1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/nospec.h> 196 #include <linux/sizes.h> 197 #include <linux/uuid.h> 198 199 #include "gem/i915_gem_context.h" 200 #include "gem/i915_gem_internal.h" 201 #include "gt/intel_engine_pm.h" 202 #include "gt/intel_engine_regs.h" 203 #include "gt/intel_engine_user.h" 204 #include "gt/intel_execlists_submission.h" 205 #include "gt/intel_gpu_commands.h" 206 #include "gt/intel_gt.h" 207 #include "gt/intel_gt_clock_utils.h" 208 #include "gt/intel_gt_mcr.h" 209 #include "gt/intel_gt_regs.h" 210 #include "gt/intel_lrc.h" 211 #include "gt/intel_lrc_reg.h" 212 #include "gt/intel_rc6.h" 213 #include "gt/intel_ring.h" 214 #include "gt/uc/intel_guc_slpc.h" 215 216 #include "i915_drv.h" 217 #include "i915_file_private.h" 218 #include "i915_perf.h" 219 #include "i915_perf_oa_regs.h" 220 #include "i915_reg.h" 221 222 /* HW requires this to be a power of two, between 128k and 16M, though driver 223 * is currently generally designed assuming the largest 16M size is used such 224 * that the overflow cases are unlikely in normal operation. 225 */ 226 #define OA_BUFFER_SIZE SZ_16M 227 228 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 229 230 /** 231 * DOC: OA Tail Pointer Race 232 * 233 * There's a HW race condition between OA unit tail pointer register updates and 234 * writes to memory whereby the tail pointer can sometimes get ahead of what's 235 * been written out to the OA buffer so far (in terms of what's visible to the 236 * CPU). 237 * 238 * Although this can be observed explicitly while copying reports to userspace 239 * by checking for a zeroed report-id field in tail reports, we want to account 240 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 241 * redundant read() attempts. 242 * 243 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 244 * in the OA buffer, starting from the tail reported by the HW until we find a 245 * report with its first 2 dwords not 0 meaning its previous report is 246 * completely in memory and ready to be read. Those dwords are also set to 0 247 * once read and the whole buffer is cleared upon OA buffer initialization. The 248 * first dword is the reason for this report while the second is the timestamp, 249 * making the chances of having those 2 fields at 0 fairly unlikely. A more 250 * detailed explanation is available in oa_buffer_check_unlocked(). 251 * 252 * Most of the implementation details for this workaround are in 253 * oa_buffer_check_unlocked() and _append_oa_reports() 254 * 255 * Note for posterity: previously the driver used to define an effective tail 256 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 257 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 258 * This was flawed considering that the OA unit may also automatically generate 259 * non-periodic reports (such as on context switch) or the OA unit may be 260 * enabled without any periodic sampling. 261 */ 262 #define OA_TAIL_MARGIN_NSEC 100000ULL 263 #define INVALID_TAIL_PTR 0xffffffff 264 265 /* The default frequency for checking whether the OA unit has written new 266 * reports to the circular OA buffer... 267 */ 268 #define DEFAULT_POLL_FREQUENCY_HZ 200 269 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 270 271 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 272 static u32 i915_perf_stream_paranoid = true; 273 274 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 275 * of the 64bit timestamp bits to trigger reports from) but there's currently 276 * no known use case for sampling as infrequently as once per 47 thousand years. 277 * 278 * Since the timestamps included in OA reports are only 32bits it seems 279 * reasonable to limit the OA exponent where it's still possible to account for 280 * overflow in OA report timestamps. 281 */ 282 #define OA_EXPONENT_MAX 31 283 284 #define INVALID_CTX_ID 0xffffffff 285 286 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 287 #define OAREPORT_REASON_MASK 0x3f 288 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 289 #define OAREPORT_REASON_SHIFT 19 290 #define OAREPORT_REASON_TIMER (1<<0) 291 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 292 #define OAREPORT_REASON_CLK_RATIO (1<<5) 293 294 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) 295 296 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 297 * 298 * The highest sampling frequency we can theoretically program the OA unit 299 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 300 * 301 * Initialized just before we register the sysctl parameter. 302 */ 303 static int oa_sample_rate_hard_limit; 304 305 /* Theoretically we can program the OA unit to sample every 160ns but don't 306 * allow that by default unless root... 307 * 308 * The default threshold of 100000Hz is based on perf's similar 309 * kernel.perf_event_max_sample_rate sysctl parameter. 310 */ 311 static u32 i915_oa_max_sample_rate = 100000; 312 313 /* XXX: beware if future OA HW adds new report formats that the current 314 * code assumes all reports have a power-of-two size and ~(size - 1) can 315 * be used as a mask to align the OA tail pointer. 316 */ 317 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = { 318 [I915_OA_FORMAT_A13] = { 0, 64 }, 319 [I915_OA_FORMAT_A29] = { 1, 128 }, 320 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 321 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 322 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 323 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 324 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 325 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 326 [I915_OA_FORMAT_A12] = { 0, 64 }, 327 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 328 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 329 [I915_OAR_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 330 [I915_OA_FORMAT_A24u40_A14u32_B8_C8] = { 5, 256 }, 331 [I915_OAM_FORMAT_MPEC8u64_B8_C8] = { 1, 192, TYPE_OAM, HDR_64_BIT }, 332 [I915_OAM_FORMAT_MPEC8u32_B8_C8] = { 2, 128, TYPE_OAM, HDR_64_BIT }, 333 }; 334 335 static const u32 mtl_oa_base[] = { 336 [PERF_GROUP_OAM_SAMEDIA_0] = 0x393000, 337 }; 338 339 #define SAMPLE_OA_REPORT (1<<0) 340 341 /** 342 * struct perf_open_properties - for validated properties given to open a stream 343 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 344 * @single_context: Whether a single or all gpu contexts should be monitored 345 * @hold_preemption: Whether the preemption is disabled for the filtered 346 * context 347 * @ctx_handle: A gem ctx handle for use with @single_context 348 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 349 * @oa_format: An OA unit HW report format 350 * @oa_periodic: Whether to enable periodic OA unit sampling 351 * @oa_period_exponent: The OA unit sampling period is derived from this 352 * @engine: The engine (typically rcs0) being monitored by the OA unit 353 * @has_sseu: Whether @sseu was specified by userspace 354 * @sseu: internal SSEU configuration computed either from the userspace 355 * specified configuration in the opening parameters or a default value 356 * (see get_default_sseu_config()) 357 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 358 * data availability 359 * 360 * As read_properties_unlocked() enumerates and validates the properties given 361 * to open a stream of metrics the configuration is built up in the structure 362 * which starts out zero initialized. 363 */ 364 struct perf_open_properties { 365 u32 sample_flags; 366 367 u64 single_context:1; 368 u64 hold_preemption:1; 369 u64 ctx_handle; 370 371 /* OA sampling state */ 372 int metrics_set; 373 int oa_format; 374 bool oa_periodic; 375 int oa_period_exponent; 376 377 struct intel_engine_cs *engine; 378 379 bool has_sseu; 380 struct intel_sseu sseu; 381 382 u64 poll_oa_period; 383 }; 384 385 struct i915_oa_config_bo { 386 struct llist_node node; 387 388 struct i915_oa_config *oa_config; 389 struct i915_vma *vma; 390 }; 391 392 static struct ctl_table_header *sysctl_header; 393 394 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 395 396 void i915_oa_config_release(struct kref *ref) 397 { 398 struct i915_oa_config *oa_config = 399 container_of(ref, typeof(*oa_config), ref); 400 401 kfree(oa_config->flex_regs); 402 kfree(oa_config->b_counter_regs); 403 kfree(oa_config->mux_regs); 404 405 kfree_rcu(oa_config, rcu); 406 } 407 408 struct i915_oa_config * 409 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 410 { 411 struct i915_oa_config *oa_config; 412 413 rcu_read_lock(); 414 oa_config = idr_find(&perf->metrics_idr, metrics_set); 415 if (oa_config) 416 oa_config = i915_oa_config_get(oa_config); 417 rcu_read_unlock(); 418 419 return oa_config; 420 } 421 422 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 423 { 424 i915_oa_config_put(oa_bo->oa_config); 425 i915_vma_put(oa_bo->vma); 426 kfree(oa_bo); 427 } 428 429 static inline const 430 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream) 431 { 432 return &stream->engine->oa_group->regs; 433 } 434 435 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 436 { 437 struct intel_uncore *uncore = stream->uncore; 438 439 return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) & 440 GEN12_OAG_OATAILPTR_MASK; 441 } 442 443 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 444 { 445 struct intel_uncore *uncore = stream->uncore; 446 447 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 448 } 449 450 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 451 { 452 struct intel_uncore *uncore = stream->uncore; 453 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 454 455 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 456 } 457 458 #define oa_report_header_64bit(__s) \ 459 ((__s)->oa_buffer.format->header == HDR_64_BIT) 460 461 static u64 oa_report_id(struct i915_perf_stream *stream, void *report) 462 { 463 return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report; 464 } 465 466 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report) 467 { 468 return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) & 469 (GRAPHICS_VER(stream->perf->i915) == 12 ? 470 OAREPORT_REASON_MASK_EXTENDED : 471 OAREPORT_REASON_MASK); 472 } 473 474 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report) 475 { 476 if (oa_report_header_64bit(stream)) 477 *(u64 *)report = 0; 478 else 479 *report = 0; 480 } 481 482 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report) 483 { 484 return !(oa_report_id(stream, report) & 485 stream->perf->gen8_valid_ctx_bit) && 486 GRAPHICS_VER(stream->perf->i915) <= 11; 487 } 488 489 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report) 490 { 491 return oa_report_header_64bit(stream) ? 492 *((u64 *)report + 1) : 493 *((u32 *)report + 1); 494 } 495 496 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report) 497 { 498 if (oa_report_header_64bit(stream)) 499 *(u64 *)&report[2] = 0; 500 else 501 report[1] = 0; 502 } 503 504 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report) 505 { 506 u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2]; 507 508 return ctx_id & stream->specific_ctx_id_mask; 509 } 510 511 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report) 512 { 513 if (oa_report_header_64bit(stream)) 514 report[4] = INVALID_CTX_ID; 515 else 516 report[2] = INVALID_CTX_ID; 517 } 518 519 /** 520 * oa_buffer_check_unlocked - check for data and update tail ptr state 521 * @stream: i915 stream instance 522 * 523 * This is either called via fops (for blocking reads in user ctx) or the poll 524 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 525 * if there is data available for userspace to read. 526 * 527 * This function is central to providing a workaround for the OA unit tail 528 * pointer having a race with respect to what data is visible to the CPU. 529 * It is responsible for reading tail pointers from the hardware and giving 530 * the pointers time to 'age' before they are made available for reading. 531 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 532 * 533 * Besides returning true when there is data available to read() this function 534 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer 535 * object. 536 * 537 * Note: It's safe to read OA config state here unlocked, assuming that this is 538 * only called while the stream is enabled, while the global OA configuration 539 * can't be modified. 540 * 541 * Returns: %true if the OA buffer contains data, else %false 542 */ 543 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 544 { 545 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 546 int report_size = stream->oa_buffer.format->size; 547 unsigned long flags; 548 bool pollin; 549 u32 hw_tail; 550 u64 now; 551 u32 partial_report_size; 552 553 /* We have to consider the (unlikely) possibility that read() errors 554 * could result in an OA buffer reset which might reset the head and 555 * tail state. 556 */ 557 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 558 559 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 560 561 /* The tail pointer increases in 64 byte increments, not in report_size 562 * steps. Also the report size may not be a power of 2. Compute 563 * potentially partially landed report in the OA buffer 564 */ 565 partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail); 566 partial_report_size %= report_size; 567 568 /* Subtract partial amount off the tail */ 569 hw_tail = gtt_offset + OA_TAKEN(hw_tail, partial_report_size); 570 571 now = ktime_get_mono_fast_ns(); 572 573 if (hw_tail == stream->oa_buffer.aging_tail && 574 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) { 575 /* If the HW tail hasn't move since the last check and the HW 576 * tail has been aging for long enough, declare it the new 577 * tail. 578 */ 579 stream->oa_buffer.tail = stream->oa_buffer.aging_tail; 580 } else { 581 u32 head, tail, aged_tail; 582 583 /* NB: The head we observe here might effectively be a little 584 * out of date. If a read() is in progress, the head could be 585 * anywhere between this head and stream->oa_buffer.tail. 586 */ 587 head = stream->oa_buffer.head - gtt_offset; 588 aged_tail = stream->oa_buffer.tail - gtt_offset; 589 590 hw_tail -= gtt_offset; 591 tail = hw_tail; 592 593 /* Walk the stream backward until we find a report with report 594 * id and timestmap not at 0. Since the circular buffer pointers 595 * progress by increments of 64 bytes and that reports can be up 596 * to 256 bytes long, we can't tell whether a report has fully 597 * landed in memory before the report id and timestamp of the 598 * following report have effectively landed. 599 * 600 * This is assuming that the writes of the OA unit land in 601 * memory in the order they were written to. 602 * If not : (╯°□°)╯︵ ┻━┻ 603 */ 604 while (OA_TAKEN(tail, aged_tail) >= report_size) { 605 void *report = stream->oa_buffer.vaddr + tail; 606 607 if (oa_report_id(stream, report) || 608 oa_timestamp(stream, report)) 609 break; 610 611 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 612 } 613 614 if (OA_TAKEN(hw_tail, tail) > report_size && 615 __ratelimit(&stream->perf->tail_pointer_race)) 616 drm_notice(&stream->uncore->i915->drm, 617 "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n", 618 head, tail, hw_tail); 619 620 stream->oa_buffer.tail = gtt_offset + tail; 621 stream->oa_buffer.aging_tail = gtt_offset + hw_tail; 622 stream->oa_buffer.aging_timestamp = now; 623 } 624 625 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset, 626 stream->oa_buffer.head - gtt_offset) >= report_size; 627 628 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 629 630 return pollin; 631 } 632 633 /** 634 * append_oa_status - Appends a status record to a userspace read() buffer. 635 * @stream: An i915-perf stream opened for OA metrics 636 * @buf: destination buffer given by userspace 637 * @count: the number of bytes userspace wants to read 638 * @offset: (inout): the current position for writing into @buf 639 * @type: The kind of status to report to userspace 640 * 641 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 642 * into the userspace read() buffer. 643 * 644 * The @buf @offset will only be updated on success. 645 * 646 * Returns: 0 on success, negative error code on failure. 647 */ 648 static int append_oa_status(struct i915_perf_stream *stream, 649 char __user *buf, 650 size_t count, 651 size_t *offset, 652 enum drm_i915_perf_record_type type) 653 { 654 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 655 656 if ((count - *offset) < header.size) 657 return -ENOSPC; 658 659 if (copy_to_user(buf + *offset, &header, sizeof(header))) 660 return -EFAULT; 661 662 (*offset) += header.size; 663 664 return 0; 665 } 666 667 /** 668 * append_oa_sample - Copies single OA report into userspace read() buffer. 669 * @stream: An i915-perf stream opened for OA metrics 670 * @buf: destination buffer given by userspace 671 * @count: the number of bytes userspace wants to read 672 * @offset: (inout): the current position for writing into @buf 673 * @report: A single OA report to (optionally) include as part of the sample 674 * 675 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 676 * properties when opening a stream, tracked as `stream->sample_flags`. This 677 * function copies the requested components of a single sample to the given 678 * read() @buf. 679 * 680 * The @buf @offset will only be updated on success. 681 * 682 * Returns: 0 on success, negative error code on failure. 683 */ 684 static int append_oa_sample(struct i915_perf_stream *stream, 685 char __user *buf, 686 size_t count, 687 size_t *offset, 688 const u8 *report) 689 { 690 int report_size = stream->oa_buffer.format->size; 691 struct drm_i915_perf_record_header header; 692 int report_size_partial; 693 u8 *oa_buf_end; 694 695 header.type = DRM_I915_PERF_RECORD_SAMPLE; 696 header.pad = 0; 697 header.size = stream->sample_size; 698 699 if ((count - *offset) < header.size) 700 return -ENOSPC; 701 702 buf += *offset; 703 if (copy_to_user(buf, &header, sizeof(header))) 704 return -EFAULT; 705 buf += sizeof(header); 706 707 oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE; 708 report_size_partial = oa_buf_end - report; 709 710 if (report_size_partial < report_size) { 711 if (copy_to_user(buf, report, report_size_partial)) 712 return -EFAULT; 713 buf += report_size_partial; 714 715 if (copy_to_user(buf, stream->oa_buffer.vaddr, 716 report_size - report_size_partial)) 717 return -EFAULT; 718 } else if (copy_to_user(buf, report, report_size)) { 719 return -EFAULT; 720 } 721 722 (*offset) += header.size; 723 724 return 0; 725 } 726 727 /** 728 * gen8_append_oa_reports - Copies all buffered OA reports into 729 * userspace read() buffer. 730 * @stream: An i915-perf stream opened for OA metrics 731 * @buf: destination buffer given by userspace 732 * @count: the number of bytes userspace wants to read 733 * @offset: (inout): the current position for writing into @buf 734 * 735 * Notably any error condition resulting in a short read (-%ENOSPC or 736 * -%EFAULT) will be returned even though one or more records may 737 * have been successfully copied. In this case it's up to the caller 738 * to decide if the error should be squashed before returning to 739 * userspace. 740 * 741 * Note: reports are consumed from the head, and appended to the 742 * tail, so the tail chases the head?... If you think that's mad 743 * and back-to-front you're not alone, but this follows the 744 * Gen PRM naming convention. 745 * 746 * Returns: 0 on success, negative error code on failure. 