xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision e330fb14)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "gem/i915_gem_context.h"
199 #include "gt/intel_engine_pm.h"
200 #include "gt/intel_engine_user.h"
201 #include "gt/intel_execlists_submission.h"
202 #include "gt/intel_gpu_commands.h"
203 #include "gt/intel_gt.h"
204 #include "gt/intel_gt_clock_utils.h"
205 #include "gt/intel_lrc.h"
206 #include "gt/intel_ring.h"
207 
208 #include "i915_drv.h"
209 #include "i915_perf.h"
210 
211 /* HW requires this to be a power of two, between 128k and 16M, though driver
212  * is currently generally designed assuming the largest 16M size is used such
213  * that the overflow cases are unlikely in normal operation.
214  */
215 #define OA_BUFFER_SIZE		SZ_16M
216 
217 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
218 
219 /**
220  * DOC: OA Tail Pointer Race
221  *
222  * There's a HW race condition between OA unit tail pointer register updates and
223  * writes to memory whereby the tail pointer can sometimes get ahead of what's
224  * been written out to the OA buffer so far (in terms of what's visible to the
225  * CPU).
226  *
227  * Although this can be observed explicitly while copying reports to userspace
228  * by checking for a zeroed report-id field in tail reports, we want to account
229  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
230  * redundant read() attempts.
231  *
232  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
233  * in the OA buffer, starting from the tail reported by the HW until we find a
234  * report with its first 2 dwords not 0 meaning its previous report is
235  * completely in memory and ready to be read. Those dwords are also set to 0
236  * once read and the whole buffer is cleared upon OA buffer initialization. The
237  * first dword is the reason for this report while the second is the timestamp,
238  * making the chances of having those 2 fields at 0 fairly unlikely. A more
239  * detailed explanation is available in oa_buffer_check_unlocked().
240  *
241  * Most of the implementation details for this workaround are in
242  * oa_buffer_check_unlocked() and _append_oa_reports()
243  *
244  * Note for posterity: previously the driver used to define an effective tail
245  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
246  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
247  * This was flawed considering that the OA unit may also automatically generate
248  * non-periodic reports (such as on context switch) or the OA unit may be
249  * enabled without any periodic sampling.
250  */
251 #define OA_TAIL_MARGIN_NSEC	100000ULL
252 #define INVALID_TAIL_PTR	0xffffffff
253 
254 /* The default frequency for checking whether the OA unit has written new
255  * reports to the circular OA buffer...
256  */
257 #define DEFAULT_POLL_FREQUENCY_HZ 200
258 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
259 
260 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
261 static u32 i915_perf_stream_paranoid = true;
262 
263 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
264  * of the 64bit timestamp bits to trigger reports from) but there's currently
265  * no known use case for sampling as infrequently as once per 47 thousand years.
266  *
267  * Since the timestamps included in OA reports are only 32bits it seems
268  * reasonable to limit the OA exponent where it's still possible to account for
269  * overflow in OA report timestamps.
270  */
271 #define OA_EXPONENT_MAX 31
272 
273 #define INVALID_CTX_ID 0xffffffff
274 
275 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
276 #define OAREPORT_REASON_MASK           0x3f
277 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
278 #define OAREPORT_REASON_SHIFT          19
279 #define OAREPORT_REASON_TIMER          (1<<0)
280 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
281 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
282 
283 
284 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
285  *
286  * The highest sampling frequency we can theoretically program the OA unit
287  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
288  *
289  * Initialized just before we register the sysctl parameter.
290  */
291 static int oa_sample_rate_hard_limit;
292 
293 /* Theoretically we can program the OA unit to sample every 160ns but don't
294  * allow that by default unless root...
295  *
296  * The default threshold of 100000Hz is based on perf's similar
297  * kernel.perf_event_max_sample_rate sysctl parameter.
298  */
299 static u32 i915_oa_max_sample_rate = 100000;
300 
301 /* XXX: beware if future OA HW adds new report formats that the current
302  * code assumes all reports have a power-of-two size and ~(size - 1) can
303  * be used as a mask to align the OA tail pointer.
