stream->lock);
3531 		ret = stream->ops->read(stream, buf, count, &offset);
3532 		mutex_unlock(&stream->lock);
3533 	}
3534 
3535 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3536 	 * events where we might actually report EAGAIN on read() if there's
3537 	 * not really any data available. In this situation though we don't
3538 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3539 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3540 	 * effectively ensures we back off until the next hrtimer callback
3541 	 * before reporting another EPOLLIN event.
3542 	 * The exception to this is if ops->read() returned -ENOSPC which means
3543 	 * that more OA data is available than could fit in the user provided
3544 	 * buffer. In this case we want the next poll() call to not block.
3545 	 */
3546 	if (ret != -ENOSPC)
3547 		stream->pollin = false;
3548 
3549 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3550 	return offset ?: (ret ?: -EAGAIN);
3551 }
3552 
3553 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3554 {
3555 	struct i915_perf_stream *stream =
3556 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3557 
3558 	if (oa_buffer_check_unlocked(stream)) {
3559 		stream->pollin = true;
3560 		wake_up(&stream->poll_wq);
3561 	}
3562 
3563 	hrtimer_forward_now(hrtimer,
3564 			    ns_to_ktime(stream->poll_oa_period));
3565 
3566 	return HRTIMER_RESTART;
3567 }
3568 
3569 /**
3570  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3571  * @stream: An i915 perf stream
3572  * @file: An i915 perf stream file
3573  * @wait: poll() state table
3574  *
3575  * For handling userspace polling on an i915 perf stream, this calls through to
3576  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3577  * will be woken for new stream data.
3578  *
3579  * Returns: any poll events that are ready without sleeping
3580  */
3581 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3582 				      struct file *file,
3583 				      poll_table *wait)
3584 {
3585 	__poll_t events = 0;
3586 
3587 	stream->ops->poll_wait(stream, file, wait);
3588 
3589 	/* Note: we don't explicitly check whether there's something to read
3590 	 * here since this path may be very hot depending on what else
3591 	 * userspace is polling, or on the timeout in use. We rely solely on
3592 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3593 	 * samples to read.
3594 	 */
3595 	if (stream->pollin)
3596 		events |= EPOLLIN;
3597 
3598 	return events;
3599 }
3600 
3601 /**
3602  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3603  * @file: An i915 perf stream file
3604  * @wait: poll() state table
3605  *
3606  * For handling userspace polling on an i915 perf stream, this ensures
3607  * poll_wait() gets called with a wait queue that will be woken for new stream
3608  * data.
3609  *
3610  * Note: Implementation deferred to i915_perf_poll_locked()
3611  *
3612  * Returns: any poll events that are ready without sleeping
3613  */
3614 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3615 {
3616 	struct i915_perf_stream *stream = file->private_data;
3617 	__poll_t ret;
3618 
3619 	mutex_lock(&stream->lock);
3620 	ret = i915_perf_poll_locked(stream, file, wait);
3621 	mutex_unlock(&stream->lock);
3622 
3623 	return ret;
3624 }
3625 
3626 /**
3627  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3628  * @stream: A disabled i915 perf stream
3629  *
3630  * [Re]enables the associated capture of data for this stream.
3631  *
3632  * If a stream was previously enabled then there's currently no intention
3633  * to provide userspace any guarantee about the preservation of previously
3634  * buffered data.
3635  */
3636 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3637 {
3638 	if (stream->enabled)
3639 		return;
3640 
3641 	/* Allow stream->ops->enable() to refer to this */
3642 	stream->enabled = true;
3643 
3644 	if (stream->ops->enable)
3645 		stream->ops->enable(stream);
3646 
3647 	if (stream->hold_preemption)
3648 		intel_context_set_nopreempt(stream->pinned_ctx);
3649 }
3650 
3651 /**
3652  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3653  * @stream: An enabled i915 perf stream
3654  *
3655  * Disables the associated capture of data for this stream.
3656  *
3657  * The intention is that disabling an re-enabling a stream will ideally be
3658  * cheaper than destroying and re-opening a stream with the same configuration,
3659  * though there are no formal guarantees about what state or buffered data
3660  * must be retained between disabling and re-enabling a stream.
3661  *
3662  * Note: while a stream is disabled it's considered an error for userspace
3663  * to attempt to read from the stream (-EIO).
3664  */
3665 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3666 {
3667 	if (!stream->enabled)
3668 		return;
3669 
3670 	/* Allow stream->ops->disable() to refer to this */
3671 	stream->enabled = false;
3672 
3673 	if (stream->hold_preemption)
3674 		intel_context_clear_nopreempt(stream->pinned_ctx);
3675 
3676 	if (stream->ops->disable)
3677 		stream->ops->disable(stream);
3678 }
3679 
3680 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3681 				    unsigned long metrics_set)
3682 {
3683 	struct i915_oa_config *config;
3684 	long ret = stream->oa_config->id;
3685 
3686 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3687 	if (!config)
3688 		return -EINVAL;
3689 
3690 	if (config != stream->oa_config) {
3691 		int err;
3692 
3693 		/*
3694 		 * If OA is bound to a specific context, emit the
3695 		 * reconfiguration inline from that context. The update
3696 		 * will then be ordered with respect to submission on that
3697 		 * context.
3698 		 *
3699 		 * When set globally, we use a low priority kernel context,
3700 		 * so it will effectively take effect when idle.
3701 		 */
3702 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3703 		if (!err)
3704 			config = xchg(&stream->oa_config, config);
3705 		else
3706 			ret = err;
3707 	}
3708 
3709 	i915_oa_config_put(config);
3710 
3711 	return ret;
3712 }
3713 
3714 /**
3715  * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3716  * @stream: An i915 perf stream
3717  * @cmd: the ioctl request
3718  * @arg: the ioctl data
3719  *
3720  * Returns: zero on success or a negative error code. Returns -EINVAL for
3721  * an unknown ioctl request.
3722  */
3723 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3724 				   unsigned int cmd,
3725 				   unsigned long arg)
3726 {
3727 	switch (cmd) {
3728 	case I915_PERF_IOCTL_ENABLE:
3729 		i915_perf_enable_locked(stream);
3730 		return 0;
3731 	case I915_PERF_IOCTL_DISABLE:
3732 		i915_perf_disable_locked(stream);
3733 		return 0;
3734 	case I915_PERF_IOCTL_CONFIG:
3735 		return i915_perf_config_locked(stream, arg);
3736 	}
3737 
3738 	return -EINVAL;
3739 }
3740 
3741 /**
3742  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3743  * @file: An i915 perf stream file
3744  * @cmd: the ioctl request
3745  * @arg: the ioctl data
3746  *
3747  * Implementation deferred to i915_perf_ioctl_locked().
3748  *
3749  * Returns: zero on success or a negative error code. Returns -EINVAL for
3750  * an unknown ioctl request.
3751  */
3752 static long i915_perf_ioctl(struct file *file,
3753 			    unsigned int cmd,
3754 			    unsigned long arg)
3755 {
3756 	struct i915_perf_stream *stream = file->private_data;
3757 	long ret;
3758 
3759 	mutex_lock(&stream->lock);
3760 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3761 	mutex_unlock(&stream->lock);
3762 
3763 	return ret;
3764 }
3765 
3766 /**
3767  * i915_perf_destroy_locked - destroy an i915 perf stream
3768  * @stream: An i915 perf stream
3769  *
3770  * Frees all resources associated with the given i915 perf @stream, disabling
3771  * any associated data capture in the process.
3772  *
3773  * Note: The &gt->perf.lock mutex has been taken to serialize
3774  * with any non-file-operation driver hooks.
3775  */
3776 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3777 {
3778 	if (stream->enabled)
3779 		i915_perf_disable_locked(stream);
3780 
3781 	if (stream->ops->destroy)
3782 		stream->ops->destroy(stream);
3783 
3784 	if (stream->ctx)
3785 		i915_gem_context_put(stream->ctx);
3786 
3787 	kfree(stream);
3788 }
3789 
3790 /**
3791  * i915_perf_release - handles userspace close() of a stream file
3792  * @inode: anonymous inode associated with file
3793  * @file: An i915 perf stream file
3794  *
3795  * Cleans up any resources associated with an open i915 perf stream file.