747 */ 748 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 749 char __user *buf, 750 size_t count, 751 size_t *offset) 752 { 753 struct intel_uncore *uncore = stream->uncore; 754 int report_size = stream->oa_buffer.format->size; 755 u8 *oa_buf_base = stream->oa_buffer.vaddr; 756 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 757 u32 mask = (OA_BUFFER_SIZE - 1); 758 size_t start_offset = *offset; 759 unsigned long flags; 760 u32 head, tail; 761 int ret = 0; 762 763 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 764 return -EIO; 765 766 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 767 768 head = stream->oa_buffer.head; 769 tail = stream->oa_buffer.tail; 770 771 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 772 773 /* 774 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 775 * while indexing relative to oa_buf_base. 776 */ 777 head -= gtt_offset; 778 tail -= gtt_offset; 779 780 /* 781 * An out of bounds or misaligned head or tail pointer implies a driver 782 * bug since we validate + align the tail pointers we read from the 783 * hardware and we are in full control of the head pointer which should 784 * only be incremented by multiples of the report size. 785 */ 786 if (drm_WARN_ONCE(&uncore->i915->drm, 787 head > OA_BUFFER_SIZE || 788 tail > OA_BUFFER_SIZE, 789 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 790 head, tail)) 791 return -EIO; 792 793 794 for (/* none */; 795 OA_TAKEN(tail, head); 796 head = (head + report_size) & mask) { 797 u8 *report = oa_buf_base + head; 798 u32 *report32 = (void *)report; 799 u32 ctx_id; 800 u64 reason; 801 802 /* 803 * The reason field includes flags identifying what 804 * triggered this specific report (mostly timer 805 * triggered or e.g. due to a context switch). 806 * 807 * In MMIO triggered reports, some platforms do not set the 808 * reason bit in this field and it is valid to have a reason 809 * field of zero. 810 */ 811 reason = oa_report_reason(stream, report); 812 ctx_id = oa_context_id(stream, report32); 813 814 /* 815 * Squash whatever is in the CTX_ID field if it's marked as 816 * invalid to be sure we avoid false-positive, single-context 817 * filtering below... 818 * 819 * Note: that we don't clear the valid_ctx_bit so userspace can 820 * understand that the ID has been squashed by the kernel. 821 */ 822 if (oa_report_ctx_invalid(stream, report)) { 823 ctx_id = INVALID_CTX_ID; 824 oa_context_id_squash(stream, report32); 825 } 826 827 /* 828 * NB: For Gen 8 the OA unit no longer supports clock gating 829 * off for a specific context and the kernel can't securely 830 * stop the counters from updating as system-wide / global 831 * values. 832 * 833 * Automatic reports now include a context ID so reports can be 834 * filtered on the cpu but it's not worth trying to 835 * automatically subtract/hide counter progress for other 836 * contexts while filtering since we can't stop userspace 837 * issuing MI_REPORT_PERF_COUNT commands which would still 838 * provide a side-band view of the real values. 839 * 840 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 841 * to normalize counters for a single filtered context then it 842 * needs be forwarded bookend context-switch reports so that it 843 * can track switches in between MI_REPORT_PERF_COUNT commands 844 * and can itself subtract/ignore the progress of counters 845 * associated with other contexts. Note that the hardware 846 * automatically triggers reports when switching to a new 847 * context which are tagged with the ID of the newly active 848 * context. To avoid the complexity (and likely fragility) of 849 * reading ahead while parsing reports to try and minimize 850 * forwarding redundant context switch reports (i.e. between 851 * other, unrelated contexts) we simply elect to forward them 852 * all. 853 * 854 * We don't rely solely on the reason field to identify context 855 * switches since it's not-uncommon for periodic samples to 856 * identify a switch before any 'context switch' report. 857 */ 858 if (!stream->ctx || 859 stream->specific_ctx_id == ctx_id || 860 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 861 reason & OAREPORT_REASON_CTX_SWITCH) { 862 863 /* 864 * While filtering for a single context we avoid 865 * leaking the IDs of other contexts. 866 */ 867 if (stream->ctx && 868 stream->specific_ctx_id != ctx_id) { 869 oa_context_id_squash(stream, report32); 870 } 871 872 ret = append_oa_sample(stream, buf, count, offset, 873 report); 874 if (ret) 875 break; 876 877 stream->oa_buffer.last_ctx_id = ctx_id; 878 } 879 880 /* 881 * Clear out the report id and timestamp as a means to detect unlanded 882 * reports. 883 */ 884 oa_report_id_clear(stream, report32); 885 oa_timestamp_clear(stream, report32); 886 } 887 888 if (start_offset != *offset) { 889 i915_reg_t oaheadptr; 890 891 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ? 892 __oa_regs(stream)->oa_head_ptr : 893 GEN8_OAHEADPTR; 894 895 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 896 897 /* 898 * We removed the gtt_offset for the copy loop above, indexing 899 * relative to oa_buf_base so put back here... 900 */ 901 head += gtt_offset; 902 intel_uncore_write(uncore, oaheadptr, 903 head & GEN12_OAG_OAHEADPTR_MASK); 904 stream->oa_buffer.head = head; 905 906 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 907 } 908 909 return ret; 910 } 911 912 /** 913 * gen8_oa_read - copy status records then buffered OA reports 914 * @stream: An i915-perf stream opened for OA metrics 915 * @buf: destination buffer given by userspace 916 * @count: the number of bytes userspace wants to read 917 * @offset: (inout): the current position for writing into @buf 918 * 919 * Checks OA unit status registers and if necessary appends corresponding 920 * status records for userspace (such as for a buffer full condition) and then 921 * initiate appending any buffered OA reports. 922 * 923 * Updates @offset according to the number of bytes successfully copied into 924 * the userspace buffer. 925 * 926 * NB: some data may be successfully copied to the userspace buffer 927 * even if an error is returned, and this is reflected in the 928 * updated @offset. 929 * 930 * Returns: zero on success or a negative error code 931 */ 932 static int gen8_oa_read(struct i915_perf_stream *stream, 933 char __user *buf, 934 size_t count, 935 size_t *offset) 936 { 937 struct intel_uncore *uncore = stream->uncore; 938 u32 oastatus; 939 i915_reg_t oastatus_reg; 940 int ret; 941 942 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 943 return -EIO; 944 945 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ? 946 __oa_regs(stream)->oa_status : 947 GEN8_OASTATUS; 948 949 oastatus = intel_uncore_read(uncore, oastatus_reg); 950 951 /* 952 * We treat OABUFFER_OVERFLOW as a significant error: 953 * 954 * Although theoretically we could handle this more gracefully 955 * sometimes, some Gens don't correctly suppress certain 956 * automatically triggered reports in this condition and so we 957 * have to assume that old reports are now being trampled 958 * over. 959 * 960 * Considering how we don't currently give userspace control 961 * over the OA buffer size and always configure a large 16MB 962 * buffer, then a buffer overflow does anyway likely indicate 963 * that something has gone quite badly wrong. 964 */ 965 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 966 ret = append_oa_status(stream, buf, count, offset, 967 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 968 if (ret) 969 return ret; 970 971 drm_dbg(&stream->perf->i915->drm, 972 "OA buffer overflow (exponent = %d): force restart\n", 973 stream->period_exponent); 974 975 stream->perf->ops.oa_disable(stream); 976 stream->perf->ops.oa_enable(stream); 977 978 /* 979 * Note: .oa_enable() is expected to re-init the oabuffer and 980 * reset GEN8_OASTATUS for us 981 */ 982 oastatus = intel_uncore_read(uncore, oastatus_reg); 983 } 984 985 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 986 ret = append_oa_status(stream, buf, count, offset, 987 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 988 if (ret) 989 return ret; 990 991 intel_uncore_rmw(uncore, oastatus_reg, 992 GEN8_OASTATUS_COUNTER_OVERFLOW | 993 GEN8_OASTATUS_REPORT_LOST, 994 IS_GRAPHICS_VER(uncore->i915, 8, 11) ? 995 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 996 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 997 } 998 999 return gen8_append_oa_reports(stream, buf, count, offset); 1000 } 1001 1002 /** 1003 * gen7_append_oa_reports - Copies all buffered OA reports into 1004 * userspace read() buffer. 1005 * @stream: An i915-perf stream opened for OA metrics 1006 * @buf: destination buffer given by userspace 1007 * @count: the number of bytes userspace wants to read 1008 * @offset: (inout): the current position for writing into @buf 1009 * 1010 * Notably any error condition resulting in a short read (-%ENOSPC or 1011 * -%EFAULT) will be returned even though one or more records may 1012 * have been successfully copied. In this case it's up to the caller 1013 * to decide if the error should be squashed before returning to 1014 * userspace. 1015 * 1016 * Note: reports are consumed from the head, and appended to the 1017 * tail, so the tail chases the head?... If you think that's mad 1018 * and back-to-front you're not alone, but this follows the 1019 * Gen PRM naming convention. 1020 * 1021 * Returns: 0 on success, negative error code on failure. 1022 */ 1023 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 1024 char __user *buf, 1025 size_t count, 1026 size_t *offset) 1027 { 1028 struct intel_uncore *uncore = stream->uncore; 1029 int report_size = stream->oa_buffer.format->size; 1030 u8 *oa_buf_base = stream->oa_buffer.vaddr; 1031 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1032 u32 mask = (OA_BUFFER_SIZE - 1); 1033 size_t start_offset = *offset; 1034 unsigned long flags; 1035 u32 head, tail; 1036 int ret = 0; 1037 1038 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 1039 return -EIO; 1040 1041 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1042 1043 head = stream->oa_buffer.head; 1044 tail = stream->oa_buffer.tail; 1045 1046 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1047 1048 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 1049 * while indexing relative to oa_buf_base. 1050 */ 1051 head -= gtt_offset; 1052 tail -= gtt_offset; 1053 1054 /* An out of bounds or misaligned head or tail pointer implies a driver 1055 * bug since we validate + align the tail pointers we read from the 1056 * hardware and we are in full control of the head pointer which should 1057 * only be incremented by multiples of the report size (notably also 1058 * all a power of two). 1059 */ 1060 if (drm_WARN_ONCE(&uncore->i915->drm, 1061 head > OA_BUFFER_SIZE || head % report_size || 1062 tail > OA_BUFFER_SIZE || tail % report_size, 1063 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 1064 head, tail)) 1065 return -EIO; 1066 1067 1068 for (/* none */; 1069 OA_TAKEN(tail, head); 1070 head = (head + report_size) & mask) { 1071 u8 *report = oa_buf_base + head; 1072 u32 *report32 = (void *)report; 1073 1074 /* All the report sizes factor neatly into the buffer 1075 * size so we never expect to see a report split 1076 * between the beginning and end of the buffer. 1077 * 1078 * Given the initial alignment check a misalignment 1079 * here would imply a driver bug that would result 1080 * in an overrun. 1081 */ 1082 if (drm_WARN_ON(&uncore->i915->drm, 1083 (OA_BUFFER_SIZE - head) < report_size)) { 1084 drm_err(&uncore->i915->drm, 1085 "Spurious OA head ptr: non-integral report offset\n"); 1086 break; 1087 } 1088 1089 /* The report-ID field for periodic samples includes 1090 * some undocumented flags related to what triggered 1091 * the report and is never expected to be zero so we 1092 * can check that the report isn't invalid before 1093 * copying it to userspace... 1094 */ 1095 if (report32[0] == 0) { 1096 if (__ratelimit(&stream->perf->spurious_report_rs)) 1097 drm_notice(&uncore->i915->drm, 1098 "Skipping spurious, invalid OA report\n"); 1099 continue; 1100 } 1101 1102 ret = append_oa_sample(stream, buf, count, offset, report); 1103 if (ret) 1104 break; 1105 1106 /* Clear out the first 2 dwords as a mean to detect unlanded 1107 * reports. 1108 */ 1109 report32[0] = 0; 1110 report32[1] = 0; 1111 } 1112 1113 if (start_offset != *offset) { 1114 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1115 1116 /* We removed the gtt_offset for the copy loop above, indexing 1117 * relative to oa_buf_base so put back here... 1118 */ 1119 head += gtt_offset; 1120 1121 intel_uncore_write(uncore, GEN7_OASTATUS2, 1122 (head & GEN7_OASTATUS2_HEAD_MASK) | 1123 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1124 stream->oa_buffer.head = head; 1125 1126 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1127 } 1128 1129 return ret; 1130 } 1131 1132 /** 1133 * gen7_oa_read - copy status records then buffered OA reports 1134 * @stream: An i915-perf stream opened for OA metrics 1135 * @buf: destination buffer given by userspace 1136 * @count: the number of bytes userspace wants to read 1137 * @offset: (inout): the current position for writing into @buf 1138 * 1139 * Checks Gen 7 specific OA unit status registers and if necessary appends 1140 * corresponding status records for userspace (such as for a buffer full 1141 * condition) and then initiate appending any buffered OA reports. 1142 * 1143 * Updates @offset according to the number of bytes successfully copied into 1144 * the userspace buffer. 1145 * 1146 * Returns: zero on success or a negative error code 1147 */ 1148 static int gen7_oa_read(struct i915_perf_stream *stream, 1149 char __user *buf, 1150 size_t count, 1151 size_t *offset) 1152 { 1153 struct intel_uncore *uncore = stream->uncore; 1154 u32 oastatus1; 1155 int ret; 1156 1157 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1158 return -EIO; 1159 1160 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1161 1162 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1163 * bits while the OA unit is enabled (while the tail pointer 1164 * may be updated asynchronously) so we ignore status bits 1165 * that have already been reported to userspace. 1166 */ 1167 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1168 1169 /* We treat OABUFFER_OVERFLOW as a significant error: 1170 * 1171 * - The status can be interpreted to mean that the buffer is 1172 * currently full (with a higher precedence than OA_TAKEN() 1173 * which will start to report a near-empty buffer after an 1174 * overflow) but it's awkward that we can't clear the status 1175 * on Haswell, so without a reset we won't be able to catch 1176 * the state again. 1177 * 1178 * - Since it also implies the HW has started overwriting old 1179 * reports it may also affect our sanity checks for invalid 1180 * reports when copying to userspace that assume new reports 1181 * are being written to cleared memory. 1182 * 1183 * - In the future we may want to introduce a flight recorder 1184 * mode where the driver will automatically maintain a safe 1185 * guard band between head/tail, avoiding this overflow 1186 * condition, but we avoid the added driver complexity for 1187 * now. 1188 */ 1189 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1190 ret = append_oa_status(stream, buf, count, offset, 1191 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1192 if (ret) 1193 return ret; 1194 1195 drm_dbg(&stream->perf->i915->drm, 1196 "OA buffer overflow (exponent = %d): force restart\n", 1197 stream->period_exponent); 1198 1199 stream->perf->ops.oa_disable(stream); 1200 stream->perf->ops.oa_enable(stream); 1201 1202 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1203 } 1204 1205 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1206 ret = append_oa_status(stream, buf, count, offset, 1207 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1208 if (ret) 1209 return ret; 1210 stream->perf->gen7_latched_oastatus1 |= 1211 GEN7_OASTATUS1_REPORT_LOST; 1212 } 1213 1214 return gen7_append_oa_reports(stream, buf, count, offset); 1215 } 1216 1217 /** 1218 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1219 * @stream: An i915-perf stream opened for OA metrics 1220 * 1221 * Called when userspace tries to read() from a blocking stream FD opened 1222 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1223 * OA buffer and wakes us. 1224 * 1225 * Note: it's acceptable to have this return with some false positives 1226 * since any subsequent read handling will return -EAGAIN if there isn't 1227 * really data ready for userspace yet. 1228 * 1229 * Returns: zero on success or a negative error code 1230 */ 1231 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1232 { 1233 /* We would wait indefinitely if periodic sampling is not enabled */ 1234 if (!stream->periodic) 1235 return -EIO; 1236 1237 return wait_event_interruptible(stream->poll_wq, 1238 oa_buffer_check_unlocked(stream)); 1239 } 1240 1241 /** 1242 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1243 * @stream: An i915-perf stream opened for OA metrics 1244 * @file: An i915 perf stream file 1245 * @wait: poll() state table 1246 * 1247 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1248 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1249 * when it sees data ready to read in the circular OA buffer. 1250 */ 1251 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1252 struct file *file, 1253 poll_table *wait) 1254 { 1255 poll_wait(file, &stream->poll_wq, wait); 1256 } 1257 1258 /** 1259 * i915_oa_read - just calls through to &i915_oa_ops->read 1260 * @stream: An i915-perf stream opened for OA metrics 1261 * @buf: destination buffer given by userspace 1262 * @count: the number of bytes userspace wants to read 1263 * @offset: (inout): the current position for writing into @buf 1264 * 1265 * Updates @offset according to the number of bytes successfully copied into 1266 * the userspace buffer. 1267 * 1268 * Returns: zero on success or a negative error code 1269 */ 1270 static int i915_oa_read(struct i915_perf_stream *stream, 1271 char __user *buf, 1272 size_t count, 1273 size_t *offset) 1274 { 1275 return stream->perf->ops.read(stream, buf, count, offset); 1276 } 1277 1278 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1279 { 1280 struct i915_gem_engines_iter it; 1281 struct i915_gem_context *ctx = stream->ctx; 1282 struct intel_context *ce; 1283 struct i915_gem_ww_ctx ww; 1284 int err = -ENODEV; 1285 1286 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1287 if (ce->engine != stream->engine) /* first match! */ 1288 continue; 1289 1290 err = 0; 1291 break; 1292 } 1293 i915_gem_context_unlock_engines(ctx); 1294 1295 if (err) 1296 return ERR_PTR(err); 1297 1298 i915_gem_ww_ctx_init(&ww, true); 1299 retry: 1300 /* 1301 * As the ID is the gtt offset of the context's vma we 1302 * pin the vma to ensure the ID remains fixed. 