304  */
305 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
306 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
307 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
308 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
309 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
310 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
311 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
312 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
313 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
314 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
315 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
316 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
317 };
318 
319 #define SAMPLE_OA_REPORT      (1<<0)
320 
321 /**
322  * struct perf_open_properties - for validated properties given to open a stream
323  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
324  * @single_context: Whether a single or all gpu contexts should be monitored
325  * @hold_preemption: Whether the preemption is disabled for the filtered
326  *                   context
327  * @ctx_handle: A gem ctx handle for use with @single_context
328  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
329  * @oa_format: An OA unit HW report format
330  * @oa_periodic: Whether to enable periodic OA unit sampling
331  * @oa_period_exponent: The OA unit sampling period is derived from this
332  * @engine: The engine (typically rcs0) being monitored by the OA unit
333  * @has_sseu: Whether @sseu was specified by userspace
334  * @sseu: internal SSEU configuration computed either from the userspace
335  *        specified configuration in the opening parameters or a default value
336  *        (see get_default_sseu_config())
337  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
338  * data availability
339  *
340  * As read_properties_unlocked() enumerates and validates the properties given
341  * to open a stream of metrics the configuration is built up in the structure
342  * which starts out zero initialized.
343  */
344 struct perf_open_properties {
345 	u32 sample_flags;
346 
347 	u64 single_context:1;
348 	u64 hold_preemption:1;
349 	u64 ctx_handle;
350 
351 	/* OA sampling state */
352 	int metrics_set;
353 	int oa_format;
354 	bool oa_periodic;
355 	int oa_period_exponent;
356 
357 	struct intel_engine_cs *engine;
358 
359 	bool has_sseu;
360 	struct intel_sseu sseu;
361 
362 	u64 poll_oa_period;
363 };
364 
365 struct i915_oa_config_bo {
366 	struct llist_node node;
367 
368 	struct i915_oa_config *oa_config;
369 	struct i915_vma *vma;
370 };
371 
372 static struct ctl_table_header *sysctl_header;
373 
374 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
375 
376 void i915_oa_config_release(struct kref *ref)
377 {
378 	struct i915_oa_config *oa_config =
379 		container_of(ref, typeof(*oa_config), ref);
380 
381 	kfree(oa_config->flex_regs);
382 	kfree(oa_config->b_counter_regs);
383 	kfree(oa_config->mux_regs);
384 
385 	kfree_rcu(oa_config, rcu);
386 }
387 
388 struct i915_oa_config *
389 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
390 {
391 	struct i915_oa_config *oa_config;
392 
393 	rcu_read_lock();
394 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
395 	if (oa_config)
396 		oa_config = i915_oa_config_get(oa_config);
397 	rcu_read_unlock();
398 
399 	return oa_config;
400 }
401 
402 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
403 {
404 	i915_oa_config_put(oa_bo->oa_config);
405 	i915_vma_put(oa_bo->vma);
406 	kfree(oa_bo);
407 }
408 
409 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
410 {
411 	struct intel_uncore *uncore = stream->uncore;
412 
413 	return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
414 	       GEN12_OAG_OATAILPTR_MASK;
415 }
416 
417 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
418 {
419 	struct intel_uncore *uncore = stream->uncore;
420 
421 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
422 }
423 
424 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
425 {
426 	struct intel_uncore *uncore = stream->uncore;
427 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
428 
429 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
430 }
431 
432 /**
433  * oa_buffer_check_unlocked - check for data and update tail ptr state
434  * @stream: i915 stream instance
435  *
436  * This is either called via fops (for blocking reads in user ctx) or the poll
437  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
438  * if there is data available for userspace to read.
439  *
440  * This function is central to providing a workaround for the OA unit tail
441  * pointer having a race with respect to what data is visible to the CPU.
442  * It is responsible for reading tail pointers from the hardware and giving
443  * the pointers time to 'age' before they are made available for reading.
444  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
445  *
446  * Besides returning true when there is data available to read() this function
447  * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
448  * object.
449  *
450  * Note: It's safe to read OA config state here unlocked, assuming that this is
451  * only called while the stream is enabled, while the global OA configuration
452  * can't be modified.
453  *
454  * Returns: %true if the OA buffer contains data, else %false
455  */
456 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
457 {
458 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
459 	int report_size = stream->oa_buffer.format_size;
460 	unsigned long flags;
461 	bool pollin;
462 	u32 hw_tail;
463 	u64 now;
464 
465 	/* We have to consider the (unlikely) possibility that read() errors
466 	 * could result in an OA buffer reset which might reset the head and
467 	 * tail state.
468 	 */
469 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
470 
471 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
472 
473 	/* The tail pointer increases in 64 byte increments,
474 	 * not in report_size steps...
