1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gem/i915_gem_internal.h" 200 #include "gt/intel_engine_pm.h" 201 #include "gt/intel_engine_regs.h" 202 #include "gt/intel_engine_user.h" 203 #include "gt/intel_execlists_submission.h" 204 #include "gt/intel_gpu_commands.h" 205 #include "gt/intel_gt.h" 206 #include "gt/intel_gt_clock_utils.h" 207 #include "gt/intel_gt_mcr.h" 208 #include "gt/intel_gt_regs.h" 209 #include "gt/intel_lrc.h" 210 #include "gt/intel_lrc_reg.h" 211 #include "gt/intel_ring.h" 212 #include "gt/uc/intel_guc_slpc.h" 213 214 #include "i915_drv.h" 215 #include "i915_file_private.h" 216 #include "i915_perf.h" 217 #include "i915_perf_oa_regs.h" 218 #include "i915_reg.h" 219 220 /* HW requires this to be a power of two, between 128k and 16M, though driver 221 * is currently generally designed assuming the largest 16M size is used such 222 * that the overflow cases are unlikely in normal operation. 223 */ 224 #define OA_BUFFER_SIZE SZ_16M 225 226 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 227 228 /** 229 * DOC: OA Tail Pointer Race 230 * 231 * There's a HW race condition between OA unit tail pointer register updates and 232 * writes to memory whereby the tail pointer can sometimes get ahead of what's 233 * been written out to the OA buffer so far (in terms of what's visible to the 234 * CPU). 235 * 236 * Although this can be observed explicitly while copying reports to userspace 237 * by checking for a zeroed report-id field in tail reports, we want to account 238 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 239 * redundant read() attempts. 240 * 241 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 242 * in the OA buffer, starting from the tail reported by the HW until we find a 243 * report with its first 2 dwords not 0 meaning its previous report is 244 * completely in memory and ready to be read. Those dwords are also set to 0 245 * once read and the whole buffer is cleared upon OA buffer initialization. The 246 * first dword is the reason for this report while the second is the timestamp, 247 * making the chances of having those 2 fields at 0 fairly unlikely. A more 248 * detailed explanation is available in oa_buffer_check_unlocked(). 249 * 250 * Most of the implementation details for this workaround are in 251 * oa_buffer_check_unlocked() and _append_oa_reports() 252 * 253 * Note for posterity: previously the driver used to define an effective tail 254 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 255 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 256 * This was flawed considering that the OA unit may also automatically generate 257 * non-periodic reports (such as on context switch) or the OA unit may be 258 * enabled without any periodic sampling. 259 */ 260 #define OA_TAIL_MARGIN_NSEC 100000ULL 261 #define INVALID_TAIL_PTR 0xffffffff 262 263 /* The default frequency for checking whether the OA unit has written new 264 * reports to the circular OA buffer... 265 */ 266 #define DEFAULT_POLL_FREQUENCY_HZ 200 267 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 268 269 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 270 static u32 i915_perf_stream_paranoid = true; 271 272 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 273 * of the 64bit timestamp bits to trigger reports from) but there's currently 274 * no known use case for sampling as infrequently as once per 47 thousand years. 275 * 276 * Since the timestamps included in OA reports are only 32bits it seems 277 * reasonable to limit the OA exponent where it's still possible to account for 278 * overflow in OA report timestamps. 279 */ 280 #define OA_EXPONENT_MAX 31 281 282 #define INVALID_CTX_ID 0xffffffff 283 284 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 285 #define OAREPORT_REASON_MASK 0x3f 286 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 287 #define OAREPORT_REASON_SHIFT 19 288 #define OAREPORT_REASON_TIMER (1<<0) 289 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 290 #define OAREPORT_REASON_CLK_RATIO (1<<5) 291 292 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) 293 294 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 295 * 296 * The highest sampling frequency we can theoretically program the OA unit 297 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 298 * 299 * Initialized just before we register the sysctl parameter. 300 */ 301 static int oa_sample_rate_hard_limit; 302 303 /* Theoretically we can program the OA unit to sample every 160ns but don't 304 * allow that by default unless root... 305 * 306 * The default threshold of 100000Hz is based on perf's similar 307 * kernel.perf_event_max_sample_rate sysctl parameter. 308 */ 309 static u32 i915_oa_max_sample_rate = 100000; 310 311 /* XXX: beware if future OA HW adds new report formats that the current 312 * code assumes all reports have a power-of-two size and ~(size - 1) can 313 * be used as a mask to align the OA tail pointer. 314 */ 315 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = { 316 [I915_OA_FORMAT_A13] = { 0, 64 }, 317 [I915_OA_FORMAT_A29] = { 1, 128 }, 318 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 319 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 320 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 321 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 322 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 323 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 324 [I915_OA_FORMAT_A12] = { 0, 64 }, 325 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 326 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 327 [I915_OAR_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 328 [I915_OA_FORMAT_A24u40_A14u32_B8_C8] = { 5, 256 }, 329 }; 330 331 #define SAMPLE_OA_REPORT (1<<0) 332 333 /** 334 * struct perf_open_properties - for validated properties given to open a stream 335 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 336 * @single_context: Whether a single or all gpu contexts should be monitored 337 * @hold_preemption: Whether the preemption is disabled for the filtered 338 * context 339 * @ctx_handle: A gem ctx handle for use with @single_context 340 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 341 * @oa_format: An OA unit HW report format 342 * @oa_periodic: Whether to enable periodic OA unit sampling 343 * @oa_period_exponent: The OA unit sampling period is derived from this 344 * @engine: The engine (typically rcs0) being monitored by the OA unit 345 * @has_sseu: Whether @sseu was specified by userspace 346 * @sseu: internal SSEU configuration computed either from the userspace 347 * specified configuration in the opening parameters or a default value 348 * (see get_default_sseu_config()) 349 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 350 * data availability 351 * 352 * As read_properties_unlocked() enumerates and validates the properties given 353 * to open a stream of metrics the configuration is built up in the structure 354 * which starts out zero initialized. 355 */ 356 struct perf_open_properties { 357 u32 sample_flags; 358 359 u64 single_context:1; 360 u64 hold_preemption:1; 361 u64 ctx_handle; 362 363 /* OA sampling state */ 364 int metrics_set; 365 int oa_format; 366 bool oa_periodic; 367 int oa_period_exponent; 368 369 struct intel_engine_cs *engine; 370 371 bool has_sseu; 372 struct intel_sseu sseu; 373 374 u64 poll_oa_period; 375 }; 376 377 struct i915_oa_config_bo { 378 struct llist_node node; 379 380 struct i915_oa_config *oa_config; 381 struct i915_vma *vma; 382 }; 383 384 static struct ctl_table_header *sysctl_header; 385 386 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 387 388 void i915_oa_config_release(struct kref *ref) 389 { 390 struct i915_oa_config *oa_config = 391 container_of(ref, typeof(*oa_config), ref); 392 393 kfree(oa_config->flex_regs); 394 kfree(oa_config->b_counter_regs); 395 kfree(oa_config->mux_regs); 396 397 kfree_rcu(oa_config, rcu); 398 } 399 400 struct i915_oa_config * 401 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 402 { 403 struct i915_oa_config *oa_config; 404 405 rcu_read_lock(); 406 oa_config = idr_find(&perf->metrics_idr, metrics_set); 407 if (oa_config) 408 oa_config = i915_oa_config_get(oa_config); 409 rcu_read_unlock(); 410 411 return oa_config; 412 } 413 414 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 415 { 416 i915_oa_config_put(oa_bo->oa_config); 417 i915_vma_put(oa_bo->vma); 418 kfree(oa_bo); 419 } 420 421 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 422 { 423 struct intel_uncore *uncore = stream->uncore; 424 425 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 426 GEN12_OAG_OATAILPTR_MASK; 427 } 428 429 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 430 { 431 struct intel_uncore *uncore = stream->uncore; 432 433 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 434 } 435 436 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 437 { 438 struct intel_uncore *uncore = stream->uncore; 439 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 440 441 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 442 } 443 444 /** 445 * oa_buffer_check_unlocked - check for data and update tail ptr state 446 * @stream: i915 stream instance 447 * 448 * This is either called via fops (for blocking reads in user ctx) or the poll 449 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 450 * if there is data available for userspace to read. 451 * 452 * This function is central to providing a workaround for the OA unit tail 453 * pointer having a race with respect to what data is visible to the CPU. 454 * It is responsible for reading tail pointers from the hardware and giving 455 * the pointers time to 'age' before they are made available for reading. 456 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 457 * 458 * Besides returning true when there is data available to read() this function 459 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer 460 * object. 461 * 462 * Note: It's safe to read OA config state here unlocked, assuming that this is 463 * only called while the stream is enabled, while the global OA configuration 464 * can't be modified. 465 * 466 * Returns: %true if the OA buffer contains data, else %false 467 */ 468 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 469 { 470 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 471 int report_size = stream->oa_buffer.format->size; 472 unsigned long flags; 473 bool pollin; 474 u32 hw_tail; 475 u64 now; 476 477 /* We have to consider the (unlikely) possibility that read() errors 478 * could result in an OA buffer reset which might reset the head and 479 * tail state. 480 */ 481 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 482 483 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 484 485 /* The tail pointer increases in 64 byte increments, 486 * not in report_size steps... 487 */ 488 hw_tail &= ~(report_size - 1); 489 490 now = ktime_get_mono_fast_ns(); 491 492 if (hw_tail == stream->oa_buffer.aging_tail && 493 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) { 494 /* If the HW tail hasn't move since the last check and the HW 495 * tail has been aging for long enough, declare it the new 496 * tail. 497 */ 498 stream->oa_buffer.tail = stream->oa_buffer.aging_tail; 499 } else { 500 u32 head, tail, aged_tail; 501 502 /* NB: The head we observe here might effectively be a little 503 * out of date. If a read() is in progress, the head could be 504 * anywhere between this head and stream->oa_buffer.tail. 505 */ 506 head = stream->oa_buffer.head - gtt_offset; 507 aged_tail = stream->oa_buffer.tail - gtt_offset; 508 509 hw_tail -= gtt_offset; 510 tail = hw_tail; 511 512 /* Walk the stream backward until we find a report with dword 0 513 * & 1 not at 0. Since the circular buffer pointers progress by 514 * increments of 64 bytes and that reports can be up to 256 515 * bytes long, we can't tell whether a report has fully landed 516 * in memory before the first 2 dwords of the following report 517 * have effectively landed. 518 * 519 * This is assuming that the writes of the OA unit land in 520 * memory in the order they were written to. 521 * If not : (╯°□°)╯︵ ┻━┻ 522 */ 523 while (OA_TAKEN(tail, aged_tail) >= report_size) { 524 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail); 525 526 if (report32[0] != 0 || report32[1] != 0) 527 break; 528 529 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 530 } 531 532 if (OA_TAKEN(hw_tail, tail) > report_size && 533 __ratelimit(&stream->perf->tail_pointer_race)) 534 drm_notice(&stream->uncore->i915->drm, 535 "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n", 536 head, tail, hw_tail); 537 538 stream->oa_buffer.tail = gtt_offset + tail; 539 stream->oa_buffer.aging_tail = gtt_offset + hw_tail; 540 stream->oa_buffer.aging_timestamp = now; 541 } 542 543 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset, 544 stream->oa_buffer.head - gtt_offset) >= report_size; 545 546 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 547 548 return pollin; 549 } 550 551 /** 552 * append_oa_status - Appends a status record to a userspace read() buffer. 553 * @stream: An i915-perf stream opened for OA metrics 554 * @buf: destination buffer given by userspace 555 * @count: the number of bytes userspace wants to read 556 * @offset: (inout): the current position for writing into @buf 557 * @type: The kind of status to report to userspace 558 * 559 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 560 * into the userspace read() buffer. 561 * 562 * The @buf @offset will only be updated on success. 563 * 564 * Returns: 0 on success, negative error code on failure. 565 */ 566 static int append_oa_status(struct i915_perf_stream *stream, 567 char __user *buf, 568 size_t count, 569 size_t *offset, 570 enum drm_i915_perf_record_type type) 571 { 572 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 573 574 if ((count - *offset) < header.size) 575 return -ENOSPC; 576 577 if (copy_to_user(buf + *offset, &header, sizeof(header))) 578 return -EFAULT; 579 580 (*offset) += header.size; 581 582 return 0; 583 } 584 585 /** 586 * append_oa_sample - Copies single OA report into userspace read() buffer. 587 * @stream: An i915-perf stream opened for OA metrics 588 * @buf: destination buffer given by userspace 589 * @count: the number of bytes userspace wants to read 590 * @offset: (inout): the current position for writing into @buf 591 * @report: A single OA report to (optionally) include as part of the sample 592 * 593 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 594 * properties when opening a stream, tracked as `stream->sample_flags`. This 595 * function copies the requested components of a single sample to the given 596 * read() @buf. 597 * 598 * The @buf @offset will only be updated on success. 599 * 600 * Returns: 0 on success, negative error code on failure. 601 */ 602 static int append_oa_sample(struct i915_perf_stream *stream, 603 char __user *buf, 604 size_t count, 605 size_t *offset, 606 const u8 *report) 607 { 608 int report_size = stream->oa_buffer.format->size; 609 struct drm_i915_perf_record_header header; 610 611 header.type = DRM_I915_PERF_RECORD_SAMPLE; 612 header.pad = 0; 613 header.size = stream->sample_size; 614 615 if ((count - *offset) < header.size) 616 return -ENOSPC; 617 618 buf += *offset; 619 if (copy_to_user(buf, &header, sizeof(header))) 620 return -EFAULT; 621 buf += sizeof(header); 622 623 if (copy_to_user(buf, report, report_size)) 624 return -EFAULT; 625 626 (*offset) += header.size; 627 628 return 0; 629 } 630 631 /** 632 * gen8_append_oa_reports - Copies all buffered OA reports into 633 * userspace read() buffer. 634 * @stream: An i915-perf stream opened for OA metrics 635 * @buf: destination buffer given by userspace 636 * @count: the number of bytes userspace wants to read 637 * @offset: (inout): the current position for writing into @buf 638 * 639 * Notably any error condition resulting in a short read (-%ENOSPC or 640 * -%EFAULT) will be returned even though one or more records may 641 * have been successfully copied. In this case it's up to the caller 642 * to decide if the error should be squashed before returning to 643 * userspace. 644 * 645 * Note: reports are consumed from the head, and appended to the 646 * tail, so the tail chases the head?... If you think that's mad 647 * and back-to-front you're not alone, but this follows the 648 * Gen PRM naming convention. 649 * 650 * Returns: 0 on success, negative error code on failure. 651 */ 652 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 653 char __user *buf, 654 size_t count, 655 size_t *offset) 656 { 657 struct intel_uncore *uncore = stream->uncore; 658 int report_size = stream->oa_buffer.format->size; 659 u8 *oa_buf_base = stream->oa_buffer.vaddr; 660 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 661 u32 mask = (OA_BUFFER_SIZE - 1); 662 size_t start_offset = *offset; 663 unsigned long flags; 664 u32 head, tail; 665 int ret = 0; 666 667 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 668 return -EIO; 669 670 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 671 672 head = stream->oa_buffer.head; 673 tail = stream->oa_buffer.tail; 674 675 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 676 677 /* 678 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 679 * while indexing relative to oa_buf_base. 680 */ 681 head -= gtt_offset; 682 tail -= gtt_offset; 683 684 /* 685 * An out of bounds or misaligned head or tail pointer implies a driver 686 * bug since we validate + align the tail pointers we read from the 687 * hardware and we are in full control of the head pointer which should 688 * only be incremented by multiples of the report size (notably also 689 * all a power of two). 690 */ 691 if (drm_WARN_ONCE(&uncore->i915->drm, 692 head > OA_BUFFER_SIZE || head % report_size || 693 tail > OA_BUFFER_SIZE || tail % report_size, 694 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 695 head, tail)) 696 return -EIO; 697 698 699 for (/* none */; 700 OA_TAKEN(tail, head); 701 head = (head + report_size) & mask) { 702 u8 *report = oa_buf_base + head; 703 u32 *report32 = (void *)report; 704 u32 ctx_id; 705 u32 reason; 706 707 /* 708 * All the report sizes factor neatly into the buffer 709 * size so we never expect to see a report split 710 * between the beginning and end of the buffer. 711 * 712 * Given the initial alignment check a misalignment 713 * here would imply a driver bug that would result 714 * in an overrun. 715 */ 716 if (drm_WARN_ON(&uncore->i915->drm, 717 (OA_BUFFER_SIZE - head) < report_size)) { 718 drm_err(&uncore->i915->drm, 719 "Spurious OA head ptr: non-integral report offset\n"); 720 break; 721 } 722 723 /* 724 * The reason field includes flags identifying what 725 * triggered this specific report (mostly timer 726 * triggered or e.g. due to a context switch). 727 * 728 * This field is never expected to be zero so we can 729 * check that the report isn't invalid before copying 730 * it to userspace... 