1303 */ 1304 err = intel_context_pin_ww(ce, &ww); 1305 if (err == -EDEADLK) { 1306 err = i915_gem_ww_ctx_backoff(&ww); 1307 if (!err) 1308 goto retry; 1309 } 1310 i915_gem_ww_ctx_fini(&ww); 1311 1312 if (err) 1313 return ERR_PTR(err); 1314 1315 stream->pinned_ctx = ce; 1316 return stream->pinned_ctx; 1317 } 1318 1319 static int 1320 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset) 1321 { 1322 u32 *cs, cmd; 1323 1324 cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; 1325 if (GRAPHICS_VER(rq->engine->i915) >= 8) 1326 cmd++; 1327 1328 cs = intel_ring_begin(rq, 4); 1329 if (IS_ERR(cs)) 1330 return PTR_ERR(cs); 1331 1332 *cs++ = cmd; 1333 *cs++ = i915_mmio_reg_offset(reg); 1334 *cs++ = ggtt_offset; 1335 *cs++ = 0; 1336 1337 intel_ring_advance(rq, cs); 1338 1339 return 0; 1340 } 1341 1342 static int 1343 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset) 1344 { 1345 struct i915_request *rq; 1346 int err; 1347 1348 rq = i915_request_create(ce); 1349 if (IS_ERR(rq)) 1350 return PTR_ERR(rq); 1351 1352 i915_request_get(rq); 1353 1354 err = __store_reg_to_mem(rq, reg, ggtt_offset); 1355 1356 i915_request_add(rq); 1357 if (!err && i915_request_wait(rq, 0, HZ / 2) < 0) 1358 err = -ETIME; 1359 1360 i915_request_put(rq); 1361 1362 return err; 1363 } 1364 1365 static int 1366 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id) 1367 { 1368 struct i915_vma *scratch; 1369 u32 *val; 1370 int err; 1371 1372 scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4); 1373 if (IS_ERR(scratch)) 1374 return PTR_ERR(scratch); 1375 1376 err = i915_vma_sync(scratch); 1377 if (err) 1378 goto err_scratch; 1379 1380 err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base), 1381 i915_ggtt_offset(scratch)); 1382 if (err) 1383 goto err_scratch; 1384 1385 val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB); 1386 if (IS_ERR(val)) { 1387 err = PTR_ERR(val); 1388 goto err_scratch; 1389 } 1390 1391 *ctx_id = *val; 1392 i915_gem_object_unpin_map(scratch->obj); 1393 1394 err_scratch: 1395 i915_vma_unpin_and_release(&scratch, 0); 1396 return err; 1397 } 1398 1399 /* 1400 * For execlist mode of submission, pick an unused context id 1401 * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts 1402 * XXX_MAX_CONTEXT_HW_ID is used by idle context 1403 * 1404 * For GuC mode of submission read context id from the upper dword of the 1405 * EXECLIST_STATUS register. Note that we read this value only once and expect 1406 * that the value stays fixed for the entire OA use case. There are cases where 1407 * GuC KMD implementation may deregister a context to reuse it's context id, but 1408 * we prevent that from happening to the OA context by pinning it. 1409 */ 1410 static int gen12_get_render_context_id(struct i915_perf_stream *stream) 1411 { 1412 u32 ctx_id, mask; 1413 int ret; 1414 1415 if (intel_engine_uses_guc(stream->engine)) { 1416 ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id); 1417 if (ret) 1418 return ret; 1419 1420 mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) << 1421 (GEN12_GUC_SW_CTX_ID_SHIFT - 32); 1422 } else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) { 1423 ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) << 1424 (XEHP_SW_CTX_ID_SHIFT - 32); 1425 1426 mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) << 1427 (XEHP_SW_CTX_ID_SHIFT - 32); 1428 } else { 1429 ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << 1430 (GEN11_SW_CTX_ID_SHIFT - 32); 1431 1432 mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << 1433 (GEN11_SW_CTX_ID_SHIFT - 32); 1434 } 1435 stream->specific_ctx_id = ctx_id & mask; 1436 stream->specific_ctx_id_mask = mask; 1437 1438 return 0; 1439 } 1440 1441 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end) 1442 { 1443 u32 idx = *offset; 1444 u32 len = min(MI_LRI_LEN(state[idx]) + idx, end); 1445 bool found = false; 1446 1447 idx++; 1448 for (; idx < len; idx += 2) { 1449 if (state[idx] == reg) { 1450 found = true; 1451 break; 1452 } 1453 } 1454 1455 *offset = idx; 1456 return found; 1457 } 1458 1459 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg) 1460 { 1461 u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4; 1462 u32 *state = ce->lrc_reg_state; 1463 1464 if (drm_WARN_ON(&ce->engine->i915->drm, !state)) 1465 return U32_MAX; 1466 1467 for (offset = 0; offset < len; ) { 1468 if (IS_MI_LRI_CMD(state[offset])) { 1469 /* 1470 * We expect reg-value pairs in MI_LRI command, so 1471 * MI_LRI_LEN() should be even, if not, issue a warning. 1472 */ 1473 drm_WARN_ON(&ce->engine->i915->drm, 1474 MI_LRI_LEN(state[offset]) & 0x1); 1475 1476 if (oa_find_reg_in_lri(state, reg, &offset, len)) 1477 break; 1478 } else { 1479 offset++; 1480 } 1481 } 1482 1483 return offset < len ? offset : U32_MAX; 1484 } 1485 1486 static int set_oa_ctx_ctrl_offset(struct intel_context *ce) 1487 { 1488 i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base); 1489 struct i915_perf *perf = &ce->engine->i915->perf; 1490 u32 offset = perf->ctx_oactxctrl_offset; 1491 1492 /* Do this only once. Failure is stored as offset of U32_MAX */ 1493 if (offset) 1494 goto exit; 1495 1496 offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg)); 1497 perf->ctx_oactxctrl_offset = offset; 1498 1499 drm_dbg(&ce->engine->i915->drm, 1500 "%s oa ctx control at 0x%08x dword offset\n", 1501 ce->engine->name, offset); 1502 1503 exit: 1504 return offset && offset != U32_MAX ? 0 : -ENODEV; 1505 } 1506 1507 static bool engine_supports_mi_query(struct intel_engine_cs *engine) 1508 { 1509 return engine->class == RENDER_CLASS; 1510 } 1511 1512 /** 1513 * oa_get_render_ctx_id - determine and hold ctx hw id 1514 * @stream: An i915-perf stream opened for OA metrics 1515 * 1516 * Determine the render context hw id, and ensure it remains fixed for the 1517 * lifetime of the stream. This ensures that we don't have to worry about 1518 * updating the context ID in OACONTROL on the fly. 1519 * 1520 * Returns: zero on success or a negative error code 1521 */ 1522 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1523 { 1524 struct intel_context *ce; 1525 int ret = 0; 1526 1527 ce = oa_pin_context(stream); 1528 if (IS_ERR(ce)) 1529 return PTR_ERR(ce); 1530 1531 if (engine_supports_mi_query(stream->engine) && 1532 HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) { 1533 /* 1534 * We are enabling perf query here. If we don't find the context 1535 * offset here, just return an error. 1536 */ 1537 ret = set_oa_ctx_ctrl_offset(ce); 1538 if (ret) { 1539 intel_context_unpin(ce); 1540 drm_err(&stream->perf->i915->drm, 1541 "Enabling perf query failed for %s\n", 1542 stream->engine->name); 1543 return ret; 1544 } 1545 } 1546 1547 switch (GRAPHICS_VER(ce->engine->i915)) { 1548 case 7: { 1549 /* 1550 * On Haswell we don't do any post processing of the reports 1551 * and don't need to use the mask. 1552 */ 1553 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1554 stream->specific_ctx_id_mask = 0; 1555 break; 1556 } 1557 1558 case 8: 1559 case 9: 1560 if (intel_engine_uses_guc(ce->engine)) { 1561 /* 1562 * When using GuC, the context descriptor we write in 1563 * i915 is read by GuC and rewritten before it's 1564 * actually written into the hardware. The LRCA is 1565 * what is put into the context id field of the 1566 * context descriptor by GuC. Because it's aligned to 1567 * a page, the lower 12bits are always at 0 and 1568 * dropped by GuC. They won't be part of the context 1569 * ID in the OA reports, so squash those lower bits. 1570 */ 1571 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1572 1573 /* 1574 * GuC uses the top bit to signal proxy submission, so 1575 * ignore that bit. 1576 */ 1577 stream->specific_ctx_id_mask = 1578 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1579 } else { 1580 stream->specific_ctx_id_mask = 1581 (1U << GEN8_CTX_ID_WIDTH) - 1; 1582 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1583 } 1584 break; 1585 1586 case 11: 1587 case 12: 1588 ret = gen12_get_render_context_id(stream); 1589 break; 1590 1591 default: 1592 MISSING_CASE(GRAPHICS_VER(ce->engine->i915)); 1593 } 1594 1595 ce->tag = stream->specific_ctx_id; 1596 1597 drm_dbg(&stream->perf->i915->drm, 1598 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1599 stream->specific_ctx_id, 1600 stream->specific_ctx_id_mask); 1601 1602 return ret; 1603 } 1604 1605 /** 1606 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1607 * @stream: An i915-perf stream opened for OA metrics 1608 * 1609 * In case anything needed doing to ensure the context HW ID would remain valid 1610 * for the lifetime of the stream, then that can be undone here. 1611 */ 1612 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1613 { 1614 struct intel_context *ce; 1615 1616 ce = fetch_and_zero(&stream->pinned_ctx); 1617 if (ce) { 1618 ce->tag = 0; /* recomputed on next submission after parking */ 1619 intel_context_unpin(ce); 1620 } 1621 1622 stream->specific_ctx_id = INVALID_CTX_ID; 1623 stream->specific_ctx_id_mask = 0; 1624 } 1625 1626 static void 1627 free_oa_buffer(struct i915_perf_stream *stream) 1628 { 1629 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1630 I915_VMA_RELEASE_MAP); 1631 1632 stream->oa_buffer.vaddr = NULL; 1633 } 1634 1635 static void 1636 free_oa_configs(struct i915_perf_stream *stream) 1637 { 1638 struct i915_oa_config_bo *oa_bo, *tmp; 1639 1640 i915_oa_config_put(stream->oa_config); 1641 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1642 free_oa_config_bo(oa_bo); 1643 } 1644 1645 static void 1646 free_noa_wait(struct i915_perf_stream *stream) 1647 { 1648 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1649 } 1650 1651 static bool engine_supports_oa(const struct intel_engine_cs *engine) 1652 { 1653 return engine->oa_group; 1654 } 1655 1656 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type) 1657 { 1658 return engine->oa_group && engine->oa_group->type == type; 1659 } 1660 1661 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1662 { 1663 struct i915_perf *perf = stream->perf; 1664 struct intel_gt *gt = stream->engine->gt; 1665 struct i915_perf_group *g = stream->engine->oa_group; 1666 1667 if (WARN_ON(stream != g->exclusive_stream)) 1668 return; 1669 1670 /* 1671 * Unset exclusive_stream first, it will be checked while disabling 1672 * the metric set on gen8+. 1673 * 1674 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1675 */ 1676 WRITE_ONCE(g->exclusive_stream, NULL); 1677 perf->ops.disable_metric_set(stream); 1678 1679 free_oa_buffer(stream); 1680 1681 /* 1682 * Wa_16011777198:dg2: Unset the override of GUCRC mode to enable rc6. 1683 */ 1684 if (stream->override_gucrc) 1685 drm_WARN_ON(>->i915->drm, 1686 intel_guc_slpc_unset_gucrc_mode(>->uc.guc.slpc)); 1687 1688 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1689 intel_engine_pm_put(stream->engine); 1690 1691 if (stream->ctx) 1692 oa_put_render_ctx_id(stream); 1693 1694 free_oa_configs(stream); 1695 free_noa_wait(stream); 1696 1697 if (perf->spurious_report_rs.missed) { 1698 drm_notice(>->i915->drm, 1699 "%d spurious OA report notices suppressed due to ratelimiting\n", 1700 perf->spurious_report_rs.missed); 1701 } 1702 } 1703 1704 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1705 { 1706 struct intel_uncore *uncore = stream->uncore; 1707 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1708 unsigned long flags; 1709 1710 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1711 1712 /* Pre-DevBDW: OABUFFER must be set with counters off, 1713 * before OASTATUS1, but after OASTATUS2 1714 */ 1715 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1716 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1717 stream->oa_buffer.head = gtt_offset; 1718 1719 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1720 1721 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1722 gtt_offset | OABUFFER_SIZE_16M); 1723 1724 /* Mark that we need updated tail pointers to read from... */ 1725 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1726 stream->oa_buffer.tail = gtt_offset; 1727 1728 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1729 1730 /* On Haswell we have to track which OASTATUS1 flags we've 1731 * already seen since they can't be cleared while periodic 1732 * sampling is enabled. 1733 */ 1734 stream->perf->gen7_latched_oastatus1 = 0; 1735 1736 /* NB: although the OA buffer will initially be allocated 1737 * zeroed via shmfs (and so this memset is redundant when 1738 * first allocating), we may re-init the OA buffer, either 1739 * when re-enabling a stream or in error/reset paths. 1740 * 1741 * The reason we clear the buffer for each re-init is for the 1742 * sanity check in gen7_append_oa_reports() that looks at the 1743 * report-id field to make sure it's non-zero which relies on 1744 * the assumption that new reports are being written to zeroed 1745 * memory... 1746 */ 1747 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1748 } 1749 1750 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1751 { 1752 struct intel_uncore *uncore = stream->uncore; 1753 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1754 unsigned long flags; 1755 1756 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1757 1758 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1759 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1760 stream->oa_buffer.head = gtt_offset; 1761 1762 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1763 1764 /* 1765 * PRM says: 1766 * 1767 * "This MMIO must be set before the OATAILPTR 1768 * register and after the OAHEADPTR register. This is 1769 * to enable proper functionality of the overflow 1770 * bit." 1771 */ 1772 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1773 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1774 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1775 1776 /* Mark that we need updated tail pointers to read from... */ 1777 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1778 stream->oa_buffer.tail = gtt_offset; 1779 1780 /* 1781 * Reset state used to recognise context switches, affecting which 1782 * reports we will forward to userspace while filtering for a single 1783 * context. 1784 */ 1785 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1786 1787 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1788 1789 /* 1790 * NB: although the OA buffer will initially be allocated 1791 * zeroed via shmfs (and so this memset is redundant when 1792 * first allocating), we may re-init the OA buffer, either 1793 * when re-enabling a stream or in error/reset paths. 1794 * 1795 * The reason we clear the buffer for each re-init is for the 1796 * sanity check in gen8_append_oa_reports() that looks at the 1797 * reason field to make sure it's non-zero which relies on 1798 * the assumption that new reports are being written to zeroed 1799 * memory... 1800 */ 1801 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1802 } 1803 1804 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1805 { 1806 struct intel_uncore *uncore = stream->uncore; 1807 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1808 unsigned long flags; 1809 1810 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1811 1812 intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0); 1813 intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr, 1814 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1815 stream->oa_buffer.head = gtt_offset; 1816 1817 /* 1818 * PRM says: 1819 * 1820 * "This MMIO must be set before the OATAILPTR 1821 * register and after the OAHEADPTR register. This is 1822 * to enable proper functionality of the overflow 1823 * bit." 1824 */ 1825 intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset | 1826 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1827 intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr, 1828 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1829 1830 /* Mark that we need updated tail pointers to read from... */ 1831 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1832 stream->oa_buffer.tail = gtt_offset; 1833 1834 /* 1835 * Reset state used to recognise context switches, affecting which 1836 * reports we will forward to userspace while filtering for a single 1837 * context. 1838 */ 1839 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1840 1841 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1842 1843 /* 1844 * NB: although the OA buffer will initially be allocated 1845 * zeroed via shmfs (and so this memset is redundant when 1846 * first allocating), we may re-init the OA buffer, either 1847 * when re-enabling a stream or in error/reset paths. 1848 * 1849 * The reason we clear the buffer for each re-init is for the 1850 * sanity check in gen8_append_oa_reports() that looks at the 1851 * reason field to make sure it's non-zero which relies on 1852 * the assumption that new reports are being written to zeroed 1853 * memory... 1854 */ 1855 memset(stream->oa_buffer.vaddr, 0, 1856 stream->oa_buffer.vma->size); 1857 } 1858 1859 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1860 { 1861 struct drm_i915_private *i915 = stream->perf->i915; 1862 struct intel_gt *gt = stream->engine->gt; 1863 struct drm_i915_gem_object *bo; 1864 struct i915_vma *vma; 1865 int ret; 1866 1867 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1868 return -ENODEV; 1869 1870 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1871 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1872 1873 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1874 if (IS_ERR(bo)) { 1875 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1876 return PTR_ERR(bo); 1877 } 1878 1879 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1880 1881 /* PreHSW required 512K alignment, HSW requires 16M */ 1882 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1883 if (IS_ERR(vma)) { 1884 ret = PTR_ERR(vma); 1885 goto err_unref; 1886 } 1887 1888 /* 1889 * PreHSW required 512K alignment. 1890 * HSW and onwards, align to requested size of OA buffer. 1891 */ 1892 ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH); 1893 if (ret) { 1894 drm_err(>->i915->drm, "Failed to pin OA buffer %d\n", ret); 1895 goto err_unref; 1896 } 1897 1898 stream->oa_buffer.vma = vma; 1899 1900 stream->oa_buffer.vaddr = 1901 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB); 1902 if (IS_ERR(stream->oa_buffer.vaddr)) { 1903 ret = PTR_ERR(stream->oa_buffer.vaddr); 1904 goto err_unpin; 1905 } 1906 1907 return 0; 1908 1909 err_unpin: 1910 __i915_vma_unpin(vma); 1911 1912 err_unref: 1913 i915_gem_object_put(bo); 1914 1915 stream->oa_buffer.vaddr = NULL; 1916 stream->oa_buffer.vma = NULL; 1917 1918 return ret; 1919 } 1920 1921 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1922 bool save, i915_reg_t reg, u32 offset, 1923 u32 dword_count) 1924 { 1925 u32 cmd; 1926 u32 d; 1927 1928 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1929 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1930 if (GRAPHICS_VER(stream->perf->i915) >= 8) 1931 cmd++; 1932 1933 for (d = 0; d < dword_count; d++) { 1934 *cs++ = cmd; 1935 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1936 *cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d; 1937 *cs++ = 0; 1938 } 1939 1940 return cs; 1941 } 1942 1943 static int alloc_noa_wait(struct i915_perf_stream *stream) 1944 { 1945 struct drm_i915_private *i915 = stream->perf->i915; 1946 struct intel_gt *gt = stream->engine->gt; 1947 struct drm_i915_gem_object *bo; 1948 struct i915_vma *vma; 1949 const u64 delay_ticks = 0xffffffffffffffff - 1950 intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915), 1951 atomic64_read(&stream->perf->noa_programming_delay)); 1952 const u32 base = stream->engine->mmio_base; 1953 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1954 u32 *batch, *ts0, *cs, *jump; 1955 struct i915_gem_ww_ctx ww; 1956 int ret, i; 1957 enum { 1958 START_TS, 1959 NOW_TS, 1960 DELTA_TS, 1961 JUMP_PREDICATE, 1962 DELTA_TARGET, 1963 N_CS_GPR 1964 }; 1965 i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ? 1966 MI_PREDICATE_RESULT_2_ENGINE(base) : 1967 MI_PREDICATE_RESULT_1(RENDER_RING_BASE); 1968 1969 /* 1970 * gt->scratch was being used to save/restore the GPR registers, but on 1971 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region 1972 * causes an engine hang. Instead allocate an additional page here to 1973 * save/restore GPR registers 1974 */ 1975 bo = i915_gem_object_create_internal(i915, 8192); 1976 if (IS_ERR(bo)) { 1977 drm_err(&i915->drm, 1978 "Failed to allocate NOA wait batchbuffer\n"); 1979 return PTR_ERR(bo); 1980 } 1981 1982 i915_gem_ww_ctx_init(&ww, true); 1983 retry: 1984 ret = i915_gem_object_lock(bo, &ww); 1985 if (ret) 1986 goto out_ww; 1987 1988 /* 1989 * We pin in GGTT because we jump into this buffer now because 1990 * multiple OA config BOs will have a jump to this address and it 1991 * needs to be fixed during the lifetime of the i915/perf stream. 1992 */ 1993 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1994 if (IS_ERR(vma)) { 1995 ret = PTR_ERR(vma); 1996 goto out_ww; 1997 } 1998 1999 ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 2000 if (ret) 2001 goto out_ww; 2002 2003 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 2004 if (IS_ERR(batch)) { 2005 ret = PTR_ERR(batch); 2006 goto err_unpin; 2007 } 2008 2009 stream->noa_wait = vma; 2010 2011 #define GPR_SAVE_OFFSET 4096 2012 #define PREDICATE_SAVE_OFFSET 4160 2013 2014 /* Save registers. */ 2015 for (i = 0; i < N_CS_GPR; i++) 2016 cs = save_restore_register( 2017 stream, cs, true /* save */, CS_GPR(i), 2018 GPR_SAVE_OFFSET + 8 * i, 2); 2019 cs = save_restore_register( 2020 stream, cs, true /* save */, mi_predicate_result, 2021 PREDICATE_SAVE_OFFSET, 1); 2022 2023 /* First timestamp snapshot location. */ 2024 ts0 = cs; 2025 2026 /* 2027 * Initial snapshot of the timestamp register to implement the wait. 2028 * We work with 32b values, so clear out the top 32b bits of the 2029 * register because the ALU works 64bits. 2030 */ 2031 *cs++ = MI_LOAD_REGISTER_IMM(1); 2032 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 2033 *cs++ = 0; 2034 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2035 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 2036 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 2037 2038 /* 2039 * This is the location we're going to jump back into until the 2040 * required amount of time has passed. 2041 */ 2042 jump = cs; 2043 2044 /* 2045 * Take another snapshot of the timestamp register. Take care to clear 2046 * up the top 32bits of CS_GPR(1) as we're using it for other 2047 * operations below. 