1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gt/intel_engine_pm.h" 200 #include "gt/intel_engine_user.h" 201 #include "gt/intel_execlists_submission.h" 202 #include "gt/intel_gpu_commands.h" 203 #include "gt/intel_gt.h" 204 #include "gt/intel_gt_clock_utils.h" 205 #include "gt/intel_lrc.h" 206 #include "gt/intel_ring.h" 207 208 #include "i915_drv.h" 209 #include "i915_perf.h" 210 211 /* HW requires this to be a power of two, between 128k and 16M, though driver 212 * is currently generally designed assuming the largest 16M size is used such 213 * that the overflow cases are unlikely in normal operation. 214 */ 215 #define OA_BUFFER_SIZE SZ_16M 216 217 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 218 219 /** 220 * DOC: OA Tail Pointer Race 221 * 222 * There's a HW race condition between OA unit tail pointer register updates and 223 * writes to memory whereby the tail pointer can sometimes get ahead of what's 224 * been written out to the OA buffer so far (in terms of what's visible to the 225 * CPU). 226 * 227 * Although this can be observed explicitly while copying reports to userspace 228 * by checking for a zeroed report-id field in tail reports, we want to account 229 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 230 * redundant read() attempts. 231 * 232 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 233 * in the OA buffer, starting from the tail reported by the HW until we find a 234 * report with its first 2 dwords not 0 meaning its previous report is 235 * completely in memory and ready to be read. Those dwords are also set to 0 236 * once read and the whole buffer is cleared upon OA buffer initialization. The 237 * first dword is the reason for this report while the second is the timestamp, 238 * making the chances of having those 2 fields at 0 fairly unlikely. A more 239 * detailed explanation is available in oa_buffer_check_unlocked(). 240 * 241 * Most of the implementation details for this workaround are in 242 * oa_buffer_check_unlocked() and _append_oa_reports() 243 * 244 * Note for posterity: previously the driver used to define an effective tail 245 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 246 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 247 * This was flawed considering that the OA unit may also automatically generate 248 * non-periodic reports (such as on context switch) or the OA unit may be 249 * enabled without any periodic sampling. 250 */ 251 #define OA_TAIL_MARGIN_NSEC 100000ULL 252 #define INVALID_TAIL_PTR 0xffffffff 253 254 /* The default frequency for checking whether the OA unit has written new 255 * reports to the circular OA buffer... 256 */ 257 #define DEFAULT_POLL_FREQUENCY_HZ 200 258 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 259 260 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 261 static u32 i915_perf_stream_paranoid = true; 262 263 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 264 * of the 64bit timestamp bits to trigger reports from) but there's currently 265 * no known use case for sampling as infrequently as once per 47 thousand years. 266 * 267 * Since the timestamps included in OA reports are only 32bits it seems 268 * reasonable to limit the OA exponent where it's still possible to account for 269 * overflow in OA report timestamps. 270 */ 271 #define OA_EXPONENT_MAX 31 272 273 #define INVALID_CTX_ID 0xffffffff 274 275 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 276 #define OAREPORT_REASON_MASK 0x3f 277 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 278 #define OAREPORT_REASON_SHIFT 19 279 #define OAREPORT_REASON_TIMER (1<<0) 280 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 281 #define OAREPORT_REASON_CLK_RATIO (1<<5) 282 283 284 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 285 * 286 * The highest sampling frequency we can theoretically program the OA unit 287 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 288 * 289 * Initialized just before we register the sysctl parameter. 290 */ 291 static int oa_sample_rate_hard_limit; 292 293 /* Theoretically we can program the OA unit to sample every 160ns but don't 294 * allow that by default unless root... 295 * 296 * The default threshold of 100000Hz is based on perf's similar 297 * kernel.perf_event_max_sample_rate sysctl parameter. 298 */ 299 static u32 i915_oa_max_sample_rate = 100000; 300 301 /* XXX: beware if future OA HW adds new report formats that the current 302 * code assumes all reports have a power-of-two size and ~(size - 1) can 303 * be used as a mask to align the OA tail pointer. 304 */ 305 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = { 306 [I915_OA_FORMAT_A13] = { 0, 64 }, 307 [I915_OA_FORMAT_A29] = { 1, 128 }, 308 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 309 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 310 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 311 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 312 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 313 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 314 [I915_OA_FORMAT_A12] = { 0, 64 }, 315 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 316 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 317 }; 318 319 #define SAMPLE_OA_REPORT (1<<0) 320 321 /** 322 * struct perf_open_properties - for validated properties given to open a stream 323 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 324 * @single_context: Whether a single or all gpu contexts should be monitored 325 * @hold_preemption: Whether the preemption is disabled for the filtered 326 * context 327 * @ctx_handle: A gem ctx handle for use with @single_context 328 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 329 * @oa_format: An OA unit HW report format 330 * @oa_periodic: Whether to enable periodic OA unit sampling 331 * @oa_period_exponent: The OA unit sampling period is derived from this 332 * @engine: The engine (typically rcs0) being monitored by the OA unit 333 * @has_sseu: Whether @sseu was specified by userspace 334 * @sseu: internal SSEU configuration computed either from the userspace 335 * specified configuration in the opening parameters or a default value 336 * (see get_default_sseu_config()) 337 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 338 * data availability 339 * 340 * As read_properties_unlocked() enumerates and validates the properties given 341 * to open a stream of metrics the configuration is built up in the structure 342 * which starts out zero initialized. 343 */ 344 struct perf_open_properties { 345 u32 sample_flags; 346 347 u64 single_context:1; 348 u64 hold_preemption:1; 349 u64 ctx_handle; 350 351 /* OA sampling state */ 352 int metrics_set; 353 int oa_format; 354 bool oa_periodic; 355 int oa_period_exponent; 356 357 struct intel_engine_cs *engine; 358 359 bool has_sseu; 360 struct intel_sseu sseu; 361 362 u64 poll_oa_period; 363 }; 364 365 struct i915_oa_config_bo { 366 struct llist_node node; 367 368 struct i915_oa_config *oa_config; 369 struct i915_vma *vma; 370 }; 371 372 static struct ctl_table_header *sysctl_header; 373 374 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 375 376 void i915_oa_config_release(struct kref *ref) 377 { 378 struct i915_oa_config *oa_config = 379 container_of(ref, typeof(*oa_config), ref); 380 381 kfree(oa_config->flex_regs); 382 kfree(oa_config->b_counter_regs); 383 kfree(oa_config->mux_regs); 384 385 kfree_rcu(oa_config, rcu); 386 } 387 388 struct i915_oa_config * 389 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 390 { 391 struct i915_oa_config *oa_config; 392 393 rcu_read_lock(); 394 oa_config = idr_find(&perf->metrics_idr, metrics_set); 395 if (oa_config) 396 oa_config = i915_oa_config_get(oa_config); 397 rcu_read_unlock(); 398 399 return oa_config; 400 } 401 402 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 403 { 404 i915_oa_config_put(oa_bo->oa_config); 405 i915_vma_put(oa_bo->vma); 406 kfree(oa_bo); 407 } 408 409 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 410 { 411 struct intel_uncore *uncore = stream->uncore; 412 413 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 414 GEN12_OAG_OATAILPTR_MASK; 415 } 416 417 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 418 { 419 struct intel_uncore *uncore = stream->uncore; 420 421 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 422 } 423 424 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 425 { 426 struct intel_uncore *uncore = stream->uncore; 427 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 428 429 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 430 } 431 432 /** 433 * oa_buffer_check_unlocked - check for data and update tail ptr state 434 * @stream: i915 stream instance 435 * 436 * This is either called via fops (for blocking reads in user ctx) or the poll 437 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 438 * if there is data available for userspace to read. 439 * 440 * This function is central to providing a workaround for the OA unit tail 441 * pointer having a race with respect to what data is visible to the CPU. 442 * It is responsible for reading tail pointers from the hardware and giving 443 * the pointers time to 'age' before they are made available for reading. 444 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 445 * 446 * Besides returning true when there is data available to read() this function 447 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer 448 * object. 449 * 450 * Note: It's safe to read OA config state here unlocked, assuming that this is 451 * only called while the stream is enabled, while the global OA configuration 452 * can't be modified. 453 * 454 * Returns: %true if the OA buffer contains data, else %false 455 */ 456 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 457 { 458 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 459 int report_size = stream->oa_buffer.format_size; 460 unsigned long flags; 461 bool pollin; 462 u32 hw_tail; 463 u64 now; 464 465 /* We have to consider the (unlikely) possibility that read() errors 466 * could result in an OA buffer reset which might reset the head and 467 * tail state. 468 */ 469 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 470 471 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 472 473 /* The tail pointer increases in 64 byte increments, 474 * not in report_size steps... 475 */ 476 hw_tail &= ~(report_size - 1); 477 478 now = ktime_get_mono_fast_ns(); 479 480 if (hw_tail == stream->oa_buffer.aging_tail && 481 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) { 482 /* If the HW tail hasn't move since the last check and the HW 483 * tail has been aging for long enough, declare it the new 484 * tail. 485 */ 486 stream->oa_buffer.tail = stream->oa_buffer.aging_tail; 487 } else { 488 u32 head, tail, aged_tail; 489 490 /* NB: The head we observe here might effectively be a little 491 * out of date. If a read() is in progress, the head could be 492 * anywhere between this head and stream->oa_buffer.tail. 493 */ 494 head = stream->oa_buffer.head - gtt_offset; 495 aged_tail = stream->oa_buffer.tail - gtt_offset; 496 497 hw_tail -= gtt_offset; 498 tail = hw_tail; 499 500 /* Walk the stream backward until we find a report with dword 0 501 * & 1 not at 0. Since the circular buffer pointers progress by 502 * increments of 64 bytes and that reports can be up to 256 503 * bytes long, we can't tell whether a report has fully landed 504 * in memory before the first 2 dwords of the following report 505 * have effectively landed. 506 * 507 * This is assuming that the writes of the OA unit land in 508 * memory in the order they were written to. 509 * If not : (╯°□°)╯︵ ┻━┻ 510 */ 511 while (OA_TAKEN(tail, aged_tail) >= report_size) { 512 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail); 513 514 if (report32[0] != 0 || report32[1] != 0) 515 break; 516 517 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 518 } 519 520 if (OA_TAKEN(hw_tail, tail) > report_size && 521 __ratelimit(&stream->perf->tail_pointer_race)) 522 DRM_NOTE("unlanded report(s) head=0x%x " 523 "tail=0x%x hw_tail=0x%x\n", 524 head, tail, hw_tail); 525 526 stream->oa_buffer.tail = gtt_offset + tail; 527 stream->oa_buffer.aging_tail = gtt_offset + hw_tail; 528 stream->oa_buffer.aging_timestamp = now; 529 } 530 531 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset, 532 stream->oa_buffer.head - gtt_offset) >= report_size; 533 534 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 535 536 return pollin; 537 } 538 539 /** 540 * append_oa_status - Appends a status record to a userspace read() buffer. 541 * @stream: An i915-perf stream opened for OA metrics 542 * @buf: destination buffer given by userspace 543 * @count: the number of bytes userspace wants to read 544 * @offset: (inout): the current position for writing into @buf 545 * @type: The kind of status to report to userspace 546 * 547 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 548 * into the userspace read() buffer. 549 * 550 * The @buf @offset will only be updated on success. 551 * 552 * Returns: 0 on success, negative error code on failure. 553 */ 554 static int append_oa_status(struct i915_perf_stream *stream, 555 char __user *buf, 556 size_t count, 557 size_t *offset, 558 enum drm_i915_perf_record_type type) 559 { 560 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 561 562 if ((count - *offset) < header.size) 563 return -ENOSPC; 564 565 if (copy_to_user(buf + *offset, &header, sizeof(header))) 566 return -EFAULT; 567 568 (*offset) += header.size; 569 570 return 0; 571 } 572 573 /** 574 * append_oa_sample - Copies single OA report into userspace read() buffer. 575 * @stream: An i915-perf stream opened for OA metrics 576 * @buf: destination buffer given by userspace 577 * @count: the number of bytes userspace wants to read 578 * @offset: (inout): the current position for writing into @buf 579 * @report: A single OA report to (optionally) include as part of the sample 580 * 581 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 582 * properties when opening a stream, tracked as `stream->sample_flags`. This 583 * function copies the requested components of a single sample to the given 584 * read() @buf. 585 * 586 * The @buf @offset will only be updated on success. 587 * 588 * Returns: 0 on success, negative error code on failure. 589 */ 590 static int append_oa_sample(struct i915_perf_stream *stream, 591 char __user *buf, 592 size_t count, 593 size_t *offset, 594 const u8 *report) 595 { 596 int report_size = stream->oa_buffer.format_size; 597 struct drm_i915_perf_record_header header; 598 599 header.type = DRM_I915_PERF_RECORD_SAMPLE; 600 header.pad = 0; 601 header.size = stream->sample_size; 602 603 if ((count - *offset) < header.size) 604 return -ENOSPC; 605 606 buf += *offset; 607 if (copy_to_user(buf, &header, sizeof(header))) 608 return -EFAULT; 609 buf += sizeof(header); 610 611 if (copy_to_user(buf, report, report_size)) 612 return -EFAULT; 613 614 (*offset) += header.size; 615 616 return 0; 617 } 618 619 /** 620 * gen8_append_oa_reports - Copies all buffered OA reports into 621 * userspace read() buffer. 622 * @stream: An i915-perf stream opened for OA metrics 623 * @buf: destination buffer given by userspace 624 * @count: the number of bytes userspace wants to read 625 * @offset: (inout): the current position for writing into @buf 626 * 627 * Notably any error condition resulting in a short read (-%ENOSPC or 628 * -%EFAULT) will be returned even though one or more records may 629 * have been successfully copied. In this case it's up to the caller 630 * to decide if the error should be squashed before returning to 631 * userspace. 632 * 633 * Note: reports are consumed from the head, and appended to the 634 * tail, so the tail chases the head?... If you think that's mad 635 * and back-to-front you're not alone, but this follows the 636 * Gen PRM naming convention. 637 * 638 * Returns: 0 on success, negative error code on failure. 639 */ 640 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 641 char __user *buf, 642 size_t count, 643 size_t *offset) 644 { 645 struct intel_uncore *uncore = stream->uncore; 646 int report_size = stream->oa_buffer.format_size; 647 u8 *oa_buf_base = stream->oa_buffer.vaddr; 648 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 649 u32 mask = (OA_BUFFER_SIZE - 1); 650 size_t start_offset = *offset; 651 unsigned long flags; 652 u32 head, tail; 653 u32 taken; 654 int ret = 0; 655 656 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 657 return -EIO; 658 659 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 660 661 head = stream->oa_buffer.head; 662 tail = stream->oa_buffer.tail; 663 664 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 665 666 /* 667 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 668 * while indexing relative to oa_buf_base. 669 */ 670 head -= gtt_offset; 671 tail -= gtt_offset; 672 673 /* 674 * An out of bounds or misaligned head or tail pointer implies a driver 675 * bug since we validate + align the tail pointers we read from the 676 * hardware and we are in full control of the head pointer which should 677 * only be incremented by multiples of the report size (notably also 678 * all a power of two). 