xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision f0417e72)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "gem/i915_gem_context.h"
199 #include "gem/i915_gem_internal.h"
200 #include "gt/intel_engine_pm.h"
201 #include "gt/intel_engine_regs.h"
202 #include "gt/intel_engine_user.h"
203 #include "gt/intel_execlists_submission.h"
204 #include "gt/intel_gpu_commands.h"
205 #include "gt/intel_gt.h"
206 #include "gt/intel_gt_clock_utils.h"
207 #include "gt/intel_gt_mcr.h"
208 #include "gt/intel_gt_regs.h"
209 #include "gt/intel_lrc.h"
210 #include "gt/intel_lrc_reg.h"
211 #include "gt/intel_ring.h"
212 #include "gt/uc/intel_guc_slpc.h"
213 
214 #include "i915_drv.h"
215 #include "i915_file_private.h"
216 #include "i915_perf.h"
217 #include "i915_perf_oa_regs.h"
218 #include "i915_reg.h"
219 
220 /* HW requires this to be a power of two, between 128k and 16M, though driver
221  * is currently generally designed assuming the largest 16M size is used such
222  * that the overflow cases are unlikely in normal operation.
223  */
224 #define OA_BUFFER_SIZE		SZ_16M
225 
226 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
227 
228 /**
229  * DOC: OA Tail Pointer Race
230  *
231  * There's a HW race condition between OA unit tail pointer register updates and
232  * writes to memory whereby the tail pointer can sometimes get ahead of what's
233  * been written out to the OA buffer so far (in terms of what's visible to the
234  * CPU).
235  *
236  * Although this can be observed explicitly while copying reports to userspace
237  * by checking for a zeroed report-id field in tail reports, we want to account
238  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
239  * redundant read() attempts.
240  *
241  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
242  * in the OA buffer, starting from the tail reported by the HW until we find a
243  * report with its first 2 dwords not 0 meaning its previous report is
244  * completely in memory and ready to be read. Those dwords are also set to 0
245  * once read and the whole buffer is cleared upon OA buffer initialization. The
246  * first dword is the reason for this report while the second is the timestamp,
247  * making the chances of having those 2 fields at 0 fairly unlikely. A more
248  * detailed explanation is available in oa_buffer_check_unlocked().
249  *
250  * Most of the implementation details for this workaround are in
251  * oa_buffer_check_unlocked() and _append_oa_reports()
252  *
253  * Note for posterity: previously the driver used to define an effective tail
254  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
255  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
256  * This was flawed considering that the OA unit may also automatically generate
257  * non-periodic reports (such as on context switch) or the OA unit may be
258  * enabled without any periodic sampling.
259  */
260 #define OA_TAIL_MARGIN_NSEC	100000ULL
261 #define INVALID_TAIL_PTR	0xffffffff
262 
263 /* The default frequency for checking whether the OA unit has written new
264  * reports to the circular OA buffer...
265  */
266 #define DEFAULT_POLL_FREQUENCY_HZ 200
267 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
268 
269 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
270 static u32 i915_perf_stream_paranoid = true;
271 
272 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
273  * of the 64bit timestamp bits to trigger reports from) but there's currently
274  * no known use case for sampling as infrequently as once per 47 thousand years.
275  *
276  * Since the timestamps included in OA reports are only 32bits it seems
277  * reasonable to limit the OA exponent where it's still possible to account for
278  * overflow in OA report timestamps.
279  */
280 #define OA_EXPONENT_MAX 31
281 
282 #define INVALID_CTX_ID 0xffffffff
283 
284 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
285 #define OAREPORT_REASON_MASK           0x3f
286 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
287 #define OAREPORT_REASON_SHIFT          19
288 #define OAREPORT_REASON_TIMER          (1<<0)
289 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
290 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
291 
292 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
293 
294 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
295  *
296  * The highest sampling frequency we can theoretically program the OA unit
297  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
298  *
299  * Initialized just before we register the sysctl parameter.
300  */
301 static int oa_sample_rate_hard_limit;
302 
303 /* Theoretically we can program the OA unit to sample every 160ns but don't
304  * allow that by default unless root...
305  *
306  * The default threshold of 100000Hz is based on perf's similar
307  * kernel.perf_event_max_sample_rate sysctl parameter.
308  */
309 static u32 i915_oa_max_sample_rate = 100000;
310 
311 /* XXX: beware if future OA HW adds new report formats that the current
312  * code assumes all reports have a power-of-two size and ~(size - 1) can
313  * be used as a mask to align the OA tail pointer.
314  */
315 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
316 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
317 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
318 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
319 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
320 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
321 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
322 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
323 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
324 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
325 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
326 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
327 	[I915_OAR_FORMAT_A32u40_A4u32_B8_C8]    = { 5, 256 },
328 	[I915_OA_FORMAT_A24u40_A14u32_B8_C8]    = { 5, 256 },
329 };
330 
331 #define SAMPLE_OA_REPORT      (1<<0)
332 
333 /**
334  * struct perf_open_properties - for validated properties given to open a stream
335  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
336  * @single_context: Whether a single or all gpu contexts should be monitored
337  * @hold_preemption: Whether the preemption is disabled for the filtered
338  *                   context
339  * @ctx_handle: A gem ctx handle for use with @single_context
340  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
341  * @oa_format: An OA unit HW report format
342  * @oa_periodic: Whether to enable periodic OA unit sampling
343  * @oa_period_exponent: The OA unit sampling period is derived from this
344  * @engine: The engine (typically rcs0) being monitored by the OA unit
345  * @has_sseu: Whether @sseu was specified by userspace
346  * @sseu: internal SSEU configuration computed either from the userspace
347  *        specified configuration in the opening parameters or a default value
348  *        (see get_default_sseu_config())
349  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
350  * data availability
351  *
352  * As read_properties_unlocked() enumerates and validates the properties given
353  * to open a stream of metrics the configuration is built up in the structure
354  * which starts out zero initialized.
355  */
356 struct perf_open_properties {
357 	u32 sample_flags;
358 
359 	u64 single_context:1;
360 	u64 hold_preemption:1;
361 	u64 ctx_handle;
362 
363 	/* OA sampling state */
364 	int metrics_set;
365 	int oa_format;
366 	bool oa_periodic;
367 	int oa_period_exponent;
368 
369 	struct intel_engine_cs *engine;
370 
371 	bool has_sseu;
372 	struct intel_sseu sseu;
373 
374 	u64 poll_oa_period;
375 };
376 
377 struct i915_oa_config_bo {
378 	struct llist_node node;
379 
380 	struct i915_oa_config *oa_config;
381 	struct i915_vma *vma;
382 };
383 
384 static struct ctl_table_header *sysctl_header;
385 
386 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
387 
388 void i915_oa_config_release(struct kref *ref)
389 {
390 	struct i915_oa_config *oa_config =
391 		container_of(ref, typeof(*oa_config), ref);
392 
393 	kfree(oa_config->flex_regs);
394 	kfree(oa_config->b_counter_regs);
395 	kfree(oa_config->mux_regs);
396 
397 	kfree_rcu(oa_config, rcu);
398 }
399 
400 struct i915_oa_config *
401 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
402 {
403 	struct i915_oa_config *oa_config;
404 
405 	rcu_read_lock();
406 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
407 	if (oa_config)
408 		oa_config = i915_oa_config_get(oa_config);
409 	rcu_read_unlock();
410 
411 	return oa_config;
412 }
413 
414 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
415 {
416 	i915_oa_config_put(oa_bo->oa_config);
417 	i915_vma_put(oa_bo->vma);
418 	kfree(oa_bo);
419 }
420 
421 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
422 {
423 	struct intel_uncore *uncore = stream->uncore;
424 
425 	return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
426 	       GEN12_OAG_OATAILPTR_MASK;
427 }
428 
429 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
430 {
431 	struct intel_uncore *uncore = stream->uncore;
432 
433 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
434 }
435 
436 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
437 {
438 	struct intel_uncore *uncore = stream->uncore;
439 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
440 
441 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
442 }
443 
444 /**
445  * oa_buffer_check_unlocked - check for data and update tail ptr state
446  * @stream: i915 stream instance
447  *
448  * This is either called via fops (for blocking reads in user ctx) or the poll
449  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
450  * if there is data available for userspace to read.
451  *
452  * This function is central to providing a workaround for the OA unit tail
453  * pointer having a race with respect to what data is visible to the CPU.
454  * It is responsible for reading tail pointers from the hardware and giving
455  * the pointers time to 'age' before they are made available for reading.
456  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
457  *
458  * Besides returning true when there is data available to read() this function
459  * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
460  * object.
461  *
462  * Note: It's safe to read OA config state here unlocked, assuming that this is
463  * only called while the stream is enabled, while the global OA configuration
464  * can't be modified.
465  *
466  * Returns: %true if the OA buffer contains data, else %false
467  */
468 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
469 {
470 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
471 	int report_size = stream->oa_buffer.format->size;
472 	unsigned long flags;
473 	bool pollin;
474 	u32 hw_tail;
475 	u64 now;
476 
477 	/* We have to consider the (unlikely) possibility that read() errors
478 	 * could result in an OA buffer reset which might reset the head and
479 	 * tail state.
480 	 */
481 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
482 
483 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
484 
485 	/* The tail pointer increases in 64 byte increments,
486 	 * not in report_size steps...
487 	 */
488 	hw_tail &= ~(report_size - 1);
489 
490 	now = ktime_get_mono_fast_ns();
491 
492 	if (hw_tail == stream->oa_buffer.aging_tail &&
493 	    (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
494 		/* If the HW tail hasn't move since the last check and the HW
495 		 * tail has been aging for long enough, declare it the new
496 		 * tail.
497 		 */
498 		stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
499 	} else {
500 		u32 head, tail, aged_tail;
501 
502 		/* NB: The head we observe here might effectively be a little
503 		 * out of date. If a read() is in progress, the head could be
504 		 * anywhere between this head and stream->oa_buffer.tail.
505 		 */
506 		head = stream->oa_buffer.head - gtt_offset;
507 		aged_tail = stream->oa_buffer.tail - gtt_offset;
508 
509 		hw_tail -= gtt_offset;
510 		tail = hw_tail;
511 
512 		/* Walk the stream backward until we find a report with dword 0
513 		 * & 1 not at 0. Since the circular buffer pointers progress by
514 		 * increments of 64 bytes and that reports can be up to 256
515 		 * bytes long, we can't tell whether a report has fully landed
516 		 * in memory before the first 2 dwords of the following report
517 		 * have effectively landed.
518 		 *
519 		 * This is assuming that the writes of the OA unit land in
520 		 * memory in the order they were written to.
521 		 * If not : (╯°□°)╯︵ ┻━┻
522 		 */
523 		while (OA_TAKEN(tail, aged_tail) >= report_size) {
524 			u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
525 
526 			if (report32[0] != 0 || report32[1] != 0)
527 				break;
528 
529 			tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
530 		}
531 
532 		if (OA_TAKEN(hw_tail, tail) > report_size &&
533 		    __ratelimit(&stream->perf->tail_pointer_race))
534 			drm_notice(&stream->uncore->i915->drm,
535 				   "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n",
536 				   head, tail, hw_tail);
537 
538 		stream->oa_buffer.tail = gtt_offset + tail;
539 		stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
540 		stream->oa_buffer.aging_timestamp = now;
541 	}
542 
543 	pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
544 			  stream->oa_buffer.head - gtt_offset) >= report_size;
545 
546 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
547 
548 	return pollin;
549 }
550 
551 /**
552  * append_oa_status - Appends a status record to a userspace read() buffer.
553  * @stream: An i915-perf stream opened for OA metrics
554  * @buf: destination buffer given by userspace
555  * @count: the number of bytes userspace wants to read
556  * @offset: (inout): the current position for writing into @buf
557  * @type: The kind of status to report to userspace
558  *
559  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
560  * into the userspace read() buffer.
561  *
562  * The @buf @offset will only be updated on success.
563  *
564  * Returns: 0 on success, negative error code on failure.
565  */
566 static int append_oa_status(struct i915_perf_stream *stream,
567 			    char __user *buf,
568 			    size_t count,
569 			    size_t *offset,
570 			    enum drm_i915_perf_record_type type)
571 {
572 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
573 
574 	if ((count - *offset) < header.size)
575 		return -ENOSPC;
576 
577 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
578 		return -EFAULT;
579 
580 	(*offset) += header.size;
581 
582 	return 0;
583 }
584 
585 /**
586  * append_oa_sample - Copies single OA report into userspace read() buffer.
587  * @stream: An i915-perf stream opened for OA metrics
588  * @buf: destination buffer given by userspace
589  * @count: the number of bytes userspace wants to read
590  * @offset: (inout): the current position for writing into @buf
591  * @report: A single OA report to (optionally) include as part of the sample
592  *
593  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
594  * properties when opening a stream, tracked as `stream->sample_flags`. This
595  * function copies the requested components of a single sample to the given
596  * read() @buf.
597  *
598  * The @buf @offset will only be updated on success.
599  *
600  * Returns: 0 on success, negative error code on failure.
601  */
602 static int append_oa_sample(struct i915_perf_stream *stream,
603 			    char __user *buf,
604 			    size_t count,
605 			    size_t *offset,
606 			    const u8 *report)
607 {
608 	int report_size = stream->oa_buffer.format->size;
609 	struct drm_i915_perf_record_header header;
610 
611 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
612 	header.pad = 0;
613 	header.size = stream->sample_size;
614 
615 	if ((count - *offset) < header.size)
616 		return -ENOSPC;
617 
618 	buf += *offset;
619 	if (copy_to_user(buf, &header, sizeof(header)))
620 		return -EFAULT;
621 	buf += sizeof(header);
622 
623 	if (copy_to_user(buf, report, report_size))
624 		return -EFAULT;
625 
626 	(*offset) += header.size;
627 
628 	return 0;
629 }
630 
631 /**
632  * gen8_append_oa_reports - Copies all buffered OA reports into
633  *			    userspace read() buffer.
634  * @stream: An i915-perf stream opened for OA metrics
635  * @buf: destination buffer given by userspace
636  * @count: the number of bytes userspace wants to read
637  * @offset: (inout): the current position for writing into @buf
638  *
639  * Notably any error condition resulting in a short read (-%ENOSPC or
640  * -%EFAULT) will be returned even though one or more records may
641  * have been successfully copied. In this case it's up to the caller
642  * to decide if the error should be squashed before returning to
643  * userspace.
644  *
645  * Note: reports are consumed from the head, and appended to the
646  * tail, so the tail chases the head?... If you think that's mad
647  * and back-to-front you're not alone, but this follows the
648  * Gen PRM naming convention.
649  *
650  * Returns: 0 on success, negative error code on failure.
651  */
652 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
653 				  char __user *buf,
654 				  size_t count,
655 				  size_t *offset)
656 {
657 	struct intel_uncore *uncore = stream->uncore;
658 	int report_size = stream->oa_buffer.format->size;
659 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
660 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
661 	u32 mask = (OA_BUFFER_SIZE - 1);
662 	size_t start_offset = *offset;
663 	unsigned long flags;
664 	u32 head, tail;
665 	int ret = 0;
666 
667 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
668 		return -EIO;
669 
670 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
671 
672 	head = stream->oa_buffer.head;
673 	tail = stream->oa_buffer.tail;
674 
675 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
676 
677 	/*
678 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
679 	 * while indexing relative to oa_buf_base.
680 	 */
681 	head -= gtt_offset;
682 	tail -= gtt_offset;
683 
684 	/*
685 	 * An out of bounds or misaligned head or tail pointer implies a driver
686 	 * bug since we validate + align the tail pointers we read from the
687 	 * hardware and we are in full control of the head pointer which should
688 	 * only be incremented by multiples of the report size (notably also
689 	 * all a power of two).
690 	 */
691 	if (drm_WARN_ONCE(&uncore->i915->drm,
692 			  head > OA_BUFFER_SIZE || head % report_size ||
693 			  tail > OA_BUFFER_SIZE || tail % report_size,
694 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
695 			  head, tail))
696 		return -EIO;
697 
698 
699 	for (/* none */;
700 	     OA_TAKEN(tail, head);
701 	     head = (head + report_size) & mask) {
702 		u8 *report = oa_buf_base + head;
703 		u32 *report32 = (void *)report;
704 		u32 ctx_id;
705 		u32 reason;
706 
707 		/*
708 		 * All the report sizes factor neatly into the buffer
709 		 * size so we never expect to see a report split
710 		 * between the beginning and end of the buffer.
711 		 *
712 		 * Given the initial alignment check a misalignment
713 		 * here would imply a driver bug that would result
714 		 * in an overrun.
715 		 */
716 		if (drm_WARN_ON(&uncore->i915->drm,
717 				(OA_BUFFER_SIZE - head) < report_size)) {
718 			drm_err(&uncore->i915->drm,
719 				"Spurious OA head ptr: non-integral report offset\n");
720 			break;
721 		}
722 
723 		/*
724 		 * The reason field includes flags identifying what
725 		 * triggered this specific report (mostly timer
726 		 * triggered or e.g. due to a context switch).
727 		 *
728 		 * This field is never expected to be zero so we can
729 		 * check that the report isn't invalid before copying
730 		 * it to userspace...
731 		 */
732 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
733 			  (GRAPHICS_VER(stream->perf->i915) == 12 ?
734 			   OAREPORT_REASON_MASK_EXTENDED :
735 			   OAREPORT_REASON_MASK));
736 
737 		ctx_id = report32[2] & stream->specific_ctx_id_mask;
738 
739 		/*
740 		 * Squash whatever is in the CTX_ID field if it's marked as
741 		 * invalid to be sure we avoid false-positive, single-context
742 		 * filtering below...
743 		 *
744 		 * Note: that we don't clear the valid_ctx_bit so userspace can
745 		 * understand that the ID has been squashed by the kernel.
746 		 */
747 		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
748 		    GRAPHICS_VER(stream->perf->i915) <= 11)
749 			ctx_id = report32[2] = INVALID_CTX_ID;
750 
751 		/*
752 		 * NB: For Gen 8 the OA unit no longer supports clock gating
753 		 * off for a specific context and the kernel can't securely
754 		 * stop the counters from updating as system-wide / global
755 		 * values.
756 		 *
757 		 * Automatic reports now include a context ID so reports can be
758 		 * filtered on the cpu but it's not worth trying to
759 		 * automatically subtract/hide counter progress for other
760 		 * contexts while filtering since we can't stop userspace
761 		 * issuing MI_REPORT_PERF_COUNT commands which would still
762 		 * provide a side-band view of the real values.
763 		 *
764 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
765 		 * to normalize counters for a single filtered context then it
766 		 * needs be forwarded bookend context-switch reports so that it
767 		 * can track switches in between MI_REPORT_PERF_COUNT commands
768 		 * and can itself subtract/ignore the progress of counters
769 		 * associated with other contexts. Note that the hardware
770 		 * automatically triggers reports when switching to a new
771 		 * context which are tagged with the ID of the newly active
772 		 * context. To avoid the complexity (and likely fragility) of
773 		 * reading ahead while parsing reports to try and minimize
774 		 * forwarding redundant context switch reports (i.e. between
775 		 * other, unrelated contexts) we simply elect to forward them
776 		 * all.
777 		 *
778 		 * We don't rely solely on the reason field to identify context
779 		 * switches since it's not-uncommon for periodic samples to
780 		 * identify a switch before any 'context switch' report.
781 		 */
782 		if (!stream->ctx ||
783 		    stream->specific_ctx_id == ctx_id ||
784 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
785 		    reason & OAREPORT_REASON_CTX_SWITCH) {
786 
787 			/*
788 			 * While filtering for a single context we avoid
789 			 * leaking the IDs of other contexts.
