1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gt/intel_engine_pm.h" 200 #include "gt/intel_engine_user.h" 201 #include "gt/intel_gt.h" 202 #include "gt/intel_lrc_reg.h" 203 #include "gt/intel_ring.h" 204 205 #include "i915_drv.h" 206 #include "i915_perf.h" 207 208 /* HW requires this to be a power of two, between 128k and 16M, though driver 209 * is currently generally designed assuming the largest 16M size is used such 210 * that the overflow cases are unlikely in normal operation. 211 */ 212 #define OA_BUFFER_SIZE SZ_16M 213 214 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 215 216 /** 217 * DOC: OA Tail Pointer Race 218 * 219 * There's a HW race condition between OA unit tail pointer register updates and 220 * writes to memory whereby the tail pointer can sometimes get ahead of what's 221 * been written out to the OA buffer so far (in terms of what's visible to the 222 * CPU). 223 * 224 * Although this can be observed explicitly while copying reports to userspace 225 * by checking for a zeroed report-id field in tail reports, we want to account 226 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 227 * redundant read() attempts. 228 * 229 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 230 * in the OA buffer, starting from the tail reported by the HW until we find a 231 * report with its first 2 dwords not 0 meaning its previous report is 232 * completely in memory and ready to be read. Those dwords are also set to 0 233 * once read and the whole buffer is cleared upon OA buffer initialization. The 234 * first dword is the reason for this report while the second is the timestamp, 235 * making the chances of having those 2 fields at 0 fairly unlikely. A more 236 * detailed explanation is available in oa_buffer_check_unlocked(). 237 * 238 * Most of the implementation details for this workaround are in 239 * oa_buffer_check_unlocked() and _append_oa_reports() 240 * 241 * Note for posterity: previously the driver used to define an effective tail 242 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 243 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 244 * This was flawed considering that the OA unit may also automatically generate 245 * non-periodic reports (such as on context switch) or the OA unit may be 246 * enabled without any periodic sampling. 247 */ 248 #define OA_TAIL_MARGIN_NSEC 100000ULL 249 #define INVALID_TAIL_PTR 0xffffffff 250 251 /* The default frequency for checking whether the OA unit has written new 252 * reports to the circular OA buffer... 253 */ 254 #define DEFAULT_POLL_FREQUENCY_HZ 200 255 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 256 257 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 258 static u32 i915_perf_stream_paranoid = true; 259 260 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 261 * of the 64bit timestamp bits to trigger reports from) but there's currently 262 * no known use case for sampling as infrequently as once per 47 thousand years. 263 * 264 * Since the timestamps included in OA reports are only 32bits it seems 265 * reasonable to limit the OA exponent where it's still possible to account for 266 * overflow in OA report timestamps. 267 */ 268 #define OA_EXPONENT_MAX 31 269 270 #define INVALID_CTX_ID 0xffffffff 271 272 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 273 #define OAREPORT_REASON_MASK 0x3f 274 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 275 #define OAREPORT_REASON_SHIFT 19 276 #define OAREPORT_REASON_TIMER (1<<0) 277 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 278 #define OAREPORT_REASON_CLK_RATIO (1<<5) 279 280 281 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 282 * 283 * The highest sampling frequency we can theoretically program the OA unit 284 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 285 * 286 * Initialized just before we register the sysctl parameter. 287 */ 288 static int oa_sample_rate_hard_limit; 289 290 /* Theoretically we can program the OA unit to sample every 160ns but don't 291 * allow that by default unless root... 292 * 293 * The default threshold of 100000Hz is based on perf's similar 294 * kernel.perf_event_max_sample_rate sysctl parameter. 295 */ 296 static u32 i915_oa_max_sample_rate = 100000; 297 298 /* XXX: beware if future OA HW adds new report formats that the current 299 * code assumes all reports have a power-of-two size and ~(size - 1) can 300 * be used as a mask to align the OA tail pointer. 301 */ 302 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 303 [I915_OA_FORMAT_A13] = { 0, 64 }, 304 [I915_OA_FORMAT_A29] = { 1, 128 }, 305 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 306 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 307 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 308 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 309 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 310 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 311 }; 312 313 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { 314 [I915_OA_FORMAT_A12] = { 0, 64 }, 315 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 316 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 317 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 318 }; 319 320 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = { 321 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 322 }; 323 324 #define SAMPLE_OA_REPORT (1<<0) 325 326 /** 327 * struct perf_open_properties - for validated properties given to open a stream 328 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 329 * @single_context: Whether a single or all gpu contexts should be monitored 330 * @hold_preemption: Whether the preemption is disabled for the filtered 331 * context 332 * @ctx_handle: A gem ctx handle for use with @single_context 333 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 334 * @oa_format: An OA unit HW report format 335 * @oa_periodic: Whether to enable periodic OA unit sampling 336 * @oa_period_exponent: The OA unit sampling period is derived from this 337 * @engine: The engine (typically rcs0) being monitored by the OA unit 338 * @has_sseu: Whether @sseu was specified by userspace 339 * @sseu: internal SSEU configuration computed either from the userspace 340 * specified configuration in the opening parameters or a default value 341 * (see get_default_sseu_config()) 342 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 343 * data availability 344 * 345 * As read_properties_unlocked() enumerates and validates the properties given 346 * to open a stream of metrics the configuration is built up in the structure 347 * which starts out zero initialized. 348 */ 349 struct perf_open_properties { 350 u32 sample_flags; 351 352 u64 single_context:1; 353 u64 hold_preemption:1; 354 u64 ctx_handle; 355 356 /* OA sampling state */ 357 int metrics_set; 358 int oa_format; 359 bool oa_periodic; 360 int oa_period_exponent; 361 362 struct intel_engine_cs *engine; 363 364 bool has_sseu; 365 struct intel_sseu sseu; 366 367 u64 poll_oa_period; 368 }; 369 370 struct i915_oa_config_bo { 371 struct llist_node node; 372 373 struct i915_oa_config *oa_config; 374 struct i915_vma *vma; 375 }; 376 377 static struct ctl_table_header *sysctl_header; 378 379 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 380 381 void i915_oa_config_release(struct kref *ref) 382 { 383 struct i915_oa_config *oa_config = 384 container_of(ref, typeof(*oa_config), ref); 385 386 kfree(oa_config->flex_regs); 387 kfree(oa_config->b_counter_regs); 388 kfree(oa_config->mux_regs); 389 390 kfree_rcu(oa_config, rcu); 391 } 392 393 struct i915_oa_config * 394 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 395 { 396 struct i915_oa_config *oa_config; 397 398 rcu_read_lock(); 399 oa_config = idr_find(&perf->metrics_idr, metrics_set); 400 if (oa_config) 401 oa_config = i915_oa_config_get(oa_config); 402 rcu_read_unlock(); 403 404 return oa_config; 405 } 406 407 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 408 { 409 i915_oa_config_put(oa_bo->oa_config); 410 i915_vma_put(oa_bo->vma); 411 kfree(oa_bo); 412 } 413 414 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 415 { 416 struct intel_uncore *uncore = stream->uncore; 417 418 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 419 GEN12_OAG_OATAILPTR_MASK; 420 } 421 422 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 423 { 424 struct intel_uncore *uncore = stream->uncore; 425 426 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 427 } 428 429 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 430 { 431 struct intel_uncore *uncore = stream->uncore; 432 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 433 434 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 435 } 436 437 /** 438 * oa_buffer_check_unlocked - check for data and update tail ptr state 439 * @stream: i915 stream instance 440 * 441 * This is either called via fops (for blocking reads in user ctx) or the poll 442 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 443 * if there is data available for userspace to read. 444 * 445 * This function is central to providing a workaround for the OA unit tail 446 * pointer having a race with respect to what data is visible to the CPU. 447 * It is responsible for reading tail pointers from the hardware and giving 448 * the pointers time to 'age' before they are made available for reading. 449 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 450 * 451 * Besides returning true when there is data available to read() this function 452 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer 453 * object. 454 * 455 * Note: It's safe to read OA config state here unlocked, assuming that this is 456 * only called while the stream is enabled, while the global OA configuration 457 * can't be modified. 458 * 459 * Returns: %true if the OA buffer contains data, else %false 460 */ 461 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 462 { 463 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 464 int report_size = stream->oa_buffer.format_size; 465 unsigned long flags; 466 bool pollin; 467 u32 hw_tail; 468 u64 now; 469 470 /* We have to consider the (unlikely) possibility that read() errors 471 * could result in an OA buffer reset which might reset the head and 472 * tail state. 473 */ 474 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 475 476 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 477 478 /* The tail pointer increases in 64 byte increments, 479 * not in report_size steps... 480 */ 481 hw_tail &= ~(report_size - 1); 482 483 now = ktime_get_mono_fast_ns(); 484 485 if (hw_tail == stream->oa_buffer.aging_tail && 486 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) { 487 /* If the HW tail hasn't move since the last check and the HW 488 * tail has been aging for long enough, declare it the new 489 * tail. 490 */ 491 stream->oa_buffer.tail = stream->oa_buffer.aging_tail; 492 } else { 493 u32 head, tail, aged_tail; 494 495 /* NB: The head we observe here might effectively be a little 496 * out of date. If a read() is in progress, the head could be 497 * anywhere between this head and stream->oa_buffer.tail. 498 */ 499 head = stream->oa_buffer.head - gtt_offset; 500 aged_tail = stream->oa_buffer.tail - gtt_offset; 501 502 hw_tail -= gtt_offset; 503 tail = hw_tail; 504 505 /* Walk the stream backward until we find a report with dword 0 506 * & 1 not at 0. Since the circular buffer pointers progress by 507 * increments of 64 bytes and that reports can be up to 256 508 * bytes long, we can't tell whether a report has fully landed 509 * in memory before the first 2 dwords of the following report 510 * have effectively landed. 511 * 512 * This is assuming that the writes of the OA unit land in 513 * memory in the order they were written to. 514 * If not : (╯°□°)╯︵ ┻━┻ 515 */ 516 while (OA_TAKEN(tail, aged_tail) >= report_size) { 517 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail); 518 519 if (report32[0] != 0 || report32[1] != 0) 520 break; 521 522 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 523 } 524 525 if (OA_TAKEN(hw_tail, tail) > report_size && 526 __ratelimit(&stream->perf->tail_pointer_race)) 527 DRM_NOTE("unlanded report(s) head=0x%x " 528 "tail=0x%x hw_tail=0x%x\n", 529 head, tail, hw_tail); 530 531 stream->oa_buffer.tail = gtt_offset + tail; 532 stream->oa_buffer.aging_tail = gtt_offset + hw_tail; 533 stream->oa_buffer.aging_timestamp = now; 534 } 535 536 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset, 537 stream->oa_buffer.head - gtt_offset) >= report_size; 538 539 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 540 541 return pollin; 542 } 543 544 /** 545 * append_oa_status - Appends a status record to a userspace read() buffer. 546 * @stream: An i915-perf stream opened for OA metrics 547 * @buf: destination buffer given by userspace 548 * @count: the number of bytes userspace wants to read 549 * @offset: (inout): the current position for writing into @buf 550 * @type: The kind of status to report to userspace 551 * 552 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 553 * into the userspace read() buffer. 554 * 555 * The @buf @offset will only be updated on success. 556 * 557 * Returns: 0 on success, negative error code on failure. 558 */ 559 static int append_oa_status(struct i915_perf_stream *stream, 560 char __user *buf, 561 size_t count, 562 size_t *offset, 563 enum drm_i915_perf_record_type type) 564 { 565 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 566 567 if ((count - *offset) < header.size) 568 return -ENOSPC; 569 570 if (copy_to_user(buf + *offset, &header, sizeof(header))) 571 return -EFAULT; 572 573 (*offset) += header.size; 574 575 return 0; 576 } 577 578 /** 579 * append_oa_sample - Copies single OA report into userspace read() buffer. 580 * @stream: An i915-perf stream opened for OA metrics 581 * @buf: destination buffer given by userspace 582 * @count: the number of bytes userspace wants to read 583 * @offset: (inout): the current position for writing into @buf 584 * @report: A single OA report to (optionally) include as part of the sample 585 * 586 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 587 * properties when opening a stream, tracked as `stream->sample_flags`. This 588 * function copies the requested components of a single sample to the given 589 * read() @buf. 590 * 591 * The @buf @offset will only be updated on success. 592 * 593 * Returns: 0 on success, negative error code on failure. 594 */ 595 static int append_oa_sample(struct i915_perf_stream *stream, 596 char __user *buf, 597 size_t count, 598 size_t *offset, 599 const u8 *report) 600 { 601 int report_size = stream->oa_buffer.format_size; 602 struct drm_i915_perf_record_header header; 603 u32 sample_flags = stream->sample_flags; 604 605 header.type = DRM_I915_PERF_RECORD_SAMPLE; 606 header.pad = 0; 607 header.size = stream->sample_size; 608 609 if ((count - *offset) < header.size) 610 return -ENOSPC; 611 612 buf += *offset; 613 if (copy_to_user(buf, &header, sizeof(header))) 614 return -EFAULT; 615 buf += sizeof(header); 616 617 if (sample_flags & SAMPLE_OA_REPORT) { 618 if (copy_to_user(buf, report, report_size)) 619 return -EFAULT; 620 } 621 622 (*offset) += header.size; 623 624 return 0; 625 } 626 627 /** 628 * gen8_append_oa_reports - Copies all buffered OA reports into 629 * userspace read() buffer. 630 * @stream: An i915-perf stream opened for OA metrics 631 * @buf: destination buffer given by userspace 632 * @count: the number of bytes userspace wants to read 633 * @offset: (inout): the current position for writing into @buf 634 * 635 * Notably any error condition resulting in a short read (-%ENOSPC or 636 * -%EFAULT) will be returned even though one or more records may 637 * have been successfully copied. In this case it's up to the caller 638 * to decide if the error should be squashed before returning to 639 * userspace. 640 * 641 * Note: reports are consumed from the head, and appended to the 642 * tail, so the tail chases the head?... If you think that's mad 643 * and back-to-front you're not alone, but this follows the 644 * Gen PRM naming convention. 645 * 646 * Returns: 0 on success, negative error code on failure. 647 */ 648 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 649 char __user *buf, 650 size_t count, 651 size_t *offset) 652 { 653 struct intel_uncore *uncore = stream->uncore; 654 int report_size = stream->oa_buffer.format_size; 655 u8 *oa_buf_base = stream->oa_buffer.vaddr; 656 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 657 u32 mask = (OA_BUFFER_SIZE - 1); 658 size_t start_offset = *offset; 659 unsigned long flags; 660 u32 head, tail; 661 u32 taken; 662 int ret = 0; 663 664 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 665 return -EIO; 666 667 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 668 669 head = stream->oa_buffer.head; 670 tail = stream->oa_buffer.tail; 671 672 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 673 674 /* 675 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 676 * while indexing relative to oa_buf_base. 677 */ 678 head -= gtt_offset; 679 tail -= gtt_offset; 680 681 /* 682 * An out of bounds or misaligned head or tail pointer implies a driver 683 * bug since we validate + align the tail pointers we read from the 684 * hardware and we are in full control of the head pointer which should 685 * only be incremented by multiples of the report size (notably also 686 * all a power of two). 