679 */ 680 if (drm_WARN_ONCE(&uncore->i915->drm, 681 head > OA_BUFFER_SIZE || head % report_size || 682 tail > OA_BUFFER_SIZE || tail % report_size, 683 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 684 head, tail)) 685 return -EIO; 686 687 688 for (/* none */; 689 (taken = OA_TAKEN(tail, head)); 690 head = (head + report_size) & mask) { 691 u8 *report = oa_buf_base + head; 692 u32 *report32 = (void *)report; 693 u32 ctx_id; 694 u32 reason; 695 696 /* 697 * All the report sizes factor neatly into the buffer 698 * size so we never expect to see a report split 699 * between the beginning and end of the buffer. 700 * 701 * Given the initial alignment check a misalignment 702 * here would imply a driver bug that would result 703 * in an overrun. 704 */ 705 if (drm_WARN_ON(&uncore->i915->drm, 706 (OA_BUFFER_SIZE - head) < report_size)) { 707 drm_err(&uncore->i915->drm, 708 "Spurious OA head ptr: non-integral report offset\n"); 709 break; 710 } 711 712 /* 713 * The reason field includes flags identifying what 714 * triggered this specific report (mostly timer 715 * triggered or e.g. due to a context switch). 716 * 717 * This field is never expected to be zero so we can 718 * check that the report isn't invalid before copying 719 * it to userspace... 720 */ 721 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 722 (GRAPHICS_VER(stream->perf->i915) == 12 ? 723 OAREPORT_REASON_MASK_EXTENDED : 724 OAREPORT_REASON_MASK)); 725 726 ctx_id = report32[2] & stream->specific_ctx_id_mask; 727 728 /* 729 * Squash whatever is in the CTX_ID field if it's marked as 730 * invalid to be sure we avoid false-positive, single-context 731 * filtering below... 732 * 733 * Note: that we don't clear the valid_ctx_bit so userspace can 734 * understand that the ID has been squashed by the kernel. 735 */ 736 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 737 GRAPHICS_VER(stream->perf->i915) <= 11) 738 ctx_id = report32[2] = INVALID_CTX_ID; 739 740 /* 741 * NB: For Gen 8 the OA unit no longer supports clock gating 742 * off for a specific context and the kernel can't securely 743 * stop the counters from updating as system-wide / global 744 * values. 745 * 746 * Automatic reports now include a context ID so reports can be 747 * filtered on the cpu but it's not worth trying to 748 * automatically subtract/hide counter progress for other 749 * contexts while filtering since we can't stop userspace 750 * issuing MI_REPORT_PERF_COUNT commands which would still 751 * provide a side-band view of the real values. 752 * 753 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 754 * to normalize counters for a single filtered context then it 755 * needs be forwarded bookend context-switch reports so that it 756 * can track switches in between MI_REPORT_PERF_COUNT commands 757 * and can itself subtract/ignore the progress of counters 758 * associated with other contexts. Note that the hardware 759 * automatically triggers reports when switching to a new 760 * context which are tagged with the ID of the newly active 761 * context. To avoid the complexity (and likely fragility) of 762 * reading ahead while parsing reports to try and minimize 763 * forwarding redundant context switch reports (i.e. between 764 * other, unrelated contexts) we simply elect to forward them 765 * all. 766 * 767 * We don't rely solely on the reason field to identify context 768 * switches since it's not-uncommon for periodic samples to 769 * identify a switch before any 'context switch' report. 770 */ 771 if (!stream->perf->exclusive_stream->ctx || 772 stream->specific_ctx_id == ctx_id || 773 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 774 reason & OAREPORT_REASON_CTX_SWITCH) { 775 776 /* 777 * While filtering for a single context we avoid 778 * leaking the IDs of other contexts. 779 */ 780 if (stream->perf->exclusive_stream->ctx && 781 stream->specific_ctx_id != ctx_id) { 782 report32[2] = INVALID_CTX_ID; 783 } 784 785 ret = append_oa_sample(stream, buf, count, offset, 786 report); 787 if (ret) 788 break; 789 790 stream->oa_buffer.last_ctx_id = ctx_id; 791 } 792 793 /* 794 * Clear out the first 2 dword as a mean to detect unlanded 795 * reports. 796 */ 797 report32[0] = 0; 798 report32[1] = 0; 799 } 800 801 if (start_offset != *offset) { 802 i915_reg_t oaheadptr; 803 804 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ? 805 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 806 807 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 808 809 /* 810 * We removed the gtt_offset for the copy loop above, indexing 811 * relative to oa_buf_base so put back here... 812 */ 813 head += gtt_offset; 814 intel_uncore_write(uncore, oaheadptr, 815 head & GEN12_OAG_OAHEADPTR_MASK); 816 stream->oa_buffer.head = head; 817 818 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 819 } 820 821 return ret; 822 } 823 824 /** 825 * gen8_oa_read - copy status records then buffered OA reports 826 * @stream: An i915-perf stream opened for OA metrics 827 * @buf: destination buffer given by userspace 828 * @count: the number of bytes userspace wants to read 829 * @offset: (inout): the current position for writing into @buf 830 * 831 * Checks OA unit status registers and if necessary appends corresponding 832 * status records for userspace (such as for a buffer full condition) and then 833 * initiate appending any buffered OA reports. 834 * 835 * Updates @offset according to the number of bytes successfully copied into 836 * the userspace buffer. 837 * 838 * NB: some data may be successfully copied to the userspace buffer 839 * even if an error is returned, and this is reflected in the 840 * updated @offset. 841 * 842 * Returns: zero on success or a negative error code 843 */ 844 static int gen8_oa_read(struct i915_perf_stream *stream, 845 char __user *buf, 846 size_t count, 847 size_t *offset) 848 { 849 struct intel_uncore *uncore = stream->uncore; 850 u32 oastatus; 851 i915_reg_t oastatus_reg; 852 int ret; 853 854 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 855 return -EIO; 856 857 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ? 858 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 859 860 oastatus = intel_uncore_read(uncore, oastatus_reg); 861 862 /* 863 * We treat OABUFFER_OVERFLOW as a significant error: 864 * 865 * Although theoretically we could handle this more gracefully 866 * sometimes, some Gens don't correctly suppress certain 867 * automatically triggered reports in this condition and so we 868 * have to assume that old reports are now being trampled 869 * over. 870 * 871 * Considering how we don't currently give userspace control 872 * over the OA buffer size and always configure a large 16MB 873 * buffer, then a buffer overflow does anyway likely indicate 874 * that something has gone quite badly wrong. 875 */ 876 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 877 ret = append_oa_status(stream, buf, count, offset, 878 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 879 if (ret) 880 return ret; 881 882 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 883 stream->period_exponent); 884 885 stream->perf->ops.oa_disable(stream); 886 stream->perf->ops.oa_enable(stream); 887 888 /* 889 * Note: .oa_enable() is expected to re-init the oabuffer and 890 * reset GEN8_OASTATUS for us 891 */ 892 oastatus = intel_uncore_read(uncore, oastatus_reg); 893 } 894 895 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 896 ret = append_oa_status(stream, buf, count, offset, 897 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 898 if (ret) 899 return ret; 900 901 intel_uncore_rmw(uncore, oastatus_reg, 902 GEN8_OASTATUS_COUNTER_OVERFLOW | 903 GEN8_OASTATUS_REPORT_LOST, 904 IS_GRAPHICS_VER(uncore->i915, 8, 11) ? 905 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 906 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 907 } 908 909 return gen8_append_oa_reports(stream, buf, count, offset); 910 } 911 912 /** 913 * gen7_append_oa_reports - Copies all buffered OA reports into 914 * userspace read() buffer. 915 * @stream: An i915-perf stream opened for OA metrics 916 * @buf: destination buffer given by userspace 917 * @count: the number of bytes userspace wants to read 918 * @offset: (inout): the current position for writing into @buf 919 * 920 * Notably any error condition resulting in a short read (-%ENOSPC or 921 * -%EFAULT) will be returned even though one or more records may 922 * have been successfully copied. In this case it's up to the caller 923 * to decide if the error should be squashed before returning to 924 * userspace. 925 * 926 * Note: reports are consumed from the head, and appended to the 927 * tail, so the tail chases the head?... If you think that's mad 928 * and back-to-front you're not alone, but this follows the 929 * Gen PRM naming convention. 930 * 931 * Returns: 0 on success, negative error code on failure. 932 */ 933 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 934 char __user *buf, 935 size_t count, 936 size_t *offset) 937 { 938 struct intel_uncore *uncore = stream->uncore; 939 int report_size = stream->oa_buffer.format_size; 940 u8 *oa_buf_base = stream->oa_buffer.vaddr; 941 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 942 u32 mask = (OA_BUFFER_SIZE - 1); 943 size_t start_offset = *offset; 944 unsigned long flags; 945 u32 head, tail; 946 u32 taken; 947 int ret = 0; 948 949 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 950 return -EIO; 951 952 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 953 954 head = stream->oa_buffer.head; 955 tail = stream->oa_buffer.tail; 956 957 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 958 959 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 960 * while indexing relative to oa_buf_base. 961 */ 962 head -= gtt_offset; 963 tail -= gtt_offset; 964 965 /* An out of bounds or misaligned head or tail pointer implies a driver 966 * bug since we validate + align the tail pointers we read from the 967 * hardware and we are in full control of the head pointer which should 968 * only be incremented by multiples of the report size (notably also 969 * all a power of two). 970 */ 971 if (drm_WARN_ONCE(&uncore->i915->drm, 972 head > OA_BUFFER_SIZE || head % report_size || 973 tail > OA_BUFFER_SIZE || tail % report_size, 974 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 975 head, tail)) 976 return -EIO; 977 978 979 for (/* none */; 980 (taken = OA_TAKEN(tail, head)); 981 head = (head + report_size) & mask) { 982 u8 *report = oa_buf_base + head; 983 u32 *report32 = (void *)report; 984 985 /* All the report sizes factor neatly into the buffer 986 * size so we never expect to see a report split 987 * between the beginning and end of the buffer. 988 * 989 * Given the initial alignment check a misalignment 990 * here would imply a driver bug that would result 991 * in an overrun. 992 */ 993 if (drm_WARN_ON(&uncore->i915->drm, 994 (OA_BUFFER_SIZE - head) < report_size)) { 995 drm_err(&uncore->i915->drm, 996 "Spurious OA head ptr: non-integral report offset\n"); 997 break; 998 } 999 1000 /* The report-ID field for periodic samples includes 1001 * some undocumented flags related to what triggered 1002 * the report and is never expected to be zero so we 1003 * can check that the report isn't invalid before 1004 * copying it to userspace... 1005 */ 1006 if (report32[0] == 0) { 1007 if (__ratelimit(&stream->perf->spurious_report_rs)) 1008 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1009 continue; 1010 } 1011 1012 ret = append_oa_sample(stream, buf, count, offset, report); 1013 if (ret) 1014 break; 1015 1016 /* Clear out the first 2 dwords as a mean to detect unlanded 1017 * reports. 1018 */ 1019 report32[0] = 0; 1020 report32[1] = 0; 1021 } 1022 1023 if (start_offset != *offset) { 1024 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1025 1026 /* We removed the gtt_offset for the copy loop above, indexing 1027 * relative to oa_buf_base so put back here... 1028 */ 1029 head += gtt_offset; 1030 1031 intel_uncore_write(uncore, GEN7_OASTATUS2, 1032 (head & GEN7_OASTATUS2_HEAD_MASK) | 1033 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1034 stream->oa_buffer.head = head; 1035 1036 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1037 } 1038 1039 return ret; 1040 } 1041 1042 /** 1043 * gen7_oa_read - copy status records then buffered OA reports 1044 * @stream: An i915-perf stream opened for OA metrics 1045 * @buf: destination buffer given by userspace 1046 * @count: the number of bytes userspace wants to read 1047 * @offset: (inout): the current position for writing into @buf 1048 * 1049 * Checks Gen 7 specific OA unit status registers and if necessary appends 1050 * corresponding status records for userspace (such as for a buffer full 1051 * condition) and then initiate appending any buffered OA reports. 1052 * 1053 * Updates @offset according to the number of bytes successfully copied into 1054 * the userspace buffer. 1055 * 1056 * Returns: zero on success or a negative error code 1057 */ 1058 static int gen7_oa_read(struct i915_perf_stream *stream, 1059 char __user *buf, 1060 size_t count, 1061 size_t *offset) 1062 { 1063 struct intel_uncore *uncore = stream->uncore; 1064 u32 oastatus1; 1065 int ret; 1066 1067 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1068 return -EIO; 1069 1070 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1071 1072 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1073 * bits while the OA unit is enabled (while the tail pointer 1074 * may be updated asynchronously) so we ignore status bits 1075 * that have already been reported to userspace. 1076 */ 1077 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1078 1079 /* We treat OABUFFER_OVERFLOW as a significant error: 1080 * 1081 * - The status can be interpreted to mean that the buffer is 1082 * currently full (with a higher precedence than OA_TAKEN() 1083 * which will start to report a near-empty buffer after an 1084 * overflow) but it's awkward that we can't clear the status 1085 * on Haswell, so without a reset we won't be able to catch 1086 * the state again. 1087 * 1088 * - Since it also implies the HW has started overwriting old 1089 * reports it may also affect our sanity checks for invalid 1090 * reports when copying to userspace that assume new reports 1091 * are being written to cleared memory. 1092 * 1093 * - In the future we may want to introduce a flight recorder 1094 * mode where the driver will automatically maintain a safe 1095 * guard band between head/tail, avoiding this overflow 1096 * condition, but we avoid the added driver complexity for 1097 * now. 1098 */ 1099 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1100 ret = append_oa_status(stream, buf, count, offset, 1101 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1102 if (ret) 1103 return ret; 1104 1105 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1106 stream->period_exponent); 1107 1108 stream->perf->ops.oa_disable(stream); 1109 stream->perf->ops.oa_enable(stream); 1110 1111 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1112 } 1113 1114 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1115 ret = append_oa_status(stream, buf, count, offset, 1116 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1117 if (ret) 1118 return ret; 1119 stream->perf->gen7_latched_oastatus1 |= 1120 GEN7_OASTATUS1_REPORT_LOST; 1121 } 1122 1123 return gen7_append_oa_reports(stream, buf, count, offset); 1124 } 1125 1126 /** 1127 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1128 * @stream: An i915-perf stream opened for OA metrics 1129 * 1130 * Called when userspace tries to read() from a blocking stream FD opened 1131 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1132 * OA buffer and wakes us. 1133 * 1134 * Note: it's acceptable to have this return with some false positives 1135 * since any subsequent read handling will return -EAGAIN if there isn't 1136 * really data ready for userspace yet. 1137 * 1138 * Returns: zero on success or a negative error code 1139 */ 1140 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1141 { 1142 /* We would wait indefinitely if periodic sampling is not enabled */ 1143 if (!stream->periodic) 1144 return -EIO; 1145 1146 return wait_event_interruptible(stream->poll_wq, 1147 oa_buffer_check_unlocked(stream)); 1148 } 1149 1150 /** 1151 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1152 * @stream: An i915-perf stream opened for OA metrics 1153 * @file: An i915 perf stream file 1154 * @wait: poll() state table 1155 * 1156 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1157 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1158 * when it sees data ready to read in the circular OA buffer. 1159 */ 1160 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1161 struct file *file, 1162 poll_table *wait) 1163 { 1164 poll_wait(file, &stream->poll_wq, wait); 1165 } 1166 1167 /** 1168 * i915_oa_read - just calls through to &i915_oa_ops->read 1169 * @stream: An i915-perf stream opened for OA metrics 1170 * @buf: destination buffer given by userspace 1171 * @count: the number of bytes userspace wants to read 1172 * @offset: (inout): the current position for writing into @buf 1173 * 1174 * Updates @offset according to the number of bytes successfully copied into 1175 * the userspace buffer. 