731 */ 732 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 733 (GRAPHICS_VER(stream->perf->i915) == 12 ? 734 OAREPORT_REASON_MASK_EXTENDED : 735 OAREPORT_REASON_MASK)); 736 737 ctx_id = report32[2] & stream->specific_ctx_id_mask; 738 739 /* 740 * Squash whatever is in the CTX_ID field if it's marked as 741 * invalid to be sure we avoid false-positive, single-context 742 * filtering below... 743 * 744 * Note: that we don't clear the valid_ctx_bit so userspace can 745 * understand that the ID has been squashed by the kernel. 746 */ 747 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 748 GRAPHICS_VER(stream->perf->i915) <= 11) 749 ctx_id = report32[2] = INVALID_CTX_ID; 750 751 /* 752 * NB: For Gen 8 the OA unit no longer supports clock gating 753 * off for a specific context and the kernel can't securely 754 * stop the counters from updating as system-wide / global 755 * values. 756 * 757 * Automatic reports now include a context ID so reports can be 758 * filtered on the cpu but it's not worth trying to 759 * automatically subtract/hide counter progress for other 760 * contexts while filtering since we can't stop userspace 761 * issuing MI_REPORT_PERF_COUNT commands which would still 762 * provide a side-band view of the real values. 763 * 764 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 765 * to normalize counters for a single filtered context then it 766 * needs be forwarded bookend context-switch reports so that it 767 * can track switches in between MI_REPORT_PERF_COUNT commands 768 * and can itself subtract/ignore the progress of counters 769 * associated with other contexts. Note that the hardware 770 * automatically triggers reports when switching to a new 771 * context which are tagged with the ID of the newly active 772 * context. To avoid the complexity (and likely fragility) of 773 * reading ahead while parsing reports to try and minimize 774 * forwarding redundant context switch reports (i.e. between 775 * other, unrelated contexts) we simply elect to forward them 776 * all. 777 * 778 * We don't rely solely on the reason field to identify context 779 * switches since it's not-uncommon for periodic samples to 780 * identify a switch before any 'context switch' report. 781 */ 782 if (!stream->ctx || 783 stream->specific_ctx_id == ctx_id || 784 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 785 reason & OAREPORT_REASON_CTX_SWITCH) { 786 787 /* 788 * While filtering for a single context we avoid 789 * leaking the IDs of other contexts. 790 */ 791 if (stream->ctx && 792 stream->specific_ctx_id != ctx_id) { 793 report32[2] = INVALID_CTX_ID; 794 } 795 796 ret = append_oa_sample(stream, buf, count, offset, 797 report); 798 if (ret) 799 break; 800 801 stream->oa_buffer.last_ctx_id = ctx_id; 802 } 803 804 /* 805 * Clear out the first 2 dword as a mean to detect unlanded 806 * reports. 807 */ 808 report32[0] = 0; 809 report32[1] = 0; 810 } 811 812 if (start_offset != *offset) { 813 i915_reg_t oaheadptr; 814 815 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ? 816 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 817 818 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 819 820 /* 821 * We removed the gtt_offset for the copy loop above, indexing 822 * relative to oa_buf_base so put back here... 823 */ 824 head += gtt_offset; 825 intel_uncore_write(uncore, oaheadptr, 826 head & GEN12_OAG_OAHEADPTR_MASK); 827 stream->oa_buffer.head = head; 828 829 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 830 } 831 832 return ret; 833 } 834 835 /** 836 * gen8_oa_read - copy status records then buffered OA reports 837 * @stream: An i915-perf stream opened for OA metrics 838 * @buf: destination buffer given by userspace 839 * @count: the number of bytes userspace wants to read 840 * @offset: (inout): the current position for writing into @buf 841 * 842 * Checks OA unit status registers and if necessary appends corresponding 843 * status records for userspace (such as for a buffer full condition) and then 844 * initiate appending any buffered OA reports. 845 * 846 * Updates @offset according to the number of bytes successfully copied into 847 * the userspace buffer. 848 * 849 * NB: some data may be successfully copied to the userspace buffer 850 * even if an error is returned, and this is reflected in the 851 * updated @offset. 852 * 853 * Returns: zero on success or a negative error code 854 */ 855 static int gen8_oa_read(struct i915_perf_stream *stream, 856 char __user *buf, 857 size_t count, 858 size_t *offset) 859 { 860 struct intel_uncore *uncore = stream->uncore; 861 u32 oastatus; 862 i915_reg_t oastatus_reg; 863 int ret; 864 865 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 866 return -EIO; 867 868 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ? 869 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 870 871 oastatus = intel_uncore_read(uncore, oastatus_reg); 872 873 /* 874 * We treat OABUFFER_OVERFLOW as a significant error: 875 * 876 * Although theoretically we could handle this more gracefully 877 * sometimes, some Gens don't correctly suppress certain 878 * automatically triggered reports in this condition and so we 879 * have to assume that old reports are now being trampled 880 * over. 881 * 882 * Considering how we don't currently give userspace control 883 * over the OA buffer size and always configure a large 16MB 884 * buffer, then a buffer overflow does anyway likely indicate 885 * that something has gone quite badly wrong. 886 */ 887 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 888 ret = append_oa_status(stream, buf, count, offset, 889 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 890 if (ret) 891 return ret; 892 893 drm_dbg(&stream->perf->i915->drm, 894 "OA buffer overflow (exponent = %d): force restart\n", 895 stream->period_exponent); 896 897 stream->perf->ops.oa_disable(stream); 898 stream->perf->ops.oa_enable(stream); 899 900 /* 901 * Note: .oa_enable() is expected to re-init the oabuffer and 902 * reset GEN8_OASTATUS for us 903 */ 904 oastatus = intel_uncore_read(uncore, oastatus_reg); 905 } 906 907 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 908 ret = append_oa_status(stream, buf, count, offset, 909 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 910 if (ret) 911 return ret; 912 913 intel_uncore_rmw(uncore, oastatus_reg, 914 GEN8_OASTATUS_COUNTER_OVERFLOW | 915 GEN8_OASTATUS_REPORT_LOST, 916 IS_GRAPHICS_VER(uncore->i915, 8, 11) ? 917 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 918 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 919 } 920 921 return gen8_append_oa_reports(stream, buf, count, offset); 922 } 923 924 /** 925 * gen7_append_oa_reports - Copies all buffered OA reports into 926 * userspace read() buffer. 927 * @stream: An i915-perf stream opened for OA metrics 928 * @buf: destination buffer given by userspace 929 * @count: the number of bytes userspace wants to read 930 * @offset: (inout): the current position for writing into @buf 931 * 932 * Notably any error condition resulting in a short read (-%ENOSPC or 933 * -%EFAULT) will be returned even though one or more records may 934 * have been successfully copied. In this case it's up to the caller 935 * to decide if the error should be squashed before returning to 936 * userspace. 937 * 938 * Note: reports are consumed from the head, and appended to the 939 * tail, so the tail chases the head?... If you think that's mad 940 * and back-to-front you're not alone, but this follows the 941 * Gen PRM naming convention. 942 * 943 * Returns: 0 on success, negative error code on failure. 944 */ 945 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 946 char __user *buf, 947 size_t count, 948 size_t *offset) 949 { 950 struct intel_uncore *uncore = stream->uncore; 951 int report_size = stream->oa_buffer.format->size; 952 u8 *oa_buf_base = stream->oa_buffer.vaddr; 953 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 954 u32 mask = (OA_BUFFER_SIZE - 1); 955 size_t start_offset = *offset; 956 unsigned long flags; 957 u32 head, tail; 958 int ret = 0; 959 960 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 961 return -EIO; 962 963 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 964 965 head = stream->oa_buffer.head; 966 tail = stream->oa_buffer.tail; 967 968 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 969 970 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 971 * while indexing relative to oa_buf_base. 972 */ 973 head -= gtt_offset; 974 tail -= gtt_offset; 975 976 /* An out of bounds or misaligned head or tail pointer implies a driver 977 * bug since we validate + align the tail pointers we read from the 978 * hardware and we are in full control of the head pointer which should 979 * only be incremented by multiples of the report size (notably also 980 * all a power of two). 981 */ 982 if (drm_WARN_ONCE(&uncore->i915->drm, 983 head > OA_BUFFER_SIZE || head % report_size || 984 tail > OA_BUFFER_SIZE || tail % report_size, 985 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 986 head, tail)) 987 return -EIO; 988 989 990 for (/* none */; 991 OA_TAKEN(tail, head); 992 head = (head + report_size) & mask) { 993 u8 *report = oa_buf_base + head; 994 u32 *report32 = (void *)report; 995 996 /* All the report sizes factor neatly into the buffer 997 * size so we never expect to see a report split 998 * between the beginning and end of the buffer. 999 * 1000 * Given the initial alignment check a misalignment 1001 * here would imply a driver bug that would result 1002 * in an overrun. 1003 */ 1004 if (drm_WARN_ON(&uncore->i915->drm, 1005 (OA_BUFFER_SIZE - head) < report_size)) { 1006 drm_err(&uncore->i915->drm, 1007 "Spurious OA head ptr: non-integral report offset\n"); 1008 break; 1009 } 1010 1011 /* The report-ID field for periodic samples includes 1012 * some undocumented flags related to what triggered 1013 * the report and is never expected to be zero so we 1014 * can check that the report isn't invalid before 1015 * copying it to userspace... 1016 */ 1017 if (report32[0] == 0) { 1018 if (__ratelimit(&stream->perf->spurious_report_rs)) 1019 drm_notice(&uncore->i915->drm, 1020 "Skipping spurious, invalid OA report\n"); 1021 continue; 1022 } 1023 1024 ret = append_oa_sample(stream, buf, count, offset, report); 1025 if (ret) 1026 break; 1027 1028 /* Clear out the first 2 dwords as a mean to detect unlanded 1029 * reports. 1030 */ 1031 report32[0] = 0; 1032 report32[1] = 0; 1033 } 1034 1035 if (start_offset != *offset) { 1036 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1037 1038 /* We removed the gtt_offset for the copy loop above, indexing 1039 * relative to oa_buf_base so put back here... 1040 */ 1041 head += gtt_offset; 1042 1043 intel_uncore_write(uncore, GEN7_OASTATUS2, 1044 (head & GEN7_OASTATUS2_HEAD_MASK) | 1045 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1046 stream->oa_buffer.head = head; 1047 1048 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1049 } 1050 1051 return ret; 1052 } 1053 1054 /** 1055 * gen7_oa_read - copy status records then buffered OA reports 1056 * @stream: An i915-perf stream opened for OA metrics 1057 * @buf: destination buffer given by userspace 1058 * @count: the number of bytes userspace wants to read 1059 * @offset: (inout): the current position for writing into @buf 1060 * 1061 * Checks Gen 7 specific OA unit status registers and if necessary appends 1062 * corresponding status records for userspace (such as for a buffer full 1063 * condition) and then initiate appending any buffered OA reports. 1064 * 1065 * Updates @offset according to the number of bytes successfully copied into 1066 * the userspace buffer. 1067 * 1068 * Returns: zero on success or a negative error code 1069 */ 1070 static int gen7_oa_read(struct i915_perf_stream *stream, 1071 char __user *buf, 1072 size_t count, 1073 size_t *offset) 1074 { 1075 struct intel_uncore *uncore = stream->uncore; 1076 u32 oastatus1; 1077 int ret; 1078 1079 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1080 return -EIO; 1081 1082 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1083 1084 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1085 * bits while the OA unit is enabled (while the tail pointer 1086 * may be updated asynchronously) so we ignore status bits 1087 * that have already been reported to userspace. 1088 */ 1089 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1090 1091 /* We treat OABUFFER_OVERFLOW as a significant error: 1092 * 1093 * - The status can be interpreted to mean that the buffer is 1094 * currently full (with a higher precedence than OA_TAKEN() 1095 * which will start to report a near-empty buffer after an 1096 * overflow) but it's awkward that we can't clear the status 1097 * on Haswell, so without a reset we won't be able to catch 1098 * the state again. 1099 * 1100 * - Since it also implies the HW has started overwriting old 1101 * reports it may also affect our sanity checks for invalid 1102 * reports when copying to userspace that assume new reports 1103 * are being written to cleared memory. 1104 * 1105 * - In the future we may want to introduce a flight recorder 1106 * mode where the driver will automatically maintain a safe 1107 * guard band between head/tail, avoiding this overflow 1108 * condition, but we avoid the added driver complexity for 1109 * now. 1110 */ 1111 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1112 ret = append_oa_status(stream, buf, count, offset, 1113 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1114 if (ret) 1115 return ret; 1116 1117 drm_dbg(&stream->perf->i915->drm, 1118 "OA buffer overflow (exponent = %d): force restart\n", 1119 stream->period_exponent); 1120 1121 stream->perf->ops.oa_disable(stream); 1122 stream->perf->ops.oa_enable(stream); 1123 1124 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1125 } 1126 1127 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1128 ret = append_oa_status(stream, buf, count, offset, 1129 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1130 if (ret) 1131 return ret; 1132 stream->perf->gen7_latched_oastatus1 |= 1133 GEN7_OASTATUS1_REPORT_LOST; 1134 } 1135 1136 return gen7_append_oa_reports(stream, buf, count, offset); 1137 } 1138 1139 /** 1140 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1141 * @stream: An i915-perf stream opened for OA metrics 1142 * 1143 * Called when userspace tries to read() from a blocking stream FD opened 1144 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1145 * OA buffer and wakes us. 1146 * 1147 * Note: it's acceptable to have this return with some false positives 1148 * since any subsequent read handling will return -EAGAIN if there isn't 1149 * really data ready for userspace yet. 1150 * 1151 * Returns: zero on success or a negative error code 1152 */ 1153 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1154 { 1155 /* We would wait indefinitely if periodic sampling is not enabled */ 1156 if (!stream->periodic) 1157 return -EIO; 1158 1159 return wait_event_interruptible(stream->poll_wq, 1160 oa_buffer_check_unlocked(stream)); 1161 } 1162 1163 /** 1164 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1165 * @stream: An i915-perf stream opened for OA metrics 1166 * @file: An i915 perf stream file 1167 * @wait: poll() state table 1168 * 1169 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1170 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1171 * when it sees data ready to read in the circular OA buffer. 1172 */ 1173 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1174 struct file *file, 1175 poll_table *wait) 1176 { 1177 poll_wait(file, &stream->poll_wq, wait); 1178 } 1179 1180 /** 1181 * i915_oa_read - just calls through to &i915_oa_ops->read 1182 * @stream: An i915-perf stream opened for OA metrics 1183 * @buf: destination buffer given by userspace 1184 * @count: the number of bytes userspace wants to read 1185 * @offset: (inout): the current position for writing into @buf 1186 * 1187 * Updates @offset according to the number of bytes successfully copied into 1188 * the userspace buffer. 1189 * 1190 * Returns: zero on success or a negative error code 1191 */ 1192 static int i915_oa_read(struct i915_perf_stream *stream, 1193 char __user *buf, 1194 size_t count, 1195 size_t *offset) 1196 { 1197 return stream->perf->ops.read(stream, buf, count, offset); 1198 } 1199 1200 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1201 { 1202 struct i915_gem_engines_iter it; 1203 struct i915_gem_context *ctx = stream->ctx; 1204 struct intel_context *ce; 1205 struct i915_gem_ww_ctx ww; 1206 int err = -ENODEV; 1207 1208 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1209 if (ce->engine != stream->engine) /* first match! */ 1210 continue; 1211 1212 err = 0; 1213 break; 1214 } 1215 i915_gem_context_unlock_engines(ctx); 1216 1217 if (err) 1218 return ERR_PTR(err); 1219 1220 i915_gem_ww_ctx_init(&ww, true); 1221 retry: 1222 /* 1223 * As the ID is the gtt offset of the context's vma we 1224 * pin the vma to ensure the ID remains fixed. 