687 */ 688 if (drm_WARN_ONCE(&uncore->i915->drm, 689 head > OA_BUFFER_SIZE || head % report_size || 690 tail > OA_BUFFER_SIZE || tail % report_size, 691 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 692 head, tail)) 693 return -EIO; 694 695 696 for (/* none */; 697 (taken = OA_TAKEN(tail, head)); 698 head = (head + report_size) & mask) { 699 u8 *report = oa_buf_base + head; 700 u32 *report32 = (void *)report; 701 u32 ctx_id; 702 u32 reason; 703 704 /* 705 * All the report sizes factor neatly into the buffer 706 * size so we never expect to see a report split 707 * between the beginning and end of the buffer. 708 * 709 * Given the initial alignment check a misalignment 710 * here would imply a driver bug that would result 711 * in an overrun. 712 */ 713 if (drm_WARN_ON(&uncore->i915->drm, 714 (OA_BUFFER_SIZE - head) < report_size)) { 715 drm_err(&uncore->i915->drm, 716 "Spurious OA head ptr: non-integral report offset\n"); 717 break; 718 } 719 720 /* 721 * The reason field includes flags identifying what 722 * triggered this specific report (mostly timer 723 * triggered or e.g. due to a context switch). 724 * 725 * This field is never expected to be zero so we can 726 * check that the report isn't invalid before copying 727 * it to userspace... 728 */ 729 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 730 (IS_GEN(stream->perf->i915, 12) ? 731 OAREPORT_REASON_MASK_EXTENDED : 732 OAREPORT_REASON_MASK)); 733 if (reason == 0) { 734 if (__ratelimit(&stream->perf->spurious_report_rs)) 735 DRM_NOTE("Skipping spurious, invalid OA report\n"); 736 continue; 737 } 738 739 ctx_id = report32[2] & stream->specific_ctx_id_mask; 740 741 /* 742 * Squash whatever is in the CTX_ID field if it's marked as 743 * invalid to be sure we avoid false-positive, single-context 744 * filtering below... 745 * 746 * Note: that we don't clear the valid_ctx_bit so userspace can 747 * understand that the ID has been squashed by the kernel. 748 */ 749 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 750 INTEL_GEN(stream->perf->i915) <= 11) 751 ctx_id = report32[2] = INVALID_CTX_ID; 752 753 /* 754 * NB: For Gen 8 the OA unit no longer supports clock gating 755 * off for a specific context and the kernel can't securely 756 * stop the counters from updating as system-wide / global 757 * values. 758 * 759 * Automatic reports now include a context ID so reports can be 760 * filtered on the cpu but it's not worth trying to 761 * automatically subtract/hide counter progress for other 762 * contexts while filtering since we can't stop userspace 763 * issuing MI_REPORT_PERF_COUNT commands which would still 764 * provide a side-band view of the real values. 765 * 766 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 767 * to normalize counters for a single filtered context then it 768 * needs be forwarded bookend context-switch reports so that it 769 * can track switches in between MI_REPORT_PERF_COUNT commands 770 * and can itself subtract/ignore the progress of counters 771 * associated with other contexts. Note that the hardware 772 * automatically triggers reports when switching to a new 773 * context which are tagged with the ID of the newly active 774 * context. To avoid the complexity (and likely fragility) of 775 * reading ahead while parsing reports to try and minimize 776 * forwarding redundant context switch reports (i.e. between 777 * other, unrelated contexts) we simply elect to forward them 778 * all. 779 * 780 * We don't rely solely on the reason field to identify context 781 * switches since it's not-uncommon for periodic samples to 782 * identify a switch before any 'context switch' report. 783 */ 784 if (!stream->perf->exclusive_stream->ctx || 785 stream->specific_ctx_id == ctx_id || 786 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 787 reason & OAREPORT_REASON_CTX_SWITCH) { 788 789 /* 790 * While filtering for a single context we avoid 791 * leaking the IDs of other contexts. 792 */ 793 if (stream->perf->exclusive_stream->ctx && 794 stream->specific_ctx_id != ctx_id) { 795 report32[2] = INVALID_CTX_ID; 796 } 797 798 ret = append_oa_sample(stream, buf, count, offset, 799 report); 800 if (ret) 801 break; 802 803 stream->oa_buffer.last_ctx_id = ctx_id; 804 } 805 806 /* 807 * Clear out the first 2 dword as a mean to detect unlanded 808 * reports. 809 */ 810 report32[0] = 0; 811 report32[1] = 0; 812 } 813 814 if (start_offset != *offset) { 815 i915_reg_t oaheadptr; 816 817 oaheadptr = IS_GEN(stream->perf->i915, 12) ? 818 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 819 820 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 821 822 /* 823 * We removed the gtt_offset for the copy loop above, indexing 824 * relative to oa_buf_base so put back here... 825 */ 826 head += gtt_offset; 827 intel_uncore_write(uncore, oaheadptr, 828 head & GEN12_OAG_OAHEADPTR_MASK); 829 stream->oa_buffer.head = head; 830 831 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 832 } 833 834 return ret; 835 } 836 837 /** 838 * gen8_oa_read - copy status records then buffered OA reports 839 * @stream: An i915-perf stream opened for OA metrics 840 * @buf: destination buffer given by userspace 841 * @count: the number of bytes userspace wants to read 842 * @offset: (inout): the current position for writing into @buf 843 * 844 * Checks OA unit status registers and if necessary appends corresponding 845 * status records for userspace (such as for a buffer full condition) and then 846 * initiate appending any buffered OA reports. 847 * 848 * Updates @offset according to the number of bytes successfully copied into 849 * the userspace buffer. 850 * 851 * NB: some data may be successfully copied to the userspace buffer 852 * even if an error is returned, and this is reflected in the 853 * updated @offset. 854 * 855 * Returns: zero on success or a negative error code 856 */ 857 static int gen8_oa_read(struct i915_perf_stream *stream, 858 char __user *buf, 859 size_t count, 860 size_t *offset) 861 { 862 struct intel_uncore *uncore = stream->uncore; 863 u32 oastatus; 864 i915_reg_t oastatus_reg; 865 int ret; 866 867 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 868 return -EIO; 869 870 oastatus_reg = IS_GEN(stream->perf->i915, 12) ? 871 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 872 873 oastatus = intel_uncore_read(uncore, oastatus_reg); 874 875 /* 876 * We treat OABUFFER_OVERFLOW as a significant error: 877 * 878 * Although theoretically we could handle this more gracefully 879 * sometimes, some Gens don't correctly suppress certain 880 * automatically triggered reports in this condition and so we 881 * have to assume that old reports are now being trampled 882 * over. 883 * 884 * Considering how we don't currently give userspace control 885 * over the OA buffer size and always configure a large 16MB 886 * buffer, then a buffer overflow does anyway likely indicate 887 * that something has gone quite badly wrong. 888 */ 889 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 890 ret = append_oa_status(stream, buf, count, offset, 891 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 892 if (ret) 893 return ret; 894 895 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 896 stream->period_exponent); 897 898 stream->perf->ops.oa_disable(stream); 899 stream->perf->ops.oa_enable(stream); 900 901 /* 902 * Note: .oa_enable() is expected to re-init the oabuffer and 903 * reset GEN8_OASTATUS for us 904 */ 905 oastatus = intel_uncore_read(uncore, oastatus_reg); 906 } 907 908 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 909 ret = append_oa_status(stream, buf, count, offset, 910 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 911 if (ret) 912 return ret; 913 914 intel_uncore_rmw(uncore, oastatus_reg, 915 GEN8_OASTATUS_COUNTER_OVERFLOW | 916 GEN8_OASTATUS_REPORT_LOST, 917 IS_GEN_RANGE(uncore->i915, 8, 10) ? 918 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 919 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 920 } 921 922 return gen8_append_oa_reports(stream, buf, count, offset); 923 } 924 925 /** 926 * gen7_append_oa_reports - Copies all buffered OA reports into 927 * userspace read() buffer. 928 * @stream: An i915-perf stream opened for OA metrics 929 * @buf: destination buffer given by userspace 930 * @count: the number of bytes userspace wants to read 931 * @offset: (inout): the current position for writing into @buf 932 * 933 * Notably any error condition resulting in a short read (-%ENOSPC or 934 * -%EFAULT) will be returned even though one or more records may 935 * have been successfully copied. In this case it's up to the caller 936 * to decide if the error should be squashed before returning to 937 * userspace. 938 * 939 * Note: reports are consumed from the head, and appended to the 940 * tail, so the tail chases the head?... If you think that's mad 941 * and back-to-front you're not alone, but this follows the 942 * Gen PRM naming convention. 943 * 944 * Returns: 0 on success, negative error code on failure. 945 */ 946 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 947 char __user *buf, 948 size_t count, 949 size_t *offset) 950 { 951 struct intel_uncore *uncore = stream->uncore; 952 int report_size = stream->oa_buffer.format_size; 953 u8 *oa_buf_base = stream->oa_buffer.vaddr; 954 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 955 u32 mask = (OA_BUFFER_SIZE - 1); 956 size_t start_offset = *offset; 957 unsigned long flags; 958 u32 head, tail; 959 u32 taken; 960 int ret = 0; 961 962 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 963 return -EIO; 964 965 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 966 967 head = stream->oa_buffer.head; 968 tail = stream->oa_buffer.tail; 969 970 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 971 972 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 973 * while indexing relative to oa_buf_base. 974 */ 975 head -= gtt_offset; 976 tail -= gtt_offset; 977 978 /* An out of bounds or misaligned head or tail pointer implies a driver 979 * bug since we validate + align the tail pointers we read from the 980 * hardware and we are in full control of the head pointer which should 981 * only be incremented by multiples of the report size (notably also 982 * all a power of two). 983 */ 984 if (drm_WARN_ONCE(&uncore->i915->drm, 985 head > OA_BUFFER_SIZE || head % report_size || 986 tail > OA_BUFFER_SIZE || tail % report_size, 987 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 988 head, tail)) 989 return -EIO; 990 991 992 for (/* none */; 993 (taken = OA_TAKEN(tail, head)); 994 head = (head + report_size) & mask) { 995 u8 *report = oa_buf_base + head; 996 u32 *report32 = (void *)report; 997 998 /* All the report sizes factor neatly into the buffer 999 * size so we never expect to see a report split 1000 * between the beginning and end of the buffer. 1001 * 1002 * Given the initial alignment check a misalignment 1003 * here would imply a driver bug that would result 1004 * in an overrun. 1005 */ 1006 if (drm_WARN_ON(&uncore->i915->drm, 1007 (OA_BUFFER_SIZE - head) < report_size)) { 1008 drm_err(&uncore->i915->drm, 1009 "Spurious OA head ptr: non-integral report offset\n"); 1010 break; 1011 } 1012 1013 /* The report-ID field for periodic samples includes 1014 * some undocumented flags related to what triggered 1015 * the report and is never expected to be zero so we 1016 * can check that the report isn't invalid before 1017 * copying it to userspace... 1018 */ 1019 if (report32[0] == 0) { 1020 if (__ratelimit(&stream->perf->spurious_report_rs)) 1021 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1022 continue; 1023 } 1024 1025 ret = append_oa_sample(stream, buf, count, offset, report); 1026 if (ret) 1027 break; 1028 1029 /* Clear out the first 2 dwords as a mean to detect unlanded 1030 * reports. 1031 */ 1032 report32[0] = 0; 1033 report32[1] = 0; 1034 } 1035 1036 if (start_offset != *offset) { 1037 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1038 1039 /* We removed the gtt_offset for the copy loop above, indexing 1040 * relative to oa_buf_base so put back here... 1041 */ 1042 head += gtt_offset; 1043 1044 intel_uncore_write(uncore, GEN7_OASTATUS2, 1045 (head & GEN7_OASTATUS2_HEAD_MASK) | 1046 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1047 stream->oa_buffer.head = head; 1048 1049 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1050 } 1051 1052 return ret; 1053 } 1054 1055 /** 1056 * gen7_oa_read - copy status records then buffered OA reports 1057 * @stream: An i915-perf stream opened for OA metrics 1058 * @buf: destination buffer given by userspace 1059 * @count: the number of bytes userspace wants to read 1060 * @offset: (inout): the current position for writing into @buf 1061 * 1062 * Checks Gen 7 specific OA unit status registers and if necessary appends 1063 * corresponding status records for userspace (such as for a buffer full 1064 * condition) and then initiate appending any buffered OA reports. 1065 * 1066 * Updates @offset according to the number of bytes successfully copied into 1067 * the userspace buffer. 1068 * 1069 * Returns: zero on success or a negative error code 1070 */ 1071 static int gen7_oa_read(struct i915_perf_stream *stream, 1072 char __user *buf, 1073 size_t count, 1074 size_t *offset) 1075 { 1076 struct intel_uncore *uncore = stream->uncore; 1077 u32 oastatus1; 1078 int ret; 1079 1080 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1081 return -EIO; 1082 1083 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1084 1085 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1086 * bits while the OA unit is enabled (while the tail pointer 1087 * may be updated asynchronously) so we ignore status bits 1088 * that have already been reported to userspace. 1089 */ 1090 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1091 1092 /* We treat OABUFFER_OVERFLOW as a significant error: 1093 * 1094 * - The status can be interpreted to mean that the buffer is 1095 * currently full (with a higher precedence than OA_TAKEN() 1096 * which will start to report a near-empty buffer after an 1097 * overflow) but it's awkward that we can't clear the status 1098 * on Haswell, so without a reset we won't be able to catch 1099 * the state again. 1100 * 1101 * - Since it also implies the HW has started overwriting old 1102 * reports it may also affect our sanity checks for invalid 1103 * reports when copying to userspace that assume new reports 1104 * are being written to cleared memory. 1105 * 1106 * - In the future we may want to introduce a flight recorder 1107 * mode where the driver will automatically maintain a safe 1108 * guard band between head/tail, avoiding this overflow 1109 * condition, but we avoid the added driver complexity for 1110 * now. 1111 */ 1112 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1113 ret = append_oa_status(stream, buf, count, offset, 1114 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1115 if (ret) 1116 return ret; 1117 1118 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1119 stream->period_exponent); 1120 1121 stream->perf->ops.oa_disable(stream); 1122 stream->perf->ops.oa_enable(stream); 1123 1124 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1125 } 1126 1127 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1128 ret = append_oa_status(stream, buf, count, offset, 1129 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1130 if (ret) 1131 return ret; 1132 stream->perf->gen7_latched_oastatus1 |= 1133 GEN7_OASTATUS1_REPORT_LOST; 1134 } 1135 1136 return gen7_append_oa_reports(stream, buf, count, offset); 1137 } 1138 1139 /** 1140 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1141 * @stream: An i915-perf stream opened for OA metrics 1142 * 1143 * Called when userspace tries to read() from a blocking stream FD opened 1144 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1145 * OA buffer and wakes us. 1146 * 1147 * Note: it's acceptable to have this return with some false positives 1148 * since any subsequent read handling will return -EAGAIN if there isn't 1149 * really data ready for userspace yet. 1150 * 1151 * Returns: zero on success or a negative error code 1152 */ 1153 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1154 { 1155 /* We would wait indefinitely if periodic sampling is not enabled */ 1156 if (!stream->periodic) 1157 return -EIO; 1158 1159 return wait_event_interruptible(stream->poll_wq, 1160 oa_buffer_check_unlocked(stream)); 1161 } 1162 1163 /** 1164 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1165 * @stream: An i915-perf stream opened for OA metrics 1166 * @file: An i915 perf stream file 1167 * @wait: poll() state table 1168 * 1169 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1170 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1171 * when it sees data ready to read in the circular OA buffer. 