1176 * 1177 * Returns: zero on success or a negative error code 1178 */ 1179 static int i915_oa_read(struct i915_perf_stream *stream, 1180 char __user *buf, 1181 size_t count, 1182 size_t *offset) 1183 { 1184 return stream->perf->ops.read(stream, buf, count, offset); 1185 } 1186 1187 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1188 { 1189 struct i915_gem_engines_iter it; 1190 struct i915_gem_context *ctx = stream->ctx; 1191 struct intel_context *ce; 1192 struct i915_gem_ww_ctx ww; 1193 int err = -ENODEV; 1194 1195 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1196 if (ce->engine != stream->engine) /* first match! */ 1197 continue; 1198 1199 err = 0; 1200 break; 1201 } 1202 i915_gem_context_unlock_engines(ctx); 1203 1204 if (err) 1205 return ERR_PTR(err); 1206 1207 i915_gem_ww_ctx_init(&ww, true); 1208 retry: 1209 /* 1210 * As the ID is the gtt offset of the context's vma we 1211 * pin the vma to ensure the ID remains fixed. 1212 */ 1213 err = intel_context_pin_ww(ce, &ww); 1214 if (err == -EDEADLK) { 1215 err = i915_gem_ww_ctx_backoff(&ww); 1216 if (!err) 1217 goto retry; 1218 } 1219 i915_gem_ww_ctx_fini(&ww); 1220 1221 if (err) 1222 return ERR_PTR(err); 1223 1224 stream->pinned_ctx = ce; 1225 return stream->pinned_ctx; 1226 } 1227 1228 /** 1229 * oa_get_render_ctx_id - determine and hold ctx hw id 1230 * @stream: An i915-perf stream opened for OA metrics 1231 * 1232 * Determine the render context hw id, and ensure it remains fixed for the 1233 * lifetime of the stream. This ensures that we don't have to worry about 1234 * updating the context ID in OACONTROL on the fly. 1235 * 1236 * Returns: zero on success or a negative error code 1237 */ 1238 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1239 { 1240 struct intel_context *ce; 1241 1242 ce = oa_pin_context(stream); 1243 if (IS_ERR(ce)) 1244 return PTR_ERR(ce); 1245 1246 switch (GRAPHICS_VER(ce->engine->i915)) { 1247 case 7: { 1248 /* 1249 * On Haswell we don't do any post processing of the reports 1250 * and don't need to use the mask. 1251 */ 1252 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1253 stream->specific_ctx_id_mask = 0; 1254 break; 1255 } 1256 1257 case 8: 1258 case 9: 1259 if (intel_engine_uses_guc(ce->engine)) { 1260 /* 1261 * When using GuC, the context descriptor we write in 1262 * i915 is read by GuC and rewritten before it's 1263 * actually written into the hardware. The LRCA is 1264 * what is put into the context id field of the 1265 * context descriptor by GuC. Because it's aligned to 1266 * a page, the lower 12bits are always at 0 and 1267 * dropped by GuC. They won't be part of the context 1268 * ID in the OA reports, so squash those lower bits. 1269 */ 1270 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1271 1272 /* 1273 * GuC uses the top bit to signal proxy submission, so 1274 * ignore that bit. 1275 */ 1276 stream->specific_ctx_id_mask = 1277 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1278 } else { 1279 stream->specific_ctx_id_mask = 1280 (1U << GEN8_CTX_ID_WIDTH) - 1; 1281 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1282 } 1283 break; 1284 1285 case 11: 1286 case 12: 1287 if (GRAPHICS_VER_FULL(ce->engine->i915) >= IP_VER(12, 50)) { 1288 stream->specific_ctx_id_mask = 1289 ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) << 1290 (XEHP_SW_CTX_ID_SHIFT - 32); 1291 stream->specific_ctx_id = 1292 (XEHP_MAX_CONTEXT_HW_ID - 1) << 1293 (XEHP_SW_CTX_ID_SHIFT - 32); 1294 } else { 1295 stream->specific_ctx_id_mask = 1296 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1297 /* 1298 * Pick an unused context id 1299 * 0 - BITS_PER_LONG are used by other contexts 1300 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context 1301 */ 1302 stream->specific_ctx_id = 1303 (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1304 } 1305 break; 1306 1307 default: 1308 MISSING_CASE(GRAPHICS_VER(ce->engine->i915)); 1309 } 1310 1311 ce->tag = stream->specific_ctx_id; 1312 1313 drm_dbg(&stream->perf->i915->drm, 1314 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1315 stream->specific_ctx_id, 1316 stream->specific_ctx_id_mask); 1317 1318 return 0; 1319 } 1320 1321 /** 1322 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1323 * @stream: An i915-perf stream opened for OA metrics 1324 * 1325 * In case anything needed doing to ensure the context HW ID would remain valid 1326 * for the lifetime of the stream, then that can be undone here. 1327 */ 1328 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1329 { 1330 struct intel_context *ce; 1331 1332 ce = fetch_and_zero(&stream->pinned_ctx); 1333 if (ce) { 1334 ce->tag = 0; /* recomputed on next submission after parking */ 1335 intel_context_unpin(ce); 1336 } 1337 1338 stream->specific_ctx_id = INVALID_CTX_ID; 1339 stream->specific_ctx_id_mask = 0; 1340 } 1341 1342 static void 1343 free_oa_buffer(struct i915_perf_stream *stream) 1344 { 1345 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1346 I915_VMA_RELEASE_MAP); 1347 1348 stream->oa_buffer.vaddr = NULL; 1349 } 1350 1351 static void 1352 free_oa_configs(struct i915_perf_stream *stream) 1353 { 1354 struct i915_oa_config_bo *oa_bo, *tmp; 1355 1356 i915_oa_config_put(stream->oa_config); 1357 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1358 free_oa_config_bo(oa_bo); 1359 } 1360 1361 static void 1362 free_noa_wait(struct i915_perf_stream *stream) 1363 { 1364 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1365 } 1366 1367 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1368 { 1369 struct i915_perf *perf = stream->perf; 1370 1371 BUG_ON(stream != perf->exclusive_stream); 1372 1373 /* 1374 * Unset exclusive_stream first, it will be checked while disabling 1375 * the metric set on gen8+. 1376 * 1377 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1378 */ 1379 WRITE_ONCE(perf->exclusive_stream, NULL); 1380 perf->ops.disable_metric_set(stream); 1381 1382 free_oa_buffer(stream); 1383 1384 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1385 intel_engine_pm_put(stream->engine); 1386 1387 if (stream->ctx) 1388 oa_put_render_ctx_id(stream); 1389 1390 free_oa_configs(stream); 1391 free_noa_wait(stream); 1392 1393 if (perf->spurious_report_rs.missed) { 1394 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1395 perf->spurious_report_rs.missed); 1396 } 1397 } 1398 1399 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1400 { 1401 struct intel_uncore *uncore = stream->uncore; 1402 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1403 unsigned long flags; 1404 1405 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1406 1407 /* Pre-DevBDW: OABUFFER must be set with counters off, 1408 * before OASTATUS1, but after OASTATUS2 1409 */ 1410 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1411 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1412 stream->oa_buffer.head = gtt_offset; 1413 1414 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1415 1416 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1417 gtt_offset | OABUFFER_SIZE_16M); 1418 1419 /* Mark that we need updated tail pointers to read from... */ 1420 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1421 stream->oa_buffer.tail = gtt_offset; 1422 1423 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1424 1425 /* On Haswell we have to track which OASTATUS1 flags we've 1426 * already seen since they can't be cleared while periodic 1427 * sampling is enabled. 1428 */ 1429 stream->perf->gen7_latched_oastatus1 = 0; 1430 1431 /* NB: although the OA buffer will initially be allocated 1432 * zeroed via shmfs (and so this memset is redundant when 1433 * first allocating), we may re-init the OA buffer, either 1434 * when re-enabling a stream or in error/reset paths. 1435 * 1436 * The reason we clear the buffer for each re-init is for the 1437 * sanity check in gen7_append_oa_reports() that looks at the 1438 * report-id field to make sure it's non-zero which relies on 1439 * the assumption that new reports are being written to zeroed 1440 * memory... 1441 */ 1442 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1443 } 1444 1445 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1446 { 1447 struct intel_uncore *uncore = stream->uncore; 1448 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1449 unsigned long flags; 1450 1451 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1452 1453 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1454 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1455 stream->oa_buffer.head = gtt_offset; 1456 1457 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1458 1459 /* 1460 * PRM says: 1461 * 1462 * "This MMIO must be set before the OATAILPTR 1463 * register and after the OAHEADPTR register. This is 1464 * to enable proper functionality of the overflow 1465 * bit." 1466 */ 1467 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1468 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1469 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1470 1471 /* Mark that we need updated tail pointers to read from... */ 1472 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1473 stream->oa_buffer.tail = gtt_offset; 1474 1475 /* 1476 * Reset state used to recognise context switches, affecting which 1477 * reports we will forward to userspace while filtering for a single 1478 * context. 1479 */ 1480 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1481 1482 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1483 1484 /* 1485 * NB: although the OA buffer will initially be allocated 1486 * zeroed via shmfs (and so this memset is redundant when 1487 * first allocating), we may re-init the OA buffer, either 1488 * when re-enabling a stream or in error/reset paths. 1489 * 1490 * The reason we clear the buffer for each re-init is for the 1491 * sanity check in gen8_append_oa_reports() that looks at the 1492 * reason field to make sure it's non-zero which relies on 1493 * the assumption that new reports are being written to zeroed 1494 * memory... 1495 */ 1496 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1497 } 1498 1499 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1500 { 1501 struct intel_uncore *uncore = stream->uncore; 1502 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1503 unsigned long flags; 1504 1505 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1506 1507 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1508 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1509 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1510 stream->oa_buffer.head = gtt_offset; 1511 1512 /* 1513 * PRM says: 1514 * 1515 * "This MMIO must be set before the OATAILPTR 1516 * register and after the OAHEADPTR register. This is 1517 * to enable proper functionality of the overflow 1518 * bit." 1519 */ 1520 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1521 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1522 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1523 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1524 1525 /* Mark that we need updated tail pointers to read from... */ 1526 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1527 stream->oa_buffer.tail = gtt_offset; 1528 1529 /* 1530 * Reset state used to recognise context switches, affecting which 1531 * reports we will forward to userspace while filtering for a single 1532 * context. 1533 */ 1534 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1535 1536 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1537 1538 /* 1539 * NB: although the OA buffer will initially be allocated 1540 * zeroed via shmfs (and so this memset is redundant when 1541 * first allocating), we may re-init the OA buffer, either 1542 * when re-enabling a stream or in error/reset paths. 1543 * 1544 * The reason we clear the buffer for each re-init is for the 1545 * sanity check in gen8_append_oa_reports() that looks at the 1546 * reason field to make sure it's non-zero which relies on 1547 * the assumption that new reports are being written to zeroed 1548 * memory... 1549 */ 1550 memset(stream->oa_buffer.vaddr, 0, 1551 stream->oa_buffer.vma->size); 1552 } 1553 1554 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1555 { 1556 struct drm_i915_private *i915 = stream->perf->i915; 1557 struct drm_i915_gem_object *bo; 1558 struct i915_vma *vma; 1559 int ret; 1560 1561 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1562 return -ENODEV; 1563 1564 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1565 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1566 1567 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1568 if (IS_ERR(bo)) { 1569 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1570 return PTR_ERR(bo); 1571 } 1572 1573 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1574 1575 /* PreHSW required 512K alignment, HSW requires 16M */ 1576 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1577 if (IS_ERR(vma)) { 1578 ret = PTR_ERR(vma); 1579 goto err_unref; 1580 } 1581 stream->oa_buffer.vma = vma; 1582 1583 stream->oa_buffer.vaddr = 1584 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB); 1585 if (IS_ERR(stream->oa_buffer.vaddr)) { 1586 ret = PTR_ERR(stream->oa_buffer.vaddr); 1587 goto err_unpin; 1588 } 1589 1590 return 0; 1591 1592 err_unpin: 1593 __i915_vma_unpin(vma); 1594 1595 err_unref: 1596 i915_gem_object_put(bo); 1597 1598 stream->oa_buffer.vaddr = NULL; 1599 stream->oa_buffer.vma = NULL; 1600 1601 return ret; 1602 } 1603 1604 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1605 bool save, i915_reg_t reg, u32 offset, 1606 u32 dword_count) 1607 { 1608 u32 cmd; 1609 u32 d; 1610 1611 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1612 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1613 if (GRAPHICS_VER(stream->perf->i915) >= 8) 1614 cmd++; 1615 1616 for (d = 0; d < dword_count; d++) { 1617 *cs++ = cmd; 1618 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1619 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1620 offset) + 4 * d; 1621 *cs++ = 0; 1622 } 1623 1624 return cs; 1625 } 1626 1627 static int alloc_noa_wait(struct i915_perf_stream *stream) 1628 { 1629 struct drm_i915_private *i915 = stream->perf->i915; 1630 struct drm_i915_gem_object *bo; 1631 struct i915_vma *vma; 1632 const u64 delay_ticks = 0xffffffffffffffff - 1633 intel_gt_ns_to_clock_interval(stream->perf->i915->ggtt.vm.gt, 1634 atomic64_read(&stream->perf->noa_programming_delay)); 1635 const u32 base = stream->engine->mmio_base; 1636 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1637 u32 *batch, *ts0, *cs, *jump; 1638 struct i915_gem_ww_ctx ww; 1639 int ret, i; 1640 enum { 1641 START_TS, 1642 NOW_TS, 1643 DELTA_TS, 1644 JUMP_PREDICATE, 1645 DELTA_TARGET, 1646 N_CS_GPR 1647 }; 1648 1649 bo = i915_gem_object_create_internal(i915, 4096); 1650 if (IS_ERR(bo)) { 1651 drm_err(&i915->drm, 1652 "Failed to allocate NOA wait batchbuffer\n"); 1653 return PTR_ERR(bo); 1654 } 1655 1656 i915_gem_ww_ctx_init(&ww, true); 1657 retry: 1658 ret = i915_gem_object_lock(bo, &ww); 1659 if (ret) 1660 goto out_ww; 1661 1662 /* 1663 * We pin in GGTT because we jump into this buffer now because 1664 * multiple OA config BOs will have a jump to this address and it 1665 * needs to be fixed during the lifetime of the i915/perf stream. 1666 */ 1667 vma = i915_gem_object_ggtt_pin_ww(bo, &ww, NULL, 0, 0, PIN_HIGH); 1668 if (IS_ERR(vma)) { 1669 ret = PTR_ERR(vma); 1670 goto out_ww; 1671 } 1672 1673 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1674 if (IS_ERR(batch)) { 1675 ret = PTR_ERR(batch); 1676 goto err_unpin; 1677 } 1678 1679 /* Save registers. */ 1680 for (i = 0; i < N_CS_GPR; i++) 1681 cs = save_restore_register( 1682 stream, cs, true /* save */, CS_GPR(i), 1683 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1684 cs = save_restore_register( 1685 stream, cs, true /* save */, MI_PREDICATE_RESULT_1, 1686 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1687 1688 /* First timestamp snapshot location. */ 1689 ts0 = cs; 1690 1691 /* 1692 * Initial snapshot of the timestamp register to implement the wait. 1693 * We work with 32b values, so clear out the top 32b bits of the 1694 * register because the ALU works 64bits. 1695 */ 1696 *cs++ = MI_LOAD_REGISTER_IMM(1); 1697 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1698 *cs++ = 0; 1699 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1700 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1701 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1702 1703 /* 1704 * This is the location we're going to jump back into until the 1705 * required amount of time has passed. 1706 */ 1707 jump = cs; 1708 1709 /* 1710 * Take another snapshot of the timestamp register. Take care to clear 1711 * up the top 32bits of CS_GPR(1) as we're using it for other 1712 * operations below. 1713 */ 1714 *cs++ = MI_LOAD_REGISTER_IMM(1); 1715 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1716 *cs++ = 0; 1717 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1718 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1719 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1720 1721 /* 1722 * Do a diff between the 2 timestamps and store the result back into 1723 * CS_GPR(1). 