475 	 */
476 	hw_tail &= ~(report_size - 1);
477 
478 	now = ktime_get_mono_fast_ns();
479 
480 	if (hw_tail == stream->oa_buffer.aging_tail &&
481 	    (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
482 		/* If the HW tail hasn't move since the last check and the HW
483 		 * tail has been aging for long enough, declare it the new
484 		 * tail.
485 		 */
486 		stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
487 	} else {
488 		u32 head, tail, aged_tail;
489 
490 		/* NB: The head we observe here might effectively be a little
491 		 * out of date. If a read() is in progress, the head could be
492 		 * anywhere between this head and stream->oa_buffer.tail.
493 		 */
494 		head = stream->oa_buffer.head - gtt_offset;
495 		aged_tail = stream->oa_buffer.tail - gtt_offset;
496 
497 		hw_tail -= gtt_offset;
498 		tail = hw_tail;
499 
500 		/* Walk the stream backward until we find a report with dword 0
501 		 * & 1 not at 0. Since the circular buffer pointers progress by
502 		 * increments of 64 bytes and that reports can be up to 256
503 		 * bytes long, we can't tell whether a report has fully landed
504 		 * in memory before the first 2 dwords of the following report
505 		 * have effectively landed.
506 		 *
507 		 * This is assuming that the writes of the OA unit land in
508 		 * memory in the order they were written to.
509 		 * If not : (╯°□°)╯︵ ┻━┻
510 		 */
511 		while (OA_TAKEN(tail, aged_tail) >= report_size) {
512 			u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
513 
514 			if (report32[0] != 0 || report32[1] != 0)
515 				break;
516 
517 			tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
518 		}
519 
520 		if (OA_TAKEN(hw_tail, tail) > report_size &&
521 		    __ratelimit(&stream->perf->tail_pointer_race))
522 			DRM_NOTE("unlanded report(s) head=0x%x "
523 				 "tail=0x%x hw_tail=0x%x\n",
524 				 head, tail, hw_tail);
525 
526 		stream->oa_buffer.tail = gtt_offset + tail;
527 		stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
528 		stream->oa_buffer.aging_timestamp = now;
529 	}
530 
531 	pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
532 			  stream->oa_buffer.head - gtt_offset) >= report_size;
533 
534 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
535 
536 	return pollin;
537 }
538 
539 /**
540  * append_oa_status - Appends a status record to a userspace read() buffer.
541  * @stream: An i915-perf stream opened for OA metrics
542  * @buf: destination buffer given by userspace
543  * @count: the number of bytes userspace wants to read
544  * @offset: (inout): the current position for writing into @buf
545  * @type: The kind of status to report to userspace
546  *
547  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
548  * into the userspace read() buffer.
549  *
550  * The @buf @offset will only be updated on success.
551  *
552  * Returns: 0 on success, negative error code on failure.
553  */
554 static int append_oa_status(struct i915_perf_stream *stream,
555 			    char __user *buf,
556 			    size_t count,
557 			    size_t *offset,
558 			    enum drm_i915_perf_record_type type)
559 {
560 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
561 
562 	if ((count - *offset) < header.size)
563 		return -ENOSPC;
564 
565 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
566 		return -EFAULT;
567 
568 	(*offset) += header.size;
569 
570 	return 0;
571 }
572 
573 /**
574  * append_oa_sample - Copies single OA report into userspace read() buffer.
575  * @stream: An i915-perf stream opened for OA metrics
576  * @buf: destination buffer given by userspace
577  * @count: the number of bytes userspace wants to read
578  * @offset: (inout): the current position for writing into @buf
579  * @report: A single OA report to (optionally) include as part of the sample
580  *
581  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
582  * properties when opening a stream, tracked as `stream->sample_flags`. This
583  * function copies the requested components of a single sample to the given
584  * read() @buf.
585  *
586  * The @buf @offset will only be updated on success.
587  *
588  * Returns: 0 on success, negative error code on failure.
589  */
590 static int append_oa_sample(struct i915_perf_stream *stream,
591 			    char __user *buf,
592 			    size_t count,
593 			    size_t *offset,
594 			    const u8 *report)
595 {
596 	int report_size = stream->oa_buffer.format_size;
597 	struct drm_i915_perf_record_header header;
598 
599 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
600 	header.pad = 0;
601 	header.size = stream->sample_size;
602 
603 	if ((count - *offset) < header.size)
604 		return -ENOSPC;
605 
606 	buf += *offset;
607 	if (copy_to_user(buf, &header, sizeof(header)))
608 		return -EFAULT;
609 	buf += sizeof(header);
610 
611 	if (copy_to_user(buf, report, report_size))
612 		return -EFAULT;
613 
614 	(*offset) += header.size;
615 
616 	return 0;
617 }
618 
619 /**
620  * gen8_append_oa_reports - Copies all buffered OA reports into
621  *			    userspace read() buffer.