2048 */ 2049 *cs++ = MI_LOAD_REGISTER_IMM(1); 2050 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 2051 *cs++ = 0; 2052 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2053 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 2054 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 2055 2056 /* 2057 * Do a diff between the 2 timestamps and store the result back into 2058 * CS_GPR(1). 2059 */ 2060 *cs++ = MI_MATH(5); 2061 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 2062 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 2063 *cs++ = MI_MATH_SUB; 2064 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 2065 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 2066 2067 /* 2068 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 2069 * timestamp have rolled over the 32bits) into the predicate register 2070 * to be used for the predicated jump. 2071 */ 2072 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2073 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 2074 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 2075 2076 if (HAS_MI_SET_PREDICATE(i915)) 2077 *cs++ = MI_SET_PREDICATE | 1; 2078 2079 /* Restart from the beginning if we had timestamps roll over. */ 2080 *cs++ = (GRAPHICS_VER(i915) < 8 ? 2081 MI_BATCH_BUFFER_START : 2082 MI_BATCH_BUFFER_START_GEN8) | 2083 MI_BATCH_PREDICATE; 2084 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 2085 *cs++ = 0; 2086 2087 if (HAS_MI_SET_PREDICATE(i915)) 2088 *cs++ = MI_SET_PREDICATE; 2089 2090 /* 2091 * Now add the diff between to previous timestamps and add it to : 2092 * (((1 * << 64) - 1) - delay_ns) 2093 * 2094 * When the Carry Flag contains 1 this means the elapsed time is 2095 * longer than the expected delay, and we can exit the wait loop. 2096 */ 2097 *cs++ = MI_LOAD_REGISTER_IMM(2); 2098 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 2099 *cs++ = lower_32_bits(delay_ticks); 2100 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 2101 *cs++ = upper_32_bits(delay_ticks); 2102 2103 *cs++ = MI_MATH(4); 2104 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 2105 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 2106 *cs++ = MI_MATH_ADD; 2107 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 2108 2109 *cs++ = MI_ARB_CHECK; 2110 2111 /* 2112 * Transfer the result into the predicate register to be used for the 2113 * predicated jump. 2114 */ 2115 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2116 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 2117 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 2118 2119 if (HAS_MI_SET_PREDICATE(i915)) 2120 *cs++ = MI_SET_PREDICATE | 1; 2121 2122 /* Predicate the jump. */ 2123 *cs++ = (GRAPHICS_VER(i915) < 8 ? 2124 MI_BATCH_BUFFER_START : 2125 MI_BATCH_BUFFER_START_GEN8) | 2126 MI_BATCH_PREDICATE; 2127 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 2128 *cs++ = 0; 2129 2130 if (HAS_MI_SET_PREDICATE(i915)) 2131 *cs++ = MI_SET_PREDICATE; 2132 2133 /* Restore registers. */ 2134 for (i = 0; i < N_CS_GPR; i++) 2135 cs = save_restore_register( 2136 stream, cs, false /* restore */, CS_GPR(i), 2137 GPR_SAVE_OFFSET + 8 * i, 2); 2138 cs = save_restore_register( 2139 stream, cs, false /* restore */, mi_predicate_result, 2140 PREDICATE_SAVE_OFFSET, 1); 2141 2142 /* And return to the ring. */ 2143 *cs++ = MI_BATCH_BUFFER_END; 2144 2145 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 2146 2147 i915_gem_object_flush_map(bo); 2148 __i915_gem_object_release_map(bo); 2149 2150 goto out_ww; 2151 2152 err_unpin: 2153 i915_vma_unpin_and_release(&vma, 0); 2154 out_ww: 2155 if (ret == -EDEADLK) { 2156 ret = i915_gem_ww_ctx_backoff(&ww); 2157 if (!ret) 2158 goto retry; 2159 } 2160 i915_gem_ww_ctx_fini(&ww); 2161 if (ret) 2162 i915_gem_object_put(bo); 2163 return ret; 2164 } 2165 2166 static u32 *write_cs_mi_lri(u32 *cs, 2167 const struct i915_oa_reg *reg_data, 2168 u32 n_regs) 2169 { 2170 u32 i; 2171 2172 for (i = 0; i < n_regs; i++) { 2173 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 2174 u32 n_lri = min_t(u32, 2175 n_regs - i, 2176 MI_LOAD_REGISTER_IMM_MAX_REGS); 2177 2178 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 2179 } 2180 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 2181 *cs++ = reg_data[i].value; 2182 } 2183 2184 return cs; 2185 } 2186 2187 static int num_lri_dwords(int num_regs) 2188 { 2189 int count = 0; 2190 2191 if (num_regs > 0) { 2192 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 2193 count += num_regs * 2; 2194 } 2195 2196 return count; 2197 } 2198 2199 static struct i915_oa_config_bo * 2200 alloc_oa_config_buffer(struct i915_perf_stream *stream, 2201 struct i915_oa_config *oa_config) 2202 { 2203 struct drm_i915_gem_object *obj; 2204 struct i915_oa_config_bo *oa_bo; 2205 struct i915_gem_ww_ctx ww; 2206 size_t config_length = 0; 2207 u32 *cs; 2208 int err; 2209 2210 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 2211 if (!oa_bo) 2212 return ERR_PTR(-ENOMEM); 2213 2214 config_length += num_lri_dwords(oa_config->mux_regs_len); 2215 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 2216 config_length += num_lri_dwords(oa_config->flex_regs_len); 2217 config_length += 3; /* MI_BATCH_BUFFER_START */ 2218 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 2219 2220 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 2221 if (IS_ERR(obj)) { 2222 err = PTR_ERR(obj); 2223 goto err_free; 2224 } 2225 2226 i915_gem_ww_ctx_init(&ww, true); 2227 retry: 2228 err = i915_gem_object_lock(obj, &ww); 2229 if (err) 2230 goto out_ww; 2231 2232 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 2233 if (IS_ERR(cs)) { 2234 err = PTR_ERR(cs); 2235 goto out_ww; 2236 } 2237 2238 cs = write_cs_mi_lri(cs, 2239 oa_config->mux_regs, 2240 oa_config->mux_regs_len); 2241 cs = write_cs_mi_lri(cs, 2242 oa_config->b_counter_regs, 2243 oa_config->b_counter_regs_len); 2244 cs = write_cs_mi_lri(cs, 2245 oa_config->flex_regs, 2246 oa_config->flex_regs_len); 2247 2248 /* Jump into the active wait. */ 2249 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ? 2250 MI_BATCH_BUFFER_START : 2251 MI_BATCH_BUFFER_START_GEN8); 2252 *cs++ = i915_ggtt_offset(stream->noa_wait); 2253 *cs++ = 0; 2254 2255 i915_gem_object_flush_map(obj); 2256 __i915_gem_object_release_map(obj); 2257 2258 oa_bo->vma = i915_vma_instance(obj, 2259 &stream->engine->gt->ggtt->vm, 2260 NULL); 2261 if (IS_ERR(oa_bo->vma)) { 2262 err = PTR_ERR(oa_bo->vma); 2263 goto out_ww; 2264 } 2265 2266 oa_bo->oa_config = i915_oa_config_get(oa_config); 2267 llist_add(&oa_bo->node, &stream->oa_config_bos); 2268 2269 out_ww: 2270 if (err == -EDEADLK) { 2271 err = i915_gem_ww_ctx_backoff(&ww); 2272 if (!err) 2273 goto retry; 2274 } 2275 i915_gem_ww_ctx_fini(&ww); 2276 2277 if (err) 2278 i915_gem_object_put(obj); 2279 err_free: 2280 if (err) { 2281 kfree(oa_bo); 2282 return ERR_PTR(err); 2283 } 2284 return oa_bo; 2285 } 2286 2287 static struct i915_vma * 2288 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 2289 { 2290 struct i915_oa_config_bo *oa_bo; 2291 2292 /* 2293 * Look for the buffer in the already allocated BOs attached 2294 * to the stream. 2295 */ 2296 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 2297 if (oa_bo->oa_config == oa_config && 2298 memcmp(oa_bo->oa_config->uuid, 2299 oa_config->uuid, 2300 sizeof(oa_config->uuid)) == 0) 2301 goto out; 2302 } 2303 2304 oa_bo = alloc_oa_config_buffer(stream, oa_config); 2305 if (IS_ERR(oa_bo)) 2306 return ERR_CAST(oa_bo); 2307 2308 out: 2309 return i915_vma_get(oa_bo->vma); 2310 } 2311 2312 static int 2313 emit_oa_config(struct i915_perf_stream *stream, 2314 struct i915_oa_config *oa_config, 2315 struct intel_context *ce, 2316 struct i915_active *active) 2317 { 2318 struct i915_request *rq; 2319 struct i915_vma *vma; 2320 struct i915_gem_ww_ctx ww; 2321 int err; 2322 2323 vma = get_oa_vma(stream, oa_config); 2324 if (IS_ERR(vma)) 2325 return PTR_ERR(vma); 2326 2327 i915_gem_ww_ctx_init(&ww, true); 2328 retry: 2329 err = i915_gem_object_lock(vma->obj, &ww); 2330 if (err) 2331 goto err; 2332 2333 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 2334 if (err) 2335 goto err; 2336 2337 intel_engine_pm_get(ce->engine); 2338 rq = i915_request_create(ce); 2339 intel_engine_pm_put(ce->engine); 2340 if (IS_ERR(rq)) { 2341 err = PTR_ERR(rq); 2342 goto err_vma_unpin; 2343 } 2344 2345 if (!IS_ERR_OR_NULL(active)) { 2346 /* After all individual context modifications */ 2347 err = i915_request_await_active(rq, active, 2348 I915_ACTIVE_AWAIT_ACTIVE); 2349 if (err) 2350 goto err_add_request; 2351 2352 err = i915_active_add_request(active, rq); 2353 if (err) 2354 goto err_add_request; 2355 } 2356 2357 err = i915_vma_move_to_active(vma, rq, 0); 2358 if (err) 2359 goto err_add_request; 2360 2361 err = rq->engine->emit_bb_start(rq, 2362 i915_vma_offset(vma), 0, 2363 I915_DISPATCH_SECURE); 2364 if (err) 2365 goto err_add_request; 2366 2367 err_add_request: 2368 i915_request_add(rq); 2369 err_vma_unpin: 2370 i915_vma_unpin(vma); 2371 err: 2372 if (err == -EDEADLK) { 2373 err = i915_gem_ww_ctx_backoff(&ww); 2374 if (!err) 2375 goto retry; 2376 } 2377 2378 i915_gem_ww_ctx_fini(&ww); 2379 i915_vma_put(vma); 2380 return err; 2381 } 2382 2383 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2384 { 2385 return stream->pinned_ctx ?: stream->engine->kernel_context; 2386 } 2387 2388 static int 2389 hsw_enable_metric_set(struct i915_perf_stream *stream, 2390 struct i915_active *active) 2391 { 2392 struct intel_uncore *uncore = stream->uncore; 2393 2394 /* 2395 * PRM: 2396 * 2397 * OA unit is using “crclk” for its functionality. When trunk 2398 * level clock gating takes place, OA clock would be gated, 2399 * unable to count the events from non-render clock domain. 2400 * Render clock gating must be disabled when OA is enabled to 2401 * count the events from non-render domain. Unit level clock 2402 * gating for RCS should also be disabled. 2403 */ 2404 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2405 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2406 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2407 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2408 2409 return emit_oa_config(stream, 2410 stream->oa_config, oa_context(stream), 2411 active); 2412 } 2413 2414 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2415 { 2416 struct intel_uncore *uncore = stream->uncore; 2417 2418 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2419 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2420 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2421 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2422 2423 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2424 } 2425 2426 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2427 i915_reg_t reg) 2428 { 2429 u32 mmio = i915_mmio_reg_offset(reg); 2430 int i; 2431 2432 /* 2433 * This arbitrary default will select the 'EU FPU0 Pipeline 2434 * Active' event. In the future it's anticipated that there 2435 * will be an explicit 'No Event' we can select, but not yet... 2436 */ 2437 if (!oa_config) 2438 return 0; 2439 2440 for (i = 0; i < oa_config->flex_regs_len; i++) { 2441 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2442 return oa_config->flex_regs[i].value; 2443 } 2444 2445 return 0; 2446 } 2447 /* 2448 * NB: It must always remain pointer safe to run this even if the OA unit 2449 * has been disabled. 2450 * 2451 * It's fine to put out-of-date values into these per-context registers 2452 * in the case that the OA unit has been disabled. 2453 */ 2454 static void 2455 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2456 const struct i915_perf_stream *stream) 2457 { 2458 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2459 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2460 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2461 static const i915_reg_t flex_regs[] = { 2462 EU_PERF_CNTL0, 2463 EU_PERF_CNTL1, 2464 EU_PERF_CNTL2, 2465 EU_PERF_CNTL3, 2466 EU_PERF_CNTL4, 2467 EU_PERF_CNTL5, 2468 EU_PERF_CNTL6, 2469 }; 2470 u32 *reg_state = ce->lrc_reg_state; 2471 int i; 2472 2473 reg_state[ctx_oactxctrl + 1] = 2474 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2475 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2476 GEN8_OA_COUNTER_RESUME; 2477 2478 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2479 reg_state[ctx_flexeu0 + i * 2 + 1] = 2480 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2481 } 2482 2483 struct flex { 2484 i915_reg_t reg; 2485 u32 offset; 2486 u32 value; 2487 }; 2488 2489 static int 2490 gen8_store_flex(struct i915_request *rq, 2491 struct intel_context *ce, 2492 const struct flex *flex, unsigned int count) 2493 { 2494 u32 offset; 2495 u32 *cs; 2496 2497 cs = intel_ring_begin(rq, 4 * count); 2498 if (IS_ERR(cs)) 2499 return PTR_ERR(cs); 2500 2501 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2502 do { 2503 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2504 *cs++ = offset + flex->offset * sizeof(u32); 2505 *cs++ = 0; 2506 *cs++ = flex->value; 2507 } while (flex++, --count); 2508 2509 intel_ring_advance(rq, cs); 2510 2511 return 0; 2512 } 2513 2514 static int 2515 gen8_load_flex(struct i915_request *rq, 2516 struct intel_context *ce, 2517 const struct flex *flex, unsigned int count) 2518 { 2519 u32 *cs; 2520 2521 GEM_BUG_ON(!count || count > 63); 2522 2523 cs = intel_ring_begin(rq, 2 * count + 2); 2524 if (IS_ERR(cs)) 2525 return PTR_ERR(cs); 2526 2527 *cs++ = MI_LOAD_REGISTER_IMM(count); 2528 do { 2529 *cs++ = i915_mmio_reg_offset(flex->reg); 2530 *cs++ = flex->value; 2531 } while (flex++, --count); 2532 *cs++ = MI_NOOP; 2533 2534 intel_ring_advance(rq, cs); 2535 2536 return 0; 2537 } 2538 2539 static int gen8_modify_context(struct intel_context *ce, 2540 const struct flex *flex, unsigned int count) 2541 { 2542 struct i915_request *rq; 2543 int err; 2544 2545 rq = intel_engine_create_kernel_request(ce->engine); 2546 if (IS_ERR(rq)) 2547 return PTR_ERR(rq); 2548 2549 /* Serialise with the remote context */ 2550 err = intel_context_prepare_remote_request(ce, rq); 2551 if (err == 0) 2552 err = gen8_store_flex(rq, ce, flex, count); 2553 2554 i915_request_add(rq); 2555 return err; 2556 } 2557 2558 static int 2559 gen8_modify_self(struct intel_context *ce, 2560 const struct flex *flex, unsigned int count, 2561 struct i915_active *active) 2562 { 2563 struct i915_request *rq; 2564 int err; 2565 2566 intel_engine_pm_get(ce->engine); 2567 rq = i915_request_create(ce); 2568 intel_engine_pm_put(ce->engine); 2569 if (IS_ERR(rq)) 2570 return PTR_ERR(rq); 2571 2572 if (!IS_ERR_OR_NULL(active)) { 2573 err = i915_active_add_request(active, rq); 2574 if (err) 2575 goto err_add_request; 2576 } 2577 2578 err = gen8_load_flex(rq, ce, flex, count); 2579 if (err) 2580 goto err_add_request; 2581 2582 err_add_request: 2583 i915_request_add(rq); 2584 return err; 2585 } 2586 2587 static int gen8_configure_context(struct i915_perf_stream *stream, 2588 struct i915_gem_context *ctx, 2589 struct flex *flex, unsigned int count) 2590 { 2591 struct i915_gem_engines_iter it; 2592 struct intel_context *ce; 2593 int err = 0; 2594 2595 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2596 GEM_BUG_ON(ce == ce->engine->kernel_context); 2597 2598 if (ce->engine->class != RENDER_CLASS) 2599 continue; 2600 2601 /* Otherwise OA settings will be set upon first use */ 2602 if (!intel_context_pin_if_active(ce)) 2603 continue; 2604 2605 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2606 err = gen8_modify_context(ce, flex, count); 2607 2608 intel_context_unpin(ce); 2609 if (err) 2610 break; 2611 } 2612 i915_gem_context_unlock_engines(ctx); 2613 2614 return err; 2615 } 2616 2617 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2618 struct i915_active *active) 2619 { 2620 int err; 2621 struct intel_context *ce = stream->pinned_ctx; 2622 u32 format = stream->oa_buffer.format->format; 2623 u32 offset = stream->perf->ctx_oactxctrl_offset; 2624 struct flex regs_context[] = { 2625 { 2626 GEN8_OACTXCONTROL, 2627 offset + 1, 2628 active ? GEN8_OA_COUNTER_RESUME : 0, 2629 }, 2630 }; 2631 /* Offsets in regs_lri are not used since this configuration is only 2632 * applied using LRI. Initialize the correct offsets for posterity. 2633 */ 2634 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2635 struct flex regs_lri[] = { 2636 { 2637 GEN12_OAR_OACONTROL, 2638 GEN12_OAR_OACONTROL_OFFSET + 1, 2639 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2640 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2641 }, 2642 { 2643 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2644 CTX_CONTEXT_CONTROL, 2645 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2646 active ? 2647 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2648 0) 2649 }, 2650 }; 2651 2652 /* Modify the context image of pinned context with regs_context */ 2653 err = intel_context_lock_pinned(ce); 2654 if (err) 2655 return err; 2656 2657 err = gen8_modify_context(ce, regs_context, 2658 ARRAY_SIZE(regs_context)); 2659 intel_context_unlock_pinned(ce); 2660 if (err) 2661 return err; 2662 2663 /* Apply regs_lri using LRI with pinned context */ 2664 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2665 } 2666 2667 /* 2668 * Manages updating the per-context aspects of the OA stream 2669 * configuration across all contexts. 2670 * 2671 * The awkward consideration here is that OACTXCONTROL controls the 2672 * exponent for periodic sampling which is primarily used for system 2673 * wide profiling where we'd like a consistent sampling period even in 2674 * the face of context switches. 2675 * 2676 * Our approach of updating the register state context (as opposed to 2677 * say using a workaround batch buffer) ensures that the hardware 2678 * won't automatically reload an out-of-date timer exponent even 2679 * transiently before a WA BB could be parsed. 2680 * 2681 * This function needs to: 2682 * - Ensure the currently running context's per-context OA state is 2683 * updated 2684 * - Ensure that all existing contexts will have the correct per-context 2685 * OA state if they are scheduled for use. 2686 * - Ensure any new contexts will be initialized with the correct 2687 * per-context OA state. 2688 * 2689 * Note: it's only the RCS/Render context that has any OA state. 2690 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2691 */ 2692 static int 2693 oa_configure_all_contexts(struct i915_perf_stream *stream, 2694 struct flex *regs, 2695 size_t num_regs, 2696 struct i915_active *active) 2697 { 2698 struct drm_i915_private *i915 = stream->perf->i915; 2699 struct intel_engine_cs *engine; 2700 struct intel_gt *gt = stream->engine->gt; 2701 struct i915_gem_context *ctx, *cn; 2702 int err; 2703 2704 lockdep_assert_held(>->perf.lock); 2705 2706 /* 2707 * The OA register config is setup through the context image. This image 2708 * might be written to by the GPU on context switch (in particular on 2709 * lite-restore). This means we can't safely update a context's image, 2710 * if this context is scheduled/submitted to run on the GPU. 2711 * 2712 * We could emit the OA register config through the batch buffer but 2713 * this might leave small interval of time where the OA unit is 2714 * configured at an invalid sampling period. 2715 * 2716 * Note that since we emit all requests from a single ring, there 2717 * is still an implicit global barrier here that may cause a high 2718 * priority context to wait for an otherwise independent low priority 2719 * context. Contexts idle at the time of reconfiguration are not 2720 * trapped behind the barrier. 2721 */ 2722 spin_lock(&i915->gem.contexts.lock); 2723 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2724 if (!kref_get_unless_zero(&ctx->ref)) 2725 continue; 2726 2727 spin_unlock(&i915->gem.contexts.lock); 2728 2729 err = gen8_configure_context(stream, ctx, regs, num_regs); 2730 if (err) { 2731 i915_gem_context_put(ctx); 2732 return err; 2733 } 2734 2735 spin_lock(&i915->gem.contexts.lock); 2736 list_safe_reset_next(ctx, cn, link); 2737 i915_gem_context_put(ctx); 2738 } 2739 spin_unlock(&i915->gem.contexts.lock); 2740 2741 /* 2742 * After updating all other contexts, we need to modify ourselves. 