1724 */ 1725 *cs++ = MI_MATH(5); 1726 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1727 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1728 *cs++ = MI_MATH_SUB; 1729 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1730 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1731 1732 /* 1733 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1734 * timestamp have rolled over the 32bits) into the predicate register 1735 * to be used for the predicated jump. 1736 */ 1737 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1738 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1739 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1740 1741 /* Restart from the beginning if we had timestamps roll over. */ 1742 *cs++ = (GRAPHICS_VER(i915) < 8 ? 1743 MI_BATCH_BUFFER_START : 1744 MI_BATCH_BUFFER_START_GEN8) | 1745 MI_BATCH_PREDICATE; 1746 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1747 *cs++ = 0; 1748 1749 /* 1750 * Now add the diff between to previous timestamps and add it to : 1751 * (((1 * << 64) - 1) - delay_ns) 1752 * 1753 * When the Carry Flag contains 1 this means the elapsed time is 1754 * longer than the expected delay, and we can exit the wait loop. 1755 */ 1756 *cs++ = MI_LOAD_REGISTER_IMM(2); 1757 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1758 *cs++ = lower_32_bits(delay_ticks); 1759 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 1760 *cs++ = upper_32_bits(delay_ticks); 1761 1762 *cs++ = MI_MATH(4); 1763 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 1764 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 1765 *cs++ = MI_MATH_ADD; 1766 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1767 1768 *cs++ = MI_ARB_CHECK; 1769 1770 /* 1771 * Transfer the result into the predicate register to be used for the 1772 * predicated jump. 1773 */ 1774 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1775 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1776 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1777 1778 /* Predicate the jump. */ 1779 *cs++ = (GRAPHICS_VER(i915) < 8 ? 1780 MI_BATCH_BUFFER_START : 1781 MI_BATCH_BUFFER_START_GEN8) | 1782 MI_BATCH_PREDICATE; 1783 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 1784 *cs++ = 0; 1785 1786 /* Restore registers. */ 1787 for (i = 0; i < N_CS_GPR; i++) 1788 cs = save_restore_register( 1789 stream, cs, false /* restore */, CS_GPR(i), 1790 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1791 cs = save_restore_register( 1792 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1, 1793 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1794 1795 /* And return to the ring. */ 1796 *cs++ = MI_BATCH_BUFFER_END; 1797 1798 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 1799 1800 i915_gem_object_flush_map(bo); 1801 __i915_gem_object_release_map(bo); 1802 1803 stream->noa_wait = vma; 1804 goto out_ww; 1805 1806 err_unpin: 1807 i915_vma_unpin_and_release(&vma, 0); 1808 out_ww: 1809 if (ret == -EDEADLK) { 1810 ret = i915_gem_ww_ctx_backoff(&ww); 1811 if (!ret) 1812 goto retry; 1813 } 1814 i915_gem_ww_ctx_fini(&ww); 1815 if (ret) 1816 i915_gem_object_put(bo); 1817 return ret; 1818 } 1819 1820 static u32 *write_cs_mi_lri(u32 *cs, 1821 const struct i915_oa_reg *reg_data, 1822 u32 n_regs) 1823 { 1824 u32 i; 1825 1826 for (i = 0; i < n_regs; i++) { 1827 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 1828 u32 n_lri = min_t(u32, 1829 n_regs - i, 1830 MI_LOAD_REGISTER_IMM_MAX_REGS); 1831 1832 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 1833 } 1834 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 1835 *cs++ = reg_data[i].value; 1836 } 1837 1838 return cs; 1839 } 1840 1841 static int num_lri_dwords(int num_regs) 1842 { 1843 int count = 0; 1844 1845 if (num_regs > 0) { 1846 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 1847 count += num_regs * 2; 1848 } 1849 1850 return count; 1851 } 1852 1853 static struct i915_oa_config_bo * 1854 alloc_oa_config_buffer(struct i915_perf_stream *stream, 1855 struct i915_oa_config *oa_config) 1856 { 1857 struct drm_i915_gem_object *obj; 1858 struct i915_oa_config_bo *oa_bo; 1859 struct i915_gem_ww_ctx ww; 1860 size_t config_length = 0; 1861 u32 *cs; 1862 int err; 1863 1864 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 1865 if (!oa_bo) 1866 return ERR_PTR(-ENOMEM); 1867 1868 config_length += num_lri_dwords(oa_config->mux_regs_len); 1869 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 1870 config_length += num_lri_dwords(oa_config->flex_regs_len); 1871 config_length += 3; /* MI_BATCH_BUFFER_START */ 1872 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 1873 1874 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 1875 if (IS_ERR(obj)) { 1876 err = PTR_ERR(obj); 1877 goto err_free; 1878 } 1879 1880 i915_gem_ww_ctx_init(&ww, true); 1881 retry: 1882 err = i915_gem_object_lock(obj, &ww); 1883 if (err) 1884 goto out_ww; 1885 1886 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 1887 if (IS_ERR(cs)) { 1888 err = PTR_ERR(cs); 1889 goto out_ww; 1890 } 1891 1892 cs = write_cs_mi_lri(cs, 1893 oa_config->mux_regs, 1894 oa_config->mux_regs_len); 1895 cs = write_cs_mi_lri(cs, 1896 oa_config->b_counter_regs, 1897 oa_config->b_counter_regs_len); 1898 cs = write_cs_mi_lri(cs, 1899 oa_config->flex_regs, 1900 oa_config->flex_regs_len); 1901 1902 /* Jump into the active wait. */ 1903 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ? 1904 MI_BATCH_BUFFER_START : 1905 MI_BATCH_BUFFER_START_GEN8); 1906 *cs++ = i915_ggtt_offset(stream->noa_wait); 1907 *cs++ = 0; 1908 1909 i915_gem_object_flush_map(obj); 1910 __i915_gem_object_release_map(obj); 1911 1912 oa_bo->vma = i915_vma_instance(obj, 1913 &stream->engine->gt->ggtt->vm, 1914 NULL); 1915 if (IS_ERR(oa_bo->vma)) { 1916 err = PTR_ERR(oa_bo->vma); 1917 goto out_ww; 1918 } 1919 1920 oa_bo->oa_config = i915_oa_config_get(oa_config); 1921 llist_add(&oa_bo->node, &stream->oa_config_bos); 1922 1923 out_ww: 1924 if (err == -EDEADLK) { 1925 err = i915_gem_ww_ctx_backoff(&ww); 1926 if (!err) 1927 goto retry; 1928 } 1929 i915_gem_ww_ctx_fini(&ww); 1930 1931 if (err) 1932 i915_gem_object_put(obj); 1933 err_free: 1934 if (err) { 1935 kfree(oa_bo); 1936 return ERR_PTR(err); 1937 } 1938 return oa_bo; 1939 } 1940 1941 static struct i915_vma * 1942 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 1943 { 1944 struct i915_oa_config_bo *oa_bo; 1945 1946 /* 1947 * Look for the buffer in the already allocated BOs attached 1948 * to the stream. 1949 */ 1950 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 1951 if (oa_bo->oa_config == oa_config && 1952 memcmp(oa_bo->oa_config->uuid, 1953 oa_config->uuid, 1954 sizeof(oa_config->uuid)) == 0) 1955 goto out; 1956 } 1957 1958 oa_bo = alloc_oa_config_buffer(stream, oa_config); 1959 if (IS_ERR(oa_bo)) 1960 return ERR_CAST(oa_bo); 1961 1962 out: 1963 return i915_vma_get(oa_bo->vma); 1964 } 1965 1966 static int 1967 emit_oa_config(struct i915_perf_stream *stream, 1968 struct i915_oa_config *oa_config, 1969 struct intel_context *ce, 1970 struct i915_active *active) 1971 { 1972 struct i915_request *rq; 1973 struct i915_vma *vma; 1974 struct i915_gem_ww_ctx ww; 1975 int err; 1976 1977 vma = get_oa_vma(stream, oa_config); 1978 if (IS_ERR(vma)) 1979 return PTR_ERR(vma); 1980 1981 i915_gem_ww_ctx_init(&ww, true); 1982 retry: 1983 err = i915_gem_object_lock(vma->obj, &ww); 1984 if (err) 1985 goto err; 1986 1987 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 1988 if (err) 1989 goto err; 1990 1991 intel_engine_pm_get(ce->engine); 1992 rq = i915_request_create(ce); 1993 intel_engine_pm_put(ce->engine); 1994 if (IS_ERR(rq)) { 1995 err = PTR_ERR(rq); 1996 goto err_vma_unpin; 1997 } 1998 1999 if (!IS_ERR_OR_NULL(active)) { 2000 /* After all individual context modifications */ 2001 err = i915_request_await_active(rq, active, 2002 I915_ACTIVE_AWAIT_ACTIVE); 2003 if (err) 2004 goto err_add_request; 2005 2006 err = i915_active_add_request(active, rq); 2007 if (err) 2008 goto err_add_request; 2009 } 2010 2011 err = i915_request_await_object(rq, vma->obj, 0); 2012 if (!err) 2013 err = i915_vma_move_to_active(vma, rq, 0); 2014 if (err) 2015 goto err_add_request; 2016 2017 err = rq->engine->emit_bb_start(rq, 2018 vma->node.start, 0, 2019 I915_DISPATCH_SECURE); 2020 if (err) 2021 goto err_add_request; 2022 2023 err_add_request: 2024 i915_request_add(rq); 2025 err_vma_unpin: 2026 i915_vma_unpin(vma); 2027 err: 2028 if (err == -EDEADLK) { 2029 err = i915_gem_ww_ctx_backoff(&ww); 2030 if (!err) 2031 goto retry; 2032 } 2033 2034 i915_gem_ww_ctx_fini(&ww); 2035 i915_vma_put(vma); 2036 return err; 2037 } 2038 2039 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2040 { 2041 return stream->pinned_ctx ?: stream->engine->kernel_context; 2042 } 2043 2044 static int 2045 hsw_enable_metric_set(struct i915_perf_stream *stream, 2046 struct i915_active *active) 2047 { 2048 struct intel_uncore *uncore = stream->uncore; 2049 2050 /* 2051 * PRM: 2052 * 2053 * OA unit is using “crclk” for its functionality. When trunk 2054 * level clock gating takes place, OA clock would be gated, 2055 * unable to count the events from non-render clock domain. 2056 * Render clock gating must be disabled when OA is enabled to 2057 * count the events from non-render domain. Unit level clock 2058 * gating for RCS should also be disabled. 2059 */ 2060 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2061 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2062 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2063 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2064 2065 return emit_oa_config(stream, 2066 stream->oa_config, oa_context(stream), 2067 active); 2068 } 2069 2070 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2071 { 2072 struct intel_uncore *uncore = stream->uncore; 2073 2074 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2075 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2076 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2077 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2078 2079 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2080 } 2081 2082 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2083 i915_reg_t reg) 2084 { 2085 u32 mmio = i915_mmio_reg_offset(reg); 2086 int i; 2087 2088 /* 2089 * This arbitrary default will select the 'EU FPU0 Pipeline 2090 * Active' event. In the future it's anticipated that there 2091 * will be an explicit 'No Event' we can select, but not yet... 2092 */ 2093 if (!oa_config) 2094 return 0; 2095 2096 for (i = 0; i < oa_config->flex_regs_len; i++) { 2097 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2098 return oa_config->flex_regs[i].value; 2099 } 2100 2101 return 0; 2102 } 2103 /* 2104 * NB: It must always remain pointer safe to run this even if the OA unit 2105 * has been disabled. 2106 * 2107 * It's fine to put out-of-date values into these per-context registers 2108 * in the case that the OA unit has been disabled. 2109 */ 2110 static void 2111 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2112 const struct i915_perf_stream *stream) 2113 { 2114 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2115 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2116 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2117 i915_reg_t flex_regs[] = { 2118 EU_PERF_CNTL0, 2119 EU_PERF_CNTL1, 2120 EU_PERF_CNTL2, 2121 EU_PERF_CNTL3, 2122 EU_PERF_CNTL4, 2123 EU_PERF_CNTL5, 2124 EU_PERF_CNTL6, 2125 }; 2126 u32 *reg_state = ce->lrc_reg_state; 2127 int i; 2128 2129 reg_state[ctx_oactxctrl + 1] = 2130 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2131 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2132 GEN8_OA_COUNTER_RESUME; 2133 2134 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2135 reg_state[ctx_flexeu0 + i * 2 + 1] = 2136 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2137 } 2138 2139 struct flex { 2140 i915_reg_t reg; 2141 u32 offset; 2142 u32 value; 2143 }; 2144 2145 static int 2146 gen8_store_flex(struct i915_request *rq, 2147 struct intel_context *ce, 2148 const struct flex *flex, unsigned int count) 2149 { 2150 u32 offset; 2151 u32 *cs; 2152 2153 cs = intel_ring_begin(rq, 4 * count); 2154 if (IS_ERR(cs)) 2155 return PTR_ERR(cs); 2156 2157 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2158 do { 2159 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2160 *cs++ = offset + flex->offset * sizeof(u32); 2161 *cs++ = 0; 2162 *cs++ = flex->value; 2163 } while (flex++, --count); 2164 2165 intel_ring_advance(rq, cs); 2166 2167 return 0; 2168 } 2169 2170 static int 2171 gen8_load_flex(struct i915_request *rq, 2172 struct intel_context *ce, 2173 const struct flex *flex, unsigned int count) 2174 { 2175 u32 *cs; 2176 2177 GEM_BUG_ON(!count || count > 63); 2178 2179 cs = intel_ring_begin(rq, 2 * count + 2); 2180 if (IS_ERR(cs)) 2181 return PTR_ERR(cs); 2182 2183 *cs++ = MI_LOAD_REGISTER_IMM(count); 2184 do { 2185 *cs++ = i915_mmio_reg_offset(flex->reg); 2186 *cs++ = flex->value; 2187 } while (flex++, --count); 2188 *cs++ = MI_NOOP; 2189 2190 intel_ring_advance(rq, cs); 2191 2192 return 0; 2193 } 2194 2195 static int gen8_modify_context(struct intel_context *ce, 2196 const struct flex *flex, unsigned int count) 2197 { 2198 struct i915_request *rq; 2199 int err; 2200 2201 rq = intel_engine_create_kernel_request(ce->engine); 2202 if (IS_ERR(rq)) 2203 return PTR_ERR(rq); 2204 2205 /* Serialise with the remote context */ 2206 err = intel_context_prepare_remote_request(ce, rq); 2207 if (err == 0) 2208 err = gen8_store_flex(rq, ce, flex, count); 2209 2210 i915_request_add(rq); 2211 return err; 2212 } 2213 2214 static int 2215 gen8_modify_self(struct intel_context *ce, 2216 const struct flex *flex, unsigned int count, 2217 struct i915_active *active) 2218 { 2219 struct i915_request *rq; 2220 int err; 2221 2222 intel_engine_pm_get(ce->engine); 2223 rq = i915_request_create(ce); 2224 intel_engine_pm_put(ce->engine); 2225 if (IS_ERR(rq)) 2226 return PTR_ERR(rq); 2227 2228 if (!IS_ERR_OR_NULL(active)) { 2229 err = i915_active_add_request(active, rq); 2230 if (err) 2231 goto err_add_request; 2232 } 2233 2234 err = gen8_load_flex(rq, ce, flex, count); 2235 if (err) 2236 goto err_add_request; 2237 2238 err_add_request: 2239 i915_request_add(rq); 2240 return err; 2241 } 2242 2243 static int gen8_configure_context(struct i915_gem_context *ctx, 2244 struct flex *flex, unsigned int count) 2245 { 2246 struct i915_gem_engines_iter it; 2247 struct intel_context *ce; 2248 int err = 0; 2249 2250 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2251 GEM_BUG_ON(ce == ce->engine->kernel_context); 2252 2253 if (ce->engine->class != RENDER_CLASS) 2254 continue; 2255 2256 /* Otherwise OA settings will be set upon first use */ 2257 if (!intel_context_pin_if_active(ce)) 2258 continue; 2259 2260 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2261 err = gen8_modify_context(ce, flex, count); 2262 2263 intel_context_unpin(ce); 2264 if (err) 2265 break; 2266 } 2267 i915_gem_context_unlock_engines(ctx); 2268 2269 return err; 2270 } 2271 2272 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2273 struct i915_active *active) 2274 { 2275 int err; 2276 struct intel_context *ce = stream->pinned_ctx; 2277 u32 format = stream->oa_buffer.format; 2278 struct flex regs_context[] = { 2279 { 2280 GEN8_OACTXCONTROL, 2281 stream->perf->ctx_oactxctrl_offset + 1, 2282 active ? GEN8_OA_COUNTER_RESUME : 0, 2283 }, 2284 }; 2285 /* Offsets in regs_lri are not used since this configuration is only 2286 * applied using LRI. Initialize the correct offsets for posterity. 2287 */ 2288 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2289 struct flex regs_lri[] = { 2290 { 2291 GEN12_OAR_OACONTROL, 2292 GEN12_OAR_OACONTROL_OFFSET + 1, 2293 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2294 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2295 }, 2296 { 2297 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2298 CTX_CONTEXT_CONTROL, 2299 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2300 active ? 2301 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2302 0) 2303 }, 2304 }; 2305 2306 /* Modify the context image of pinned context with regs_context*/ 2307 err = intel_context_lock_pinned(ce); 2308 if (err) 2309 return err; 2310 2311 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context)); 2312 intel_context_unlock_pinned(ce); 2313 if (err) 2314 return err; 2315 2316 /* Apply regs_lri using LRI with pinned context */ 2317 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2318 } 2319 2320 /* 2321 * Manages updating the per-context aspects of the OA stream 2322 * configuration across all contexts. 2323 * 2324 * The awkward consideration here is that OACTXCONTROL controls the 2325 * exponent for periodic sampling which is primarily used for system 2326 * wide profiling where we'd like a consistent sampling period even in 2327 * the face of context switches. 2328 * 2329 * Our approach of updating the register state context (as opposed to 2330 * say using a workaround batch buffer) ensures that the hardware 2331 * won't automatically reload an out-of-date timer exponent even 2332 * transiently before a WA BB could be parsed. 2333 * 2334 * This function needs to: 2335 * - Ensure the currently running context's per-context OA state is 2336 * updated 2337 * - Ensure that all existing contexts will have the correct per-context 2338 * OA state if they are scheduled for use. 2339 * - Ensure any new contexts will be initialized with the correct 2340 * per-context OA state. 2341 * 2342 * Note: it's only the RCS/Render context that has any OA state. 