622  * @stream: An i915-perf stream opened for OA metrics
623  * @buf: destination buffer given by userspace
624  * @count: the number of bytes userspace wants to read
625  * @offset: (inout): the current position for writing into @buf
626  *
627  * Notably any error condition resulting in a short read (-%ENOSPC or
628  * -%EFAULT) will be returned even though one or more records may
629  * have been successfully copied. In this case it's up to the caller
630  * to decide if the error should be squashed before returning to
631  * userspace.
632  *
633  * Note: reports are consumed from the head, and appended to the
634  * tail, so the tail chases the head?... If you think that's mad
635  * and back-to-front you're not alone, but this follows the
636  * Gen PRM naming convention.
637  *
638  * Returns: 0 on success, negative error code on failure.
639  */
640 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
641 				  char __user *buf,
642 				  size_t count,
643 				  size_t *offset)
644 {
645 	struct intel_uncore *uncore = stream->uncore;
646 	int report_size = stream->oa_buffer.format_size;
647 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
648 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
649 	u32 mask = (OA_BUFFER_SIZE - 1);
650 	size_t start_offset = *offset;
651 	unsigned long flags;
652 	u32 head, tail;
653 	u32 taken;
654 	int ret = 0;
655 
656 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
657 		return -EIO;
658 
659 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
660 
661 	head = stream->oa_buffer.head;
662 	tail = stream->oa_buffer.tail;
663 
664 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
665 
666 	/*
667 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
668 	 * while indexing relative to oa_buf_base.
669 	 */
670 	head -= gtt_offset;
671 	tail -= gtt_offset;
672 
673 	/*
674 	 * An out of bounds or misaligned head or tail pointer implies a driver
675 	 * bug since we validate + align the tail pointers we read from the
676 	 * hardware and we are in full control of the head pointer which should
677 	 * only be incremented by multiples of the report size (notably also
678 	 * all a power of two).
679 	 */
680 	if (drm_WARN_ONCE(&uncore->i915->drm,
681 			  head > OA_BUFFER_SIZE || head % report_size ||
682 			  tail > OA_BUFFER_SIZE || tail % report_size,
683 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
684 			  head, tail))
685 		return -EIO;
686 
687 
688 	for (/* none */;
689 	     (taken = OA_TAKEN(tail, head));
690 	     head = (head + report_size) & mask) {
691 		u8 *report = oa_buf_base + head;
692 		u32 *report32 = (void *)report;
693 		u32 ctx_id;
694 		u32 reason;
695 
696 		/*
697 		 * All the report sizes factor neatly into the buffer
698 		 * size so we never expect to see a report split
699 		 * between the beginning and end of the buffer.
700 		 *
701 		 * Given the initial alignment check a misalignment
702 		 * here would imply a driver bug that would result
703 		 * in an overrun.
704 		 */
705 		if (drm_WARN_ON(&uncore->i915->drm,
706 				(OA_BUFFER_SIZE - head) < report_size)) {
707 			drm_err(&uncore->i915->drm,
708 				"Spurious OA head ptr: non-integral report offset\n");
709 			break;
710 		}
711 
712 		/*
713 		 * The reason field includes flags identifying what
714 		 * triggered this specific report (mostly timer
715 		 * triggered or e.g. due to a context switch).
716 		 *
717 		 * This field is never expected to be zero so we can
718 		 * check that the report isn't invalid before copying
719 		 * it to userspace...
720 		 */
721 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
722 			  (GRAPHICS_VER(stream->perf->i915) == 12 ?
723 			   OAREPORT_REASON_MASK_EXTENDED :
724 			   OAREPORT_REASON_MASK));
725 
726 		ctx_id = report32[2] & stream->specific_ctx_id_mask;
727 
728 		/*
729 		 * Squash whatever is in the CTX_ID field if it's marked as
730 		 * invalid to be sure we avoid false-positive, single-context
731 		 * filtering below...