790 			 */
791 			if (stream->ctx &&
792 			    stream->specific_ctx_id != ctx_id) {
793 				report32[2] = INVALID_CTX_ID;
794 			}
795 
796 			ret = append_oa_sample(stream, buf, count, offset,
797 					       report);
798 			if (ret)
799 				break;
800 
801 			stream->oa_buffer.last_ctx_id = ctx_id;
802 		}
803 
804 		/*
805 		 * Clear out the first 2 dword as a mean to detect unlanded
806 		 * reports.
807 		 */
808 		report32[0] = 0;
809 		report32[1] = 0;
810 	}
811 
812 	if (start_offset != *offset) {
813 		i915_reg_t oaheadptr;
814 
815 		oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
816 			    GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
817 
818 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
819 
820 		/*
821 		 * We removed the gtt_offset for the copy loop above, indexing
822 		 * relative to oa_buf_base so put back here...
823 		 */
824 		head += gtt_offset;
825 		intel_uncore_write(uncore, oaheadptr,
826 				   head & GEN12_OAG_OAHEADPTR_MASK);
827 		stream->oa_buffer.head = head;
828 
829 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
830 	}
831 
832 	return ret;
833 }
834 
835 /**
836  * gen8_oa_read - copy status records then buffered OA reports
837  * @stream: An i915-perf stream opened for OA metrics
838  * @buf: destination buffer given by userspace
839  * @count: the number of bytes userspace wants to read
840  * @offset: (inout): the current position for writing into @buf
841  *
842  * Checks OA unit status registers and if necessary appends corresponding
843  * status records for userspace (such as for a buffer full condition) and then
844  * initiate appending any buffered OA reports.
845  *
846  * Updates @offset according to the number of bytes successfully copied into
847  * the userspace buffer.
848  *
849  * NB: some data may be successfully copied to the userspace buffer
850  * even if an error is returned, and this is reflected in the
851  * updated @offset.
852  *
853  * Returns: zero on success or a negative error code
854  */
855 static int gen8_oa_read(struct i915_perf_stream *stream,
856 			char __user *buf,
857 			size_t count,
858 			size_t *offset)
859 {
860 	struct intel_uncore *uncore = stream->uncore;
861 	u32 oastatus;
862 	i915_reg_t oastatus_reg;
863 	int ret;
864 
865 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
866 		return -EIO;
867 
868 	oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
869 		       GEN12_OAG_OASTATUS : GEN8_OASTATUS;
870 
871 	oastatus = intel_uncore_read(uncore, oastatus_reg);
872 
873 	/*
874 	 * We treat OABUFFER_OVERFLOW as a significant error:
875 	 *
876 	 * Although theoretically we could handle this more gracefully
877 	 * sometimes, some Gens don't correctly suppress certain
878 	 * automatically triggered reports in this condition and so we
879 	 * have to assume that old reports are now being trampled
880 	 * over.
881 	 *
882 	 * Considering how we don't currently give userspace control
883 	 * over the OA buffer size and always configure a large 16MB
884 	 * buffer, then a buffer overflow does anyway likely indicate
885 	 * that something has gone quite badly wrong.
886 	 */
887 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
888 		ret = append_oa_status(stream, buf, count, offset,
889 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
890 		if (ret)
891 			return ret;
892 
893 		drm_dbg(&stream->perf->i915->drm,
894 			"OA buffer overflow (exponent = %d): force restart\n",
895 			stream->period_exponent);
896 
897 		stream->perf->ops.oa_disable(stream);
898 		stream->perf->ops.oa_enable(stream);
899 
900 		/*
901 		 * Note: .oa_enable() is expected to re-init the oabuffer and
902 		 * reset GEN8_OASTATUS for us
903 		 */
904 		oastatus = intel_uncore_read(uncore, oastatus_reg);
905 	}
906 
907 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
908 		ret = append_oa_status(stream, buf, count, offset,
909 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
910 		if (ret)
911 			return ret;
912 
913 		intel_uncore_rmw(uncore, oastatus_reg,
914 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
915 				 GEN8_OASTATUS_REPORT_LOST,
916 				 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
917 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
918 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
919 	}
920 
921 	return gen8_append_oa_reports(stream, buf, count, offset);
922 }
923 
924 /**
925  * gen7_append_oa_reports - Copies all buffered OA reports into
926  *			    userspace read() buffer.
927  * @stream: An i915-perf stream opened for OA metrics
928  * @buf: destination buffer given by userspace
929  * @count: the number of bytes userspace wants to read
930  * @offset: (inout): the current position for writing into @buf
931  *
932  * Notably any error condition resulting in a short read (-%ENOSPC or
933  * -%EFAULT) will be returned even though one or more records may
934  * have been successfully copied. In this case it's up to the caller
935  * to decide if the error should be squashed before returning to
936  * userspace.
937  *
938  * Note: reports are consumed from the head, and appended to the
939  * tail, so the tail chases the head?... If you think that's mad
940  * and back-to-front you're not alone, but this follows the
941  * Gen PRM naming convention.
942  *
943  * Returns: 0 on success, negative error code on failure.
944  */
945 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
946 				  char __user *buf,
947 				  size_t count,
948 				  size_t *offset)
949 {
950 	struct intel_uncore *uncore = stream->uncore;
951 	int report_size = stream->oa_buffer.format->size;
952 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
953 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
954 	u32 mask = (OA_BUFFER_SIZE - 1);
955 	size_t start_offset = *offset;
956 	unsigned long flags;
957 	u32 head, tail;
958 	int ret = 0;
959 
960 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
961 		return -EIO;
962 
963 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
964 
965 	head = stream->oa_buffer.head;
966 	tail = stream->oa_buffer.tail;
967 
968 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
969 
970 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
971 	 * while indexing relative to oa_buf_base.
972 	 */
973 	head -= gtt_offset;
974 	tail -= gtt_offset;
975 
976 	/* An out of bounds or misaligned head or tail pointer implies a driver
977 	 * bug since we validate + align the tail pointers we read from the
978 	 * hardware and we are in full control of the head pointer which should
979 	 * only be incremented by multiples of the report size (notably also
980 	 * all a power of two).
981 	 */
982 	if (drm_WARN_ONCE(&uncore->i915->drm,
983 			  head > OA_BUFFER_SIZE || head % report_size ||
984 			  tail > OA_BUFFER_SIZE || tail % report_size,
985 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
986 			  head, tail))
987 		return -EIO;
988 
989 
990 	for (/* none */;
991 	     OA_TAKEN(tail, head);
992 	     head = (head + report_size) & mask) {
993 		u8 *report = oa_buf_base + head;
994 		u32 *report32 = (void *)report;
995 
996 		/* All the report sizes factor neatly into the buffer
997 		 * size so we never expect to see a report split
998 		 * between the beginning and end of the buffer.
999 		 *
1000 		 * Given the initial alignment check a misalignment
1001 		 * here would imply a driver bug that would result
1002 		 * in an overrun.
1003 		 */
1004 		if (drm_WARN_ON(&uncore->i915->drm,
1005 				(OA_BUFFER_SIZE - head) < report_size)) {
1006 			drm_err(&uncore->i915->drm,
1007 				"Spurious OA head ptr: non-integral report offset\n");
1008 			break;
1009 		}
1010 
1011 		/* The report-ID field for periodic samples includes
1012 		 * some undocumented flags related to what triggered
1013 		 * the report and is never expected to be zero so we
1014 		 * can check that the report isn't invalid before
1015 		 * copying it to userspace...
1016 		 */
1017 		if (report32[0] == 0) {
1018 			if (__ratelimit(&stream->perf->spurious_report_rs))
1019 				drm_notice(&uncore->i915->drm,
1020 					   "Skipping spurious, invalid OA report\n");
1021 			continue;
1022 		}
1023 
1024 		ret = append_oa_sample(stream, buf, count, offset, report);
1025 		if (ret)
1026 			break;
1027 
1028 		/* Clear out the first 2 dwords as a mean to detect unlanded
1029 		 * reports.
1030 		 */
1031 		report32[0] = 0;
1032 		report32[1] = 0;
1033 	}
1034 
1035 	if (start_offset != *offset) {
1036 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1037 
1038 		/* We removed the gtt_offset for the copy loop above, indexing
1039 		 * relative to oa_buf_base so put back here...
1040 		 */
1041 		head += gtt_offset;
1042 
1043 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1044 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1045 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1046 		stream->oa_buffer.head = head;
1047 
1048 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1049 	}
1050 
1051 	return ret;
1052 }
1053 
1054 /**
1055  * gen7_oa_read - copy status records then buffered OA reports
1056  * @stream: An i915-perf stream opened for OA metrics
1057  * @buf: destination buffer given by userspace
1058  * @count: the number of bytes userspace wants to read
1059  * @offset: (inout): the current position for writing into @buf
1060  *
1061  * Checks Gen 7 specific OA unit status registers and if necessary appends
1062  * corresponding status records for userspace (such as for a buffer full
1063  * condition) and then initiate appending any buffered OA reports.
1064  *
1065  * Updates @offset according to the number of bytes successfully copied into
1066  * the userspace buffer.
1067  *
1068  * Returns: zero on success or a negative error code
1069  */
1070 static int gen7_oa_read(struct i915_perf_stream *stream,
1071 			char __user *buf,
1072 			size_t count,
1073 			size_t *offset)
1074 {
1075 	struct intel_uncore *uncore = stream->uncore;
1076 	u32 oastatus1;
1077 	int ret;
1078 
1079 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1080 		return -EIO;
1081 
1082 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1083 
1084 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1085 	 * bits while the OA unit is enabled (while the tail pointer
1086 	 * may be updated asynchronously) so we ignore status bits
1087 	 * that have already been reported to userspace.
1088 	 */
1089 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1090 
1091 	/* We treat OABUFFER_OVERFLOW as a significant error:
1092 	 *
1093 	 * - The status can be interpreted to mean that the buffer is
1094 	 *   currently full (with a higher precedence than OA_TAKEN()
1095 	 *   which will start to report a near-empty buffer after an
1096 	 *   overflow) but it's awkward that we can't clear the status
1097 	 *   on Haswell, so without a reset we won't be able to catch
1098 	 *   the state again.
1099 	 *
1100 	 * - Since it also implies the HW has started overwriting old
1101 	 *   reports it may also affect our sanity checks for invalid
1102 	 *   reports when copying to userspace that assume new reports
1103 	 *   are being written to cleared memory.
1104 	 *
1105 	 * - In the future we may want to introduce a flight recorder
1106 	 *   mode where the driver will automatically maintain a safe
1107 	 *   guard band between head/tail, avoiding this overflow
1108 	 *   condition, but we avoid the added driver complexity for
1109 	 *   now.
1110 	 */
1111 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1112 		ret = append_oa_status(stream, buf, count, offset,
1113 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1114 		if (ret)
1115 			return ret;
1116 
1117 		drm_dbg(&stream->perf->i915->drm,
1118 			"OA buffer overflow (exponent = %d): force restart\n",
1119 			stream->period_exponent);
1120 
1121 		stream->perf->ops.oa_disable(stream);
1122 		stream->perf->ops.oa_enable(stream);
1123 
1124 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1125 	}
1126 
1127 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1128 		ret = append_oa_status(stream, buf, count, offset,
1129 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1130 		if (ret)
1131 			return ret;
1132 		stream->perf->gen7_latched_oastatus1 |=
1133 			GEN7_OASTATUS1_REPORT_LOST;
1134 	}
1135 
1136 	return gen7_append_oa_reports(stream, buf, count, offset);
1137 }
1138 
1139 /**
1140  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1141  * @stream: An i915-perf stream opened for OA metrics
1142  *
1143  * Called when userspace tries to read() from a blocking stream FD opened
1144  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1145  * OA buffer and wakes us.
1146  *
1147  * Note: it's acceptable to have this return with some false positives
1148  * since any subsequent read handling will return -EAGAIN if there isn't
1149  * really data ready for userspace yet.
1150  *
1151  * Returns: zero on success or a negative error code
1152  */
1153 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1154 {
1155 	/* We would wait indefinitely if periodic sampling is not enabled */
1156 	if (!stream->periodic)
1157 		return -EIO;
1158 
1159 	return wait_event_interruptible(stream->poll_wq,
1160 					oa_buffer_check_unlocked(stream));
1161 }
1162 
1163 /**
1164  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1165  * @stream: An i915-perf stream opened for OA metrics
1166  * @file: An i915 perf stream file
1167  * @wait: poll() state table
1168  *
1169  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1170  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1171  * when it sees data ready to read in the circular OA buffer.
1172  */
1173 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1174 			      struct file *file,
1175 			      poll_table *wait)
1176 {
1177 	poll_wait(file, &stream->poll_wq, wait);
1178 }
1179 
1180 /**
1181  * i915_oa_read - just calls through to &i915_oa_ops->read
1182  * @stream: An i915-perf stream opened for OA metrics
1183  * @buf: destination buffer given by userspace
1184  * @count: the number of bytes userspace wants to read
1185  * @offset: (inout): the current position for writing into @buf
1186  *
1187  * Updates @offset according to the number of bytes successfully copied into
1188  * the userspace buffer.
1189  *
1190  * Returns: zero on success or a negative error code
1191  */
1192 static int i915_oa_read(struct i915_perf_stream *stream,
1193 			char __user *buf,
1194 			size_t count,
1195 			size_t *offset)
1196 {
1197 	return stream->perf->ops.read(stream, buf, count, offset);
1198 }
1199 
1200 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1201 {
1202 	struct i915_gem_engines_iter it;
1203 	struct i915_gem_context *ctx = stream->ctx;
1204 	struct intel_context *ce;
1205 	struct i915_gem_ww_ctx ww;
1206 	int err = -ENODEV;
1207 
1208 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1209 		if (ce->engine != stream->engine) /* first match! */
1210 			continue;
1211 
1212 		err = 0;
1213 		break;
1214 	}
1215 	i915_gem_context_unlock_engines(ctx);
1216 
1217 	if (err)
1218 		return ERR_PTR(err);
1219 
1220 	i915_gem_ww_ctx_init(&ww, true);
1221 retry:
1222 	/*
1223 	 * As the ID is the gtt offset of the context's vma we
1224 	 * pin the vma to ensure the ID remains fixed.
1225 	 */
1226 	err = intel_context_pin_ww(ce, &ww);
1227 	if (err == -EDEADLK) {
1228 		err = i915_gem_ww_ctx_backoff(&ww);
1229 		if (!err)
1230 			goto retry;
1231 	}
1232 	i915_gem_ww_ctx_fini(&ww);
1233 
1234 	if (err)
1235 		return ERR_PTR(err);
1236 
1237 	stream->pinned_ctx = ce;
1238 	return stream->pinned_ctx;
1239 }
1240 
1241 static int
1242 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset)
1243 {
1244 	u32 *cs, cmd;
1245 
1246 	cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1247 	if (GRAPHICS_VER(rq->engine->i915) >= 8)
1248 		cmd++;
1249 
1250 	cs = intel_ring_begin(rq, 4);
1251 	if (IS_ERR(cs))
1252 		return PTR_ERR(cs);
1253 
1254 	*cs++ = cmd;
1255 	*cs++ = i915_mmio_reg_offset(reg);
1256 	*cs++ = ggtt_offset;
1257 	*cs++ = 0;
1258 
1259 	intel_ring_advance(rq, cs);
1260 
1261 	return 0;
1262 }
1263 
1264 static int
1265 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset)
1266 {
1267 	struct i915_request *rq;
1268 	int err;
1269 
1270 	rq = i915_request_create(ce);
1271 	if (IS_ERR(rq))
1272 		return PTR_ERR(rq);
1273 
1274 	i915_request_get(rq);
1275 
1276 	err = __store_reg_to_mem(rq, reg, ggtt_offset);
1277 
1278 	i915_request_add(rq);
1279 	if (!err && i915_request_wait(rq, 0, HZ / 2) < 0)
1280 		err = -ETIME;
1281 
1282 	i915_request_put(rq);
1283 
1284 	return err;
1285 }
1286 
1287 static int
1288 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id)
1289 {
1290 	struct i915_vma *scratch;
1291 	u32 *val;
1292 	int err;
1293 
1294 	scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4);
1295 	if (IS_ERR(scratch))
1296 		return PTR_ERR(scratch);
1297 
1298 	err = i915_vma_sync(scratch);
1299 	if (err)
1300 		goto err_scratch;
1301 
1302 	err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base),
1303 			 i915_ggtt_offset(scratch));
1304 	if (err)
1305 		goto err_scratch;
1306 
1307 	val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB);
1308 	if (IS_ERR(val)) {
1309 		err = PTR_ERR(val);
1310 		goto err_scratch;
1311 	}
1312 
1313 	*ctx_id = *val;
1314 	i915_gem_object_unpin_map(scratch->obj);
1315 
1316 err_scratch:
1317 	i915_vma_unpin_and_release(&scratch, 0);
1318 	return err;
1319 }
1320 
1321 /*
1322  * For execlist mode of submission, pick an unused context id
1323  * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts
1324  * XXX_MAX_CONTEXT_HW_ID is used by idle context
1325  *
1326  * For GuC mode of submission read context id from the upper dword of the
1327  * EXECLIST_STATUS register. Note that we read this value only once and expect
1328  * that the value stays fixed for the entire OA use case. There are cases where
1329  * GuC KMD implementation may deregister a context to reuse it's context id, but
1330  * we prevent that from happening to the OA context by pinning it.
1331  */
1332 static int gen12_get_render_context_id(struct i915_perf_stream *stream)
1333 {
1334 	u32 ctx_id, mask;
1335 	int ret;
1336 
1337 	if (intel_engine_uses_guc(stream->engine)) {
1338 		ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id);
1339 		if (ret)
1340 			return ret;
1341 
1342 		mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) <<
1343 			(GEN12_GUC_SW_CTX_ID_SHIFT - 32);
1344 	} else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) {
1345 		ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) <<
1346 			(XEHP_SW_CTX_ID_SHIFT - 32);
1347 
1348 		mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1349 			(XEHP_SW_CTX_ID_SHIFT - 32);
1350 	} else {
1351 		ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) <<
1352 			 (GEN11_SW_CTX_ID_SHIFT - 32);
1353 
1354 		mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) <<
1355 			(GEN11_SW_CTX_ID_SHIFT - 32);
1356 	}
1357 	stream->specific_ctx_id = ctx_id & mask;
1358 	stream->specific_ctx_id_mask = mask;
1359 
1360 	return 0;
1361 }
1362 
1363 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end)
1364 {
1365 	u32 idx = *offset;
1366 	u32 len = min(MI_LRI_LEN(state[idx]) + idx, end);
1367 	bool found = false;
1368 
1369 	idx++;
1370 	for (; idx < len; idx += 2) {
1371 		if (state[idx] == reg) {
1372 			found = true;
1373 			break;
1374 		}
1375 	}
1376 
1377 	*offset = idx;
1378 	return found;
1379 }
1380 
1381 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg)
1382 {
1383 	u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4;
1384 	u32 *state = ce->lrc_reg_state;
1385 
1386 	if (drm_WARN_ON(&ce->engine->i915->drm, !state))
1387 		return U32_MAX;
1388 
1389 	for (offset = 0; offset < len; ) {
1390 		if (IS_MI_LRI_CMD(state[offset])) {
1391 			/*
1392 			 * We expect reg-value pairs in MI_LRI command, so
1393 			 * MI_LRI_LEN() should be even, if not, issue a warning.