3796  *
3797  * NB: close() can't really fail from the userspace point of view.
3798  *
3799  * Returns: zero on success or a negative error code.
3800  */
3801 static int i915_perf_release(struct inode *inode, struct file *file)
3802 {
3803 	struct i915_perf_stream *stream = file->private_data;
3804 	struct i915_perf *perf = stream->perf;
3805 	struct intel_gt *gt = stream->engine->gt;
3806 
3807 	/*
3808 	 * Within this call, we know that the fd is being closed and we have no
3809 	 * other user of stream->lock. Use the perf lock to destroy the stream
3810 	 * here.
3811 	 */
3812 	mutex_lock(&gt->perf.lock);
3813 	i915_perf_destroy_locked(stream);
3814 	mutex_unlock(&gt->perf.lock);
3815 
3816 	/* Release the reference the perf stream kept on the driver. */
3817 	drm_dev_put(&perf->i915->drm);
3818 
3819 	return 0;
3820 }
3821 
3822 
3823 static const struct file_operations fops = {
3824 	.owner		= THIS_MODULE,
3825 	.llseek		= no_llseek,
3826 	.release	= i915_perf_release,
3827 	.poll		= i915_perf_poll,
3828 	.read		= i915_perf_read,
3829 	.unlocked_ioctl	= i915_perf_ioctl,
3830 	/* Our ioctl have no arguments, so it's safe to use the same function
3831 	 * to handle 32bits compatibility.
3832 	 */
3833 	.compat_ioctl   = i915_perf_ioctl,
3834 };
3835 
3836 
3837 /**
3838  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3839  * @perf: i915 perf instance
3840  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3841  * @props: individually validated u64 property value pairs
3842  * @file: drm file
3843  *
3844  * See i915_perf_ioctl_open() for interface details.
3845  *
3846  * Implements further stream config validation and stream initialization on
3847  * behalf of i915_perf_open_ioctl() with the &gt->perf.lock mutex
3848  * taken to serialize with any non-file-operation driver hooks.
3849  *
3850  * Note: at this point the @props have only been validated in isolation and
3851  * it's still necessary to validate that the combination of properties makes
3852  * sense.
3853  *
3854  * In the case where userspace is interested in OA unit metrics then further
3855  * config validation and stream initialization details will be handled by
3856  * i915_oa_stream_init(). The code here should only validate config state that
3857  * will be relevant to all stream types / backends.
3858  *
3859  * Returns: zero on success or a negative error code.
3860  */
3861 static int
3862 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3863 			    struct drm_i915_perf_open_param *param,
3864 			    struct perf_open_properties *props,
3865 			    struct drm_file *file)
3866 {
3867 	struct i915_gem_context *specific_ctx = NULL;
3868 	struct i915_perf_stream *stream = NULL;
3869 	unsigned long f_flags = 0;
3870 	bool privileged_op = true;
3871 	int stream_fd;
3872 	int ret;
3873 
3874 	if (props->single_context) {
3875 		u32 ctx_handle = props->ctx_handle;
3876 		struct drm_i915_file_private *file_priv = file->driver_priv;
3877 
3878 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3879 		if (IS_ERR(specific_ctx)) {
3880 			drm_dbg(&perf->i915->drm,
3881 				"Failed to look up context with ID %u for opening perf stream\n",
3882 				  ctx_handle);
3883 			ret = PTR_ERR(specific_ctx);
3884 			goto err;
3885 		}
3886 	}
3887 
3888 	/*
3889 	 * On Haswell the OA unit supports clock gating off for a specific
3890 	 * context and in this mode there's no visibility of metrics for the
3891 	 * rest of the system, which we consider acceptable for a
3892 	 * non-privileged client.
3893 	 *
3894 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3895 	 * specific context and the kernel can't securely stop the counters
3896 	 * from updating as system-wide / global values. Even though we can
3897 	 * filter reports based on the included context ID we can't block
3898 	 * clients from seeing the raw / global counter values via
3899 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3900 	 * enable the OA unit by default.
3901 	 *
3902 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3903 	 * per context basis. So we can relax requirements there if the user
3904 	 * doesn't request global stream access (i.e. query based sampling
3905 	 * using MI_RECORD_PERF_COUNT.
3906 	 */
3907 	if (IS_HASWELL(perf->i915) && specific_ctx)
3908 		privileged_op = false;
3909 	else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3910 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3911 		privileged_op = false;
3912 
3913 	if (props->hold_preemption) {
3914 		if (!props->single_context) {
3915 			drm_dbg(&perf->i915->drm,
3916 				"preemption disable with no context\n");
3917 			ret = -EINVAL;
3918 			goto err;
3919 		}
3920 		privileged_op = true;
3921 	}
3922 
3923 	/*
3924 	 * Asking for SSEU configuration is a priviliged operation.
3925 	 */
3926 	if (props->has_sseu)
3927 		privileged_op = true;
3928 	else
3929 		get_default_sseu_config(&props->sseu, props->engine);
3930 
3931 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3932 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3933 	 * to determine if it's ok to access system wide OA counters
3934 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3935 	 */
3936 	if (privileged_op &&
3937 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3938 		drm_dbg(&perf->i915->drm,
3939 			"Insufficient privileges to open i915 perf stream\n");
3940 		ret = -EACCES;
3941 		goto err_ctx;
3942 	}
3943 
3944 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3945 	if (!stream) {
3946 		ret = -ENOMEM;
3947 		goto err_ctx;
3948 	}
3949 
3950 	stream->perf = perf;
3951 	stream->ctx = specific_ctx;
3952 	stream->poll_oa_period = props->poll_oa_period;
3953 
3954 	ret = i915_oa_stream_init(stream, param, props);
3955 	if (ret)
3956 		goto err_alloc;
3957 
3958 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3959 	 * to have _stream_init check the combination of sample flags more
3960 	 * thoroughly, but still this is the expected result at this point.
3961 	 */
3962 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3963 		ret = -ENODEV;
3964 		goto err_flags;
3965 	}
3966 
3967 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3968 		f_flags |= O_CLOEXEC;
3969 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3970 		f_flags |= O_NONBLOCK;
3971 
3972 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3973 	if (stream_fd < 0) {
3974 		ret = stream_fd;
3975 		goto err_flags;
3976 	}
3977 
3978 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3979 		i915_perf_enable_locked(stream);
3980 
3981 	/* Take a reference on the driver that will be kept with stream_fd
3982 	 * until its release.
3983 	 */
3984 	drm_dev_get(&perf->i915->drm);
3985 
3986 	return stream_fd;
3987 
3988 err_flags:
3989 	if (stream->ops->destroy)
3990 		stream->ops->destroy(stream);
3991 err_alloc:
3992 	kfree(stream);
3993 err_ctx:
3994 	if (specific_ctx)
3995 		i915_gem_context_put(specific_ctx);
3996 err:
3997 	return ret;
3998 }
3999 
4000 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
4001 {
4002 	u64 nom = (2ULL << exponent) * NSEC_PER_SEC;
4003 	u32 den = i915_perf_oa_timestamp_frequency(perf->i915);
4004 
4005 	return div_u64(nom + den - 1, den);
4006 }
4007 
4008 static __always_inline bool
4009 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
4010 {
4011 	return test_bit(format, perf->format_mask);
4012 }
4013 
4014 static __always_inline void
4015 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
4016 {
4017 	__set_bit(format, perf->format_mask);
4018 }
4019 
4020 /**
4021  * read_properties_unlocked - validate + copy userspace stream open properties
4022  * @perf: i915 perf instance
4023  * @uprops: The array of u64 key value pairs given by userspace
4024  * @n_props: The number of key value pairs expected in @uprops
4025  * @props: The stream configuration built up while validating properties
4026  *
4027  * Note this function only validates properties in isolation it doesn't
4028  * validate that the combination of properties makes sense or that all
4029  * properties necessary for a particular kind of stream have been set.