2743 * If we don't modify the kernel_context, we do not get events while 2744 * idle. 2745 */ 2746 for_each_uabi_engine(engine, i915) { 2747 struct intel_context *ce = engine->kernel_context; 2748 2749 if (engine->class != RENDER_CLASS) 2750 continue; 2751 2752 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2753 2754 err = gen8_modify_self(ce, regs, num_regs, active); 2755 if (err) 2756 return err; 2757 } 2758 2759 return 0; 2760 } 2761 2762 static int 2763 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2764 const struct i915_oa_config *oa_config, 2765 struct i915_active *active) 2766 { 2767 struct flex regs[] = { 2768 { 2769 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2770 CTX_R_PWR_CLK_STATE, 2771 }, 2772 }; 2773 2774 if (stream->engine->class != RENDER_CLASS) 2775 return 0; 2776 2777 return oa_configure_all_contexts(stream, 2778 regs, ARRAY_SIZE(regs), 2779 active); 2780 } 2781 2782 static int 2783 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2784 const struct i915_oa_config *oa_config, 2785 struct i915_active *active) 2786 { 2787 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2788 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2789 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2790 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2791 struct flex regs[] = { 2792 { 2793 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2794 CTX_R_PWR_CLK_STATE, 2795 }, 2796 { 2797 GEN8_OACTXCONTROL, 2798 ctx_oactxctrl + 1, 2799 }, 2800 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2801 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2802 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2803 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2804 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2805 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2806 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2807 }; 2808 #undef ctx_flexeuN 2809 int i; 2810 2811 regs[1].value = 2812 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2813 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2814 GEN8_OA_COUNTER_RESUME; 2815 2816 for (i = 2; i < ARRAY_SIZE(regs); i++) 2817 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2818 2819 return oa_configure_all_contexts(stream, 2820 regs, ARRAY_SIZE(regs), 2821 active); 2822 } 2823 2824 static int 2825 gen8_enable_metric_set(struct i915_perf_stream *stream, 2826 struct i915_active *active) 2827 { 2828 struct intel_uncore *uncore = stream->uncore; 2829 struct i915_oa_config *oa_config = stream->oa_config; 2830 int ret; 2831 2832 /* 2833 * We disable slice/unslice clock ratio change reports on SKL since 2834 * they are too noisy. The HW generates a lot of redundant reports 2835 * where the ratio hasn't really changed causing a lot of redundant 2836 * work to processes and increasing the chances we'll hit buffer 2837 * overruns. 2838 * 2839 * Although we don't currently use the 'disable overrun' OABUFFER 2840 * feature it's worth noting that clock ratio reports have to be 2841 * disabled before considering to use that feature since the HW doesn't 2842 * correctly block these reports. 2843 * 2844 * Currently none of the high-level metrics we have depend on knowing 2845 * this ratio to normalize. 2846 * 2847 * Note: This register is not power context saved and restored, but 2848 * that's OK considering that we disable RC6 while the OA unit is 2849 * enabled. 2850 * 2851 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2852 * be read back from automatically triggered reports, as part of the 2853 * RPT_ID field. 2854 */ 2855 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) { 2856 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2857 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2858 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2859 } 2860 2861 /* 2862 * Update all contexts prior writing the mux configurations as we need 2863 * to make sure all slices/subslices are ON before writing to NOA 2864 * registers. 2865 */ 2866 ret = lrc_configure_all_contexts(stream, oa_config, active); 2867 if (ret) 2868 return ret; 2869 2870 return emit_oa_config(stream, 2871 stream->oa_config, oa_context(stream), 2872 active); 2873 } 2874 2875 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2876 { 2877 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2878 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2879 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2880 } 2881 2882 static int 2883 gen12_enable_metric_set(struct i915_perf_stream *stream, 2884 struct i915_active *active) 2885 { 2886 struct drm_i915_private *i915 = stream->perf->i915; 2887 struct intel_uncore *uncore = stream->uncore; 2888 struct i915_oa_config *oa_config = stream->oa_config; 2889 bool periodic = stream->periodic; 2890 u32 period_exponent = stream->period_exponent; 2891 u32 sqcnt1; 2892 int ret; 2893 2894 /* 2895 * Wa_1508761755:xehpsdv, dg2 2896 * EU NOA signals behave incorrectly if EU clock gating is enabled. 2897 * Disable thread stall DOP gating and EU DOP gating. 2898 */ 2899 if (IS_XEHPSDV(i915) || IS_DG2(i915)) { 2900 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2901 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE)); 2902 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2903 _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING)); 2904 } 2905 2906 intel_uncore_write(uncore, __oa_regs(stream)->oa_debug, 2907 /* Disable clk ratio reports, like previous Gens. */ 2908 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2909 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2910 /* 2911 * If the user didn't require OA reports, instruct 2912 * the hardware not to emit ctx switch reports. 2913 */ 2914 oag_report_ctx_switches(stream)); 2915 2916 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ? 2917 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2918 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2919 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2920 : 0); 2921 2922 /* 2923 * Initialize Super Queue Internal Cnt Register 2924 * Set PMON Enable in order to collect valid metrics. 2925 * Enable byets per clock reporting in OA for XEHPSDV onward. 2926 */ 2927 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 2928 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 2929 2930 intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1); 2931 2932 /* 2933 * Update all contexts prior writing the mux configurations as we need 2934 * to make sure all slices/subslices are ON before writing to NOA 2935 * registers. 2936 */ 2937 ret = gen12_configure_all_contexts(stream, oa_config, active); 2938 if (ret) 2939 return ret; 2940 2941 /* 2942 * For Gen12, performance counters are context 2943 * saved/restored. Only enable it for the context that 2944 * requested this. 2945 */ 2946 if (stream->ctx) { 2947 ret = gen12_configure_oar_context(stream, active); 2948 if (ret) 2949 return ret; 2950 } 2951 2952 return emit_oa_config(stream, 2953 stream->oa_config, oa_context(stream), 2954 active); 2955 } 2956 2957 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2958 { 2959 struct intel_uncore *uncore = stream->uncore; 2960 2961 /* Reset all contexts' slices/subslices configurations. */ 2962 lrc_configure_all_contexts(stream, NULL, NULL); 2963 2964 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2965 } 2966 2967 static void gen11_disable_metric_set(struct i915_perf_stream *stream) 2968 { 2969 struct intel_uncore *uncore = stream->uncore; 2970 2971 /* Reset all contexts' slices/subslices configurations. */ 2972 lrc_configure_all_contexts(stream, NULL, NULL); 2973 2974 /* Make sure we disable noa to save power. */ 2975 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2976 } 2977 2978 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2979 { 2980 struct intel_uncore *uncore = stream->uncore; 2981 struct drm_i915_private *i915 = stream->perf->i915; 2982 u32 sqcnt1; 2983 2984 /* 2985 * Wa_1508761755:xehpsdv, dg2 2986 * Enable thread stall DOP gating and EU DOP gating. 2987 */ 2988 if (IS_XEHPSDV(i915) || IS_DG2(i915)) { 2989 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2990 _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE)); 2991 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2992 _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING)); 2993 } 2994 2995 /* Reset all contexts' slices/subslices configurations. */ 2996 gen12_configure_all_contexts(stream, NULL, NULL); 2997 2998 /* disable the context save/restore or OAR counters */ 2999 if (stream->ctx) 3000 gen12_configure_oar_context(stream, NULL); 3001 3002 /* Make sure we disable noa to save power. */ 3003 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 3004 3005 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 3006 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 3007 3008 /* Reset PMON Enable to save power. */ 3009 intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0); 3010 } 3011 3012 static void gen7_oa_enable(struct i915_perf_stream *stream) 3013 { 3014 struct intel_uncore *uncore = stream->uncore; 3015 struct i915_gem_context *ctx = stream->ctx; 3016 u32 ctx_id = stream->specific_ctx_id; 3017 bool periodic = stream->periodic; 3018 u32 period_exponent = stream->period_exponent; 3019 u32 report_format = stream->oa_buffer.format->format; 3020 3021 /* 3022 * Reset buf pointers so we don't forward reports from before now. 3023 * 3024 * Think carefully if considering trying to avoid this, since it 3025 * also ensures status flags and the buffer itself are cleared 3026 * in error paths, and we have checks for invalid reports based 3027 * on the assumption that certain fields are written to zeroed 3028 * memory which this helps maintains. 3029 */ 3030 gen7_init_oa_buffer(stream); 3031 3032 intel_uncore_write(uncore, GEN7_OACONTROL, 3033 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 3034 (period_exponent << 3035 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 3036 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 3037 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 3038 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 3039 GEN7_OACONTROL_ENABLE); 3040 } 3041 3042 static void gen8_oa_enable(struct i915_perf_stream *stream) 3043 { 3044 struct intel_uncore *uncore = stream->uncore; 3045 u32 report_format = stream->oa_buffer.format->format; 3046 3047 /* 3048 * Reset buf pointers so we don't forward reports from before now. 3049 * 3050 * Think carefully if considering trying to avoid this, since it 3051 * also ensures status flags and the buffer itself are cleared 3052 * in error paths, and we have checks for invalid reports based 3053 * on the assumption that certain fields are written to zeroed 3054 * memory which this helps maintains. 3055 */ 3056 gen8_init_oa_buffer(stream); 3057 3058 /* 3059 * Note: we don't rely on the hardware to perform single context 3060 * filtering and instead filter on the cpu based on the context-id 3061 * field of reports 3062 */ 3063 intel_uncore_write(uncore, GEN8_OACONTROL, 3064 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 3065 GEN8_OA_COUNTER_ENABLE); 3066 } 3067 3068 static void gen12_oa_enable(struct i915_perf_stream *stream) 3069 { 3070 const struct i915_perf_regs *regs; 3071 u32 val; 3072 3073 /* 3074 * If we don't want OA reports from the OA buffer, then we don't even 3075 * need to program the OAG unit. 3076 */ 3077 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 3078 return; 3079 3080 gen12_init_oa_buffer(stream); 3081 3082 regs = __oa_regs(stream); 3083 val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) | 3084 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE; 3085 3086 intel_uncore_write(stream->uncore, regs->oa_ctrl, val); 3087 } 3088 3089 /** 3090 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 3091 * @stream: An i915 perf stream opened for OA metrics 3092 * 3093 * [Re]enables hardware periodic sampling according to the period configured 3094 * when opening the stream. This also starts a hrtimer that will periodically 3095 * check for data in the circular OA buffer for notifying userspace (e.g. 3096 * during a read() or poll()). 3097 */ 3098 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 3099 { 3100 stream->pollin = false; 3101 3102 stream->perf->ops.oa_enable(stream); 3103 3104 if (stream->sample_flags & SAMPLE_OA_REPORT) 3105 hrtimer_start(&stream->poll_check_timer, 3106 ns_to_ktime(stream->poll_oa_period), 3107 HRTIMER_MODE_REL_PINNED); 3108 } 3109 3110 static void gen7_oa_disable(struct i915_perf_stream *stream) 3111 { 3112 struct intel_uncore *uncore = stream->uncore; 3113 3114 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 3115 if (intel_wait_for_register(uncore, 3116 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 3117 50)) 3118 drm_err(&stream->perf->i915->drm, 3119 "wait for OA to be disabled timed out\n"); 3120 } 3121 3122 static void gen8_oa_disable(struct i915_perf_stream *stream) 3123 { 3124 struct intel_uncore *uncore = stream->uncore; 3125 3126 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 3127 if (intel_wait_for_register(uncore, 3128 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 3129 50)) 3130 drm_err(&stream->perf->i915->drm, 3131 "wait for OA to be disabled timed out\n"); 3132 } 3133 3134 static void gen12_oa_disable(struct i915_perf_stream *stream) 3135 { 3136 struct intel_uncore *uncore = stream->uncore; 3137 3138 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0); 3139 if (intel_wait_for_register(uncore, 3140 __oa_regs(stream)->oa_ctrl, 3141 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 3142 50)) 3143 drm_err(&stream->perf->i915->drm, 3144 "wait for OA to be disabled timed out\n"); 3145 3146 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 3147 if (intel_wait_for_register(uncore, 3148 GEN12_OA_TLB_INV_CR, 3149 1, 0, 3150 50)) 3151 drm_err(&stream->perf->i915->drm, 3152 "wait for OA tlb invalidate timed out\n"); 3153 } 3154 3155 /** 3156 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 3157 * @stream: An i915 perf stream opened for OA metrics 3158 * 3159 * Stops the OA unit from periodically writing counter reports into the 3160 * circular OA buffer. This also stops the hrtimer that periodically checks for 3161 * data in the circular OA buffer, for notifying userspace. 3162 */ 3163 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 3164 { 3165 stream->perf->ops.oa_disable(stream); 3166 3167 if (stream->sample_flags & SAMPLE_OA_REPORT) 3168 hrtimer_cancel(&stream->poll_check_timer); 3169 } 3170 3171 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 3172 .destroy = i915_oa_stream_destroy, 3173 .enable = i915_oa_stream_enable, 3174 .disable = i915_oa_stream_disable, 3175 .wait_unlocked = i915_oa_wait_unlocked, 3176 .poll_wait = i915_oa_poll_wait, 3177 .read = i915_oa_read, 3178 }; 3179 3180 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 3181 { 3182 struct i915_active *active; 3183 int err; 3184 3185 active = i915_active_create(); 3186 if (!active) 3187 return -ENOMEM; 3188 3189 err = stream->perf->ops.enable_metric_set(stream, active); 3190 if (err == 0) 3191 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 3192 3193 i915_active_put(active); 3194 return err; 3195 } 3196 3197 static void 3198 get_default_sseu_config(struct intel_sseu *out_sseu, 3199 struct intel_engine_cs *engine) 3200 { 3201 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 3202 3203 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 3204 3205 if (GRAPHICS_VER(engine->i915) == 11) { 3206 /* 3207 * We only need subslice count so it doesn't matter which ones 3208 * we select - just turn off low bits in the amount of half of 3209 * all available subslices per slice. 3210 */ 3211 out_sseu->subslice_mask = 3212 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 3213 out_sseu->slice_mask = 0x1; 3214 } 3215 } 3216 3217 static int 3218 get_sseu_config(struct intel_sseu *out_sseu, 3219 struct intel_engine_cs *engine, 3220 const struct drm_i915_gem_context_param_sseu *drm_sseu) 3221 { 3222 if (drm_sseu->engine.engine_class != engine->uabi_class || 3223 drm_sseu->engine.engine_instance != engine->uabi_instance) 3224 return -EINVAL; 3225 3226 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 3227 } 3228 3229 /* 3230 * OA timestamp frequency = CS timestamp frequency in most platforms. On some 3231 * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such 3232 * cases, return the adjusted CS timestamp frequency to the user. 3233 */ 3234 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915) 3235 { 3236 /* 3237 * Wa_18013179988:dg2 3238 * Wa_14015846243:mtl 3239 */ 3240 if (IS_DG2(i915) || IS_METEORLAKE(i915)) { 3241 intel_wakeref_t wakeref; 3242 u32 reg, shift; 3243 3244 with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref) 3245 reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0); 3246 3247 shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK, 3248 reg); 3249 3250 return to_gt(i915)->clock_frequency << (3 - shift); 3251 } 3252 3253 return to_gt(i915)->clock_frequency; 3254 } 3255 3256 /** 3257 * i915_oa_stream_init - validate combined props for OA stream and init 3258 * @stream: An i915 perf stream 3259 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 3260 * @props: The property state that configures stream (individually validated) 3261 * 3262 * While read_properties_unlocked() validates properties in isolation it 3263 * doesn't ensure that the combination necessarily makes sense. 3264 * 3265 * At this point it has been determined that userspace wants a stream of 3266 * OA metrics, but still we need to further validate the combined 3267 * properties are OK. 3268 * 3269 * If the configuration makes sense then we can allocate memory for 3270 * a circular OA buffer and apply the requested metric set configuration. 3271 * 3272 * Returns: zero on success or a negative error code. 3273 */ 3274 static int i915_oa_stream_init(struct i915_perf_stream *stream, 3275 struct drm_i915_perf_open_param *param, 3276 struct perf_open_properties *props) 3277 { 3278 struct drm_i915_private *i915 = stream->perf->i915; 3279 struct i915_perf *perf = stream->perf; 3280 struct i915_perf_group *g; 3281 struct intel_gt *gt; 3282 int ret; 3283 3284 if (!props->engine) { 3285 drm_dbg(&stream->perf->i915->drm, 3286 "OA engine not specified\n"); 3287 return -EINVAL; 3288 } 3289 gt = props->engine->gt; 3290 g = props->engine->oa_group; 3291 3292 /* 3293 * If the sysfs metrics/ directory wasn't registered for some 3294 * reason then don't let userspace try their luck with config 3295 * IDs 3296 */ 3297 if (!perf->metrics_kobj) { 3298 drm_dbg(&stream->perf->i915->drm, 3299 "OA metrics weren't advertised via sysfs\n"); 3300 return -EINVAL; 3301 } 3302 3303 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 3304 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) { 3305 drm_dbg(&stream->perf->i915->drm, 3306 "Only OA report sampling supported\n"); 3307 return -EINVAL; 3308 } 3309 3310 if (!perf->ops.enable_metric_set) { 3311 drm_dbg(&stream->perf->i915->drm, 3312 "OA unit not supported\n"); 3313 return -ENODEV; 3314 } 3315 3316 /* 3317 * To avoid the complexity of having to accurately filter 3318 * counter reports and marshal to the appropriate client 3319 * we currently only allow exclusive access 3320 */ 3321 if (g->exclusive_stream) { 3322 drm_dbg(&stream->perf->i915->drm, 3323 "OA unit already in use\n"); 3324 return -EBUSY; 3325 } 3326 3327 if (!props->oa_format) { 3328 drm_dbg(&stream->perf->i915->drm, 3329 "OA report format not specified\n"); 3330 return -EINVAL; 3331 } 3332 3333 stream->engine = props->engine; 3334 stream->uncore = stream->engine->gt->uncore; 3335 3336 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 3337 3338 stream->oa_buffer.format = &perf->oa_formats[props->oa_format]; 3339 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0)) 3340 return -EINVAL; 3341 3342 stream->sample_flags = props->sample_flags; 3343 stream->sample_size += stream->oa_buffer.format->size; 3344 3345 stream->hold_preemption = props->hold_preemption; 3346 3347 stream->periodic = props->oa_periodic; 3348 if (stream->periodic) 3349 stream->period_exponent = props->oa_period_exponent; 3350 3351 if (stream->ctx) { 3352 ret = oa_get_render_ctx_id(stream); 3353 if (ret) { 3354 drm_dbg(&stream->perf->i915->drm, 3355 "Invalid context id to filter with\n"); 3356 return ret; 3357 } 3358 } 3359 3360 ret = alloc_noa_wait(stream); 3361 if (ret) { 3362 drm_dbg(&stream->perf->i915->drm, 3363 "Unable to allocate NOA wait batch buffer\n"); 3364 goto err_noa_wait_alloc; 3365 } 3366 3367 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 3368 if (!stream->oa_config) { 3369 drm_dbg(&stream->perf->i915->drm, 3370 "Invalid OA config id=%i\n", props->metrics_set); 3371 ret = -EINVAL; 3372 goto err_config; 3373 } 3374 3375 /* PRM - observability performance counters: 3376 * 3377 * OACONTROL, performance counter enable, note: 3378 * 3379 * "When this bit is set, in order to have coherent counts, 3380 * RC6 power state and trunk clock gating must be disabled. 