1172 */ 1173 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1174 struct file *file, 1175 poll_table *wait) 1176 { 1177 poll_wait(file, &stream->poll_wq, wait); 1178 } 1179 1180 /** 1181 * i915_oa_read - just calls through to &i915_oa_ops->read 1182 * @stream: An i915-perf stream opened for OA metrics 1183 * @buf: destination buffer given by userspace 1184 * @count: the number of bytes userspace wants to read 1185 * @offset: (inout): the current position for writing into @buf 1186 * 1187 * Updates @offset according to the number of bytes successfully copied into 1188 * the userspace buffer. 1189 * 1190 * Returns: zero on success or a negative error code 1191 */ 1192 static int i915_oa_read(struct i915_perf_stream *stream, 1193 char __user *buf, 1194 size_t count, 1195 size_t *offset) 1196 { 1197 return stream->perf->ops.read(stream, buf, count, offset); 1198 } 1199 1200 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1201 { 1202 struct i915_gem_engines_iter it; 1203 struct i915_gem_context *ctx = stream->ctx; 1204 struct intel_context *ce; 1205 struct i915_gem_ww_ctx ww; 1206 int err = -ENODEV; 1207 1208 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1209 if (ce->engine != stream->engine) /* first match! */ 1210 continue; 1211 1212 err = 0; 1213 break; 1214 } 1215 i915_gem_context_unlock_engines(ctx); 1216 1217 if (err) 1218 return ERR_PTR(err); 1219 1220 i915_gem_ww_ctx_init(&ww, true); 1221 retry: 1222 /* 1223 * As the ID is the gtt offset of the context's vma we 1224 * pin the vma to ensure the ID remains fixed. 1225 */ 1226 err = intel_context_pin_ww(ce, &ww); 1227 if (err == -EDEADLK) { 1228 err = i915_gem_ww_ctx_backoff(&ww); 1229 if (!err) 1230 goto retry; 1231 } 1232 i915_gem_ww_ctx_fini(&ww); 1233 1234 if (err) 1235 return ERR_PTR(err); 1236 1237 stream->pinned_ctx = ce; 1238 return stream->pinned_ctx; 1239 } 1240 1241 /** 1242 * oa_get_render_ctx_id - determine and hold ctx hw id 1243 * @stream: An i915-perf stream opened for OA metrics 1244 * 1245 * Determine the render context hw id, and ensure it remains fixed for the 1246 * lifetime of the stream. This ensures that we don't have to worry about 1247 * updating the context ID in OACONTROL on the fly. 1248 * 1249 * Returns: zero on success or a negative error code 1250 */ 1251 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1252 { 1253 struct intel_context *ce; 1254 1255 ce = oa_pin_context(stream); 1256 if (IS_ERR(ce)) 1257 return PTR_ERR(ce); 1258 1259 switch (INTEL_GEN(ce->engine->i915)) { 1260 case 7: { 1261 /* 1262 * On Haswell we don't do any post processing of the reports 1263 * and don't need to use the mask. 1264 */ 1265 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1266 stream->specific_ctx_id_mask = 0; 1267 break; 1268 } 1269 1270 case 8: 1271 case 9: 1272 case 10: 1273 if (intel_engine_in_execlists_submission_mode(ce->engine)) { 1274 stream->specific_ctx_id_mask = 1275 (1U << GEN8_CTX_ID_WIDTH) - 1; 1276 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1277 } else { 1278 /* 1279 * When using GuC, the context descriptor we write in 1280 * i915 is read by GuC and rewritten before it's 1281 * actually written into the hardware. The LRCA is 1282 * what is put into the context id field of the 1283 * context descriptor by GuC. Because it's aligned to 1284 * a page, the lower 12bits are always at 0 and 1285 * dropped by GuC. They won't be part of the context 1286 * ID in the OA reports, so squash those lower bits. 1287 */ 1288 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1289 1290 /* 1291 * GuC uses the top bit to signal proxy submission, so 1292 * ignore that bit. 1293 */ 1294 stream->specific_ctx_id_mask = 1295 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1296 } 1297 break; 1298 1299 case 11: 1300 case 12: { 1301 stream->specific_ctx_id_mask = 1302 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1303 /* 1304 * Pick an unused context id 1305 * 0 - BITS_PER_LONG are used by other contexts 1306 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context 1307 */ 1308 stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1309 break; 1310 } 1311 1312 default: 1313 MISSING_CASE(INTEL_GEN(ce->engine->i915)); 1314 } 1315 1316 ce->tag = stream->specific_ctx_id; 1317 1318 drm_dbg(&stream->perf->i915->drm, 1319 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1320 stream->specific_ctx_id, 1321 stream->specific_ctx_id_mask); 1322 1323 return 0; 1324 } 1325 1326 /** 1327 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1328 * @stream: An i915-perf stream opened for OA metrics 1329 * 1330 * In case anything needed doing to ensure the context HW ID would remain valid 1331 * for the lifetime of the stream, then that can be undone here. 1332 */ 1333 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1334 { 1335 struct intel_context *ce; 1336 1337 ce = fetch_and_zero(&stream->pinned_ctx); 1338 if (ce) { 1339 ce->tag = 0; /* recomputed on next submission after parking */ 1340 intel_context_unpin(ce); 1341 } 1342 1343 stream->specific_ctx_id = INVALID_CTX_ID; 1344 stream->specific_ctx_id_mask = 0; 1345 } 1346 1347 static void 1348 free_oa_buffer(struct i915_perf_stream *stream) 1349 { 1350 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1351 I915_VMA_RELEASE_MAP); 1352 1353 stream->oa_buffer.vaddr = NULL; 1354 } 1355 1356 static void 1357 free_oa_configs(struct i915_perf_stream *stream) 1358 { 1359 struct i915_oa_config_bo *oa_bo, *tmp; 1360 1361 i915_oa_config_put(stream->oa_config); 1362 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1363 free_oa_config_bo(oa_bo); 1364 } 1365 1366 static void 1367 free_noa_wait(struct i915_perf_stream *stream) 1368 { 1369 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1370 } 1371 1372 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1373 { 1374 struct i915_perf *perf = stream->perf; 1375 1376 BUG_ON(stream != perf->exclusive_stream); 1377 1378 /* 1379 * Unset exclusive_stream first, it will be checked while disabling 1380 * the metric set on gen8+. 1381 * 1382 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1383 */ 1384 WRITE_ONCE(perf->exclusive_stream, NULL); 1385 perf->ops.disable_metric_set(stream); 1386 1387 free_oa_buffer(stream); 1388 1389 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1390 intel_engine_pm_put(stream->engine); 1391 1392 if (stream->ctx) 1393 oa_put_render_ctx_id(stream); 1394 1395 free_oa_configs(stream); 1396 free_noa_wait(stream); 1397 1398 if (perf->spurious_report_rs.missed) { 1399 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1400 perf->spurious_report_rs.missed); 1401 } 1402 } 1403 1404 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1405 { 1406 struct intel_uncore *uncore = stream->uncore; 1407 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1408 unsigned long flags; 1409 1410 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1411 1412 /* Pre-DevBDW: OABUFFER must be set with counters off, 1413 * before OASTATUS1, but after OASTATUS2 1414 */ 1415 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1416 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1417 stream->oa_buffer.head = gtt_offset; 1418 1419 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1420 1421 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1422 gtt_offset | OABUFFER_SIZE_16M); 1423 1424 /* Mark that we need updated tail pointers to read from... */ 1425 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1426 stream->oa_buffer.tail = gtt_offset; 1427 1428 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1429 1430 /* On Haswell we have to track which OASTATUS1 flags we've 1431 * already seen since they can't be cleared while periodic 1432 * sampling is enabled. 1433 */ 1434 stream->perf->gen7_latched_oastatus1 = 0; 1435 1436 /* NB: although the OA buffer will initially be allocated 1437 * zeroed via shmfs (and so this memset is redundant when 1438 * first allocating), we may re-init the OA buffer, either 1439 * when re-enabling a stream or in error/reset paths. 1440 * 1441 * The reason we clear the buffer for each re-init is for the 1442 * sanity check in gen7_append_oa_reports() that looks at the 1443 * report-id field to make sure it's non-zero which relies on 1444 * the assumption that new reports are being written to zeroed 1445 * memory... 1446 */ 1447 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1448 } 1449 1450 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1451 { 1452 struct intel_uncore *uncore = stream->uncore; 1453 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1454 unsigned long flags; 1455 1456 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1457 1458 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1459 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1460 stream->oa_buffer.head = gtt_offset; 1461 1462 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1463 1464 /* 1465 * PRM says: 1466 * 1467 * "This MMIO must be set before the OATAILPTR 1468 * register and after the OAHEADPTR register. This is 1469 * to enable proper functionality of the overflow 1470 * bit." 1471 */ 1472 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1473 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1474 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1475 1476 /* Mark that we need updated tail pointers to read from... */ 1477 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1478 stream->oa_buffer.tail = gtt_offset; 1479 1480 /* 1481 * Reset state used to recognise context switches, affecting which 1482 * reports we will forward to userspace while filtering for a single 1483 * context. 1484 */ 1485 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1486 1487 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1488 1489 /* 1490 * NB: although the OA buffer will initially be allocated 1491 * zeroed via shmfs (and so this memset is redundant when 1492 * first allocating), we may re-init the OA buffer, either 1493 * when re-enabling a stream or in error/reset paths. 1494 * 1495 * The reason we clear the buffer for each re-init is for the 1496 * sanity check in gen8_append_oa_reports() that looks at the 1497 * reason field to make sure it's non-zero which relies on 1498 * the assumption that new reports are being written to zeroed 1499 * memory... 1500 */ 1501 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1502 } 1503 1504 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1505 { 1506 struct intel_uncore *uncore = stream->uncore; 1507 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1508 unsigned long flags; 1509 1510 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1511 1512 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1513 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1514 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1515 stream->oa_buffer.head = gtt_offset; 1516 1517 /* 1518 * PRM says: 1519 * 1520 * "This MMIO must be set before the OATAILPTR 1521 * register and after the OAHEADPTR register. This is 1522 * to enable proper functionality of the overflow 1523 * bit." 1524 */ 1525 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1526 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1527 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1528 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1529 1530 /* Mark that we need updated tail pointers to read from... */ 1531 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1532 stream->oa_buffer.tail = gtt_offset; 1533 1534 /* 1535 * Reset state used to recognise context switches, affecting which 1536 * reports we will forward to userspace while filtering for a single 1537 * context. 1538 */ 1539 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1540 1541 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1542 1543 /* 1544 * NB: although the OA buffer will initially be allocated 1545 * zeroed via shmfs (and so this memset is redundant when 1546 * first allocating), we may re-init the OA buffer, either 1547 * when re-enabling a stream or in error/reset paths. 1548 * 1549 * The reason we clear the buffer for each re-init is for the 1550 * sanity check in gen8_append_oa_reports() that looks at the 1551 * reason field to make sure it's non-zero which relies on 1552 * the assumption that new reports are being written to zeroed 1553 * memory... 1554 */ 1555 memset(stream->oa_buffer.vaddr, 0, 1556 stream->oa_buffer.vma->size); 1557 } 1558 1559 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1560 { 1561 struct drm_i915_private *i915 = stream->perf->i915; 1562 struct drm_i915_gem_object *bo; 1563 struct i915_vma *vma; 1564 int ret; 1565 1566 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1567 return -ENODEV; 1568 1569 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1570 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1571 1572 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1573 if (IS_ERR(bo)) { 1574 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1575 return PTR_ERR(bo); 1576 } 1577 1578 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1579 1580 /* PreHSW required 512K alignment, HSW requires 16M */ 1581 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1582 if (IS_ERR(vma)) { 1583 ret = PTR_ERR(vma); 1584 goto err_unref; 1585 } 1586 stream->oa_buffer.vma = vma; 1587 1588 stream->oa_buffer.vaddr = 1589 i915_gem_object_pin_map(bo, I915_MAP_WB); 1590 if (IS_ERR(stream->oa_buffer.vaddr)) { 1591 ret = PTR_ERR(stream->oa_buffer.vaddr); 1592 goto err_unpin; 1593 } 1594 1595 return 0; 1596 1597 err_unpin: 1598 __i915_vma_unpin(vma); 1599 1600 err_unref: 1601 i915_gem_object_put(bo); 1602 1603 stream->oa_buffer.vaddr = NULL; 1604 stream->oa_buffer.vma = NULL; 1605 1606 return ret; 1607 } 1608 1609 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1610 bool save, i915_reg_t reg, u32 offset, 1611 u32 dword_count) 1612 { 1613 u32 cmd; 1614 u32 d; 1615 1616 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1617 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1618 if (INTEL_GEN(stream->perf->i915) >= 8) 1619 cmd++; 1620 1621 for (d = 0; d < dword_count; d++) { 1622 *cs++ = cmd; 1623 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1624 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1625 offset) + 4 * d; 1626 *cs++ = 0; 1627 } 1628 1629 return cs; 1630 } 1631 1632 static int alloc_noa_wait(struct i915_perf_stream *stream) 1633 { 1634 struct drm_i915_private *i915 = stream->perf->i915; 1635 struct drm_i915_gem_object *bo; 1636 struct i915_vma *vma; 1637 const u64 delay_ticks = 0xffffffffffffffff - 1638 i915_cs_timestamp_ns_to_ticks(i915, atomic64_read(&stream->perf->noa_programming_delay)); 1639 const u32 base = stream->engine->mmio_base; 1640 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1641 u32 *batch, *ts0, *cs, *jump; 1642 int ret, i; 1643 enum { 1644 START_TS, 1645 NOW_TS, 1646 DELTA_TS, 1647 JUMP_PREDICATE, 1648 DELTA_TARGET, 1649 N_CS_GPR 1650 }; 1651 1652 bo = i915_gem_object_create_internal(i915, 4096); 1653 if (IS_ERR(bo)) { 1654 drm_err(&i915->drm, 1655 "Failed to allocate NOA wait batchbuffer\n"); 1656 return PTR_ERR(bo); 1657 } 1658 1659 /* 1660 * We pin in GGTT because we jump into this buffer now because 1661 * multiple OA config BOs will have a jump to this address and it 1662 * needs to be fixed during the lifetime of the i915/perf stream. 1663 */ 1664 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH); 1665 if (IS_ERR(vma)) { 1666 ret = PTR_ERR(vma); 1667 goto err_unref; 1668 } 1669 1670 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1671 if (IS_ERR(batch)) { 1672 ret = PTR_ERR(batch); 1673 goto err_unpin; 1674 } 1675 1676 /* Save registers. */ 1677 for (i = 0; i < N_CS_GPR; i++) 1678 cs = save_restore_register( 1679 stream, cs, true /* save */, CS_GPR(i), 1680 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1681 cs = save_restore_register( 1682 stream, cs, true /* save */, MI_PREDICATE_RESULT_1, 1683 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1684 1685 /* First timestamp snapshot location. */ 1686 ts0 = cs; 1687 1688 /* 1689 * Initial snapshot of the timestamp register to implement the wait. 1690 * We work with 32b values, so clear out the top 32b bits of the 1691 * register because the ALU works 64bits. 1692 */ 1693 *cs++ = MI_LOAD_REGISTER_IMM(1); 1694 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1695 *cs++ = 0; 1696 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1697 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1698 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1699 1700 /* 1701 * This is the location we're going to jump back into until the 1702 * required amount of time has passed. 1703 */ 1704 jump = cs; 1705 1706 /* 1707 * Take another snapshot of the timestamp register. Take care to clear 1708 * up the top 32bits of CS_GPR(1) as we're using it for other 1709 * operations below. 