4030  *
4031  * Note that there currently aren't any ordering requirements for properties so
4032  * we shouldn't validate or assume anything about ordering here. This doesn't
4033  * rule out defining new properties with ordering requirements in the future.
4034  */
4035 static int read_properties_unlocked(struct i915_perf *perf,
4036 				    u64 __user *uprops,
4037 				    u32 n_props,
4038 				    struct perf_open_properties *props)
4039 {
4040 	struct drm_i915_gem_context_param_sseu user_sseu;
4041 	const struct i915_oa_format *f;
4042 	u64 __user *uprop = uprops;
4043 	bool config_instance = false;
4044 	bool config_class = false;
4045 	bool config_sseu = false;
4046 	u8 class, instance;
4047 	u32 i;
4048 	int ret;
4049 
4050 	memset(props, 0, sizeof(struct perf_open_properties));
4051 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
4052 
4053 	/* Considering that ID = 0 is reserved and assuming that we don't
4054 	 * (currently) expect any configurations to ever specify duplicate
4055 	 * values for a particular property ID then the last _PROP_MAX value is
4056 	 * one greater than the maximum number of properties we expect to get
4057 	 * from userspace.
4058 	 */
4059 	if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) {
4060 		drm_dbg(&perf->i915->drm,
4061 			"Invalid number of i915 perf properties given\n");
4062 		return -EINVAL;
4063 	}
4064 
4065 	/* Defaults when class:instance is not passed */
4066 	class = I915_ENGINE_CLASS_RENDER;
4067 	instance = 0;
4068 
4069 	for (i = 0; i < n_props; i++) {
4070 		u64 oa_period, oa_freq_hz;
4071 		u64 id, value;
4072 
4073 		ret = get_user(id, uprop);
4074 		if (ret)
4075 			return ret;
4076 
4077 		ret = get_user(value, uprop + 1);
4078 		if (ret)
4079 			return ret;
4080 
4081 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
4082 			drm_dbg(&perf->i915->drm,
4083 				"Unknown i915 perf property ID\n");
4084 			return -EINVAL;
4085 		}
4086 
4087 		switch ((enum drm_i915_perf_property_id)id) {
4088 		case DRM_I915_PERF_PROP_CTX_HANDLE:
4089 			props->single_context = 1;
4090 			props->ctx_handle = value;
4091 			break;
4092 		case DRM_I915_PERF_PROP_SAMPLE_OA:
4093 			if (value)
4094 				props->sample_flags |= SAMPLE_OA_REPORT;
4095 			break;
4096 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
4097 			if (value == 0) {
4098 				drm_dbg(&perf->i915->drm,
4099 					"Unknown OA metric set ID\n");
4100 				return -EINVAL;
4101 			}
4102 			props->metrics_set = value;
4103 			break;
4104 		case DRM_I915_PERF_PROP_OA_FORMAT:
4105 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
4106 				drm_dbg(&perf->i915->drm,
4107 					"Out-of-range OA report format %llu\n",
4108 					  value);
4109 				return -EINVAL;
4110 			}
4111 			if (!oa_format_valid(perf, value)) {
4112 				drm_dbg(&perf->i915->drm,
4113 					"Unsupported OA report format %llu\n",
4114 					  value);
4115 				return -EINVAL;
4116 			}
4117 			props->oa_format = value;
4118 			break;
4119 		case DRM_I915_PERF_PROP_OA_EXPONENT:
4120 			if (value > OA_EXPONENT_MAX) {
4121 				drm_dbg(&perf->i915->drm,
4122 					"OA timer exponent too high (> %u)\n",
4123 					 OA_EXPONENT_MAX);
4124 				return -EINVAL;
4125 			}
4126 
4127 			/* Theoretically we can program the OA unit to sample
4128 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
4129 			 * for BXT. We don't allow such high sampling
4130 			 * frequencies by default unless root.
4131 			 */
4132 
4133 			BUILD_BUG_ON(sizeof(oa_period) != 8);
4134 			oa_period = oa_exponent_to_ns(perf, value);
4135 
4136 			/* This check is primarily to ensure that oa_period <=
4137 			 * UINT32_MAX (before passing to do_div which only
4138 			 * accepts a u32 denominator), but we can also skip
4139 			 * checking anything < 1Hz which implicitly can't be
4140 			 * limited via an integer oa_max_sample_rate.
4141 			 */
4142 			if (oa_period <= NSEC_PER_SEC) {
4143 				u64 tmp = NSEC_PER_SEC;
4144 				do_div(tmp, oa_period);
4145 				oa_freq_hz = tmp;
4146 			} else
4147 				oa_freq_hz = 0;
4148 
4149 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
4150 				drm_dbg(&perf->i915->drm,
4151 					"OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
4152 					  i915_oa_max_sample_rate);
4153 				return -EACCES;
4154 			}
4155 
4156 			props->oa_periodic = true;
4157 			props->oa_period_exponent = value;
4158 			break;
4159 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
4160 			props->hold_preemption = !!value;
4161 			break;
4162 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
4163 			if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) {
4164 				drm_dbg(&perf->i915->drm,
4165 					"SSEU config not supported on gfx %x\n",
4166 					GRAPHICS_VER_FULL(perf->i915));
4167 				return -ENODEV;
4168 			}
4169 
4170 			if (copy_from_user(&user_sseu,
4171 					   u64_to_user_ptr(value),
4172 					   sizeof(user_sseu))) {
4173 				drm_dbg(&perf->i915->drm,
4174 					"Unable to copy global sseu parameter\n");
4175 				return -EFAULT;
4176 			}
4177 			config_sseu = true;
4178 			break;
4179 		}
4180 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
4181 			if (value < 100000 /* 100us */) {
4182 				drm_dbg(&perf->i915->drm,
4183 					"OA availability timer too small (%lluns < 100us)\n",
4184 					  value);
4185 				return -EINVAL;
4186 			}
4187 			props->poll_oa_period = value;
4188 			break;
4189 		case DRM_I915_PERF_PROP_OA_ENGINE_CLASS:
4190 			class = (u8)value;
4191 			config_class = true;
4192 			break;
4193 		case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE:
4194 			instance = (u8)value;
4195 			config_instance = true;
4196 			break;
4197 		default:
4198 			MISSING_CASE(id);
4199 			return -EINVAL;
4200 		}
4201 
4202 		uprop += 2;
4203 	}
4204 
4205 	if ((config_class && !config_instance) ||
4206 	    (config_instance && !config_class)) {
4207 		drm_dbg(&perf->i915->drm,
4208 			"OA engine-class and engine-instance parameters must be passed together\n");
4209 		return -EINVAL;
4210 	}
4211 
4212 	props->engine = intel_engine_lookup_user(perf->i915, class, instance);
4213 	if (!props->engine) {
4214 		drm_dbg(&perf->i915->drm,
4215 			"OA engine class and instance invalid %d:%d\n",
4216 			class, instance);
4217 		return -EINVAL;
4218 	}
4219 
4220 	if (!engine_supports_oa(props->engine)) {
4221 		drm_dbg(&perf->i915->drm,
4222 			"Engine not supported by OA %d:%d\n",
4223 			class, instance);
4224 		return -EINVAL;
4225 	}
4226 
4227 	/*
4228 	 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
4229 	 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM
4230 	 * does not work as expected.