3381 * This can be achieved by programming MMIO registers as 3382 * 0xA094=0 and 0xA090[31]=1" 3383 * 3384 * In our case we are expecting that taking pm + FORCEWAKE 3385 * references will effectively disable RC6. 3386 */ 3387 intel_engine_pm_get(stream->engine); 3388 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 3389 3390 /* 3391 * Wa_16011777198:dg2: GuC resets render as part of the Wa. This causes 3392 * OA to lose the configuration state. Prevent this by overriding GUCRC 3393 * mode. 3394 */ 3395 if (intel_uc_uses_guc_rc(>->uc) && 3396 (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || 3397 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))) { 3398 ret = intel_guc_slpc_override_gucrc_mode(>->uc.guc.slpc, 3399 SLPC_GUCRC_MODE_GUCRC_NO_RC6); 3400 if (ret) { 3401 drm_dbg(&stream->perf->i915->drm, 3402 "Unable to override gucrc mode\n"); 3403 goto err_gucrc; 3404 } 3405 3406 stream->override_gucrc = true; 3407 } 3408 3409 ret = alloc_oa_buffer(stream); 3410 if (ret) 3411 goto err_oa_buf_alloc; 3412 3413 stream->ops = &i915_oa_stream_ops; 3414 3415 stream->engine->gt->perf.sseu = props->sseu; 3416 WRITE_ONCE(g->exclusive_stream, stream); 3417 3418 ret = i915_perf_stream_enable_sync(stream); 3419 if (ret) { 3420 drm_dbg(&stream->perf->i915->drm, 3421 "Unable to enable metric set\n"); 3422 goto err_enable; 3423 } 3424 3425 drm_dbg(&stream->perf->i915->drm, 3426 "opening stream oa config uuid=%s\n", 3427 stream->oa_config->uuid); 3428 3429 hrtimer_init(&stream->poll_check_timer, 3430 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3431 stream->poll_check_timer.function = oa_poll_check_timer_cb; 3432 init_waitqueue_head(&stream->poll_wq); 3433 spin_lock_init(&stream->oa_buffer.ptr_lock); 3434 mutex_init(&stream->lock); 3435 3436 return 0; 3437 3438 err_enable: 3439 WRITE_ONCE(g->exclusive_stream, NULL); 3440 perf->ops.disable_metric_set(stream); 3441 3442 free_oa_buffer(stream); 3443 3444 err_oa_buf_alloc: 3445 if (stream->override_gucrc) 3446 intel_guc_slpc_unset_gucrc_mode(>->uc.guc.slpc); 3447 3448 err_gucrc: 3449 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 3450 intel_engine_pm_put(stream->engine); 3451 3452 free_oa_configs(stream); 3453 3454 err_config: 3455 free_noa_wait(stream); 3456 3457 err_noa_wait_alloc: 3458 if (stream->ctx) 3459 oa_put_render_ctx_id(stream); 3460 3461 return ret; 3462 } 3463 3464 void i915_oa_init_reg_state(const struct intel_context *ce, 3465 const struct intel_engine_cs *engine) 3466 { 3467 struct i915_perf_stream *stream; 3468 3469 if (engine->class != RENDER_CLASS) 3470 return; 3471 3472 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 3473 stream = READ_ONCE(engine->oa_group->exclusive_stream); 3474 if (stream && GRAPHICS_VER(stream->perf->i915) < 12) 3475 gen8_update_reg_state_unlocked(ce, stream); 3476 } 3477 3478 /** 3479 * i915_perf_read - handles read() FOP for i915 perf stream FDs 3480 * @file: An i915 perf stream file 3481 * @buf: destination buffer given by userspace 3482 * @count: the number of bytes userspace wants to read 3483 * @ppos: (inout) file seek position (unused) 3484 * 3485 * The entry point for handling a read() on a stream file descriptor from 3486 * userspace. Most of the work is left to the i915_perf_read_locked() and 3487 * &i915_perf_stream_ops->read but to save having stream implementations (of 3488 * which we might have multiple later) we handle blocking read here. 3489 * 3490 * We can also consistently treat trying to read from a disabled stream 3491 * as an IO error so implementations can assume the stream is enabled 3492 * while reading. 3493 * 3494 * Returns: The number of bytes copied or a negative error code on failure. 3495 */ 3496 static ssize_t i915_perf_read(struct file *file, 3497 char __user *buf, 3498 size_t count, 3499 loff_t *ppos) 3500 { 3501 struct i915_perf_stream *stream = file->private_data; 3502 size_t offset = 0; 3503 int ret; 3504 3505 /* To ensure it's handled consistently we simply treat all reads of a 3506 * disabled stream as an error. In particular it might otherwise lead 3507 * to a deadlock for blocking file descriptors... 3508 */ 3509 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT)) 3510 return -EIO; 3511 3512 if (!(file->f_flags & O_NONBLOCK)) { 3513 /* There's the small chance of false positives from 3514 * stream->ops->wait_unlocked. 3515 * 3516 * E.g. with single context filtering since we only wait until 3517 * oabuffer has >= 1 report we don't immediately know whether 3518 * any reports really belong to the current context 3519 */ 3520 do { 3521 ret = stream->ops->wait_unlocked(stream); 3522 if (ret) 3523 return ret; 3524 3525 mutex_lock(&stream->lock); 3526 ret = stream->ops->read(stream, buf, count, &offset); 3527 mutex_unlock(&stream->lock); 3528 } while (!offset && !ret); 3529 } else { 3530 mutex_lock(&stream->lock); 3531 ret = stream->ops->read(stream, buf, count, &offset); 3532 mutex_unlock(&stream->lock); 3533 } 3534 3535 /* We allow the poll checking to sometimes report false positive EPOLLIN 3536 * events where we might actually report EAGAIN on read() if there's 3537 * not really any data available. In this situation though we don't 3538 * want to enter a busy loop between poll() reporting a EPOLLIN event 3539 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3540 * effectively ensures we back off until the next hrtimer callback 3541 * before reporting another EPOLLIN event. 3542 * The exception to this is if ops->read() returned -ENOSPC which means 3543 * that more OA data is available than could fit in the user provided 3544 * buffer. In this case we want the next poll() call to not block. 3545 */ 3546 if (ret != -ENOSPC) 3547 stream->pollin = false; 3548 3549 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3550 return offset ?: (ret ?: -EAGAIN); 3551 } 3552 3553 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3554 { 3555 struct i915_perf_stream *stream = 3556 container_of(hrtimer, typeof(*stream), poll_check_timer); 3557 3558 if (oa_buffer_check_unlocked(stream)) { 3559 stream->pollin = true; 3560 wake_up(&stream->poll_wq); 3561 } 3562 3563 hrtimer_forward_now(hrtimer, 3564 ns_to_ktime(stream->poll_oa_period)); 3565 3566 return HRTIMER_RESTART; 3567 } 3568 3569 /** 3570 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3571 * @stream: An i915 perf stream 3572 * @file: An i915 perf stream file 3573 * @wait: poll() state table 3574 * 3575 * For handling userspace polling on an i915 perf stream, this calls through to 3576 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3577 * will be woken for new stream data. 3578 * 3579 * Returns: any poll events that are ready without sleeping 3580 */ 3581 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3582 struct file *file, 3583 poll_table *wait) 3584 { 3585 __poll_t events = 0; 3586 3587 stream->ops->poll_wait(stream, file, wait); 3588 3589 /* Note: we don't explicitly check whether there's something to read 3590 * here since this path may be very hot depending on what else 3591 * userspace is polling, or on the timeout in use. We rely solely on 3592 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3593 * samples to read. 3594 */ 3595 if (stream->pollin) 3596 events |= EPOLLIN; 3597 3598 return events; 3599 } 3600 3601 /** 3602 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3603 * @file: An i915 perf stream file 3604 * @wait: poll() state table 3605 * 3606 * For handling userspace polling on an i915 perf stream, this ensures 3607 * poll_wait() gets called with a wait queue that will be woken for new stream 3608 * data. 3609 * 3610 * Note: Implementation deferred to i915_perf_poll_locked() 3611 * 3612 * Returns: any poll events that are ready without sleeping 3613 */ 3614 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3615 { 3616 struct i915_perf_stream *stream = file->private_data; 3617 __poll_t ret; 3618 3619 mutex_lock(&stream->lock); 3620 ret = i915_perf_poll_locked(stream, file, wait); 3621 mutex_unlock(&stream->lock); 3622 3623 return ret; 3624 } 3625 3626 /** 3627 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3628 * @stream: A disabled i915 perf stream 3629 * 3630 * [Re]enables the associated capture of data for this stream. 3631 * 3632 * If a stream was previously enabled then there's currently no intention 3633 * to provide userspace any guarantee about the preservation of previously 3634 * buffered data. 3635 */ 3636 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3637 { 3638 if (stream->enabled) 3639 return; 3640 3641 /* Allow stream->ops->enable() to refer to this */ 3642 stream->enabled = true; 3643 3644 if (stream->ops->enable) 3645 stream->ops->enable(stream); 3646 3647 if (stream->hold_preemption) 3648 intel_context_set_nopreempt(stream->pinned_ctx); 3649 } 3650 3651 /** 3652 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3653 * @stream: An enabled i915 perf stream 3654 * 3655 * Disables the associated capture of data for this stream. 3656 * 3657 * The intention is that disabling an re-enabling a stream will ideally be 3658 * cheaper than destroying and re-opening a stream with the same configuration, 3659 * though there are no formal guarantees about what state or buffered data 3660 * must be retained between disabling and re-enabling a stream. 3661 * 3662 * Note: while a stream is disabled it's considered an error for userspace 3663 * to attempt to read from the stream (-EIO). 3664 */ 3665 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3666 { 3667 if (!stream->enabled) 3668 return; 3669 3670 /* Allow stream->ops->disable() to refer to this */ 3671 stream->enabled = false; 3672 3673 if (stream->hold_preemption) 3674 intel_context_clear_nopreempt(stream->pinned_ctx); 3675 3676 if (stream->ops->disable) 3677 stream->ops->disable(stream); 3678 } 3679 3680 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3681 unsigned long metrics_set) 3682 { 3683 struct i915_oa_config *config; 3684 long ret = stream->oa_config->id; 3685 3686 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3687 if (!config) 3688 return -EINVAL; 3689 3690 if (config != stream->oa_config) { 3691 int err; 3692 3693 /* 3694 * If OA is bound to a specific context, emit the 3695 * reconfiguration inline from that context. The update 3696 * will then be ordered with respect to submission on that 3697 * context. 3698 * 3699 * When set globally, we use a low priority kernel context, 3700 * so it will effectively take effect when idle. 3701 */ 3702 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3703 if (!err) 3704 config = xchg(&stream->oa_config, config); 3705 else 3706 ret = err; 3707 } 3708 3709 i915_oa_config_put(config); 3710 3711 return ret; 3712 } 3713 3714 /** 3715 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3716 * @stream: An i915 perf stream 3717 * @cmd: the ioctl request 3718 * @arg: the ioctl data 3719 * 3720 * Returns: zero on success or a negative error code. Returns -EINVAL for 3721 * an unknown ioctl request. 3722 */ 3723 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3724 unsigned int cmd, 3725 unsigned long arg) 3726 { 3727 switch (cmd) { 3728 case I915_PERF_IOCTL_ENABLE: 3729 i915_perf_enable_locked(stream); 3730 return 0; 3731 case I915_PERF_IOCTL_DISABLE: 3732 i915_perf_disable_locked(stream); 3733 return 0; 3734 case I915_PERF_IOCTL_CONFIG: 3735 return i915_perf_config_locked(stream, arg); 3736 } 3737 3738 return -EINVAL; 3739 } 3740 3741 /** 3742 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3743 * @file: An i915 perf stream file 3744 * @cmd: the ioctl request 3745 * @arg: the ioctl data 3746 * 3747 * Implementation deferred to i915_perf_ioctl_locked(). 3748 * 3749 * Returns: zero on success or a negative error code. Returns -EINVAL for 3750 * an unknown ioctl request. 3751 */ 3752 static long i915_perf_ioctl(struct file *file, 3753 unsigned int cmd, 3754 unsigned long arg) 3755 { 3756 struct i915_perf_stream *stream = file->private_data; 3757 long ret; 3758 3759 mutex_lock(&stream->lock); 3760 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3761 mutex_unlock(&stream->lock); 3762 3763 return ret; 3764 } 3765 3766 /** 3767 * i915_perf_destroy_locked - destroy an i915 perf stream 3768 * @stream: An i915 perf stream 3769 * 3770 * Frees all resources associated with the given i915 perf @stream, disabling 3771 * any associated data capture in the process. 3772 * 3773 * Note: The >->perf.lock mutex has been taken to serialize 3774 * with any non-file-operation driver hooks. 3775 */ 3776 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3777 { 3778 if (stream->enabled) 3779 i915_perf_disable_locked(stream); 3780 3781 if (stream->ops->destroy) 3782 stream->ops->destroy(stream); 3783 3784 if (stream->ctx) 3785 i915_gem_context_put(stream->ctx); 3786 3787 kfree(stream); 3788 } 3789 3790 /** 3791 * i915_perf_release - handles userspace close() of a stream file 3792 * @inode: anonymous inode associated with file 3793 * @file: An i915 perf stream file 3794 * 3795 * Cleans up any resources associated with an open i915 perf stream file. 3796 * 3797 * NB: close() can't really fail from the userspace point of view. 3798 * 3799 * Returns: zero on success or a negative error code. 3800 */ 3801 static int i915_perf_release(struct inode *inode, struct file *file) 3802 { 3803 struct i915_perf_stream *stream = file->private_data; 3804 struct i915_perf *perf = stream->perf; 3805 struct intel_gt *gt = stream->engine->gt; 3806 3807 /* 3808 * Within this call, we know that the fd is being closed and we have no 3809 * other user of stream->lock. Use the perf lock to destroy the stream 3810 * here. 3811 */ 3812 mutex_lock(>->perf.lock); 3813 i915_perf_destroy_locked(stream); 3814 mutex_unlock(>->perf.lock); 3815 3816 /* Release the reference the perf stream kept on the driver. */ 3817 drm_dev_put(&perf->i915->drm); 3818 3819 return 0; 3820 } 3821 3822 3823 static const struct file_operations fops = { 3824 .owner = THIS_MODULE, 3825 .llseek = no_llseek, 3826 .release = i915_perf_release, 3827 .poll = i915_perf_poll, 3828 .read = i915_perf_read, 3829 .unlocked_ioctl = i915_perf_ioctl, 3830 /* Our ioctl have no arguments, so it's safe to use the same function 3831 * to handle 32bits compatibility. 3832 */ 3833 .compat_ioctl = i915_perf_ioctl, 3834 }; 3835 3836 3837 /** 3838 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3839 * @perf: i915 perf instance 3840 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3841 * @props: individually validated u64 property value pairs 3842 * @file: drm file 3843 * 3844 * See i915_perf_ioctl_open() for interface details. 3845 * 3846 * Implements further stream config validation and stream initialization on 3847 * behalf of i915_perf_open_ioctl() with the >->perf.lock mutex 3848 * taken to serialize with any non-file-operation driver hooks. 3849 * 3850 * Note: at this point the @props have only been validated in isolation and 3851 * it's still necessary to validate that the combination of properties makes 3852 * sense. 3853 * 3854 * In the case where userspace is interested in OA unit metrics then further 3855 * config validation and stream initialization details will be handled by 3856 * i915_oa_stream_init(). The code here should only validate config state that 3857 * will be relevant to all stream types / backends. 3858 * 3859 * Returns: zero on success or a negative error code. 3860 */ 3861 static int 3862 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3863 struct drm_i915_perf_open_param *param, 3864 struct perf_open_properties *props, 3865 struct drm_file *file) 3866 { 3867 struct i915_gem_context *specific_ctx = NULL; 3868 struct i915_perf_stream *stream = NULL; 3869 unsigned long f_flags = 0; 3870 bool privileged_op = true; 3871 int stream_fd; 3872 int ret; 3873 3874 if (props->single_context) { 3875 u32 ctx_handle = props->ctx_handle; 3876 struct drm_i915_file_private *file_priv = file->driver_priv; 3877 3878 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3879 if (IS_ERR(specific_ctx)) { 3880 drm_dbg(&perf->i915->drm, 3881 "Failed to look up context with ID %u for opening perf stream\n", 3882 ctx_handle); 3883 ret = PTR_ERR(specific_ctx); 3884 goto err; 3885 } 3886 } 3887 3888 /* 3889 * On Haswell the OA unit supports clock gating off for a specific 3890 * context and in this mode there's no visibility of metrics for the 3891 * rest of the system, which we consider acceptable for a 3892 * non-privileged client. 3893 * 3894 * For Gen8->11 the OA unit no longer supports clock gating off for a 3895 * specific context and the kernel can't securely stop the counters 3896 * from updating as system-wide / global values. Even though we can 3897 * filter reports based on the included context ID we can't block 3898 * clients from seeing the raw / global counter values via 3899 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3900 * enable the OA unit by default. 3901 * 3902 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3903 * per context basis. So we can relax requirements there if the user 3904 * doesn't request global stream access (i.e. query based sampling 3905 * using MI_RECORD_PERF_COUNT. 3906 */ 3907 if (IS_HASWELL(perf->i915) && specific_ctx) 3908 privileged_op = false; 3909 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx && 3910 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3911 privileged_op = false; 3912 3913 if (props->hold_preemption) { 3914 if (!props->single_context) { 3915 drm_dbg(&perf->i915->drm, 3916 "preemption disable with no context\n"); 3917 ret = -EINVAL; 3918 goto err; 3919 } 3920 privileged_op = true; 3921 } 3922 3923 /* 3924 * Asking for SSEU configuration is a priviliged operation. 3925 */ 3926 if (props->has_sseu) 3927 privileged_op = true; 3928 else 3929 get_default_sseu_config(&props->sseu, props->engine); 3930 3931 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3932 * we check a dev.i915.perf_stream_paranoid sysctl option 3933 * to determine if it's ok to access system wide OA counters 3934 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3935 */ 3936 if (privileged_op && 3937 i915_perf_stream_paranoid && !perfmon_capable()) { 3938 drm_dbg(&perf->i915->drm, 3939 "Insufficient privileges to open i915 perf stream\n"); 3940 ret = -EACCES; 3941 goto err_ctx; 3942 } 3943 3944 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3945 if (!stream) { 3946 ret = -ENOMEM; 3947 goto err_ctx; 3948 } 3949 3950 stream->perf = perf; 3951 stream->ctx = specific_ctx; 3952 stream->poll_oa_period = props->poll_oa_period; 3953 3954 ret = i915_oa_stream_init(stream, param, props); 3955 if (ret) 3956 goto err_alloc; 3957 3958 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3959 * to have _stream_init check the combination of sample flags more 3960 * thoroughly, but still this is the expected result at this point. 3961 */ 3962 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3963 ret = -ENODEV; 3964 goto err_flags; 3965 } 3966 3967 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3968 f_flags |= O_CLOEXEC; 3969 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3970 f_flags |= O_NONBLOCK; 3971 3972 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3973 if (stream_fd < 0) { 3974 ret = stream_fd; 3975 goto err_flags; 3976 } 3977 3978 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3979 i915_perf_enable_locked(stream); 3980 3981 /* Take a reference on the driver that will be kept with stream_fd 3982 * until its release. 