1710 */ 1711 *cs++ = MI_LOAD_REGISTER_IMM(1); 1712 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1713 *cs++ = 0; 1714 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1715 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1716 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1717 1718 /* 1719 * Do a diff between the 2 timestamps and store the result back into 1720 * CS_GPR(1). 1721 */ 1722 *cs++ = MI_MATH(5); 1723 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1724 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1725 *cs++ = MI_MATH_SUB; 1726 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1727 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1728 1729 /* 1730 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1731 * timestamp have rolled over the 32bits) into the predicate register 1732 * to be used for the predicated jump. 1733 */ 1734 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1735 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1736 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1737 1738 /* Restart from the beginning if we had timestamps roll over. */ 1739 *cs++ = (INTEL_GEN(i915) < 8 ? 1740 MI_BATCH_BUFFER_START : 1741 MI_BATCH_BUFFER_START_GEN8) | 1742 MI_BATCH_PREDICATE; 1743 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1744 *cs++ = 0; 1745 1746 /* 1747 * Now add the diff between to previous timestamps and add it to : 1748 * (((1 * << 64) - 1) - delay_ns) 1749 * 1750 * When the Carry Flag contains 1 this means the elapsed time is 1751 * longer than the expected delay, and we can exit the wait loop. 1752 */ 1753 *cs++ = MI_LOAD_REGISTER_IMM(2); 1754 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1755 *cs++ = lower_32_bits(delay_ticks); 1756 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 1757 *cs++ = upper_32_bits(delay_ticks); 1758 1759 *cs++ = MI_MATH(4); 1760 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 1761 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 1762 *cs++ = MI_MATH_ADD; 1763 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1764 1765 *cs++ = MI_ARB_CHECK; 1766 1767 /* 1768 * Transfer the result into the predicate register to be used for the 1769 * predicated jump. 1770 */ 1771 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1772 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1773 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1774 1775 /* Predicate the jump. */ 1776 *cs++ = (INTEL_GEN(i915) < 8 ? 1777 MI_BATCH_BUFFER_START : 1778 MI_BATCH_BUFFER_START_GEN8) | 1779 MI_BATCH_PREDICATE; 1780 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 1781 *cs++ = 0; 1782 1783 /* Restore registers. */ 1784 for (i = 0; i < N_CS_GPR; i++) 1785 cs = save_restore_register( 1786 stream, cs, false /* restore */, CS_GPR(i), 1787 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1788 cs = save_restore_register( 1789 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1, 1790 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1791 1792 /* And return to the ring. */ 1793 *cs++ = MI_BATCH_BUFFER_END; 1794 1795 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 1796 1797 i915_gem_object_flush_map(bo); 1798 __i915_gem_object_release_map(bo); 1799 1800 stream->noa_wait = vma; 1801 return 0; 1802 1803 err_unpin: 1804 i915_vma_unpin_and_release(&vma, 0); 1805 err_unref: 1806 i915_gem_object_put(bo); 1807 return ret; 1808 } 1809 1810 static u32 *write_cs_mi_lri(u32 *cs, 1811 const struct i915_oa_reg *reg_data, 1812 u32 n_regs) 1813 { 1814 u32 i; 1815 1816 for (i = 0; i < n_regs; i++) { 1817 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 1818 u32 n_lri = min_t(u32, 1819 n_regs - i, 1820 MI_LOAD_REGISTER_IMM_MAX_REGS); 1821 1822 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 1823 } 1824 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 1825 *cs++ = reg_data[i].value; 1826 } 1827 1828 return cs; 1829 } 1830 1831 static int num_lri_dwords(int num_regs) 1832 { 1833 int count = 0; 1834 1835 if (num_regs > 0) { 1836 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 1837 count += num_regs * 2; 1838 } 1839 1840 return count; 1841 } 1842 1843 static struct i915_oa_config_bo * 1844 alloc_oa_config_buffer(struct i915_perf_stream *stream, 1845 struct i915_oa_config *oa_config) 1846 { 1847 struct drm_i915_gem_object *obj; 1848 struct i915_oa_config_bo *oa_bo; 1849 size_t config_length = 0; 1850 u32 *cs; 1851 int err; 1852 1853 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 1854 if (!oa_bo) 1855 return ERR_PTR(-ENOMEM); 1856 1857 config_length += num_lri_dwords(oa_config->mux_regs_len); 1858 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 1859 config_length += num_lri_dwords(oa_config->flex_regs_len); 1860 config_length += 3; /* MI_BATCH_BUFFER_START */ 1861 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 1862 1863 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 1864 if (IS_ERR(obj)) { 1865 err = PTR_ERR(obj); 1866 goto err_free; 1867 } 1868 1869 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 1870 if (IS_ERR(cs)) { 1871 err = PTR_ERR(cs); 1872 goto err_oa_bo; 1873 } 1874 1875 cs = write_cs_mi_lri(cs, 1876 oa_config->mux_regs, 1877 oa_config->mux_regs_len); 1878 cs = write_cs_mi_lri(cs, 1879 oa_config->b_counter_regs, 1880 oa_config->b_counter_regs_len); 1881 cs = write_cs_mi_lri(cs, 1882 oa_config->flex_regs, 1883 oa_config->flex_regs_len); 1884 1885 /* Jump into the active wait. */ 1886 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ? 1887 MI_BATCH_BUFFER_START : 1888 MI_BATCH_BUFFER_START_GEN8); 1889 *cs++ = i915_ggtt_offset(stream->noa_wait); 1890 *cs++ = 0; 1891 1892 i915_gem_object_flush_map(obj); 1893 __i915_gem_object_release_map(obj); 1894 1895 oa_bo->vma = i915_vma_instance(obj, 1896 &stream->engine->gt->ggtt->vm, 1897 NULL); 1898 if (IS_ERR(oa_bo->vma)) { 1899 err = PTR_ERR(oa_bo->vma); 1900 goto err_oa_bo; 1901 } 1902 1903 oa_bo->oa_config = i915_oa_config_get(oa_config); 1904 llist_add(&oa_bo->node, &stream->oa_config_bos); 1905 1906 return oa_bo; 1907 1908 err_oa_bo: 1909 i915_gem_object_put(obj); 1910 err_free: 1911 kfree(oa_bo); 1912 return ERR_PTR(err); 1913 } 1914 1915 static struct i915_vma * 1916 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 1917 { 1918 struct i915_oa_config_bo *oa_bo; 1919 1920 /* 1921 * Look for the buffer in the already allocated BOs attached 1922 * to the stream. 1923 */ 1924 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 1925 if (oa_bo->oa_config == oa_config && 1926 memcmp(oa_bo->oa_config->uuid, 1927 oa_config->uuid, 1928 sizeof(oa_config->uuid)) == 0) 1929 goto out; 1930 } 1931 1932 oa_bo = alloc_oa_config_buffer(stream, oa_config); 1933 if (IS_ERR(oa_bo)) 1934 return ERR_CAST(oa_bo); 1935 1936 out: 1937 return i915_vma_get(oa_bo->vma); 1938 } 1939 1940 static int 1941 emit_oa_config(struct i915_perf_stream *stream, 1942 struct i915_oa_config *oa_config, 1943 struct intel_context *ce, 1944 struct i915_active *active) 1945 { 1946 struct i915_request *rq; 1947 struct i915_vma *vma; 1948 struct i915_gem_ww_ctx ww; 1949 int err; 1950 1951 vma = get_oa_vma(stream, oa_config); 1952 if (IS_ERR(vma)) 1953 return PTR_ERR(vma); 1954 1955 i915_gem_ww_ctx_init(&ww, true); 1956 retry: 1957 err = i915_gem_object_lock(vma->obj, &ww); 1958 if (err) 1959 goto err; 1960 1961 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 1962 if (err) 1963 goto err; 1964 1965 intel_engine_pm_get(ce->engine); 1966 rq = i915_request_create(ce); 1967 intel_engine_pm_put(ce->engine); 1968 if (IS_ERR(rq)) { 1969 err = PTR_ERR(rq); 1970 goto err_vma_unpin; 1971 } 1972 1973 if (!IS_ERR_OR_NULL(active)) { 1974 /* After all individual context modifications */ 1975 err = i915_request_await_active(rq, active, 1976 I915_ACTIVE_AWAIT_ACTIVE); 1977 if (err) 1978 goto err_add_request; 1979 1980 err = i915_active_add_request(active, rq); 1981 if (err) 1982 goto err_add_request; 1983 } 1984 1985 err = i915_request_await_object(rq, vma->obj, 0); 1986 if (!err) 1987 err = i915_vma_move_to_active(vma, rq, 0); 1988 if (err) 1989 goto err_add_request; 1990 1991 err = rq->engine->emit_bb_start(rq, 1992 vma->node.start, 0, 1993 I915_DISPATCH_SECURE); 1994 if (err) 1995 goto err_add_request; 1996 1997 err_add_request: 1998 i915_request_add(rq); 1999 err_vma_unpin: 2000 i915_vma_unpin(vma); 2001 err: 2002 if (err == -EDEADLK) { 2003 err = i915_gem_ww_ctx_backoff(&ww); 2004 if (!err) 2005 goto retry; 2006 } 2007 2008 i915_gem_ww_ctx_fini(&ww); 2009 i915_vma_put(vma); 2010 return err; 2011 } 2012 2013 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2014 { 2015 return stream->pinned_ctx ?: stream->engine->kernel_context; 2016 } 2017 2018 static int 2019 hsw_enable_metric_set(struct i915_perf_stream *stream, 2020 struct i915_active *active) 2021 { 2022 struct intel_uncore *uncore = stream->uncore; 2023 2024 /* 2025 * PRM: 2026 * 2027 * OA unit is using “crclk” for its functionality. When trunk 2028 * level clock gating takes place, OA clock would be gated, 2029 * unable to count the events from non-render clock domain. 2030 * Render clock gating must be disabled when OA is enabled to 2031 * count the events from non-render domain. Unit level clock 2032 * gating for RCS should also be disabled. 2033 */ 2034 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2035 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2036 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2037 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2038 2039 return emit_oa_config(stream, 2040 stream->oa_config, oa_context(stream), 2041 active); 2042 } 2043 2044 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2045 { 2046 struct intel_uncore *uncore = stream->uncore; 2047 2048 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2049 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2050 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2051 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2052 2053 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2054 } 2055 2056 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2057 i915_reg_t reg) 2058 { 2059 u32 mmio = i915_mmio_reg_offset(reg); 2060 int i; 2061 2062 /* 2063 * This arbitrary default will select the 'EU FPU0 Pipeline 2064 * Active' event. In the future it's anticipated that there 2065 * will be an explicit 'No Event' we can select, but not yet... 2066 */ 2067 if (!oa_config) 2068 return 0; 2069 2070 for (i = 0; i < oa_config->flex_regs_len; i++) { 2071 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2072 return oa_config->flex_regs[i].value; 2073 } 2074 2075 return 0; 2076 } 2077 /* 2078 * NB: It must always remain pointer safe to run this even if the OA unit 2079 * has been disabled. 2080 * 2081 * It's fine to put out-of-date values into these per-context registers 2082 * in the case that the OA unit has been disabled. 2083 */ 2084 static void 2085 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2086 const struct i915_perf_stream *stream) 2087 { 2088 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2089 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2090 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2091 i915_reg_t flex_regs[] = { 2092 EU_PERF_CNTL0, 2093 EU_PERF_CNTL1, 2094 EU_PERF_CNTL2, 2095 EU_PERF_CNTL3, 2096 EU_PERF_CNTL4, 2097 EU_PERF_CNTL5, 2098 EU_PERF_CNTL6, 2099 }; 2100 u32 *reg_state = ce->lrc_reg_state; 2101 int i; 2102 2103 reg_state[ctx_oactxctrl + 1] = 2104 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2105 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2106 GEN8_OA_COUNTER_RESUME; 2107 2108 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2109 reg_state[ctx_flexeu0 + i * 2 + 1] = 2110 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2111 } 2112 2113 struct flex { 2114 i915_reg_t reg; 2115 u32 offset; 2116 u32 value; 2117 }; 2118 2119 static int 2120 gen8_store_flex(struct i915_request *rq, 2121 struct intel_context *ce, 2122 const struct flex *flex, unsigned int count) 2123 { 2124 u32 offset; 2125 u32 *cs; 2126 2127 cs = intel_ring_begin(rq, 4 * count); 2128 if (IS_ERR(cs)) 2129 return PTR_ERR(cs); 2130 2131 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2132 do { 2133 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2134 *cs++ = offset + flex->offset * sizeof(u32); 2135 *cs++ = 0; 2136 *cs++ = flex->value; 2137 } while (flex++, --count); 2138 2139 intel_ring_advance(rq, cs); 2140 2141 return 0; 2142 } 2143 2144 static int 2145 gen8_load_flex(struct i915_request *rq, 2146 struct intel_context *ce, 2147 const struct flex *flex, unsigned int count) 2148 { 2149 u32 *cs; 2150 2151 GEM_BUG_ON(!count || count > 63); 2152 2153 cs = intel_ring_begin(rq, 2 * count + 2); 2154 if (IS_ERR(cs)) 2155 return PTR_ERR(cs); 2156 2157 *cs++ = MI_LOAD_REGISTER_IMM(count); 2158 do { 2159 *cs++ = i915_mmio_reg_offset(flex->reg); 2160 *cs++ = flex->value; 2161 } while (flex++, --count); 2162 *cs++ = MI_NOOP; 2163 2164 intel_ring_advance(rq, cs); 2165 2166 return 0; 2167 } 2168 2169 static int gen8_modify_context(struct intel_context *ce, 2170 const struct flex *flex, unsigned int count) 2171 { 2172 struct i915_request *rq; 2173 int err; 2174 2175 rq = intel_engine_create_kernel_request(ce->engine); 2176 if (IS_ERR(rq)) 2177 return PTR_ERR(rq); 2178 2179 /* Serialise with the remote context */ 2180 err = intel_context_prepare_remote_request(ce, rq); 2181 if (err == 0) 2182 err = gen8_store_flex(rq, ce, flex, count); 2183 2184 i915_request_add(rq); 2185 return err; 2186 } 2187 2188 static int 2189 gen8_modify_self(struct intel_context *ce, 2190 const struct flex *flex, unsigned int count, 2191 struct i915_active *active) 2192 { 2193 struct i915_request *rq; 2194 int err; 2195 2196 intel_engine_pm_get(ce->engine); 2197 rq = i915_request_create(ce); 2198 intel_engine_pm_put(ce->engine); 2199 if (IS_ERR(rq)) 2200 return PTR_ERR(rq); 2201 2202 if (!IS_ERR_OR_NULL(active)) { 2203 err = i915_active_add_request(active, rq); 2204 if (err) 2205 goto err_add_request; 2206 } 2207 2208 err = gen8_load_flex(rq, ce, flex, count); 2209 if (err) 2210 goto err_add_request; 2211 2212 err_add_request: 2213 i915_request_add(rq); 2214 return err; 2215 } 2216 2217 static int gen8_configure_context(struct i915_gem_context *ctx, 2218 struct flex *flex, unsigned int count) 2219 { 2220 struct i915_gem_engines_iter it; 2221 struct intel_context *ce; 2222 int err = 0; 2223 2224 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2225 GEM_BUG_ON(ce == ce->engine->kernel_context); 2226 2227 if (ce->engine->class != RENDER_CLASS) 2228 continue; 2229 2230 /* Otherwise OA settings will be set upon first use */ 2231 if (!intel_context_pin_if_active(ce)) 2232 continue; 2233 2234 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2235 err = gen8_modify_context(ce, flex, count); 2236 2237 intel_context_unpin(ce); 2238 if (err) 2239 break; 2240 } 2241 i915_gem_context_unlock_engines(ctx); 2242 2243 return err; 2244 } 2245 2246 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2247 struct i915_active *active) 2248 { 2249 int err; 2250 struct intel_context *ce = stream->pinned_ctx; 2251 u32 format = stream->oa_buffer.format; 2252 struct flex regs_context[] = { 2253 { 2254 GEN8_OACTXCONTROL, 2255 stream->perf->ctx_oactxctrl_offset + 1, 2256 active ? GEN8_OA_COUNTER_RESUME : 0, 2257 }, 2258 }; 2259 /* Offsets in regs_lri are not used since this configuration is only 2260 * applied using LRI. Initialize the correct offsets for posterity. 2261 */ 2262 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2263 struct flex regs_lri[] = { 2264 { 2265 GEN12_OAR_OACONTROL, 2266 GEN12_OAR_OACONTROL_OFFSET + 1, 2267 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2268 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2269 }, 2270 { 2271 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2272 CTX_CONTEXT_CONTROL, 2273 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2274 active ? 2275 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2276 0) 2277 }, 2278 }; 2279 2280 /* Modify the context image of pinned context with regs_context*/ 2281 err = intel_context_lock_pinned(ce); 2282 if (err) 2283 return err; 2284 2285 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context)); 2286 intel_context_unlock_pinned(ce); 2287 if (err) 2288 return err; 2289 2290 /* Apply regs_lri using LRI with pinned context */ 2291 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2292 } 2293 2294 /* 2295 * Manages updating the per-context aspects of the OA stream 2296 * configuration across all contexts. 2297 * 2298 * The awkward consideration here is that OACTXCONTROL controls the 2299 * exponent for periodic sampling which is primarily used for system 2300 * wide profiling where we'd like a consistent sampling period even in 2301 * the face of context switches. 2302 * 2303 * Our approach of updating the register state context (as opposed to 2304 * say using a workaround batch buffer) ensures that the hardware 2305 * won't automatically reload an out-of-date timer exponent even 2306 * transiently before a WA BB could be parsed. 