4231 	 */
4232 	if (IS_MTL_MEDIA_STEP(props->engine->i915, STEP_A0, STEP_C0) &&
4233 	    props->engine->oa_group->type == TYPE_OAM &&
4234 	    intel_check_bios_c6_setup(&props->engine->gt->rc6)) {
4235 		drm_dbg(&perf->i915->drm,
4236 			"OAM requires media C6 to be disabled in BIOS\n");
4237 		return -EINVAL;
4238 	}
4239 
4240 	i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX);
4241 	f = &perf->oa_formats[i];
4242 	if (!engine_supports_oa_format(props->engine, f->type)) {
4243 		drm_dbg(&perf->i915->drm,
4244 			"Invalid OA format %d for class %d\n",
4245 			f->type, props->engine->class);
4246 		return -EINVAL;
4247 	}
4248 
4249 	if (config_sseu) {
4250 		ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
4251 		if (ret) {
4252 			drm_dbg(&perf->i915->drm,
4253 				"Invalid SSEU configuration\n");
4254 			return ret;
4255 		}
4256 		props->has_sseu = true;
4257 	}
4258 
4259 	return 0;
4260 }
4261 
4262 /**
4263  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
4264  * @dev: drm device
4265  * @data: ioctl data copied from userspace (unvalidated)
4266  * @file: drm file
4267  *
4268  * Validates the stream open parameters given by userspace including flags
4269  * and an array of u64 key, value pair properties.
4270  *
4271  * Very little is assumed up front about the nature of the stream being
4272  * opened (for instance we don't assume it's for periodic OA unit metrics). An
4273  * i915-perf stream is expected to be a suitable interface for other forms of
4274  * buffered data written by the GPU besides periodic OA metrics.
4275  *
4276  * Note we copy the properties from userspace outside of the i915 perf
4277  * mutex to avoid an awkward lockdep with mmap_lock.
4278  *
4279  * Most of the implementation details are handled by
4280  * i915_perf_open_ioctl_locked() after taking the &gt->perf.lock
4281  * mutex for serializing with any non-file-operation driver hooks.
4282  *
4283  * Return: A newly opened i915 Perf stream file descriptor or negative
4284  * error code on failure.
4285  */
4286 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
4287 			 struct drm_file *file)
4288 {
4289 	struct i915_perf *perf = &to_i915(dev)->perf;
4290 	struct drm_i915_perf_open_param *param = data;
4291 	struct intel_gt *gt;
4292 	struct perf_open_properties props;
4293 	u32 known_open_flags;
4294 	int ret;
4295 
4296 	if (!perf->i915) {
4297 		drm_dbg(&perf->i915->drm,
4298 			"i915 perf interface not available for this system\n");
4299 		return -ENOTSUPP;
4300 	}
4301 
4302 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
4303 			   I915_PERF_FLAG_FD_NONBLOCK |
4304 			   I915_PERF_FLAG_DISABLED;
4305 	if (param->flags & ~known_open_flags) {
4306 		drm_dbg(&perf->i915->drm,
4307 			"Unknown drm_i915_perf_open_param flag\n");
4308 		return -EINVAL;
4309 	}
4310 
4311 	ret = read_properties_unlocked(perf,
4312 				       u64_to_user_ptr(param->properties_ptr),
4313 				       param->num_properties,
4314 				       &props);
4315 	if (ret)
4316 		return ret;
4317 
4318 	gt = props.engine->gt;
4319 
4320 	mutex_lock(&gt->perf.lock);
4321 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
4322 	mutex_unlock(&gt->perf.lock);
4323 
4324 	return ret;
4325 }
4326 
4327 /**
4328  * i915_perf_register - exposes i915-perf to userspace
4329  * @i915: i915 device instance
4330  *
4331  * In particular OA metric sets are advertised under a sysfs metrics/
4332  * directory allowing userspace to enumerate valid IDs that can be
4333  * used to open an i915-perf stream.
4334  */
4335 void i915_perf_register(struct drm_i915_private *i915)
4336 {
4337 	struct i915_perf *perf = &i915->perf;
4338 	struct intel_gt *gt = to_gt(i915);
4339 
4340 	if (!perf->i915)
4341 		return;
4342 
4343 	/* To be sure we're synchronized with an attempted
4344 	 * i915_perf_open_ioctl(); considering that we register after
4345 	 * being exposed to userspace.
4346 	 */
4347 	mutex_lock(&gt->perf.lock);
4348 
4349 	perf->metrics_kobj =
4350 		kobject_create_and_add("metrics",
4351 				       &i915->drm.primary->kdev->kobj);
4352 
4353 	mutex_unlock(&gt->perf.lock);
4354 }
4355 
4356 /**
4357  * i915_perf_unregister - hide i915-perf from userspace
4358  * @i915: i915 device instance
4359  *
4360  * i915-perf state cleanup is split up into an 'unregister' and
4361  * 'deinit' phase where the interface is first hidden from
4362  * userspace by i915_perf_unregister() before cleaning up
4363  * remaining state in i915_perf_fini().
4364  */
4365 void i915_perf_unregister(struct drm_i915_private *i915)
4366 {
4367 	struct i915_perf *perf = &i915->perf;
4368 
4369 	if (!perf->metrics_kobj)
4370 		return;
4371 
4372 	kobject_put(perf->metrics_kobj);
4373 	perf->metrics_kobj = NULL;
4374 }
4375 
4376 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
4377 {
4378 	static const i915_reg_t flex_eu_regs[] = {
4379 		EU_PERF_CNTL0,
4380 		EU_PERF_CNTL1,
4381 		EU_PERF_CNTL2,
4382 		EU_PERF_CNTL3,
4383 		EU_PERF_CNTL4,
4384 		EU_PERF_CNTL5,
4385 		EU_PERF_CNTL6,
4386 	};
4387 	int i;
4388 
4389 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
4390 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
4391 			return true;
4392 	}
4393 	return false;
4394 }
4395 
4396 static bool reg_in_range_table(u32 addr, const struct i915_range *table)
4397 {
4398 	while (table->start || table->end) {
4399 		if (addr >= table->start && addr <= table->end)
4400 			return true;
4401 
4402 		table++;
4403 	}
4404 
4405 	return false;
4406 }
4407 
4408 #define REG_EQUAL(addr, mmio) \
4409 	((addr) == i915_mmio_reg_offset(mmio))
4410 
4411 static const struct i915_range gen7_oa_b_counters[] = {
4412 	{ .start = 0x2710, .end = 0x272c },	/* OASTARTTRIG[1-8] */
4413 	{ .start = 0x2740, .end = 0x275c },	/* OAREPORTTRIG[1-8] */
4414 	{ .start = 0x2770, .end = 0x27ac },	/* OACEC[0-7][0-1] */
4415 	{}
4416 };
4417 
4418 static const struct i915_range gen12_oa_b_counters[] = {
4419 	{ .start = 0x2b2c, .end = 0x2b2c },	/* GEN12_OAG_OA_PESS */
4420 	{ .start = 0xd900, .end = 0xd91c },	/* GEN12_OAG_OASTARTTRIG[1-8] */
4421 	{ .start = 0xd920, .end = 0xd93c },	/* GEN12_OAG_OAREPORTTRIG1[1-8] */
4422 	{ .start = 0xd940, .end = 0xd97c },	/* GEN12_OAG_CEC[0-7][0-1] */
4423 	{ .start = 0xdc00, .end = 0xdc3c },	/* GEN12_OAG_SCEC[0-7][0-1] */
4424 	{ .start = 0xdc40, .end = 0xdc40 },	/* GEN12_OAG_SPCTR_CNF */
4425 	{ .start = 0xdc44, .end = 0xdc44 },	/* GEN12_OAA_DBG_REG */
4426 	{}
4427 };
4428 
4429 static const struct i915_range mtl_oam_b_counters[] = {
4430 	{ .start = 0x393000, .end = 0x39301c },	/* GEN12_OAM_STARTTRIG1[1-8] */
4431 	{ .start = 0x393020, .end = 0x39303c },	/* GEN12_OAM_REPORTTRIG1[1-8] */
4432 	{ .start = 0x393040, .end = 0x39307c },	/* GEN12_OAM_CEC[0-7][0-1] */
4433 	{ .start = 0x393200, .end = 0x39323C },	/* MPES[0-7] */
4434 	{}
4435 };
4436 
4437 static const struct i915_range xehp_oa_b_counters[] = {
4438 	{ .start = 0xdc48, .end = 0xdc48 },	/* OAA_ENABLE_REG */
4439 	{ .start = 0xdd00, .end = 0xdd48 },	/* OAG_LCE0_0 - OAA_LENABLE_REG */
4440 };
4441 
4442 static const struct i915_range gen7_oa_mux_regs[] = {
4443 	{ .start = 0x91b8, .end = 0x91cc },	/* OA_PERFCNT[1-2], OA_PERFMATRIX */
4444 	{ .start = 0x9800, .end = 0x9888 },	/* MICRO_BP0_0 - NOA_WRITE */
4445 	{ .start = 0xe180, .end = 0xe180 },	/* HALF_SLICE_CHICKEN2 */
4446 	{}
4447 };
4448 
4449 static const struct i915_range hsw_oa_mux_regs[] = {
4450 	{ .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
4451 	{ .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
4452 	{ .start = 0x25100, .end = 0x2ff90 },
4453 	{}
4454 };
4455 
4456 static const struct i915_range chv_oa_mux_regs[] = {
4457 	{ .start = 0x182300, .end = 0x1823a4 },
4458 	{}
4459 };
4460 
4461 static const struct i915_range gen8_oa_mux_regs[] = {
4462 	{ .start = 0x0d00, .end = 0x0d2c },	/* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
4463 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4464 	{}
4465 };
4466 
4467 static const struct i915_range gen11_oa_mux_regs[] = {
4468 	{ .start = 0x91c8, .end = 0x91dc },	/* OA_PERFCNT[3-4] */
4469 	{}
4470 };
4471 
4472 static const struct i915_range gen12_oa_mux_regs[] = {
4473 	{ .start = 0x0d00, .end = 0x0d04 },     /* RPM_CONFIG[0-1] */
4474 	{ .start = 0x0d0c, .end = 0x0d2c },     /* NOA_CONFIG[0-8] */
4475 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4476 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4477 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4478 	{}
4479 };
4480 
4481 /*
4482  * Ref: 14010536224:
4483  * 0x20cc is repurposed on MTL, so use a separate array for MTL.