3983 */ 3984 drm_dev_get(&perf->i915->drm); 3985 3986 return stream_fd; 3987 3988 err_flags: 3989 if (stream->ops->destroy) 3990 stream->ops->destroy(stream); 3991 err_alloc: 3992 kfree(stream); 3993 err_ctx: 3994 if (specific_ctx) 3995 i915_gem_context_put(specific_ctx); 3996 err: 3997 return ret; 3998 } 3999 4000 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 4001 { 4002 u64 nom = (2ULL << exponent) * NSEC_PER_SEC; 4003 u32 den = i915_perf_oa_timestamp_frequency(perf->i915); 4004 4005 return div_u64(nom + den - 1, den); 4006 } 4007 4008 static __always_inline bool 4009 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format) 4010 { 4011 return test_bit(format, perf->format_mask); 4012 } 4013 4014 static __always_inline void 4015 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format) 4016 { 4017 __set_bit(format, perf->format_mask); 4018 } 4019 4020 /** 4021 * read_properties_unlocked - validate + copy userspace stream open properties 4022 * @perf: i915 perf instance 4023 * @uprops: The array of u64 key value pairs given by userspace 4024 * @n_props: The number of key value pairs expected in @uprops 4025 * @props: The stream configuration built up while validating properties 4026 * 4027 * Note this function only validates properties in isolation it doesn't 4028 * validate that the combination of properties makes sense or that all 4029 * properties necessary for a particular kind of stream have been set. 4030 * 4031 * Note that there currently aren't any ordering requirements for properties so 4032 * we shouldn't validate or assume anything about ordering here. This doesn't 4033 * rule out defining new properties with ordering requirements in the future. 4034 */ 4035 static int read_properties_unlocked(struct i915_perf *perf, 4036 u64 __user *uprops, 4037 u32 n_props, 4038 struct perf_open_properties *props) 4039 { 4040 struct drm_i915_gem_context_param_sseu user_sseu; 4041 const struct i915_oa_format *f; 4042 u64 __user *uprop = uprops; 4043 bool config_instance = false; 4044 bool config_class = false; 4045 bool config_sseu = false; 4046 u8 class, instance; 4047 u32 i; 4048 int ret; 4049 4050 memset(props, 0, sizeof(struct perf_open_properties)); 4051 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 4052 4053 /* Considering that ID = 0 is reserved and assuming that we don't 4054 * (currently) expect any configurations to ever specify duplicate 4055 * values for a particular property ID then the last _PROP_MAX value is 4056 * one greater than the maximum number of properties we expect to get 4057 * from userspace. 4058 */ 4059 if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) { 4060 drm_dbg(&perf->i915->drm, 4061 "Invalid number of i915 perf properties given\n"); 4062 return -EINVAL; 4063 } 4064 4065 /* Defaults when class:instance is not passed */ 4066 class = I915_ENGINE_CLASS_RENDER; 4067 instance = 0; 4068 4069 for (i = 0; i < n_props; i++) { 4070 u64 oa_period, oa_freq_hz; 4071 u64 id, value; 4072 4073 ret = get_user(id, uprop); 4074 if (ret) 4075 return ret; 4076 4077 ret = get_user(value, uprop + 1); 4078 if (ret) 4079 return ret; 4080 4081 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 4082 drm_dbg(&perf->i915->drm, 4083 "Unknown i915 perf property ID\n"); 4084 return -EINVAL; 4085 } 4086 4087 switch ((enum drm_i915_perf_property_id)id) { 4088 case DRM_I915_PERF_PROP_CTX_HANDLE: 4089 props->single_context = 1; 4090 props->ctx_handle = value; 4091 break; 4092 case DRM_I915_PERF_PROP_SAMPLE_OA: 4093 if (value) 4094 props->sample_flags |= SAMPLE_OA_REPORT; 4095 break; 4096 case DRM_I915_PERF_PROP_OA_METRICS_SET: 4097 if (value == 0) { 4098 drm_dbg(&perf->i915->drm, 4099 "Unknown OA metric set ID\n"); 4100 return -EINVAL; 4101 } 4102 props->metrics_set = value; 4103 break; 4104 case DRM_I915_PERF_PROP_OA_FORMAT: 4105 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 4106 drm_dbg(&perf->i915->drm, 4107 "Out-of-range OA report format %llu\n", 4108 value); 4109 return -EINVAL; 4110 } 4111 if (!oa_format_valid(perf, value)) { 4112 drm_dbg(&perf->i915->drm, 4113 "Unsupported OA report format %llu\n", 4114 value); 4115 return -EINVAL; 4116 } 4117 props->oa_format = value; 4118 break; 4119 case DRM_I915_PERF_PROP_OA_EXPONENT: 4120 if (value > OA_EXPONENT_MAX) { 4121 drm_dbg(&perf->i915->drm, 4122 "OA timer exponent too high (> %u)\n", 4123 OA_EXPONENT_MAX); 4124 return -EINVAL; 4125 } 4126 4127 /* Theoretically we can program the OA unit to sample 4128 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 4129 * for BXT. We don't allow such high sampling 4130 * frequencies by default unless root. 4131 */ 4132 4133 BUILD_BUG_ON(sizeof(oa_period) != 8); 4134 oa_period = oa_exponent_to_ns(perf, value); 4135 4136 /* This check is primarily to ensure that oa_period <= 4137 * UINT32_MAX (before passing to do_div which only 4138 * accepts a u32 denominator), but we can also skip 4139 * checking anything < 1Hz which implicitly can't be 4140 * limited via an integer oa_max_sample_rate. 4141 */ 4142 if (oa_period <= NSEC_PER_SEC) { 4143 u64 tmp = NSEC_PER_SEC; 4144 do_div(tmp, oa_period); 4145 oa_freq_hz = tmp; 4146 } else 4147 oa_freq_hz = 0; 4148 4149 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 4150 drm_dbg(&perf->i915->drm, 4151 "OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 4152 i915_oa_max_sample_rate); 4153 return -EACCES; 4154 } 4155 4156 props->oa_periodic = true; 4157 props->oa_period_exponent = value; 4158 break; 4159 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 4160 props->hold_preemption = !!value; 4161 break; 4162 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 4163 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) { 4164 drm_dbg(&perf->i915->drm, 4165 "SSEU config not supported on gfx %x\n", 4166 GRAPHICS_VER_FULL(perf->i915)); 4167 return -ENODEV; 4168 } 4169 4170 if (copy_from_user(&user_sseu, 4171 u64_to_user_ptr(value), 4172 sizeof(user_sseu))) { 4173 drm_dbg(&perf->i915->drm, 4174 "Unable to copy global sseu parameter\n"); 4175 return -EFAULT; 4176 } 4177 config_sseu = true; 4178 break; 4179 } 4180 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 4181 if (value < 100000 /* 100us */) { 4182 drm_dbg(&perf->i915->drm, 4183 "OA availability timer too small (%lluns < 100us)\n", 4184 value); 4185 return -EINVAL; 4186 } 4187 props->poll_oa_period = value; 4188 break; 4189 case DRM_I915_PERF_PROP_OA_ENGINE_CLASS: 4190 class = (u8)value; 4191 config_class = true; 4192 break; 4193 case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE: 4194 instance = (u8)value; 4195 config_instance = true; 4196 break; 4197 default: 4198 MISSING_CASE(id); 4199 return -EINVAL; 4200 } 4201 4202 uprop += 2; 4203 } 4204 4205 if ((config_class && !config_instance) || 4206 (config_instance && !config_class)) { 4207 drm_dbg(&perf->i915->drm, 4208 "OA engine-class and engine-instance parameters must be passed together\n"); 4209 return -EINVAL; 4210 } 4211 4212 props->engine = intel_engine_lookup_user(perf->i915, class, instance); 4213 if (!props->engine) { 4214 drm_dbg(&perf->i915->drm, 4215 "OA engine class and instance invalid %d:%d\n", 4216 class, instance); 4217 return -EINVAL; 4218 } 4219 4220 if (!engine_supports_oa(props->engine)) { 4221 drm_dbg(&perf->i915->drm, 4222 "Engine not supported by OA %d:%d\n", 4223 class, instance); 4224 return -EINVAL; 4225 } 4226 4227 /* 4228 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media 4229 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM 4230 * does not work as expected. 4231 */ 4232 if (IS_MTL_MEDIA_STEP(props->engine->i915, STEP_A0, STEP_C0) && 4233 props->engine->oa_group->type == TYPE_OAM && 4234 intel_check_bios_c6_setup(&props->engine->gt->rc6)) { 4235 drm_dbg(&perf->i915->drm, 4236 "OAM requires media C6 to be disabled in BIOS\n"); 4237 return -EINVAL; 4238 } 4239 4240 i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX); 4241 f = &perf->oa_formats[i]; 4242 if (!engine_supports_oa_format(props->engine, f->type)) { 4243 drm_dbg(&perf->i915->drm, 4244 "Invalid OA format %d for class %d\n", 4245 f->type, props->engine->class); 4246 return -EINVAL; 4247 } 4248 4249 if (config_sseu) { 4250 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 4251 if (ret) { 4252 drm_dbg(&perf->i915->drm, 4253 "Invalid SSEU configuration\n"); 4254 return ret; 4255 } 4256 props->has_sseu = true; 4257 } 4258 4259 return 0; 4260 } 4261 4262 /** 4263 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 4264 * @dev: drm device 4265 * @data: ioctl data copied from userspace (unvalidated) 4266 * @file: drm file 4267 * 4268 * Validates the stream open parameters given by userspace including flags 4269 * and an array of u64 key, value pair properties. 4270 * 4271 * Very little is assumed up front about the nature of the stream being 4272 * opened (for instance we don't assume it's for periodic OA unit metrics). An 4273 * i915-perf stream is expected to be a suitable interface for other forms of 4274 * buffered data written by the GPU besides periodic OA metrics. 4275 * 4276 * Note we copy the properties from userspace outside of the i915 perf 4277 * mutex to avoid an awkward lockdep with mmap_lock. 4278 * 4279 * Most of the implementation details are handled by 4280 * i915_perf_open_ioctl_locked() after taking the >->perf.lock 4281 * mutex for serializing with any non-file-operation driver hooks. 4282 * 4283 * Return: A newly opened i915 Perf stream file descriptor or negative 4284 * error code on failure. 4285 */ 4286 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 4287 struct drm_file *file) 4288 { 4289 struct i915_perf *perf = &to_i915(dev)->perf; 4290 struct drm_i915_perf_open_param *param = data; 4291 struct intel_gt *gt; 4292 struct perf_open_properties props; 4293 u32 known_open_flags; 4294 int ret; 4295 4296 if (!perf->i915) { 4297 drm_dbg(&perf->i915->drm, 4298 "i915 perf interface not available for this system\n"); 4299 return -ENOTSUPP; 4300 } 4301 4302 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 4303 I915_PERF_FLAG_FD_NONBLOCK | 4304 I915_PERF_FLAG_DISABLED; 4305 if (param->flags & ~known_open_flags) { 4306 drm_dbg(&perf->i915->drm, 4307 "Unknown drm_i915_perf_open_param flag\n"); 4308 return -EINVAL; 4309 } 4310 4311 ret = read_properties_unlocked(perf, 4312 u64_to_user_ptr(param->properties_ptr), 4313 param->num_properties, 4314 &props); 4315 if (ret) 4316 return ret; 4317 4318 gt = props.engine->gt; 4319 4320 mutex_lock(>->perf.lock); 4321 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 4322 mutex_unlock(>->perf.lock); 4323 4324 return ret; 4325 } 4326 4327 /** 4328 * i915_perf_register - exposes i915-perf to userspace 4329 * @i915: i915 device instance 4330 * 4331 * In particular OA metric sets are advertised under a sysfs metrics/ 4332 * directory allowing userspace to enumerate valid IDs that can be 4333 * used to open an i915-perf stream. 4334 */ 4335 void i915_perf_register(struct drm_i915_private *i915) 4336 { 4337 struct i915_perf *perf = &i915->perf; 4338 struct intel_gt *gt = to_gt(i915); 4339 4340 if (!perf->i915) 4341 return; 4342 4343 /* To be sure we're synchronized with an attempted 4344 * i915_perf_open_ioctl(); considering that we register after 4345 * being exposed to userspace. 4346 */ 4347 mutex_lock(>->perf.lock); 4348 4349 perf->metrics_kobj = 4350 kobject_create_and_add("metrics", 4351 &i915->drm.primary->kdev->kobj); 4352 4353 mutex_unlock(>->perf.lock); 4354 } 4355 4356 /** 4357 * i915_perf_unregister - hide i915-perf from userspace 4358 * @i915: i915 device instance 4359 * 4360 * i915-perf state cleanup is split up into an 'unregister' and 4361 * 'deinit' phase where the interface is first hidden from 4362 * userspace by i915_perf_unregister() before cleaning up 4363 * remaining state in i915_perf_fini(). 4364 */ 4365 void i915_perf_unregister(struct drm_i915_private *i915) 4366 { 4367 struct i915_perf *perf = &i915->perf; 4368 4369 if (!perf->metrics_kobj) 4370 return; 4371 4372 kobject_put(perf->metrics_kobj); 4373 perf->metrics_kobj = NULL; 4374 } 4375 4376 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 4377 { 4378 static const i915_reg_t flex_eu_regs[] = { 4379 EU_PERF_CNTL0, 4380 EU_PERF_CNTL1, 4381 EU_PERF_CNTL2, 4382 EU_PERF_CNTL3, 4383 EU_PERF_CNTL4, 4384 EU_PERF_CNTL5, 4385 EU_PERF_CNTL6, 4386 }; 4387 int i; 4388 4389 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 4390 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 4391 return true; 4392 } 4393 return false; 4394 } 4395 4396 static bool reg_in_range_table(u32 addr, const struct i915_range *table) 4397 { 4398 while (table->start || table->end) { 4399 if (addr >= table->start && addr <= table->end) 4400 return true; 4401 4402 table++; 4403 } 4404 4405 return false; 4406 } 4407 4408 #define REG_EQUAL(addr, mmio) \ 4409 ((addr) == i915_mmio_reg_offset(mmio)) 4410 4411 static const struct i915_range gen7_oa_b_counters[] = { 4412 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */ 4413 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */ 4414 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */ 4415 {} 4416 }; 4417 4418 static const struct i915_range gen12_oa_b_counters[] = { 4419 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */ 4420 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */ 4421 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */ 4422 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */ 4423 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */ 4424 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */ 4425 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */ 4426 {} 4427 }; 4428 4429 static const struct i915_range mtl_oam_b_counters[] = { 4430 { .start = 0x393000, .end = 0x39301c }, /* GEN12_OAM_STARTTRIG1[1-8] */ 4431 { .start = 0x393020, .end = 0x39303c }, /* GEN12_OAM_REPORTTRIG1[1-8] */ 4432 { .start = 0x393040, .end = 0x39307c }, /* GEN12_OAM_CEC[0-7][0-1] */ 4433 { .start = 0x393200, .end = 0x39323C }, /* MPES[0-7] */ 4434 {} 4435 }; 4436 4437 static const struct i915_range xehp_oa_b_counters[] = { 4438 { .start = 0xdc48, .end = 0xdc48 }, /* OAA_ENABLE_REG */ 4439 { .start = 0xdd00, .end = 0xdd48 }, /* OAG_LCE0_0 - OAA_LENABLE_REG */ 4440 }; 4441 4442 static const struct i915_range gen7_oa_mux_regs[] = { 4443 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */ 4444 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */ 4445 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */ 4446 {} 4447 }; 4448 4449 static const struct i915_range hsw_oa_mux_regs[] = { 4450 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */ 4451 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */ 4452 { .start = 0x25100, .end = 0x2ff90 }, 4453 {} 4454 }; 4455 4456 static const struct i915_range chv_oa_mux_regs[] = { 4457 { .start = 0x182300, .end = 0x1823a4 }, 4458 {} 4459 }; 4460 4461 static const struct i915_range gen8_oa_mux_regs[] = { 4462 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */ 4463 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4464 {} 4465 }; 4466 4467 static const struct i915_range gen11_oa_mux_regs[] = { 4468 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */ 4469 {} 4470 }; 4471 4472 static const struct i915_range gen12_oa_mux_regs[] = { 4473 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4474 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4475 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4476 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4477 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4478 {} 4479 }; 4480 4481 /* 4482 * Ref: 14010536224: 4483 * 0x20cc is repurposed on MTL, so use a separate array for MTL. 4484 */ 4485 static const struct i915_range mtl_oa_mux_regs[] = { 4486 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4487 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4488 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4489 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4490 { .start = 0x38d100, .end = 0x38d114}, /* VISACTL */ 4491 {} 4492 }; 4493 4494 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4495 { 4496 return reg_in_range_table(addr, gen7_oa_b_counters); 4497 } 4498 4499 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4500 { 4501 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4502 reg_in_range_table(addr, gen8_oa_mux_regs); 4503 } 4504 4505 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4506 { 4507 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4508 reg_in_range_table(addr, gen8_oa_mux_regs) || 4509 reg_in_range_table(addr, gen11_oa_mux_regs); 4510 } 4511 4512 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4513 { 4514 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4515 reg_in_range_table(addr, hsw_oa_mux_regs); 4516 } 4517 4518 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4519 { 4520 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4521 reg_in_range_table(addr, chv_oa_mux_regs); 4522 } 4523 4524 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4525 { 4526 return reg_in_range_table(addr, gen12_oa_b_counters); 4527 } 4528 4529 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr) 4530 { 4531 if (HAS_OAM(perf->i915) && 4532 GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70)) 4533 return reg_in_range_table(addr, mtl_oam_b_counters); 4534 4535 return false; 4536 } 4537 4538 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4539 { 4540 return reg_in_range_table(addr, xehp_oa_b_counters) || 4541 reg_in_range_table(addr, gen12_oa_b_counters) || 4542 mtl_is_valid_oam_b_counter_addr(perf, addr); 4543 } 4544 4545 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4546 { 4547 if (IS_METEORLAKE(perf->i915)) 4548 return reg_in_range_table(addr, mtl_oa_mux_regs); 4549 else 4550 return reg_in_range_table(addr, gen12_oa_mux_regs); 4551 } 4552 4553 static u32 mask_reg_value(u32 reg, u32 val) 4554 { 4555 /* HALF_SLICE_CHICKEN2 is programmed with a the 4556 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 4557 * programmed by userspace doesn't change this. 4558 */ 4559 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 4560 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 4561 4562 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 4563 * indicated by its name and a bunch of selection fields used by OA 4564 * configs. 4565 */ 4566 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 4567 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 4568 4569 return val; 4570 } 4571 4572 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 4573 bool (*is_valid)(struct i915_perf *perf, u32 addr), 4574 u32 __user *regs, 4575 u32 n_regs) 4576 { 4577 struct i915_oa_reg *oa_regs; 4578 int err; 4579 u32 i; 4580 4581 if (!n_regs) 4582 return NULL; 4583 4584 /* No is_valid function means we're not allowing any register to be programmed. */ 4585 GEM_BUG_ON(!is_valid); 4586 if (!is_valid) 4587 return ERR_PTR(-EINVAL); 4588 4589 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 4590 if (!oa_regs) 4591 return ERR_PTR(-ENOMEM); 4592 4593 for (i = 0; i < n_regs; i++) { 4594 u32 addr, value; 4595 4596 err = get_user(addr, regs); 4597 if (err) 4598 goto addr_err; 4599 4600 if (!is_valid(perf, addr)) { 4601 drm_dbg(&perf->i915->drm, 4602 "Invalid oa_reg address: %X\n", addr); 4603 err = -EINVAL; 4604 goto addr_err; 4605 } 4606 4607 err = get_user(value, regs + 1); 4608 if (err) 4609 goto addr_err; 4610 4611 oa_regs[i].addr = _MMIO(addr); 4612 oa_regs[i].value = mask_reg_value(addr, value); 4613 4614 regs += 2; 4615 } 4616 4617 return oa_regs; 4618 4619 addr_err: 4620 kfree(oa_regs); 4621 return ERR_PTR(err); 4622 } 4623 4624 static ssize_t show_dynamic_id(struct kobject *kobj, 4625 struct kobj_attribute *attr, 4626 char *buf) 4627 { 4628 struct i915_oa_config *oa_config = 4629 container_of(attr, typeof(*oa_config), sysfs_metric_id); 4630 4631 return sprintf(buf, "%d\n", oa_config->id); 4632 } 4633 4634 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 4635 struct i915_oa_config *oa_config) 4636 { 4637 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 4638 oa_config->sysfs_metric_id.attr.name = "id"; 4639 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 4640 oa_config->sysfs_metric_id.show = show_dynamic_id; 4641 oa_config->sysfs_metric_id.store = NULL; 4642 4643 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 4644 oa_config->attrs[1] = NULL; 4645 4646 oa_config->sysfs_metric.name = oa_config->uuid; 4647 oa_config->sysfs_metric.attrs = oa_config->attrs; 4648 4649 return sysfs_create_group(perf->metrics_kobj, 4650 &oa_config->sysfs_metric); 4651 } 4652 4653 /** 4654 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4655 * @dev: drm device 4656 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4657 * userspace (unvalidated) 4658 * @file: drm file 4659 * 4660 * Validates the submitted OA register to be saved into a new OA config that 4661 * can then be used for programming the OA unit and its NOA network. 