2343 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2344 */ 2345 static int 2346 oa_configure_all_contexts(struct i915_perf_stream *stream, 2347 struct flex *regs, 2348 size_t num_regs, 2349 struct i915_active *active) 2350 { 2351 struct drm_i915_private *i915 = stream->perf->i915; 2352 struct intel_engine_cs *engine; 2353 struct i915_gem_context *ctx, *cn; 2354 int err; 2355 2356 lockdep_assert_held(&stream->perf->lock); 2357 2358 /* 2359 * The OA register config is setup through the context image. This image 2360 * might be written to by the GPU on context switch (in particular on 2361 * lite-restore). This means we can't safely update a context's image, 2362 * if this context is scheduled/submitted to run on the GPU. 2363 * 2364 * We could emit the OA register config through the batch buffer but 2365 * this might leave small interval of time where the OA unit is 2366 * configured at an invalid sampling period. 2367 * 2368 * Note that since we emit all requests from a single ring, there 2369 * is still an implicit global barrier here that may cause a high 2370 * priority context to wait for an otherwise independent low priority 2371 * context. Contexts idle at the time of reconfiguration are not 2372 * trapped behind the barrier. 2373 */ 2374 spin_lock(&i915->gem.contexts.lock); 2375 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2376 if (!kref_get_unless_zero(&ctx->ref)) 2377 continue; 2378 2379 spin_unlock(&i915->gem.contexts.lock); 2380 2381 err = gen8_configure_context(ctx, regs, num_regs); 2382 if (err) { 2383 i915_gem_context_put(ctx); 2384 return err; 2385 } 2386 2387 spin_lock(&i915->gem.contexts.lock); 2388 list_safe_reset_next(ctx, cn, link); 2389 i915_gem_context_put(ctx); 2390 } 2391 spin_unlock(&i915->gem.contexts.lock); 2392 2393 /* 2394 * After updating all other contexts, we need to modify ourselves. 2395 * If we don't modify the kernel_context, we do not get events while 2396 * idle. 2397 */ 2398 for_each_uabi_engine(engine, i915) { 2399 struct intel_context *ce = engine->kernel_context; 2400 2401 if (engine->class != RENDER_CLASS) 2402 continue; 2403 2404 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2405 2406 err = gen8_modify_self(ce, regs, num_regs, active); 2407 if (err) 2408 return err; 2409 } 2410 2411 return 0; 2412 } 2413 2414 static int 2415 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2416 const struct i915_oa_config *oa_config, 2417 struct i915_active *active) 2418 { 2419 struct flex regs[] = { 2420 { 2421 GEN8_R_PWR_CLK_STATE, 2422 CTX_R_PWR_CLK_STATE, 2423 }, 2424 }; 2425 2426 return oa_configure_all_contexts(stream, 2427 regs, ARRAY_SIZE(regs), 2428 active); 2429 } 2430 2431 static int 2432 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2433 const struct i915_oa_config *oa_config, 2434 struct i915_active *active) 2435 { 2436 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2437 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2438 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2439 struct flex regs[] = { 2440 { 2441 GEN8_R_PWR_CLK_STATE, 2442 CTX_R_PWR_CLK_STATE, 2443 }, 2444 { 2445 GEN8_OACTXCONTROL, 2446 stream->perf->ctx_oactxctrl_offset + 1, 2447 }, 2448 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2449 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2450 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2451 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2452 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2453 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2454 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2455 }; 2456 #undef ctx_flexeuN 2457 int i; 2458 2459 regs[1].value = 2460 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2461 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2462 GEN8_OA_COUNTER_RESUME; 2463 2464 for (i = 2; i < ARRAY_SIZE(regs); i++) 2465 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2466 2467 return oa_configure_all_contexts(stream, 2468 regs, ARRAY_SIZE(regs), 2469 active); 2470 } 2471 2472 static int 2473 gen8_enable_metric_set(struct i915_perf_stream *stream, 2474 struct i915_active *active) 2475 { 2476 struct intel_uncore *uncore = stream->uncore; 2477 struct i915_oa_config *oa_config = stream->oa_config; 2478 int ret; 2479 2480 /* 2481 * We disable slice/unslice clock ratio change reports on SKL since 2482 * they are too noisy. The HW generates a lot of redundant reports 2483 * where the ratio hasn't really changed causing a lot of redundant 2484 * work to processes and increasing the chances we'll hit buffer 2485 * overruns. 2486 * 2487 * Although we don't currently use the 'disable overrun' OABUFFER 2488 * feature it's worth noting that clock ratio reports have to be 2489 * disabled before considering to use that feature since the HW doesn't 2490 * correctly block these reports. 2491 * 2492 * Currently none of the high-level metrics we have depend on knowing 2493 * this ratio to normalize. 2494 * 2495 * Note: This register is not power context saved and restored, but 2496 * that's OK considering that we disable RC6 while the OA unit is 2497 * enabled. 2498 * 2499 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2500 * be read back from automatically triggered reports, as part of the 2501 * RPT_ID field. 2502 */ 2503 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) { 2504 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2505 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2506 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2507 } 2508 2509 /* 2510 * Update all contexts prior writing the mux configurations as we need 2511 * to make sure all slices/subslices are ON before writing to NOA 2512 * registers. 2513 */ 2514 ret = lrc_configure_all_contexts(stream, oa_config, active); 2515 if (ret) 2516 return ret; 2517 2518 return emit_oa_config(stream, 2519 stream->oa_config, oa_context(stream), 2520 active); 2521 } 2522 2523 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2524 { 2525 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2526 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2527 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2528 } 2529 2530 static int 2531 gen12_enable_metric_set(struct i915_perf_stream *stream, 2532 struct i915_active *active) 2533 { 2534 struct intel_uncore *uncore = stream->uncore; 2535 struct i915_oa_config *oa_config = stream->oa_config; 2536 bool periodic = stream->periodic; 2537 u32 period_exponent = stream->period_exponent; 2538 int ret; 2539 2540 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2541 /* Disable clk ratio reports, like previous Gens. */ 2542 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2543 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2544 /* 2545 * If the user didn't require OA reports, instruct 2546 * the hardware not to emit ctx switch reports. 2547 */ 2548 oag_report_ctx_switches(stream)); 2549 2550 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2551 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2552 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2553 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2554 : 0); 2555 2556 /* 2557 * Update all contexts prior writing the mux configurations as we need 2558 * to make sure all slices/subslices are ON before writing to NOA 2559 * registers. 2560 */ 2561 ret = gen12_configure_all_contexts(stream, oa_config, active); 2562 if (ret) 2563 return ret; 2564 2565 /* 2566 * For Gen12, performance counters are context 2567 * saved/restored. Only enable it for the context that 2568 * requested this. 2569 */ 2570 if (stream->ctx) { 2571 ret = gen12_configure_oar_context(stream, active); 2572 if (ret) 2573 return ret; 2574 } 2575 2576 return emit_oa_config(stream, 2577 stream->oa_config, oa_context(stream), 2578 active); 2579 } 2580 2581 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2582 { 2583 struct intel_uncore *uncore = stream->uncore; 2584 2585 /* Reset all contexts' slices/subslices configurations. */ 2586 lrc_configure_all_contexts(stream, NULL, NULL); 2587 2588 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2589 } 2590 2591 static void gen11_disable_metric_set(struct i915_perf_stream *stream) 2592 { 2593 struct intel_uncore *uncore = stream->uncore; 2594 2595 /* Reset all contexts' slices/subslices configurations. */ 2596 lrc_configure_all_contexts(stream, NULL, NULL); 2597 2598 /* Make sure we disable noa to save power. */ 2599 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2600 } 2601 2602 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2603 { 2604 struct intel_uncore *uncore = stream->uncore; 2605 2606 /* Reset all contexts' slices/subslices configurations. */ 2607 gen12_configure_all_contexts(stream, NULL, NULL); 2608 2609 /* disable the context save/restore or OAR counters */ 2610 if (stream->ctx) 2611 gen12_configure_oar_context(stream, NULL); 2612 2613 /* Make sure we disable noa to save power. */ 2614 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2615 } 2616 2617 static void gen7_oa_enable(struct i915_perf_stream *stream) 2618 { 2619 struct intel_uncore *uncore = stream->uncore; 2620 struct i915_gem_context *ctx = stream->ctx; 2621 u32 ctx_id = stream->specific_ctx_id; 2622 bool periodic = stream->periodic; 2623 u32 period_exponent = stream->period_exponent; 2624 u32 report_format = stream->oa_buffer.format; 2625 2626 /* 2627 * Reset buf pointers so we don't forward reports from before now. 2628 * 2629 * Think carefully if considering trying to avoid this, since it 2630 * also ensures status flags and the buffer itself are cleared 2631 * in error paths, and we have checks for invalid reports based 2632 * on the assumption that certain fields are written to zeroed 2633 * memory which this helps maintains. 2634 */ 2635 gen7_init_oa_buffer(stream); 2636 2637 intel_uncore_write(uncore, GEN7_OACONTROL, 2638 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2639 (period_exponent << 2640 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2641 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2642 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2643 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2644 GEN7_OACONTROL_ENABLE); 2645 } 2646 2647 static void gen8_oa_enable(struct i915_perf_stream *stream) 2648 { 2649 struct intel_uncore *uncore = stream->uncore; 2650 u32 report_format = stream->oa_buffer.format; 2651 2652 /* 2653 * Reset buf pointers so we don't forward reports from before now. 2654 * 2655 * Think carefully if considering trying to avoid this, since it 2656 * also ensures status flags and the buffer itself are cleared 2657 * in error paths, and we have checks for invalid reports based 2658 * on the assumption that certain fields are written to zeroed 2659 * memory which this helps maintains. 2660 */ 2661 gen8_init_oa_buffer(stream); 2662 2663 /* 2664 * Note: we don't rely on the hardware to perform single context 2665 * filtering and instead filter on the cpu based on the context-id 2666 * field of reports 2667 */ 2668 intel_uncore_write(uncore, GEN8_OACONTROL, 2669 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2670 GEN8_OA_COUNTER_ENABLE); 2671 } 2672 2673 static void gen12_oa_enable(struct i915_perf_stream *stream) 2674 { 2675 struct intel_uncore *uncore = stream->uncore; 2676 u32 report_format = stream->oa_buffer.format; 2677 2678 /* 2679 * If we don't want OA reports from the OA buffer, then we don't even 2680 * need to program the OAG unit. 2681 */ 2682 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2683 return; 2684 2685 gen12_init_oa_buffer(stream); 2686 2687 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2688 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2689 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2690 } 2691 2692 /** 2693 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2694 * @stream: An i915 perf stream opened for OA metrics 2695 * 2696 * [Re]enables hardware periodic sampling according to the period configured 2697 * when opening the stream. This also starts a hrtimer that will periodically 2698 * check for data in the circular OA buffer for notifying userspace (e.g. 2699 * during a read() or poll()). 2700 */ 2701 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2702 { 2703 stream->pollin = false; 2704 2705 stream->perf->ops.oa_enable(stream); 2706 2707 if (stream->sample_flags & SAMPLE_OA_REPORT) 2708 hrtimer_start(&stream->poll_check_timer, 2709 ns_to_ktime(stream->poll_oa_period), 2710 HRTIMER_MODE_REL_PINNED); 2711 } 2712 2713 static void gen7_oa_disable(struct i915_perf_stream *stream) 2714 { 2715 struct intel_uncore *uncore = stream->uncore; 2716 2717 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2718 if (intel_wait_for_register(uncore, 2719 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2720 50)) 2721 drm_err(&stream->perf->i915->drm, 2722 "wait for OA to be disabled timed out\n"); 2723 } 2724 2725 static void gen8_oa_disable(struct i915_perf_stream *stream) 2726 { 2727 struct intel_uncore *uncore = stream->uncore; 2728 2729 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2730 if (intel_wait_for_register(uncore, 2731 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2732 50)) 2733 drm_err(&stream->perf->i915->drm, 2734 "wait for OA to be disabled timed out\n"); 2735 } 2736 2737 static void gen12_oa_disable(struct i915_perf_stream *stream) 2738 { 2739 struct intel_uncore *uncore = stream->uncore; 2740 2741 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 2742 if (intel_wait_for_register(uncore, 2743 GEN12_OAG_OACONTROL, 2744 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 2745 50)) 2746 drm_err(&stream->perf->i915->drm, 2747 "wait for OA to be disabled timed out\n"); 2748 2749 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 2750 if (intel_wait_for_register(uncore, 2751 GEN12_OA_TLB_INV_CR, 2752 1, 0, 2753 50)) 2754 drm_err(&stream->perf->i915->drm, 2755 "wait for OA tlb invalidate timed out\n"); 2756 } 2757 2758 /** 2759 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2760 * @stream: An i915 perf stream opened for OA metrics 2761 * 2762 * Stops the OA unit from periodically writing counter reports into the 2763 * circular OA buffer. This also stops the hrtimer that periodically checks for 2764 * data in the circular OA buffer, for notifying userspace. 2765 */ 2766 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2767 { 2768 stream->perf->ops.oa_disable(stream); 2769 2770 if (stream->sample_flags & SAMPLE_OA_REPORT) 2771 hrtimer_cancel(&stream->poll_check_timer); 2772 } 2773 2774 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2775 .destroy = i915_oa_stream_destroy, 2776 .enable = i915_oa_stream_enable, 2777 .disable = i915_oa_stream_disable, 2778 .wait_unlocked = i915_oa_wait_unlocked, 2779 .poll_wait = i915_oa_poll_wait, 2780 .read = i915_oa_read, 2781 }; 2782 2783 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 2784 { 2785 struct i915_active *active; 2786 int err; 2787 2788 active = i915_active_create(); 2789 if (!active) 2790 return -ENOMEM; 2791 2792 err = stream->perf->ops.enable_metric_set(stream, active); 2793 if (err == 0) 2794 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 2795 2796 i915_active_put(active); 2797 return err; 2798 } 2799 2800 static void 2801 get_default_sseu_config(struct intel_sseu *out_sseu, 2802 struct intel_engine_cs *engine) 2803 { 2804 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 2805 2806 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 2807 2808 if (GRAPHICS_VER(engine->i915) == 11) { 2809 /* 2810 * We only need subslice count so it doesn't matter which ones 2811 * we select - just turn off low bits in the amount of half of 2812 * all available subslices per slice. 2813 */ 2814 out_sseu->subslice_mask = 2815 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 2816 out_sseu->slice_mask = 0x1; 2817 } 2818 } 2819 2820 static int 2821 get_sseu_config(struct intel_sseu *out_sseu, 2822 struct intel_engine_cs *engine, 2823 const struct drm_i915_gem_context_param_sseu *drm_sseu) 2824 { 2825 if (drm_sseu->engine.engine_class != engine->uabi_class || 2826 drm_sseu->engine.engine_instance != engine->uabi_instance) 2827 return -EINVAL; 2828 2829 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 2830 } 2831 2832 /** 2833 * i915_oa_stream_init - validate combined props for OA stream and init 2834 * @stream: An i915 perf stream 2835 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2836 * @props: The property state that configures stream (individually validated) 2837 * 2838 * While read_properties_unlocked() validates properties in isolation it 2839 * doesn't ensure that the combination necessarily makes sense. 2840 * 2841 * At this point it has been determined that userspace wants a stream of 2842 * OA metrics, but still we need to further validate the combined 2843 * properties are OK. 2844 * 2845 * If the configuration makes sense then we can allocate memory for 2846 * a circular OA buffer and apply the requested metric set configuration. 