2307 * 2308 * This function needs to: 2309 * - Ensure the currently running context's per-context OA state is 2310 * updated 2311 * - Ensure that all existing contexts will have the correct per-context 2312 * OA state if they are scheduled for use. 2313 * - Ensure any new contexts will be initialized with the correct 2314 * per-context OA state. 2315 * 2316 * Note: it's only the RCS/Render context that has any OA state. 2317 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2318 */ 2319 static int 2320 oa_configure_all_contexts(struct i915_perf_stream *stream, 2321 struct flex *regs, 2322 size_t num_regs, 2323 struct i915_active *active) 2324 { 2325 struct drm_i915_private *i915 = stream->perf->i915; 2326 struct intel_engine_cs *engine; 2327 struct i915_gem_context *ctx, *cn; 2328 int err; 2329 2330 lockdep_assert_held(&stream->perf->lock); 2331 2332 /* 2333 * The OA register config is setup through the context image. This image 2334 * might be written to by the GPU on context switch (in particular on 2335 * lite-restore). This means we can't safely update a context's image, 2336 * if this context is scheduled/submitted to run on the GPU. 2337 * 2338 * We could emit the OA register config through the batch buffer but 2339 * this might leave small interval of time where the OA unit is 2340 * configured at an invalid sampling period. 2341 * 2342 * Note that since we emit all requests from a single ring, there 2343 * is still an implicit global barrier here that may cause a high 2344 * priority context to wait for an otherwise independent low priority 2345 * context. Contexts idle at the time of reconfiguration are not 2346 * trapped behind the barrier. 2347 */ 2348 spin_lock(&i915->gem.contexts.lock); 2349 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2350 if (!kref_get_unless_zero(&ctx->ref)) 2351 continue; 2352 2353 spin_unlock(&i915->gem.contexts.lock); 2354 2355 err = gen8_configure_context(ctx, regs, num_regs); 2356 if (err) { 2357 i915_gem_context_put(ctx); 2358 return err; 2359 } 2360 2361 spin_lock(&i915->gem.contexts.lock); 2362 list_safe_reset_next(ctx, cn, link); 2363 i915_gem_context_put(ctx); 2364 } 2365 spin_unlock(&i915->gem.contexts.lock); 2366 2367 /* 2368 * After updating all other contexts, we need to modify ourselves. 2369 * If we don't modify the kernel_context, we do not get events while 2370 * idle. 2371 */ 2372 for_each_uabi_engine(engine, i915) { 2373 struct intel_context *ce = engine->kernel_context; 2374 2375 if (engine->class != RENDER_CLASS) 2376 continue; 2377 2378 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2379 2380 err = gen8_modify_self(ce, regs, num_regs, active); 2381 if (err) 2382 return err; 2383 } 2384 2385 return 0; 2386 } 2387 2388 static int 2389 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2390 const struct i915_oa_config *oa_config, 2391 struct i915_active *active) 2392 { 2393 struct flex regs[] = { 2394 { 2395 GEN8_R_PWR_CLK_STATE, 2396 CTX_R_PWR_CLK_STATE, 2397 }, 2398 }; 2399 2400 return oa_configure_all_contexts(stream, 2401 regs, ARRAY_SIZE(regs), 2402 active); 2403 } 2404 2405 static int 2406 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2407 const struct i915_oa_config *oa_config, 2408 struct i915_active *active) 2409 { 2410 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2411 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2412 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2413 struct flex regs[] = { 2414 { 2415 GEN8_R_PWR_CLK_STATE, 2416 CTX_R_PWR_CLK_STATE, 2417 }, 2418 { 2419 GEN8_OACTXCONTROL, 2420 stream->perf->ctx_oactxctrl_offset + 1, 2421 }, 2422 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2423 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2424 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2425 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2426 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2427 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2428 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2429 }; 2430 #undef ctx_flexeuN 2431 int i; 2432 2433 regs[1].value = 2434 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2435 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2436 GEN8_OA_COUNTER_RESUME; 2437 2438 for (i = 2; i < ARRAY_SIZE(regs); i++) 2439 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2440 2441 return oa_configure_all_contexts(stream, 2442 regs, ARRAY_SIZE(regs), 2443 active); 2444 } 2445 2446 static int 2447 gen8_enable_metric_set(struct i915_perf_stream *stream, 2448 struct i915_active *active) 2449 { 2450 struct intel_uncore *uncore = stream->uncore; 2451 struct i915_oa_config *oa_config = stream->oa_config; 2452 int ret; 2453 2454 /* 2455 * We disable slice/unslice clock ratio change reports on SKL since 2456 * they are too noisy. The HW generates a lot of redundant reports 2457 * where the ratio hasn't really changed causing a lot of redundant 2458 * work to processes and increasing the chances we'll hit buffer 2459 * overruns. 2460 * 2461 * Although we don't currently use the 'disable overrun' OABUFFER 2462 * feature it's worth noting that clock ratio reports have to be 2463 * disabled before considering to use that feature since the HW doesn't 2464 * correctly block these reports. 2465 * 2466 * Currently none of the high-level metrics we have depend on knowing 2467 * this ratio to normalize. 2468 * 2469 * Note: This register is not power context saved and restored, but 2470 * that's OK considering that we disable RC6 while the OA unit is 2471 * enabled. 2472 * 2473 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2474 * be read back from automatically triggered reports, as part of the 2475 * RPT_ID field. 2476 */ 2477 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) { 2478 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2479 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2480 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2481 } 2482 2483 /* 2484 * Update all contexts prior writing the mux configurations as we need 2485 * to make sure all slices/subslices are ON before writing to NOA 2486 * registers. 2487 */ 2488 ret = lrc_configure_all_contexts(stream, oa_config, active); 2489 if (ret) 2490 return ret; 2491 2492 return emit_oa_config(stream, 2493 stream->oa_config, oa_context(stream), 2494 active); 2495 } 2496 2497 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2498 { 2499 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2500 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2501 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2502 } 2503 2504 static int 2505 gen12_enable_metric_set(struct i915_perf_stream *stream, 2506 struct i915_active *active) 2507 { 2508 struct intel_uncore *uncore = stream->uncore; 2509 struct i915_oa_config *oa_config = stream->oa_config; 2510 bool periodic = stream->periodic; 2511 u32 period_exponent = stream->period_exponent; 2512 int ret; 2513 2514 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2515 /* Disable clk ratio reports, like previous Gens. */ 2516 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2517 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2518 /* 2519 * If the user didn't require OA reports, instruct 2520 * the hardware not to emit ctx switch reports. 2521 */ 2522 oag_report_ctx_switches(stream)); 2523 2524 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2525 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2526 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2527 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2528 : 0); 2529 2530 /* 2531 * Update all contexts prior writing the mux configurations as we need 2532 * to make sure all slices/subslices are ON before writing to NOA 2533 * registers. 2534 */ 2535 ret = gen12_configure_all_contexts(stream, oa_config, active); 2536 if (ret) 2537 return ret; 2538 2539 /* 2540 * For Gen12, performance counters are context 2541 * saved/restored. Only enable it for the context that 2542 * requested this. 2543 */ 2544 if (stream->ctx) { 2545 ret = gen12_configure_oar_context(stream, active); 2546 if (ret) 2547 return ret; 2548 } 2549 2550 return emit_oa_config(stream, 2551 stream->oa_config, oa_context(stream), 2552 active); 2553 } 2554 2555 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2556 { 2557 struct intel_uncore *uncore = stream->uncore; 2558 2559 /* Reset all contexts' slices/subslices configurations. */ 2560 lrc_configure_all_contexts(stream, NULL, NULL); 2561 2562 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2563 } 2564 2565 static void gen10_disable_metric_set(struct i915_perf_stream *stream) 2566 { 2567 struct intel_uncore *uncore = stream->uncore; 2568 2569 /* Reset all contexts' slices/subslices configurations. */ 2570 lrc_configure_all_contexts(stream, NULL, NULL); 2571 2572 /* Make sure we disable noa to save power. */ 2573 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2574 } 2575 2576 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2577 { 2578 struct intel_uncore *uncore = stream->uncore; 2579 2580 /* Reset all contexts' slices/subslices configurations. */ 2581 gen12_configure_all_contexts(stream, NULL, NULL); 2582 2583 /* disable the context save/restore or OAR counters */ 2584 if (stream->ctx) 2585 gen12_configure_oar_context(stream, NULL); 2586 2587 /* Make sure we disable noa to save power. */ 2588 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2589 } 2590 2591 static void gen7_oa_enable(struct i915_perf_stream *stream) 2592 { 2593 struct intel_uncore *uncore = stream->uncore; 2594 struct i915_gem_context *ctx = stream->ctx; 2595 u32 ctx_id = stream->specific_ctx_id; 2596 bool periodic = stream->periodic; 2597 u32 period_exponent = stream->period_exponent; 2598 u32 report_format = stream->oa_buffer.format; 2599 2600 /* 2601 * Reset buf pointers so we don't forward reports from before now. 2602 * 2603 * Think carefully if considering trying to avoid this, since it 2604 * also ensures status flags and the buffer itself are cleared 2605 * in error paths, and we have checks for invalid reports based 2606 * on the assumption that certain fields are written to zeroed 2607 * memory which this helps maintains. 2608 */ 2609 gen7_init_oa_buffer(stream); 2610 2611 intel_uncore_write(uncore, GEN7_OACONTROL, 2612 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2613 (period_exponent << 2614 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2615 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2616 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2617 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2618 GEN7_OACONTROL_ENABLE); 2619 } 2620 2621 static void gen8_oa_enable(struct i915_perf_stream *stream) 2622 { 2623 struct intel_uncore *uncore = stream->uncore; 2624 u32 report_format = stream->oa_buffer.format; 2625 2626 /* 2627 * Reset buf pointers so we don't forward reports from before now. 2628 * 2629 * Think carefully if considering trying to avoid this, since it 2630 * also ensures status flags and the buffer itself are cleared 2631 * in error paths, and we have checks for invalid reports based 2632 * on the assumption that certain fields are written to zeroed 2633 * memory which this helps maintains. 2634 */ 2635 gen8_init_oa_buffer(stream); 2636 2637 /* 2638 * Note: we don't rely on the hardware to perform single context 2639 * filtering and instead filter on the cpu based on the context-id 2640 * field of reports 2641 */ 2642 intel_uncore_write(uncore, GEN8_OACONTROL, 2643 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2644 GEN8_OA_COUNTER_ENABLE); 2645 } 2646 2647 static void gen12_oa_enable(struct i915_perf_stream *stream) 2648 { 2649 struct intel_uncore *uncore = stream->uncore; 2650 u32 report_format = stream->oa_buffer.format; 2651 2652 /* 2653 * If we don't want OA reports from the OA buffer, then we don't even 2654 * need to program the OAG unit. 2655 */ 2656 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2657 return; 2658 2659 gen12_init_oa_buffer(stream); 2660 2661 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2662 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2663 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2664 } 2665 2666 /** 2667 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2668 * @stream: An i915 perf stream opened for OA metrics 2669 * 2670 * [Re]enables hardware periodic sampling according to the period configured 2671 * when opening the stream. This also starts a hrtimer that will periodically 2672 * check for data in the circular OA buffer for notifying userspace (e.g. 2673 * during a read() or poll()). 2674 */ 2675 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2676 { 2677 stream->pollin = false; 2678 2679 stream->perf->ops.oa_enable(stream); 2680 2681 if (stream->periodic) 2682 hrtimer_start(&stream->poll_check_timer, 2683 ns_to_ktime(stream->poll_oa_period), 2684 HRTIMER_MODE_REL_PINNED); 2685 } 2686 2687 static void gen7_oa_disable(struct i915_perf_stream *stream) 2688 { 2689 struct intel_uncore *uncore = stream->uncore; 2690 2691 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2692 if (intel_wait_for_register(uncore, 2693 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2694 50)) 2695 drm_err(&stream->perf->i915->drm, 2696 "wait for OA to be disabled timed out\n"); 2697 } 2698 2699 static void gen8_oa_disable(struct i915_perf_stream *stream) 2700 { 2701 struct intel_uncore *uncore = stream->uncore; 2702 2703 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2704 if (intel_wait_for_register(uncore, 2705 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2706 50)) 2707 drm_err(&stream->perf->i915->drm, 2708 "wait for OA to be disabled timed out\n"); 2709 } 2710 2711 static void gen12_oa_disable(struct i915_perf_stream *stream) 2712 { 2713 struct intel_uncore *uncore = stream->uncore; 2714 2715 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 2716 if (intel_wait_for_register(uncore, 2717 GEN12_OAG_OACONTROL, 2718 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 2719 50)) 2720 drm_err(&stream->perf->i915->drm, 2721 "wait for OA to be disabled timed out\n"); 2722 2723 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 2724 if (intel_wait_for_register(uncore, 2725 GEN12_OA_TLB_INV_CR, 2726 1, 0, 2727 50)) 2728 drm_err(&stream->perf->i915->drm, 2729 "wait for OA tlb invalidate timed out\n"); 2730 } 2731 2732 /** 2733 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2734 * @stream: An i915 perf stream opened for OA metrics 2735 * 2736 * Stops the OA unit from periodically writing counter reports into the 2737 * circular OA buffer. This also stops the hrtimer that periodically checks for 2738 * data in the circular OA buffer, for notifying userspace. 2739 */ 2740 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2741 { 2742 stream->perf->ops.oa_disable(stream); 2743 2744 if (stream->periodic) 2745 hrtimer_cancel(&stream->poll_check_timer); 2746 } 2747 2748 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2749 .destroy = i915_oa_stream_destroy, 2750 .enable = i915_oa_stream_enable, 2751 .disable = i915_oa_stream_disable, 2752 .wait_unlocked = i915_oa_wait_unlocked, 2753 .poll_wait = i915_oa_poll_wait, 2754 .read = i915_oa_read, 2755 }; 2756 2757 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 2758 { 2759 struct i915_active *active; 2760 int err; 2761 2762 active = i915_active_create(); 2763 if (!active) 2764 return -ENOMEM; 2765 2766 err = stream->perf->ops.enable_metric_set(stream, active); 2767 if (err == 0) 2768 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 2769 2770 i915_active_put(active); 2771 return err; 2772 } 2773 2774 static void 2775 get_default_sseu_config(struct intel_sseu *out_sseu, 2776 struct intel_engine_cs *engine) 2777 { 2778 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 2779 2780 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 2781 2782 if (IS_GEN(engine->i915, 11)) { 2783 /* 2784 * We only need subslice count so it doesn't matter which ones 2785 * we select - just turn off low bits in the amount of half of 2786 * all available subslices per slice. 2787 */ 2788 out_sseu->subslice_mask = 2789 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 2790 out_sseu->slice_mask = 0x1; 2791 } 2792 } 2793 2794 static int 2795 get_sseu_config(struct intel_sseu *out_sseu, 2796 struct intel_engine_cs *engine, 2797 const struct drm_i915_gem_context_param_sseu *drm_sseu) 2798 { 2799 if (drm_sseu->engine.engine_class != engine->uabi_class || 2800 drm_sseu->engine.engine_instance != engine->uabi_instance) 2801 return -EINVAL; 2802 2803 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 2804 } 2805 2806 /** 2807 * i915_oa_stream_init - validate combined props for OA stream and init 2808 * @stream: An i915 perf stream 2809 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2810 * @props: The property state that configures stream (individually validated) 2811 * 2812 * While read_properties_unlocked() validates properties in isolation it 2813 * doesn't ensure that the combination necessarily makes sense. 