1394 			 */
1395 			drm_WARN_ON(&ce->engine->i915->drm,
1396 				    MI_LRI_LEN(state[offset]) & 0x1);
1397 
1398 			if (oa_find_reg_in_lri(state, reg, &offset, len))
1399 				break;
1400 		} else {
1401 			offset++;
1402 		}
1403 	}
1404 
1405 	return offset < len ? offset : U32_MAX;
1406 }
1407 
1408 static int set_oa_ctx_ctrl_offset(struct intel_context *ce)
1409 {
1410 	i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base);
1411 	struct i915_perf *perf = &ce->engine->i915->perf;
1412 	u32 offset = perf->ctx_oactxctrl_offset;
1413 
1414 	/* Do this only once. Failure is stored as offset of U32_MAX */
1415 	if (offset)
1416 		goto exit;
1417 
1418 	offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg));
1419 	perf->ctx_oactxctrl_offset = offset;
1420 
1421 	drm_dbg(&ce->engine->i915->drm,
1422 		"%s oa ctx control at 0x%08x dword offset\n",
1423 		ce->engine->name, offset);
1424 
1425 exit:
1426 	return offset && offset != U32_MAX ? 0 : -ENODEV;
1427 }
1428 
1429 static bool engine_supports_mi_query(struct intel_engine_cs *engine)
1430 {
1431 	return engine->class == RENDER_CLASS;
1432 }
1433 
1434 /**
1435  * oa_get_render_ctx_id - determine and hold ctx hw id
1436  * @stream: An i915-perf stream opened for OA metrics
1437  *
1438  * Determine the render context hw id, and ensure it remains fixed for the
1439  * lifetime of the stream. This ensures that we don't have to worry about
1440  * updating the context ID in OACONTROL on the fly.
1441  *
1442  * Returns: zero on success or a negative error code
1443  */
1444 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1445 {
1446 	struct intel_context *ce;
1447 	int ret = 0;
1448 
1449 	ce = oa_pin_context(stream);
1450 	if (IS_ERR(ce))
1451 		return PTR_ERR(ce);
1452 
1453 	if (engine_supports_mi_query(stream->engine) &&
1454 	    HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) {
1455 		/*
1456 		 * We are enabling perf query here. If we don't find the context
1457 		 * offset here, just return an error.
1458 		 */
1459 		ret = set_oa_ctx_ctrl_offset(ce);
1460 		if (ret) {
1461 			intel_context_unpin(ce);
1462 			drm_err(&stream->perf->i915->drm,
1463 				"Enabling perf query failed for %s\n",
1464 				stream->engine->name);
1465 			return ret;
1466 		}
1467 	}
1468 
1469 	switch (GRAPHICS_VER(ce->engine->i915)) {
1470 	case 7: {
1471 		/*
1472 		 * On Haswell we don't do any post processing of the reports
1473 		 * and don't need to use the mask.
1474 		 */
1475 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1476 		stream->specific_ctx_id_mask = 0;
1477 		break;
1478 	}
1479 
1480 	case 8:
1481 	case 9:
1482 		if (intel_engine_uses_guc(ce->engine)) {
1483 			/*
1484 			 * When using GuC, the context descriptor we write in
1485 			 * i915 is read by GuC and rewritten before it's
1486 			 * actually written into the hardware. The LRCA is
1487 			 * what is put into the context id field of the
1488 			 * context descriptor by GuC. Because it's aligned to
1489 			 * a page, the lower 12bits are always at 0 and
1490 			 * dropped by GuC. They won't be part of the context
1491 			 * ID in the OA reports, so squash those lower bits.
1492 			 */
1493 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1494 
1495 			/*
1496 			 * GuC uses the top bit to signal proxy submission, so
1497 			 * ignore that bit.
1498 			 */
1499 			stream->specific_ctx_id_mask =
1500 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1501 		} else {
1502 			stream->specific_ctx_id_mask =
1503 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1504 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1505 		}
1506 		break;
1507 
1508 	case 11:
1509 	case 12:
1510 		ret = gen12_get_render_context_id(stream);
1511 		break;
1512 
1513 	default:
1514 		MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1515 	}
1516 
1517 	ce->tag = stream->specific_ctx_id;
1518 
1519 	drm_dbg(&stream->perf->i915->drm,
1520 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1521 		stream->specific_ctx_id,
1522 		stream->specific_ctx_id_mask);
1523 
1524 	return ret;
1525 }
1526 
1527 /**
1528  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1529  * @stream: An i915-perf stream opened for OA metrics
1530  *
1531  * In case anything needed doing to ensure the context HW ID would remain valid
1532  * for the lifetime of the stream, then that can be undone here.
1533  */
1534 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1535 {
1536 	struct intel_context *ce;
1537 
1538 	ce = fetch_and_zero(&stream->pinned_ctx);
1539 	if (ce) {
1540 		ce->tag = 0; /* recomputed on next submission after parking */
1541 		intel_context_unpin(ce);
1542 	}
1543 
1544 	stream->specific_ctx_id = INVALID_CTX_ID;
1545 	stream->specific_ctx_id_mask = 0;
1546 }
1547 
1548 static void
1549 free_oa_buffer(struct i915_perf_stream *stream)
1550 {
1551 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1552 				   I915_VMA_RELEASE_MAP);
1553 
1554 	stream->oa_buffer.vaddr = NULL;
1555 }
1556 
1557 static void
1558 free_oa_configs(struct i915_perf_stream *stream)
1559 {
1560 	struct i915_oa_config_bo *oa_bo, *tmp;
1561 
1562 	i915_oa_config_put(stream->oa_config);
1563 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1564 		free_oa_config_bo(oa_bo);
1565 }
1566 
1567 static void
1568 free_noa_wait(struct i915_perf_stream *stream)
1569 {
1570 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1571 }
1572 
1573 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1574 {
1575 	struct i915_perf *perf = stream->perf;
1576 	struct intel_gt *gt = stream->engine->gt;
1577 
1578 	if (WARN_ON(stream != gt->perf.exclusive_stream))
1579 		return;
1580 
1581 	/*
1582 	 * Unset exclusive_stream first, it will be checked while disabling
1583 	 * the metric set on gen8+.
1584 	 *
1585 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1586 	 */
1587 	WRITE_ONCE(gt->perf.exclusive_stream, NULL);
1588 	perf->ops.disable_metric_set(stream);
1589 
1590 	free_oa_buffer(stream);
1591 
1592 	/*
1593 	 * Wa_16011777198:dg2: Unset the override of GUCRC mode to enable rc6.
1594 	 */
1595 	if (stream->override_gucrc)
1596 		drm_WARN_ON(&gt->i915->drm,
1597 			    intel_guc_slpc_unset_gucrc_mode(&gt->uc.guc.slpc));
1598 
1599 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1600 	intel_engine_pm_put(stream->engine);
1601 
1602 	if (stream->ctx)
1603 		oa_put_render_ctx_id(stream);
1604 
1605 	free_oa_configs(stream);
1606 	free_noa_wait(stream);
1607 
1608 	if (perf->spurious_report_rs.missed) {
1609 		drm_notice(&gt->i915->drm,
1610 			   "%d spurious OA report notices suppressed due to ratelimiting\n",
1611 			   perf->spurious_report_rs.missed);
1612 	}
1613 }
1614 
1615 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1616 {
1617 	struct intel_uncore *uncore = stream->uncore;
1618 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1619 	unsigned long flags;
1620 
1621 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1622 
1623 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1624 	 * before OASTATUS1, but after OASTATUS2
1625 	 */
1626 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1627 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1628 	stream->oa_buffer.head = gtt_offset;
1629 
1630 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1631 
1632 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1633 			   gtt_offset | OABUFFER_SIZE_16M);
1634 
1635 	/* Mark that we need updated tail pointers to read from... */
1636 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1637 	stream->oa_buffer.tail = gtt_offset;
1638 
1639 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1640 
1641 	/* On Haswell we have to track which OASTATUS1 flags we've
1642 	 * already seen since they can't be cleared while periodic
1643 	 * sampling is enabled.
1644 	 */
1645 	stream->perf->gen7_latched_oastatus1 = 0;
1646 
1647 	/* NB: although the OA buffer will initially be allocated
1648 	 * zeroed via shmfs (and so this memset is redundant when
1649 	 * first allocating), we may re-init the OA buffer, either
1650 	 * when re-enabling a stream or in error/reset paths.
1651 	 *
1652 	 * The reason we clear the buffer for each re-init is for the
1653 	 * sanity check in gen7_append_oa_reports() that looks at the
1654 	 * report-id field to make sure it's non-zero which relies on
1655 	 * the assumption that new reports are being written to zeroed
1656 	 * memory...
1657 	 */
1658 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1659 }
1660 
1661 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1662 {
1663 	struct intel_uncore *uncore = stream->uncore;
1664 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1665 	unsigned long flags;
1666 
1667 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1668 
1669 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1670 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1671 	stream->oa_buffer.head = gtt_offset;
1672 
1673 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1674 
1675 	/*
1676 	 * PRM says:
1677 	 *
1678 	 *  "This MMIO must be set before the OATAILPTR
1679 	 *  register and after the OAHEADPTR register. This is
1680 	 *  to enable proper functionality of the overflow
1681 	 *  bit."
1682 	 */
1683 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1684 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1685 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1686 
1687 	/* Mark that we need updated tail pointers to read from... */
1688 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1689 	stream->oa_buffer.tail = gtt_offset;
1690 
1691 	/*
1692 	 * Reset state used to recognise context switches, affecting which
1693 	 * reports we will forward to userspace while filtering for a single
1694 	 * context.
1695 	 */
1696 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1697 
1698 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1699 
1700 	/*
1701 	 * NB: although the OA buffer will initially be allocated
1702 	 * zeroed via shmfs (and so this memset is redundant when
1703 	 * first allocating), we may re-init the OA buffer, either
1704 	 * when re-enabling a stream or in error/reset paths.
1705 	 *
1706 	 * The reason we clear the buffer for each re-init is for the
1707 	 * sanity check in gen8_append_oa_reports() that looks at the
1708 	 * reason field to make sure it's non-zero which relies on
1709 	 * the assumption that new reports are being written to zeroed
1710 	 * memory...
1711 	 */
1712 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1713 }
1714 
1715 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1716 {
1717 	struct intel_uncore *uncore = stream->uncore;
1718 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1719 	unsigned long flags;
1720 
1721 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1722 
1723 	intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1724 	intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1725 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1726 	stream->oa_buffer.head = gtt_offset;
1727 
1728 	/*
1729 	 * PRM says:
1730 	 *
1731 	 *  "This MMIO must be set before the OATAILPTR
1732 	 *  register and after the OAHEADPTR register. This is
1733 	 *  to enable proper functionality of the overflow
1734 	 *  bit."
1735 	 */
1736 	intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1737 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1738 	intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1739 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1740 
1741 	/* Mark that we need updated tail pointers to read from... */
1742 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1743 	stream->oa_buffer.tail = gtt_offset;
1744 
1745 	/*
1746 	 * Reset state used to recognise context switches, affecting which
1747 	 * reports we will forward to userspace while filtering for a single
1748 	 * context.
1749 	 */
1750 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1751 
1752 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1753 
1754 	/*
1755 	 * NB: although the OA buffer will initially be allocated
1756 	 * zeroed via shmfs (and so this memset is redundant when
1757 	 * first allocating), we may re-init the OA buffer, either
1758 	 * when re-enabling a stream or in error/reset paths.
1759 	 *
1760 	 * The reason we clear the buffer for each re-init is for the
1761 	 * sanity check in gen8_append_oa_reports() that looks at the
1762 	 * reason field to make sure it's non-zero which relies on
1763 	 * the assumption that new reports are being written to zeroed
1764 	 * memory...
1765 	 */
1766 	memset(stream->oa_buffer.vaddr, 0,
1767 	       stream->oa_buffer.vma->size);
1768 }
1769 
1770 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1771 {
1772 	struct drm_i915_private *i915 = stream->perf->i915;
1773 	struct intel_gt *gt = stream->engine->gt;
1774 	struct drm_i915_gem_object *bo;
1775 	struct i915_vma *vma;
1776 	int ret;
1777 
1778 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1779 		return -ENODEV;
1780 
1781 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1782 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1783 
1784 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1785 	if (IS_ERR(bo)) {
1786 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1787 		return PTR_ERR(bo);
1788 	}
1789 
1790 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1791 
1792 	/* PreHSW required 512K alignment, HSW requires 16M */
1793 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1794 	if (IS_ERR(vma)) {
1795 		ret = PTR_ERR(vma);
1796 		goto err_unref;
1797 	}
1798 
1799 	/*
1800 	 * PreHSW required 512K alignment.
1801 	 * HSW and onwards, align to requested size of OA buffer.
1802 	 */
1803 	ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH);
1804 	if (ret) {
1805 		drm_err(&gt->i915->drm, "Failed to pin OA buffer %d\n", ret);
1806 		goto err_unref;
1807 	}
1808 
1809 	stream->oa_buffer.vma = vma;
1810 
1811 	stream->oa_buffer.vaddr =
1812 		i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1813 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1814 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1815 		goto err_unpin;
1816 	}
1817 
1818 	return 0;
1819 
1820 err_unpin:
1821 	__i915_vma_unpin(vma);
1822 
1823 err_unref:
1824 	i915_gem_object_put(bo);
1825 
1826 	stream->oa_buffer.vaddr = NULL;
1827 	stream->oa_buffer.vma = NULL;
1828 
1829 	return ret;
1830 }
1831 
1832 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1833 				  bool save, i915_reg_t reg, u32 offset,
1834 				  u32 dword_count)
1835 {
1836 	u32 cmd;
1837 	u32 d;
1838 
1839 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1840 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1841 	if (GRAPHICS_VER(stream->perf->i915) >= 8)
1842 		cmd++;
1843 
1844 	for (d = 0; d < dword_count; d++) {
1845 		*cs++ = cmd;
1846 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1847 		*cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d;
1848 		*cs++ = 0;
1849 	}
1850 
1851 	return cs;
1852 }
1853 
1854 static int alloc_noa_wait(struct i915_perf_stream *stream)
1855 {
1856 	struct drm_i915_private *i915 = stream->perf->i915;
1857 	struct intel_gt *gt = stream->engine->gt;
1858 	struct drm_i915_gem_object *bo;
1859 	struct i915_vma *vma;
1860 	const u64 delay_ticks = 0xffffffffffffffff -
1861 		intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1862 		atomic64_read(&stream->perf->noa_programming_delay));
1863 	const u32 base = stream->engine->mmio_base;
1864 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1865 	u32 *batch, *ts0, *cs, *jump;
1866 	struct i915_gem_ww_ctx ww;
1867 	int ret, i;
1868 	enum {
1869 		START_TS,
1870 		NOW_TS,
1871 		DELTA_TS,
1872 		JUMP_PREDICATE,
1873 		DELTA_TARGET,
1874 		N_CS_GPR
1875 	};
1876 	i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ?
1877 					  MI_PREDICATE_RESULT_2_ENGINE(base) :
1878 					  MI_PREDICATE_RESULT_1(RENDER_RING_BASE);
1879 
1880 	/*
1881 	 * gt->scratch was being used to save/restore the GPR registers, but on
1882 	 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region
1883 	 * causes an engine hang. Instead allocate an additional page here to
1884 	 * save/restore GPR registers
1885 	 */
1886 	bo = i915_gem_object_create_internal(i915, 8192);
1887 	if (IS_ERR(bo)) {
1888 		drm_err(&i915->drm,
1889 			"Failed to allocate NOA wait batchbuffer\n");
1890 		return PTR_ERR(bo);
1891 	}
1892 
1893 	i915_gem_ww_ctx_init(&ww, true);
1894 retry:
1895 	ret = i915_gem_object_lock(bo, &ww);
1896 	if (ret)
1897 		goto out_ww;
1898 
1899 	/*
1900 	 * We pin in GGTT because we jump into this buffer now because
1901 	 * multiple OA config BOs will have a jump to this address and it
1902 	 * needs to be fixed during the lifetime of the i915/perf stream.
1903 	 */
1904 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1905 	if (IS_ERR(vma)) {
1906 		ret = PTR_ERR(vma);
1907 		goto out_ww;
1908 	}
1909 
1910 	ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1911 	if (ret)
1912 		goto out_ww;
1913 
1914 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1915 	if (IS_ERR(batch)) {
1916 		ret = PTR_ERR(batch);
1917 		goto err_unpin;
1918 	}
1919 
1920 	stream->noa_wait = vma;
1921 
1922 #define GPR_SAVE_OFFSET 4096
1923 #define PREDICATE_SAVE_OFFSET 4160
1924 
1925 	/* Save registers. */
1926 	for (i = 0; i < N_CS_GPR; i++)
1927 		cs = save_restore_register(
1928 			stream, cs, true /* save */, CS_GPR(i),
1929 			GPR_SAVE_OFFSET + 8 * i, 2);
1930 	cs = save_restore_register(
1931 		stream, cs, true /* save */, mi_predicate_result,
1932 		PREDICATE_SAVE_OFFSET, 1);
1933 
1934 	/* First timestamp snapshot location. */
1935 	ts0 = cs;
1936 
1937 	/*
1938 	 * Initial snapshot of the timestamp register to implement the wait.
1939 	 * We work with 32b values, so clear out the top 32b bits of the
1940 	 * register because the ALU works 64bits.
1941 	 */
1942 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1943 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1944 	*cs++ = 0;
1945 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1946 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1947 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1948 
1949 	/*
1950 	 * This is the location we're going to jump back into until the
1951 	 * required amount of time has passed.
1952 	 */
1953 	jump = cs;
1954 
1955 	/*
1956 	 * Take another snapshot of the timestamp register. Take care to clear
1957 	 * up the top 32bits of CS_GPR(1) as we're using it for other
1958 	 * operations below.
1959 	 */
1960 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1961 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1962 	*cs++ = 0;
1963 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1964 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1965 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1966 
1967 	/*
1968 	 * Do a diff between the 2 timestamps and store the result back into
1969 	 * CS_GPR(1).
1970 	 */
1971 	*cs++ = MI_MATH(5);
1972 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1973 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1974 	*cs++ = MI_MATH_SUB;
1975 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1976 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1977 
1978 	/*
1979 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1980 	 * timestamp have rolled over the 32bits) into the predicate register
1981 	 * to be used for the predicated jump.
1982 	 */
1983 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1984 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1985 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
1986 
1987 	if (HAS_MI_SET_PREDICATE(i915))
1988 		*cs++ = MI_SET_PREDICATE | 1;
1989 
1990 	/* Restart from the beginning if we had timestamps roll over. */
1991 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
1992 		 MI_BATCH_BUFFER_START :
1993 		 MI_BATCH_BUFFER_START_GEN8) |
1994 		MI_BATCH_PREDICATE;
1995 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1996 	*cs++ = 0;
1997 
1998 	if (HAS_MI_SET_PREDICATE(i915))
1999 		*cs++ = MI_SET_PREDICATE;
2000 
2001 	/*
2002 	 * Now add the diff between to previous timestamps and add it to :
2003 	 *      (((1 * << 64) - 1) - delay_ns)
2004 	 *
2005 	 * When the Carry Flag contains 1 this means the elapsed time is
2006 	 * longer than the expected delay, and we can exit the wait loop.
2007 	 */
2008 	*cs++ = MI_LOAD_REGISTER_IMM(2);
2009 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
2010 	*cs++ = lower_32_bits(delay_ticks);
2011 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
2012 	*cs++ = upper_32_bits(delay_ticks);
2013 
2014 	*cs++ = MI_MATH(4);
2015 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
2016 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
2017 	*cs++ = MI_MATH_ADD;
2018 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2019 
2020 	*cs++ = MI_ARB_CHECK;
2021 
2022 	/*
2023 	 * Transfer the result into the predicate register to be used for the
2024 	 * predicated jump.