2847 * 2848 * Returns: zero on success or a negative error code. 2849 */ 2850 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2851 struct drm_i915_perf_open_param *param, 2852 struct perf_open_properties *props) 2853 { 2854 struct drm_i915_private *i915 = stream->perf->i915; 2855 struct i915_perf *perf = stream->perf; 2856 int format_size; 2857 int ret; 2858 2859 if (!props->engine) { 2860 DRM_DEBUG("OA engine not specified\n"); 2861 return -EINVAL; 2862 } 2863 2864 /* 2865 * If the sysfs metrics/ directory wasn't registered for some 2866 * reason then don't let userspace try their luck with config 2867 * IDs 2868 */ 2869 if (!perf->metrics_kobj) { 2870 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2871 return -EINVAL; 2872 } 2873 2874 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 2875 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) { 2876 DRM_DEBUG("Only OA report sampling supported\n"); 2877 return -EINVAL; 2878 } 2879 2880 if (!perf->ops.enable_metric_set) { 2881 DRM_DEBUG("OA unit not supported\n"); 2882 return -ENODEV; 2883 } 2884 2885 /* 2886 * To avoid the complexity of having to accurately filter 2887 * counter reports and marshal to the appropriate client 2888 * we currently only allow exclusive access 2889 */ 2890 if (perf->exclusive_stream) { 2891 DRM_DEBUG("OA unit already in use\n"); 2892 return -EBUSY; 2893 } 2894 2895 if (!props->oa_format) { 2896 DRM_DEBUG("OA report format not specified\n"); 2897 return -EINVAL; 2898 } 2899 2900 stream->engine = props->engine; 2901 stream->uncore = stream->engine->gt->uncore; 2902 2903 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2904 2905 format_size = perf->oa_formats[props->oa_format].size; 2906 2907 stream->sample_flags = props->sample_flags; 2908 stream->sample_size += format_size; 2909 2910 stream->oa_buffer.format_size = format_size; 2911 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0)) 2912 return -EINVAL; 2913 2914 stream->hold_preemption = props->hold_preemption; 2915 2916 stream->oa_buffer.format = 2917 perf->oa_formats[props->oa_format].format; 2918 2919 stream->periodic = props->oa_periodic; 2920 if (stream->periodic) 2921 stream->period_exponent = props->oa_period_exponent; 2922 2923 if (stream->ctx) { 2924 ret = oa_get_render_ctx_id(stream); 2925 if (ret) { 2926 DRM_DEBUG("Invalid context id to filter with\n"); 2927 return ret; 2928 } 2929 } 2930 2931 ret = alloc_noa_wait(stream); 2932 if (ret) { 2933 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n"); 2934 goto err_noa_wait_alloc; 2935 } 2936 2937 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 2938 if (!stream->oa_config) { 2939 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2940 ret = -EINVAL; 2941 goto err_config; 2942 } 2943 2944 /* PRM - observability performance counters: 2945 * 2946 * OACONTROL, performance counter enable, note: 2947 * 2948 * "When this bit is set, in order to have coherent counts, 2949 * RC6 power state and trunk clock gating must be disabled. 2950 * This can be achieved by programming MMIO registers as 2951 * 0xA094=0 and 0xA090[31]=1" 2952 * 2953 * In our case we are expecting that taking pm + FORCEWAKE 2954 * references will effectively disable RC6. 2955 */ 2956 intel_engine_pm_get(stream->engine); 2957 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 2958 2959 ret = alloc_oa_buffer(stream); 2960 if (ret) 2961 goto err_oa_buf_alloc; 2962 2963 stream->ops = &i915_oa_stream_ops; 2964 2965 perf->sseu = props->sseu; 2966 WRITE_ONCE(perf->exclusive_stream, stream); 2967 2968 ret = i915_perf_stream_enable_sync(stream); 2969 if (ret) { 2970 DRM_DEBUG("Unable to enable metric set\n"); 2971 goto err_enable; 2972 } 2973 2974 DRM_DEBUG("opening stream oa config uuid=%s\n", 2975 stream->oa_config->uuid); 2976 2977 hrtimer_init(&stream->poll_check_timer, 2978 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2979 stream->poll_check_timer.function = oa_poll_check_timer_cb; 2980 init_waitqueue_head(&stream->poll_wq); 2981 spin_lock_init(&stream->oa_buffer.ptr_lock); 2982 2983 return 0; 2984 2985 err_enable: 2986 WRITE_ONCE(perf->exclusive_stream, NULL); 2987 perf->ops.disable_metric_set(stream); 2988 2989 free_oa_buffer(stream); 2990 2991 err_oa_buf_alloc: 2992 free_oa_configs(stream); 2993 2994 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 2995 intel_engine_pm_put(stream->engine); 2996 2997 err_config: 2998 free_noa_wait(stream); 2999 3000 err_noa_wait_alloc: 3001 if (stream->ctx) 3002 oa_put_render_ctx_id(stream); 3003 3004 return ret; 3005 } 3006 3007 void i915_oa_init_reg_state(const struct intel_context *ce, 3008 const struct intel_engine_cs *engine) 3009 { 3010 struct i915_perf_stream *stream; 3011 3012 if (engine->class != RENDER_CLASS) 3013 return; 3014 3015 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 3016 stream = READ_ONCE(engine->i915->perf.exclusive_stream); 3017 if (stream && GRAPHICS_VER(stream->perf->i915) < 12) 3018 gen8_update_reg_state_unlocked(ce, stream); 3019 } 3020 3021 /** 3022 * i915_perf_read - handles read() FOP for i915 perf stream FDs 3023 * @file: An i915 perf stream file 3024 * @buf: destination buffer given by userspace 3025 * @count: the number of bytes userspace wants to read 3026 * @ppos: (inout) file seek position (unused) 3027 * 3028 * The entry point for handling a read() on a stream file descriptor from 3029 * userspace. Most of the work is left to the i915_perf_read_locked() and 3030 * &i915_perf_stream_ops->read but to save having stream implementations (of 3031 * which we might have multiple later) we handle blocking read here. 3032 * 3033 * We can also consistently treat trying to read from a disabled stream 3034 * as an IO error so implementations can assume the stream is enabled 3035 * while reading. 3036 * 3037 * Returns: The number of bytes copied or a negative error code on failure. 3038 */ 3039 static ssize_t i915_perf_read(struct file *file, 3040 char __user *buf, 3041 size_t count, 3042 loff_t *ppos) 3043 { 3044 struct i915_perf_stream *stream = file->private_data; 3045 struct i915_perf *perf = stream->perf; 3046 size_t offset = 0; 3047 int ret; 3048 3049 /* To ensure it's handled consistently we simply treat all reads of a 3050 * disabled stream as an error. In particular it might otherwise lead 3051 * to a deadlock for blocking file descriptors... 3052 */ 3053 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT)) 3054 return -EIO; 3055 3056 if (!(file->f_flags & O_NONBLOCK)) { 3057 /* There's the small chance of false positives from 3058 * stream->ops->wait_unlocked. 3059 * 3060 * E.g. with single context filtering since we only wait until 3061 * oabuffer has >= 1 report we don't immediately know whether 3062 * any reports really belong to the current context 3063 */ 3064 do { 3065 ret = stream->ops->wait_unlocked(stream); 3066 if (ret) 3067 return ret; 3068 3069 mutex_lock(&perf->lock); 3070 ret = stream->ops->read(stream, buf, count, &offset); 3071 mutex_unlock(&perf->lock); 3072 } while (!offset && !ret); 3073 } else { 3074 mutex_lock(&perf->lock); 3075 ret = stream->ops->read(stream, buf, count, &offset); 3076 mutex_unlock(&perf->lock); 3077 } 3078 3079 /* We allow the poll checking to sometimes report false positive EPOLLIN 3080 * events where we might actually report EAGAIN on read() if there's 3081 * not really any data available. In this situation though we don't 3082 * want to enter a busy loop between poll() reporting a EPOLLIN event 3083 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3084 * effectively ensures we back off until the next hrtimer callback 3085 * before reporting another EPOLLIN event. 3086 * The exception to this is if ops->read() returned -ENOSPC which means 3087 * that more OA data is available than could fit in the user provided 3088 * buffer. In this case we want the next poll() call to not block. 3089 */ 3090 if (ret != -ENOSPC) 3091 stream->pollin = false; 3092 3093 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3094 return offset ?: (ret ?: -EAGAIN); 3095 } 3096 3097 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3098 { 3099 struct i915_perf_stream *stream = 3100 container_of(hrtimer, typeof(*stream), poll_check_timer); 3101 3102 if (oa_buffer_check_unlocked(stream)) { 3103 stream->pollin = true; 3104 wake_up(&stream->poll_wq); 3105 } 3106 3107 hrtimer_forward_now(hrtimer, 3108 ns_to_ktime(stream->poll_oa_period)); 3109 3110 return HRTIMER_RESTART; 3111 } 3112 3113 /** 3114 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3115 * @stream: An i915 perf stream 3116 * @file: An i915 perf stream file 3117 * @wait: poll() state table 3118 * 3119 * For handling userspace polling on an i915 perf stream, this calls through to 3120 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3121 * will be woken for new stream data. 3122 * 3123 * Note: The &perf->lock mutex has been taken to serialize 3124 * with any non-file-operation driver hooks. 3125 * 3126 * Returns: any poll events that are ready without sleeping 3127 */ 3128 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3129 struct file *file, 3130 poll_table *wait) 3131 { 3132 __poll_t events = 0; 3133 3134 stream->ops->poll_wait(stream, file, wait); 3135 3136 /* Note: we don't explicitly check whether there's something to read 3137 * here since this path may be very hot depending on what else 3138 * userspace is polling, or on the timeout in use. We rely solely on 3139 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3140 * samples to read. 3141 */ 3142 if (stream->pollin) 3143 events |= EPOLLIN; 3144 3145 return events; 3146 } 3147 3148 /** 3149 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3150 * @file: An i915 perf stream file 3151 * @wait: poll() state table 3152 * 3153 * For handling userspace polling on an i915 perf stream, this ensures 3154 * poll_wait() gets called with a wait queue that will be woken for new stream 3155 * data. 3156 * 3157 * Note: Implementation deferred to i915_perf_poll_locked() 3158 * 3159 * Returns: any poll events that are ready without sleeping 3160 */ 3161 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3162 { 3163 struct i915_perf_stream *stream = file->private_data; 3164 struct i915_perf *perf = stream->perf; 3165 __poll_t ret; 3166 3167 mutex_lock(&perf->lock); 3168 ret = i915_perf_poll_locked(stream, file, wait); 3169 mutex_unlock(&perf->lock); 3170 3171 return ret; 3172 } 3173 3174 /** 3175 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3176 * @stream: A disabled i915 perf stream 3177 * 3178 * [Re]enables the associated capture of data for this stream. 3179 * 3180 * If a stream was previously enabled then there's currently no intention 3181 * to provide userspace any guarantee about the preservation of previously 3182 * buffered data. 3183 */ 3184 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3185 { 3186 if (stream->enabled) 3187 return; 3188 3189 /* Allow stream->ops->enable() to refer to this */ 3190 stream->enabled = true; 3191 3192 if (stream->ops->enable) 3193 stream->ops->enable(stream); 3194 3195 if (stream->hold_preemption) 3196 intel_context_set_nopreempt(stream->pinned_ctx); 3197 } 3198 3199 /** 3200 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3201 * @stream: An enabled i915 perf stream 3202 * 3203 * Disables the associated capture of data for this stream. 3204 * 3205 * The intention is that disabling an re-enabling a stream will ideally be 3206 * cheaper than destroying and re-opening a stream with the same configuration, 3207 * though there are no formal guarantees about what state or buffered data 3208 * must be retained between disabling and re-enabling a stream. 3209 * 3210 * Note: while a stream is disabled it's considered an error for userspace 3211 * to attempt to read from the stream (-EIO). 3212 */ 3213 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3214 { 3215 if (!stream->enabled) 3216 return; 3217 3218 /* Allow stream->ops->disable() to refer to this */ 3219 stream->enabled = false; 3220 3221 if (stream->hold_preemption) 3222 intel_context_clear_nopreempt(stream->pinned_ctx); 3223 3224 if (stream->ops->disable) 3225 stream->ops->disable(stream); 3226 } 3227 3228 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3229 unsigned long metrics_set) 3230 { 3231 struct i915_oa_config *config; 3232 long ret = stream->oa_config->id; 3233 3234 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3235 if (!config) 3236 return -EINVAL; 3237 3238 if (config != stream->oa_config) { 3239 int err; 3240 3241 /* 3242 * If OA is bound to a specific context, emit the 3243 * reconfiguration inline from that context. The update 3244 * will then be ordered with respect to submission on that 3245 * context. 3246 * 3247 * When set globally, we use a low priority kernel context, 3248 * so it will effectively take effect when idle. 3249 */ 3250 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3251 if (!err) 3252 config = xchg(&stream->oa_config, config); 3253 else 3254 ret = err; 3255 } 3256 3257 i915_oa_config_put(config); 3258 3259 return ret; 3260 } 3261 3262 /** 3263 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3264 * @stream: An i915 perf stream 3265 * @cmd: the ioctl request 3266 * @arg: the ioctl data 3267 * 3268 * Note: The &perf->lock mutex has been taken to serialize 3269 * with any non-file-operation driver hooks. 3270 * 3271 * Returns: zero on success or a negative error code. Returns -EINVAL for 3272 * an unknown ioctl request. 3273 */ 3274 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3275 unsigned int cmd, 3276 unsigned long arg) 3277 { 3278 switch (cmd) { 3279 case I915_PERF_IOCTL_ENABLE: 3280 i915_perf_enable_locked(stream); 3281 return 0; 3282 case I915_PERF_IOCTL_DISABLE: 3283 i915_perf_disable_locked(stream); 3284 return 0; 3285 case I915_PERF_IOCTL_CONFIG: 3286 return i915_perf_config_locked(stream, arg); 3287 } 3288 3289 return -EINVAL; 3290 } 3291 3292 /** 3293 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3294 * @file: An i915 perf stream file 3295 * @cmd: the ioctl request 3296 * @arg: the ioctl data 3297 * 3298 * Implementation deferred to i915_perf_ioctl_locked(). 3299 * 3300 * Returns: zero on success or a negative error code. Returns -EINVAL for 3301 * an unknown ioctl request. 3302 */ 3303 static long i915_perf_ioctl(struct file *file, 3304 unsigned int cmd, 3305 unsigned long arg) 3306 { 3307 struct i915_perf_stream *stream = file->private_data; 3308 struct i915_perf *perf = stream->perf; 3309 long ret; 3310 3311 mutex_lock(&perf->lock); 3312 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3313 mutex_unlock(&perf->lock); 3314 3315 return ret; 3316 } 3317 3318 /** 3319 * i915_perf_destroy_locked - destroy an i915 perf stream 3320 * @stream: An i915 perf stream 3321 * 3322 * Frees all resources associated with the given i915 perf @stream, disabling 3323 * any associated data capture in the process. 3324 * 3325 * Note: The &perf->lock mutex has been taken to serialize 3326 * with any non-file-operation driver hooks. 3327 */ 3328 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3329 { 3330 if (stream->enabled) 3331 i915_perf_disable_locked(stream); 3332 3333 if (stream->ops->destroy) 3334 stream->ops->destroy(stream); 3335 3336 if (stream->ctx) 3337 i915_gem_context_put(stream->ctx); 3338 3339 kfree(stream); 3340 } 3341 3342 /** 3343 * i915_perf_release - handles userspace close() of a stream file 3344 * @inode: anonymous inode associated with file 3345 * @file: An i915 perf stream file 3346 * 3347 * Cleans up any resources associated with an open i915 perf stream file. 3348 * 3349 * NB: close() can't really fail from the userspace point of view. 3350 * 3351 * Returns: zero on success or a negative error code. 3352 */ 3353 static int i915_perf_release(struct inode *inode, struct file *file) 3354 { 3355 struct i915_perf_stream *stream = file->private_data; 3356 struct i915_perf *perf = stream->perf; 3357 3358 mutex_lock(&perf->lock); 3359 i915_perf_destroy_locked(stream); 3360 mutex_unlock(&perf->lock); 3361 3362 /* Release the reference the perf stream kept on the driver. */ 3363 drm_dev_put(&perf->i915->drm); 3364 3365 return 0; 3366 } 3367 3368 3369 static const struct file_operations fops = { 3370 .owner = THIS_MODULE, 3371 .llseek = no_llseek, 3372 .release = i915_perf_release, 3373 .poll = i915_perf_poll, 3374 .read = i915_perf_read, 3375 .unlocked_ioctl = i915_perf_ioctl, 3376 /* Our ioctl have no arguments, so it's safe to use the same function 3377 * to handle 32bits compatibility. 3378 */ 3379 .compat_ioctl = i915_perf_ioctl, 3380 }; 3381 3382 3383 /** 3384 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3385 * @perf: i915 perf instance 3386 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3387 * @props: individually validated u64 property value pairs 3388 * @file: drm file 3389 * 3390 * See i915_perf_ioctl_open() for interface details. 3391 * 3392 * Implements further stream config validation and stream initialization on 3393 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex 3394 * taken to serialize with any non-file-operation driver hooks. 3395 * 3396 * Note: at this point the @props have only been validated in isolation and 3397 * it's still necessary to validate that the combination of properties makes 3398 * sense. 3399 * 3400 * In the case where userspace is interested in OA unit metrics then further 3401 * config validation and stream initialization details will be handled by 3402 * i915_oa_stream_init(). The code here should only validate config state that 3403 * will be relevant to all stream types / backends. 