1225 */ 1226 err = intel_context_pin_ww(ce, &ww); 1227 if (err == -EDEADLK) { 1228 err = i915_gem_ww_ctx_backoff(&ww); 1229 if (!err) 1230 goto retry; 1231 } 1232 i915_gem_ww_ctx_fini(&ww); 1233 1234 if (err) 1235 return ERR_PTR(err); 1236 1237 stream->pinned_ctx = ce; 1238 return stream->pinned_ctx; 1239 } 1240 1241 static int 1242 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset) 1243 { 1244 u32 *cs, cmd; 1245 1246 cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; 1247 if (GRAPHICS_VER(rq->engine->i915) >= 8) 1248 cmd++; 1249 1250 cs = intel_ring_begin(rq, 4); 1251 if (IS_ERR(cs)) 1252 return PTR_ERR(cs); 1253 1254 *cs++ = cmd; 1255 *cs++ = i915_mmio_reg_offset(reg); 1256 *cs++ = ggtt_offset; 1257 *cs++ = 0; 1258 1259 intel_ring_advance(rq, cs); 1260 1261 return 0; 1262 } 1263 1264 static int 1265 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset) 1266 { 1267 struct i915_request *rq; 1268 int err; 1269 1270 rq = i915_request_create(ce); 1271 if (IS_ERR(rq)) 1272 return PTR_ERR(rq); 1273 1274 i915_request_get(rq); 1275 1276 err = __store_reg_to_mem(rq, reg, ggtt_offset); 1277 1278 i915_request_add(rq); 1279 if (!err && i915_request_wait(rq, 0, HZ / 2) < 0) 1280 err = -ETIME; 1281 1282 i915_request_put(rq); 1283 1284 return err; 1285 } 1286 1287 static int 1288 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id) 1289 { 1290 struct i915_vma *scratch; 1291 u32 *val; 1292 int err; 1293 1294 scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4); 1295 if (IS_ERR(scratch)) 1296 return PTR_ERR(scratch); 1297 1298 err = i915_vma_sync(scratch); 1299 if (err) 1300 goto err_scratch; 1301 1302 err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base), 1303 i915_ggtt_offset(scratch)); 1304 if (err) 1305 goto err_scratch; 1306 1307 val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB); 1308 if (IS_ERR(val)) { 1309 err = PTR_ERR(val); 1310 goto err_scratch; 1311 } 1312 1313 *ctx_id = *val; 1314 i915_gem_object_unpin_map(scratch->obj); 1315 1316 err_scratch: 1317 i915_vma_unpin_and_release(&scratch, 0); 1318 return err; 1319 } 1320 1321 /* 1322 * For execlist mode of submission, pick an unused context id 1323 * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts 1324 * XXX_MAX_CONTEXT_HW_ID is used by idle context 1325 * 1326 * For GuC mode of submission read context id from the upper dword of the 1327 * EXECLIST_STATUS register. Note that we read this value only once and expect 1328 * that the value stays fixed for the entire OA use case. There are cases where 1329 * GuC KMD implementation may deregister a context to reuse it's context id, but 1330 * we prevent that from happening to the OA context by pinning it. 1331 */ 1332 static int gen12_get_render_context_id(struct i915_perf_stream *stream) 1333 { 1334 u32 ctx_id, mask; 1335 int ret; 1336 1337 if (intel_engine_uses_guc(stream->engine)) { 1338 ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id); 1339 if (ret) 1340 return ret; 1341 1342 mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) << 1343 (GEN12_GUC_SW_CTX_ID_SHIFT - 32); 1344 } else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) { 1345 ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) << 1346 (XEHP_SW_CTX_ID_SHIFT - 32); 1347 1348 mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) << 1349 (XEHP_SW_CTX_ID_SHIFT - 32); 1350 } else { 1351 ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << 1352 (GEN11_SW_CTX_ID_SHIFT - 32); 1353 1354 mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << 1355 (GEN11_SW_CTX_ID_SHIFT - 32); 1356 } 1357 stream->specific_ctx_id = ctx_id & mask; 1358 stream->specific_ctx_id_mask = mask; 1359 1360 return 0; 1361 } 1362 1363 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end) 1364 { 1365 u32 idx = *offset; 1366 u32 len = min(MI_LRI_LEN(state[idx]) + idx, end); 1367 bool found = false; 1368 1369 idx++; 1370 for (; idx < len; idx += 2) { 1371 if (state[idx] == reg) { 1372 found = true; 1373 break; 1374 } 1375 } 1376 1377 *offset = idx; 1378 return found; 1379 } 1380 1381 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg) 1382 { 1383 u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4; 1384 u32 *state = ce->lrc_reg_state; 1385 1386 if (drm_WARN_ON(&ce->engine->i915->drm, !state)) 1387 return U32_MAX; 1388 1389 for (offset = 0; offset < len; ) { 1390 if (IS_MI_LRI_CMD(state[offset])) { 1391 /* 1392 * We expect reg-value pairs in MI_LRI command, so 1393 * MI_LRI_LEN() should be even, if not, issue a warning. 1394 */ 1395 drm_WARN_ON(&ce->engine->i915->drm, 1396 MI_LRI_LEN(state[offset]) & 0x1); 1397 1398 if (oa_find_reg_in_lri(state, reg, &offset, len)) 1399 break; 1400 } else { 1401 offset++; 1402 } 1403 } 1404 1405 return offset < len ? offset : U32_MAX; 1406 } 1407 1408 static int set_oa_ctx_ctrl_offset(struct intel_context *ce) 1409 { 1410 i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base); 1411 struct i915_perf *perf = &ce->engine->i915->perf; 1412 u32 offset = perf->ctx_oactxctrl_offset; 1413 1414 /* Do this only once. Failure is stored as offset of U32_MAX */ 1415 if (offset) 1416 goto exit; 1417 1418 offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg)); 1419 perf->ctx_oactxctrl_offset = offset; 1420 1421 drm_dbg(&ce->engine->i915->drm, 1422 "%s oa ctx control at 0x%08x dword offset\n", 1423 ce->engine->name, offset); 1424 1425 exit: 1426 return offset && offset != U32_MAX ? 0 : -ENODEV; 1427 } 1428 1429 static bool engine_supports_mi_query(struct intel_engine_cs *engine) 1430 { 1431 return engine->class == RENDER_CLASS; 1432 } 1433 1434 /** 1435 * oa_get_render_ctx_id - determine and hold ctx hw id 1436 * @stream: An i915-perf stream opened for OA metrics 1437 * 1438 * Determine the render context hw id, and ensure it remains fixed for the 1439 * lifetime of the stream. This ensures that we don't have to worry about 1440 * updating the context ID in OACONTROL on the fly. 1441 * 1442 * Returns: zero on success or a negative error code 1443 */ 1444 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1445 { 1446 struct intel_context *ce; 1447 int ret = 0; 1448 1449 ce = oa_pin_context(stream); 1450 if (IS_ERR(ce)) 1451 return PTR_ERR(ce); 1452 1453 if (engine_supports_mi_query(stream->engine) && 1454 HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) { 1455 /* 1456 * We are enabling perf query here. If we don't find the context 1457 * offset here, just return an error. 1458 */ 1459 ret = set_oa_ctx_ctrl_offset(ce); 1460 if (ret) { 1461 intel_context_unpin(ce); 1462 drm_err(&stream->perf->i915->drm, 1463 "Enabling perf query failed for %s\n", 1464 stream->engine->name); 1465 return ret; 1466 } 1467 } 1468 1469 switch (GRAPHICS_VER(ce->engine->i915)) { 1470 case 7: { 1471 /* 1472 * On Haswell we don't do any post processing of the reports 1473 * and don't need to use the mask. 1474 */ 1475 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1476 stream->specific_ctx_id_mask = 0; 1477 break; 1478 } 1479 1480 case 8: 1481 case 9: 1482 if (intel_engine_uses_guc(ce->engine)) { 1483 /* 1484 * When using GuC, the context descriptor we write in 1485 * i915 is read by GuC and rewritten before it's 1486 * actually written into the hardware. The LRCA is 1487 * what is put into the context id field of the 1488 * context descriptor by GuC. Because it's aligned to 1489 * a page, the lower 12bits are always at 0 and 1490 * dropped by GuC. They won't be part of the context 1491 * ID in the OA reports, so squash those lower bits. 1492 */ 1493 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1494 1495 /* 1496 * GuC uses the top bit to signal proxy submission, so 1497 * ignore that bit. 1498 */ 1499 stream->specific_ctx_id_mask = 1500 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1501 } else { 1502 stream->specific_ctx_id_mask = 1503 (1U << GEN8_CTX_ID_WIDTH) - 1; 1504 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1505 } 1506 break; 1507 1508 case 11: 1509 case 12: 1510 ret = gen12_get_render_context_id(stream); 1511 break; 1512 1513 default: 1514 MISSING_CASE(GRAPHICS_VER(ce->engine->i915)); 1515 } 1516 1517 ce->tag = stream->specific_ctx_id; 1518 1519 drm_dbg(&stream->perf->i915->drm, 1520 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1521 stream->specific_ctx_id, 1522 stream->specific_ctx_id_mask); 1523 1524 return ret; 1525 } 1526 1527 /** 1528 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1529 * @stream: An i915-perf stream opened for OA metrics 1530 * 1531 * In case anything needed doing to ensure the context HW ID would remain valid 1532 * for the lifetime of the stream, then that can be undone here. 1533 */ 1534 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1535 { 1536 struct intel_context *ce; 1537 1538 ce = fetch_and_zero(&stream->pinned_ctx); 1539 if (ce) { 1540 ce->tag = 0; /* recomputed on next submission after parking */ 1541 intel_context_unpin(ce); 1542 } 1543 1544 stream->specific_ctx_id = INVALID_CTX_ID; 1545 stream->specific_ctx_id_mask = 0; 1546 } 1547 1548 static void 1549 free_oa_buffer(struct i915_perf_stream *stream) 1550 { 1551 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1552 I915_VMA_RELEASE_MAP); 1553 1554 stream->oa_buffer.vaddr = NULL; 1555 } 1556 1557 static void 1558 free_oa_configs(struct i915_perf_stream *stream) 1559 { 1560 struct i915_oa_config_bo *oa_bo, *tmp; 1561 1562 i915_oa_config_put(stream->oa_config); 1563 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1564 free_oa_config_bo(oa_bo); 1565 } 1566 1567 static void 1568 free_noa_wait(struct i915_perf_stream *stream) 1569 { 1570 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1571 } 1572 1573 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1574 { 1575 struct i915_perf *perf = stream->perf; 1576 struct intel_gt *gt = stream->engine->gt; 1577 1578 if (WARN_ON(stream != gt->perf.exclusive_stream)) 1579 return; 1580 1581 /* 1582 * Unset exclusive_stream first, it will be checked while disabling 1583 * the metric set on gen8+. 1584 * 1585 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1586 */ 1587 WRITE_ONCE(gt->perf.exclusive_stream, NULL); 1588 perf->ops.disable_metric_set(stream); 1589 1590 free_oa_buffer(stream); 1591 1592 /* 1593 * Wa_16011777198:dg2: Unset the override of GUCRC mode to enable rc6. 1594 */ 1595 if (intel_uc_uses_guc_rc(>->uc) && 1596 (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || 1597 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))) 1598 drm_WARN_ON(>->i915->drm, 1599 intel_guc_slpc_unset_gucrc_mode(>->uc.guc.slpc)); 1600 1601 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1602 intel_engine_pm_put(stream->engine); 1603 1604 if (stream->ctx) 1605 oa_put_render_ctx_id(stream); 1606 1607 free_oa_configs(stream); 1608 free_noa_wait(stream); 1609 1610 if (perf->spurious_report_rs.missed) { 1611 drm_notice(>->i915->drm, 1612 "%d spurious OA report notices suppressed due to ratelimiting\n", 1613 perf->spurious_report_rs.missed); 1614 } 1615 } 1616 1617 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1618 { 1619 struct intel_uncore *uncore = stream->uncore; 1620 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1621 unsigned long flags; 1622 1623 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1624 1625 /* Pre-DevBDW: OABUFFER must be set with counters off, 1626 * before OASTATUS1, but after OASTATUS2 1627 */ 1628 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1629 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1630 stream->oa_buffer.head = gtt_offset; 1631 1632 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1633 1634 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1635 gtt_offset | OABUFFER_SIZE_16M); 1636 1637 /* Mark that we need updated tail pointers to read from... */ 1638 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1639 stream->oa_buffer.tail = gtt_offset; 1640 1641 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1642 1643 /* On Haswell we have to track which OASTATUS1 flags we've 1644 * already seen since they can't be cleared while periodic 1645 * sampling is enabled. 1646 */ 1647 stream->perf->gen7_latched_oastatus1 = 0; 1648 1649 /* NB: although the OA buffer will initially be allocated 1650 * zeroed via shmfs (and so this memset is redundant when 1651 * first allocating), we may re-init the OA buffer, either 1652 * when re-enabling a stream or in error/reset paths. 1653 * 1654 * The reason we clear the buffer for each re-init is for the 1655 * sanity check in gen7_append_oa_reports() that looks at the 1656 * report-id field to make sure it's non-zero which relies on 1657 * the assumption that new reports are being written to zeroed 1658 * memory... 1659 */ 1660 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1661 } 1662 1663 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1664 { 1665 struct intel_uncore *uncore = stream->uncore; 1666 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1667 unsigned long flags; 1668 1669 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1670 1671 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1672 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1673 stream->oa_buffer.head = gtt_offset; 1674 1675 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1676 1677 /* 1678 * PRM says: 1679 * 1680 * "This MMIO must be set before the OATAILPTR 1681 * register and after the OAHEADPTR register. This is 1682 * to enable proper functionality of the overflow 1683 * bit." 1684 */ 1685 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1686 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1687 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1688 1689 /* Mark that we need updated tail pointers to read from... */ 1690 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1691 stream->oa_buffer.tail = gtt_offset; 1692 1693 /* 1694 * Reset state used to recognise context switches, affecting which 1695 * reports we will forward to userspace while filtering for a single 1696 * context. 1697 */ 1698 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1699 1700 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1701 1702 /* 1703 * NB: although the OA buffer will initially be allocated 1704 * zeroed via shmfs (and so this memset is redundant when 1705 * first allocating), we may re-init the OA buffer, either 1706 * when re-enabling a stream or in error/reset paths. 1707 * 1708 * The reason we clear the buffer for each re-init is for the 1709 * sanity check in gen8_append_oa_reports() that looks at the 1710 * reason field to make sure it's non-zero which relies on 1711 * the assumption that new reports are being written to zeroed 1712 * memory... 1713 */ 1714 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1715 } 1716 1717 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1718 { 1719 struct intel_uncore *uncore = stream->uncore; 1720 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1721 unsigned long flags; 1722 1723 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1724 1725 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1726 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1727 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1728 stream->oa_buffer.head = gtt_offset; 1729 1730 /* 1731 * PRM says: 1732 * 1733 * "This MMIO must be set before the OATAILPTR 1734 * register and after the OAHEADPTR register. This is 1735 * to enable proper functionality of the overflow 1736 * bit." 1737 */ 1738 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1739 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1740 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1741 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1742 1743 /* Mark that we need updated tail pointers to read from... */ 1744 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1745 stream->oa_buffer.tail = gtt_offset; 1746 1747 /* 1748 * Reset state used to recognise context switches, affecting which 1749 * reports we will forward to userspace while filtering for a single 1750 * context. 1751 */ 1752 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1753 1754 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1755 1756 /* 1757 * NB: although the OA buffer will initially be allocated 1758 * zeroed via shmfs (and so this memset is redundant when 1759 * first allocating), we may re-init the OA buffer, either 1760 * when re-enabling a stream or in error/reset paths. 1761 * 1762 * The reason we clear the buffer for each re-init is for the 1763 * sanity check in gen8_append_oa_reports() that looks at the 1764 * reason field to make sure it's non-zero which relies on 1765 * the assumption that new reports are being written to zeroed 1766 * memory... 1767 */ 1768 memset(stream->oa_buffer.vaddr, 0, 1769 stream->oa_buffer.vma->size); 1770 } 1771 1772 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1773 { 1774 struct drm_i915_private *i915 = stream->perf->i915; 1775 struct intel_gt *gt = stream->engine->gt; 1776 struct drm_i915_gem_object *bo; 1777 struct i915_vma *vma; 1778 int ret; 1779 1780 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1781 return -ENODEV; 1782 1783 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1784 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1785 1786 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1787 if (IS_ERR(bo)) { 1788 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1789 return PTR_ERR(bo); 1790 } 1791 1792 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1793 1794 /* PreHSW required 512K alignment, HSW requires 16M */ 1795 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1796 if (IS_ERR(vma)) { 1797 ret = PTR_ERR(vma); 1798 goto err_unref; 1799 } 1800 1801 /* 1802 * PreHSW required 512K alignment. 1803 * HSW and onwards, align to requested size of OA buffer. 1804 */ 1805 ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH); 1806 if (ret) { 1807 drm_err(>->i915->drm, "Failed to pin OA buffer %d\n", ret); 1808 goto err_unref; 1809 } 1810 1811 stream->oa_buffer.vma = vma; 1812 1813 stream->oa_buffer.vaddr = 1814 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB); 1815 if (IS_ERR(stream->oa_buffer.vaddr)) { 1816 ret = PTR_ERR(stream->oa_buffer.vaddr); 1817 goto err_unpin; 1818 } 1819 1820 return 0; 1821 1822 err_unpin: 1823 __i915_vma_unpin(vma); 1824 1825 err_unref: 1826 i915_gem_object_put(bo); 1827 1828 stream->oa_buffer.vaddr = NULL; 1829 stream->oa_buffer.vma = NULL; 1830 1831 return ret; 1832 } 1833 1834 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1835 bool save, i915_reg_t reg, u32 offset, 1836 u32 dword_count) 1837 { 1838 u32 cmd; 1839 u32 d; 1840 1841 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1842 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1843 if (GRAPHICS_VER(stream->perf->i915) >= 8) 1844 cmd++; 1845 1846 for (d = 0; d < dword_count; d++) { 1847 *cs++ = cmd; 1848 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1849 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1850 offset) + 4 * d; 1851 *cs++ = 0; 1852 } 1853 1854 return cs; 1855 } 1856 1857 static int alloc_noa_wait(struct i915_perf_stream *stream) 1858 { 1859 struct drm_i915_private *i915 = stream->perf->i915; 1860 struct intel_gt *gt = stream->engine->gt; 1861 struct drm_i915_gem_object *bo; 1862 struct i915_vma *vma; 1863 const u64 delay_ticks = 0xffffffffffffffff - 1864 intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915), 1865 atomic64_read(&stream->perf->noa_programming_delay)); 1866 const u32 base = stream->engine->mmio_base; 1867 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1868 u32 *batch, *ts0, *cs, *jump; 1869 struct i915_gem_ww_ctx ww; 1870 int ret, i; 1871 enum { 1872 START_TS, 1873 NOW_TS, 1874 DELTA_TS, 1875 JUMP_PREDICATE, 1876 DELTA_TARGET, 1877 N_CS_GPR 1878 }; 1879 i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ? 1880 MI_PREDICATE_RESULT_2_ENGINE(base) : 1881 MI_PREDICATE_RESULT_1(RENDER_RING_BASE); 1882 1883 bo = i915_gem_object_create_internal(i915, 4096); 1884 if (IS_ERR(bo)) { 1885 drm_err(&i915->drm, 1886 "Failed to allocate NOA wait batchbuffer\n"); 1887 return PTR_ERR(bo); 1888 } 1889 1890 i915_gem_ww_ctx_init(&ww, true); 1891 retry: 1892 ret = i915_gem_object_lock(bo, &ww); 1893 if (ret) 1894 goto out_ww; 1895 1896 /* 1897 * We pin in GGTT because we jump into this buffer now because 1898 * multiple OA config BOs will have a jump to this address and it 1899 * needs to be fixed during the lifetime of the i915/perf stream. 