2814 * 2815 * At this point it has been determined that userspace wants a stream of 2816 * OA metrics, but still we need to further validate the combined 2817 * properties are OK. 2818 * 2819 * If the configuration makes sense then we can allocate memory for 2820 * a circular OA buffer and apply the requested metric set configuration. 2821 * 2822 * Returns: zero on success or a negative error code. 2823 */ 2824 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2825 struct drm_i915_perf_open_param *param, 2826 struct perf_open_properties *props) 2827 { 2828 struct drm_i915_private *i915 = stream->perf->i915; 2829 struct i915_perf *perf = stream->perf; 2830 int format_size; 2831 int ret; 2832 2833 if (!props->engine) { 2834 DRM_DEBUG("OA engine not specified\n"); 2835 return -EINVAL; 2836 } 2837 2838 /* 2839 * If the sysfs metrics/ directory wasn't registered for some 2840 * reason then don't let userspace try their luck with config 2841 * IDs 2842 */ 2843 if (!perf->metrics_kobj) { 2844 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2845 return -EINVAL; 2846 } 2847 2848 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 2849 (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) { 2850 DRM_DEBUG("Only OA report sampling supported\n"); 2851 return -EINVAL; 2852 } 2853 2854 if (!perf->ops.enable_metric_set) { 2855 DRM_DEBUG("OA unit not supported\n"); 2856 return -ENODEV; 2857 } 2858 2859 /* 2860 * To avoid the complexity of having to accurately filter 2861 * counter reports and marshal to the appropriate client 2862 * we currently only allow exclusive access 2863 */ 2864 if (perf->exclusive_stream) { 2865 DRM_DEBUG("OA unit already in use\n"); 2866 return -EBUSY; 2867 } 2868 2869 if (!props->oa_format) { 2870 DRM_DEBUG("OA report format not specified\n"); 2871 return -EINVAL; 2872 } 2873 2874 stream->engine = props->engine; 2875 stream->uncore = stream->engine->gt->uncore; 2876 2877 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2878 2879 format_size = perf->oa_formats[props->oa_format].size; 2880 2881 stream->sample_flags = props->sample_flags; 2882 stream->sample_size += format_size; 2883 2884 stream->oa_buffer.format_size = format_size; 2885 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0)) 2886 return -EINVAL; 2887 2888 stream->hold_preemption = props->hold_preemption; 2889 2890 stream->oa_buffer.format = 2891 perf->oa_formats[props->oa_format].format; 2892 2893 stream->periodic = props->oa_periodic; 2894 if (stream->periodic) 2895 stream->period_exponent = props->oa_period_exponent; 2896 2897 if (stream->ctx) { 2898 ret = oa_get_render_ctx_id(stream); 2899 if (ret) { 2900 DRM_DEBUG("Invalid context id to filter with\n"); 2901 return ret; 2902 } 2903 } 2904 2905 ret = alloc_noa_wait(stream); 2906 if (ret) { 2907 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n"); 2908 goto err_noa_wait_alloc; 2909 } 2910 2911 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 2912 if (!stream->oa_config) { 2913 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2914 ret = -EINVAL; 2915 goto err_config; 2916 } 2917 2918 /* PRM - observability performance counters: 2919 * 2920 * OACONTROL, performance counter enable, note: 2921 * 2922 * "When this bit is set, in order to have coherent counts, 2923 * RC6 power state and trunk clock gating must be disabled. 2924 * This can be achieved by programming MMIO registers as 2925 * 0xA094=0 and 0xA090[31]=1" 2926 * 2927 * In our case we are expecting that taking pm + FORCEWAKE 2928 * references will effectively disable RC6. 2929 */ 2930 intel_engine_pm_get(stream->engine); 2931 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 2932 2933 ret = alloc_oa_buffer(stream); 2934 if (ret) 2935 goto err_oa_buf_alloc; 2936 2937 stream->ops = &i915_oa_stream_ops; 2938 2939 perf->sseu = props->sseu; 2940 WRITE_ONCE(perf->exclusive_stream, stream); 2941 2942 ret = i915_perf_stream_enable_sync(stream); 2943 if (ret) { 2944 DRM_DEBUG("Unable to enable metric set\n"); 2945 goto err_enable; 2946 } 2947 2948 DRM_DEBUG("opening stream oa config uuid=%s\n", 2949 stream->oa_config->uuid); 2950 2951 hrtimer_init(&stream->poll_check_timer, 2952 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2953 stream->poll_check_timer.function = oa_poll_check_timer_cb; 2954 init_waitqueue_head(&stream->poll_wq); 2955 spin_lock_init(&stream->oa_buffer.ptr_lock); 2956 2957 return 0; 2958 2959 err_enable: 2960 WRITE_ONCE(perf->exclusive_stream, NULL); 2961 perf->ops.disable_metric_set(stream); 2962 2963 free_oa_buffer(stream); 2964 2965 err_oa_buf_alloc: 2966 free_oa_configs(stream); 2967 2968 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 2969 intel_engine_pm_put(stream->engine); 2970 2971 err_config: 2972 free_noa_wait(stream); 2973 2974 err_noa_wait_alloc: 2975 if (stream->ctx) 2976 oa_put_render_ctx_id(stream); 2977 2978 return ret; 2979 } 2980 2981 void i915_oa_init_reg_state(const struct intel_context *ce, 2982 const struct intel_engine_cs *engine) 2983 { 2984 struct i915_perf_stream *stream; 2985 2986 if (engine->class != RENDER_CLASS) 2987 return; 2988 2989 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 2990 stream = READ_ONCE(engine->i915->perf.exclusive_stream); 2991 if (stream && INTEL_GEN(stream->perf->i915) < 12) 2992 gen8_update_reg_state_unlocked(ce, stream); 2993 } 2994 2995 /** 2996 * i915_perf_read - handles read() FOP for i915 perf stream FDs 2997 * @file: An i915 perf stream file 2998 * @buf: destination buffer given by userspace 2999 * @count: the number of bytes userspace wants to read 3000 * @ppos: (inout) file seek position (unused) 3001 * 3002 * The entry point for handling a read() on a stream file descriptor from 3003 * userspace. Most of the work is left to the i915_perf_read_locked() and 3004 * &i915_perf_stream_ops->read but to save having stream implementations (of 3005 * which we might have multiple later) we handle blocking read here. 3006 * 3007 * We can also consistently treat trying to read from a disabled stream 3008 * as an IO error so implementations can assume the stream is enabled 3009 * while reading. 3010 * 3011 * Returns: The number of bytes copied or a negative error code on failure. 3012 */ 3013 static ssize_t i915_perf_read(struct file *file, 3014 char __user *buf, 3015 size_t count, 3016 loff_t *ppos) 3017 { 3018 struct i915_perf_stream *stream = file->private_data; 3019 struct i915_perf *perf = stream->perf; 3020 size_t offset = 0; 3021 int ret; 3022 3023 /* To ensure it's handled consistently we simply treat all reads of a 3024 * disabled stream as an error. In particular it might otherwise lead 3025 * to a deadlock for blocking file descriptors... 3026 */ 3027 if (!stream->enabled) 3028 return -EIO; 3029 3030 if (!(file->f_flags & O_NONBLOCK)) { 3031 /* There's the small chance of false positives from 3032 * stream->ops->wait_unlocked. 3033 * 3034 * E.g. with single context filtering since we only wait until 3035 * oabuffer has >= 1 report we don't immediately know whether 3036 * any reports really belong to the current context 3037 */ 3038 do { 3039 ret = stream->ops->wait_unlocked(stream); 3040 if (ret) 3041 return ret; 3042 3043 mutex_lock(&perf->lock); 3044 ret = stream->ops->read(stream, buf, count, &offset); 3045 mutex_unlock(&perf->lock); 3046 } while (!offset && !ret); 3047 } else { 3048 mutex_lock(&perf->lock); 3049 ret = stream->ops->read(stream, buf, count, &offset); 3050 mutex_unlock(&perf->lock); 3051 } 3052 3053 /* We allow the poll checking to sometimes report false positive EPOLLIN 3054 * events where we might actually report EAGAIN on read() if there's 3055 * not really any data available. In this situation though we don't 3056 * want to enter a busy loop between poll() reporting a EPOLLIN event 3057 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3058 * effectively ensures we back off until the next hrtimer callback 3059 * before reporting another EPOLLIN event. 3060 * The exception to this is if ops->read() returned -ENOSPC which means 3061 * that more OA data is available than could fit in the user provided 3062 * buffer. In this case we want the next poll() call to not block. 3063 */ 3064 if (ret != -ENOSPC) 3065 stream->pollin = false; 3066 3067 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3068 return offset ?: (ret ?: -EAGAIN); 3069 } 3070 3071 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3072 { 3073 struct i915_perf_stream *stream = 3074 container_of(hrtimer, typeof(*stream), poll_check_timer); 3075 3076 if (oa_buffer_check_unlocked(stream)) { 3077 stream->pollin = true; 3078 wake_up(&stream->poll_wq); 3079 } 3080 3081 hrtimer_forward_now(hrtimer, 3082 ns_to_ktime(stream->poll_oa_period)); 3083 3084 return HRTIMER_RESTART; 3085 } 3086 3087 /** 3088 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3089 * @stream: An i915 perf stream 3090 * @file: An i915 perf stream file 3091 * @wait: poll() state table 3092 * 3093 * For handling userspace polling on an i915 perf stream, this calls through to 3094 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3095 * will be woken for new stream data. 3096 * 3097 * Note: The &perf->lock mutex has been taken to serialize 3098 * with any non-file-operation driver hooks. 3099 * 3100 * Returns: any poll events that are ready without sleeping 3101 */ 3102 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3103 struct file *file, 3104 poll_table *wait) 3105 { 3106 __poll_t events = 0; 3107 3108 stream->ops->poll_wait(stream, file, wait); 3109 3110 /* Note: we don't explicitly check whether there's something to read 3111 * here since this path may be very hot depending on what else 3112 * userspace is polling, or on the timeout in use. We rely solely on 3113 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3114 * samples to read. 3115 */ 3116 if (stream->pollin) 3117 events |= EPOLLIN; 3118 3119 return events; 3120 } 3121 3122 /** 3123 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3124 * @file: An i915 perf stream file 3125 * @wait: poll() state table 3126 * 3127 * For handling userspace polling on an i915 perf stream, this ensures 3128 * poll_wait() gets called with a wait queue that will be woken for new stream 3129 * data. 3130 * 3131 * Note: Implementation deferred to i915_perf_poll_locked() 3132 * 3133 * Returns: any poll events that are ready without sleeping 3134 */ 3135 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3136 { 3137 struct i915_perf_stream *stream = file->private_data; 3138 struct i915_perf *perf = stream->perf; 3139 __poll_t ret; 3140 3141 mutex_lock(&perf->lock); 3142 ret = i915_perf_poll_locked(stream, file, wait); 3143 mutex_unlock(&perf->lock); 3144 3145 return ret; 3146 } 3147 3148 /** 3149 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3150 * @stream: A disabled i915 perf stream 3151 * 3152 * [Re]enables the associated capture of data for this stream. 3153 * 3154 * If a stream was previously enabled then there's currently no intention 3155 * to provide userspace any guarantee about the preservation of previously 3156 * buffered data. 3157 */ 3158 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3159 { 3160 if (stream->enabled) 3161 return; 3162 3163 /* Allow stream->ops->enable() to refer to this */ 3164 stream->enabled = true; 3165 3166 if (stream->ops->enable) 3167 stream->ops->enable(stream); 3168 3169 if (stream->hold_preemption) 3170 intel_context_set_nopreempt(stream->pinned_ctx); 3171 } 3172 3173 /** 3174 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3175 * @stream: An enabled i915 perf stream 3176 * 3177 * Disables the associated capture of data for this stream. 3178 * 3179 * The intention is that disabling an re-enabling a stream will ideally be 3180 * cheaper than destroying and re-opening a stream with the same configuration, 3181 * though there are no formal guarantees about what state or buffered data 3182 * must be retained between disabling and re-enabling a stream. 3183 * 3184 * Note: while a stream is disabled it's considered an error for userspace 3185 * to attempt to read from the stream (-EIO). 3186 */ 3187 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3188 { 3189 if (!stream->enabled) 3190 return; 3191 3192 /* Allow stream->ops->disable() to refer to this */ 3193 stream->enabled = false; 3194 3195 if (stream->hold_preemption) 3196 intel_context_clear_nopreempt(stream->pinned_ctx); 3197 3198 if (stream->ops->disable) 3199 stream->ops->disable(stream); 3200 } 3201 3202 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3203 unsigned long metrics_set) 3204 { 3205 struct i915_oa_config *config; 3206 long ret = stream->oa_config->id; 3207 3208 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3209 if (!config) 3210 return -EINVAL; 3211 3212 if (config != stream->oa_config) { 3213 int err; 3214 3215 /* 3216 * If OA is bound to a specific context, emit the 3217 * reconfiguration inline from that context. The update 3218 * will then be ordered with respect to submission on that 3219 * context. 3220 * 3221 * When set globally, we use a low priority kernel context, 3222 * so it will effectively take effect when idle. 3223 */ 3224 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3225 if (!err) 3226 config = xchg(&stream->oa_config, config); 3227 else 3228 ret = err; 3229 } 3230 3231 i915_oa_config_put(config); 3232 3233 return ret; 3234 } 3235 3236 /** 3237 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3238 * @stream: An i915 perf stream 3239 * @cmd: the ioctl request 3240 * @arg: the ioctl data 3241 * 3242 * Note: The &perf->lock mutex has been taken to serialize 3243 * with any non-file-operation driver hooks. 3244 * 3245 * Returns: zero on success or a negative error code. Returns -EINVAL for 3246 * an unknown ioctl request. 3247 */ 3248 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3249 unsigned int cmd, 3250 unsigned long arg) 3251 { 3252 switch (cmd) { 3253 case I915_PERF_IOCTL_ENABLE: 3254 i915_perf_enable_locked(stream); 3255 return 0; 3256 case I915_PERF_IOCTL_DISABLE: 3257 i915_perf_disable_locked(stream); 3258 return 0; 3259 case I915_PERF_IOCTL_CONFIG: 3260 return i915_perf_config_locked(stream, arg); 3261 } 3262 3263 return -EINVAL; 3264 } 3265 3266 /** 3267 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3268 * @file: An i915 perf stream file 3269 * @cmd: the ioctl request 3270 * @arg: the ioctl data 3271 * 3272 * Implementation deferred to i915_perf_ioctl_locked(). 3273 * 3274 * Returns: zero on success or a negative error code. Returns -EINVAL for 3275 * an unknown ioctl request. 3276 */ 3277 static long i915_perf_ioctl(struct file *file, 3278 unsigned int cmd, 3279 unsigned long arg) 3280 { 3281 struct i915_perf_stream *stream = file->private_data; 3282 struct i915_perf *perf = stream->perf; 3283 long ret; 3284 3285 mutex_lock(&perf->lock); 3286 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3287 mutex_unlock(&perf->lock); 3288 3289 return ret; 3290 } 3291 3292 /** 3293 * i915_perf_destroy_locked - destroy an i915 perf stream 3294 * @stream: An i915 perf stream 3295 * 3296 * Frees all resources associated with the given i915 perf @stream, disabling 3297 * any associated data capture in the process. 3298 * 3299 * Note: The &perf->lock mutex has been taken to serialize 3300 * with any non-file-operation driver hooks. 3301 */ 3302 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3303 { 3304 if (stream->enabled) 3305 i915_perf_disable_locked(stream); 3306 3307 if (stream->ops->destroy) 3308 stream->ops->destroy(stream); 3309 3310 if (stream->ctx) 3311 i915_gem_context_put(stream->ctx); 3312 3313 kfree(stream); 3314 } 3315 3316 /** 3317 * i915_perf_release - handles userspace close() of a stream file 3318 * @inode: anonymous inode associated with file 3319 * @file: An i915 perf stream file 3320 * 3321 * Cleans up any resources associated with an open i915 perf stream file. 3322 * 3323 * NB: close() can't really fail from the userspace point of view. 3324 * 3325 * Returns: zero on success or a negative error code. 3326 */ 3327 static int i915_perf_release(struct inode *inode, struct file *file) 3328 { 3329 struct i915_perf_stream *stream = file->private_data; 3330 struct i915_perf *perf = stream->perf; 3331 3332 mutex_lock(&perf->lock); 3333 i915_perf_destroy_locked(stream); 3334 mutex_unlock(&perf->lock); 3335 3336 /* Release the reference the perf stream kept on the driver. */ 3337 drm_dev_put(&perf->i915->drm); 3338 3339 return 0; 3340 } 3341 3342 3343 static const struct file_operations fops = { 3344 .owner = THIS_MODULE, 3345 .llseek = no_llseek, 3346 .release = i915_perf_release, 3347 .poll = i915_perf_poll, 3348 .read = i915_perf_read, 3349 .unlocked_ioctl = i915_perf_ioctl, 3350 /* Our ioctl have no arguments, so it's safe to use the same function 3351 * to handle 32bits compatibility. 3352 */ 3353 .compat_ioctl = i915_perf_ioctl, 3354 }; 3355 3356 3357 /** 3358 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3359 * @perf: i915 perf instance 3360 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3361 * @props: individually validated u64 property value pairs 3362 * @file: drm file 3363 * 3364 * See i915_perf_ioctl_open() for interface details. 