3404 * 3405 * Returns: zero on success or a negative error code. 3406 */ 3407 static int 3408 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3409 struct drm_i915_perf_open_param *param, 3410 struct perf_open_properties *props, 3411 struct drm_file *file) 3412 { 3413 struct i915_gem_context *specific_ctx = NULL; 3414 struct i915_perf_stream *stream = NULL; 3415 unsigned long f_flags = 0; 3416 bool privileged_op = true; 3417 int stream_fd; 3418 int ret; 3419 3420 if (props->single_context) { 3421 u32 ctx_handle = props->ctx_handle; 3422 struct drm_i915_file_private *file_priv = file->driver_priv; 3423 3424 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3425 if (IS_ERR(specific_ctx)) { 3426 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 3427 ctx_handle); 3428 ret = PTR_ERR(specific_ctx); 3429 goto err; 3430 } 3431 } 3432 3433 /* 3434 * On Haswell the OA unit supports clock gating off for a specific 3435 * context and in this mode there's no visibility of metrics for the 3436 * rest of the system, which we consider acceptable for a 3437 * non-privileged client. 3438 * 3439 * For Gen8->11 the OA unit no longer supports clock gating off for a 3440 * specific context and the kernel can't securely stop the counters 3441 * from updating as system-wide / global values. Even though we can 3442 * filter reports based on the included context ID we can't block 3443 * clients from seeing the raw / global counter values via 3444 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3445 * enable the OA unit by default. 3446 * 3447 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3448 * per context basis. So we can relax requirements there if the user 3449 * doesn't request global stream access (i.e. query based sampling 3450 * using MI_RECORD_PERF_COUNT. 3451 */ 3452 if (IS_HASWELL(perf->i915) && specific_ctx) 3453 privileged_op = false; 3454 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx && 3455 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3456 privileged_op = false; 3457 3458 if (props->hold_preemption) { 3459 if (!props->single_context) { 3460 DRM_DEBUG("preemption disable with no context\n"); 3461 ret = -EINVAL; 3462 goto err; 3463 } 3464 privileged_op = true; 3465 } 3466 3467 /* 3468 * Asking for SSEU configuration is a priviliged operation. 3469 */ 3470 if (props->has_sseu) 3471 privileged_op = true; 3472 else 3473 get_default_sseu_config(&props->sseu, props->engine); 3474 3475 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3476 * we check a dev.i915.perf_stream_paranoid sysctl option 3477 * to determine if it's ok to access system wide OA counters 3478 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3479 */ 3480 if (privileged_op && 3481 i915_perf_stream_paranoid && !perfmon_capable()) { 3482 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n"); 3483 ret = -EACCES; 3484 goto err_ctx; 3485 } 3486 3487 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3488 if (!stream) { 3489 ret = -ENOMEM; 3490 goto err_ctx; 3491 } 3492 3493 stream->perf = perf; 3494 stream->ctx = specific_ctx; 3495 stream->poll_oa_period = props->poll_oa_period; 3496 3497 ret = i915_oa_stream_init(stream, param, props); 3498 if (ret) 3499 goto err_alloc; 3500 3501 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3502 * to have _stream_init check the combination of sample flags more 3503 * thoroughly, but still this is the expected result at this point. 3504 */ 3505 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3506 ret = -ENODEV; 3507 goto err_flags; 3508 } 3509 3510 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3511 f_flags |= O_CLOEXEC; 3512 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3513 f_flags |= O_NONBLOCK; 3514 3515 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3516 if (stream_fd < 0) { 3517 ret = stream_fd; 3518 goto err_flags; 3519 } 3520 3521 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3522 i915_perf_enable_locked(stream); 3523 3524 /* Take a reference on the driver that will be kept with stream_fd 3525 * until its release. 3526 */ 3527 drm_dev_get(&perf->i915->drm); 3528 3529 return stream_fd; 3530 3531 err_flags: 3532 if (stream->ops->destroy) 3533 stream->ops->destroy(stream); 3534 err_alloc: 3535 kfree(stream); 3536 err_ctx: 3537 if (specific_ctx) 3538 i915_gem_context_put(specific_ctx); 3539 err: 3540 return ret; 3541 } 3542 3543 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3544 { 3545 return intel_gt_clock_interval_to_ns(perf->i915->ggtt.vm.gt, 3546 2ULL << exponent); 3547 } 3548 3549 static __always_inline bool 3550 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format) 3551 { 3552 return test_bit(format, perf->format_mask); 3553 } 3554 3555 static __always_inline void 3556 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format) 3557 { 3558 __set_bit(format, perf->format_mask); 3559 } 3560 3561 /** 3562 * read_properties_unlocked - validate + copy userspace stream open properties 3563 * @perf: i915 perf instance 3564 * @uprops: The array of u64 key value pairs given by userspace 3565 * @n_props: The number of key value pairs expected in @uprops 3566 * @props: The stream configuration built up while validating properties 3567 * 3568 * Note this function only validates properties in isolation it doesn't 3569 * validate that the combination of properties makes sense or that all 3570 * properties necessary for a particular kind of stream have been set. 3571 * 3572 * Note that there currently aren't any ordering requirements for properties so 3573 * we shouldn't validate or assume anything about ordering here. This doesn't 3574 * rule out defining new properties with ordering requirements in the future. 3575 */ 3576 static int read_properties_unlocked(struct i915_perf *perf, 3577 u64 __user *uprops, 3578 u32 n_props, 3579 struct perf_open_properties *props) 3580 { 3581 u64 __user *uprop = uprops; 3582 u32 i; 3583 int ret; 3584 3585 memset(props, 0, sizeof(struct perf_open_properties)); 3586 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 3587 3588 if (!n_props) { 3589 DRM_DEBUG("No i915 perf properties given\n"); 3590 return -EINVAL; 3591 } 3592 3593 /* At the moment we only support using i915-perf on the RCS. */ 3594 props->engine = intel_engine_lookup_user(perf->i915, 3595 I915_ENGINE_CLASS_RENDER, 3596 0); 3597 if (!props->engine) { 3598 DRM_DEBUG("No RENDER-capable engines\n"); 3599 return -EINVAL; 3600 } 3601 3602 /* Considering that ID = 0 is reserved and assuming that we don't 3603 * (currently) expect any configurations to ever specify duplicate 3604 * values for a particular property ID then the last _PROP_MAX value is 3605 * one greater than the maximum number of properties we expect to get 3606 * from userspace. 3607 */ 3608 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3609 DRM_DEBUG("More i915 perf properties specified than exist\n"); 3610 return -EINVAL; 3611 } 3612 3613 for (i = 0; i < n_props; i++) { 3614 u64 oa_period, oa_freq_hz; 3615 u64 id, value; 3616 3617 ret = get_user(id, uprop); 3618 if (ret) 3619 return ret; 3620 3621 ret = get_user(value, uprop + 1); 3622 if (ret) 3623 return ret; 3624 3625 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3626 DRM_DEBUG("Unknown i915 perf property ID\n"); 3627 return -EINVAL; 3628 } 3629 3630 switch ((enum drm_i915_perf_property_id)id) { 3631 case DRM_I915_PERF_PROP_CTX_HANDLE: 3632 props->single_context = 1; 3633 props->ctx_handle = value; 3634 break; 3635 case DRM_I915_PERF_PROP_SAMPLE_OA: 3636 if (value) 3637 props->sample_flags |= SAMPLE_OA_REPORT; 3638 break; 3639 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3640 if (value == 0) { 3641 DRM_DEBUG("Unknown OA metric set ID\n"); 3642 return -EINVAL; 3643 } 3644 props->metrics_set = value; 3645 break; 3646 case DRM_I915_PERF_PROP_OA_FORMAT: 3647 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3648 DRM_DEBUG("Out-of-range OA report format %llu\n", 3649 value); 3650 return -EINVAL; 3651 } 3652 if (!oa_format_valid(perf, value)) { 3653 DRM_DEBUG("Unsupported OA report format %llu\n", 3654 value); 3655 return -EINVAL; 3656 } 3657 props->oa_format = value; 3658 break; 3659 case DRM_I915_PERF_PROP_OA_EXPONENT: 3660 if (value > OA_EXPONENT_MAX) { 3661 DRM_DEBUG("OA timer exponent too high (> %u)\n", 3662 OA_EXPONENT_MAX); 3663 return -EINVAL; 3664 } 3665 3666 /* Theoretically we can program the OA unit to sample 3667 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 3668 * for BXT. We don't allow such high sampling 3669 * frequencies by default unless root. 3670 */ 3671 3672 BUILD_BUG_ON(sizeof(oa_period) != 8); 3673 oa_period = oa_exponent_to_ns(perf, value); 3674 3675 /* This check is primarily to ensure that oa_period <= 3676 * UINT32_MAX (before passing to do_div which only 3677 * accepts a u32 denominator), but we can also skip 3678 * checking anything < 1Hz which implicitly can't be 3679 * limited via an integer oa_max_sample_rate. 3680 */ 3681 if (oa_period <= NSEC_PER_SEC) { 3682 u64 tmp = NSEC_PER_SEC; 3683 do_div(tmp, oa_period); 3684 oa_freq_hz = tmp; 3685 } else 3686 oa_freq_hz = 0; 3687 3688 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 3689 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 3690 i915_oa_max_sample_rate); 3691 return -EACCES; 3692 } 3693 3694 props->oa_periodic = true; 3695 props->oa_period_exponent = value; 3696 break; 3697 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 3698 props->hold_preemption = !!value; 3699 break; 3700 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 3701 struct drm_i915_gem_context_param_sseu user_sseu; 3702 3703 if (copy_from_user(&user_sseu, 3704 u64_to_user_ptr(value), 3705 sizeof(user_sseu))) { 3706 DRM_DEBUG("Unable to copy global sseu parameter\n"); 3707 return -EFAULT; 3708 } 3709 3710 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 3711 if (ret) { 3712 DRM_DEBUG("Invalid SSEU configuration\n"); 3713 return ret; 3714 } 3715 props->has_sseu = true; 3716 break; 3717 } 3718 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 3719 if (value < 100000 /* 100us */) { 3720 DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n", 3721 value); 3722 return -EINVAL; 3723 } 3724 props->poll_oa_period = value; 3725 break; 3726 case DRM_I915_PERF_PROP_MAX: 3727 MISSING_CASE(id); 3728 return -EINVAL; 3729 } 3730 3731 uprop += 2; 3732 } 3733 3734 return 0; 3735 } 3736 3737 /** 3738 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 3739 * @dev: drm device 3740 * @data: ioctl data copied from userspace (unvalidated) 3741 * @file: drm file 3742 * 3743 * Validates the stream open parameters given by userspace including flags 3744 * and an array of u64 key, value pair properties. 3745 * 3746 * Very little is assumed up front about the nature of the stream being 3747 * opened (for instance we don't assume it's for periodic OA unit metrics). An 3748 * i915-perf stream is expected to be a suitable interface for other forms of 3749 * buffered data written by the GPU besides periodic OA metrics. 3750 * 3751 * Note we copy the properties from userspace outside of the i915 perf 3752 * mutex to avoid an awkward lockdep with mmap_lock. 3753 * 3754 * Most of the implementation details are handled by 3755 * i915_perf_open_ioctl_locked() after taking the &perf->lock 3756 * mutex for serializing with any non-file-operation driver hooks. 3757 * 3758 * Return: A newly opened i915 Perf stream file descriptor or negative 3759 * error code on failure. 3760 */ 3761 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3762 struct drm_file *file) 3763 { 3764 struct i915_perf *perf = &to_i915(dev)->perf; 3765 struct drm_i915_perf_open_param *param = data; 3766 struct perf_open_properties props; 3767 u32 known_open_flags; 3768 int ret; 3769 3770 if (!perf->i915) { 3771 DRM_DEBUG("i915 perf interface not available for this system\n"); 3772 return -ENOTSUPP; 3773 } 3774 3775 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3776 I915_PERF_FLAG_FD_NONBLOCK | 3777 I915_PERF_FLAG_DISABLED; 3778 if (param->flags & ~known_open_flags) { 3779 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 3780 return -EINVAL; 3781 } 3782 3783 ret = read_properties_unlocked(perf, 3784 u64_to_user_ptr(param->properties_ptr), 3785 param->num_properties, 3786 &props); 3787 if (ret) 3788 return ret; 3789 3790 mutex_lock(&perf->lock); 3791 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 3792 mutex_unlock(&perf->lock); 3793 3794 return ret; 3795 } 3796 3797 /** 3798 * i915_perf_register - exposes i915-perf to userspace 3799 * @i915: i915 device instance 3800 * 3801 * In particular OA metric sets are advertised under a sysfs metrics/ 3802 * directory allowing userspace to enumerate valid IDs that can be 3803 * used to open an i915-perf stream. 3804 */ 3805 void i915_perf_register(struct drm_i915_private *i915) 3806 { 3807 struct i915_perf *perf = &i915->perf; 3808 3809 if (!perf->i915) 3810 return; 3811 3812 /* To be sure we're synchronized with an attempted 3813 * i915_perf_open_ioctl(); considering that we register after 3814 * being exposed to userspace. 3815 */ 3816 mutex_lock(&perf->lock); 3817 3818 perf->metrics_kobj = 3819 kobject_create_and_add("metrics", 3820 &i915->drm.primary->kdev->kobj); 3821 3822 mutex_unlock(&perf->lock); 3823 } 3824 3825 /** 3826 * i915_perf_unregister - hide i915-perf from userspace 3827 * @i915: i915 device instance 3828 * 3829 * i915-perf state cleanup is split up into an 'unregister' and 3830 * 'deinit' phase where the interface is first hidden from 3831 * userspace by i915_perf_unregister() before cleaning up 3832 * remaining state in i915_perf_fini(). 3833 */ 3834 void i915_perf_unregister(struct drm_i915_private *i915) 3835 { 3836 struct i915_perf *perf = &i915->perf; 3837 3838 if (!perf->metrics_kobj) 3839 return; 3840 3841 kobject_put(perf->metrics_kobj); 3842 perf->metrics_kobj = NULL; 3843 } 3844 3845 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 3846 { 3847 static const i915_reg_t flex_eu_regs[] = { 3848 EU_PERF_CNTL0, 3849 EU_PERF_CNTL1, 3850 EU_PERF_CNTL2, 3851 EU_PERF_CNTL3, 3852 EU_PERF_CNTL4, 3853 EU_PERF_CNTL5, 3854 EU_PERF_CNTL6, 3855 }; 3856 int i; 3857 3858 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3859 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3860 return true; 3861 } 3862 return false; 3863 } 3864 3865 #define ADDR_IN_RANGE(addr, start, end) \ 3866 ((addr) >= (start) && \ 3867 (addr) <= (end)) 3868 3869 #define REG_IN_RANGE(addr, start, end) \ 3870 ((addr) >= i915_mmio_reg_offset(start) && \ 3871 (addr) <= i915_mmio_reg_offset(end)) 3872 3873 #define REG_EQUAL(addr, mmio) \ 3874 ((addr) == i915_mmio_reg_offset(mmio)) 3875 3876 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3877 { 3878 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) || 3879 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) || 3880 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1); 3881 } 3882 3883 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3884 { 3885 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) || 3886 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) || 3887 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) || 3888 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI); 3889 } 3890 3891 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3892 { 3893 return gen7_is_valid_mux_addr(perf, addr) || 3894 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3895 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8)); 3896 } 3897 3898 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3899 { 3900 return gen8_is_valid_mux_addr(perf, addr) || 3901 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3902 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI); 3903 } 3904 3905 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3906 { 3907 return gen7_is_valid_mux_addr(perf, addr) || 3908 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) || 3909 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) || 3910 REG_EQUAL(addr, HSW_MBVID2_MISR0); 3911 } 3912 3913 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3914 { 3915 return gen7_is_valid_mux_addr(perf, addr) || 3916 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4); 3917 } 3918 3919 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3920 { 3921 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) || 3922 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) || 3923 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) || 3924 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) || 3925 REG_EQUAL(addr, GEN12_OAA_DBG_REG) || 3926 REG_EQUAL(addr, GEN12_OAG_OA_PESS) || 3927 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF); 3928 } 3929 3930 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3931 { 3932 return REG_EQUAL(addr, NOA_WRITE) || 3933 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3934 REG_EQUAL(addr, GDT_CHICKEN_BITS) || 3935 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3936 REG_EQUAL(addr, RPM_CONFIG0) || 3937 REG_EQUAL(addr, RPM_CONFIG1) || 3938 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8)); 3939 } 3940 3941 static u32 mask_reg_value(u32 reg, u32 val) 3942 { 3943 /* HALF_SLICE_CHICKEN2 is programmed with a the 3944 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3945 * programmed by userspace doesn't change this. 3946 */ 3947 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 3948 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3949 3950 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3951 * indicated by its name and a bunch of selection fields used by OA 3952 * configs. 