1900 */ 1901 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1902 if (IS_ERR(vma)) { 1903 ret = PTR_ERR(vma); 1904 goto out_ww; 1905 } 1906 1907 ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 1908 if (ret) 1909 goto out_ww; 1910 1911 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1912 if (IS_ERR(batch)) { 1913 ret = PTR_ERR(batch); 1914 goto err_unpin; 1915 } 1916 1917 /* Save registers. */ 1918 for (i = 0; i < N_CS_GPR; i++) 1919 cs = save_restore_register( 1920 stream, cs, true /* save */, CS_GPR(i), 1921 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1922 cs = save_restore_register( 1923 stream, cs, true /* save */, mi_predicate_result, 1924 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1925 1926 /* First timestamp snapshot location. */ 1927 ts0 = cs; 1928 1929 /* 1930 * Initial snapshot of the timestamp register to implement the wait. 1931 * We work with 32b values, so clear out the top 32b bits of the 1932 * register because the ALU works 64bits. 1933 */ 1934 *cs++ = MI_LOAD_REGISTER_IMM(1); 1935 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1936 *cs++ = 0; 1937 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1938 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1939 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1940 1941 /* 1942 * This is the location we're going to jump back into until the 1943 * required amount of time has passed. 1944 */ 1945 jump = cs; 1946 1947 /* 1948 * Take another snapshot of the timestamp register. Take care to clear 1949 * up the top 32bits of CS_GPR(1) as we're using it for other 1950 * operations below. 1951 */ 1952 *cs++ = MI_LOAD_REGISTER_IMM(1); 1953 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1954 *cs++ = 0; 1955 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1956 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1957 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1958 1959 /* 1960 * Do a diff between the 2 timestamps and store the result back into 1961 * CS_GPR(1). 1962 */ 1963 *cs++ = MI_MATH(5); 1964 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1965 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1966 *cs++ = MI_MATH_SUB; 1967 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1968 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1969 1970 /* 1971 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1972 * timestamp have rolled over the 32bits) into the predicate register 1973 * to be used for the predicated jump. 1974 */ 1975 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1976 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1977 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 1978 1979 if (HAS_MI_SET_PREDICATE(i915)) 1980 *cs++ = MI_SET_PREDICATE | 1; 1981 1982 /* Restart from the beginning if we had timestamps roll over. */ 1983 *cs++ = (GRAPHICS_VER(i915) < 8 ? 1984 MI_BATCH_BUFFER_START : 1985 MI_BATCH_BUFFER_START_GEN8) | 1986 MI_BATCH_PREDICATE; 1987 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1988 *cs++ = 0; 1989 1990 if (HAS_MI_SET_PREDICATE(i915)) 1991 *cs++ = MI_SET_PREDICATE; 1992 1993 /* 1994 * Now add the diff between to previous timestamps and add it to : 1995 * (((1 * << 64) - 1) - delay_ns) 1996 * 1997 * When the Carry Flag contains 1 this means the elapsed time is 1998 * longer than the expected delay, and we can exit the wait loop. 1999 */ 2000 *cs++ = MI_LOAD_REGISTER_IMM(2); 2001 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 2002 *cs++ = lower_32_bits(delay_ticks); 2003 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 2004 *cs++ = upper_32_bits(delay_ticks); 2005 2006 *cs++ = MI_MATH(4); 2007 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 2008 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 2009 *cs++ = MI_MATH_ADD; 2010 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 2011 2012 *cs++ = MI_ARB_CHECK; 2013 2014 /* 2015 * Transfer the result into the predicate register to be used for the 2016 * predicated jump. 2017 */ 2018 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2019 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 2020 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 2021 2022 if (HAS_MI_SET_PREDICATE(i915)) 2023 *cs++ = MI_SET_PREDICATE | 1; 2024 2025 /* Predicate the jump. */ 2026 *cs++ = (GRAPHICS_VER(i915) < 8 ? 2027 MI_BATCH_BUFFER_START : 2028 MI_BATCH_BUFFER_START_GEN8) | 2029 MI_BATCH_PREDICATE; 2030 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 2031 *cs++ = 0; 2032 2033 if (HAS_MI_SET_PREDICATE(i915)) 2034 *cs++ = MI_SET_PREDICATE; 2035 2036 /* Restore registers. */ 2037 for (i = 0; i < N_CS_GPR; i++) 2038 cs = save_restore_register( 2039 stream, cs, false /* restore */, CS_GPR(i), 2040 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 2041 cs = save_restore_register( 2042 stream, cs, false /* restore */, mi_predicate_result, 2043 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 2044 2045 /* And return to the ring. */ 2046 *cs++ = MI_BATCH_BUFFER_END; 2047 2048 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 2049 2050 i915_gem_object_flush_map(bo); 2051 __i915_gem_object_release_map(bo); 2052 2053 stream->noa_wait = vma; 2054 goto out_ww; 2055 2056 err_unpin: 2057 i915_vma_unpin_and_release(&vma, 0); 2058 out_ww: 2059 if (ret == -EDEADLK) { 2060 ret = i915_gem_ww_ctx_backoff(&ww); 2061 if (!ret) 2062 goto retry; 2063 } 2064 i915_gem_ww_ctx_fini(&ww); 2065 if (ret) 2066 i915_gem_object_put(bo); 2067 return ret; 2068 } 2069 2070 static u32 *write_cs_mi_lri(u32 *cs, 2071 const struct i915_oa_reg *reg_data, 2072 u32 n_regs) 2073 { 2074 u32 i; 2075 2076 for (i = 0; i < n_regs; i++) { 2077 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 2078 u32 n_lri = min_t(u32, 2079 n_regs - i, 2080 MI_LOAD_REGISTER_IMM_MAX_REGS); 2081 2082 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 2083 } 2084 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 2085 *cs++ = reg_data[i].value; 2086 } 2087 2088 return cs; 2089 } 2090 2091 static int num_lri_dwords(int num_regs) 2092 { 2093 int count = 0; 2094 2095 if (num_regs > 0) { 2096 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 2097 count += num_regs * 2; 2098 } 2099 2100 return count; 2101 } 2102 2103 static struct i915_oa_config_bo * 2104 alloc_oa_config_buffer(struct i915_perf_stream *stream, 2105 struct i915_oa_config *oa_config) 2106 { 2107 struct drm_i915_gem_object *obj; 2108 struct i915_oa_config_bo *oa_bo; 2109 struct i915_gem_ww_ctx ww; 2110 size_t config_length = 0; 2111 u32 *cs; 2112 int err; 2113 2114 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 2115 if (!oa_bo) 2116 return ERR_PTR(-ENOMEM); 2117 2118 config_length += num_lri_dwords(oa_config->mux_regs_len); 2119 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 2120 config_length += num_lri_dwords(oa_config->flex_regs_len); 2121 config_length += 3; /* MI_BATCH_BUFFER_START */ 2122 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 2123 2124 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 2125 if (IS_ERR(obj)) { 2126 err = PTR_ERR(obj); 2127 goto err_free; 2128 } 2129 2130 i915_gem_ww_ctx_init(&ww, true); 2131 retry: 2132 err = i915_gem_object_lock(obj, &ww); 2133 if (err) 2134 goto out_ww; 2135 2136 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 2137 if (IS_ERR(cs)) { 2138 err = PTR_ERR(cs); 2139 goto out_ww; 2140 } 2141 2142 cs = write_cs_mi_lri(cs, 2143 oa_config->mux_regs, 2144 oa_config->mux_regs_len); 2145 cs = write_cs_mi_lri(cs, 2146 oa_config->b_counter_regs, 2147 oa_config->b_counter_regs_len); 2148 cs = write_cs_mi_lri(cs, 2149 oa_config->flex_regs, 2150 oa_config->flex_regs_len); 2151 2152 /* Jump into the active wait. */ 2153 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ? 2154 MI_BATCH_BUFFER_START : 2155 MI_BATCH_BUFFER_START_GEN8); 2156 *cs++ = i915_ggtt_offset(stream->noa_wait); 2157 *cs++ = 0; 2158 2159 i915_gem_object_flush_map(obj); 2160 __i915_gem_object_release_map(obj); 2161 2162 oa_bo->vma = i915_vma_instance(obj, 2163 &stream->engine->gt->ggtt->vm, 2164 NULL); 2165 if (IS_ERR(oa_bo->vma)) { 2166 err = PTR_ERR(oa_bo->vma); 2167 goto out_ww; 2168 } 2169 2170 oa_bo->oa_config = i915_oa_config_get(oa_config); 2171 llist_add(&oa_bo->node, &stream->oa_config_bos); 2172 2173 out_ww: 2174 if (err == -EDEADLK) { 2175 err = i915_gem_ww_ctx_backoff(&ww); 2176 if (!err) 2177 goto retry; 2178 } 2179 i915_gem_ww_ctx_fini(&ww); 2180 2181 if (err) 2182 i915_gem_object_put(obj); 2183 err_free: 2184 if (err) { 2185 kfree(oa_bo); 2186 return ERR_PTR(err); 2187 } 2188 return oa_bo; 2189 } 2190 2191 static struct i915_vma * 2192 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 2193 { 2194 struct i915_oa_config_bo *oa_bo; 2195 2196 /* 2197 * Look for the buffer in the already allocated BOs attached 2198 * to the stream. 2199 */ 2200 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 2201 if (oa_bo->oa_config == oa_config && 2202 memcmp(oa_bo->oa_config->uuid, 2203 oa_config->uuid, 2204 sizeof(oa_config->uuid)) == 0) 2205 goto out; 2206 } 2207 2208 oa_bo = alloc_oa_config_buffer(stream, oa_config); 2209 if (IS_ERR(oa_bo)) 2210 return ERR_CAST(oa_bo); 2211 2212 out: 2213 return i915_vma_get(oa_bo->vma); 2214 } 2215 2216 static int 2217 emit_oa_config(struct i915_perf_stream *stream, 2218 struct i915_oa_config *oa_config, 2219 struct intel_context *ce, 2220 struct i915_active *active) 2221 { 2222 struct i915_request *rq; 2223 struct i915_vma *vma; 2224 struct i915_gem_ww_ctx ww; 2225 int err; 2226 2227 vma = get_oa_vma(stream, oa_config); 2228 if (IS_ERR(vma)) 2229 return PTR_ERR(vma); 2230 2231 i915_gem_ww_ctx_init(&ww, true); 2232 retry: 2233 err = i915_gem_object_lock(vma->obj, &ww); 2234 if (err) 2235 goto err; 2236 2237 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 2238 if (err) 2239 goto err; 2240 2241 intel_engine_pm_get(ce->engine); 2242 rq = i915_request_create(ce); 2243 intel_engine_pm_put(ce->engine); 2244 if (IS_ERR(rq)) { 2245 err = PTR_ERR(rq); 2246 goto err_vma_unpin; 2247 } 2248 2249 if (!IS_ERR_OR_NULL(active)) { 2250 /* After all individual context modifications */ 2251 err = i915_request_await_active(rq, active, 2252 I915_ACTIVE_AWAIT_ACTIVE); 2253 if (err) 2254 goto err_add_request; 2255 2256 err = i915_active_add_request(active, rq); 2257 if (err) 2258 goto err_add_request; 2259 } 2260 2261 err = i915_vma_move_to_active(vma, rq, 0); 2262 if (err) 2263 goto err_add_request; 2264 2265 err = rq->engine->emit_bb_start(rq, 2266 vma->node.start, 0, 2267 I915_DISPATCH_SECURE); 2268 if (err) 2269 goto err_add_request; 2270 2271 err_add_request: 2272 i915_request_add(rq); 2273 err_vma_unpin: 2274 i915_vma_unpin(vma); 2275 err: 2276 if (err == -EDEADLK) { 2277 err = i915_gem_ww_ctx_backoff(&ww); 2278 if (!err) 2279 goto retry; 2280 } 2281 2282 i915_gem_ww_ctx_fini(&ww); 2283 i915_vma_put(vma); 2284 return err; 2285 } 2286 2287 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2288 { 2289 return stream->pinned_ctx ?: stream->engine->kernel_context; 2290 } 2291 2292 static int 2293 hsw_enable_metric_set(struct i915_perf_stream *stream, 2294 struct i915_active *active) 2295 { 2296 struct intel_uncore *uncore = stream->uncore; 2297 2298 /* 2299 * PRM: 2300 * 2301 * OA unit is using “crclk” for its functionality. When trunk 2302 * level clock gating takes place, OA clock would be gated, 2303 * unable to count the events from non-render clock domain. 2304 * Render clock gating must be disabled when OA is enabled to 2305 * count the events from non-render domain. Unit level clock 2306 * gating for RCS should also be disabled. 2307 */ 2308 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2309 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2310 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2311 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2312 2313 return emit_oa_config(stream, 2314 stream->oa_config, oa_context(stream), 2315 active); 2316 } 2317 2318 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2319 { 2320 struct intel_uncore *uncore = stream->uncore; 2321 2322 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2323 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2324 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2325 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2326 2327 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2328 } 2329 2330 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2331 i915_reg_t reg) 2332 { 2333 u32 mmio = i915_mmio_reg_offset(reg); 2334 int i; 2335 2336 /* 2337 * This arbitrary default will select the 'EU FPU0 Pipeline 2338 * Active' event. In the future it's anticipated that there 2339 * will be an explicit 'No Event' we can select, but not yet... 2340 */ 2341 if (!oa_config) 2342 return 0; 2343 2344 for (i = 0; i < oa_config->flex_regs_len; i++) { 2345 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2346 return oa_config->flex_regs[i].value; 2347 } 2348 2349 return 0; 2350 } 2351 /* 2352 * NB: It must always remain pointer safe to run this even if the OA unit 2353 * has been disabled. 2354 * 2355 * It's fine to put out-of-date values into these per-context registers 2356 * in the case that the OA unit has been disabled. 2357 */ 2358 static void 2359 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2360 const struct i915_perf_stream *stream) 2361 { 2362 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2363 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2364 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2365 static const i915_reg_t flex_regs[] = { 2366 EU_PERF_CNTL0, 2367 EU_PERF_CNTL1, 2368 EU_PERF_CNTL2, 2369 EU_PERF_CNTL3, 2370 EU_PERF_CNTL4, 2371 EU_PERF_CNTL5, 2372 EU_PERF_CNTL6, 2373 }; 2374 u32 *reg_state = ce->lrc_reg_state; 2375 int i; 2376 2377 reg_state[ctx_oactxctrl + 1] = 2378 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2379 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2380 GEN8_OA_COUNTER_RESUME; 2381 2382 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2383 reg_state[ctx_flexeu0 + i * 2 + 1] = 2384 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2385 } 2386 2387 struct flex { 2388 i915_reg_t reg; 2389 u32 offset; 2390 u32 value; 2391 }; 2392 2393 static int 2394 gen8_store_flex(struct i915_request *rq, 2395 struct intel_context *ce, 2396 const struct flex *flex, unsigned int count) 2397 { 2398 u32 offset; 2399 u32 *cs; 2400 2401 cs = intel_ring_begin(rq, 4 * count); 2402 if (IS_ERR(cs)) 2403 return PTR_ERR(cs); 2404 2405 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2406 do { 2407 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2408 *cs++ = offset + flex->offset * sizeof(u32); 2409 *cs++ = 0; 2410 *cs++ = flex->value; 2411 } while (flex++, --count); 2412 2413 intel_ring_advance(rq, cs); 2414 2415 return 0; 2416 } 2417 2418 static int 2419 gen8_load_flex(struct i915_request *rq, 2420 struct intel_context *ce, 2421 const struct flex *flex, unsigned int count) 2422 { 2423 u32 *cs; 2424 2425 GEM_BUG_ON(!count || count > 63); 2426 2427 cs = intel_ring_begin(rq, 2 * count + 2); 2428 if (IS_ERR(cs)) 2429 return PTR_ERR(cs); 2430 2431 *cs++ = MI_LOAD_REGISTER_IMM(count); 2432 do { 2433 *cs++ = i915_mmio_reg_offset(flex->reg); 2434 *cs++ = flex->value; 2435 } while (flex++, --count); 2436 *cs++ = MI_NOOP; 2437 2438 intel_ring_advance(rq, cs); 2439 2440 return 0; 2441 } 2442 2443 static int gen8_modify_context(struct intel_context *ce, 2444 const struct flex *flex, unsigned int count) 2445 { 2446 struct i915_request *rq; 2447 int err; 2448 2449 rq = intel_engine_create_kernel_request(ce->engine); 2450 if (IS_ERR(rq)) 2451 return PTR_ERR(rq); 2452 2453 /* Serialise with the remote context */ 2454 err = intel_context_prepare_remote_request(ce, rq); 2455 if (err == 0) 2456 err = gen8_store_flex(rq, ce, flex, count); 2457 2458 i915_request_add(rq); 2459 return err; 2460 } 2461 2462 static int 2463 gen8_modify_self(struct intel_context *ce, 2464 const struct flex *flex, unsigned int count, 2465 struct i915_active *active) 2466 { 2467 struct i915_request *rq; 2468 int err; 2469 2470 intel_engine_pm_get(ce->engine); 2471 rq = i915_request_create(ce); 2472 intel_engine_pm_put(ce->engine); 2473 if (IS_ERR(rq)) 2474 return PTR_ERR(rq); 2475 2476 if (!IS_ERR_OR_NULL(active)) { 2477 err = i915_active_add_request(active, rq); 2478 if (err) 2479 goto err_add_request; 2480 } 2481 2482 err = gen8_load_flex(rq, ce, flex, count); 2483 if (err) 2484 goto err_add_request; 2485 2486 err_add_request: 2487 i915_request_add(rq); 2488 return err; 2489 } 2490 2491 static int gen8_configure_context(struct i915_gem_context *ctx, 2492 struct flex *flex, unsigned int count) 2493 { 2494 struct i915_gem_engines_iter it; 2495 struct intel_context *ce; 2496 int err = 0; 2497 2498 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2499 GEM_BUG_ON(ce == ce->engine->kernel_context); 2500 2501 if (ce->engine->class != RENDER_CLASS) 2502 continue; 2503 2504 /* Otherwise OA settings will be set upon first use */ 2505 if (!intel_context_pin_if_active(ce)) 2506 continue; 2507 2508 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2509 err = gen8_modify_context(ce, flex, count); 2510 2511 intel_context_unpin(ce); 2512 if (err) 2513 break; 2514 } 2515 i915_gem_context_unlock_engines(ctx); 2516 2517 return err; 2518 } 2519 2520 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2521 struct i915_active *active) 2522 { 2523 int err; 2524 struct intel_context *ce = stream->pinned_ctx; 2525 u32 format = stream->oa_buffer.format->format; 2526 u32 offset = stream->perf->ctx_oactxctrl_offset; 2527 struct flex regs_context[] = { 2528 { 2529 GEN8_OACTXCONTROL, 2530 offset + 1, 2531 active ? GEN8_OA_COUNTER_RESUME : 0, 2532 }, 2533 }; 2534 /* Offsets in regs_lri are not used since this configuration is only 2535 * applied using LRI. Initialize the correct offsets for posterity. 2536 */ 2537 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2538 struct flex regs_lri[] = { 2539 { 2540 GEN12_OAR_OACONTROL, 2541 GEN12_OAR_OACONTROL_OFFSET + 1, 2542 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2543 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2544 }, 2545 { 2546 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2547 CTX_CONTEXT_CONTROL, 2548 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2549 active ? 2550 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2551 0) 2552 }, 2553 }; 2554 2555 /* Modify the context image of pinned context with regs_context */ 2556 err = intel_context_lock_pinned(ce); 2557 if (err) 2558 return err; 2559 2560 err = gen8_modify_context(ce, regs_context, 2561 ARRAY_SIZE(regs_context)); 2562 intel_context_unlock_pinned(ce); 2563 if (err) 2564 return err; 2565 2566 /* Apply regs_lri using LRI with pinned context */ 2567 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2568 } 2569 2570 /* 2571 * Manages updating the per-context aspects of the OA stream 2572 * configuration across all contexts. 2573 * 2574 * The awkward consideration here is that OACTXCONTROL controls the 2575 * exponent for periodic sampling which is primarily used for system 2576 * wide profiling where we'd like a consistent sampling period even in 2577 * the face of context switches. 2578 * 2579 * Our approach of updating the register state context (as opposed to 2580 * say using a workaround batch buffer) ensures that the hardware 2581 * won't automatically reload an out-of-date timer exponent even 2582 * transiently before a WA BB could be parsed. 2583 * 2584 * This function needs to: 2585 * - Ensure the currently running context's per-context OA state is 2586 * updated 2587 * - Ensure that all existing contexts will have the correct per-context 2588 * OA state if they are scheduled for use. 2589 * - Ensure any new contexts will be initialized with the correct 2590 * per-context OA state. 