4484  */
4485 static const struct i915_range mtl_oa_mux_regs[] = {
4486 	{ .start = 0x0d00, .end = 0x0d04 },	/* RPM_CONFIG[0-1] */
4487 	{ .start = 0x0d0c, .end = 0x0d2c },	/* NOA_CONFIG[0-8] */
4488 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4489 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4490 	{ .start = 0x38d100, .end = 0x38d114},	/* VISACTL */
4491 	{}
4492 };
4493 
4494 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4495 {
4496 	return reg_in_range_table(addr, gen7_oa_b_counters);
4497 }
4498 
4499 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4500 {
4501 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4502 		reg_in_range_table(addr, gen8_oa_mux_regs);
4503 }
4504 
4505 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4506 {
4507 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4508 		reg_in_range_table(addr, gen8_oa_mux_regs) ||
4509 		reg_in_range_table(addr, gen11_oa_mux_regs);
4510 }
4511 
4512 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4513 {
4514 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4515 		reg_in_range_table(addr, hsw_oa_mux_regs);
4516 }
4517 
4518 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4519 {
4520 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4521 		reg_in_range_table(addr, chv_oa_mux_regs);
4522 }
4523 
4524 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4525 {
4526 	return reg_in_range_table(addr, gen12_oa_b_counters);
4527 }
4528 
4529 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr)
4530 {
4531 	if (HAS_OAM(perf->i915) &&
4532 	    GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4533 		return reg_in_range_table(addr, mtl_oam_b_counters);
4534 
4535 	return false;
4536 }
4537 
4538 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4539 {
4540 	return reg_in_range_table(addr, xehp_oa_b_counters) ||
4541 		reg_in_range_table(addr, gen12_oa_b_counters) ||
4542 		mtl_is_valid_oam_b_counter_addr(perf, addr);
4543 }
4544 
4545 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4546 {
4547 	if (IS_METEORLAKE(perf->i915))
4548 		return reg_in_range_table(addr, mtl_oa_mux_regs);
4549 	else
4550 		return reg_in_range_table(addr, gen12_oa_mux_regs);
4551 }
4552 
4553 static u32 mask_reg_value(u32 reg, u32 val)
4554 {
4555 	/* HALF_SLICE_CHICKEN2 is programmed with a the
4556 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4557 	 * programmed by userspace doesn't change this.
4558 	 */
4559 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4560 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4561 
4562 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
4563 	 * indicated by its name and a bunch of selection fields used by OA
4564 	 * configs.
4565 	 */
4566 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4567 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4568 
4569 	return val;
4570 }
4571 
4572 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4573 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4574 					 u32 __user *regs,
4575 					 u32 n_regs)
4576 {
4577 	struct i915_oa_reg *oa_regs;
4578 	int err;
4579 	u32 i;
4580 
4581 	if (!n_regs)
4582 		return NULL;
4583 
4584 	/* No is_valid function means we're not allowing any register to be programmed. */
4585 	GEM_BUG_ON(!is_valid);
4586 	if (!is_valid)
4587 		return ERR_PTR(-EINVAL);
4588 
4589 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4590 	if (!oa_regs)
4591 		return ERR_PTR(-ENOMEM);
4592 
4593 	for (i = 0; i < n_regs; i++) {
4594 		u32 addr, value;
4595 
4596 		err = get_user(addr, regs);
4597 		if (err)
4598 			goto addr_err;
4599 
4600 		if (!is_valid(perf, addr)) {
4601 			drm_dbg(&perf->i915->drm,
4602 				"Invalid oa_reg address: %X\n", addr);
4603 			err = -EINVAL;
4604 			goto addr_err;
4605 		}
4606 
4607 		err = get_user(value, regs + 1);
4608 		if (err)
4609 			goto addr_err;
4610 
4611 		oa_regs[i].addr = _MMIO(addr);
4612 		oa_regs[i].value = mask_reg_value(addr, value);
4613 
4614 		regs += 2;
4615 	}
4616 
4617 	return oa_regs;
4618 
4619 addr_err:
4620 	kfree(oa_regs);
4621 	return ERR_PTR(err);
4622 }
4623 
4624 static ssize_t show_dynamic_id(struct kobject *kobj,
4625 			       struct kobj_attribute *attr,
4626 			       char *buf)
4627 {
4628 	struct i915_oa_config *oa_config =
4629 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
4630 
4631 	return sprintf(buf, "%d\n", oa_config->id);
4632 }
4633 
4634 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4635 					 struct i915_oa_config *oa_config)
4636 {
4637 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4638 	oa_config->sysfs_metric_id.attr.name = "id";
4639 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4640 	oa_config->sysfs_metric_id.show = show_dynamic_id;
4641 	oa_config->sysfs_metric_id.store = NULL;
4642 
4643 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4644 	oa_config->attrs[1] = NULL;
4645 
4646 	oa_config->sysfs_metric.name = oa_config->uuid;
4647 	oa_config->sysfs_metric.attrs = oa_config->attrs;
4648 
4649 	return sysfs_create_group(perf->metrics_kobj,
4650 				  &oa_config->sysfs_metric);
4651 }
4652 
4653 /**
4654  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4655  * @dev: drm device
4656  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4657  *        userspace (unvalidated)
4658  * @file: drm file
4659  *
4660  * Validates the submitted OA register to be saved into a new OA config that
4661  * can then be used for programming the OA unit and its NOA network.
4662  *
4663  * Returns: A new allocated config number to be used with the perf open ioctl
4664  * or a negative error code on failure.