4662 * 4663 * Returns: A new allocated config number to be used with the perf open ioctl 4664 * or a negative error code on failure. 4665 */ 4666 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4667 struct drm_file *file) 4668 { 4669 struct i915_perf *perf = &to_i915(dev)->perf; 4670 struct drm_i915_perf_oa_config *args = data; 4671 struct i915_oa_config *oa_config, *tmp; 4672 struct i915_oa_reg *regs; 4673 int err, id; 4674 4675 if (!perf->i915) { 4676 drm_dbg(&perf->i915->drm, 4677 "i915 perf interface not available for this system\n"); 4678 return -ENOTSUPP; 4679 } 4680 4681 if (!perf->metrics_kobj) { 4682 drm_dbg(&perf->i915->drm, 4683 "OA metrics weren't advertised via sysfs\n"); 4684 return -EINVAL; 4685 } 4686 4687 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4688 drm_dbg(&perf->i915->drm, 4689 "Insufficient privileges to add i915 OA config\n"); 4690 return -EACCES; 4691 } 4692 4693 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4694 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4695 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4696 drm_dbg(&perf->i915->drm, 4697 "No OA registers given\n"); 4698 return -EINVAL; 4699 } 4700 4701 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4702 if (!oa_config) { 4703 drm_dbg(&perf->i915->drm, 4704 "Failed to allocate memory for the OA config\n"); 4705 return -ENOMEM; 4706 } 4707 4708 oa_config->perf = perf; 4709 kref_init(&oa_config->ref); 4710 4711 if (!uuid_is_valid(args->uuid)) { 4712 drm_dbg(&perf->i915->drm, 4713 "Invalid uuid format for OA config\n"); 4714 err = -EINVAL; 4715 goto reg_err; 4716 } 4717 4718 /* Last character in oa_config->uuid will be 0 because oa_config is 4719 * kzalloc. 4720 */ 4721 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4722 4723 oa_config->mux_regs_len = args->n_mux_regs; 4724 regs = alloc_oa_regs(perf, 4725 perf->ops.is_valid_mux_reg, 4726 u64_to_user_ptr(args->mux_regs_ptr), 4727 args->n_mux_regs); 4728 4729 if (IS_ERR(regs)) { 4730 drm_dbg(&perf->i915->drm, 4731 "Failed to create OA config for mux_regs\n"); 4732 err = PTR_ERR(regs); 4733 goto reg_err; 4734 } 4735 oa_config->mux_regs = regs; 4736 4737 oa_config->b_counter_regs_len = args->n_boolean_regs; 4738 regs = alloc_oa_regs(perf, 4739 perf->ops.is_valid_b_counter_reg, 4740 u64_to_user_ptr(args->boolean_regs_ptr), 4741 args->n_boolean_regs); 4742 4743 if (IS_ERR(regs)) { 4744 drm_dbg(&perf->i915->drm, 4745 "Failed to create OA config for b_counter_regs\n"); 4746 err = PTR_ERR(regs); 4747 goto reg_err; 4748 } 4749 oa_config->b_counter_regs = regs; 4750 4751 if (GRAPHICS_VER(perf->i915) < 8) { 4752 if (args->n_flex_regs != 0) { 4753 err = -EINVAL; 4754 goto reg_err; 4755 } 4756 } else { 4757 oa_config->flex_regs_len = args->n_flex_regs; 4758 regs = alloc_oa_regs(perf, 4759 perf->ops.is_valid_flex_reg, 4760 u64_to_user_ptr(args->flex_regs_ptr), 4761 args->n_flex_regs); 4762 4763 if (IS_ERR(regs)) { 4764 drm_dbg(&perf->i915->drm, 4765 "Failed to create OA config for flex_regs\n"); 4766 err = PTR_ERR(regs); 4767 goto reg_err; 4768 } 4769 oa_config->flex_regs = regs; 4770 } 4771 4772 err = mutex_lock_interruptible(&perf->metrics_lock); 4773 if (err) 4774 goto reg_err; 4775 4776 /* We shouldn't have too many configs, so this iteration shouldn't be 4777 * too costly. 4778 */ 4779 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4780 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4781 drm_dbg(&perf->i915->drm, 4782 "OA config already exists with this uuid\n"); 4783 err = -EADDRINUSE; 4784 goto sysfs_err; 4785 } 4786 } 4787 4788 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4789 if (err) { 4790 drm_dbg(&perf->i915->drm, 4791 "Failed to create sysfs entry for OA config\n"); 4792 goto sysfs_err; 4793 } 4794 4795 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4796 oa_config->id = idr_alloc(&perf->metrics_idr, 4797 oa_config, 2, 4798 0, GFP_KERNEL); 4799 if (oa_config->id < 0) { 4800 drm_dbg(&perf->i915->drm, 4801 "Failed to create sysfs entry for OA config\n"); 4802 err = oa_config->id; 4803 goto sysfs_err; 4804 } 4805 id = oa_config->id; 4806 4807 drm_dbg(&perf->i915->drm, 4808 "Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4809 mutex_unlock(&perf->metrics_lock); 4810 4811 return id; 4812 4813 sysfs_err: 4814 mutex_unlock(&perf->metrics_lock); 4815 reg_err: 4816 i915_oa_config_put(oa_config); 4817 drm_dbg(&perf->i915->drm, 4818 "Failed to add new OA config\n"); 4819 return err; 4820 } 4821 4822 /** 4823 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4824 * @dev: drm device 4825 * @data: ioctl data (pointer to u64 integer) copied from userspace 4826 * @file: drm file 4827 * 4828 * Configs can be removed while being used, the will stop appearing in sysfs 4829 * and their content will be freed when the stream using the config is closed. 4830 * 4831 * Returns: 0 on success or a negative error code on failure. 4832 */ 4833 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4834 struct drm_file *file) 4835 { 4836 struct i915_perf *perf = &to_i915(dev)->perf; 4837 u64 *arg = data; 4838 struct i915_oa_config *oa_config; 4839 int ret; 4840 4841 if (!perf->i915) { 4842 drm_dbg(&perf->i915->drm, 4843 "i915 perf interface not available for this system\n"); 4844 return -ENOTSUPP; 4845 } 4846 4847 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4848 drm_dbg(&perf->i915->drm, 4849 "Insufficient privileges to remove i915 OA config\n"); 4850 return -EACCES; 4851 } 4852 4853 ret = mutex_lock_interruptible(&perf->metrics_lock); 4854 if (ret) 4855 return ret; 4856 4857 oa_config = idr_find(&perf->metrics_idr, *arg); 4858 if (!oa_config) { 4859 drm_dbg(&perf->i915->drm, 4860 "Failed to remove unknown OA config\n"); 4861 ret = -ENOENT; 4862 goto err_unlock; 4863 } 4864 4865 GEM_BUG_ON(*arg != oa_config->id); 4866 4867 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4868 4869 idr_remove(&perf->metrics_idr, *arg); 4870 4871 mutex_unlock(&perf->metrics_lock); 4872 4873 drm_dbg(&perf->i915->drm, 4874 "Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4875 4876 i915_oa_config_put(oa_config); 4877 4878 return 0; 4879 4880 err_unlock: 4881 mutex_unlock(&perf->metrics_lock); 4882 return ret; 4883 } 4884 4885 static struct ctl_table oa_table[] = { 4886 { 4887 .procname = "perf_stream_paranoid", 4888 .data = &i915_perf_stream_paranoid, 4889 .maxlen = sizeof(i915_perf_stream_paranoid), 4890 .mode = 0644, 4891 .proc_handler = proc_dointvec_minmax, 4892 .extra1 = SYSCTL_ZERO, 4893 .extra2 = SYSCTL_ONE, 4894 }, 4895 { 4896 .procname = "oa_max_sample_rate", 4897 .data = &i915_oa_max_sample_rate, 4898 .maxlen = sizeof(i915_oa_max_sample_rate), 4899 .mode = 0644, 4900 .proc_handler = proc_dointvec_minmax, 4901 .extra1 = SYSCTL_ZERO, 4902 .extra2 = &oa_sample_rate_hard_limit, 4903 }, 4904 {} 4905 }; 4906 4907 static u32 num_perf_groups_per_gt(struct intel_gt *gt) 4908 { 4909 return 1; 4910 } 4911 4912 static u32 __oam_engine_group(struct intel_engine_cs *engine) 4913 { 4914 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) { 4915 /* 4916 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices 4917 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA. 4918 */ 4919 drm_WARN_ON(&engine->i915->drm, 4920 engine->gt->type != GT_MEDIA); 4921 4922 return PERF_GROUP_OAM_SAMEDIA_0; 4923 } 4924 4925 return PERF_GROUP_INVALID; 4926 } 4927 4928 static u32 __oa_engine_group(struct intel_engine_cs *engine) 4929 { 4930 switch (engine->class) { 4931 case RENDER_CLASS: 4932 return PERF_GROUP_OAG; 4933 4934 case VIDEO_DECODE_CLASS: 4935 case VIDEO_ENHANCEMENT_CLASS: 4936 return __oam_engine_group(engine); 4937 4938 default: 4939 return PERF_GROUP_INVALID; 4940 } 4941 } 4942 4943 static struct i915_perf_regs __oam_regs(u32 base) 4944 { 4945 return (struct i915_perf_regs) { 4946 base, 4947 GEN12_OAM_HEAD_POINTER(base), 4948 GEN12_OAM_TAIL_POINTER(base), 4949 GEN12_OAM_BUFFER(base), 4950 GEN12_OAM_CONTEXT_CONTROL(base), 4951 GEN12_OAM_CONTROL(base), 4952 GEN12_OAM_DEBUG(base), 4953 GEN12_OAM_STATUS(base), 4954 GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT, 4955 }; 4956 } 4957 4958 static struct i915_perf_regs __oag_regs(void) 4959 { 4960 return (struct i915_perf_regs) { 4961 0, 4962 GEN12_OAG_OAHEADPTR, 4963 GEN12_OAG_OATAILPTR, 4964 GEN12_OAG_OABUFFER, 4965 GEN12_OAG_OAGLBCTXCTRL, 4966 GEN12_OAG_OACONTROL, 4967 GEN12_OAG_OA_DEBUG, 4968 GEN12_OAG_OASTATUS, 4969 GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT, 4970 }; 4971 } 4972 4973 static void oa_init_groups(struct intel_gt *gt) 4974 { 4975 int i, num_groups = gt->perf.num_perf_groups; 4976 4977 for (i = 0; i < num_groups; i++) { 4978 struct i915_perf_group *g = >->perf.group[i]; 4979 4980 /* Fused off engines can result in a group with num_engines == 0 */ 4981 if (g->num_engines == 0) 4982 continue; 4983 4984 if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) { 4985 g->regs = __oag_regs(); 4986 g->type = TYPE_OAG; 4987 } else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { 4988 g->regs = __oam_regs(mtl_oa_base[i]); 4989 g->type = TYPE_OAM; 4990 } 4991 } 4992 } 4993 4994 static int oa_init_gt(struct intel_gt *gt) 4995 { 4996 u32 num_groups = num_perf_groups_per_gt(gt); 4997 struct intel_engine_cs *engine; 4998 struct i915_perf_group *g; 4999 intel_engine_mask_t tmp; 5000 5001 g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL); 5002 if (!g) 5003 return -ENOMEM; 5004 5005 for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) { 5006 u32 index = __oa_engine_group(engine); 5007 5008 engine->oa_group = NULL; 5009 if (index < num_groups) { 5010 g[index].num_engines++; 5011 engine->oa_group = &g[index]; 5012 } 5013 } 5014 5015 gt->perf.num_perf_groups = num_groups; 5016 gt->perf.group = g; 5017 5018 oa_init_groups(gt); 5019 5020 return 0; 5021 } 5022 5023 static int oa_init_engine_groups(struct i915_perf *perf) 5024 { 5025 struct intel_gt *gt; 5026 int i, ret; 5027 5028 for_each_gt(gt, perf->i915, i) { 5029 ret = oa_init_gt(gt); 5030 if (ret) 5031 return ret; 5032 } 5033 5034 return 0; 5035 } 5036 5037 static void oa_init_supported_formats(struct i915_perf *perf) 5038 { 5039 struct drm_i915_private *i915 = perf->i915; 5040 enum intel_platform platform = INTEL_INFO(i915)->platform; 5041 5042 switch (platform) { 5043 case INTEL_HASWELL: 5044 oa_format_add(perf, I915_OA_FORMAT_A13); 5045 oa_format_add(perf, I915_OA_FORMAT_A13); 5046 oa_format_add(perf, I915_OA_FORMAT_A29); 5047 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8); 5048 oa_format_add(perf, I915_OA_FORMAT_B4_C8); 5049 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8); 5050 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16); 5051 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 5052 break; 5053 5054 case INTEL_BROADWELL: 5055 case INTEL_CHERRYVIEW: 5056 case INTEL_SKYLAKE: 5057 case INTEL_BROXTON: 5058 case INTEL_KABYLAKE: 5059 case INTEL_GEMINILAKE: 5060 case INTEL_COFFEELAKE: 5061 case INTEL_COMETLAKE: 5062 case INTEL_ICELAKE: 5063 case INTEL_ELKHARTLAKE: 5064 case INTEL_JASPERLAKE: 5065 case INTEL_TIGERLAKE: 5066 case INTEL_ROCKETLAKE: 5067 case INTEL_DG1: 5068 case INTEL_ALDERLAKE_S: 5069 case INTEL_ALDERLAKE_P: 5070 oa_format_add(perf, I915_OA_FORMAT_A12); 5071 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8); 5072 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8); 5073 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 5074 break; 5075 5076 case INTEL_DG2: 5077 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8); 5078 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8); 5079 break; 5080 5081 case INTEL_METEORLAKE: 5082 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8); 5083 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8); 5084 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8); 5085 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8); 5086 break; 5087 5088 default: 5089 MISSING_CASE(platform); 5090 } 5091 } 5092 5093 static void i915_perf_init_info(struct drm_i915_private *i915) 5094 { 5095 struct i915_perf *perf = &i915->perf; 5096 5097 switch (GRAPHICS_VER(i915)) { 5098 case 8: 5099 perf->ctx_oactxctrl_offset = 0x120; 5100 perf->ctx_flexeu0_offset = 0x2ce; 5101 perf->gen8_valid_ctx_bit = BIT(25); 5102 break; 5103 case 9: 5104 perf->ctx_oactxctrl_offset = 0x128; 5105 perf->ctx_flexeu0_offset = 0x3de; 5106 perf->gen8_valid_ctx_bit = BIT(16); 5107 break; 5108 case 11: 5109 perf->ctx_oactxctrl_offset = 0x124; 5110 perf->ctx_flexeu0_offset = 0x78e; 5111 perf->gen8_valid_ctx_bit = BIT(16); 5112 break; 5113 case 12: 5114 /* 5115 * Calculate offset at runtime in oa_pin_context for gen12 and 5116 * cache the value in perf->ctx_oactxctrl_offset. 5117 */ 5118 break; 5119 default: 5120 MISSING_CASE(GRAPHICS_VER(i915)); 5121 } 5122 } 5123 5124 /** 5125 * i915_perf_init - initialize i915-perf state on module bind 5126 * @i915: i915 device instance 5127 * 5128 * Initializes i915-perf state without exposing anything to userspace. 5129 * 5130 * Note: i915-perf initialization is split into an 'init' and 'register' 5131 * phase with the i915_perf_register() exposing state to userspace. 5132 */ 5133 int i915_perf_init(struct drm_i915_private *i915) 5134 { 5135 struct i915_perf *perf = &i915->perf; 5136 5137 perf->oa_formats = oa_formats; 5138 if (IS_HASWELL(i915)) { 5139 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 5140 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 5141 perf->ops.is_valid_flex_reg = NULL; 5142 perf->ops.enable_metric_set = hsw_enable_metric_set; 5143 perf->ops.disable_metric_set = hsw_disable_metric_set; 5144 perf->ops.oa_enable = gen7_oa_enable; 5145 perf->ops.oa_disable = gen7_oa_disable; 5146 perf->ops.read = gen7_oa_read; 5147 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 5148 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 5149 /* Note: that although we could theoretically also support the 5150 * legacy ringbuffer mode on BDW (and earlier iterations of 5151 * this driver, before upstreaming did this) it didn't seem 5152 * worth the complexity to maintain now that BDW+ enable 5153 * execlist mode by default. 5154 */ 5155 perf->ops.read = gen8_oa_read; 5156 i915_perf_init_info(i915); 5157 5158 if (IS_GRAPHICS_VER(i915, 8, 9)) { 5159 perf->ops.is_valid_b_counter_reg = 5160 gen7_is_valid_b_counter_addr; 5161 perf->ops.is_valid_mux_reg = 5162 gen8_is_valid_mux_addr; 5163 perf->ops.is_valid_flex_reg = 5164 gen8_is_valid_flex_addr; 5165 5166 if (IS_CHERRYVIEW(i915)) { 5167 perf->ops.is_valid_mux_reg = 5168 chv_is_valid_mux_addr; 5169 } 5170 5171 perf->ops.oa_enable = gen8_oa_enable; 5172 perf->ops.oa_disable = gen8_oa_disable; 5173 perf->ops.enable_metric_set = gen8_enable_metric_set; 5174 perf->ops.disable_metric_set = gen8_disable_metric_set; 5175 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 5176 } else if (GRAPHICS_VER(i915) == 11) { 5177 perf->ops.is_valid_b_counter_reg = 5178 gen7_is_valid_b_counter_addr; 5179 perf->ops.is_valid_mux_reg = 5180 gen11_is_valid_mux_addr; 5181 perf->ops.is_valid_flex_reg = 5182 gen8_is_valid_flex_addr; 5183 5184 perf->ops.oa_enable = gen8_oa_enable; 5185 perf->ops.oa_disable = gen8_oa_disable; 5186 perf->ops.enable_metric_set = gen8_enable_metric_set; 5187 perf->ops.disable_metric_set = gen11_disable_metric_set; 5188 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 5189 } else if (GRAPHICS_VER(i915) == 12) { 5190 perf->ops.is_valid_b_counter_reg = 5191 HAS_OA_SLICE_CONTRIB_LIMITS(i915) ? 5192 xehp_is_valid_b_counter_addr : 5193 gen12_is_valid_b_counter_addr; 5194 perf->ops.is_valid_mux_reg = 5195 gen12_is_valid_mux_addr; 5196 perf->ops.is_valid_flex_reg = 5197 gen8_is_valid_flex_addr; 5198 5199 perf->ops.oa_enable = gen12_oa_enable; 5200 perf->ops.oa_disable = gen12_oa_disable; 5201 perf->ops.enable_metric_set = gen12_enable_metric_set; 5202 perf->ops.disable_metric_set = gen12_disable_metric_set; 5203 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 5204 } 5205 } 5206 5207 if (perf->ops.enable_metric_set) { 5208 struct intel_gt *gt; 5209 int i, ret; 5210 5211 for_each_gt(gt, i915, i) 5212 mutex_init(>->perf.lock); 5213 5214 /* Choose a representative limit */ 5215 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2; 5216 5217 mutex_init(&perf->metrics_lock); 5218 idr_init_base(&perf->metrics_idr, 1); 5219 5220 /* We set up some ratelimit state to potentially throttle any 5221 * _NOTES about spurious, invalid OA reports which we don't 5222 * forward to userspace. 5223 * 5224 * We print a _NOTE about any throttling when closing the 5225 * stream instead of waiting until driver _fini which no one 5226 * would ever see. 5227 * 5228 * Using the same limiting factors as printk_ratelimit() 5229 */ 5230 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 5231 /* Since we use a DRM_NOTE for spurious reports it would be 5232 * inconsistent to let __ratelimit() automatically print a 5233 * warning for throttling. 5234 */ 5235 ratelimit_set_flags(&perf->spurious_report_rs, 5236 RATELIMIT_MSG_ON_RELEASE); 5237 5238 ratelimit_state_init(&perf->tail_pointer_race, 5239 5 * HZ, 10); 5240 ratelimit_set_flags(&perf->tail_pointer_race, 5241 RATELIMIT_MSG_ON_RELEASE); 5242 5243 atomic64_set(&perf->noa_programming_delay, 5244 500 * 1000 /* 500us */); 5245 5246 perf->i915 = i915; 5247 5248 ret = oa_init_engine_groups(perf); 5249 if (ret) { 5250 drm_err(&i915->drm, 5251 "OA initialization failed %d\n", ret); 5252 return ret; 5253 } 5254 5255 oa_init_supported_formats(perf); 5256 } 5257 5258 return 0; 5259 } 5260 5261 static int destroy_config(int id, void *p, void *data) 5262 { 5263 i915_oa_config_put(p); 5264 return 0; 5265 } 5266 5267 int i915_perf_sysctl_register(void) 5268 { 5269 sysctl_header = register_sysctl("dev/i915", oa_table); 5270 return 0; 5271 } 5272 5273 void i915_perf_sysctl_unregister(void) 5274 { 5275 unregister_sysctl_table(sysctl_header); 5276 } 5277 5278 /** 5279 * i915_perf_fini - Counter part to i915_perf_init() 5280 * @i915: i915 device instance 5281 */ 5282 void i915_perf_fini(struct drm_i915_private *i915) 5283 { 5284 struct i915_perf *perf = &i915->perf; 5285 struct intel_gt *gt; 5286 int i; 5287 5288 if (!perf->i915) 5289 return; 5290 5291 for_each_gt(gt, perf->i915, i) 5292 kfree(gt->perf.group); 5293 5294 idr_for_each(&perf->metrics_idr, destroy_config, perf); 5295 idr_destroy(&perf->metrics_idr); 5296 5297 memset(&perf->ops, 0, sizeof(perf->ops)); 5298 perf->i915 = NULL; 5299 } 5300 5301 /** 5302 * i915_perf_ioctl_version - Version of the i915-perf subsystem 5303 * 5304 * This version number is used by userspace to detect available features. 5305 */ 5306 int i915_perf_ioctl_version(struct drm_i915_private *i915) 5307 { 5308 /* 5309 * 1: Initial version 5310 * I915_PERF_IOCTL_ENABLE 5311 * I915_PERF_IOCTL_DISABLE 5312 * 5313 * 2: Added runtime modification of OA config. 5314 * I915_PERF_IOCTL_CONFIG 5315 * 5316 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 5317 * preemption on a particular context so that performance data is 5318 * accessible from a delta of MI_RPC reports without looking at the 5319 * OA buffer. 5320 * 5321 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 5322 * be run for the duration of the performance recording based on 5323 * their SSEU configuration. 5324 * 5325 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 5326 * interval for the hrtimer used to check for OA data. 5327 * 5328 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and 5329 * DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE 5330 * 5331 * 7: Add support for video decode and enhancement classes. 5332 */ 5333 5334 /* 5335 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media 5336 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6 5337 * to indicate that OA media is not supported. 5338 */ 5339 if (IS_MTL_MEDIA_STEP(i915, STEP_A0, STEP_C0)) { 5340 struct intel_gt *gt; 5341 int i; 5342 5343 for_each_gt(gt, i915, i) { 5344 if (gt->type == GT_MEDIA && 5345 intel_check_bios_c6_setup(>->rc6)) 5346 return 6; 5347 } 5348 } 5349 5350 return 7; 5351 } 5352 5353 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5354 #include "selftests/i915_perf.c" 5355 #endif 5356