2591 * 2592 * Note: it's only the RCS/Render context that has any OA state. 2593 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2594 */ 2595 static int 2596 oa_configure_all_contexts(struct i915_perf_stream *stream, 2597 struct flex *regs, 2598 size_t num_regs, 2599 struct i915_active *active) 2600 { 2601 struct drm_i915_private *i915 = stream->perf->i915; 2602 struct intel_engine_cs *engine; 2603 struct intel_gt *gt = stream->engine->gt; 2604 struct i915_gem_context *ctx, *cn; 2605 int err; 2606 2607 lockdep_assert_held(>->perf.lock); 2608 2609 /* 2610 * The OA register config is setup through the context image. This image 2611 * might be written to by the GPU on context switch (in particular on 2612 * lite-restore). This means we can't safely update a context's image, 2613 * if this context is scheduled/submitted to run on the GPU. 2614 * 2615 * We could emit the OA register config through the batch buffer but 2616 * this might leave small interval of time where the OA unit is 2617 * configured at an invalid sampling period. 2618 * 2619 * Note that since we emit all requests from a single ring, there 2620 * is still an implicit global barrier here that may cause a high 2621 * priority context to wait for an otherwise independent low priority 2622 * context. Contexts idle at the time of reconfiguration are not 2623 * trapped behind the barrier. 2624 */ 2625 spin_lock(&i915->gem.contexts.lock); 2626 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2627 if (!kref_get_unless_zero(&ctx->ref)) 2628 continue; 2629 2630 spin_unlock(&i915->gem.contexts.lock); 2631 2632 err = gen8_configure_context(ctx, regs, num_regs); 2633 if (err) { 2634 i915_gem_context_put(ctx); 2635 return err; 2636 } 2637 2638 spin_lock(&i915->gem.contexts.lock); 2639 list_safe_reset_next(ctx, cn, link); 2640 i915_gem_context_put(ctx); 2641 } 2642 spin_unlock(&i915->gem.contexts.lock); 2643 2644 /* 2645 * After updating all other contexts, we need to modify ourselves. 2646 * If we don't modify the kernel_context, we do not get events while 2647 * idle. 2648 */ 2649 for_each_uabi_engine(engine, i915) { 2650 struct intel_context *ce = engine->kernel_context; 2651 2652 if (engine->class != RENDER_CLASS) 2653 continue; 2654 2655 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2656 2657 err = gen8_modify_self(ce, regs, num_regs, active); 2658 if (err) 2659 return err; 2660 } 2661 2662 return 0; 2663 } 2664 2665 static int 2666 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2667 const struct i915_oa_config *oa_config, 2668 struct i915_active *active) 2669 { 2670 struct flex regs[] = { 2671 { 2672 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2673 CTX_R_PWR_CLK_STATE, 2674 }, 2675 }; 2676 2677 return oa_configure_all_contexts(stream, 2678 regs, ARRAY_SIZE(regs), 2679 active); 2680 } 2681 2682 static int 2683 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2684 const struct i915_oa_config *oa_config, 2685 struct i915_active *active) 2686 { 2687 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2688 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2689 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2690 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2691 struct flex regs[] = { 2692 { 2693 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2694 CTX_R_PWR_CLK_STATE, 2695 }, 2696 { 2697 GEN8_OACTXCONTROL, 2698 ctx_oactxctrl + 1, 2699 }, 2700 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2701 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2702 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2703 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2704 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2705 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2706 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2707 }; 2708 #undef ctx_flexeuN 2709 int i; 2710 2711 regs[1].value = 2712 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2713 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2714 GEN8_OA_COUNTER_RESUME; 2715 2716 for (i = 2; i < ARRAY_SIZE(regs); i++) 2717 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2718 2719 return oa_configure_all_contexts(stream, 2720 regs, ARRAY_SIZE(regs), 2721 active); 2722 } 2723 2724 static int 2725 gen8_enable_metric_set(struct i915_perf_stream *stream, 2726 struct i915_active *active) 2727 { 2728 struct intel_uncore *uncore = stream->uncore; 2729 struct i915_oa_config *oa_config = stream->oa_config; 2730 int ret; 2731 2732 /* 2733 * We disable slice/unslice clock ratio change reports on SKL since 2734 * they are too noisy. The HW generates a lot of redundant reports 2735 * where the ratio hasn't really changed causing a lot of redundant 2736 * work to processes and increasing the chances we'll hit buffer 2737 * overruns. 2738 * 2739 * Although we don't currently use the 'disable overrun' OABUFFER 2740 * feature it's worth noting that clock ratio reports have to be 2741 * disabled before considering to use that feature since the HW doesn't 2742 * correctly block these reports. 2743 * 2744 * Currently none of the high-level metrics we have depend on knowing 2745 * this ratio to normalize. 2746 * 2747 * Note: This register is not power context saved and restored, but 2748 * that's OK considering that we disable RC6 while the OA unit is 2749 * enabled. 2750 * 2751 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2752 * be read back from automatically triggered reports, as part of the 2753 * RPT_ID field. 2754 */ 2755 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) { 2756 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2757 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2758 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2759 } 2760 2761 /* 2762 * Update all contexts prior writing the mux configurations as we need 2763 * to make sure all slices/subslices are ON before writing to NOA 2764 * registers. 2765 */ 2766 ret = lrc_configure_all_contexts(stream, oa_config, active); 2767 if (ret) 2768 return ret; 2769 2770 return emit_oa_config(stream, 2771 stream->oa_config, oa_context(stream), 2772 active); 2773 } 2774 2775 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2776 { 2777 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2778 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2779 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2780 } 2781 2782 static int 2783 gen12_enable_metric_set(struct i915_perf_stream *stream, 2784 struct i915_active *active) 2785 { 2786 struct drm_i915_private *i915 = stream->perf->i915; 2787 struct intel_uncore *uncore = stream->uncore; 2788 struct i915_oa_config *oa_config = stream->oa_config; 2789 bool periodic = stream->periodic; 2790 u32 period_exponent = stream->period_exponent; 2791 u32 sqcnt1; 2792 int ret; 2793 2794 /* 2795 * Wa_1508761755:xehpsdv, dg2 2796 * EU NOA signals behave incorrectly if EU clock gating is enabled. 2797 * Disable thread stall DOP gating and EU DOP gating. 2798 */ 2799 if (IS_XEHPSDV(i915) || IS_DG2(i915)) { 2800 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2801 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE)); 2802 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2803 _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING)); 2804 } 2805 2806 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2807 /* Disable clk ratio reports, like previous Gens. */ 2808 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2809 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2810 /* 2811 * If the user didn't require OA reports, instruct 2812 * the hardware not to emit ctx switch reports. 2813 */ 2814 oag_report_ctx_switches(stream)); 2815 2816 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2817 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2818 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2819 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2820 : 0); 2821 2822 /* 2823 * Initialize Super Queue Internal Cnt Register 2824 * Set PMON Enable in order to collect valid metrics. 2825 * Enable byets per clock reporting in OA for XEHPSDV onward. 2826 */ 2827 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 2828 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 2829 2830 intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1); 2831 2832 /* 2833 * Update all contexts prior writing the mux configurations as we need 2834 * to make sure all slices/subslices are ON before writing to NOA 2835 * registers. 2836 */ 2837 ret = gen12_configure_all_contexts(stream, oa_config, active); 2838 if (ret) 2839 return ret; 2840 2841 /* 2842 * For Gen12, performance counters are context 2843 * saved/restored. Only enable it for the context that 2844 * requested this. 2845 */ 2846 if (stream->ctx) { 2847 ret = gen12_configure_oar_context(stream, active); 2848 if (ret) 2849 return ret; 2850 } 2851 2852 return emit_oa_config(stream, 2853 stream->oa_config, oa_context(stream), 2854 active); 2855 } 2856 2857 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2858 { 2859 struct intel_uncore *uncore = stream->uncore; 2860 2861 /* Reset all contexts' slices/subslices configurations. */ 2862 lrc_configure_all_contexts(stream, NULL, NULL); 2863 2864 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2865 } 2866 2867 static void gen11_disable_metric_set(struct i915_perf_stream *stream) 2868 { 2869 struct intel_uncore *uncore = stream->uncore; 2870 2871 /* Reset all contexts' slices/subslices configurations. */ 2872 lrc_configure_all_contexts(stream, NULL, NULL); 2873 2874 /* Make sure we disable noa to save power. */ 2875 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2876 } 2877 2878 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2879 { 2880 struct intel_uncore *uncore = stream->uncore; 2881 struct drm_i915_private *i915 = stream->perf->i915; 2882 u32 sqcnt1; 2883 2884 /* 2885 * Wa_1508761755:xehpsdv, dg2 2886 * Enable thread stall DOP gating and EU DOP gating. 2887 */ 2888 if (IS_XEHPSDV(i915) || IS_DG2(i915)) { 2889 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2890 _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE)); 2891 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2892 _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING)); 2893 } 2894 2895 /* Reset all contexts' slices/subslices configurations. */ 2896 gen12_configure_all_contexts(stream, NULL, NULL); 2897 2898 /* disable the context save/restore or OAR counters */ 2899 if (stream->ctx) 2900 gen12_configure_oar_context(stream, NULL); 2901 2902 /* Make sure we disable noa to save power. */ 2903 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2904 2905 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 2906 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 2907 2908 /* Reset PMON Enable to save power. */ 2909 intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0); 2910 } 2911 2912 static void gen7_oa_enable(struct i915_perf_stream *stream) 2913 { 2914 struct intel_uncore *uncore = stream->uncore; 2915 struct i915_gem_context *ctx = stream->ctx; 2916 u32 ctx_id = stream->specific_ctx_id; 2917 bool periodic = stream->periodic; 2918 u32 period_exponent = stream->period_exponent; 2919 u32 report_format = stream->oa_buffer.format->format; 2920 2921 /* 2922 * Reset buf pointers so we don't forward reports from before now. 2923 * 2924 * Think carefully if considering trying to avoid this, since it 2925 * also ensures status flags and the buffer itself are cleared 2926 * in error paths, and we have checks for invalid reports based 2927 * on the assumption that certain fields are written to zeroed 2928 * memory which this helps maintains. 2929 */ 2930 gen7_init_oa_buffer(stream); 2931 2932 intel_uncore_write(uncore, GEN7_OACONTROL, 2933 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2934 (period_exponent << 2935 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2936 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2937 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2938 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2939 GEN7_OACONTROL_ENABLE); 2940 } 2941 2942 static void gen8_oa_enable(struct i915_perf_stream *stream) 2943 { 2944 struct intel_uncore *uncore = stream->uncore; 2945 u32 report_format = stream->oa_buffer.format->format; 2946 2947 /* 2948 * Reset buf pointers so we don't forward reports from before now. 2949 * 2950 * Think carefully if considering trying to avoid this, since it 2951 * also ensures status flags and the buffer itself are cleared 2952 * in error paths, and we have checks for invalid reports based 2953 * on the assumption that certain fields are written to zeroed 2954 * memory which this helps maintains. 2955 */ 2956 gen8_init_oa_buffer(stream); 2957 2958 /* 2959 * Note: we don't rely on the hardware to perform single context 2960 * filtering and instead filter on the cpu based on the context-id 2961 * field of reports 2962 */ 2963 intel_uncore_write(uncore, GEN8_OACONTROL, 2964 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2965 GEN8_OA_COUNTER_ENABLE); 2966 } 2967 2968 static void gen12_oa_enable(struct i915_perf_stream *stream) 2969 { 2970 struct intel_uncore *uncore = stream->uncore; 2971 u32 report_format = stream->oa_buffer.format->format; 2972 2973 /* 2974 * If we don't want OA reports from the OA buffer, then we don't even 2975 * need to program the OAG unit. 2976 */ 2977 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2978 return; 2979 2980 gen12_init_oa_buffer(stream); 2981 2982 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2983 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2984 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2985 } 2986 2987 /** 2988 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2989 * @stream: An i915 perf stream opened for OA metrics 2990 * 2991 * [Re]enables hardware periodic sampling according to the period configured 2992 * when opening the stream. This also starts a hrtimer that will periodically 2993 * check for data in the circular OA buffer for notifying userspace (e.g. 2994 * during a read() or poll()). 2995 */ 2996 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2997 { 2998 stream->pollin = false; 2999 3000 stream->perf->ops.oa_enable(stream); 3001 3002 if (stream->sample_flags & SAMPLE_OA_REPORT) 3003 hrtimer_start(&stream->poll_check_timer, 3004 ns_to_ktime(stream->poll_oa_period), 3005 HRTIMER_MODE_REL_PINNED); 3006 } 3007 3008 static void gen7_oa_disable(struct i915_perf_stream *stream) 3009 { 3010 struct intel_uncore *uncore = stream->uncore; 3011 3012 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 3013 if (intel_wait_for_register(uncore, 3014 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 3015 50)) 3016 drm_err(&stream->perf->i915->drm, 3017 "wait for OA to be disabled timed out\n"); 3018 } 3019 3020 static void gen8_oa_disable(struct i915_perf_stream *stream) 3021 { 3022 struct intel_uncore *uncore = stream->uncore; 3023 3024 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 3025 if (intel_wait_for_register(uncore, 3026 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 3027 50)) 3028 drm_err(&stream->perf->i915->drm, 3029 "wait for OA to be disabled timed out\n"); 3030 } 3031 3032 static void gen12_oa_disable(struct i915_perf_stream *stream) 3033 { 3034 struct intel_uncore *uncore = stream->uncore; 3035 3036 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 3037 if (intel_wait_for_register(uncore, 3038 GEN12_OAG_OACONTROL, 3039 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 3040 50)) 3041 drm_err(&stream->perf->i915->drm, 3042 "wait for OA to be disabled timed out\n"); 3043 3044 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 3045 if (intel_wait_for_register(uncore, 3046 GEN12_OA_TLB_INV_CR, 3047 1, 0, 3048 50)) 3049 drm_err(&stream->perf->i915->drm, 3050 "wait for OA tlb invalidate timed out\n"); 3051 } 3052 3053 /** 3054 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 3055 * @stream: An i915 perf stream opened for OA metrics 3056 * 3057 * Stops the OA unit from periodically writing counter reports into the 3058 * circular OA buffer. This also stops the hrtimer that periodically checks for 3059 * data in the circular OA buffer, for notifying userspace. 3060 */ 3061 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 3062 { 3063 stream->perf->ops.oa_disable(stream); 3064 3065 if (stream->sample_flags & SAMPLE_OA_REPORT) 3066 hrtimer_cancel(&stream->poll_check_timer); 3067 } 3068 3069 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 3070 .destroy = i915_oa_stream_destroy, 3071 .enable = i915_oa_stream_enable, 3072 .disable = i915_oa_stream_disable, 3073 .wait_unlocked = i915_oa_wait_unlocked, 3074 .poll_wait = i915_oa_poll_wait, 3075 .read = i915_oa_read, 3076 }; 3077 3078 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 3079 { 3080 struct i915_active *active; 3081 int err; 3082 3083 active = i915_active_create(); 3084 if (!active) 3085 return -ENOMEM; 3086 3087 err = stream->perf->ops.enable_metric_set(stream, active); 3088 if (err == 0) 3089 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 3090 3091 i915_active_put(active); 3092 return err; 3093 } 3094 3095 static void 3096 get_default_sseu_config(struct intel_sseu *out_sseu, 3097 struct intel_engine_cs *engine) 3098 { 3099 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 3100 3101 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 3102 3103 if (GRAPHICS_VER(engine->i915) == 11) { 3104 /* 3105 * We only need subslice count so it doesn't matter which ones 3106 * we select - just turn off low bits in the amount of half of 3107 * all available subslices per slice. 3108 */ 3109 out_sseu->subslice_mask = 3110 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 3111 out_sseu->slice_mask = 0x1; 3112 } 3113 } 3114 3115 static int 3116 get_sseu_config(struct intel_sseu *out_sseu, 3117 struct intel_engine_cs *engine, 3118 const struct drm_i915_gem_context_param_sseu *drm_sseu) 3119 { 3120 if (drm_sseu->engine.engine_class != engine->uabi_class || 3121 drm_sseu->engine.engine_instance != engine->uabi_instance) 3122 return -EINVAL; 3123 3124 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 3125 } 3126 3127 /* 3128 * OA timestamp frequency = CS timestamp frequency in most platforms. On some 3129 * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such 3130 * cases, return the adjusted CS timestamp frequency to the user. 3131 */ 3132 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915) 3133 { 3134 /* Wa_18013179988:dg2 */ 3135 if (IS_DG2(i915)) { 3136 intel_wakeref_t wakeref; 3137 u32 reg, shift; 3138 3139 with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref) 3140 reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0); 3141 3142 shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK, 3143 reg); 3144 3145 return to_gt(i915)->clock_frequency << (3 - shift); 3146 } 3147 3148 return to_gt(i915)->clock_frequency; 3149 } 3150 3151 /** 3152 * i915_oa_stream_init - validate combined props for OA stream and init 3153 * @stream: An i915 perf stream 3154 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 3155 * @props: The property state that configures stream (individually validated) 3156 * 3157 * While read_properties_unlocked() validates properties in isolation it 3158 * doesn't ensure that the combination necessarily makes sense. 