4665  */
4666 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4667 			       struct drm_file *file)
4668 {
4669 	struct i915_perf *perf = &to_i915(dev)->perf;
4670 	struct drm_i915_perf_oa_config *args = data;
4671 	struct i915_oa_config *oa_config, *tmp;
4672 	struct i915_oa_reg *regs;
4673 	int err, id;
4674 
4675 	if (!perf->i915) {
4676 		drm_dbg(&perf->i915->drm,
4677 			"i915 perf interface not available for this system\n");
4678 		return -ENOTSUPP;
4679 	}
4680 
4681 	if (!perf->metrics_kobj) {
4682 		drm_dbg(&perf->i915->drm,
4683 			"OA metrics weren't advertised via sysfs\n");
4684 		return -EINVAL;
4685 	}
4686 
4687 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4688 		drm_dbg(&perf->i915->drm,
4689 			"Insufficient privileges to add i915 OA config\n");
4690 		return -EACCES;
4691 	}
4692 
4693 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4694 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4695 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4696 		drm_dbg(&perf->i915->drm,
4697 			"No OA registers given\n");
4698 		return -EINVAL;
4699 	}
4700 
4701 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4702 	if (!oa_config) {
4703 		drm_dbg(&perf->i915->drm,
4704 			"Failed to allocate memory for the OA config\n");
4705 		return -ENOMEM;
4706 	}
4707 
4708 	oa_config->perf = perf;
4709 	kref_init(&oa_config->ref);
4710 
4711 	if (!uuid_is_valid(args->uuid)) {
4712 		drm_dbg(&perf->i915->drm,
4713 			"Invalid uuid format for OA config\n");
4714 		err = -EINVAL;
4715 		goto reg_err;
4716 	}
4717 
4718 	/* Last character in oa_config->uuid will be 0 because oa_config is
4719 	 * kzalloc.
4720 	 */
4721 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4722 
4723 	oa_config->mux_regs_len = args->n_mux_regs;
4724 	regs = alloc_oa_regs(perf,
4725 			     perf->ops.is_valid_mux_reg,
4726 			     u64_to_user_ptr(args->mux_regs_ptr),
4727 			     args->n_mux_regs);
4728 
4729 	if (IS_ERR(regs)) {
4730 		drm_dbg(&perf->i915->drm,
4731 			"Failed to create OA config for mux_regs\n");
4732 		err = PTR_ERR(regs);
4733 		goto reg_err;
4734 	}
4735 	oa_config->mux_regs = regs;
4736 
4737 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4738 	regs = alloc_oa_regs(perf,
4739 			     perf->ops.is_valid_b_counter_reg,
4740 			     u64_to_user_ptr(args->boolean_regs_ptr),
4741 			     args->n_boolean_regs);
4742 
4743 	if (IS_ERR(regs)) {
4744 		drm_dbg(&perf->i915->drm,
4745 			"Failed to create OA config for b_counter_regs\n");
4746 		err = PTR_ERR(regs);
4747 		goto reg_err;
4748 	}
4749 	oa_config->b_counter_regs = regs;
4750 
4751 	if (GRAPHICS_VER(perf->i915) < 8) {
4752 		if (args->n_flex_regs != 0) {
4753 			err = -EINVAL;
4754 			goto reg_err;
4755 		}
4756 	} else {
4757 		oa_config->flex_regs_len = args->n_flex_regs;
4758 		regs = alloc_oa_regs(perf,
4759 				     perf->ops.is_valid_flex_reg,
4760 				     u64_to_user_ptr(args->flex_regs_ptr),
4761 				     args->n_flex_regs);
4762 
4763 		if (IS_ERR(regs)) {
4764 			drm_dbg(&perf->i915->drm,
4765 				"Failed to create OA config for flex_regs\n");
4766 			err = PTR_ERR(regs);
4767 			goto reg_err;
4768 		}
4769 		oa_config->flex_regs = regs;
4770 	}
4771 
4772 	err = mutex_lock_interruptible(&perf->metrics_lock);
4773 	if (err)
4774 		goto reg_err;
4775 
4776 	/* We shouldn't have too many configs, so this iteration shouldn't be
4777 	 * too costly.
4778 	 */
4779 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4780 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4781 			drm_dbg(&perf->i915->drm,
4782 				"OA config already exists with this uuid\n");
4783 			err = -EADDRINUSE;
4784 			goto sysfs_err;
4785 		}
4786 	}
4787 
4788 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4789 	if (err) {
4790 		drm_dbg(&perf->i915->drm,
4791 			"Failed to create sysfs entry for OA config\n");
4792 		goto sysfs_err;
4793 	}
4794 
4795 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4796 	oa_config->id = idr_alloc(&perf->metrics_idr,
4797 				  oa_config, 2,
4798 				  0, GFP_KERNEL);
4799 	if (oa_config->id < 0) {
4800 		drm_dbg(&perf->i915->drm,
4801 			"Failed to create sysfs entry for OA config\n");
4802 		err = oa_config->id;
4803 		goto sysfs_err;
4804 	}
4805 	id = oa_config->id;
4806 
4807 	drm_dbg(&perf->i915->drm,
4808 		"Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4809 	mutex_unlock(&perf->metrics_lock);
4810 
4811 	return id;
4812 
4813 sysfs_err:
4814 	mutex_unlock(&perf->metrics_lock);
4815 reg_err:
4816 	i915_oa_config_put(oa_config);
4817 	drm_dbg(&perf->i915->drm,
4818 		"Failed to add new OA config\n");
4819 	return err;
4820 }
4821 
4822 /**
4823  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4824  * @dev: drm device
4825  * @data: ioctl data (pointer to u64 integer) copied from userspace
4826  * @file: drm file
4827  *
4828  * Configs can be removed while being used, the will stop appearing in sysfs
4829  * and their content will be freed when the stream using the config is closed.
4830  *
4831  * Returns: 0 on success or a negative error code on failure.
4832  */
4833 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4834 				  struct drm_file *file)
4835 {
4836 	struct i915_perf *perf = &to_i915(dev)->perf;
4837 	u64 *arg = data;
4838 	struct i915_oa_config *oa_config;
4839 	int ret;
4840 
4841 	if (!perf->i915) {
4842 		drm_dbg(&perf->i915->drm,
4843 			"i915 perf interface not available for this system\n");
4844 		return -ENOTSUPP;
4845 	}
4846 
4847 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4848 		drm_dbg(&perf->i915->drm,
4849 			"Insufficient privileges to remove i915 OA config\n");
4850 		return -EACCES;
4851 	}
4852 
4853 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4854 	if (ret)
4855 		return ret;
4856 
4857 	oa_config = idr_find(&perf->metrics_idr, *arg);
4858 	if (!oa_config) {
4859 		drm_dbg(&perf->i915->drm,
4860 			"Failed to remove unknown OA config\n");
4861 		ret = -ENOENT;
4862 		goto err_unlock;
4863 	}
4864 
4865 	GEM_BUG_ON(*arg != oa_config->id);
4866 
4867 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4868 
4869 	idr_remove(&perf->metrics_idr, *arg);
4870 
4871 	mutex_unlock(&perf->metrics_lock);
4872 
4873 	drm_dbg(&perf->i915->drm,
4874 		"Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4875 
4876 	i915_oa_config_put(oa_config);
4877 
4878 	return 0;
4879 
4880 err_unlock:
4881 	mutex_unlock(&perf->metrics_lock);
4882 	return ret;
4883 }
4884 
4885 static struct ctl_table oa_table[] = {
4886 	{
4887 	 .procname = "perf_stream_paranoid",
4888 	 .data = &i915_perf_stream_paranoid,
4889 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4890 	 .mode = 0644,
4891 	 .proc_handler = proc_dointvec_minmax,
4892 	 .extra1 = SYSCTL_ZERO,
4893 	 .extra2 = SYSCTL_ONE,
4894 	 },
4895 	{
4896 	 .procname = "oa_max_sample_rate",
4897 	 .data = &i915_oa_max_sample_rate,
4898 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4899 	 .mode = 0644,
4900 	 .proc_handler = proc_dointvec_minmax,
4901 	 .extra1 = SYSCTL_ZERO,
4902 	 .extra2 = &oa_sample_rate_hard_limit,
4903 	 },
4904 	{}
4905 };
4906 
4907 static u32 num_perf_groups_per_gt(struct intel_gt *gt)
4908 {
4909 	return 1;
4910 }
4911 
4912 static u32 __oam_engine_group(struct intel_engine_cs *engine)
4913 {
4914 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) {
4915 		/*
4916 		 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices
4917 		 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA.