3365 * 3366 * Implements further stream config validation and stream initialization on 3367 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex 3368 * taken to serialize with any non-file-operation driver hooks. 3369 * 3370 * Note: at this point the @props have only been validated in isolation and 3371 * it's still necessary to validate that the combination of properties makes 3372 * sense. 3373 * 3374 * In the case where userspace is interested in OA unit metrics then further 3375 * config validation and stream initialization details will be handled by 3376 * i915_oa_stream_init(). The code here should only validate config state that 3377 * will be relevant to all stream types / backends. 3378 * 3379 * Returns: zero on success or a negative error code. 3380 */ 3381 static int 3382 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3383 struct drm_i915_perf_open_param *param, 3384 struct perf_open_properties *props, 3385 struct drm_file *file) 3386 { 3387 struct i915_gem_context *specific_ctx = NULL; 3388 struct i915_perf_stream *stream = NULL; 3389 unsigned long f_flags = 0; 3390 bool privileged_op = true; 3391 int stream_fd; 3392 int ret; 3393 3394 if (props->single_context) { 3395 u32 ctx_handle = props->ctx_handle; 3396 struct drm_i915_file_private *file_priv = file->driver_priv; 3397 3398 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3399 if (!specific_ctx) { 3400 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 3401 ctx_handle); 3402 ret = -ENOENT; 3403 goto err; 3404 } 3405 } 3406 3407 /* 3408 * On Haswell the OA unit supports clock gating off for a specific 3409 * context and in this mode there's no visibility of metrics for the 3410 * rest of the system, which we consider acceptable for a 3411 * non-privileged client. 3412 * 3413 * For Gen8->11 the OA unit no longer supports clock gating off for a 3414 * specific context and the kernel can't securely stop the counters 3415 * from updating as system-wide / global values. Even though we can 3416 * filter reports based on the included context ID we can't block 3417 * clients from seeing the raw / global counter values via 3418 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3419 * enable the OA unit by default. 3420 * 3421 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3422 * per context basis. So we can relax requirements there if the user 3423 * doesn't request global stream access (i.e. query based sampling 3424 * using MI_RECORD_PERF_COUNT. 3425 */ 3426 if (IS_HASWELL(perf->i915) && specific_ctx) 3427 privileged_op = false; 3428 else if (IS_GEN(perf->i915, 12) && specific_ctx && 3429 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3430 privileged_op = false; 3431 3432 if (props->hold_preemption) { 3433 if (!props->single_context) { 3434 DRM_DEBUG("preemption disable with no context\n"); 3435 ret = -EINVAL; 3436 goto err; 3437 } 3438 privileged_op = true; 3439 } 3440 3441 /* 3442 * Asking for SSEU configuration is a priviliged operation. 3443 */ 3444 if (props->has_sseu) 3445 privileged_op = true; 3446 else 3447 get_default_sseu_config(&props->sseu, props->engine); 3448 3449 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3450 * we check a dev.i915.perf_stream_paranoid sysctl option 3451 * to determine if it's ok to access system wide OA counters 3452 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3453 */ 3454 if (privileged_op && 3455 i915_perf_stream_paranoid && !perfmon_capable()) { 3456 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n"); 3457 ret = -EACCES; 3458 goto err_ctx; 3459 } 3460 3461 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3462 if (!stream) { 3463 ret = -ENOMEM; 3464 goto err_ctx; 3465 } 3466 3467 stream->perf = perf; 3468 stream->ctx = specific_ctx; 3469 stream->poll_oa_period = props->poll_oa_period; 3470 3471 ret = i915_oa_stream_init(stream, param, props); 3472 if (ret) 3473 goto err_alloc; 3474 3475 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3476 * to have _stream_init check the combination of sample flags more 3477 * thoroughly, but still this is the expected result at this point. 3478 */ 3479 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3480 ret = -ENODEV; 3481 goto err_flags; 3482 } 3483 3484 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3485 f_flags |= O_CLOEXEC; 3486 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3487 f_flags |= O_NONBLOCK; 3488 3489 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3490 if (stream_fd < 0) { 3491 ret = stream_fd; 3492 goto err_flags; 3493 } 3494 3495 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3496 i915_perf_enable_locked(stream); 3497 3498 /* Take a reference on the driver that will be kept with stream_fd 3499 * until its release. 3500 */ 3501 drm_dev_get(&perf->i915->drm); 3502 3503 return stream_fd; 3504 3505 err_flags: 3506 if (stream->ops->destroy) 3507 stream->ops->destroy(stream); 3508 err_alloc: 3509 kfree(stream); 3510 err_ctx: 3511 if (specific_ctx) 3512 i915_gem_context_put(specific_ctx); 3513 err: 3514 return ret; 3515 } 3516 3517 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3518 { 3519 return i915_cs_timestamp_ticks_to_ns(perf->i915, 2ULL << exponent); 3520 } 3521 3522 /** 3523 * read_properties_unlocked - validate + copy userspace stream open properties 3524 * @perf: i915 perf instance 3525 * @uprops: The array of u64 key value pairs given by userspace 3526 * @n_props: The number of key value pairs expected in @uprops 3527 * @props: The stream configuration built up while validating properties 3528 * 3529 * Note this function only validates properties in isolation it doesn't 3530 * validate that the combination of properties makes sense or that all 3531 * properties necessary for a particular kind of stream have been set. 3532 * 3533 * Note that there currently aren't any ordering requirements for properties so 3534 * we shouldn't validate or assume anything about ordering here. This doesn't 3535 * rule out defining new properties with ordering requirements in the future. 3536 */ 3537 static int read_properties_unlocked(struct i915_perf *perf, 3538 u64 __user *uprops, 3539 u32 n_props, 3540 struct perf_open_properties *props) 3541 { 3542 u64 __user *uprop = uprops; 3543 u32 i; 3544 int ret; 3545 3546 memset(props, 0, sizeof(struct perf_open_properties)); 3547 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 3548 3549 if (!n_props) { 3550 DRM_DEBUG("No i915 perf properties given\n"); 3551 return -EINVAL; 3552 } 3553 3554 /* At the moment we only support using i915-perf on the RCS. */ 3555 props->engine = intel_engine_lookup_user(perf->i915, 3556 I915_ENGINE_CLASS_RENDER, 3557 0); 3558 if (!props->engine) { 3559 DRM_DEBUG("No RENDER-capable engines\n"); 3560 return -EINVAL; 3561 } 3562 3563 /* Considering that ID = 0 is reserved and assuming that we don't 3564 * (currently) expect any configurations to ever specify duplicate 3565 * values for a particular property ID then the last _PROP_MAX value is 3566 * one greater than the maximum number of properties we expect to get 3567 * from userspace. 3568 */ 3569 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3570 DRM_DEBUG("More i915 perf properties specified than exist\n"); 3571 return -EINVAL; 3572 } 3573 3574 for (i = 0; i < n_props; i++) { 3575 u64 oa_period, oa_freq_hz; 3576 u64 id, value; 3577 3578 ret = get_user(id, uprop); 3579 if (ret) 3580 return ret; 3581 3582 ret = get_user(value, uprop + 1); 3583 if (ret) 3584 return ret; 3585 3586 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3587 DRM_DEBUG("Unknown i915 perf property ID\n"); 3588 return -EINVAL; 3589 } 3590 3591 switch ((enum drm_i915_perf_property_id)id) { 3592 case DRM_I915_PERF_PROP_CTX_HANDLE: 3593 props->single_context = 1; 3594 props->ctx_handle = value; 3595 break; 3596 case DRM_I915_PERF_PROP_SAMPLE_OA: 3597 if (value) 3598 props->sample_flags |= SAMPLE_OA_REPORT; 3599 break; 3600 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3601 if (value == 0) { 3602 DRM_DEBUG("Unknown OA metric set ID\n"); 3603 return -EINVAL; 3604 } 3605 props->metrics_set = value; 3606 break; 3607 case DRM_I915_PERF_PROP_OA_FORMAT: 3608 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3609 DRM_DEBUG("Out-of-range OA report format %llu\n", 3610 value); 3611 return -EINVAL; 3612 } 3613 if (!perf->oa_formats[value].size) { 3614 DRM_DEBUG("Unsupported OA report format %llu\n", 3615 value); 3616 return -EINVAL; 3617 } 3618 props->oa_format = value; 3619 break; 3620 case DRM_I915_PERF_PROP_OA_EXPONENT: 3621 if (value > OA_EXPONENT_MAX) { 3622 DRM_DEBUG("OA timer exponent too high (> %u)\n", 3623 OA_EXPONENT_MAX); 3624 return -EINVAL; 3625 } 3626 3627 /* Theoretically we can program the OA unit to sample 3628 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 3629 * for BXT. We don't allow such high sampling 3630 * frequencies by default unless root. 3631 */ 3632 3633 BUILD_BUG_ON(sizeof(oa_period) != 8); 3634 oa_period = oa_exponent_to_ns(perf, value); 3635 3636 /* This check is primarily to ensure that oa_period <= 3637 * UINT32_MAX (before passing to do_div which only 3638 * accepts a u32 denominator), but we can also skip 3639 * checking anything < 1Hz which implicitly can't be 3640 * limited via an integer oa_max_sample_rate. 3641 */ 3642 if (oa_period <= NSEC_PER_SEC) { 3643 u64 tmp = NSEC_PER_SEC; 3644 do_div(tmp, oa_period); 3645 oa_freq_hz = tmp; 3646 } else 3647 oa_freq_hz = 0; 3648 3649 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 3650 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 3651 i915_oa_max_sample_rate); 3652 return -EACCES; 3653 } 3654 3655 props->oa_periodic = true; 3656 props->oa_period_exponent = value; 3657 break; 3658 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 3659 props->hold_preemption = !!value; 3660 break; 3661 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 3662 struct drm_i915_gem_context_param_sseu user_sseu; 3663 3664 if (copy_from_user(&user_sseu, 3665 u64_to_user_ptr(value), 3666 sizeof(user_sseu))) { 3667 DRM_DEBUG("Unable to copy global sseu parameter\n"); 3668 return -EFAULT; 3669 } 3670 3671 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 3672 if (ret) { 3673 DRM_DEBUG("Invalid SSEU configuration\n"); 3674 return ret; 3675 } 3676 props->has_sseu = true; 3677 break; 3678 } 3679 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 3680 if (value < 100000 /* 100us */) { 3681 DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n", 3682 value); 3683 return -EINVAL; 3684 } 3685 props->poll_oa_period = value; 3686 break; 3687 case DRM_I915_PERF_PROP_MAX: 3688 MISSING_CASE(id); 3689 return -EINVAL; 3690 } 3691 3692 uprop += 2; 3693 } 3694 3695 return 0; 3696 } 3697 3698 /** 3699 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 3700 * @dev: drm device 3701 * @data: ioctl data copied from userspace (unvalidated) 3702 * @file: drm file 3703 * 3704 * Validates the stream open parameters given by userspace including flags 3705 * and an array of u64 key, value pair properties. 3706 * 3707 * Very little is assumed up front about the nature of the stream being 3708 * opened (for instance we don't assume it's for periodic OA unit metrics). An 3709 * i915-perf stream is expected to be a suitable interface for other forms of 3710 * buffered data written by the GPU besides periodic OA metrics. 3711 * 3712 * Note we copy the properties from userspace outside of the i915 perf 3713 * mutex to avoid an awkward lockdep with mmap_lock. 3714 * 3715 * Most of the implementation details are handled by 3716 * i915_perf_open_ioctl_locked() after taking the &perf->lock 3717 * mutex for serializing with any non-file-operation driver hooks. 3718 * 3719 * Return: A newly opened i915 Perf stream file descriptor or negative 3720 * error code on failure. 3721 */ 3722 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3723 struct drm_file *file) 3724 { 3725 struct i915_perf *perf = &to_i915(dev)->perf; 3726 struct drm_i915_perf_open_param *param = data; 3727 struct perf_open_properties props; 3728 u32 known_open_flags; 3729 int ret; 3730 3731 if (!perf->i915) { 3732 DRM_DEBUG("i915 perf interface not available for this system\n"); 3733 return -ENOTSUPP; 3734 } 3735 3736 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3737 I915_PERF_FLAG_FD_NONBLOCK | 3738 I915_PERF_FLAG_DISABLED; 3739 if (param->flags & ~known_open_flags) { 3740 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 3741 return -EINVAL; 3742 } 3743 3744 ret = read_properties_unlocked(perf, 3745 u64_to_user_ptr(param->properties_ptr), 3746 param->num_properties, 3747 &props); 3748 if (ret) 3749 return ret; 3750 3751 mutex_lock(&perf->lock); 3752 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 3753 mutex_unlock(&perf->lock); 3754 3755 return ret; 3756 } 3757 3758 /** 3759 * i915_perf_register - exposes i915-perf to userspace 3760 * @i915: i915 device instance 3761 * 3762 * In particular OA metric sets are advertised under a sysfs metrics/ 3763 * directory allowing userspace to enumerate valid IDs that can be 3764 * used to open an i915-perf stream. 3765 */ 3766 void i915_perf_register(struct drm_i915_private *i915) 3767 { 3768 struct i915_perf *perf = &i915->perf; 3769 3770 if (!perf->i915) 3771 return; 3772 3773 /* To be sure we're synchronized with an attempted 3774 * i915_perf_open_ioctl(); considering that we register after 3775 * being exposed to userspace. 3776 */ 3777 mutex_lock(&perf->lock); 3778 3779 perf->metrics_kobj = 3780 kobject_create_and_add("metrics", 3781 &i915->drm.primary->kdev->kobj); 3782 3783 mutex_unlock(&perf->lock); 3784 } 3785 3786 /** 3787 * i915_perf_unregister - hide i915-perf from userspace 3788 * @i915: i915 device instance 3789 * 3790 * i915-perf state cleanup is split up into an 'unregister' and 3791 * 'deinit' phase where the interface is first hidden from 3792 * userspace by i915_perf_unregister() before cleaning up 3793 * remaining state in i915_perf_fini(). 3794 */ 3795 void i915_perf_unregister(struct drm_i915_private *i915) 3796 { 3797 struct i915_perf *perf = &i915->perf; 3798 3799 if (!perf->metrics_kobj) 3800 return; 3801 3802 kobject_put(perf->metrics_kobj); 3803 perf->metrics_kobj = NULL; 3804 } 3805 3806 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 3807 { 3808 static const i915_reg_t flex_eu_regs[] = { 3809 EU_PERF_CNTL0, 3810 EU_PERF_CNTL1, 3811 EU_PERF_CNTL2, 3812 EU_PERF_CNTL3, 3813 EU_PERF_CNTL4, 3814 EU_PERF_CNTL5, 3815 EU_PERF_CNTL6, 3816 }; 3817 int i; 3818 3819 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3820 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3821 return true; 3822 } 3823 return false; 3824 } 3825 3826 #define ADDR_IN_RANGE(addr, start, end) \ 3827 ((addr) >= (start) && \ 3828 (addr) <= (end)) 3829 3830 #define REG_IN_RANGE(addr, start, end) \ 3831 ((addr) >= i915_mmio_reg_offset(start) && \ 3832 (addr) <= i915_mmio_reg_offset(end)) 3833 3834 #define REG_EQUAL(addr, mmio) \ 3835 ((addr) == i915_mmio_reg_offset(mmio)) 3836 3837 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3838 { 3839 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) || 3840 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) || 3841 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1); 3842 } 3843 3844 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3845 { 3846 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) || 3847 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) || 3848 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) || 3849 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI); 3850 } 3851 3852 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3853 { 3854 return gen7_is_valid_mux_addr(perf, addr) || 3855 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3856 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8)); 3857 } 3858 3859 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3860 { 3861 return gen8_is_valid_mux_addr(perf, addr) || 3862 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3863 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI); 3864 } 3865 3866 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3867 { 3868 return gen7_is_valid_mux_addr(perf, addr) || 3869 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) || 3870 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) || 3871 REG_EQUAL(addr, HSW_MBVID2_MISR0); 3872 } 3873 3874 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3875 { 3876 return gen7_is_valid_mux_addr(perf, addr) || 3877 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4); 3878 } 3879 3880 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3881 { 3882 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) || 3883 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) || 3884 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) || 3885 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) || 3886 REG_EQUAL(addr, GEN12_OAA_DBG_REG) || 3887 REG_EQUAL(addr, GEN12_OAG_OA_PESS) || 3888 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF); 3889 } 3890 3891 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3892 { 3893 return REG_EQUAL(addr, NOA_WRITE) || 3894 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3895 REG_EQUAL(addr, GDT_CHICKEN_BITS) || 3896 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3897 REG_EQUAL(addr, RPM_CONFIG0) || 3898 REG_EQUAL(addr, RPM_CONFIG1) || 3899 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8)); 3900 } 3901 3902 static u32 mask_reg_value(u32 reg, u32 val) 3903 { 3904 /* HALF_SLICE_CHICKEN2 is programmed with a the 3905 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3906 * programmed by userspace doesn't change this. 3907 */ 3908 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 3909 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3910 3911 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3912 * indicated by its name and a bunch of selection fields used by OA 3913 * configs. 