2025 	 */
2026 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2027 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2028 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2029 
2030 	if (HAS_MI_SET_PREDICATE(i915))
2031 		*cs++ = MI_SET_PREDICATE | 1;
2032 
2033 	/* Predicate the jump.  */
2034 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2035 		 MI_BATCH_BUFFER_START :
2036 		 MI_BATCH_BUFFER_START_GEN8) |
2037 		MI_BATCH_PREDICATE;
2038 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
2039 	*cs++ = 0;
2040 
2041 	if (HAS_MI_SET_PREDICATE(i915))
2042 		*cs++ = MI_SET_PREDICATE;
2043 
2044 	/* Restore registers. */
2045 	for (i = 0; i < N_CS_GPR; i++)
2046 		cs = save_restore_register(
2047 			stream, cs, false /* restore */, CS_GPR(i),
2048 			GPR_SAVE_OFFSET + 8 * i, 2);
2049 	cs = save_restore_register(
2050 		stream, cs, false /* restore */, mi_predicate_result,
2051 		PREDICATE_SAVE_OFFSET, 1);
2052 
2053 	/* And return to the ring. */
2054 	*cs++ = MI_BATCH_BUFFER_END;
2055 
2056 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
2057 
2058 	i915_gem_object_flush_map(bo);
2059 	__i915_gem_object_release_map(bo);
2060 
2061 	goto out_ww;
2062 
2063 err_unpin:
2064 	i915_vma_unpin_and_release(&vma, 0);
2065 out_ww:
2066 	if (ret == -EDEADLK) {
2067 		ret = i915_gem_ww_ctx_backoff(&ww);
2068 		if (!ret)
2069 			goto retry;
2070 	}
2071 	i915_gem_ww_ctx_fini(&ww);
2072 	if (ret)
2073 		i915_gem_object_put(bo);
2074 	return ret;
2075 }
2076 
2077 static u32 *write_cs_mi_lri(u32 *cs,
2078 			    const struct i915_oa_reg *reg_data,
2079 			    u32 n_regs)
2080 {
2081 	u32 i;
2082 
2083 	for (i = 0; i < n_regs; i++) {
2084 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
2085 			u32 n_lri = min_t(u32,
2086 					  n_regs - i,
2087 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
2088 
2089 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
2090 		}
2091 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
2092 		*cs++ = reg_data[i].value;
2093 	}
2094 
2095 	return cs;
2096 }
2097 
2098 static int num_lri_dwords(int num_regs)
2099 {
2100 	int count = 0;
2101 
2102 	if (num_regs > 0) {
2103 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
2104 		count += num_regs * 2;
2105 	}
2106 
2107 	return count;
2108 }
2109 
2110 static struct i915_oa_config_bo *
2111 alloc_oa_config_buffer(struct i915_perf_stream *stream,
2112 		       struct i915_oa_config *oa_config)
2113 {
2114 	struct drm_i915_gem_object *obj;
2115 	struct i915_oa_config_bo *oa_bo;
2116 	struct i915_gem_ww_ctx ww;
2117 	size_t config_length = 0;
2118 	u32 *cs;
2119 	int err;
2120 
2121 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
2122 	if (!oa_bo)
2123 		return ERR_PTR(-ENOMEM);
2124 
2125 	config_length += num_lri_dwords(oa_config->mux_regs_len);
2126 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
2127 	config_length += num_lri_dwords(oa_config->flex_regs_len);
2128 	config_length += 3; /* MI_BATCH_BUFFER_START */
2129 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
2130 
2131 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
2132 	if (IS_ERR(obj)) {
2133 		err = PTR_ERR(obj);
2134 		goto err_free;
2135 	}
2136 
2137 	i915_gem_ww_ctx_init(&ww, true);
2138 retry:
2139 	err = i915_gem_object_lock(obj, &ww);
2140 	if (err)
2141 		goto out_ww;
2142 
2143 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
2144 	if (IS_ERR(cs)) {
2145 		err = PTR_ERR(cs);
2146 		goto out_ww;
2147 	}
2148 
2149 	cs = write_cs_mi_lri(cs,
2150 			     oa_config->mux_regs,
2151 			     oa_config->mux_regs_len);
2152 	cs = write_cs_mi_lri(cs,
2153 			     oa_config->b_counter_regs,
2154 			     oa_config->b_counter_regs_len);
2155 	cs = write_cs_mi_lri(cs,
2156 			     oa_config->flex_regs,
2157 			     oa_config->flex_regs_len);
2158 
2159 	/* Jump into the active wait. */
2160 	*cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
2161 		 MI_BATCH_BUFFER_START :
2162 		 MI_BATCH_BUFFER_START_GEN8);
2163 	*cs++ = i915_ggtt_offset(stream->noa_wait);
2164 	*cs++ = 0;
2165 
2166 	i915_gem_object_flush_map(obj);
2167 	__i915_gem_object_release_map(obj);
2168 
2169 	oa_bo->vma = i915_vma_instance(obj,
2170 				       &stream->engine->gt->ggtt->vm,
2171 				       NULL);
2172 	if (IS_ERR(oa_bo->vma)) {
2173 		err = PTR_ERR(oa_bo->vma);
2174 		goto out_ww;
2175 	}
2176 
2177 	oa_bo->oa_config = i915_oa_config_get(oa_config);
2178 	llist_add(&oa_bo->node, &stream->oa_config_bos);
2179 
2180 out_ww:
2181 	if (err == -EDEADLK) {
2182 		err = i915_gem_ww_ctx_backoff(&ww);
2183 		if (!err)
2184 			goto retry;
2185 	}
2186 	i915_gem_ww_ctx_fini(&ww);
2187 
2188 	if (err)
2189 		i915_gem_object_put(obj);
2190 err_free:
2191 	if (err) {
2192 		kfree(oa_bo);
2193 		return ERR_PTR(err);
2194 	}
2195 	return oa_bo;
2196 }
2197 
2198 static struct i915_vma *
2199 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
2200 {
2201 	struct i915_oa_config_bo *oa_bo;
2202 
2203 	/*
2204 	 * Look for the buffer in the already allocated BOs attached
2205 	 * to the stream.
2206 	 */
2207 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
2208 		if (oa_bo->oa_config == oa_config &&
2209 		    memcmp(oa_bo->oa_config->uuid,
2210 			   oa_config->uuid,
2211 			   sizeof(oa_config->uuid)) == 0)
2212 			goto out;
2213 	}
2214 
2215 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
2216 	if (IS_ERR(oa_bo))
2217 		return ERR_CAST(oa_bo);
2218 
2219 out:
2220 	return i915_vma_get(oa_bo->vma);
2221 }
2222 
2223 static int
2224 emit_oa_config(struct i915_perf_stream *stream,
2225 	       struct i915_oa_config *oa_config,
2226 	       struct intel_context *ce,
2227 	       struct i915_active *active)
2228 {
2229 	struct i915_request *rq;
2230 	struct i915_vma *vma;
2231 	struct i915_gem_ww_ctx ww;
2232 	int err;
2233 
2234 	vma = get_oa_vma(stream, oa_config);
2235 	if (IS_ERR(vma))
2236 		return PTR_ERR(vma);
2237 
2238 	i915_gem_ww_ctx_init(&ww, true);
2239 retry:
2240 	err = i915_gem_object_lock(vma->obj, &ww);
2241 	if (err)
2242 		goto err;
2243 
2244 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
2245 	if (err)
2246 		goto err;
2247 
2248 	intel_engine_pm_get(ce->engine);
2249 	rq = i915_request_create(ce);
2250 	intel_engine_pm_put(ce->engine);
2251 	if (IS_ERR(rq)) {
2252 		err = PTR_ERR(rq);
2253 		goto err_vma_unpin;
2254 	}
2255 
2256 	if (!IS_ERR_OR_NULL(active)) {
2257 		/* After all individual context modifications */
2258 		err = i915_request_await_active(rq, active,
2259 						I915_ACTIVE_AWAIT_ACTIVE);
2260 		if (err)
2261 			goto err_add_request;
2262 
2263 		err = i915_active_add_request(active, rq);
2264 		if (err)
2265 			goto err_add_request;
2266 	}
2267 
2268 	err = i915_vma_move_to_active(vma, rq, 0);
2269 	if (err)
2270 		goto err_add_request;
2271 
2272 	err = rq->engine->emit_bb_start(rq,
2273 					i915_vma_offset(vma), 0,
2274 					I915_DISPATCH_SECURE);
2275 	if (err)
2276 		goto err_add_request;
2277 
2278 err_add_request:
2279 	i915_request_add(rq);
2280 err_vma_unpin:
2281 	i915_vma_unpin(vma);
2282 err:
2283 	if (err == -EDEADLK) {
2284 		err = i915_gem_ww_ctx_backoff(&ww);
2285 		if (!err)
2286 			goto retry;
2287 	}
2288 
2289 	i915_gem_ww_ctx_fini(&ww);
2290 	i915_vma_put(vma);
2291 	return err;
2292 }
2293 
2294 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2295 {
2296 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2297 }
2298 
2299 static int
2300 hsw_enable_metric_set(struct i915_perf_stream *stream,
2301 		      struct i915_active *active)
2302 {
2303 	struct intel_uncore *uncore = stream->uncore;
2304 
2305 	/*
2306 	 * PRM:
2307 	 *
2308 	 * OA unit is using “crclk” for its functionality. When trunk
2309 	 * level clock gating takes place, OA clock would be gated,
2310 	 * unable to count the events from non-render clock domain.
2311 	 * Render clock gating must be disabled when OA is enabled to
2312 	 * count the events from non-render domain. Unit level clock
2313 	 * gating for RCS should also be disabled.
2314 	 */
2315 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2316 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2317 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2318 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2319 
2320 	return emit_oa_config(stream,
2321 			      stream->oa_config, oa_context(stream),
2322 			      active);
2323 }
2324 
2325 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2326 {
2327 	struct intel_uncore *uncore = stream->uncore;
2328 
2329 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2330 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2331 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2332 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2333 
2334 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2335 }
2336 
2337 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2338 			      i915_reg_t reg)
2339 {
2340 	u32 mmio = i915_mmio_reg_offset(reg);
2341 	int i;
2342 
2343 	/*
2344 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2345 	 * Active' event. In the future it's anticipated that there
2346 	 * will be an explicit 'No Event' we can select, but not yet...
2347 	 */
2348 	if (!oa_config)
2349 		return 0;
2350 
2351 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2352 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2353 			return oa_config->flex_regs[i].value;
2354 	}
2355 
2356 	return 0;
2357 }
2358 /*
2359  * NB: It must always remain pointer safe to run this even if the OA unit
2360  * has been disabled.
2361  *
2362  * It's fine to put out-of-date values into these per-context registers
2363  * in the case that the OA unit has been disabled.
2364  */
2365 static void
2366 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2367 			       const struct i915_perf_stream *stream)
2368 {
2369 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2370 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2371 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2372 	static const i915_reg_t flex_regs[] = {
2373 		EU_PERF_CNTL0,
2374 		EU_PERF_CNTL1,
2375 		EU_PERF_CNTL2,
2376 		EU_PERF_CNTL3,
2377 		EU_PERF_CNTL4,
2378 		EU_PERF_CNTL5,
2379 		EU_PERF_CNTL6,
2380 	};
2381 	u32 *reg_state = ce->lrc_reg_state;
2382 	int i;
2383 
2384 	reg_state[ctx_oactxctrl + 1] =
2385 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2386 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2387 		GEN8_OA_COUNTER_RESUME;
2388 
2389 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2390 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2391 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2392 }
2393 
2394 struct flex {
2395 	i915_reg_t reg;
2396 	u32 offset;
2397 	u32 value;
2398 };
2399 
2400 static int
2401 gen8_store_flex(struct i915_request *rq,
2402 		struct intel_context *ce,
2403 		const struct flex *flex, unsigned int count)
2404 {
2405 	u32 offset;
2406 	u32 *cs;
2407 
2408 	cs = intel_ring_begin(rq, 4 * count);
2409 	if (IS_ERR(cs))
2410 		return PTR_ERR(cs);
2411 
2412 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2413 	do {
2414 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2415 		*cs++ = offset + flex->offset * sizeof(u32);
2416 		*cs++ = 0;
2417 		*cs++ = flex->value;
2418 	} while (flex++, --count);
2419 
2420 	intel_ring_advance(rq, cs);
2421 
2422 	return 0;
2423 }
2424 
2425 static int
2426 gen8_load_flex(struct i915_request *rq,
2427 	       struct intel_context *ce,
2428 	       const struct flex *flex, unsigned int count)
2429 {
2430 	u32 *cs;
2431 
2432 	GEM_BUG_ON(!count || count > 63);
2433 
2434 	cs = intel_ring_begin(rq, 2 * count + 2);
2435 	if (IS_ERR(cs))
2436 		return PTR_ERR(cs);
2437 
2438 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2439 	do {
2440 		*cs++ = i915_mmio_reg_offset(flex->reg);
2441 		*cs++ = flex->value;
2442 	} while (flex++, --count);
2443 	*cs++ = MI_NOOP;
2444 
2445 	intel_ring_advance(rq, cs);
2446 
2447 	return 0;
2448 }
2449 
2450 static int gen8_modify_context(struct intel_context *ce,
2451 			       const struct flex *flex, unsigned int count)
2452 {
2453 	struct i915_request *rq;
2454 	int err;
2455 
2456 	rq = intel_engine_create_kernel_request(ce->engine);
2457 	if (IS_ERR(rq))
2458 		return PTR_ERR(rq);
2459 
2460 	/* Serialise with the remote context */
2461 	err = intel_context_prepare_remote_request(ce, rq);
2462 	if (err == 0)
2463 		err = gen8_store_flex(rq, ce, flex, count);
2464 
2465 	i915_request_add(rq);
2466 	return err;
2467 }
2468 
2469 static int
2470 gen8_modify_self(struct intel_context *ce,
2471 		 const struct flex *flex, unsigned int count,
2472 		 struct i915_active *active)
2473 {
2474 	struct i915_request *rq;
2475 	int err;
2476 
2477 	intel_engine_pm_get(ce->engine);
2478 	rq = i915_request_create(ce);
2479 	intel_engine_pm_put(ce->engine);
2480 	if (IS_ERR(rq))
2481 		return PTR_ERR(rq);
2482 
2483 	if (!IS_ERR_OR_NULL(active)) {
2484 		err = i915_active_add_request(active, rq);
2485 		if (err)
2486 			goto err_add_request;
2487 	}
2488 
2489 	err = gen8_load_flex(rq, ce, flex, count);
2490 	if (err)
2491 		goto err_add_request;
2492 
2493 err_add_request:
2494 	i915_request_add(rq);
2495 	return err;
2496 }
2497 
2498 static int gen8_configure_context(struct i915_gem_context *ctx,
2499 				  struct flex *flex, unsigned int count)
2500 {
2501 	struct i915_gem_engines_iter it;
2502 	struct intel_context *ce;
2503 	int err = 0;
2504 
2505 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2506 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2507 
2508 		if (ce->engine->class != RENDER_CLASS)
2509 			continue;
2510 
2511 		/* Otherwise OA settings will be set upon first use */
2512 		if (!intel_context_pin_if_active(ce))
2513 			continue;
2514 
2515 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2516 		err = gen8_modify_context(ce, flex, count);
2517 
2518 		intel_context_unpin(ce);
2519 		if (err)
2520 			break;
2521 	}
2522 	i915_gem_context_unlock_engines(ctx);
2523 
2524 	return err;
2525 }
2526 
2527 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2528 				       struct i915_active *active)
2529 {
2530 	int err;
2531 	struct intel_context *ce = stream->pinned_ctx;
2532 	u32 format = stream->oa_buffer.format->format;
2533 	u32 offset = stream->perf->ctx_oactxctrl_offset;
2534 	struct flex regs_context[] = {
2535 		{
2536 			GEN8_OACTXCONTROL,
2537 			offset + 1,
2538 			active ? GEN8_OA_COUNTER_RESUME : 0,
2539 		},
2540 	};
2541 	/* Offsets in regs_lri are not used since this configuration is only
2542 	 * applied using LRI. Initialize the correct offsets for posterity.
2543 	 */
2544 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2545 	struct flex regs_lri[] = {
2546 		{
2547 			GEN12_OAR_OACONTROL,
2548 			GEN12_OAR_OACONTROL_OFFSET + 1,
2549 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2550 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2551 		},
2552 		{
2553 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2554 			CTX_CONTEXT_CONTROL,
2555 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2556 				      active ?
2557 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2558 				      0)
2559 		},
2560 	};
2561 
2562 	/* Modify the context image of pinned context with regs_context */
2563 	err = intel_context_lock_pinned(ce);
2564 	if (err)
2565 		return err;
2566 
2567 	err = gen8_modify_context(ce, regs_context,
2568 				  ARRAY_SIZE(regs_context));
2569 	intel_context_unlock_pinned(ce);
2570 	if (err)
2571 		return err;
2572 
2573 	/* Apply regs_lri using LRI with pinned context */
2574 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2575 }
2576 
2577 /*
2578  * Manages updating the per-context aspects of the OA stream
2579  * configuration across all contexts.
2580  *
2581  * The awkward consideration here is that OACTXCONTROL controls the
2582  * exponent for periodic sampling which is primarily used for system
2583  * wide profiling where we'd like a consistent sampling period even in
2584  * the face of context switches.
2585  *
2586  * Our approach of updating the register state context (as opposed to
2587  * say using a workaround batch buffer) ensures that the hardware
2588  * won't automatically reload an out-of-date timer exponent even
2589  * transiently before a WA BB could be parsed.
2590  *
2591  * This function needs to:
2592  * - Ensure the currently running context's per-context OA state is
2593  *   updated
2594  * - Ensure that all existing contexts will have the correct per-context
2595  *   OA state if they are scheduled for use.
2596  * - Ensure any new contexts will be initialized with the correct
2597  *   per-context OA state.
2598  *
2599  * Note: it's only the RCS/Render context that has any OA state.
2600  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2601  */
2602 static int
2603 oa_configure_all_contexts(struct i915_perf_stream *stream,
2604 			  struct flex *regs,
2605 			  size_t num_regs,
2606 			  struct i915_active *active)
2607 {
2608 	struct drm_i915_private *i915 = stream->perf->i915;
2609 	struct intel_engine_cs *engine;
2610 	struct intel_gt *gt = stream->engine->gt;
2611 	struct i915_gem_context *ctx, *cn;
2612 	int err;
2613 
2614 	lockdep_assert_held(&gt->perf.lock);
2615 
2616 	/*
2617 	 * The OA register config is setup through the context image. This image
2618 	 * might be written to by the GPU on context switch (in particular on
2619 	 * lite-restore). This means we can't safely update a context's image,
2620 	 * if this context is scheduled/submitted to run on the GPU.
2621 	 *
2622 	 * We could emit the OA register config through the batch buffer but
2623 	 * this might leave small interval of time where the OA unit is
2624 	 * configured at an invalid sampling period.
2625 	 *
2626 	 * Note that since we emit all requests from a single ring, there
2627 	 * is still an implicit global barrier here that may cause a high
2628 	 * priority context to wait for an otherwise independent low priority
2629 	 * context. Contexts idle at the time of reconfiguration are not
2630 	 * trapped behind the barrier.
2631 	 */
2632 	spin_lock(&i915->gem.contexts.lock);
2633 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2634 		if (!kref_get_unless_zero(&ctx->ref))
2635 			continue;
2636 
2637 		spin_unlock(&i915->gem.contexts.lock);
2638 
2639 		err = gen8_configure_context(ctx, regs, num_regs);
2640 		if (err) {
2641 			i915_gem_context_put(ctx);
2642 			return err;
2643 		}
2644 
2645 		spin_lock(&i915->gem.contexts.lock);
2646 		list_safe_reset_next(ctx, cn, link);
2647 		i915_gem_context_put(ctx);
2648 	}
2649 	spin_unlock(&i915->gem.contexts.lock);
2650 
2651 	/*
2652 	 * After updating all other contexts, we need to modify ourselves.
2653 	 * If we don't modify the kernel_context, we do not get events while
2654 	 * idle.