732 		 *
733 		 * Note: that we don't clear the valid_ctx_bit so userspace can
734 		 * understand that the ID has been squashed by the kernel.
735 		 */
736 		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
737 		    GRAPHICS_VER(stream->perf->i915) <= 11)
738 			ctx_id = report32[2] = INVALID_CTX_ID;
739 
740 		/*
741 		 * NB: For Gen 8 the OA unit no longer supports clock gating
742 		 * off for a specific context and the kernel can't securely
743 		 * stop the counters from updating as system-wide / global
744 		 * values.
745 		 *
746 		 * Automatic reports now include a context ID so reports can be
747 		 * filtered on the cpu but it's not worth trying to
748 		 * automatically subtract/hide counter progress for other
749 		 * contexts while filtering since we can't stop userspace
750 		 * issuing MI_REPORT_PERF_COUNT commands which would still
751 		 * provide a side-band view of the real values.
752 		 *
753 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
754 		 * to normalize counters for a single filtered context then it
755 		 * needs be forwarded bookend context-switch reports so that it
756 		 * can track switches in between MI_REPORT_PERF_COUNT commands
757 		 * and can itself subtract/ignore the progress of counters
758 		 * associated with other contexts. Note that the hardware
759 		 * automatically triggers reports when switching to a new
760 		 * context which are tagged with the ID of the newly active
761 		 * context. To avoid the complexity (and likely fragility) of
762 		 * reading ahead while parsing reports to try and minimize
763 		 * forwarding redundant context switch reports (i.e. between
764 		 * other, unrelated contexts) we simply elect to forward them
765 		 * all.
766 		 *
767 		 * We don't rely solely on the reason field to identify context
768 		 * switches since it's not-uncommon for periodic samples to
769 		 * identify a switch before any 'context switch' report.
770 		 */
771 		if (!stream->perf->exclusive_stream->ctx ||
772 		    stream->specific_ctx_id == ctx_id ||
773 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
774 		    reason & OAREPORT_REASON_CTX_SWITCH) {
775 
776 			/*
777 			 * While filtering for a single context we avoid
778 			 * leaking the IDs of other contexts.
779 			 */
780 			if (stream->perf->exclusive_stream->ctx &&
781 			    stream->specific_ctx_id != ctx_id) {
782 				report32[2] = INVALID_CTX_ID;
783 			}
784 
785 			ret = append_oa_sample(stream, buf, count, offset,
786 					       report);
787 			if (ret)
788 				break;
789 
790 			stream->oa_buffer.last_ctx_id = ctx_id;
791 		}
792 
793 		/*
794 		 * Clear out the first 2 dword as a mean to detect unlanded
795 		 * reports.
796 		 */
797 		report32[0] = 0;
798 		report32[1] = 0;
799 	}
800 
801 	if (start_offset != *offset) {
802 		i915_reg_t oaheadptr;
803 
804 		oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
805 			    GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
806 
807 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
808 
809 		/*
810 		 * We removed the gtt_offset for the copy loop above, indexing
811 		 * relative to oa_buf_base so put back here...
812 		 */
813 		head += gtt_offset;
814 		intel_uncore_write(uncore, oaheadptr,
815 				   head & GEN12_OAG_OAHEADPTR_MASK);
816 		stream->oa_buffer.head = head;
817 
818 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
819 	}
820 
821 	return ret;
822 }
823 
824 /**
825  * gen8_oa_read - copy status records then buffered OA reports
826  * @stream: An i915-perf stream opened for OA metrics
827  * @buf: destination buffer given by userspace
828  * @count: the number of bytes userspace wants to read
829  * @offset: (inout): the current position for writing into @buf
830  *
831  * Checks OA unit status registers and if necessary appends corresponding
832  * status records for userspace (such as for a buffer full condition) and then
833  * initiate appending any buffered OA reports.
834  *
835  * Updates @offset according to the number of bytes successfully copied into
836  * the userspace buffer.
837  *
838  * NB: some data may be successfully copied to the userspace buffer
839  * even if an error is returned, and this is reflected in the
840  * updated @offset.