3914 */ 3915 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 3916 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3917 3918 return val; 3919 } 3920 3921 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 3922 bool (*is_valid)(struct i915_perf *perf, u32 addr), 3923 u32 __user *regs, 3924 u32 n_regs) 3925 { 3926 struct i915_oa_reg *oa_regs; 3927 int err; 3928 u32 i; 3929 3930 if (!n_regs) 3931 return NULL; 3932 3933 /* No is_valid function means we're not allowing any register to be programmed. */ 3934 GEM_BUG_ON(!is_valid); 3935 if (!is_valid) 3936 return ERR_PTR(-EINVAL); 3937 3938 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3939 if (!oa_regs) 3940 return ERR_PTR(-ENOMEM); 3941 3942 for (i = 0; i < n_regs; i++) { 3943 u32 addr, value; 3944 3945 err = get_user(addr, regs); 3946 if (err) 3947 goto addr_err; 3948 3949 if (!is_valid(perf, addr)) { 3950 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3951 err = -EINVAL; 3952 goto addr_err; 3953 } 3954 3955 err = get_user(value, regs + 1); 3956 if (err) 3957 goto addr_err; 3958 3959 oa_regs[i].addr = _MMIO(addr); 3960 oa_regs[i].value = mask_reg_value(addr, value); 3961 3962 regs += 2; 3963 } 3964 3965 return oa_regs; 3966 3967 addr_err: 3968 kfree(oa_regs); 3969 return ERR_PTR(err); 3970 } 3971 3972 static ssize_t show_dynamic_id(struct device *dev, 3973 struct device_attribute *attr, 3974 char *buf) 3975 { 3976 struct i915_oa_config *oa_config = 3977 container_of(attr, typeof(*oa_config), sysfs_metric_id); 3978 3979 return sprintf(buf, "%d\n", oa_config->id); 3980 } 3981 3982 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 3983 struct i915_oa_config *oa_config) 3984 { 3985 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 3986 oa_config->sysfs_metric_id.attr.name = "id"; 3987 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 3988 oa_config->sysfs_metric_id.show = show_dynamic_id; 3989 oa_config->sysfs_metric_id.store = NULL; 3990 3991 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 3992 oa_config->attrs[1] = NULL; 3993 3994 oa_config->sysfs_metric.name = oa_config->uuid; 3995 oa_config->sysfs_metric.attrs = oa_config->attrs; 3996 3997 return sysfs_create_group(perf->metrics_kobj, 3998 &oa_config->sysfs_metric); 3999 } 4000 4001 /** 4002 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4003 * @dev: drm device 4004 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4005 * userspace (unvalidated) 4006 * @file: drm file 4007 * 4008 * Validates the submitted OA register to be saved into a new OA config that 4009 * can then be used for programming the OA unit and its NOA network. 4010 * 4011 * Returns: A new allocated config number to be used with the perf open ioctl 4012 * or a negative error code on failure. 4013 */ 4014 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4015 struct drm_file *file) 4016 { 4017 struct i915_perf *perf = &to_i915(dev)->perf; 4018 struct drm_i915_perf_oa_config *args = data; 4019 struct i915_oa_config *oa_config, *tmp; 4020 struct i915_oa_reg *regs; 4021 int err, id; 4022 4023 if (!perf->i915) { 4024 DRM_DEBUG("i915 perf interface not available for this system\n"); 4025 return -ENOTSUPP; 4026 } 4027 4028 if (!perf->metrics_kobj) { 4029 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 4030 return -EINVAL; 4031 } 4032 4033 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4034 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 4035 return -EACCES; 4036 } 4037 4038 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4039 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4040 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4041 DRM_DEBUG("No OA registers given\n"); 4042 return -EINVAL; 4043 } 4044 4045 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4046 if (!oa_config) { 4047 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 4048 return -ENOMEM; 4049 } 4050 4051 oa_config->perf = perf; 4052 kref_init(&oa_config->ref); 4053 4054 if (!uuid_is_valid(args->uuid)) { 4055 DRM_DEBUG("Invalid uuid format for OA config\n"); 4056 err = -EINVAL; 4057 goto reg_err; 4058 } 4059 4060 /* Last character in oa_config->uuid will be 0 because oa_config is 4061 * kzalloc. 4062 */ 4063 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4064 4065 oa_config->mux_regs_len = args->n_mux_regs; 4066 regs = alloc_oa_regs(perf, 4067 perf->ops.is_valid_mux_reg, 4068 u64_to_user_ptr(args->mux_regs_ptr), 4069 args->n_mux_regs); 4070 4071 if (IS_ERR(regs)) { 4072 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 4073 err = PTR_ERR(regs); 4074 goto reg_err; 4075 } 4076 oa_config->mux_regs = regs; 4077 4078 oa_config->b_counter_regs_len = args->n_boolean_regs; 4079 regs = alloc_oa_regs(perf, 4080 perf->ops.is_valid_b_counter_reg, 4081 u64_to_user_ptr(args->boolean_regs_ptr), 4082 args->n_boolean_regs); 4083 4084 if (IS_ERR(regs)) { 4085 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 4086 err = PTR_ERR(regs); 4087 goto reg_err; 4088 } 4089 oa_config->b_counter_regs = regs; 4090 4091 if (INTEL_GEN(perf->i915) < 8) { 4092 if (args->n_flex_regs != 0) { 4093 err = -EINVAL; 4094 goto reg_err; 4095 } 4096 } else { 4097 oa_config->flex_regs_len = args->n_flex_regs; 4098 regs = alloc_oa_regs(perf, 4099 perf->ops.is_valid_flex_reg, 4100 u64_to_user_ptr(args->flex_regs_ptr), 4101 args->n_flex_regs); 4102 4103 if (IS_ERR(regs)) { 4104 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 4105 err = PTR_ERR(regs); 4106 goto reg_err; 4107 } 4108 oa_config->flex_regs = regs; 4109 } 4110 4111 err = mutex_lock_interruptible(&perf->metrics_lock); 4112 if (err) 4113 goto reg_err; 4114 4115 /* We shouldn't have too many configs, so this iteration shouldn't be 4116 * too costly. 4117 */ 4118 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4119 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4120 DRM_DEBUG("OA config already exists with this uuid\n"); 4121 err = -EADDRINUSE; 4122 goto sysfs_err; 4123 } 4124 } 4125 4126 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4127 if (err) { 4128 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4129 goto sysfs_err; 4130 } 4131 4132 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4133 oa_config->id = idr_alloc(&perf->metrics_idr, 4134 oa_config, 2, 4135 0, GFP_KERNEL); 4136 if (oa_config->id < 0) { 4137 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4138 err = oa_config->id; 4139 goto sysfs_err; 4140 } 4141 4142 mutex_unlock(&perf->metrics_lock); 4143 4144 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4145 4146 return oa_config->id; 4147 4148 sysfs_err: 4149 mutex_unlock(&perf->metrics_lock); 4150 reg_err: 4151 i915_oa_config_put(oa_config); 4152 DRM_DEBUG("Failed to add new OA config\n"); 4153 return err; 4154 } 4155 4156 /** 4157 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4158 * @dev: drm device 4159 * @data: ioctl data (pointer to u64 integer) copied from userspace 4160 * @file: drm file 4161 * 4162 * Configs can be removed while being used, the will stop appearing in sysfs 4163 * and their content will be freed when the stream using the config is closed. 4164 * 4165 * Returns: 0 on success or a negative error code on failure. 4166 */ 4167 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4168 struct drm_file *file) 4169 { 4170 struct i915_perf *perf = &to_i915(dev)->perf; 4171 u64 *arg = data; 4172 struct i915_oa_config *oa_config; 4173 int ret; 4174 4175 if (!perf->i915) { 4176 DRM_DEBUG("i915 perf interface not available for this system\n"); 4177 return -ENOTSUPP; 4178 } 4179 4180 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4181 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 4182 return -EACCES; 4183 } 4184 4185 ret = mutex_lock_interruptible(&perf->metrics_lock); 4186 if (ret) 4187 return ret; 4188 4189 oa_config = idr_find(&perf->metrics_idr, *arg); 4190 if (!oa_config) { 4191 DRM_DEBUG("Failed to remove unknown OA config\n"); 4192 ret = -ENOENT; 4193 goto err_unlock; 4194 } 4195 4196 GEM_BUG_ON(*arg != oa_config->id); 4197 4198 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4199 4200 idr_remove(&perf->metrics_idr, *arg); 4201 4202 mutex_unlock(&perf->metrics_lock); 4203 4204 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4205 4206 i915_oa_config_put(oa_config); 4207 4208 return 0; 4209 4210 err_unlock: 4211 mutex_unlock(&perf->metrics_lock); 4212 return ret; 4213 } 4214 4215 static struct ctl_table oa_table[] = { 4216 { 4217 .procname = "perf_stream_paranoid", 4218 .data = &i915_perf_stream_paranoid, 4219 .maxlen = sizeof(i915_perf_stream_paranoid), 4220 .mode = 0644, 4221 .proc_handler = proc_dointvec_minmax, 4222 .extra1 = SYSCTL_ZERO, 4223 .extra2 = SYSCTL_ONE, 4224 }, 4225 { 4226 .procname = "oa_max_sample_rate", 4227 .data = &i915_oa_max_sample_rate, 4228 .maxlen = sizeof(i915_oa_max_sample_rate), 4229 .mode = 0644, 4230 .proc_handler = proc_dointvec_minmax, 4231 .extra1 = SYSCTL_ZERO, 4232 .extra2 = &oa_sample_rate_hard_limit, 4233 }, 4234 {} 4235 }; 4236 4237 static struct ctl_table i915_root[] = { 4238 { 4239 .procname = "i915", 4240 .maxlen = 0, 4241 .mode = 0555, 4242 .child = oa_table, 4243 }, 4244 {} 4245 }; 4246 4247 static struct ctl_table dev_root[] = { 4248 { 4249 .procname = "dev", 4250 .maxlen = 0, 4251 .mode = 0555, 4252 .child = i915_root, 4253 }, 4254 {} 4255 }; 4256 4257 /** 4258 * i915_perf_init - initialize i915-perf state on module bind 4259 * @i915: i915 device instance 4260 * 4261 * Initializes i915-perf state without exposing anything to userspace. 4262 * 4263 * Note: i915-perf initialization is split into an 'init' and 'register' 4264 * phase with the i915_perf_register() exposing state to userspace. 4265 */ 4266 void i915_perf_init(struct drm_i915_private *i915) 4267 { 4268 struct i915_perf *perf = &i915->perf; 4269 4270 /* XXX const struct i915_perf_ops! */ 4271 4272 if (IS_HASWELL(i915)) { 4273 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4274 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4275 perf->ops.is_valid_flex_reg = NULL; 4276 perf->ops.enable_metric_set = hsw_enable_metric_set; 4277 perf->ops.disable_metric_set = hsw_disable_metric_set; 4278 perf->ops.oa_enable = gen7_oa_enable; 4279 perf->ops.oa_disable = gen7_oa_disable; 4280 perf->ops.read = gen7_oa_read; 4281 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4282 4283 perf->oa_formats = hsw_oa_formats; 4284 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4285 /* Note: that although we could theoretically also support the 4286 * legacy ringbuffer mode on BDW (and earlier iterations of 4287 * this driver, before upstreaming did this) it didn't seem 4288 * worth the complexity to maintain now that BDW+ enable 4289 * execlist mode by default. 4290 */ 4291 perf->ops.read = gen8_oa_read; 4292 4293 if (IS_GEN_RANGE(i915, 8, 9)) { 4294 perf->oa_formats = gen8_plus_oa_formats; 4295 4296 perf->ops.is_valid_b_counter_reg = 4297 gen7_is_valid_b_counter_addr; 4298 perf->ops.is_valid_mux_reg = 4299 gen8_is_valid_mux_addr; 4300 perf->ops.is_valid_flex_reg = 4301 gen8_is_valid_flex_addr; 4302 4303 if (IS_CHERRYVIEW(i915)) { 4304 perf->ops.is_valid_mux_reg = 4305 chv_is_valid_mux_addr; 4306 } 4307 4308 perf->ops.oa_enable = gen8_oa_enable; 4309 perf->ops.oa_disable = gen8_oa_disable; 4310 perf->ops.enable_metric_set = gen8_enable_metric_set; 4311 perf->ops.disable_metric_set = gen8_disable_metric_set; 4312 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4313 4314 if (IS_GEN(i915, 8)) { 4315 perf->ctx_oactxctrl_offset = 0x120; 4316 perf->ctx_flexeu0_offset = 0x2ce; 4317 4318 perf->gen8_valid_ctx_bit = BIT(25); 4319 } else { 4320 perf->ctx_oactxctrl_offset = 0x128; 4321 perf->ctx_flexeu0_offset = 0x3de; 4322 4323 perf->gen8_valid_ctx_bit = BIT(16); 4324 } 4325 } else if (IS_GEN_RANGE(i915, 10, 11)) { 4326 perf->oa_formats = gen8_plus_oa_formats; 4327 4328 perf->ops.is_valid_b_counter_reg = 4329 gen7_is_valid_b_counter_addr; 4330 perf->ops.is_valid_mux_reg = 4331 gen10_is_valid_mux_addr; 4332 perf->ops.is_valid_flex_reg = 4333 gen8_is_valid_flex_addr; 4334 4335 perf->ops.oa_enable = gen8_oa_enable; 4336 perf->ops.oa_disable = gen8_oa_disable; 4337 perf->ops.enable_metric_set = gen8_enable_metric_set; 4338 perf->ops.disable_metric_set = gen10_disable_metric_set; 4339 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4340 4341 if (IS_GEN(i915, 10)) { 4342 perf->ctx_oactxctrl_offset = 0x128; 4343 perf->ctx_flexeu0_offset = 0x3de; 4344 } else { 4345 perf->ctx_oactxctrl_offset = 0x124; 4346 perf->ctx_flexeu0_offset = 0x78e; 4347 } 4348 perf->gen8_valid_ctx_bit = BIT(16); 4349 } else if (IS_GEN(i915, 12)) { 4350 perf->oa_formats = gen12_oa_formats; 4351 4352 perf->ops.is_valid_b_counter_reg = 4353 gen12_is_valid_b_counter_addr; 4354 perf->ops.is_valid_mux_reg = 4355 gen12_is_valid_mux_addr; 4356 perf->ops.is_valid_flex_reg = 4357 gen8_is_valid_flex_addr; 4358 4359 perf->ops.oa_enable = gen12_oa_enable; 4360 perf->ops.oa_disable = gen12_oa_disable; 4361 perf->ops.enable_metric_set = gen12_enable_metric_set; 4362 perf->ops.disable_metric_set = gen12_disable_metric_set; 4363 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4364 4365 perf->ctx_flexeu0_offset = 0; 4366 perf->ctx_oactxctrl_offset = 0x144; 4367 } 4368 } 4369 4370 if (perf->ops.enable_metric_set) { 4371 mutex_init(&perf->lock); 4372 4373 oa_sample_rate_hard_limit = 4374 RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 2; 4375 4376 mutex_init(&perf->metrics_lock); 4377 idr_init(&perf->metrics_idr); 4378 4379 /* We set up some ratelimit state to potentially throttle any 4380 * _NOTES about spurious, invalid OA reports which we don't 4381 * forward to userspace. 4382 * 4383 * We print a _NOTE about any throttling when closing the 4384 * stream instead of waiting until driver _fini which no one 4385 * would ever see. 4386 * 4387 * Using the same limiting factors as printk_ratelimit() 4388 */ 4389 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4390 /* Since we use a DRM_NOTE for spurious reports it would be 4391 * inconsistent to let __ratelimit() automatically print a 4392 * warning for throttling. 4393 */ 4394 ratelimit_set_flags(&perf->spurious_report_rs, 4395 RATELIMIT_MSG_ON_RELEASE); 4396 4397 ratelimit_state_init(&perf->tail_pointer_race, 4398 5 * HZ, 10); 4399 ratelimit_set_flags(&perf->tail_pointer_race, 4400 RATELIMIT_MSG_ON_RELEASE); 4401 4402 atomic64_set(&perf->noa_programming_delay, 4403 500 * 1000 /* 500us */); 4404 4405 perf->i915 = i915; 4406 } 4407 } 4408 4409 static int destroy_config(int id, void *p, void *data) 4410 { 4411 i915_oa_config_put(p); 4412 return 0; 4413 } 4414 4415 void i915_perf_sysctl_register(void) 4416 { 4417 sysctl_header = register_sysctl_table(dev_root); 4418 } 4419 4420 void i915_perf_sysctl_unregister(void) 4421 { 4422 unregister_sysctl_table(sysctl_header); 4423 } 4424 4425 /** 4426 * i915_perf_fini - Counter part to i915_perf_init() 4427 * @i915: i915 device instance 4428 */ 4429 void i915_perf_fini(struct drm_i915_private *i915) 4430 { 4431 struct i915_perf *perf = &i915->perf; 4432 4433 if (!perf->i915) 4434 return; 4435 4436 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4437 idr_destroy(&perf->metrics_idr); 4438 4439 memset(&perf->ops, 0, sizeof(perf->ops)); 4440 perf->i915 = NULL; 4441 } 4442 4443 /** 4444 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4445 * 4446 * This version number is used by userspace to detect available features. 4447 */ 4448 int i915_perf_ioctl_version(void) 4449 { 4450 /* 4451 * 1: Initial version 4452 * I915_PERF_IOCTL_ENABLE 4453 * I915_PERF_IOCTL_DISABLE 4454 * 4455 * 2: Added runtime modification of OA config. 4456 * I915_PERF_IOCTL_CONFIG 4457 * 4458 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4459 * preemption on a particular context so that performance data is 4460 * accessible from a delta of MI_RPC reports without looking at the 4461 * OA buffer. 4462 * 4463 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 4464 * be run for the duration of the performance recording based on 4465 * their SSEU configuration. 4466 * 4467 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 4468 * interval for the hrtimer used to check for OA data. 4469 */ 4470 return 5; 4471 } 4472 4473 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4474 #include "selftests/i915_perf.c" 4475 #endif 4476