2655 	 */
2656 	for_each_uabi_engine(engine, i915) {
2657 		struct intel_context *ce = engine->kernel_context;
2658 
2659 		if (engine->class != RENDER_CLASS)
2660 			continue;
2661 
2662 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2663 
2664 		err = gen8_modify_self(ce, regs, num_regs, active);
2665 		if (err)
2666 			return err;
2667 	}
2668 
2669 	return 0;
2670 }
2671 
2672 static int
2673 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2674 			     const struct i915_oa_config *oa_config,
2675 			     struct i915_active *active)
2676 {
2677 	struct flex regs[] = {
2678 		{
2679 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2680 			CTX_R_PWR_CLK_STATE,
2681 		},
2682 	};
2683 
2684 	return oa_configure_all_contexts(stream,
2685 					 regs, ARRAY_SIZE(regs),
2686 					 active);
2687 }
2688 
2689 static int
2690 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2691 			   const struct i915_oa_config *oa_config,
2692 			   struct i915_active *active)
2693 {
2694 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2695 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2696 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2697 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2698 	struct flex regs[] = {
2699 		{
2700 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2701 			CTX_R_PWR_CLK_STATE,
2702 		},
2703 		{
2704 			GEN8_OACTXCONTROL,
2705 			ctx_oactxctrl + 1,
2706 		},
2707 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2708 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2709 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2710 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2711 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2712 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2713 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2714 	};
2715 #undef ctx_flexeuN
2716 	int i;
2717 
2718 	regs[1].value =
2719 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2720 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2721 		GEN8_OA_COUNTER_RESUME;
2722 
2723 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2724 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2725 
2726 	return oa_configure_all_contexts(stream,
2727 					 regs, ARRAY_SIZE(regs),
2728 					 active);
2729 }
2730 
2731 static int
2732 gen8_enable_metric_set(struct i915_perf_stream *stream,
2733 		       struct i915_active *active)
2734 {
2735 	struct intel_uncore *uncore = stream->uncore;
2736 	struct i915_oa_config *oa_config = stream->oa_config;
2737 	int ret;
2738 
2739 	/*
2740 	 * We disable slice/unslice clock ratio change reports on SKL since
2741 	 * they are too noisy. The HW generates a lot of redundant reports
2742 	 * where the ratio hasn't really changed causing a lot of redundant
2743 	 * work to processes and increasing the chances we'll hit buffer
2744 	 * overruns.
2745 	 *
2746 	 * Although we don't currently use the 'disable overrun' OABUFFER
2747 	 * feature it's worth noting that clock ratio reports have to be
2748 	 * disabled before considering to use that feature since the HW doesn't
2749 	 * correctly block these reports.
2750 	 *
2751 	 * Currently none of the high-level metrics we have depend on knowing
2752 	 * this ratio to normalize.
2753 	 *
2754 	 * Note: This register is not power context saved and restored, but
2755 	 * that's OK considering that we disable RC6 while the OA unit is
2756 	 * enabled.
2757 	 *
2758 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2759 	 * be read back from automatically triggered reports, as part of the
2760 	 * RPT_ID field.
2761 	 */
2762 	if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2763 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2764 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2765 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2766 	}
2767 
2768 	/*
2769 	 * Update all contexts prior writing the mux configurations as we need
2770 	 * to make sure all slices/subslices are ON before writing to NOA
2771 	 * registers.
2772 	 */
2773 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2774 	if (ret)
2775 		return ret;
2776 
2777 	return emit_oa_config(stream,
2778 			      stream->oa_config, oa_context(stream),
2779 			      active);
2780 }
2781 
2782 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2783 {
2784 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2785 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2786 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2787 }
2788 
2789 static int
2790 gen12_enable_metric_set(struct i915_perf_stream *stream,
2791 			struct i915_active *active)
2792 {
2793 	struct drm_i915_private *i915 = stream->perf->i915;
2794 	struct intel_uncore *uncore = stream->uncore;
2795 	struct i915_oa_config *oa_config = stream->oa_config;
2796 	bool periodic = stream->periodic;
2797 	u32 period_exponent = stream->period_exponent;
2798 	u32 sqcnt1;
2799 	int ret;
2800 
2801 	/*
2802 	 * Wa_1508761755:xehpsdv, dg2
2803 	 * EU NOA signals behave incorrectly if EU clock gating is enabled.
2804 	 * Disable thread stall DOP gating and EU DOP gating.
2805 	 */
2806 	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2807 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2808 					     _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
2809 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2810 				   _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING));
2811 	}
2812 
2813 	intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2814 			   /* Disable clk ratio reports, like previous Gens. */
2815 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2816 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2817 			   /*
2818 			    * If the user didn't require OA reports, instruct
2819 			    * the hardware not to emit ctx switch reports.
2820 			    */
2821 			   oag_report_ctx_switches(stream));
2822 
2823 	intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2824 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2825 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2826 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2827 			    : 0);
2828 
2829 	/*
2830 	 * Initialize Super Queue Internal Cnt Register
2831 	 * Set PMON Enable in order to collect valid metrics.
2832 	 * Enable byets per clock reporting in OA for XEHPSDV onward.
2833 	 */
2834 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2835 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2836 
2837 	intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1);
2838 
2839 	/*
2840 	 * Update all contexts prior writing the mux configurations as we need
2841 	 * to make sure all slices/subslices are ON before writing to NOA
2842 	 * registers.
2843 	 */
2844 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2845 	if (ret)
2846 		return ret;
2847 
2848 	/*
2849 	 * For Gen12, performance counters are context
2850 	 * saved/restored. Only enable it for the context that
2851 	 * requested this.
2852 	 */
2853 	if (stream->ctx) {
2854 		ret = gen12_configure_oar_context(stream, active);
2855 		if (ret)
2856 			return ret;
2857 	}
2858 
2859 	return emit_oa_config(stream,
2860 			      stream->oa_config, oa_context(stream),
2861 			      active);
2862 }
2863 
2864 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2865 {
2866 	struct intel_uncore *uncore = stream->uncore;
2867 
2868 	/* Reset all contexts' slices/subslices configurations. */
2869 	lrc_configure_all_contexts(stream, NULL, NULL);
2870 
2871 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2872 }
2873 
2874 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2875 {
2876 	struct intel_uncore *uncore = stream->uncore;
2877 
2878 	/* Reset all contexts' slices/subslices configurations. */
2879 	lrc_configure_all_contexts(stream, NULL, NULL);
2880 
2881 	/* Make sure we disable noa to save power. */
2882 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2883 }
2884 
2885 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2886 {
2887 	struct intel_uncore *uncore = stream->uncore;
2888 	struct drm_i915_private *i915 = stream->perf->i915;
2889 	u32 sqcnt1;
2890 
2891 	/*
2892 	 * Wa_1508761755:xehpsdv, dg2
2893 	 * Enable thread stall DOP gating and EU DOP gating.
2894 	 */
2895 	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2896 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2897 					     _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE));
2898 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2899 				   _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING));
2900 	}
2901 
2902 	/* Reset all contexts' slices/subslices configurations. */
2903 	gen12_configure_all_contexts(stream, NULL, NULL);
2904 
2905 	/* disable the context save/restore or OAR counters */
2906 	if (stream->ctx)
2907 		gen12_configure_oar_context(stream, NULL);
2908 
2909 	/* Make sure we disable noa to save power. */
2910 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2911 
2912 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2913 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2914 
2915 	/* Reset PMON Enable to save power. */
2916 	intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0);
2917 }
2918 
2919 static void gen7_oa_enable(struct i915_perf_stream *stream)
2920 {
2921 	struct intel_uncore *uncore = stream->uncore;
2922 	struct i915_gem_context *ctx = stream->ctx;
2923 	u32 ctx_id = stream->specific_ctx_id;
2924 	bool periodic = stream->periodic;
2925 	u32 period_exponent = stream->period_exponent;
2926 	u32 report_format = stream->oa_buffer.format->format;
2927 
2928 	/*
2929 	 * Reset buf pointers so we don't forward reports from before now.
2930 	 *
2931 	 * Think carefully if considering trying to avoid this, since it
2932 	 * also ensures status flags and the buffer itself are cleared
2933 	 * in error paths, and we have checks for invalid reports based
2934 	 * on the assumption that certain fields are written to zeroed
2935 	 * memory which this helps maintains.
2936 	 */
2937 	gen7_init_oa_buffer(stream);
2938 
2939 	intel_uncore_write(uncore, GEN7_OACONTROL,
2940 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2941 			   (period_exponent <<
2942 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2943 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2944 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2945 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2946 			   GEN7_OACONTROL_ENABLE);
2947 }
2948 
2949 static void gen8_oa_enable(struct i915_perf_stream *stream)
2950 {
2951 	struct intel_uncore *uncore = stream->uncore;
2952 	u32 report_format = stream->oa_buffer.format->format;
2953 
2954 	/*
2955 	 * Reset buf pointers so we don't forward reports from before now.
2956 	 *
2957 	 * Think carefully if considering trying to avoid this, since it
2958 	 * also ensures status flags and the buffer itself are cleared
2959 	 * in error paths, and we have checks for invalid reports based
2960 	 * on the assumption that certain fields are written to zeroed
2961 	 * memory which this helps maintains.
2962 	 */
2963 	gen8_init_oa_buffer(stream);
2964 
2965 	/*
2966 	 * Note: we don't rely on the hardware to perform single context
2967 	 * filtering and instead filter on the cpu based on the context-id
2968 	 * field of reports
2969 	 */
2970 	intel_uncore_write(uncore, GEN8_OACONTROL,
2971 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2972 			   GEN8_OA_COUNTER_ENABLE);
2973 }
2974 
2975 static void gen12_oa_enable(struct i915_perf_stream *stream)
2976 {
2977 	struct intel_uncore *uncore = stream->uncore;
2978 	u32 report_format = stream->oa_buffer.format->format;
2979 
2980 	/*
2981 	 * If we don't want OA reports from the OA buffer, then we don't even
2982 	 * need to program the OAG unit.
2983 	 */
2984 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2985 		return;
2986 
2987 	gen12_init_oa_buffer(stream);
2988 
2989 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2990 			   (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2991 			   GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2992 }
2993 
2994 /**
2995  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2996  * @stream: An i915 perf stream opened for OA metrics
2997  *
2998  * [Re]enables hardware periodic sampling according to the period configured
2999  * when opening the stream. This also starts a hrtimer that will periodically
3000  * check for data in the circular OA buffer for notifying userspace (e.g.
3001  * during a read() or poll()).
3002  */
3003 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
3004 {
3005 	stream->pollin = false;
3006 
3007 	stream->perf->ops.oa_enable(stream);
3008 
3009 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3010 		hrtimer_start(&stream->poll_check_timer,
3011 			      ns_to_ktime(stream->poll_oa_period),
3012 			      HRTIMER_MODE_REL_PINNED);
3013 }
3014 
3015 static void gen7_oa_disable(struct i915_perf_stream *stream)
3016 {
3017 	struct intel_uncore *uncore = stream->uncore;
3018 
3019 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
3020 	if (intel_wait_for_register(uncore,
3021 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
3022 				    50))
3023 		drm_err(&stream->perf->i915->drm,
3024 			"wait for OA to be disabled timed out\n");
3025 }
3026 
3027 static void gen8_oa_disable(struct i915_perf_stream *stream)
3028 {
3029 	struct intel_uncore *uncore = stream->uncore;
3030 
3031 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
3032 	if (intel_wait_for_register(uncore,
3033 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
3034 				    50))
3035 		drm_err(&stream->perf->i915->drm,
3036 			"wait for OA to be disabled timed out\n");
3037 }
3038 
3039 static void gen12_oa_disable(struct i915_perf_stream *stream)
3040 {
3041 	struct intel_uncore *uncore = stream->uncore;
3042 
3043 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
3044 	if (intel_wait_for_register(uncore,
3045 				    GEN12_OAG_OACONTROL,
3046 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
3047 				    50))
3048 		drm_err(&stream->perf->i915->drm,
3049 			"wait for OA to be disabled timed out\n");
3050 
3051 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
3052 	if (intel_wait_for_register(uncore,
3053 				    GEN12_OA_TLB_INV_CR,
3054 				    1, 0,
3055 				    50))
3056 		drm_err(&stream->perf->i915->drm,
3057 			"wait for OA tlb invalidate timed out\n");
3058 }
3059 
3060 /**
3061  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
3062  * @stream: An i915 perf stream opened for OA metrics
3063  *
3064  * Stops the OA unit from periodically writing counter reports into the
3065  * circular OA buffer. This also stops the hrtimer that periodically checks for
3066  * data in the circular OA buffer, for notifying userspace.
3067  */
3068 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
3069 {
3070 	stream->perf->ops.oa_disable(stream);
3071 
3072 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3073 		hrtimer_cancel(&stream->poll_check_timer);
3074 }
3075 
3076 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
3077 	.destroy = i915_oa_stream_destroy,
3078 	.enable = i915_oa_stream_enable,
3079 	.disable = i915_oa_stream_disable,
3080 	.wait_unlocked = i915_oa_wait_unlocked,
3081 	.poll_wait = i915_oa_poll_wait,
3082 	.read = i915_oa_read,
3083 };
3084 
3085 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
3086 {
3087 	struct i915_active *active;
3088 	int err;
3089 
3090 	active = i915_active_create();
3091 	if (!active)
3092 		return -ENOMEM;
3093 
3094 	err = stream->perf->ops.enable_metric_set(stream, active);
3095 	if (err == 0)
3096 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
3097 
3098 	i915_active_put(active);
3099 	return err;
3100 }
3101 
3102 static void
3103 get_default_sseu_config(struct intel_sseu *out_sseu,
3104 			struct intel_engine_cs *engine)
3105 {
3106 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
3107 
3108 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
3109 
3110 	if (GRAPHICS_VER(engine->i915) == 11) {
3111 		/*
3112 		 * We only need subslice count so it doesn't matter which ones
3113 		 * we select - just turn off low bits in the amount of half of
3114 		 * all available subslices per slice.
3115 		 */
3116 		out_sseu->subslice_mask =
3117 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
3118 		out_sseu->slice_mask = 0x1;
3119 	}
3120 }
3121 
3122 static int
3123 get_sseu_config(struct intel_sseu *out_sseu,
3124 		struct intel_engine_cs *engine,
3125 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
3126 {
3127 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
3128 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
3129 		return -EINVAL;
3130 
3131 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
3132 }
3133 
3134 /*
3135  * OA timestamp frequency = CS timestamp frequency in most platforms. On some
3136  * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such
3137  * cases, return the adjusted CS timestamp frequency to the user.
3138  */
3139 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915)
3140 {
3141 	/*
3142 	 * Wa_18013179988:dg2
3143 	 * Wa_14015846243:mtl
3144 	 */
3145 	if (IS_DG2(i915) || IS_METEORLAKE(i915)) {
3146 		intel_wakeref_t wakeref;
3147 		u32 reg, shift;
3148 
3149 		with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref)
3150 			reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0);
3151 
3152 		shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK,
3153 				      reg);
3154 
3155 		return to_gt(i915)->clock_frequency << (3 - shift);
3156 	}
3157 
3158 	return to_gt(i915)->clock_frequency;
3159 }
3160 
3161 /**
3162  * i915_oa_stream_init - validate combined props for OA stream and init
3163  * @stream: An i915 perf stream
3164  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
3165  * @props: The property state that configures stream (individually validated)
3166  *
3167  * While read_properties_unlocked() validates properties in isolation it
3168  * doesn't ensure that the combination necessarily makes sense.
3169  *
3170  * At this point it has been determined that userspace wants a stream of
3171  * OA metrics, but still we need to further validate the combined
3172  * properties are OK.
3173  *
3174  * If the configuration makes sense then we can allocate memory for
3175  * a circular OA buffer and apply the requested metric set configuration.
3176  *
3177  * Returns: zero on success or a negative error code.
3178  */
3179 static int i915_oa_stream_init(struct i915_perf_stream *stream,
3180 			       struct drm_i915_perf_open_param *param,
3181 			       struct perf_open_properties *props)
3182 {
3183 	struct drm_i915_private *i915 = stream->perf->i915;
3184 	struct i915_perf *perf = stream->perf;
3185 	struct intel_gt *gt;
3186 	int ret;
3187 
3188 	if (!props->engine) {
3189 		drm_dbg(&stream->perf->i915->drm,
3190 			"OA engine not specified\n");
3191 		return -EINVAL;
3192 	}
3193 	gt = props->engine->gt;
3194 
3195 	/*
3196 	 * If the sysfs metrics/ directory wasn't registered for some
3197 	 * reason then don't let userspace try their luck with config
3198 	 * IDs
3199 	 */
3200 	if (!perf->metrics_kobj) {
3201 		drm_dbg(&stream->perf->i915->drm,
3202 			"OA metrics weren't advertised via sysfs\n");
3203 		return -EINVAL;
3204 	}
3205 
3206 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
3207 	    (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
3208 		drm_dbg(&stream->perf->i915->drm,
3209 			"Only OA report sampling supported\n");
3210 		return -EINVAL;
3211 	}
3212 
3213 	if (!perf->ops.enable_metric_set) {
3214 		drm_dbg(&stream->perf->i915->drm,
3215 			"OA unit not supported\n");
3216 		return -ENODEV;
3217 	}
3218 
3219 	/*
3220 	 * To avoid the complexity of having to accurately filter
3221 	 * counter reports and marshal to the appropriate client
3222 	 * we currently only allow exclusive access
3223 	 */
3224 	if (gt->perf.exclusive_stream) {
3225 		drm_dbg(&stream->perf->i915->drm,
3226 			"OA unit already in use\n");
3227 		return -EBUSY;
3228 	}
3229 
3230 	if (!props->oa_format) {
3231 		drm_dbg(&stream->perf->i915->drm,
3232 			"OA report format not specified\n");
3233 		return -EINVAL;
3234 	}
3235 
3236 	stream->engine = props->engine;
3237 	stream->uncore = stream->engine->gt->uncore;
3238 
3239 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
3240 
3241 	stream->oa_buffer.format = &perf->oa_formats[props->oa_format];
3242 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0))
3243 		return -EINVAL;
3244 
3245 	stream->sample_flags = props->sample_flags;
3246 	stream->sample_size += stream->oa_buffer.format->size;
3247 
3248 	stream->hold_preemption = props->hold_preemption;
3249 
3250 	stream->periodic = props->oa_periodic;
3251 	if (stream->periodic)
3252 		stream->period_exponent = props->oa_period_exponent;
3253 
3254 	if (stream->ctx) {
3255 		ret = oa_get_render_ctx_id(stream);
3256 		if (ret) {
3257 			drm_dbg(&stream->perf->i915->drm,
3258 				"Invalid context id to filter with\n");
3259 			return ret;
3260 		}
3261 	}
3262 
3263 	ret = alloc_noa_wait(stream);
3264 	if (ret) {
3265 		drm_dbg(&stream->perf->i915->drm,
3266 			"Unable to allocate NOA wait batch buffer\n");
3267 		goto err_noa_wait_alloc;
3268 	}
3269 
3270 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
3271 	if (!stream->oa_config) {
3272 		drm_dbg(&stream->perf->i915->drm,
3273 			"Invalid OA config id=%i\n", props->metrics_set);
3274 		ret = -EINVAL;
3275 		goto err_config;
3276 	}
3277 
3278 	/* PRM - observability performance counters:
3279 	 *
3280 	 *   OACONTROL, performance counter enable, note:
3281 	 *
3282 	 *   "When this bit is set, in order to have coherent counts,
3283 	 *   RC6 power state and trunk clock gating must be disabled.
3284 	 *   This can be achieved by programming MMIO registers as
3285 	 *   0xA094=0 and 0xA090[31]=1"
3286 	 *
3287 	 *   In our case we are expecting that taking pm + FORCEWAKE
3288 	 *   references will effectively disable RC6.
3289 	 */
3290 	intel_engine_pm_get(stream->engine);
3291 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
3292 
3293 	/*
3294 	 * Wa_16011777198:dg2: GuC resets render as part of the Wa. This causes
3295 	 * OA to lose the configuration state. Prevent this by overriding GUCRC
3296 	 * mode.