4918 		 */
4919 		drm_WARN_ON(&engine->i915->drm,
4920 			    engine->gt->type != GT_MEDIA);
4921 
4922 		return PERF_GROUP_OAM_SAMEDIA_0;
4923 	}
4924 
4925 	return PERF_GROUP_INVALID;
4926 }
4927 
4928 static u32 __oa_engine_group(struct intel_engine_cs *engine)
4929 {
4930 	switch (engine->class) {
4931 	case RENDER_CLASS:
4932 		return PERF_GROUP_OAG;
4933 
4934 	case VIDEO_DECODE_CLASS:
4935 	case VIDEO_ENHANCEMENT_CLASS:
4936 		return __oam_engine_group(engine);
4937 
4938 	default:
4939 		return PERF_GROUP_INVALID;
4940 	}
4941 }
4942 
4943 static struct i915_perf_regs __oam_regs(u32 base)
4944 {
4945 	return (struct i915_perf_regs) {
4946 		base,
4947 		GEN12_OAM_HEAD_POINTER(base),
4948 		GEN12_OAM_TAIL_POINTER(base),
4949 		GEN12_OAM_BUFFER(base),
4950 		GEN12_OAM_CONTEXT_CONTROL(base),
4951 		GEN12_OAM_CONTROL(base),
4952 		GEN12_OAM_DEBUG(base),
4953 		GEN12_OAM_STATUS(base),
4954 		GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT,
4955 	};
4956 }
4957 
4958 static struct i915_perf_regs __oag_regs(void)
4959 {
4960 	return (struct i915_perf_regs) {
4961 		0,
4962 		GEN12_OAG_OAHEADPTR,
4963 		GEN12_OAG_OATAILPTR,
4964 		GEN12_OAG_OABUFFER,
4965 		GEN12_OAG_OAGLBCTXCTRL,
4966 		GEN12_OAG_OACONTROL,
4967 		GEN12_OAG_OA_DEBUG,
4968 		GEN12_OAG_OASTATUS,
4969 		GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT,
4970 	};
4971 }
4972 
4973 static void oa_init_groups(struct intel_gt *gt)
4974 {
4975 	int i, num_groups = gt->perf.num_perf_groups;
4976 
4977 	for (i = 0; i < num_groups; i++) {
4978 		struct i915_perf_group *g = &gt->perf.group[i];
4979 
4980 		/* Fused off engines can result in a group with num_engines == 0 */
4981 		if (g->num_engines == 0)
4982 			continue;
4983 
4984 		if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) {
4985 			g->regs = __oag_regs();
4986 			g->type = TYPE_OAG;
4987 		} else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
4988 			g->regs = __oam_regs(mtl_oa_base[i]);
4989 			g->type = TYPE_OAM;
4990 		}
4991 	}
4992 }
4993 
4994 static int oa_init_gt(struct intel_gt *gt)
4995 {
4996 	u32 num_groups = num_perf_groups_per_gt(gt);
4997 	struct intel_engine_cs *engine;
4998 	struct i915_perf_group *g;
4999 	intel_engine_mask_t tmp;
5000 
5001 	g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL);
5002 	if (!g)
5003 		return -ENOMEM;
5004 
5005 	for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) {
5006 		u32 index = __oa_engine_group(engine);
5007 
5008 		engine->oa_group = NULL;
5009 		if (index < num_groups) {
5010 			g[index].num_engines++;
5011 			engine->oa_group = &g[index];
5012 		}
5013 	}
5014 
5015 	gt->perf.num_perf_groups = num_groups;
5016 	gt->perf.group = g;
5017 
5018 	oa_init_groups(gt);
5019 
5020 	return 0;
5021 }
5022 
5023 static int oa_init_engine_groups(struct i915_perf *perf)
5024 {
5025 	struct intel_gt *gt;
5026 	int i, ret;
5027 
5028 	for_each_gt(gt, perf->i915, i) {
5029 		ret = oa_init_gt(gt);
5030 		if (ret)
5031 			return ret;
5032 	}
5033 
5034 	return 0;
5035 }
5036 
5037 static void oa_init_supported_formats(struct i915_perf *perf)
5038 {
5039 	struct drm_i915_private *i915 = perf->i915;
5040 	enum intel_platform platform = INTEL_INFO(i915)->platform;
5041 
5042 	switch (platform) {
5043 	case INTEL_HASWELL:
5044 		oa_format_add(perf, I915_OA_FORMAT_A13);
5045 		oa_format_add(perf, I915_OA_FORMAT_A13);
5046 		oa_format_add(perf, I915_OA_FORMAT_A29);
5047 		oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
5048 		oa_format_add(perf, I915_OA_FORMAT_B4_C8);
5049 		oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
5050 		oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
5051 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
5052 		break;
5053 
5054 	case INTEL_BROADWELL:
5055 	case INTEL_CHERRYVIEW:
5056 	case INTEL_SKYLAKE:
5057 	case INTEL_BROXTON:
5058 	case INTEL_KABYLAKE:
5059 	case INTEL_GEMINILAKE:
5060 	case INTEL_COFFEELAKE:
5061 	case INTEL_COMETLAKE:
5062 	case INTEL_ICELAKE:
5063 	case INTEL_ELKHARTLAKE:
5064 	case INTEL_JASPERLAKE:
5065 	case INTEL_TIGERLAKE:
5066 	case INTEL_ROCKETLAKE:
5067 	case INTEL_DG1:
5068 	case INTEL_ALDERLAKE_S:
5069 	case INTEL_ALDERLAKE_P:
5070 		oa_format_add(perf, I915_OA_FORMAT_A12);
5071 		oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
5072 		oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
5073 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
5074 		break;
5075 
5076 	case INTEL_DG2:
5077 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5078 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5079 		break;
5080 
5081 	case INTEL_METEORLAKE:
5082 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5083 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5084 		oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8);
5085 		oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8);
5086 		break;
5087 
5088 	default:
5089 		MISSING_CASE(platform);
5090 	}
5091 }
5092 
5093 static void i915_perf_init_info(struct drm_i915_private *i915)
5094 {
5095 	struct i915_perf *perf = &i915->perf;
5096 
5097 	switch (GRAPHICS_VER(i915)) {
5098 	case 8:
5099 		perf->ctx_oactxctrl_offset = 0x120;
5100 		perf->ctx_flexeu0_offset = 0x2ce;
5101 		perf->gen8_valid_ctx_bit = BIT(25);
5102 		break;
5103 	case 9:
5104 		perf->ctx_oactxctrl_offset = 0x128;
5105 		perf->ctx_flexeu0_offset = 0x3de;
5106 		perf->gen8_valid_ctx_bit = BIT(16);
5107 		break;
5108 	case 11:
5109 		perf->ctx_oactxctrl_offset = 0x124;
5110 		perf->ctx_flexeu0_offset = 0x78e;
5111 		perf->gen8_valid_ctx_bit = BIT(16);
5112 		break;
5113 	case 12:
5114 		/*
5115 		 * Calculate offset at runtime in oa_pin_context for gen12 and
5116 		 * cache the value in perf->ctx_oactxctrl_offset.
5117 		 */
5118 		break;
5119 	default:
5120 		MISSING_CASE(GRAPHICS_VER(i915));
5121 	}
5122 }
5123 
5124 /**
5125  * i915_perf_init - initialize i915-perf state on module bind
5126  * @i915: i915 device instance
5127  *
5128  * Initializes i915-perf state without exposing anything to userspace.
5129  *
5130  * Note: i915-perf initialization is split into an 'init' and 'register'
5131  * phase with the i915_perf_register() exposing state to userspace.
5132  */
5133 int i915_perf_init(struct drm_i915_private *i915)
5134 {
5135 	struct i915_perf *perf = &i915->perf;
5136 
5137 	perf->oa_formats = oa_formats;
5138 	if (IS_HASWELL(i915)) {
5139 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
5140 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
5141 		perf->ops.is_valid_flex_reg = NULL;
5142 		perf->ops.enable_metric_set = hsw_enable_metric_set;
5143 		perf->ops.disable_metric_set = hsw_disable_metric_set;
5144 		perf->ops.oa_enable = gen7_oa_enable;
5145 		perf->ops.oa_disable = gen7_oa_disable;
5146 		perf->ops.read = gen7_oa_read;
5147 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
5148 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
5149 		/* Note: that although we could theoretically also support the
5150 		 * legacy ringbuffer mode on BDW (and earlier iterations of
5151 		 * this driver, before upstreaming did this) it didn't seem
5152 		 * worth the complexity to maintain now that BDW+ enable
5153 		 * execlist mode by default.