3159 * 3160 * At this point it has been determined that userspace wants a stream of 3161 * OA metrics, but still we need to further validate the combined 3162 * properties are OK. 3163 * 3164 * If the configuration makes sense then we can allocate memory for 3165 * a circular OA buffer and apply the requested metric set configuration. 3166 * 3167 * Returns: zero on success or a negative error code. 3168 */ 3169 static int i915_oa_stream_init(struct i915_perf_stream *stream, 3170 struct drm_i915_perf_open_param *param, 3171 struct perf_open_properties *props) 3172 { 3173 struct drm_i915_private *i915 = stream->perf->i915; 3174 struct i915_perf *perf = stream->perf; 3175 struct intel_gt *gt; 3176 int ret; 3177 3178 if (!props->engine) { 3179 drm_dbg(&stream->perf->i915->drm, 3180 "OA engine not specified\n"); 3181 return -EINVAL; 3182 } 3183 gt = props->engine->gt; 3184 3185 /* 3186 * If the sysfs metrics/ directory wasn't registered for some 3187 * reason then don't let userspace try their luck with config 3188 * IDs 3189 */ 3190 if (!perf->metrics_kobj) { 3191 drm_dbg(&stream->perf->i915->drm, 3192 "OA metrics weren't advertised via sysfs\n"); 3193 return -EINVAL; 3194 } 3195 3196 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 3197 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) { 3198 drm_dbg(&stream->perf->i915->drm, 3199 "Only OA report sampling supported\n"); 3200 return -EINVAL; 3201 } 3202 3203 if (!perf->ops.enable_metric_set) { 3204 drm_dbg(&stream->perf->i915->drm, 3205 "OA unit not supported\n"); 3206 return -ENODEV; 3207 } 3208 3209 /* 3210 * To avoid the complexity of having to accurately filter 3211 * counter reports and marshal to the appropriate client 3212 * we currently only allow exclusive access 3213 */ 3214 if (gt->perf.exclusive_stream) { 3215 drm_dbg(&stream->perf->i915->drm, 3216 "OA unit already in use\n"); 3217 return -EBUSY; 3218 } 3219 3220 if (!props->oa_format) { 3221 drm_dbg(&stream->perf->i915->drm, 3222 "OA report format not specified\n"); 3223 return -EINVAL; 3224 } 3225 3226 stream->engine = props->engine; 3227 stream->uncore = stream->engine->gt->uncore; 3228 3229 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 3230 3231 stream->oa_buffer.format = &perf->oa_formats[props->oa_format]; 3232 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0)) 3233 return -EINVAL; 3234 3235 stream->sample_flags = props->sample_flags; 3236 stream->sample_size += stream->oa_buffer.format->size; 3237 3238 stream->hold_preemption = props->hold_preemption; 3239 3240 stream->periodic = props->oa_periodic; 3241 if (stream->periodic) 3242 stream->period_exponent = props->oa_period_exponent; 3243 3244 if (stream->ctx) { 3245 ret = oa_get_render_ctx_id(stream); 3246 if (ret) { 3247 drm_dbg(&stream->perf->i915->drm, 3248 "Invalid context id to filter with\n"); 3249 return ret; 3250 } 3251 } 3252 3253 ret = alloc_noa_wait(stream); 3254 if (ret) { 3255 drm_dbg(&stream->perf->i915->drm, 3256 "Unable to allocate NOA wait batch buffer\n"); 3257 goto err_noa_wait_alloc; 3258 } 3259 3260 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 3261 if (!stream->oa_config) { 3262 drm_dbg(&stream->perf->i915->drm, 3263 "Invalid OA config id=%i\n", props->metrics_set); 3264 ret = -EINVAL; 3265 goto err_config; 3266 } 3267 3268 /* PRM - observability performance counters: 3269 * 3270 * OACONTROL, performance counter enable, note: 3271 * 3272 * "When this bit is set, in order to have coherent counts, 3273 * RC6 power state and trunk clock gating must be disabled. 3274 * This can be achieved by programming MMIO registers as 3275 * 0xA094=0 and 0xA090[31]=1" 3276 * 3277 * In our case we are expecting that taking pm + FORCEWAKE 3278 * references will effectively disable RC6. 3279 */ 3280 intel_engine_pm_get(stream->engine); 3281 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 3282 3283 /* 3284 * Wa_16011777198:dg2: GuC resets render as part of the Wa. This causes 3285 * OA to lose the configuration state. Prevent this by overriding GUCRC 3286 * mode. 3287 */ 3288 if (intel_uc_uses_guc_rc(>->uc) && 3289 (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || 3290 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))) { 3291 ret = intel_guc_slpc_override_gucrc_mode(>->uc.guc.slpc, 3292 SLPC_GUCRC_MODE_GUCRC_NO_RC6); 3293 if (ret) { 3294 drm_dbg(&stream->perf->i915->drm, 3295 "Unable to override gucrc mode\n"); 3296 goto err_config; 3297 } 3298 } 3299 3300 ret = alloc_oa_buffer(stream); 3301 if (ret) 3302 goto err_oa_buf_alloc; 3303 3304 stream->ops = &i915_oa_stream_ops; 3305 3306 stream->engine->gt->perf.sseu = props->sseu; 3307 WRITE_ONCE(gt->perf.exclusive_stream, stream); 3308 3309 ret = i915_perf_stream_enable_sync(stream); 3310 if (ret) { 3311 drm_dbg(&stream->perf->i915->drm, 3312 "Unable to enable metric set\n"); 3313 goto err_enable; 3314 } 3315 3316 drm_dbg(&stream->perf->i915->drm, 3317 "opening stream oa config uuid=%s\n", 3318 stream->oa_config->uuid); 3319 3320 hrtimer_init(&stream->poll_check_timer, 3321 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3322 stream->poll_check_timer.function = oa_poll_check_timer_cb; 3323 init_waitqueue_head(&stream->poll_wq); 3324 spin_lock_init(&stream->oa_buffer.ptr_lock); 3325 mutex_init(&stream->lock); 3326 3327 return 0; 3328 3329 err_enable: 3330 WRITE_ONCE(gt->perf.exclusive_stream, NULL); 3331 perf->ops.disable_metric_set(stream); 3332 3333 free_oa_buffer(stream); 3334 3335 err_oa_buf_alloc: 3336 free_oa_configs(stream); 3337 3338 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 3339 intel_engine_pm_put(stream->engine); 3340 3341 err_config: 3342 free_noa_wait(stream); 3343 3344 err_noa_wait_alloc: 3345 if (stream->ctx) 3346 oa_put_render_ctx_id(stream); 3347 3348 return ret; 3349 } 3350 3351 void i915_oa_init_reg_state(const struct intel_context *ce, 3352 const struct intel_engine_cs *engine) 3353 { 3354 struct i915_perf_stream *stream; 3355 3356 if (engine->class != RENDER_CLASS) 3357 return; 3358 3359 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 3360 stream = READ_ONCE(engine->gt->perf.exclusive_stream); 3361 if (stream && GRAPHICS_VER(stream->perf->i915) < 12) 3362 gen8_update_reg_state_unlocked(ce, stream); 3363 } 3364 3365 /** 3366 * i915_perf_read - handles read() FOP for i915 perf stream FDs 3367 * @file: An i915 perf stream file 3368 * @buf: destination buffer given by userspace 3369 * @count: the number of bytes userspace wants to read 3370 * @ppos: (inout) file seek position (unused) 3371 * 3372 * The entry point for handling a read() on a stream file descriptor from 3373 * userspace. Most of the work is left to the i915_perf_read_locked() and 3374 * &i915_perf_stream_ops->read but to save having stream implementations (of 3375 * which we might have multiple later) we handle blocking read here. 3376 * 3377 * We can also consistently treat trying to read from a disabled stream 3378 * as an IO error so implementations can assume the stream is enabled 3379 * while reading. 3380 * 3381 * Returns: The number of bytes copied or a negative error code on failure. 3382 */ 3383 static ssize_t i915_perf_read(struct file *file, 3384 char __user *buf, 3385 size_t count, 3386 loff_t *ppos) 3387 { 3388 struct i915_perf_stream *stream = file->private_data; 3389 size_t offset = 0; 3390 int ret; 3391 3392 /* To ensure it's handled consistently we simply treat all reads of a 3393 * disabled stream as an error. In particular it might otherwise lead 3394 * to a deadlock for blocking file descriptors... 3395 */ 3396 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT)) 3397 return -EIO; 3398 3399 if (!(file->f_flags & O_NONBLOCK)) { 3400 /* There's the small chance of false positives from 3401 * stream->ops->wait_unlocked. 3402 * 3403 * E.g. with single context filtering since we only wait until 3404 * oabuffer has >= 1 report we don't immediately know whether 3405 * any reports really belong to the current context 3406 */ 3407 do { 3408 ret = stream->ops->wait_unlocked(stream); 3409 if (ret) 3410 return ret; 3411 3412 mutex_lock(&stream->lock); 3413 ret = stream->ops->read(stream, buf, count, &offset); 3414 mutex_unlock(&stream->lock); 3415 } while (!offset && !ret); 3416 } else { 3417 mutex_lock(&stream->lock); 3418 ret = stream->ops->read(stream, buf, count, &offset); 3419 mutex_unlock(&stream->lock); 3420 } 3421 3422 /* We allow the poll checking to sometimes report false positive EPOLLIN 3423 * events where we might actually report EAGAIN on read() if there's 3424 * not really any data available. In this situation though we don't 3425 * want to enter a busy loop between poll() reporting a EPOLLIN event 3426 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3427 * effectively ensures we back off until the next hrtimer callback 3428 * before reporting another EPOLLIN event. 3429 * The exception to this is if ops->read() returned -ENOSPC which means 3430 * that more OA data is available than could fit in the user provided 3431 * buffer. In this case we want the next poll() call to not block. 3432 */ 3433 if (ret != -ENOSPC) 3434 stream->pollin = false; 3435 3436 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3437 return offset ?: (ret ?: -EAGAIN); 3438 } 3439 3440 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3441 { 3442 struct i915_perf_stream *stream = 3443 container_of(hrtimer, typeof(*stream), poll_check_timer); 3444 3445 if (oa_buffer_check_unlocked(stream)) { 3446 stream->pollin = true; 3447 wake_up(&stream->poll_wq); 3448 } 3449 3450 hrtimer_forward_now(hrtimer, 3451 ns_to_ktime(stream->poll_oa_period)); 3452 3453 return HRTIMER_RESTART; 3454 } 3455 3456 /** 3457 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3458 * @stream: An i915 perf stream 3459 * @file: An i915 perf stream file 3460 * @wait: poll() state table 3461 * 3462 * For handling userspace polling on an i915 perf stream, this calls through to 3463 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3464 * will be woken for new stream data. 3465 * 3466 * Returns: any poll events that are ready without sleeping 3467 */ 3468 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3469 struct file *file, 3470 poll_table *wait) 3471 { 3472 __poll_t events = 0; 3473 3474 stream->ops->poll_wait(stream, file, wait); 3475 3476 /* Note: we don't explicitly check whether there's something to read 3477 * here since this path may be very hot depending on what else 3478 * userspace is polling, or on the timeout in use. We rely solely on 3479 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3480 * samples to read. 3481 */ 3482 if (stream->pollin) 3483 events |= EPOLLIN; 3484 3485 return events; 3486 } 3487 3488 /** 3489 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3490 * @file: An i915 perf stream file 3491 * @wait: poll() state table 3492 * 3493 * For handling userspace polling on an i915 perf stream, this ensures 3494 * poll_wait() gets called with a wait queue that will be woken for new stream 3495 * data. 3496 * 3497 * Note: Implementation deferred to i915_perf_poll_locked() 3498 * 3499 * Returns: any poll events that are ready without sleeping 3500 */ 3501 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3502 { 3503 struct i915_perf_stream *stream = file->private_data; 3504 __poll_t ret; 3505 3506 mutex_lock(&stream->lock); 3507 ret = i915_perf_poll_locked(stream, file, wait); 3508 mutex_unlock(&stream->lock); 3509 3510 return ret; 3511 } 3512 3513 /** 3514 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3515 * @stream: A disabled i915 perf stream 3516 * 3517 * [Re]enables the associated capture of data for this stream. 3518 * 3519 * If a stream was previously enabled then there's currently no intention 3520 * to provide userspace any guarantee about the preservation of previously 3521 * buffered data. 3522 */ 3523 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3524 { 3525 if (stream->enabled) 3526 return; 3527 3528 /* Allow stream->ops->enable() to refer to this */ 3529 stream->enabled = true; 3530 3531 if (stream->ops->enable) 3532 stream->ops->enable(stream); 3533 3534 if (stream->hold_preemption) 3535 intel_context_set_nopreempt(stream->pinned_ctx); 3536 } 3537 3538 /** 3539 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3540 * @stream: An enabled i915 perf stream 3541 * 3542 * Disables the associated capture of data for this stream. 3543 * 3544 * The intention is that disabling an re-enabling a stream will ideally be 3545 * cheaper than destroying and re-opening a stream with the same configuration, 3546 * though there are no formal guarantees about what state or buffered data 3547 * must be retained between disabling and re-enabling a stream. 3548 * 3549 * Note: while a stream is disabled it's considered an error for userspace 3550 * to attempt to read from the stream (-EIO). 3551 */ 3552 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3553 { 3554 if (!stream->enabled) 3555 return; 3556 3557 /* Allow stream->ops->disable() to refer to this */ 3558 stream->enabled = false; 3559 3560 if (stream->hold_preemption) 3561 intel_context_clear_nopreempt(stream->pinned_ctx); 3562 3563 if (stream->ops->disable) 3564 stream->ops->disable(stream); 3565 } 3566 3567 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3568 unsigned long metrics_set) 3569 { 3570 struct i915_oa_config *config; 3571 long ret = stream->oa_config->id; 3572 3573 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3574 if (!config) 3575 return -EINVAL; 3576 3577 if (config != stream->oa_config) { 3578 int err; 3579 3580 /* 3581 * If OA is bound to a specific context, emit the 3582 * reconfiguration inline from that context. The update 3583 * will then be ordered with respect to submission on that 3584 * context. 3585 * 3586 * When set globally, we use a low priority kernel context, 3587 * so it will effectively take effect when idle. 3588 */ 3589 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3590 if (!err) 3591 config = xchg(&stream->oa_config, config); 3592 else 3593 ret = err; 3594 } 3595 3596 i915_oa_config_put(config); 3597 3598 return ret; 3599 } 3600 3601 /** 3602 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3603 * @stream: An i915 perf stream 3604 * @cmd: the ioctl request 3605 * @arg: the ioctl data 3606 * 3607 * Returns: zero on success or a negative error code. Returns -EINVAL for 3608 * an unknown ioctl request. 3609 */ 3610 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3611 unsigned int cmd, 3612 unsigned long arg) 3613 { 3614 switch (cmd) { 3615 case I915_PERF_IOCTL_ENABLE: 3616 i915_perf_enable_locked(stream); 3617 return 0; 3618 case I915_PERF_IOCTL_DISABLE: 3619 i915_perf_disable_locked(stream); 3620 return 0; 3621 case I915_PERF_IOCTL_CONFIG: 3622 return i915_perf_config_locked(stream, arg); 3623 } 3624 3625 return -EINVAL; 3626 } 3627 3628 /** 3629 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3630 * @file: An i915 perf stream file 3631 * @cmd: the ioctl request 3632 * @arg: the ioctl data 3633 * 3634 * Implementation deferred to i915_perf_ioctl_locked(). 3635 * 3636 * Returns: zero on success or a negative error code. Returns -EINVAL for 3637 * an unknown ioctl request. 3638 */ 3639 static long i915_perf_ioctl(struct file *file, 3640 unsigned int cmd, 3641 unsigned long arg) 3642 { 3643 struct i915_perf_stream *stream = file->private_data; 3644 long ret; 3645 3646 mutex_lock(&stream->lock); 3647 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3648 mutex_unlock(&stream->lock); 3649 3650 return ret; 3651 } 3652 3653 /** 3654 * i915_perf_destroy_locked - destroy an i915 perf stream 3655 * @stream: An i915 perf stream 3656 * 3657 * Frees all resources associated with the given i915 perf @stream, disabling 3658 * any associated data capture in the process. 3659 * 3660 * Note: The >->perf.lock mutex has been taken to serialize 3661 * with any non-file-operation driver hooks. 3662 */ 3663 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3664 { 3665 if (stream->enabled) 3666 i915_perf_disable_locked(stream); 3667 3668 if (stream->ops->destroy) 3669 stream->ops->destroy(stream); 3670 3671 if (stream->ctx) 3672 i915_gem_context_put(stream->ctx); 3673 3674 kfree(stream); 3675 } 3676 3677 /** 3678 * i915_perf_release - handles userspace close() of a stream file 3679 * @inode: anonymous inode associated with file 3680 * @file: An i915 perf stream file 3681 * 3682 * Cleans up any resources associated with an open i915 perf stream file. 3683 * 3684 * NB: close() can't really fail from the userspace point of view. 3685 * 3686 * Returns: zero on success or a negative error code. 3687 */ 3688 static int i915_perf_release(struct inode *inode, struct file *file) 3689 { 3690 struct i915_perf_stream *stream = file->private_data; 3691 struct i915_perf *perf = stream->perf; 3692 struct intel_gt *gt = stream->engine->gt; 3693 3694 /* 3695 * Within this call, we know that the fd is being closed and we have no 3696 * other user of stream->lock. Use the perf lock to destroy the stream 3697 * here. 3698 */ 3699 mutex_lock(>->perf.lock); 3700 i915_perf_destroy_locked(stream); 3701 mutex_unlock(>->perf.lock); 3702 3703 /* Release the reference the perf stream kept on the driver. */ 3704 drm_dev_put(&perf->i915->drm); 3705 3706 return 0; 3707 } 3708 3709 3710 static const struct file_operations fops = { 3711 .owner = THIS_MODULE, 3712 .llseek = no_llseek, 3713 .release = i915_perf_release, 3714 .poll = i915_perf_poll, 3715 .read = i915_perf_read, 3716 .unlocked_ioctl = i915_perf_ioctl, 3717 /* Our ioctl have no arguments, so it's safe to use the same function 3718 * to handle 32bits compatibility. 3719 */ 3720 .compat_ioctl = i915_perf_ioctl, 3721 }; 3722 3723 3724 /** 3725 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3726 * @perf: i915 perf instance 3727 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3728 * @props: individually validated u64 property value pairs 3729 * @file: drm file 3730 * 3731 * See i915_perf_ioctl_open() for interface details. 3732 * 3733 * Implements further stream config validation and stream initialization on 3734 * behalf of i915_perf_open_ioctl() with the >->perf.lock mutex 3735 * taken to serialize with any non-file-operation driver hooks. 3736 * 3737 * Note: at this point the @props have only been validated in isolation and 3738 * it's still necessary to validate that the combination of properties makes 3739 * sense. 