3953 */ 3954 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 3955 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3956 3957 return val; 3958 } 3959 3960 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 3961 bool (*is_valid)(struct i915_perf *perf, u32 addr), 3962 u32 __user *regs, 3963 u32 n_regs) 3964 { 3965 struct i915_oa_reg *oa_regs; 3966 int err; 3967 u32 i; 3968 3969 if (!n_regs) 3970 return NULL; 3971 3972 /* No is_valid function means we're not allowing any register to be programmed. */ 3973 GEM_BUG_ON(!is_valid); 3974 if (!is_valid) 3975 return ERR_PTR(-EINVAL); 3976 3977 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3978 if (!oa_regs) 3979 return ERR_PTR(-ENOMEM); 3980 3981 for (i = 0; i < n_regs; i++) { 3982 u32 addr, value; 3983 3984 err = get_user(addr, regs); 3985 if (err) 3986 goto addr_err; 3987 3988 if (!is_valid(perf, addr)) { 3989 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3990 err = -EINVAL; 3991 goto addr_err; 3992 } 3993 3994 err = get_user(value, regs + 1); 3995 if (err) 3996 goto addr_err; 3997 3998 oa_regs[i].addr = _MMIO(addr); 3999 oa_regs[i].value = mask_reg_value(addr, value); 4000 4001 regs += 2; 4002 } 4003 4004 return oa_regs; 4005 4006 addr_err: 4007 kfree(oa_regs); 4008 return ERR_PTR(err); 4009 } 4010 4011 static ssize_t show_dynamic_id(struct device *dev, 4012 struct device_attribute *attr, 4013 char *buf) 4014 { 4015 struct i915_oa_config *oa_config = 4016 container_of(attr, typeof(*oa_config), sysfs_metric_id); 4017 4018 return sprintf(buf, "%d\n", oa_config->id); 4019 } 4020 4021 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 4022 struct i915_oa_config *oa_config) 4023 { 4024 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 4025 oa_config->sysfs_metric_id.attr.name = "id"; 4026 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 4027 oa_config->sysfs_metric_id.show = show_dynamic_id; 4028 oa_config->sysfs_metric_id.store = NULL; 4029 4030 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 4031 oa_config->attrs[1] = NULL; 4032 4033 oa_config->sysfs_metric.name = oa_config->uuid; 4034 oa_config->sysfs_metric.attrs = oa_config->attrs; 4035 4036 return sysfs_create_group(perf->metrics_kobj, 4037 &oa_config->sysfs_metric); 4038 } 4039 4040 /** 4041 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4042 * @dev: drm device 4043 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4044 * userspace (unvalidated) 4045 * @file: drm file 4046 * 4047 * Validates the submitted OA register to be saved into a new OA config that 4048 * can then be used for programming the OA unit and its NOA network. 4049 * 4050 * Returns: A new allocated config number to be used with the perf open ioctl 4051 * or a negative error code on failure. 4052 */ 4053 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4054 struct drm_file *file) 4055 { 4056 struct i915_perf *perf = &to_i915(dev)->perf; 4057 struct drm_i915_perf_oa_config *args = data; 4058 struct i915_oa_config *oa_config, *tmp; 4059 struct i915_oa_reg *regs; 4060 int err, id; 4061 4062 if (!perf->i915) { 4063 DRM_DEBUG("i915 perf interface not available for this system\n"); 4064 return -ENOTSUPP; 4065 } 4066 4067 if (!perf->metrics_kobj) { 4068 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 4069 return -EINVAL; 4070 } 4071 4072 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4073 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 4074 return -EACCES; 4075 } 4076 4077 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4078 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4079 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4080 DRM_DEBUG("No OA registers given\n"); 4081 return -EINVAL; 4082 } 4083 4084 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4085 if (!oa_config) { 4086 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 4087 return -ENOMEM; 4088 } 4089 4090 oa_config->perf = perf; 4091 kref_init(&oa_config->ref); 4092 4093 if (!uuid_is_valid(args->uuid)) { 4094 DRM_DEBUG("Invalid uuid format for OA config\n"); 4095 err = -EINVAL; 4096 goto reg_err; 4097 } 4098 4099 /* Last character in oa_config->uuid will be 0 because oa_config is 4100 * kzalloc. 4101 */ 4102 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4103 4104 oa_config->mux_regs_len = args->n_mux_regs; 4105 regs = alloc_oa_regs(perf, 4106 perf->ops.is_valid_mux_reg, 4107 u64_to_user_ptr(args->mux_regs_ptr), 4108 args->n_mux_regs); 4109 4110 if (IS_ERR(regs)) { 4111 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 4112 err = PTR_ERR(regs); 4113 goto reg_err; 4114 } 4115 oa_config->mux_regs = regs; 4116 4117 oa_config->b_counter_regs_len = args->n_boolean_regs; 4118 regs = alloc_oa_regs(perf, 4119 perf->ops.is_valid_b_counter_reg, 4120 u64_to_user_ptr(args->boolean_regs_ptr), 4121 args->n_boolean_regs); 4122 4123 if (IS_ERR(regs)) { 4124 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 4125 err = PTR_ERR(regs); 4126 goto reg_err; 4127 } 4128 oa_config->b_counter_regs = regs; 4129 4130 if (GRAPHICS_VER(perf->i915) < 8) { 4131 if (args->n_flex_regs != 0) { 4132 err = -EINVAL; 4133 goto reg_err; 4134 } 4135 } else { 4136 oa_config->flex_regs_len = args->n_flex_regs; 4137 regs = alloc_oa_regs(perf, 4138 perf->ops.is_valid_flex_reg, 4139 u64_to_user_ptr(args->flex_regs_ptr), 4140 args->n_flex_regs); 4141 4142 if (IS_ERR(regs)) { 4143 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 4144 err = PTR_ERR(regs); 4145 goto reg_err; 4146 } 4147 oa_config->flex_regs = regs; 4148 } 4149 4150 err = mutex_lock_interruptible(&perf->metrics_lock); 4151 if (err) 4152 goto reg_err; 4153 4154 /* We shouldn't have too many configs, so this iteration shouldn't be 4155 * too costly. 4156 */ 4157 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4158 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4159 DRM_DEBUG("OA config already exists with this uuid\n"); 4160 err = -EADDRINUSE; 4161 goto sysfs_err; 4162 } 4163 } 4164 4165 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4166 if (err) { 4167 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4168 goto sysfs_err; 4169 } 4170 4171 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4172 oa_config->id = idr_alloc(&perf->metrics_idr, 4173 oa_config, 2, 4174 0, GFP_KERNEL); 4175 if (oa_config->id < 0) { 4176 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4177 err = oa_config->id; 4178 goto sysfs_err; 4179 } 4180 4181 mutex_unlock(&perf->metrics_lock); 4182 4183 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4184 4185 return oa_config->id; 4186 4187 sysfs_err: 4188 mutex_unlock(&perf->metrics_lock); 4189 reg_err: 4190 i915_oa_config_put(oa_config); 4191 DRM_DEBUG("Failed to add new OA config\n"); 4192 return err; 4193 } 4194 4195 /** 4196 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4197 * @dev: drm device 4198 * @data: ioctl data (pointer to u64 integer) copied from userspace 4199 * @file: drm file 4200 * 4201 * Configs can be removed while being used, the will stop appearing in sysfs 4202 * and their content will be freed when the stream using the config is closed. 4203 * 4204 * Returns: 0 on success or a negative error code on failure. 4205 */ 4206 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4207 struct drm_file *file) 4208 { 4209 struct i915_perf *perf = &to_i915(dev)->perf; 4210 u64 *arg = data; 4211 struct i915_oa_config *oa_config; 4212 int ret; 4213 4214 if (!perf->i915) { 4215 DRM_DEBUG("i915 perf interface not available for this system\n"); 4216 return -ENOTSUPP; 4217 } 4218 4219 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4220 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 4221 return -EACCES; 4222 } 4223 4224 ret = mutex_lock_interruptible(&perf->metrics_lock); 4225 if (ret) 4226 return ret; 4227 4228 oa_config = idr_find(&perf->metrics_idr, *arg); 4229 if (!oa_config) { 4230 DRM_DEBUG("Failed to remove unknown OA config\n"); 4231 ret = -ENOENT; 4232 goto err_unlock; 4233 } 4234 4235 GEM_BUG_ON(*arg != oa_config->id); 4236 4237 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4238 4239 idr_remove(&perf->metrics_idr, *arg); 4240 4241 mutex_unlock(&perf->metrics_lock); 4242 4243 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4244 4245 i915_oa_config_put(oa_config); 4246 4247 return 0; 4248 4249 err_unlock: 4250 mutex_unlock(&perf->metrics_lock); 4251 return ret; 4252 } 4253 4254 static struct ctl_table oa_table[] = { 4255 { 4256 .procname = "perf_stream_paranoid", 4257 .data = &i915_perf_stream_paranoid, 4258 .maxlen = sizeof(i915_perf_stream_paranoid), 4259 .mode = 0644, 4260 .proc_handler = proc_dointvec_minmax, 4261 .extra1 = SYSCTL_ZERO, 4262 .extra2 = SYSCTL_ONE, 4263 }, 4264 { 4265 .procname = "oa_max_sample_rate", 4266 .data = &i915_oa_max_sample_rate, 4267 .maxlen = sizeof(i915_oa_max_sample_rate), 4268 .mode = 0644, 4269 .proc_handler = proc_dointvec_minmax, 4270 .extra1 = SYSCTL_ZERO, 4271 .extra2 = &oa_sample_rate_hard_limit, 4272 }, 4273 {} 4274 }; 4275 4276 static void oa_init_supported_formats(struct i915_perf *perf) 4277 { 4278 struct drm_i915_private *i915 = perf->i915; 4279 enum intel_platform platform = INTEL_INFO(i915)->platform; 4280 4281 switch (platform) { 4282 case INTEL_HASWELL: 4283 oa_format_add(perf, I915_OA_FORMAT_A13); 4284 oa_format_add(perf, I915_OA_FORMAT_A13); 4285 oa_format_add(perf, I915_OA_FORMAT_A29); 4286 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8); 4287 oa_format_add(perf, I915_OA_FORMAT_B4_C8); 4288 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8); 4289 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16); 4290 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4291 break; 4292 4293 case INTEL_BROADWELL: 4294 case INTEL_CHERRYVIEW: 4295 case INTEL_SKYLAKE: 4296 case INTEL_BROXTON: 4297 case INTEL_KABYLAKE: 4298 case INTEL_GEMINILAKE: 4299 case INTEL_COFFEELAKE: 4300 case INTEL_COMETLAKE: 4301 case INTEL_ICELAKE: 4302 case INTEL_ELKHARTLAKE: 4303 case INTEL_JASPERLAKE: 4304 case INTEL_TIGERLAKE: 4305 case INTEL_ROCKETLAKE: 4306 case INTEL_DG1: 4307 case INTEL_ALDERLAKE_S: 4308 case INTEL_ALDERLAKE_P: 4309 oa_format_add(perf, I915_OA_FORMAT_A12); 4310 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8); 4311 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8); 4312 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4313 break; 4314 4315 default: 4316 MISSING_CASE(platform); 4317 } 4318 } 4319 4320 /** 4321 * i915_perf_init - initialize i915-perf state on module bind 4322 * @i915: i915 device instance 4323 * 4324 * Initializes i915-perf state without exposing anything to userspace. 4325 * 4326 * Note: i915-perf initialization is split into an 'init' and 'register' 4327 * phase with the i915_perf_register() exposing state to userspace. 4328 */ 4329 void i915_perf_init(struct drm_i915_private *i915) 4330 { 4331 struct i915_perf *perf = &i915->perf; 4332 4333 /* XXX const struct i915_perf_ops! */ 4334 4335 perf->oa_formats = oa_formats; 4336 if (IS_HASWELL(i915)) { 4337 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4338 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4339 perf->ops.is_valid_flex_reg = NULL; 4340 perf->ops.enable_metric_set = hsw_enable_metric_set; 4341 perf->ops.disable_metric_set = hsw_disable_metric_set; 4342 perf->ops.oa_enable = gen7_oa_enable; 4343 perf->ops.oa_disable = gen7_oa_disable; 4344 perf->ops.read = gen7_oa_read; 4345 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4346 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4347 /* Note: that although we could theoretically also support the 4348 * legacy ringbuffer mode on BDW (and earlier iterations of 4349 * this driver, before upstreaming did this) it didn't seem 4350 * worth the complexity to maintain now that BDW+ enable 4351 * execlist mode by default. 4352 */ 4353 perf->ops.read = gen8_oa_read; 4354 4355 if (IS_GRAPHICS_VER(i915, 8, 9)) { 4356 perf->ops.is_valid_b_counter_reg = 4357 gen7_is_valid_b_counter_addr; 4358 perf->ops.is_valid_mux_reg = 4359 gen8_is_valid_mux_addr; 4360 perf->ops.is_valid_flex_reg = 4361 gen8_is_valid_flex_addr; 4362 4363 if (IS_CHERRYVIEW(i915)) { 4364 perf->ops.is_valid_mux_reg = 4365 chv_is_valid_mux_addr; 4366 } 4367 4368 perf->ops.oa_enable = gen8_oa_enable; 4369 perf->ops.oa_disable = gen8_oa_disable; 4370 perf->ops.enable_metric_set = gen8_enable_metric_set; 4371 perf->ops.disable_metric_set = gen8_disable_metric_set; 4372 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4373 4374 if (GRAPHICS_VER(i915) == 8) { 4375 perf->ctx_oactxctrl_offset = 0x120; 4376 perf->ctx_flexeu0_offset = 0x2ce; 4377 4378 perf->gen8_valid_ctx_bit = BIT(25); 4379 } else { 4380 perf->ctx_oactxctrl_offset = 0x128; 4381 perf->ctx_flexeu0_offset = 0x3de; 4382 4383 perf->gen8_valid_ctx_bit = BIT(16); 4384 } 4385 } else if (GRAPHICS_VER(i915) == 11) { 4386 perf->ops.is_valid_b_counter_reg = 4387 gen7_is_valid_b_counter_addr; 4388 perf->ops.is_valid_mux_reg = 4389 gen11_is_valid_mux_addr; 4390 perf->ops.is_valid_flex_reg = 4391 gen8_is_valid_flex_addr; 4392 4393 perf->ops.oa_enable = gen8_oa_enable; 4394 perf->ops.oa_disable = gen8_oa_disable; 4395 perf->ops.enable_metric_set = gen8_enable_metric_set; 4396 perf->ops.disable_metric_set = gen11_disable_metric_set; 4397 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4398 4399 perf->ctx_oactxctrl_offset = 0x124; 4400 perf->ctx_flexeu0_offset = 0x78e; 4401 4402 perf->gen8_valid_ctx_bit = BIT(16); 4403 } else if (GRAPHICS_VER(i915) == 12) { 4404 perf->ops.is_valid_b_counter_reg = 4405 gen12_is_valid_b_counter_addr; 4406 perf->ops.is_valid_mux_reg = 4407 gen12_is_valid_mux_addr; 4408 perf->ops.is_valid_flex_reg = 4409 gen8_is_valid_flex_addr; 4410 4411 perf->ops.oa_enable = gen12_oa_enable; 4412 perf->ops.oa_disable = gen12_oa_disable; 4413 perf->ops.enable_metric_set = gen12_enable_metric_set; 4414 perf->ops.disable_metric_set = gen12_disable_metric_set; 4415 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4416 4417 perf->ctx_flexeu0_offset = 0; 4418 perf->ctx_oactxctrl_offset = 0x144; 4419 } 4420 } 4421 4422 if (perf->ops.enable_metric_set) { 4423 mutex_init(&perf->lock); 4424 4425 /* Choose a representative limit */ 4426 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2; 4427 4428 mutex_init(&perf->metrics_lock); 4429 idr_init_base(&perf->metrics_idr, 1); 4430 4431 /* We set up some ratelimit state to potentially throttle any 4432 * _NOTES about spurious, invalid OA reports which we don't 4433 * forward to userspace. 4434 * 4435 * We print a _NOTE about any throttling when closing the 4436 * stream instead of waiting until driver _fini which no one 4437 * would ever see. 4438 * 4439 * Using the same limiting factors as printk_ratelimit() 4440 */ 4441 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4442 /* Since we use a DRM_NOTE for spurious reports it would be 4443 * inconsistent to let __ratelimit() automatically print a 4444 * warning for throttling. 4445 */ 4446 ratelimit_set_flags(&perf->spurious_report_rs, 4447 RATELIMIT_MSG_ON_RELEASE); 4448 4449 ratelimit_state_init(&perf->tail_pointer_race, 4450 5 * HZ, 10); 4451 ratelimit_set_flags(&perf->tail_pointer_race, 4452 RATELIMIT_MSG_ON_RELEASE); 4453 4454 atomic64_set(&perf->noa_programming_delay, 4455 500 * 1000 /* 500us */); 4456 4457 perf->i915 = i915; 4458 4459 oa_init_supported_formats(perf); 4460 } 4461 } 4462 4463 static int destroy_config(int id, void *p, void *data) 4464 { 4465 i915_oa_config_put(p); 4466 return 0; 4467 } 4468 4469 int i915_perf_sysctl_register(void) 4470 { 4471 sysctl_header = register_sysctl("dev/i915", oa_table); 4472 return 0; 4473 } 4474 4475 void i915_perf_sysctl_unregister(void) 4476 { 4477 unregister_sysctl_table(sysctl_header); 4478 } 4479 4480 /** 4481 * i915_perf_fini - Counter part to i915_perf_init() 4482 * @i915: i915 device instance 4483 */ 4484 void i915_perf_fini(struct drm_i915_private *i915) 4485 { 4486 struct i915_perf *perf = &i915->perf; 4487 4488 if (!perf->i915) 4489 return; 4490 4491 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4492 idr_destroy(&perf->metrics_idr); 4493 4494 memset(&perf->ops, 0, sizeof(perf->ops)); 4495 perf->i915 = NULL; 4496 } 4497 4498 /** 4499 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4500 * 4501 * This version number is used by userspace to detect available features. 4502 */ 4503 int i915_perf_ioctl_version(void) 4504 { 4505 /* 4506 * 1: Initial version 4507 * I915_PERF_IOCTL_ENABLE 4508 * I915_PERF_IOCTL_DISABLE 4509 * 4510 * 2: Added runtime modification of OA config. 4511 * I915_PERF_IOCTL_CONFIG 4512 * 4513 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4514 * preemption on a particular context so that performance data is 4515 * accessible from a delta of MI_RPC reports without looking at the 4516 * OA buffer. 4517 * 4518 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 4519 * be run for the duration of the performance recording based on 4520 * their SSEU configuration. 4521 * 4522 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 4523 * interval for the hrtimer used to check for OA data. 4524 */ 4525 return 5; 4526 } 4527 4528 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4529 #include "selftests/i915_perf.c" 4530 #endif 4531