5154 		 */
5155 		perf->ops.read = gen8_oa_read;
5156 		i915_perf_init_info(i915);
5157 
5158 		if (IS_GRAPHICS_VER(i915, 8, 9)) {
5159 			perf->ops.is_valid_b_counter_reg =
5160 				gen7_is_valid_b_counter_addr;
5161 			perf->ops.is_valid_mux_reg =
5162 				gen8_is_valid_mux_addr;
5163 			perf->ops.is_valid_flex_reg =
5164 				gen8_is_valid_flex_addr;
5165 
5166 			if (IS_CHERRYVIEW(i915)) {
5167 				perf->ops.is_valid_mux_reg =
5168 					chv_is_valid_mux_addr;
5169 			}
5170 
5171 			perf->ops.oa_enable = gen8_oa_enable;
5172 			perf->ops.oa_disable = gen8_oa_disable;
5173 			perf->ops.enable_metric_set = gen8_enable_metric_set;
5174 			perf->ops.disable_metric_set = gen8_disable_metric_set;
5175 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5176 		} else if (GRAPHICS_VER(i915) == 11) {
5177 			perf->ops.is_valid_b_counter_reg =
5178 				gen7_is_valid_b_counter_addr;
5179 			perf->ops.is_valid_mux_reg =
5180 				gen11_is_valid_mux_addr;
5181 			perf->ops.is_valid_flex_reg =
5182 				gen8_is_valid_flex_addr;
5183 
5184 			perf->ops.oa_enable = gen8_oa_enable;
5185 			perf->ops.oa_disable = gen8_oa_disable;
5186 			perf->ops.enable_metric_set = gen8_enable_metric_set;
5187 			perf->ops.disable_metric_set = gen11_disable_metric_set;
5188 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5189 		} else if (GRAPHICS_VER(i915) == 12) {
5190 			perf->ops.is_valid_b_counter_reg =
5191 				HAS_OA_SLICE_CONTRIB_LIMITS(i915) ?
5192 				xehp_is_valid_b_counter_addr :
5193 				gen12_is_valid_b_counter_addr;
5194 			perf->ops.is_valid_mux_reg =
5195 				gen12_is_valid_mux_addr;
5196 			perf->ops.is_valid_flex_reg =
5197 				gen8_is_valid_flex_addr;
5198 
5199 			perf->ops.oa_enable = gen12_oa_enable;
5200 			perf->ops.oa_disable = gen12_oa_disable;
5201 			perf->ops.enable_metric_set = gen12_enable_metric_set;
5202 			perf->ops.disable_metric_set = gen12_disable_metric_set;
5203 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
5204 		}
5205 	}
5206 
5207 	if (perf->ops.enable_metric_set) {
5208 		struct intel_gt *gt;
5209 		int i, ret;
5210 
5211 		for_each_gt(gt, i915, i)
5212 			mutex_init(&gt->perf.lock);
5213 
5214 		/* Choose a representative limit */
5215 		oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
5216 
5217 		mutex_init(&perf->metrics_lock);
5218 		idr_init_base(&perf->metrics_idr, 1);
5219 
5220 		/* We set up some ratelimit state to potentially throttle any
5221 		 * _NOTES about spurious, invalid OA reports which we don't
5222 		 * forward to userspace.
5223 		 *
5224 		 * We print a _NOTE about any throttling when closing the
5225 		 * stream instead of waiting until driver _fini which no one
5226 		 * would ever see.
5227 		 *
5228 		 * Using the same limiting factors as printk_ratelimit()
5229 		 */
5230 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
5231 		/* Since we use a DRM_NOTE for spurious reports it would be
5232 		 * inconsistent to let __ratelimit() automatically print a
5233 		 * warning for throttling.
5234 		 */
5235 		ratelimit_set_flags(&perf->spurious_report_rs,
5236 				    RATELIMIT_MSG_ON_RELEASE);
5237 
5238 		ratelimit_state_init(&perf->tail_pointer_race,
5239 				     5 * HZ, 10);
5240 		ratelimit_set_flags(&perf->tail_pointer_race,
5241 				    RATELIMIT_MSG_ON_RELEASE);
5242 
5243 		atomic64_set(&perf->noa_programming_delay,
5244 			     500 * 1000 /* 500us */);
5245 
5246 		perf->i915 = i915;
5247 
5248 		ret = oa_init_engine_groups(perf);
5249 		if (ret) {
5250 			drm_err(&i915->drm,
5251 				"OA initialization failed %d\n", ret);
5252 			return ret;
5253 		}
5254 
5255 		oa_init_supported_formats(perf);
5256 	}
5257 
5258 	return 0;
5259 }
5260 
5261 static int destroy_config(int id, void *p, void *data)
5262 {
5263 	i915_oa_config_put(p);
5264 	return 0;
5265 }
5266 
5267 int i915_perf_sysctl_register(void)
5268 {
5269 	sysctl_header = register_sysctl("dev/i915", oa_table);
5270 	return 0;
5271 }
5272 
5273 void i915_perf_sysctl_unregister(void)
5274 {
5275 	unregister_sysctl_table(sysctl_header);
5276 }
5277 
5278 /**
5279  * i915_perf_fini - Counter part to i915_perf_init()
5280  * @i915: i915 device instance
5281  */
5282 void i915_perf_fini(struct drm_i915_private *i915)
5283 {
5284 	struct i915_perf *perf = &i915->perf;
5285 	struct intel_gt *gt;
5286 	int i;
5287 
5288 	if (!perf->i915)
5289 		return;
5290 
5291 	for_each_gt(gt, perf->i915, i)
5292 		kfree(gt->perf.group);
5293 
5294 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
5295 	idr_destroy(&perf->metrics_idr);
5296 
5297 	memset(&perf->ops, 0, sizeof(perf->ops));
5298 	perf->i915 = NULL;
5299 }
5300 
5301 /**
5302  * i915_perf_ioctl_version - Version of the i915-perf subsystem
5303  *
5304  * This version number is used by userspace to detect available features.
5305  */
5306 int i915_perf_ioctl_version(struct drm_i915_private *i915)
5307 {
5308 	/*
5309 	 * 1: Initial version
5310 	 *   I915_PERF_IOCTL_ENABLE
5311 	 *   I915_PERF_IOCTL_DISABLE
5312 	 *
5313 	 * 2: Added runtime modification of OA config.
5314 	 *   I915_PERF_IOCTL_CONFIG
5315 	 *
5316 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
5317 	 *    preemption on a particular context so that performance data is
5318 	 *    accessible from a delta of MI_RPC reports without looking at the
5319 	 *    OA buffer.
5320 	 *
5321 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
5322 	 *    be run for the duration of the performance recording based on
5323 	 *    their SSEU configuration.
5324 	 *
5325 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
5326 	 *    interval for the hrtimer used to check for OA data.
5327 	 *
5328 	 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and
5329 	 *    DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE
5330 	 *
5331 	 * 7: Add support for video decode and enhancement classes.
5332 	 */
5333 
5334 	/*
5335 	 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
5336 	 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6
5337 	 * to indicate that OA media is not supported.
5338 	 */
5339 	if (IS_MTL_MEDIA_STEP(i915, STEP_A0, STEP_C0)) {
5340 		struct intel_gt *gt;
5341 		int i;
5342 
5343 		for_each_gt(gt, i915, i) {
5344 			if (gt->type == GT_MEDIA &&
5345 			    intel_check_bios_c6_setup(&gt->rc6))
5346 				return 6;
5347 		}
5348 	}
5349 
5350 	return 7;
5351 }
5352 
5353 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5354 #include "selftests/i915_perf.c"
5355 #endif
5356