3297 	 */
3298 	if (intel_uc_uses_guc_rc(&gt->uc) &&
3299 	    (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
3300 	     IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))) {
3301 		ret = intel_guc_slpc_override_gucrc_mode(&gt->uc.guc.slpc,
3302 							 SLPC_GUCRC_MODE_GUCRC_NO_RC6);
3303 		if (ret) {
3304 			drm_dbg(&stream->perf->i915->drm,
3305 				"Unable to override gucrc mode\n");
3306 			goto err_gucrc;
3307 		}
3308 
3309 		stream->override_gucrc = true;
3310 	}
3311 
3312 	ret = alloc_oa_buffer(stream);
3313 	if (ret)
3314 		goto err_oa_buf_alloc;
3315 
3316 	stream->ops = &i915_oa_stream_ops;
3317 
3318 	stream->engine->gt->perf.sseu = props->sseu;
3319 	WRITE_ONCE(gt->perf.exclusive_stream, stream);
3320 
3321 	ret = i915_perf_stream_enable_sync(stream);
3322 	if (ret) {
3323 		drm_dbg(&stream->perf->i915->drm,
3324 			"Unable to enable metric set\n");
3325 		goto err_enable;
3326 	}
3327 
3328 	drm_dbg(&stream->perf->i915->drm,
3329 		"opening stream oa config uuid=%s\n",
3330 		  stream->oa_config->uuid);
3331 
3332 	hrtimer_init(&stream->poll_check_timer,
3333 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3334 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
3335 	init_waitqueue_head(&stream->poll_wq);
3336 	spin_lock_init(&stream->oa_buffer.ptr_lock);
3337 	mutex_init(&stream->lock);
3338 
3339 	return 0;
3340 
3341 err_enable:
3342 	WRITE_ONCE(gt->perf.exclusive_stream, NULL);
3343 	perf->ops.disable_metric_set(stream);
3344 
3345 	free_oa_buffer(stream);
3346 
3347 err_oa_buf_alloc:
3348 	if (stream->override_gucrc)
3349 		intel_guc_slpc_unset_gucrc_mode(&gt->uc.guc.slpc);
3350 
3351 err_gucrc:
3352 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3353 	intel_engine_pm_put(stream->engine);
3354 
3355 	free_oa_configs(stream);
3356 
3357 err_config:
3358 	free_noa_wait(stream);
3359 
3360 err_noa_wait_alloc:
3361 	if (stream->ctx)
3362 		oa_put_render_ctx_id(stream);
3363 
3364 	return ret;
3365 }
3366 
3367 void i915_oa_init_reg_state(const struct intel_context *ce,
3368 			    const struct intel_engine_cs *engine)
3369 {
3370 	struct i915_perf_stream *stream;
3371 
3372 	if (engine->class != RENDER_CLASS)
3373 		return;
3374 
3375 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3376 	stream = READ_ONCE(engine->gt->perf.exclusive_stream);
3377 	if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3378 		gen8_update_reg_state_unlocked(ce, stream);
3379 }
3380 
3381 /**
3382  * i915_perf_read - handles read() FOP for i915 perf stream FDs
3383  * @file: An i915 perf stream file
3384  * @buf: destination buffer given by userspace
3385  * @count: the number of bytes userspace wants to read
3386  * @ppos: (inout) file seek position (unused)
3387  *
3388  * The entry point for handling a read() on a stream file descriptor from
3389  * userspace. Most of the work is left to the i915_perf_read_locked() and
3390  * &i915_perf_stream_ops->read but to save having stream implementations (of
3391  * which we might have multiple later) we handle blocking read here.
3392  *
3393  * We can also consistently treat trying to read from a disabled stream
3394  * as an IO error so implementations can assume the stream is enabled
3395  * while reading.
3396  *
3397  * Returns: The number of bytes copied or a negative error code on failure.
3398  */
3399 static ssize_t i915_perf_read(struct file *file,
3400 			      char __user *buf,
3401 			      size_t count,
3402 			      loff_t *ppos)
3403 {
3404 	struct i915_perf_stream *stream = file->private_data;
3405 	size_t offset = 0;
3406 	int ret;
3407 
3408 	/* To ensure it's handled consistently we simply treat all reads of a
3409 	 * disabled stream as an error. In particular it might otherwise lead
3410 	 * to a deadlock for blocking file descriptors...
3411 	 */
3412 	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3413 		return -EIO;
3414 
3415 	if (!(file->f_flags & O_NONBLOCK)) {
3416 		/* There's the small chance of false positives from
3417 		 * stream->ops->wait_unlocked.
3418 		 *
3419 		 * E.g. with single context filtering since we only wait until
3420 		 * oabuffer has >= 1 report we don't immediately know whether
3421 		 * any reports really belong to the current context
3422 		 */
3423 		do {
3424 			ret = stream->ops->wait_unlocked(stream);
3425 			if (ret)
3426 				return ret;
3427 
3428 			mutex_lock(&stream->lock);
3429 			ret = stream->ops->read(stream, buf, count, &offset);
3430 			mutex_unlock(&stream->lock);
3431 		} while (!offset && !ret);
3432 	} else {
3433 		mutex_lock(&stream->lock);
3434 		ret = stream->ops->read(stream, buf, count, &offset);
3435 		mutex_unlock(&stream->lock);
3436 	}
3437 
3438 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3439 	 * events where we might actually report EAGAIN on read() if there's
3440 	 * not really any data available. In this situation though we don't
3441 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3442 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3443 	 * effectively ensures we back off until the next hrtimer callback
3444 	 * before reporting another EPOLLIN event.
3445 	 * The exception to this is if ops->read() returned -ENOSPC which means
3446 	 * that more OA data is available than could fit in the user provided
3447 	 * buffer. In this case we want the next poll() call to not block.
3448 	 */
3449 	if (ret != -ENOSPC)
3450 		stream->pollin = false;
3451 
3452 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3453 	return offset ?: (ret ?: -EAGAIN);
3454 }
3455 
3456 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3457 {
3458 	struct i915_perf_stream *stream =
3459 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3460 
3461 	if (oa_buffer_check_unlocked(stream)) {
3462 		stream->pollin = true;
3463 		wake_up(&stream->poll_wq);
3464 	}
3465 
3466 	hrtimer_forward_now(hrtimer,
3467 			    ns_to_ktime(stream->poll_oa_period));
3468 
3469 	return HRTIMER_RESTART;
3470 }
3471 
3472 /**
3473  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3474  * @stream: An i915 perf stream
3475  * @file: An i915 perf stream file
3476  * @wait: poll() state table
3477  *
3478  * For handling userspace polling on an i915 perf stream, this calls through to
3479  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3480  * will be woken for new stream data.
3481  *
3482  * Returns: any poll events that are ready without sleeping
3483  */
3484 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3485 				      struct file *file,
3486 				      poll_table *wait)
3487 {
3488 	__poll_t events = 0;
3489 
3490 	stream->ops->poll_wait(stream, file, wait);
3491 
3492 	/* Note: we don't explicitly check whether there's something to read
3493 	 * here since this path may be very hot depending on what else
3494 	 * userspace is polling, or on the timeout in use. We rely solely on
3495 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3496 	 * samples to read.
3497 	 */
3498 	if (stream->pollin)
3499 		events |= EPOLLIN;
3500 
3501 	return events;
3502 }
3503 
3504 /**
3505  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3506  * @file: An i915 perf stream file
3507  * @wait: poll() state table
3508  *
3509  * For handling userspace polling on an i915 perf stream, this ensures
3510  * poll_wait() gets called with a wait queue that will be woken for new stream
3511  * data.
3512  *
3513  * Note: Implementation deferred to i915_perf_poll_locked()
3514  *
3515  * Returns: any poll events that are ready without sleeping
3516  */
3517 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3518 {
3519 	struct i915_perf_stream *stream = file->private_data;
3520 	__poll_t ret;
3521 
3522 	mutex_lock(&stream->lock);
3523 	ret = i915_perf_poll_locked(stream, file, wait);
3524 	mutex_unlock(&stream->lock);
3525 
3526 	return ret;
3527 }
3528 
3529 /**
3530  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3531  * @stream: A disabled i915 perf stream
3532  *
3533  * [Re]enables the associated capture of data for this stream.
3534  *
3535  * If a stream was previously enabled then there's currently no intention
3536  * to provide userspace any guarantee about the preservation of previously
3537  * buffered data.
3538  */
3539 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3540 {
3541 	if (stream->enabled)
3542 		return;
3543 
3544 	/* Allow stream->ops->enable() to refer to this */
3545 	stream->enabled = true;
3546 
3547 	if (stream->ops->enable)
3548 		stream->ops->enable(stream);
3549 
3550 	if (stream->hold_preemption)
3551 		intel_context_set_nopreempt(stream->pinned_ctx);
3552 }
3553 
3554 /**
3555  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3556  * @stream: An enabled i915 perf stream
3557  *
3558  * Disables the associated capture of data for this stream.
3559  *
3560  * The intention is that disabling an re-enabling a stream will ideally be
3561  * cheaper than destroying and re-opening a stream with the same configuration,
3562  * though there are no formal guarantees about what state or buffered data
3563  * must be retained between disabling and re-enabling a stream.
3564  *
3565  * Note: while a stream is disabled it's considered an error for userspace
3566  * to attempt to read from the stream (-EIO).
3567  */
3568 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3569 {
3570 	if (!stream->enabled)
3571 		return;
3572 
3573 	/* Allow stream->ops->disable() to refer to this */
3574 	stream->enabled = false;
3575 
3576 	if (stream->hold_preemption)
3577 		intel_context_clear_nopreempt(stream->pinned_ctx);
3578 
3579 	if (stream->ops->disable)
3580 		stream->ops->disable(stream);
3581 }
3582 
3583 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3584 				    unsigned long metrics_set)
3585 {
3586 	struct i915_oa_config *config;
3587 	long ret = stream->oa_config->id;
3588 
3589 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3590 	if (!config)
3591 		return -EINVAL;
3592 
3593 	if (config != stream->oa_config) {
3594 		int err;
3595 
3596 		/*
3597 		 * If OA is bound to a specific context, emit the
3598 		 * reconfiguration inline from that context. The update
3599 		 * will then be ordered with respect to submission on that
3600 		 * context.
3601 		 *
3602 		 * When set globally, we use a low priority kernel context,
3603 		 * so it will effectively take effect when idle.
3604 		 */
3605 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3606 		if (!err)
3607 			config = xchg(&stream->oa_config, config);
3608 		else
3609 			ret = err;
3610 	}
3611 
3612 	i915_oa_config_put(config);
3613 
3614 	return ret;
3615 }
3616 
3617 /**
3618  * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3619  * @stream: An i915 perf stream
3620  * @cmd: the ioctl request
3621  * @arg: the ioctl data
3622  *
3623  * Returns: zero on success or a negative error code. Returns -EINVAL for
3624  * an unknown ioctl request.
3625  */
3626 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3627 				   unsigned int cmd,
3628 				   unsigned long arg)
3629 {
3630 	switch (cmd) {
3631 	case I915_PERF_IOCTL_ENABLE:
3632 		i915_perf_enable_locked(stream);
3633 		return 0;
3634 	case I915_PERF_IOCTL_DISABLE:
3635 		i915_perf_disable_locked(stream);
3636 		return 0;
3637 	case I915_PERF_IOCTL_CONFIG:
3638 		return i915_perf_config_locked(stream, arg);
3639 	}
3640 
3641 	return -EINVAL;
3642 }
3643 
3644 /**
3645  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3646  * @file: An i915 perf stream file
3647  * @cmd: the ioctl request
3648  * @arg: the ioctl data
3649  *
3650  * Implementation deferred to i915_perf_ioctl_locked().
3651  *
3652  * Returns: zero on success or a negative error code. Returns -EINVAL for
3653  * an unknown ioctl request.
3654  */
3655 static long i915_perf_ioctl(struct file *file,
3656 			    unsigned int cmd,
3657 			    unsigned long arg)
3658 {
3659 	struct i915_perf_stream *stream = file->private_data;
3660 	long ret;
3661 
3662 	mutex_lock(&stream->lock);
3663 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3664 	mutex_unlock(&stream->lock);
3665 
3666 	return ret;
3667 }
3668 
3669 /**
3670  * i915_perf_destroy_locked - destroy an i915 perf stream
3671  * @stream: An i915 perf stream
3672  *
3673  * Frees all resources associated with the given i915 perf @stream, disabling
3674  * any associated data capture in the process.
3675  *
3676  * Note: The &gt->perf.lock mutex has been taken to serialize
3677  * with any non-file-operation driver hooks.
3678  */
3679 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3680 {
3681 	if (stream->enabled)
3682 		i915_perf_disable_locked(stream);
3683 
3684 	if (stream->ops->destroy)
3685 		stream->ops->destroy(stream);
3686 
3687 	if (stream->ctx)
3688 		i915_gem_context_put(stream->ctx);
3689 
3690 	kfree(stream);
3691 }
3692 
3693 /**
3694  * i915_perf_release - handles userspace close() of a stream file
3695  * @inode: anonymous inode associated with file
3696  * @file: An i915 perf stream file
3697  *
3698  * Cleans up any resources associated with an open i915 perf stream file.
3699  *
3700  * NB: close() can't really fail from the userspace point of view.
3701  *
3702  * Returns: zero on success or a negative error code.
3703  */
3704 static int i915_perf_release(struct inode *inode, struct file *file)
3705 {
3706 	struct i915_perf_stream *stream = file->private_data;
3707 	struct i915_perf *perf = stream->perf;
3708 	struct intel_gt *gt = stream->engine->gt;
3709 
3710 	/*
3711 	 * Within this call, we know that the fd is being closed and we have no
3712 	 * other user of stream->lock. Use the perf lock to destroy the stream
3713 	 * here.
3714 	 */
3715 	mutex_lock(&gt->perf.lock);
3716 	i915_perf_destroy_locked(stream);
3717 	mutex_unlock(&gt->perf.lock);
3718 
3719 	/* Release the reference the perf stream kept on the driver. */
3720 	drm_dev_put(&perf->i915->drm);
3721 
3722 	return 0;
3723 }
3724 
3725 
3726 static const struct file_operations fops = {
3727 	.owner		= THIS_MODULE,
3728 	.llseek		= no_llseek,
3729 	.release	= i915_perf_release,
3730 	.poll		= i915_perf_poll,
3731 	.read		= i915_perf_read,
3732 	.unlocked_ioctl	= i915_perf_ioctl,
3733 	/* Our ioctl have no arguments, so it's safe to use the same function
3734 	 * to handle 32bits compatibility.
3735 	 */
3736 	.compat_ioctl   = i915_perf_ioctl,
3737 };
3738 
3739 
3740 /**
3741  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3742  * @perf: i915 perf instance
3743  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3744  * @props: individually validated u64 property value pairs
3745  * @file: drm file
3746  *
3747  * See i915_perf_ioctl_open() for interface details.
3748  *
3749  * Implements further stream config validation and stream initialization on
3750  * behalf of i915_perf_open_ioctl() with the &gt->perf.lock mutex
3751  * taken to serialize with any non-file-operation driver hooks.
3752  *
3753  * Note: at this point the @props have only been validated in isolation and
3754  * it's still necessary to validate that the combination of properties makes
3755  * sense.
3756  *
3757  * In the case where userspace is interested in OA unit metrics then further
3758  * config validation and stream initialization details will be handled by
3759  * i915_oa_stream_init(). The code here should only validate config state that
3760  * will be relevant to all stream types / backends.
3761  *
3762  * Returns: zero on success or a negative error code.
3763  */
3764 static int
3765 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3766 			    struct drm_i915_perf_open_param *param,
3767 			    struct perf_open_properties *props,
3768 			    struct drm_file *file)
3769 {
3770 	struct i915_gem_context *specific_ctx = NULL;
3771 	struct i915_perf_stream *stream = NULL;
3772 	unsigned long f_flags = 0;
3773 	bool privileged_op = true;
3774 	int stream_fd;
3775 	int ret;
3776 
3777 	if (props->single_context) {
3778 		u32 ctx_handle = props->ctx_handle;
3779 		struct drm_i915_file_private *file_priv = file->driver_priv;
3780 
3781 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3782 		if (IS_ERR(specific_ctx)) {
3783 			drm_dbg(&perf->i915->drm,
3784 				"Failed to look up context with ID %u for opening perf stream\n",
3785 				  ctx_handle);
3786 			ret = PTR_ERR(specific_ctx);
3787 			goto err;
3788 		}
3789 	}
3790 
3791 	/*
3792 	 * On Haswell the OA unit supports clock gating off for a specific
3793 	 * context and in this mode there's no visibility of metrics for the
3794 	 * rest of the system, which we consider acceptable for a
3795 	 * non-privileged client.
3796 	 *
3797 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3798 	 * specific context and the kernel can't securely stop the counters
3799 	 * from updating as system-wide / global values. Even though we can
3800 	 * filter reports based on the included context ID we can't block
3801 	 * clients from seeing the raw / global counter values via
3802 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3803 	 * enable the OA unit by default.
3804 	 *
3805 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3806 	 * per context basis. So we can relax requirements there if the user
3807 	 * doesn't request global stream access (i.e. query based sampling
3808 	 * using MI_RECORD_PERF_COUNT.
3809 	 */
3810 	if (IS_HASWELL(perf->i915) && specific_ctx)
3811 		privileged_op = false;
3812 	else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3813 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3814 		privileged_op = false;
3815 
3816 	if (props->hold_preemption) {
3817 		if (!props->single_context) {
3818 			drm_dbg(&perf->i915->drm,
3819 				"preemption disable with no context\n");
3820 			ret = -EINVAL;
3821 			goto err;
3822 		}
3823 		privileged_op = true;
3824 	}
3825 
3826 	/*
3827 	 * Asking for SSEU configuration is a priviliged operation.
3828 	 */
3829 	if (props->has_sseu)
3830 		privileged_op = true;
3831 	else
3832 		get_default_sseu_config(&props->sseu, props->engine);
3833 
3834 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3835 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3836 	 * to determine if it's ok to access system wide OA counters
3837 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3838 	 */
3839 	if (privileged_op &&
3840 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3841 		drm_dbg(&perf->i915->drm,
3842 			"Insufficient privileges to open i915 perf stream\n");
3843 		ret = -EACCES;
3844 		goto err_ctx;
3845 	}
3846 
3847 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3848 	if (!stream) {
3849 		ret = -ENOMEM;
3850 		goto err_ctx;
3851 	}
3852 
3853 	stream->perf = perf;
3854 	stream->ctx = specific_ctx;
3855 	stream->poll_oa_period = props->poll_oa_period;
3856 
3857 	ret = i915_oa_stream_init(stream, param, props);
3858 	if (ret)
3859 		goto err_alloc;
3860 
3861 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3862 	 * to have _stream_init check the combination of sample flags more
3863 	 * thoroughly, but still this is the expected result at this point.
3864 	 */
3865 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3866 		ret = -ENODEV;
3867 		goto err_flags;
3868 	}
3869 
3870 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3871 		f_flags |= O_CLOEXEC;
3872 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3873 		f_flags |= O_NONBLOCK;
3874 
3875 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3876 	if (stream_fd < 0) {
3877 		ret = stream_fd;
3878 		goto err_flags;
3879 	}
3880 
3881 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3882 		i915_perf_enable_locked(stream);
3883 
3884 	/* Take a reference on the driver that will be kept with stream_fd
3885 	 * until its release.