3740 * 3741 * In the case where userspace is interested in OA unit metrics then further 3742 * config validation and stream initialization details will be handled by 3743 * i915_oa_stream_init(). The code here should only validate config state that 3744 * will be relevant to all stream types / backends. 3745 * 3746 * Returns: zero on success or a negative error code. 3747 */ 3748 static int 3749 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3750 struct drm_i915_perf_open_param *param, 3751 struct perf_open_properties *props, 3752 struct drm_file *file) 3753 { 3754 struct i915_gem_context *specific_ctx = NULL; 3755 struct i915_perf_stream *stream = NULL; 3756 unsigned long f_flags = 0; 3757 bool privileged_op = true; 3758 int stream_fd; 3759 int ret; 3760 3761 if (props->single_context) { 3762 u32 ctx_handle = props->ctx_handle; 3763 struct drm_i915_file_private *file_priv = file->driver_priv; 3764 3765 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3766 if (IS_ERR(specific_ctx)) { 3767 drm_dbg(&perf->i915->drm, 3768 "Failed to look up context with ID %u for opening perf stream\n", 3769 ctx_handle); 3770 ret = PTR_ERR(specific_ctx); 3771 goto err; 3772 } 3773 } 3774 3775 /* 3776 * On Haswell the OA unit supports clock gating off for a specific 3777 * context and in this mode there's no visibility of metrics for the 3778 * rest of the system, which we consider acceptable for a 3779 * non-privileged client. 3780 * 3781 * For Gen8->11 the OA unit no longer supports clock gating off for a 3782 * specific context and the kernel can't securely stop the counters 3783 * from updating as system-wide / global values. Even though we can 3784 * filter reports based on the included context ID we can't block 3785 * clients from seeing the raw / global counter values via 3786 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3787 * enable the OA unit by default. 3788 * 3789 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3790 * per context basis. So we can relax requirements there if the user 3791 * doesn't request global stream access (i.e. query based sampling 3792 * using MI_RECORD_PERF_COUNT. 3793 */ 3794 if (IS_HASWELL(perf->i915) && specific_ctx) 3795 privileged_op = false; 3796 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx && 3797 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3798 privileged_op = false; 3799 3800 if (props->hold_preemption) { 3801 if (!props->single_context) { 3802 drm_dbg(&perf->i915->drm, 3803 "preemption disable with no context\n"); 3804 ret = -EINVAL; 3805 goto err; 3806 } 3807 privileged_op = true; 3808 } 3809 3810 /* 3811 * Asking for SSEU configuration is a priviliged operation. 3812 */ 3813 if (props->has_sseu) 3814 privileged_op = true; 3815 else 3816 get_default_sseu_config(&props->sseu, props->engine); 3817 3818 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3819 * we check a dev.i915.perf_stream_paranoid sysctl option 3820 * to determine if it's ok to access system wide OA counters 3821 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3822 */ 3823 if (privileged_op && 3824 i915_perf_stream_paranoid && !perfmon_capable()) { 3825 drm_dbg(&perf->i915->drm, 3826 "Insufficient privileges to open i915 perf stream\n"); 3827 ret = -EACCES; 3828 goto err_ctx; 3829 } 3830 3831 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3832 if (!stream) { 3833 ret = -ENOMEM; 3834 goto err_ctx; 3835 } 3836 3837 stream->perf = perf; 3838 stream->ctx = specific_ctx; 3839 stream->poll_oa_period = props->poll_oa_period; 3840 3841 ret = i915_oa_stream_init(stream, param, props); 3842 if (ret) 3843 goto err_alloc; 3844 3845 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3846 * to have _stream_init check the combination of sample flags more 3847 * thoroughly, but still this is the expected result at this point. 3848 */ 3849 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3850 ret = -ENODEV; 3851 goto err_flags; 3852 } 3853 3854 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3855 f_flags |= O_CLOEXEC; 3856 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3857 f_flags |= O_NONBLOCK; 3858 3859 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3860 if (stream_fd < 0) { 3861 ret = stream_fd; 3862 goto err_flags; 3863 } 3864 3865 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3866 i915_perf_enable_locked(stream); 3867 3868 /* Take a reference on the driver that will be kept with stream_fd 3869 * until its release. 3870 */ 3871 drm_dev_get(&perf->i915->drm); 3872 3873 return stream_fd; 3874 3875 err_flags: 3876 if (stream->ops->destroy) 3877 stream->ops->destroy(stream); 3878 err_alloc: 3879 kfree(stream); 3880 err_ctx: 3881 if (specific_ctx) 3882 i915_gem_context_put(specific_ctx); 3883 err: 3884 return ret; 3885 } 3886 3887 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3888 { 3889 u64 nom = (2ULL << exponent) * NSEC_PER_SEC; 3890 u32 den = i915_perf_oa_timestamp_frequency(perf->i915); 3891 3892 return div_u64(nom + den - 1, den); 3893 } 3894 3895 static __always_inline bool 3896 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format) 3897 { 3898 return test_bit(format, perf->format_mask); 3899 } 3900 3901 static __always_inline void 3902 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format) 3903 { 3904 __set_bit(format, perf->format_mask); 3905 } 3906 3907 /** 3908 * read_properties_unlocked - validate + copy userspace stream open properties 3909 * @perf: i915 perf instance 3910 * @uprops: The array of u64 key value pairs given by userspace 3911 * @n_props: The number of key value pairs expected in @uprops 3912 * @props: The stream configuration built up while validating properties 3913 * 3914 * Note this function only validates properties in isolation it doesn't 3915 * validate that the combination of properties makes sense or that all 3916 * properties necessary for a particular kind of stream have been set. 3917 * 3918 * Note that there currently aren't any ordering requirements for properties so 3919 * we shouldn't validate or assume anything about ordering here. This doesn't 3920 * rule out defining new properties with ordering requirements in the future. 3921 */ 3922 static int read_properties_unlocked(struct i915_perf *perf, 3923 u64 __user *uprops, 3924 u32 n_props, 3925 struct perf_open_properties *props) 3926 { 3927 u64 __user *uprop = uprops; 3928 u32 i; 3929 int ret; 3930 3931 memset(props, 0, sizeof(struct perf_open_properties)); 3932 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 3933 3934 if (!n_props) { 3935 drm_dbg(&perf->i915->drm, 3936 "No i915 perf properties given\n"); 3937 return -EINVAL; 3938 } 3939 3940 /* At the moment we only support using i915-perf on the RCS. */ 3941 props->engine = intel_engine_lookup_user(perf->i915, 3942 I915_ENGINE_CLASS_RENDER, 3943 0); 3944 if (!props->engine) { 3945 drm_dbg(&perf->i915->drm, 3946 "No RENDER-capable engines\n"); 3947 return -EINVAL; 3948 } 3949 3950 /* Considering that ID = 0 is reserved and assuming that we don't 3951 * (currently) expect any configurations to ever specify duplicate 3952 * values for a particular property ID then the last _PROP_MAX value is 3953 * one greater than the maximum number of properties we expect to get 3954 * from userspace. 3955 */ 3956 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3957 drm_dbg(&perf->i915->drm, 3958 "More i915 perf properties specified than exist\n"); 3959 return -EINVAL; 3960 } 3961 3962 for (i = 0; i < n_props; i++) { 3963 u64 oa_period, oa_freq_hz; 3964 u64 id, value; 3965 3966 ret = get_user(id, uprop); 3967 if (ret) 3968 return ret; 3969 3970 ret = get_user(value, uprop + 1); 3971 if (ret) 3972 return ret; 3973 3974 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3975 drm_dbg(&perf->i915->drm, 3976 "Unknown i915 perf property ID\n"); 3977 return -EINVAL; 3978 } 3979 3980 switch ((enum drm_i915_perf_property_id)id) { 3981 case DRM_I915_PERF_PROP_CTX_HANDLE: 3982 props->single_context = 1; 3983 props->ctx_handle = value; 3984 break; 3985 case DRM_I915_PERF_PROP_SAMPLE_OA: 3986 if (value) 3987 props->sample_flags |= SAMPLE_OA_REPORT; 3988 break; 3989 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3990 if (value == 0) { 3991 drm_dbg(&perf->i915->drm, 3992 "Unknown OA metric set ID\n"); 3993 return -EINVAL; 3994 } 3995 props->metrics_set = value; 3996 break; 3997 case DRM_I915_PERF_PROP_OA_FORMAT: 3998 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3999 drm_dbg(&perf->i915->drm, 4000 "Out-of-range OA report format %llu\n", 4001 value); 4002 return -EINVAL; 4003 } 4004 if (!oa_format_valid(perf, value)) { 4005 drm_dbg(&perf->i915->drm, 4006 "Unsupported OA report format %llu\n", 4007 value); 4008 return -EINVAL; 4009 } 4010 props->oa_format = value; 4011 break; 4012 case DRM_I915_PERF_PROP_OA_EXPONENT: 4013 if (value > OA_EXPONENT_MAX) { 4014 drm_dbg(&perf->i915->drm, 4015 "OA timer exponent too high (> %u)\n", 4016 OA_EXPONENT_MAX); 4017 return -EINVAL; 4018 } 4019 4020 /* Theoretically we can program the OA unit to sample 4021 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 4022 * for BXT. We don't allow such high sampling 4023 * frequencies by default unless root. 4024 */ 4025 4026 BUILD_BUG_ON(sizeof(oa_period) != 8); 4027 oa_period = oa_exponent_to_ns(perf, value); 4028 4029 /* This check is primarily to ensure that oa_period <= 4030 * UINT32_MAX (before passing to do_div which only 4031 * accepts a u32 denominator), but we can also skip 4032 * checking anything < 1Hz which implicitly can't be 4033 * limited via an integer oa_max_sample_rate. 4034 */ 4035 if (oa_period <= NSEC_PER_SEC) { 4036 u64 tmp = NSEC_PER_SEC; 4037 do_div(tmp, oa_period); 4038 oa_freq_hz = tmp; 4039 } else 4040 oa_freq_hz = 0; 4041 4042 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 4043 drm_dbg(&perf->i915->drm, 4044 "OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 4045 i915_oa_max_sample_rate); 4046 return -EACCES; 4047 } 4048 4049 props->oa_periodic = true; 4050 props->oa_period_exponent = value; 4051 break; 4052 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 4053 props->hold_preemption = !!value; 4054 break; 4055 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 4056 struct drm_i915_gem_context_param_sseu user_sseu; 4057 4058 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) { 4059 drm_dbg(&perf->i915->drm, 4060 "SSEU config not supported on gfx %x\n", 4061 GRAPHICS_VER_FULL(perf->i915)); 4062 return -ENODEV; 4063 } 4064 4065 if (copy_from_user(&user_sseu, 4066 u64_to_user_ptr(value), 4067 sizeof(user_sseu))) { 4068 drm_dbg(&perf->i915->drm, 4069 "Unable to copy global sseu parameter\n"); 4070 return -EFAULT; 4071 } 4072 4073 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 4074 if (ret) { 4075 drm_dbg(&perf->i915->drm, 4076 "Invalid SSEU configuration\n"); 4077 return ret; 4078 } 4079 props->has_sseu = true; 4080 break; 4081 } 4082 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 4083 if (value < 100000 /* 100us */) { 4084 drm_dbg(&perf->i915->drm, 4085 "OA availability timer too small (%lluns < 100us)\n", 4086 value); 4087 return -EINVAL; 4088 } 4089 props->poll_oa_period = value; 4090 break; 4091 case DRM_I915_PERF_PROP_MAX: 4092 MISSING_CASE(id); 4093 return -EINVAL; 4094 } 4095 4096 uprop += 2; 4097 } 4098 4099 return 0; 4100 } 4101 4102 /** 4103 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 4104 * @dev: drm device 4105 * @data: ioctl data copied from userspace (unvalidated) 4106 * @file: drm file 4107 * 4108 * Validates the stream open parameters given by userspace including flags 4109 * and an array of u64 key, value pair properties. 4110 * 4111 * Very little is assumed up front about the nature of the stream being 4112 * opened (for instance we don't assume it's for periodic OA unit metrics). An 4113 * i915-perf stream is expected to be a suitable interface for other forms of 4114 * buffered data written by the GPU besides periodic OA metrics. 4115 * 4116 * Note we copy the properties from userspace outside of the i915 perf 4117 * mutex to avoid an awkward lockdep with mmap_lock. 4118 * 4119 * Most of the implementation details are handled by 4120 * i915_perf_open_ioctl_locked() after taking the >->perf.lock 4121 * mutex for serializing with any non-file-operation driver hooks. 4122 * 4123 * Return: A newly opened i915 Perf stream file descriptor or negative 4124 * error code on failure. 4125 */ 4126 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 4127 struct drm_file *file) 4128 { 4129 struct i915_perf *perf = &to_i915(dev)->perf; 4130 struct drm_i915_perf_open_param *param = data; 4131 struct intel_gt *gt; 4132 struct perf_open_properties props; 4133 u32 known_open_flags; 4134 int ret; 4135 4136 if (!perf->i915) { 4137 drm_dbg(&perf->i915->drm, 4138 "i915 perf interface not available for this system\n"); 4139 return -ENOTSUPP; 4140 } 4141 4142 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 4143 I915_PERF_FLAG_FD_NONBLOCK | 4144 I915_PERF_FLAG_DISABLED; 4145 if (param->flags & ~known_open_flags) { 4146 drm_dbg(&perf->i915->drm, 4147 "Unknown drm_i915_perf_open_param flag\n"); 4148 return -EINVAL; 4149 } 4150 4151 ret = read_properties_unlocked(perf, 4152 u64_to_user_ptr(param->properties_ptr), 4153 param->num_properties, 4154 &props); 4155 if (ret) 4156 return ret; 4157 4158 gt = props.engine->gt; 4159 4160 mutex_lock(>->perf.lock); 4161 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 4162 mutex_unlock(>->perf.lock); 4163 4164 return ret; 4165 } 4166 4167 /** 4168 * i915_perf_register - exposes i915-perf to userspace 4169 * @i915: i915 device instance 4170 * 4171 * In particular OA metric sets are advertised under a sysfs metrics/ 4172 * directory allowing userspace to enumerate valid IDs that can be 4173 * used to open an i915-perf stream. 4174 */ 4175 void i915_perf_register(struct drm_i915_private *i915) 4176 { 4177 struct i915_perf *perf = &i915->perf; 4178 struct intel_gt *gt = to_gt(i915); 4179 4180 if (!perf->i915) 4181 return; 4182 4183 /* To be sure we're synchronized with an attempted 4184 * i915_perf_open_ioctl(); considering that we register after 4185 * being exposed to userspace. 4186 */ 4187 mutex_lock(>->perf.lock); 4188 4189 perf->metrics_kobj = 4190 kobject_create_and_add("metrics", 4191 &i915->drm.primary->kdev->kobj); 4192 4193 mutex_unlock(>->perf.lock); 4194 } 4195 4196 /** 4197 * i915_perf_unregister - hide i915-perf from userspace 4198 * @i915: i915 device instance 4199 * 4200 * i915-perf state cleanup is split up into an 'unregister' and 4201 * 'deinit' phase where the interface is first hidden from 4202 * userspace by i915_perf_unregister() before cleaning up 4203 * remaining state in i915_perf_fini(). 4204 */ 4205 void i915_perf_unregister(struct drm_i915_private *i915) 4206 { 4207 struct i915_perf *perf = &i915->perf; 4208 4209 if (!perf->metrics_kobj) 4210 return; 4211 4212 kobject_put(perf->metrics_kobj); 4213 perf->metrics_kobj = NULL; 4214 } 4215 4216 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 4217 { 4218 static const i915_reg_t flex_eu_regs[] = { 4219 EU_PERF_CNTL0, 4220 EU_PERF_CNTL1, 4221 EU_PERF_CNTL2, 4222 EU_PERF_CNTL3, 4223 EU_PERF_CNTL4, 4224 EU_PERF_CNTL5, 4225 EU_PERF_CNTL6, 4226 }; 4227 int i; 4228 4229 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 4230 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 4231 return true; 4232 } 4233 return false; 4234 } 4235 4236 static bool reg_in_range_table(u32 addr, const struct i915_range *table) 4237 { 4238 while (table->start || table->end) { 4239 if (addr >= table->start && addr <= table->end) 4240 return true; 4241 4242 table++; 4243 } 4244 4245 return false; 4246 } 4247 4248 #define REG_EQUAL(addr, mmio) \ 4249 ((addr) == i915_mmio_reg_offset(mmio)) 4250 4251 static const struct i915_range gen7_oa_b_counters[] = { 4252 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */ 4253 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */ 4254 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */ 4255 {} 4256 }; 4257 4258 static const struct i915_range gen12_oa_b_counters[] = { 4259 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */ 4260 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */ 4261 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */ 4262 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */ 4263 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */ 4264 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */ 4265 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */ 4266 {} 4267 }; 4268 4269 static const struct i915_range xehp_oa_b_counters[] = { 4270 { .start = 0xdc48, .end = 0xdc48 }, /* OAA_ENABLE_REG */ 4271 { .start = 0xdd00, .end = 0xdd48 }, /* OAG_LCE0_0 - OAA_LENABLE_REG */ 4272 }; 4273 4274 static const struct i915_range gen7_oa_mux_regs[] = { 4275 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */ 4276 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */ 4277 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */ 4278 {} 4279 }; 4280 4281 static const struct i915_range hsw_oa_mux_regs[] = { 4282 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */ 4283 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */ 4284 { .start = 0x25100, .end = 0x2ff90 }, 4285 {} 4286 }; 4287 4288 static const struct i915_range chv_oa_mux_regs[] = { 4289 { .start = 0x182300, .end = 0x1823a4 }, 4290 {} 4291 }; 4292 4293 static const struct i915_range gen8_oa_mux_regs[] = { 4294 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */ 4295 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4296 {} 4297 }; 4298 4299 static const struct i915_range gen11_oa_mux_regs[] = { 4300 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */ 4301 {} 4302 }; 4303 4304 static const struct i915_range gen12_oa_mux_regs[] = { 4305 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4306 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4307 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4308 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4309 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4310 {} 4311 }; 4312 4313 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4314 { 4315 return reg_in_range_table(addr, gen7_oa_b_counters); 4316 } 4317 4318 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4319 { 4320 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4321 reg_in_range_table(addr, gen8_oa_mux_regs); 4322 } 4323 4324 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4325 { 4326 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4327 reg_in_range_table(addr, gen8_oa_mux_regs) || 4328 reg_in_range_table(addr, gen11_oa_mux_regs); 4329 } 4330 4331 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4332 { 4333 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4334 reg_in_range_table(addr, hsw_oa_mux_regs); 4335 } 4336 4337 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4338 { 4339 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4340 reg_in_range_table(addr, chv_oa_mux_regs); 4341 } 4342 4343 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4344 { 4345 return reg_in_range_table(addr, gen12_oa_b_counters); 4346 } 4347 4348 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4349 { 4350 return reg_in_range_table(addr, xehp_oa_b_counters) || 4351 reg_in_range_table(addr, gen12_oa_b_counters); 4352 } 4353 4354 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4355 { 4356 return reg_in_range_table(addr, gen12_oa_mux_regs); 4357 } 4358 4359 static u32 mask_reg_value(u32 reg, u32 val) 4360 { 4361 /* HALF_SLICE_CHICKEN2 is programmed with a the 4362 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 4363 * programmed by userspace doesn't change this. 4364 */ 4365 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 4366 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 4367 4368 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 4369 * indicated by its name and a bunch of selection fields used by OA 4370 * configs. 4371 */ 4372 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 4373 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 4374 4375 return val; 4376 } 4377 4378 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 4379 bool (*is_valid)(struct i915_perf *perf, u32 addr), 4380 u32 __user *regs, 4381 u32 n_regs) 4382 { 4383 struct i915_oa_reg *oa_regs; 4384 int err; 4385 u32 i; 4386 4387 if (!n_regs) 4388 return NULL; 4389 4390 /* No is_valid function means we're not allowing any register to be programmed. */ 4391 GEM_BUG_ON(!is_valid); 4392 if (!is_valid) 4393 return ERR_PTR(-EINVAL); 4394 4395 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 4396 if (!oa_regs) 4397 return ERR_PTR(-ENOMEM); 4398 4399 for (i = 0; i < n_regs; i++) { 4400 u32 addr, value; 4401 4402 err = get_user(addr, regs); 4403 if (err) 4404 goto addr_err; 4405 4406 if (!is_valid(perf, addr)) { 4407 drm_dbg(&perf->i915->drm, 4408 "Invalid oa_reg address: %X\n", addr); 4409 err = -EINVAL; 4410 goto addr_err; 4411 } 4412 4413 err = get_user(value, regs + 1); 4414 if (err) 4415 goto addr_err; 4416 4417 oa_regs[i].addr = _MMIO(addr); 4418 oa_regs[i].value = mask_reg_value(addr, value); 4419 4420 regs += 2; 4421 } 4422 4423 return oa_regs; 4424 4425 addr_err: 4426 kfree(oa_regs); 4427 return ERR_PTR(err); 4428 } 4429 4430 static ssize_t show_dynamic_id(struct kobject *kobj, 4431 struct kobj_attribute *attr, 4432 char *buf) 4433 { 4434 struct i915_oa_config *oa_config = 4435 container_of(attr, typeof(*oa_config), sysfs_metric_id); 4436 4437 return sprintf(buf, "%d\n", oa_config->id); 4438 } 4439 4440 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 4441 struct i915_oa_config *oa_config) 4442 { 4443 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 4444 oa_config->sysfs_metric_id.attr.name = "id"; 4445 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 4446 oa_config->sysfs_metric_id.show = show_dynamic_id; 4447 oa_config->sysfs_metric_id.store = NULL; 4448 4449 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 4450 oa_config->attrs[1] = NULL; 4451 4452 oa_config->sysfs_metric.name = oa_config->uuid; 4453 oa_config->sysfs_metric.attrs = oa_config->attrs; 4454 4455 return sysfs_create_group(perf->metrics_kobj, 4456 &oa_config->sysfs_metric); 4457 } 4458 4459 /** 4460 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4461 * @dev: drm device 4462 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4463 * userspace (unvalidated) 4464 * @file: drm file 4465 * 4466 * Validates the submitted OA register to be saved into a new OA config that 4467 * can then be used for programming the OA unit and its NOA network. 4468 * 4469 * Returns: A new allocated config number to be used with the perf open ioctl 4470 * or a negative error code on failure. 4471 */ 4472 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4473 struct drm_file *file) 4474 { 4475 struct i915_perf *perf = &to_i915(dev)->perf; 4476 struct drm_i915_perf_oa_config *args = data; 4477 struct i915_oa_config *oa_config, *tmp; 4478 struct i915_oa_reg *regs; 4479 int err, id; 4480 4481 if (!perf->i915) { 4482 drm_dbg(&perf->i915->drm, 4483 "i915 perf interface not available for this system\n"); 4484 return -ENOTSUPP; 4485 } 4486 4487 if (!perf->metrics_kobj) { 4488 drm_dbg(&perf->i915->drm, 4489 "OA metrics weren't advertised via sysfs\n"); 4490 return -EINVAL; 4491 } 4492 4493 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4494 drm_dbg(&perf->i915->drm, 4495 "Insufficient privileges to add i915 OA config\n"); 4496 return -EACCES; 4497 } 4498 4499 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4500 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4501 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4502 drm_dbg(&perf->i915->drm, 4503 "No OA registers given\n"); 4504 return -EINVAL; 4505 } 4506 4507 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4508 if (!oa_config) { 4509 drm_dbg(&perf->i915->drm, 4510 "Failed to allocate memory for the OA config\n"); 4511 return -ENOMEM; 4512 } 4513 4514 oa_config->perf = perf; 4515 kref_init(&oa_config->ref); 4516 4517 if (!uuid_is_valid(args->uuid)) { 4518 drm_dbg(&perf->i915->drm, 4519 "Invalid uuid format for OA config\n"); 4520 err = -EINVAL; 4521 goto reg_err; 4522 } 4523 4524 /* Last character in oa_config->uuid will be 0 because oa_config is 4525 * kzalloc. 4526 */ 4527 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4528 4529 oa_config->mux_regs_len = args->n_mux_regs; 4530 regs = alloc_oa_regs(perf, 4531 perf->ops.is_valid_mux_reg, 4532 u64_to_user_ptr(args->mux_regs_ptr), 4533 args->n_mux_regs); 4534 4535 if (IS_ERR(regs)) { 4536 drm_dbg(&perf->i915->drm, 4537 "Failed to create OA config for mux_regs\n"); 4538 err = PTR_ERR(regs); 4539 goto reg_err; 4540 } 4541 oa_config->mux_regs = regs; 4542 4543 oa_config->b_counter_regs_len = args->n_boolean_regs; 4544 regs = alloc_oa_regs(perf, 4545 perf->ops.is_valid_b_counter_reg, 4546 u64_to_user_ptr(args->boolean_regs_ptr), 4547 args->n_boolean_regs); 4548 4549 if (IS_ERR(regs)) { 4550 drm_dbg(&perf->i915->drm, 4551 "Failed to create OA config for b_counter_regs\n"); 4552 err = PTR_ERR(regs); 4553 goto reg_err; 4554 } 4555 oa_config->b_counter_regs = regs; 4556 4557 if (GRAPHICS_VER(perf->i915) < 8) { 4558 if (args->n_flex_regs != 0) { 4559 err = -EINVAL; 4560 goto reg_err; 4561 } 4562 } else { 4563 oa_config->flex_regs_len = args->n_flex_regs; 4564 regs = alloc_oa_regs(perf, 4565 perf->ops.is_valid_flex_reg, 4566 u64_to_user_ptr(args->flex_regs_ptr), 4567 args->n_flex_regs); 4568 4569 if (IS_ERR(regs)) { 4570 drm_dbg(&perf->i915->drm, 4571 "Failed to create OA config for flex_regs\n"); 4572 err = PTR_ERR(regs); 4573 goto reg_err; 4574 } 4575 oa_config->flex_regs = regs; 4576 } 4577 4578 err = mutex_lock_interruptible(&perf->metrics_lock); 4579 if (err) 4580 goto reg_err; 4581 4582 /* We shouldn't have too many configs, so this iteration shouldn't be 4583 * too costly. 4584 */ 4585 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4586 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4587 drm_dbg(&perf->i915->drm, 4588 "OA config already exists with this uuid\n"); 4589 err = -EADDRINUSE; 4590 goto sysfs_err; 4591 } 4592 } 4593 4594 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4595 if (err) { 4596 drm_dbg(&perf->i915->drm, 4597 "Failed to create sysfs entry for OA config\n"); 4598 goto sysfs_err; 4599 } 4600 4601 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4602 oa_config->id = idr_alloc(&perf->metrics_idr, 4603 oa_config, 2, 4604 0, GFP_KERNEL); 4605 if (oa_config->id < 0) { 4606 drm_dbg(&perf->i915->drm, 4607 "Failed to create sysfs entry for OA config\n"); 4608 err = oa_config->id; 4609 goto sysfs_err; 4610 } 4611 4612 mutex_unlock(&perf->metrics_lock); 4613 4614 drm_dbg(&perf->i915->drm, 4615 "Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4616 4617 return oa_config->id; 4618 4619 sysfs_err: 4620 mutex_unlock(&perf->metrics_lock); 4621 reg_err: 4622 i915_oa_config_put(oa_config); 4623 drm_dbg(&perf->i915->drm, 4624 "Failed to add new OA config\n"); 4625 return err; 4626 } 4627 4628 /** 4629 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4630 * @dev: drm device 4631 * @data: ioctl data (pointer to u64 integer) copied from userspace 4632 * @file: drm file 4633 * 4634 * Configs can be removed while being used, the will stop appearing in sysfs 4635 * and their content will be freed when the stream using the config is closed. 4636 * 4637 * Returns: 0 on success or a negative error code on failure. 4638 */ 4639 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4640 struct drm_file *file) 4641 { 4642 struct i915_perf *perf = &to_i915(dev)->perf; 4643 u64 *arg = data; 4644 struct i915_oa_config *oa_config; 4645 int ret; 4646 4647 if (!perf->i915) { 4648 drm_dbg(&perf->i915->drm, 4649 "i915 perf interface not available for this system\n"); 4650 return -ENOTSUPP; 4651 } 4652 4653 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4654 drm_dbg(&perf->i915->drm, 4655 "Insufficient privileges to remove i915 OA config\n"); 4656 return -EACCES; 4657 } 4658 4659 ret = mutex_lock_interruptible(&perf->metrics_lock); 4660 if (ret) 4661 return ret; 4662 4663 oa_config = idr_find(&perf->metrics_idr, *arg); 4664 if (!oa_config) { 4665 drm_dbg(&perf->i915->drm, 4666 "Failed to remove unknown OA config\n"); 4667 ret = -ENOENT; 4668 goto err_unlock; 4669 } 4670 4671 GEM_BUG_ON(*arg != oa_config->id); 4672 4673 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4674 4675 idr_remove(&perf->metrics_idr, *arg); 4676 4677 mutex_unlock(&perf->metrics_lock); 4678 4679 drm_dbg(&perf->i915->drm, 4680 "Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4681 4682 i915_oa_config_put(oa_config); 4683 4684 return 0; 4685 4686 err_unlock: 4687 mutex_unlock(&perf->metrics_lock); 4688 return ret; 4689 } 4690 4691 static struct ctl_table oa_table[] = { 4692 { 4693 .procname = "perf_stream_paranoid", 4694 .data = &i915_perf_stream_paranoid, 4695 .maxlen = sizeof(i915_perf_stream_paranoid), 4696 .mode = 0644, 4697 .proc_handler = proc_dointvec_minmax, 4698 .extra1 = SYSCTL_ZERO, 4699 .extra2 = SYSCTL_ONE, 4700 }, 4701 { 4702 .procname = "oa_max_sample_rate", 4703 .data = &i915_oa_max_sample_rate, 4704 .maxlen = sizeof(i915_oa_max_sample_rate), 4705 .mode = 0644, 4706 .proc_handler = proc_dointvec_minmax, 4707 .extra1 = SYSCTL_ZERO, 4708 .extra2 = &oa_sample_rate_hard_limit, 4709 }, 4710 {} 4711 }; 4712 4713 static void oa_init_supported_formats(struct i915_perf *perf) 4714 { 4715 struct drm_i915_private *i915 = perf->i915; 4716 enum intel_platform platform = INTEL_INFO(i915)->platform; 4717 4718 switch (platform) { 4719 case INTEL_HASWELL: 4720 oa_format_add(perf, I915_OA_FORMAT_A13); 4721 oa_format_add(perf, I915_OA_FORMAT_A13); 4722 oa_format_add(perf, I915_OA_FORMAT_A29); 4723 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8); 4724 oa_format_add(perf, I915_OA_FORMAT_B4_C8); 4725 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8); 4726 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16); 4727 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4728 break; 4729 4730 case INTEL_BROADWELL: 4731 case INTEL_CHERRYVIEW: 4732 case INTEL_SKYLAKE: 4733 case INTEL_BROXTON: 4734 case INTEL_KABYLAKE: 4735 case INTEL_GEMINILAKE: 4736 case INTEL_COFFEELAKE: 4737 case INTEL_COMETLAKE: 4738 case INTEL_ICELAKE: 4739 case INTEL_ELKHARTLAKE: 4740 case INTEL_JASPERLAKE: 4741 case INTEL_TIGERLAKE: 4742 case INTEL_ROCKETLAKE: 4743 case INTEL_DG1: 4744 case INTEL_ALDERLAKE_S: 4745 case INTEL_ALDERLAKE_P: 4746 oa_format_add(perf, I915_OA_FORMAT_A12); 4747 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8); 4748 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8); 4749 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4750 break; 4751 4752 case INTEL_DG2: 4753 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8); 4754 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8); 4755 break; 4756 4757 default: 4758 MISSING_CASE(platform); 4759 } 4760 } 4761 4762 static void i915_perf_init_info(struct drm_i915_private *i915) 4763 { 4764 struct i915_perf *perf = &i915->perf; 4765 4766 switch (GRAPHICS_VER(i915)) { 4767 case 8: 4768 perf->ctx_oactxctrl_offset = 0x120; 4769 perf->ctx_flexeu0_offset = 0x2ce; 4770 perf->gen8_valid_ctx_bit = BIT(25); 4771 break; 4772 case 9: 4773 perf->ctx_oactxctrl_offset = 0x128; 4774 perf->ctx_flexeu0_offset = 0x3de; 4775 perf->gen8_valid_ctx_bit = BIT(16); 4776 break; 4777 case 11: 4778 perf->ctx_oactxctrl_offset = 0x124; 4779 perf->ctx_flexeu0_offset = 0x78e; 4780 perf->gen8_valid_ctx_bit = BIT(16); 4781 break; 4782 case 12: 4783 /* 4784 * Calculate offset at runtime in oa_pin_context for gen12 and 4785 * cache the value in perf->ctx_oactxctrl_offset. 4786 */ 4787 break; 4788 default: 4789 MISSING_CASE(GRAPHICS_VER(i915)); 4790 } 4791 } 4792 4793 /** 4794 * i915_perf_init - initialize i915-perf state on module bind 4795 * @i915: i915 device instance 4796 * 4797 * Initializes i915-perf state without exposing anything to userspace. 4798 * 4799 * Note: i915-perf initialization is split into an 'init' and 'register' 4800 * phase with the i915_perf_register() exposing state to userspace. 4801 */ 4802 void i915_perf_init(struct drm_i915_private *i915) 4803 { 4804 struct i915_perf *perf = &i915->perf; 4805 4806 perf->oa_formats = oa_formats; 4807 if (IS_HASWELL(i915)) { 4808 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4809 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4810 perf->ops.is_valid_flex_reg = NULL; 4811 perf->ops.enable_metric_set = hsw_enable_metric_set; 4812 perf->ops.disable_metric_set = hsw_disable_metric_set; 4813 perf->ops.oa_enable = gen7_oa_enable; 4814 perf->ops.oa_disable = gen7_oa_disable; 4815 perf->ops.read = gen7_oa_read; 4816 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4817 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4818 /* Note: that although we could theoretically also support the 4819 * legacy ringbuffer mode on BDW (and earlier iterations of 4820 * this driver, before upstreaming did this) it didn't seem 4821 * worth the complexity to maintain now that BDW+ enable 4822 * execlist mode by default. 4823 */ 4824 perf->ops.read = gen8_oa_read; 4825 i915_perf_init_info(i915); 4826 4827 if (IS_GRAPHICS_VER(i915, 8, 9)) { 4828 perf->ops.is_valid_b_counter_reg = 4829 gen7_is_valid_b_counter_addr; 4830 perf->ops.is_valid_mux_reg = 4831 gen8_is_valid_mux_addr; 4832 perf->ops.is_valid_flex_reg = 4833 gen8_is_valid_flex_addr; 4834 4835 if (IS_CHERRYVIEW(i915)) { 4836 perf->ops.is_valid_mux_reg = 4837 chv_is_valid_mux_addr; 4838 } 4839 4840 perf->ops.oa_enable = gen8_oa_enable; 4841 perf->ops.oa_disable = gen8_oa_disable; 4842 perf->ops.enable_metric_set = gen8_enable_metric_set; 4843 perf->ops.disable_metric_set = gen8_disable_metric_set; 4844 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4845 } else if (GRAPHICS_VER(i915) == 11) { 4846 perf->ops.is_valid_b_counter_reg = 4847 gen7_is_valid_b_counter_addr; 4848 perf->ops.is_valid_mux_reg = 4849 gen11_is_valid_mux_addr; 4850 perf->ops.is_valid_flex_reg = 4851 gen8_is_valid_flex_addr; 4852 4853 perf->ops.oa_enable = gen8_oa_enable; 4854 perf->ops.oa_disable = gen8_oa_disable; 4855 perf->ops.enable_metric_set = gen8_enable_metric_set; 4856 perf->ops.disable_metric_set = gen11_disable_metric_set; 4857 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4858 } else if (GRAPHICS_VER(i915) == 12) { 4859 perf->ops.is_valid_b_counter_reg = 4860 HAS_OA_SLICE_CONTRIB_LIMITS(i915) ? 4861 xehp_is_valid_b_counter_addr : 4862 gen12_is_valid_b_counter_addr; 4863 perf->ops.is_valid_mux_reg = 4864 gen12_is_valid_mux_addr; 4865 perf->ops.is_valid_flex_reg = 4866 gen8_is_valid_flex_addr; 4867 4868 perf->ops.oa_enable = gen12_oa_enable; 4869 perf->ops.oa_disable = gen12_oa_disable; 4870 perf->ops.enable_metric_set = gen12_enable_metric_set; 4871 perf->ops.disable_metric_set = gen12_disable_metric_set; 4872 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4873 } 4874 } 4875 4876 if (perf->ops.enable_metric_set) { 4877 struct intel_gt *gt; 4878 int i; 4879 4880 for_each_gt(gt, i915, i) 4881 mutex_init(>->perf.lock); 4882 4883 /* Choose a representative limit */ 4884 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2; 4885 4886 mutex_init(&perf->metrics_lock); 4887 idr_init_base(&perf->metrics_idr, 1); 4888 4889 /* We set up some ratelimit state to potentially throttle any 4890 * _NOTES about spurious, invalid OA reports which we don't 4891 * forward to userspace. 4892 * 4893 * We print a _NOTE about any throttling when closing the 4894 * stream instead of waiting until driver _fini which no one 4895 * would ever see. 4896 * 4897 * Using the same limiting factors as printk_ratelimit() 4898 */ 4899 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4900 /* Since we use a DRM_NOTE for spurious reports it would be 4901 * inconsistent to let __ratelimit() automatically print a 4902 * warning for throttling. 4903 */ 4904 ratelimit_set_flags(&perf->spurious_report_rs, 4905 RATELIMIT_MSG_ON_RELEASE); 4906 4907 ratelimit_state_init(&perf->tail_pointer_race, 4908 5 * HZ, 10); 4909 ratelimit_set_flags(&perf->tail_pointer_race, 4910 RATELIMIT_MSG_ON_RELEASE); 4911 4912 atomic64_set(&perf->noa_programming_delay, 4913 500 * 1000 /* 500us */); 4914 4915 perf->i915 = i915; 4916 4917 oa_init_supported_formats(perf); 4918 } 4919 } 4920 4921 static int destroy_config(int id, void *p, void *data) 4922 { 4923 i915_oa_config_put(p); 4924 return 0; 4925 } 4926 4927 int i915_perf_sysctl_register(void) 4928 { 4929 sysctl_header = register_sysctl("dev/i915", oa_table); 4930 return 0; 4931 } 4932 4933 void i915_perf_sysctl_unregister(void) 4934 { 4935 unregister_sysctl_table(sysctl_header); 4936 } 4937 4938 /** 4939 * i915_perf_fini - Counter part to i915_perf_init() 4940 * @i915: i915 device instance 4941 */ 4942 void i915_perf_fini(struct drm_i915_private *i915) 4943 { 4944 struct i915_perf *perf = &i915->perf; 4945 4946 if (!perf->i915) 4947 return; 4948 4949 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4950 idr_destroy(&perf->metrics_idr); 4951 4952 memset(&perf->ops, 0, sizeof(perf->ops)); 4953 perf->i915 = NULL; 4954 } 4955 4956 /** 4957 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4958 * 4959 * This version number is used by userspace to detect available features. 4960 */ 4961 int i915_perf_ioctl_version(void) 4962 { 4963 /* 4964 * 1: Initial version 4965 * I915_PERF_IOCTL_ENABLE 4966 * I915_PERF_IOCTL_DISABLE 4967 * 4968 * 2: Added runtime modification of OA config. 4969 * I915_PERF_IOCTL_CONFIG 4970 * 4971 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4972 * preemption on a particular context so that performance data is 4973 * accessible from a delta of MI_RPC reports without looking at the 4974 * OA buffer. 4975 * 4976 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 4977 * be run for the duration of the performance recording based on 4978 * their SSEU configuration. 4979 * 4980 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 4981 * interval for the hrtimer used to check for OA data. 4982 */ 4983 return 5; 4984 } 4985 4986 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4987 #include "selftests/i915_perf.c" 4988 #endif 4989