3886 	 */
3887 	drm_dev_get(&perf->i915->drm);
3888 
3889 	return stream_fd;
3890 
3891 err_flags:
3892 	if (stream->ops->destroy)
3893 		stream->ops->destroy(stream);
3894 err_alloc:
3895 	kfree(stream);
3896 err_ctx:
3897 	if (specific_ctx)
3898 		i915_gem_context_put(specific_ctx);
3899 err:
3900 	return ret;
3901 }
3902 
3903 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3904 {
3905 	u64 nom = (2ULL << exponent) * NSEC_PER_SEC;
3906 	u32 den = i915_perf_oa_timestamp_frequency(perf->i915);
3907 
3908 	return div_u64(nom + den - 1, den);
3909 }
3910 
3911 static __always_inline bool
3912 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
3913 {
3914 	return test_bit(format, perf->format_mask);
3915 }
3916 
3917 static __always_inline void
3918 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
3919 {
3920 	__set_bit(format, perf->format_mask);
3921 }
3922 
3923 /**
3924  * read_properties_unlocked - validate + copy userspace stream open properties
3925  * @perf: i915 perf instance
3926  * @uprops: The array of u64 key value pairs given by userspace
3927  * @n_props: The number of key value pairs expected in @uprops
3928  * @props: The stream configuration built up while validating properties
3929  *
3930  * Note this function only validates properties in isolation it doesn't
3931  * validate that the combination of properties makes sense or that all
3932  * properties necessary for a particular kind of stream have been set.
3933  *
3934  * Note that there currently aren't any ordering requirements for properties so
3935  * we shouldn't validate or assume anything about ordering here. This doesn't
3936  * rule out defining new properties with ordering requirements in the future.
3937  */
3938 static int read_properties_unlocked(struct i915_perf *perf,
3939 				    u64 __user *uprops,
3940 				    u32 n_props,
3941 				    struct perf_open_properties *props)
3942 {
3943 	u64 __user *uprop = uprops;
3944 	u32 i;
3945 	int ret;
3946 
3947 	memset(props, 0, sizeof(struct perf_open_properties));
3948 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3949 
3950 	if (!n_props) {
3951 		drm_dbg(&perf->i915->drm,
3952 			"No i915 perf properties given\n");
3953 		return -EINVAL;
3954 	}
3955 
3956 	/* At the moment we only support using i915-perf on the RCS. */
3957 	props->engine = intel_engine_lookup_user(perf->i915,
3958 						 I915_ENGINE_CLASS_RENDER,
3959 						 0);
3960 	if (!props->engine) {
3961 		drm_dbg(&perf->i915->drm,
3962 			"No RENDER-capable engines\n");
3963 		return -EINVAL;
3964 	}
3965 
3966 	/* Considering that ID = 0 is reserved and assuming that we don't
3967 	 * (currently) expect any configurations to ever specify duplicate
3968 	 * values for a particular property ID then the last _PROP_MAX value is
3969 	 * one greater than the maximum number of properties we expect to get
3970 	 * from userspace.
3971 	 */
3972 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
3973 		drm_dbg(&perf->i915->drm,
3974 			"More i915 perf properties specified than exist\n");
3975 		return -EINVAL;
3976 	}
3977 
3978 	for (i = 0; i < n_props; i++) {
3979 		u64 oa_period, oa_freq_hz;
3980 		u64 id, value;
3981 
3982 		ret = get_user(id, uprop);
3983 		if (ret)
3984 			return ret;
3985 
3986 		ret = get_user(value, uprop + 1);
3987 		if (ret)
3988 			return ret;
3989 
3990 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3991 			drm_dbg(&perf->i915->drm,
3992 				"Unknown i915 perf property ID\n");
3993 			return -EINVAL;
3994 		}
3995 
3996 		switch ((enum drm_i915_perf_property_id)id) {
3997 		case DRM_I915_PERF_PROP_CTX_HANDLE:
3998 			props->single_context = 1;
3999 			props->ctx_handle = value;
4000 			break;
4001 		case DRM_I915_PERF_PROP_SAMPLE_OA:
4002 			if (value)
4003 				props->sample_flags |= SAMPLE_OA_REPORT;
4004 			break;
4005 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
4006 			if (value == 0) {
4007 				drm_dbg(&perf->i915->drm,
4008 					"Unknown OA metric set ID\n");
4009 				return -EINVAL;
4010 			}
4011 			props->metrics_set = value;
4012 			break;
4013 		case DRM_I915_PERF_PROP_OA_FORMAT:
4014 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
4015 				drm_dbg(&perf->i915->drm,
4016 					"Out-of-range OA report format %llu\n",
4017 					  value);
4018 				return -EINVAL;
4019 			}
4020 			if (!oa_format_valid(perf, value)) {
4021 				drm_dbg(&perf->i915->drm,
4022 					"Unsupported OA report format %llu\n",
4023 					  value);
4024 				return -EINVAL;
4025 			}
4026 			props->oa_format = value;
4027 			break;
4028 		case DRM_I915_PERF_PROP_OA_EXPONENT:
4029 			if (value > OA_EXPONENT_MAX) {
4030 				drm_dbg(&perf->i915->drm,
4031 					"OA timer exponent too high (> %u)\n",
4032 					 OA_EXPONENT_MAX);
4033 				return -EINVAL;
4034 			}
4035 
4036 			/* Theoretically we can program the OA unit to sample
4037 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
4038 			 * for BXT. We don't allow such high sampling
4039 			 * frequencies by default unless root.
4040 			 */
4041 
4042 			BUILD_BUG_ON(sizeof(oa_period) != 8);
4043 			oa_period = oa_exponent_to_ns(perf, value);
4044 
4045 			/* This check is primarily to ensure that oa_period <=
4046 			 * UINT32_MAX (before passing to do_div which only
4047 			 * accepts a u32 denominator), but we can also skip
4048 			 * checking anything < 1Hz which implicitly can't be
4049 			 * limited via an integer oa_max_sample_rate.
4050 			 */
4051 			if (oa_period <= NSEC_PER_SEC) {
4052 				u64 tmp = NSEC_PER_SEC;
4053 				do_div(tmp, oa_period);
4054 				oa_freq_hz = tmp;
4055 			} else
4056 				oa_freq_hz = 0;
4057 
4058 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
4059 				drm_dbg(&perf->i915->drm,
4060 					"OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
4061 					  i915_oa_max_sample_rate);
4062 				return -EACCES;
4063 			}
4064 
4065 			props->oa_periodic = true;
4066 			props->oa_period_exponent = value;
4067 			break;
4068 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
4069 			props->hold_preemption = !!value;
4070 			break;
4071 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
4072 			struct drm_i915_gem_context_param_sseu user_sseu;
4073 
4074 			if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) {
4075 				drm_dbg(&perf->i915->drm,
4076 					"SSEU config not supported on gfx %x\n",
4077 					GRAPHICS_VER_FULL(perf->i915));
4078 				return -ENODEV;
4079 			}
4080 
4081 			if (copy_from_user(&user_sseu,
4082 					   u64_to_user_ptr(value),
4083 					   sizeof(user_sseu))) {
4084 				drm_dbg(&perf->i915->drm,
4085 					"Unable to copy global sseu parameter\n");
4086 				return -EFAULT;
4087 			}
4088 
4089 			ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
4090 			if (ret) {
4091 				drm_dbg(&perf->i915->drm,
4092 					"Invalid SSEU configuration\n");
4093 				return ret;
4094 			}
4095 			props->has_sseu = true;
4096 			break;
4097 		}
4098 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
4099 			if (value < 100000 /* 100us */) {
4100 				drm_dbg(&perf->i915->drm,
4101 					"OA availability timer too small (%lluns < 100us)\n",
4102 					  value);
4103 				return -EINVAL;
4104 			}
4105 			props->poll_oa_period = value;
4106 			break;
4107 		case DRM_I915_PERF_PROP_MAX:
4108 			MISSING_CASE(id);
4109 			return -EINVAL;
4110 		}
4111 
4112 		uprop += 2;
4113 	}
4114 
4115 	return 0;
4116 }
4117 
4118 /**
4119  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
4120  * @dev: drm device
4121  * @data: ioctl data copied from userspace (unvalidated)
4122  * @file: drm file
4123  *
4124  * Validates the stream open parameters given by userspace including flags
4125  * and an array of u64 key, value pair properties.
4126  *
4127  * Very little is assumed up front about the nature of the stream being
4128  * opened (for instance we don't assume it's for periodic OA unit metrics). An
4129  * i915-perf stream is expected to be a suitable interface for other forms of
4130  * buffered data written by the GPU besides periodic OA metrics.
4131  *
4132  * Note we copy the properties from userspace outside of the i915 perf
4133  * mutex to avoid an awkward lockdep with mmap_lock.
4134  *
4135  * Most of the implementation details are handled by
4136  * i915_perf_open_ioctl_locked() after taking the &gt->perf.lock
4137  * mutex for serializing with any non-file-operation driver hooks.
4138  *
4139  * Return: A newly opened i915 Perf stream file descriptor or negative
4140  * error code on failure.
4141  */
4142 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
4143 			 struct drm_file *file)
4144 {
4145 	struct i915_perf *perf = &to_i915(dev)->perf;
4146 	struct drm_i915_perf_open_param *param = data;
4147 	struct intel_gt *gt;
4148 	struct perf_open_properties props;
4149 	u32 known_open_flags;
4150 	int ret;
4151 
4152 	if (!perf->i915) {
4153 		drm_dbg(&perf->i915->drm,
4154 			"i915 perf interface not available for this system\n");
4155 		return -ENOTSUPP;
4156 	}
4157 
4158 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
4159 			   I915_PERF_FLAG_FD_NONBLOCK |
4160 			   I915_PERF_FLAG_DISABLED;
4161 	if (param->flags & ~known_open_flags) {
4162 		drm_dbg(&perf->i915->drm,
4163 			"Unknown drm_i915_perf_open_param flag\n");
4164 		return -EINVAL;
4165 	}
4166 
4167 	ret = read_properties_unlocked(perf,
4168 				       u64_to_user_ptr(param->properties_ptr),
4169 				       param->num_properties,
4170 				       &props);
4171 	if (ret)
4172 		return ret;
4173 
4174 	gt = props.engine->gt;
4175 
4176 	mutex_lock(&gt->perf.lock);
4177 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
4178 	mutex_unlock(&gt->perf.lock);
4179 
4180 	return ret;
4181 }
4182 
4183 /**
4184  * i915_perf_register - exposes i915-perf to userspace
4185  * @i915: i915 device instance
4186  *
4187  * In particular OA metric sets are advertised under a sysfs metrics/
4188  * directory allowing userspace to enumerate valid IDs that can be
4189  * used to open an i915-perf stream.
4190  */
4191 void i915_perf_register(struct drm_i915_private *i915)
4192 {
4193 	struct i915_perf *perf = &i915->perf;
4194 	struct intel_gt *gt = to_gt(i915);
4195 
4196 	if (!perf->i915)
4197 		return;
4198 
4199 	/* To be sure we're synchronized with an attempted
4200 	 * i915_perf_open_ioctl(); considering that we register after
4201 	 * being exposed to userspace.
4202 	 */
4203 	mutex_lock(&gt->perf.lock);
4204 
4205 	perf->metrics_kobj =
4206 		kobject_create_and_add("metrics",
4207 				       &i915->drm.primary->kdev->kobj);
4208 
4209 	mutex_unlock(&gt->perf.lock);
4210 }
4211 
4212 /**
4213  * i915_perf_unregister - hide i915-perf from userspace
4214  * @i915: i915 device instance
4215  *
4216  * i915-perf state cleanup is split up into an 'unregister' and
4217  * 'deinit' phase where the interface is first hidden from
4218  * userspace by i915_perf_unregister() before cleaning up
4219  * remaining state in i915_perf_fini().
4220  */
4221 void i915_perf_unregister(struct drm_i915_private *i915)
4222 {
4223 	struct i915_perf *perf = &i915->perf;
4224 
4225 	if (!perf->metrics_kobj)
4226 		return;
4227 
4228 	kobject_put(perf->metrics_kobj);
4229 	perf->metrics_kobj = NULL;
4230 }
4231 
4232 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
4233 {
4234 	static const i915_reg_t flex_eu_regs[] = {
4235 		EU_PERF_CNTL0,
4236 		EU_PERF_CNTL1,
4237 		EU_PERF_CNTL2,
4238 		EU_PERF_CNTL3,
4239 		EU_PERF_CNTL4,
4240 		EU_PERF_CNTL5,
4241 		EU_PERF_CNTL6,
4242 	};
4243 	int i;
4244 
4245 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
4246 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
4247 			return true;
4248 	}
4249 	return false;
4250 }
4251 
4252 static bool reg_in_range_table(u32 addr, const struct i915_range *table)
4253 {
4254 	while (table->start || table->end) {
4255 		if (addr >= table->start && addr <= table->end)
4256 			return true;
4257 
4258 		table++;
4259 	}
4260 
4261 	return false;
4262 }
4263 
4264 #define REG_EQUAL(addr, mmio) \
4265 	((addr) == i915_mmio_reg_offset(mmio))
4266 
4267 static const struct i915_range gen7_oa_b_counters[] = {
4268 	{ .start = 0x2710, .end = 0x272c },	/* OASTARTTRIG[1-8] */
4269 	{ .start = 0x2740, .end = 0x275c },	/* OAREPORTTRIG[1-8] */
4270 	{ .start = 0x2770, .end = 0x27ac },	/* OACEC[0-7][0-1] */
4271 	{}
4272 };
4273 
4274 static const struct i915_range gen12_oa_b_counters[] = {
4275 	{ .start = 0x2b2c, .end = 0x2b2c },	/* GEN12_OAG_OA_PESS */
4276 	{ .start = 0xd900, .end = 0xd91c },	/* GEN12_OAG_OASTARTTRIG[1-8] */
4277 	{ .start = 0xd920, .end = 0xd93c },	/* GEN12_OAG_OAREPORTTRIG1[1-8] */
4278 	{ .start = 0xd940, .end = 0xd97c },	/* GEN12_OAG_CEC[0-7][0-1] */
4279 	{ .start = 0xdc00, .end = 0xdc3c },	/* GEN12_OAG_SCEC[0-7][0-1] */
4280 	{ .start = 0xdc40, .end = 0xdc40 },	/* GEN12_OAG_SPCTR_CNF */
4281 	{ .start = 0xdc44, .end = 0xdc44 },	/* GEN12_OAA_DBG_REG */
4282 	{}
4283 };
4284 
4285 static const struct i915_range xehp_oa_b_counters[] = {
4286 	{ .start = 0xdc48, .end = 0xdc48 },	/* OAA_ENABLE_REG */
4287 	{ .start = 0xdd00, .end = 0xdd48 },	/* OAG_LCE0_0 - OAA_LENABLE_REG */
4288 };
4289 
4290 static const struct i915_range gen7_oa_mux_regs[] = {
4291 	{ .start = 0x91b8, .end = 0x91cc },	/* OA_PERFCNT[1-2], OA_PERFMATRIX */
4292 	{ .start = 0x9800, .end = 0x9888 },	/* MICRO_BP0_0 - NOA_WRITE */
4293 	{ .start = 0xe180, .end = 0xe180 },	/* HALF_SLICE_CHICKEN2 */
4294 	{}
4295 };
4296 
4297 static const struct i915_range hsw_oa_mux_regs[] = {
4298 	{ .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
4299 	{ .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
4300 	{ .start = 0x25100, .end = 0x2ff90 },
4301 	{}
4302 };
4303 
4304 static const struct i915_range chv_oa_mux_regs[] = {
4305 	{ .start = 0x182300, .end = 0x1823a4 },
4306 	{}
4307 };
4308 
4309 static const struct i915_range gen8_oa_mux_regs[] = {
4310 	{ .start = 0x0d00, .end = 0x0d2c },	/* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
4311 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4312 	{}
4313 };
4314 
4315 static const struct i915_range gen11_oa_mux_regs[] = {
4316 	{ .start = 0x91c8, .end = 0x91dc },	/* OA_PERFCNT[3-4] */
4317 	{}
4318 };
4319 
4320 static const struct i915_range gen12_oa_mux_regs[] = {
4321 	{ .start = 0x0d00, .end = 0x0d04 },     /* RPM_CONFIG[0-1] */
4322 	{ .start = 0x0d0c, .end = 0x0d2c },     /* NOA_CONFIG[0-8] */
4323 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4324 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4325 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4326 	{}
4327 };
4328 
4329 /*
4330  * Ref: 14010536224:
4331  * 0x20cc is repurposed on MTL, so use a separate array for MTL.
4332  */
4333 static const struct i915_range mtl_oa_mux_regs[] = {
4334 	{ .start = 0x0d00, .end = 0x0d04 },	/* RPM_CONFIG[0-1] */
4335 	{ .start = 0x0d0c, .end = 0x0d2c },	/* NOA_CONFIG[0-8] */
4336 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4337 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4338 };
4339 
4340 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4341 {
4342 	return reg_in_range_table(addr, gen7_oa_b_counters);
4343 }
4344 
4345 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4346 {
4347 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4348 		reg_in_range_table(addr, gen8_oa_mux_regs);
4349 }
4350 
4351 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4352 {
4353 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4354 		reg_in_range_table(addr, gen8_oa_mux_regs) ||
4355 		reg_in_range_table(addr, gen11_oa_mux_regs);
4356 }
4357 
4358 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4359 {
4360 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4361 		reg_in_range_table(addr, hsw_oa_mux_regs);
4362 }
4363 
4364 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4365 {
4366 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4367 		reg_in_range_table(addr, chv_oa_mux_regs);
4368 }
4369 
4370 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4371 {
4372 	return reg_in_range_table(addr, gen12_oa_b_counters);
4373 }
4374 
4375 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4376 {
4377 	return reg_in_range_table(addr, xehp_oa_b_counters) ||
4378 		reg_in_range_table(addr, gen12_oa_b_counters);
4379 }
4380 
4381 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4382 {
4383 	if (IS_METEORLAKE(perf->i915))
4384 		return reg_in_range_table(addr, mtl_oa_mux_regs);
4385 	else
4386 		return reg_in_range_table(addr, gen12_oa_mux_regs);
4387 }
4388 
4389 static u32 mask_reg_value(u32 reg, u32 val)
4390 {
4391 	/* HALF_SLICE_CHICKEN2 is programmed with a the
4392 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4393 	 * programmed by userspace doesn't change this.
4394 	 */
4395 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4396 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4397 
4398 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
4399 	 * indicated by its name and a bunch of selection fields used by OA
4400 	 * configs.
4401 	 */
4402 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4403 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4404 
4405 	return val;
4406 }
4407 
4408 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4409 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4410 					 u32 __user *regs,
4411 					 u32 n_regs)
4412 {
4413 	struct i915_oa_reg *oa_regs;
4414 	int err;
4415 	u32 i;
4416 
4417 	if (!n_regs)
4418 		return NULL;
4419 
4420 	/* No is_valid function means we're not allowing any register to be programmed. */
4421 	GEM_BUG_ON(!is_valid);
4422 	if (!is_valid)
4423 		return ERR_PTR(-EINVAL);
4424 
4425 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4426 	if (!oa_regs)
4427 		return ERR_PTR(-ENOMEM);
4428 
4429 	for (i = 0; i < n_regs; i++) {
4430 		u32 addr, value;
4431 
4432 		err = get_user(addr, regs);
4433 		if (err)
4434 			goto addr_err;
4435 
4436 		if (!is_valid(perf, addr)) {
4437 			drm_dbg(&perf->i915->drm,
4438 				"Invalid oa_reg address: %X\n", addr);
4439 			err = -EINVAL;
4440 			goto addr_err;
4441 		}
4442 
4443 		err = get_user(value, regs + 1);
4444 		if (err)
4445 			goto addr_err;
4446 
4447 		oa_regs[i].addr = _MMIO(addr);
4448 		oa_regs[i].value = mask_reg_value(addr, value);
4449 
4450 		regs += 2;
4451 	}
4452 
4453 	return oa_regs;
4454 
4455 addr_err:
4456 	kfree(oa_regs);
4457 	return ERR_PTR(err);
4458 }
4459 
4460 static ssize_t show_dynamic_id(struct kobject *kobj,
4461 			       struct kobj_attribute *attr,
4462 			       char *buf)
4463 {
4464 	struct i915_oa_config *oa_config =
4465 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
4466 
4467 	return sprintf(buf, "%d\n", oa_config->id);
4468 }
4469 
4470 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4471 					 struct i915_oa_config *oa_config)
4472 {
4473 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4474 	oa_config->sysfs_metric_id.attr.name = "id";
4475 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4476 	oa_config->sysfs_metric_id.show = show_dynamic_id;
4477 	oa_config->sysfs_metric_id.store = NULL;
4478 
4479 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4480 	oa_config->attrs[1] = NULL;
4481 
4482 	oa_config->sysfs_metric.name = oa_config->uuid;
4483 	oa_config->sysfs_metric.attrs = oa_config->attrs;
4484 
4485 	return sysfs_create_group(perf->metrics_kobj,
4486 				  &oa_config->sysfs_metric);
4487 }
4488 
4489 /**
4490  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4491  * @dev: drm device
4492  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4493  *        userspace (unvalidated)
4494  * @file: drm file
4495  *
4496  * Validates the submitted OA register to be saved into a new OA config that
4497  * can then be used for programming the OA unit and its NOA network.
4498  *
4499  * Returns: A new allocated config number to be used with the perf open ioctl
4500  * or a negative error code on failure.
4501  */
4502 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4503 			       struct drm_file *file)
4504 {
4505 	struct i915_perf *perf = &to_i915(dev)->perf;
4506 	struct drm_i915_perf_oa_config *args = data;
4507 	struct i915_oa_config *oa_config, *tmp;
4508 	struct i915_oa_reg *regs;
4509 	int err, id;
4510 
4511 	if (!perf->i915) {
4512 		drm_dbg(&perf->i915->drm,
4513 			"i915 perf interface not available for this system\n");
4514 		return -ENOTSUPP;
4515 	}
4516 
4517 	if (!perf->metrics_kobj) {
4518 		drm_dbg(&perf->i915->drm,
4519 			"OA metrics weren't advertised via sysfs\n");
4520 		return -EINVAL;
4521 	}
4522 
4523 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4524 		drm_dbg(&perf->i915->drm,
4525 			"Insufficient privileges to add i915 OA config\n");
4526 		return -EACCES;
4527 	}
4528 
4529 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4530 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4531 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4532 		drm_dbg(&perf->i915->drm,
4533 			"No OA registers given\n");
4534 		return -EINVAL;
4535 	}
4536 
4537 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4538 	if (!oa_config) {
4539 		drm_dbg(&perf->i915->drm,
4540 			"Failed to allocate memory for the OA config\n");
4541 		return -ENOMEM;
4542 	}
4543 
4544 	oa_config->perf = perf;
4545 	kref_init(&oa_config->ref);
4546 
4547 	if (!uuid_is_valid(args->uuid)) {
4548 		drm_dbg(&perf->i915->drm,
4549 			"Invalid uuid format for OA config\n");
4550 		err = -EINVAL;
4551 		goto reg_err;
4552 	}
4553 
4554 	/* Last character in oa_config->uuid will be 0 because oa_config is
4555 	 * kzalloc.
4556 	 */
4557 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4558 
4559 	oa_config->mux_regs_len = args->n_mux_regs;
4560 	regs = alloc_oa_regs(perf,
4561 			     perf->ops.is_valid_mux_reg,
4562 			     u64_to_user_ptr(args->mux_regs_ptr),
4563 			     args->n_mux_regs);
4564 
4565 	if (IS_ERR(regs)) {
4566 		drm_dbg(&perf->i915->drm,
4567 			"Failed to create OA config for mux_regs\n");
4568 		err = PTR_ERR(regs);
4569 		goto reg_err;
4570 	}
4571 	oa_config->mux_regs = regs;
4572 
4573 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4574 	regs = alloc_oa_regs(perf,
4575 			     perf->ops.is_valid_b_counter_reg,
4576 			     u64_to_user_ptr(args->boolean_regs_ptr),
4577 			     args->n_boolean_regs);
4578 
4579 	if (IS_ERR(regs)) {
4580 		drm_dbg(&perf->i915->drm,
4581 			"Failed to create OA config for b_counter_regs\n");
4582 		err = PTR_ERR(regs);
4583 		goto reg_err;
4584 	}
4585 	oa_config->b_counter_regs = regs;
4586 
4587 	if (GRAPHICS_VER(perf->i915) < 8) {
4588 		if (args->n_flex_regs != 0) {
4589 			err = -EINVAL;
4590 			goto reg_err;
4591 		}
4592 	} else {
4593 		oa_config->flex_regs_len = args->n_flex_regs;
4594 		regs = alloc_oa_regs(perf,
4595 				     perf->ops.is_valid_flex_reg,
4596 				     u64_to_user_ptr(args->flex_regs_ptr),
4597 				     args->n_flex_regs);
4598 
4599 		if (IS_ERR(regs)) {
4600 			drm_dbg(&perf->i915->drm,
4601 				"Failed to create OA config for flex_regs\n");
4602 			err = PTR_ERR(regs);
4603 			goto reg_err;
4604 		}
4605 		oa_config->flex_regs = regs;
4606 	}
4607 
4608 	err = mutex_lock_interruptible(&perf->metrics_lock);
4609 	if (err)
4610 		goto reg_err;
4611 
4612 	/* We shouldn't have too many configs, so this iteration shouldn't be
4613 	 * too costly.
4614 	 */
4615 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4616 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4617 			drm_dbg(&perf->i915->drm,
4618 				"OA config already exists with this uuid\n");
4619 			err = -EADDRINUSE;
4620 			goto sysfs_err;
4621 		}
4622 	}
4623 
4624 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4625 	if (err) {
4626 		drm_dbg(&perf->i915->drm,
4627 			"Failed to create sysfs entry for OA config\n");
4628 		goto sysfs_err;
4629 	}
4630 
4631 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4632 	oa_config->id = idr_alloc(&perf->metrics_idr,
4633 				  oa_config, 2,
4634 				  0, GFP_KERNEL);
4635 	if (oa_config->id < 0) {
4636 		drm_dbg(&perf->i915->drm,
4637 			"Failed to create sysfs entry for OA config\n");
4638 		err = oa_config->id;
4639 		goto sysfs_err;
4640 	}
4641 
4642 	mutex_unlock(&perf->metrics_lock);
4643 
4644 	drm_dbg(&perf->i915->drm,
4645 		"Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4646 
4647 	return oa_config->id;
4648 
4649 sysfs_err:
4650 	mutex_unlock(&perf->metrics_lock);
4651 reg_err:
4652 	i915_oa_config_put(oa_config);
4653 	drm_dbg(&perf->i915->drm,
4654 		"Failed to add new OA config\n");
4655 	return err;
4656 }
4657 
4658 /**
4659  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4660  * @dev: drm device
4661  * @data: ioctl data (pointer to u64 integer) copied from userspace
4662  * @file: drm file
4663  *
4664  * Configs can be removed while being used, the will stop appearing in sysfs
4665  * and their content will be freed when the stream using the config is closed.
4666  *
4667  * Returns: 0 on success or a negative error code on failure.
4668  */
4669 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4670 				  struct drm_file *file)
4671 {
4672 	struct i915_perf *perf = &to_i915(dev)->perf;
4673 	u64 *arg = data;
4674 	struct i915_oa_config *oa_config;
4675 	int ret;
4676 
4677 	if (!perf->i915) {
4678 		drm_dbg(&perf->i915->drm,
4679 			"i915 perf interface not available for this system\n");
4680 		return -ENOTSUPP;
4681 	}
4682 
4683 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4684 		drm_dbg(&perf->i915->drm,
4685 			"Insufficient privileges to remove i915 OA config\n");
4686 		return -EACCES;
4687 	}
4688 
4689 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4690 	if (ret)
4691 		return ret;
4692 
4693 	oa_config = idr_find(&perf->metrics_idr, *arg);
4694 	if (!oa_config) {
4695 		drm_dbg(&perf->i915->drm,
4696 			"Failed to remove unknown OA config\n");
4697 		ret = -ENOENT;
4698 		goto err_unlock;
4699 	}
4700 
4701 	GEM_BUG_ON(*arg != oa_config->id);
4702 
4703 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4704 
4705 	idr_remove(&perf->metrics_idr, *arg);
4706 
4707 	mutex_unlock(&perf->metrics_lock);
4708 
4709 	drm_dbg(&perf->i915->drm,
4710 		"Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4711 
4712 	i915_oa_config_put(oa_config);
4713 
4714 	return 0;
4715 
4716 err_unlock:
4717 	mutex_unlock(&perf->metrics_lock);
4718 	return ret;
4719 }
4720 
4721 static struct ctl_table oa_table[] = {
4722 	{
4723 	 .procname = "perf_stream_paranoid",
4724 	 .data = &i915_perf_stream_paranoid,
4725 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4726 	 .mode = 0644,
4727 	 .proc_handler = proc_dointvec_minmax,
4728 	 .extra1 = SYSCTL_ZERO,
4729 	 .extra2 = SYSCTL_ONE,
4730 	 },
4731 	{
4732 	 .procname = "oa_max_sample_rate",
4733 	 .data = &i915_oa_max_sample_rate,
4734 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4735 	 .mode = 0644,
4736 	 .proc_handler = proc_dointvec_minmax,
4737 	 .extra1 = SYSCTL_ZERO,
4738 	 .extra2 = &oa_sample_rate_hard_limit,
4739 	 },
4740 	{}
4741 };
4742 
4743 static void oa_init_supported_formats(struct i915_perf *perf)
4744 {
4745 	struct drm_i915_private *i915 = perf->i915;
4746 	enum intel_platform platform = INTEL_INFO(i915)->platform;
4747 
4748 	switch (platform) {
4749 	case INTEL_HASWELL:
4750 		oa_format_add(perf, I915_OA_FORMAT_A13);
4751 		oa_format_add(perf, I915_OA_FORMAT_A13);
4752 		oa_format_add(perf, I915_OA_FORMAT_A29);
4753 		oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
4754 		oa_format_add(perf, I915_OA_FORMAT_B4_C8);
4755 		oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
4756 		oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
4757 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4758 		break;
4759 
4760 	case INTEL_BROADWELL:
4761 	case INTEL_CHERRYVIEW:
4762 	case INTEL_SKYLAKE:
4763 	case INTEL_BROXTON:
4764 	case INTEL_KABYLAKE:
4765 	case INTEL_GEMINILAKE:
4766 	case INTEL_COFFEELAKE:
4767 	case INTEL_COMETLAKE:
4768 	case INTEL_ICELAKE:
4769 	case INTEL_ELKHARTLAKE:
4770 	case INTEL_JASPERLAKE:
4771 	case INTEL_TIGERLAKE:
4772 	case INTEL_ROCKETLAKE:
4773 	case INTEL_DG1:
4774 	case INTEL_ALDERLAKE_S:
4775 	case INTEL_ALDERLAKE_P:
4776 		oa_format_add(perf, I915_OA_FORMAT_A12);
4777 		oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
4778 		oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
4779 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4780 		break;
4781 
4782 	case INTEL_DG2:
4783 	case INTEL_METEORLAKE:
4784 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
4785 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
4786 		break;
4787 
4788 	default:
4789 		MISSING_CASE(platform);
4790 	}
4791 }
4792 
4793 static void i915_perf_init_info(struct drm_i915_private *i915)
4794 {
4795 	struct i915_perf *perf = &i915->perf;
4796 
4797 	switch (GRAPHICS_VER(i915)) {
4798 	case 8:
4799 		perf->ctx_oactxctrl_offset = 0x120;
4800 		perf->ctx_flexeu0_offset = 0x2ce;
4801 		perf->gen8_valid_ctx_bit = BIT(25);
4802 		break;
4803 	case 9:
4804 		perf->ctx_oactxctrl_offset = 0x128;
4805 		perf->ctx_flexeu0_offset = 0x3de;
4806 		perf->gen8_valid_ctx_bit = BIT(16);
4807 		break;
4808 	case 11:
4809 		perf->ctx_oactxctrl_offset = 0x124;
4810 		perf->ctx_flexeu0_offset = 0x78e;
4811 		perf->gen8_valid_ctx_bit = BIT(16);
4812 		break;
4813 	case 12:
4814 		/*
4815 		 * Calculate offset at runtime in oa_pin_context for gen12 and
4816 		 * cache the value in perf->ctx_oactxctrl_offset.
4817 		 */
4818 		break;
4819 	default:
4820 		MISSING_CASE(GRAPHICS_VER(i915));
4821 	}
4822 }
4823 
4824 /**
4825  * i915_perf_init - initialize i915-perf state on module bind
4826  * @i915: i915 device instance
4827  *
4828  * Initializes i915-perf state without exposing anything to userspace.
4829  *
4830  * Note: i915-perf initialization is split into an 'init' and 'register'
4831  * phase with the i915_perf_register() exposing state to userspace.
4832  */
4833 void i915_perf_init(struct drm_i915_private *i915)
4834 {
4835 	struct i915_perf *perf = &i915->perf;
4836 
4837 	perf->oa_formats = oa_formats;
4838 	if (IS_HASWELL(i915)) {
4839 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4840 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4841 		perf->ops.is_valid_flex_reg = NULL;
4842 		perf->ops.enable_metric_set = hsw_enable_metric_set;
4843 		perf->ops.disable_metric_set = hsw_disable_metric_set;
4844 		perf->ops.oa_enable = gen7_oa_enable;
4845 		perf->ops.oa_disable = gen7_oa_disable;
4846 		perf->ops.read = gen7_oa_read;
4847 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4848 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4849 		/* Note: that although we could theoretically also support the
4850 		 * legacy ringbuffer mode on BDW (and earlier iterations of
4851 		 * this driver, before upstreaming did this) it didn't seem
4852 		 * worth the complexity to maintain now that BDW+ enable
4853 		 * execlist mode by default.
4854 		 */
4855 		perf->ops.read = gen8_oa_read;
4856 		i915_perf_init_info(i915);
4857 
4858 		if (IS_GRAPHICS_VER(i915, 8, 9)) {
4859 			perf->ops.is_valid_b_counter_reg =
4860 				gen7_is_valid_b_counter_addr;
4861 			perf->ops.is_valid_mux_reg =
4862 				gen8_is_valid_mux_addr;
4863 			perf->ops.is_valid_flex_reg =
4864 				gen8_is_valid_flex_addr;
4865 
4866 			if (IS_CHERRYVIEW(i915)) {
4867 				perf->ops.is_valid_mux_reg =
4868 					chv_is_valid_mux_addr;
4869 			}
4870 
4871 			perf->ops.oa_enable = gen8_oa_enable;
4872 			perf->ops.oa_disable = gen8_oa_disable;
4873 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4874 			perf->ops.disable_metric_set = gen8_disable_metric_set;
4875 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4876 		} else if (GRAPHICS_VER(i915) == 11) {
4877 			perf->ops.is_valid_b_counter_reg =
4878 				gen7_is_valid_b_counter_addr;
4879 			perf->ops.is_valid_mux_reg =
4880 				gen11_is_valid_mux_addr;
4881 			perf->ops.is_valid_flex_reg =
4882 				gen8_is_valid_flex_addr;
4883 
4884 			perf->ops.oa_enable = gen8_oa_enable;
4885 			perf->ops.oa_disable = gen8_oa_disable;
4886 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4887 			perf->ops.disable_metric_set = gen11_disable_metric_set;
4888 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4889 		} else if (GRAPHICS_VER(i915) == 12) {
4890 			perf->ops.is_valid_b_counter_reg =
4891 				HAS_OA_SLICE_CONTRIB_LIMITS(i915) ?
4892 				xehp_is_valid_b_counter_addr :
4893 				gen12_is_valid_b_counter_addr;
4894 			perf->ops.is_valid_mux_reg =
4895 				gen12_is_valid_mux_addr;
4896 			perf->ops.is_valid_flex_reg =
4897 				gen8_is_valid_flex_addr;
4898 
4899 			perf->ops.oa_enable = gen12_oa_enable;
4900 			perf->ops.oa_disable = gen12_oa_disable;
4901 			perf->ops.enable_metric_set = gen12_enable_metric_set;
4902 			perf->ops.disable_metric_set = gen12_disable_metric_set;
4903 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4904 		}
4905 	}
4906 
4907 	if (perf->ops.enable_metric_set) {
4908 		struct intel_gt *gt;
4909 		int i;
4910 
4911 		for_each_gt(gt, i915, i)
4912 			mutex_init(&gt->perf.lock);
4913 
4914 		/* Choose a representative limit */
4915 		oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
4916 
4917 		mutex_init(&perf->metrics_lock);
4918 		idr_init_base(&perf->metrics_idr, 1);
4919 
4920 		/* We set up some ratelimit state to potentially throttle any
4921 		 * _NOTES about spurious, invalid OA reports which we don't
4922 		 * forward to userspace.
4923 		 *
4924 		 * We print a _NOTE about any throttling when closing the
4925 		 * stream instead of waiting until driver _fini which no one
4926 		 * would ever see.
4927 		 *
4928 		 * Using the same limiting factors as printk_ratelimit()
4929 		 */
4930 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4931 		/* Since we use a DRM_NOTE for spurious reports it would be
4932 		 * inconsistent to let __ratelimit() automatically print a
4933 		 * warning for throttling.
4934 		 */
4935 		ratelimit_set_flags(&perf->spurious_report_rs,
4936 				    RATELIMIT_MSG_ON_RELEASE);
4937 
4938 		ratelimit_state_init(&perf->tail_pointer_race,
4939 				     5 * HZ, 10);
4940 		ratelimit_set_flags(&perf->tail_pointer_race,
4941 				    RATELIMIT_MSG_ON_RELEASE);
4942 
4943 		atomic64_set(&perf->noa_programming_delay,
4944 			     500 * 1000 /* 500us */);
4945 
4946 		perf->i915 = i915;
4947 
4948 		oa_init_supported_formats(perf);
4949 	}
4950 }
4951 
4952 static int destroy_config(int id, void *p, void *data)
4953 {
4954 	i915_oa_config_put(p);
4955 	return 0;
4956 }
4957 
4958 int i915_perf_sysctl_register(void)
4959 {
4960 	sysctl_header = register_sysctl("dev/i915", oa_table);
4961 	return 0;
4962 }
4963 
4964 void i915_perf_sysctl_unregister(void)
4965 {
4966 	unregister_sysctl_table(sysctl_header);
4967 }
4968 
4969 /**
4970  * i915_perf_fini - Counter part to i915_perf_init()
4971  * @i915: i915 device instance
4972  */
4973 void i915_perf_fini(struct drm_i915_private *i915)
4974 {
4975 	struct i915_perf *perf = &i915->perf;
4976 
4977 	if (!perf->i915)
4978 		return;
4979 
4980 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
4981 	idr_destroy(&perf->metrics_idr);
4982 
4983 	memset(&perf->ops, 0, sizeof(perf->ops));
4984 	perf->i915 = NULL;
4985 }
4986 
4987 /**
4988  * i915_perf_ioctl_version - Version of the i915-perf subsystem
4989  *
4990  * This version number is used by userspace to detect available features.
4991  */
4992 int i915_perf_ioctl_version(void)
4993 {
4994 	/*
4995 	 * 1: Initial version
4996 	 *   I915_PERF_IOCTL_ENABLE
4997 	 *   I915_PERF_IOCTL_DISABLE
4998 	 *
4999 	 * 2: Added runtime modification of OA config.
5000 	 *   I915_PERF_IOCTL_CONFIG
5001 	 *
5002 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
5003 	 *    preemption on a particular context so that performance data is
5004 	 *    accessible from a delta of MI_RPC reports without looking at the
5005 	 *    OA buffer.
5006 	 *
5007 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
5008 	 *    be run for the duration of the performance recording based on
5009 	 *    their SSEU configuration.
5010 	 *
5011 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
5012 	 *    interval for the hrtimer used to check for OA data.
5013 	 */
5014 	return 5;
5015 }
5016 
5017 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5018 #include "selftests/i915_perf.c"
5019 #endif
5020