841  *
842  * Returns: zero on success or a negative error code
843  */
844 static int gen8_oa_read(struct i915_perf_stream *stream,
845 			char __user *buf,
846 			size_t count,
847 			size_t *offset)
848 {
849 	struct intel_uncore *uncore = stream->uncore;
850 	u32 oastatus;
851 	i915_reg_t oastatus_reg;
852 	int ret;
853 
854 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
855 		return -EIO;
856 
857 	oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
858 		       GEN12_OAG_OASTATUS : GEN8_OASTATUS;
859 
860 	oastatus = intel_uncore_read(uncore, oastatus_reg);
861 
862 	/*
863 	 * We treat OABUFFER_OVERFLOW as a significant error:
864 	 *
865 	 * Although theoretically we could handle this more gracefully
866 	 * sometimes, some Gens don't correctly suppress certain
867 	 * automatically triggered reports in this condition and so we
868 	 * have to assume that old reports are now being trampled
869 	 * over.
870 	 *
871 	 * Considering how we don't currently give userspace control
872 	 * over the OA buffer size and always configure a large 16MB
873 	 * buffer, then a buffer overflow does anyway likely indicate
874 	 * that something has gone quite badly wrong.
875 	 */
876 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
877 		ret = append_oa_status(stream, buf, count, offset,
878 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
879 		if (ret)
880 			return ret;
881 
882 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
883 			  stream->period_exponent);
884 
885 		stream->perf->ops.oa_disable(stream);
886 		stream->perf->ops.oa_enable(stream);
887 
888 		/*
889 		 * Note: .oa_enable() is expected to re-init the oabuffer and
890 		 * reset GEN8_OASTATUS for us
891 		 */
892 		oastatus = intel_uncore_read(uncore, oastatus_reg);
893 	}
894 
895 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
896 		ret = append_oa_status(stream, buf, count, offset,
897 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
898 		if (ret)
899 			return ret;
900 
901 		intel_uncore_rmw(uncore, oastatus_reg,
902 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
903 				 GEN8_OASTATUS_REPORT_LOST,
904 				 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
905 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
906 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
907 	}
908 
909 	return gen8_append_oa_reports(stream, buf, count, offset);
910 }
911 
912 /**
913  * gen7_append_oa_reports - Copies all buffered OA reports into
914  *			    userspace read() buffer.
915  * @stream: An i915-perf stream opened for OA metrics
916  * @buf: destination buffer given by userspace
917  * @count: the number of bytes userspace wants to read
918  * @offset: (inout): the current position for writing into @buf
919  *
920  * Notably any error condition resulting in a short read (-%ENOSPC or
921  * -%EFAULT) will be returned even though one or more records may
922  * have been successfully copied. In this case it's up to the caller
923  * to decide if the error should be squashed before returning to
924  * userspace.
925  *
926  * Note: reports are consumed from the head, and appended to the
927  * tail, so the tail chases the head?... If you think that's mad
928  * and back-to-front you're not alone, but this follows the
929  * Gen PRM naming convention.
930  *
931  * Returns: 0 on success, negative error code on failure.
932  */
933 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
934 				  char __user *buf,
935 				  size_t count,
936 				  size_t *offset)
937 {
938 	struct intel_uncore *uncore = stream->uncore;
939 	int report_size = stream->oa_buffer.format_size;
940 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
941 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
942 	u32 mask = (OA_BUFFER_SIZE - 1);
943 	size_t start_offset = *offset;
944 	unsigned long flags;
945 	u32 head, tail;
946 	u32 taken;
947 	int ret = 0;
948 
949 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
950 		return -EIO;
951 
952 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
953 
954 	head = stream->oa_buffer.head;
955 	tail = stream->oa_buffer.tail;
956 
957 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
958 
959 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
960 	 * while indexing relative to oa_buf_base.
961 	 */
962 	head -= gtt_offset;
963 	tail -= gtt_offset;
964 
965 	/* An out of bounds or misaligned head or tail pointer implies a driver
966 	 * bug since we validate + align the tail pointers we read from the
967 	 * hardware and we are in full control of the head pointer which should
968 	 * only be incremented by multiples of the report size (notably also
969 	 * all a power of two).
970 	 */
971 	if (drm_WARN_ONCE(&uncore->i915->drm,
972 			  head > OA_BUFFER_SIZE || head % report_size ||
973 			  tail > OA_BUFFER_SIZE || tail % report_size,
974 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
975 			  head, tail))
976 		return -EIO;
977 
978 
979 	for (/* none */;
980 	     (taken = OA_TAKEN(tail, head));
981 	     head = (head + report_size) & mask) {
982 		u8 *report = oa_buf_base + head;
983 		u32 *report32 = (void *)report;
984 
985 		/* All the report sizes factor neatly into the buffer
986 		 * size so we never expect to see a report split
987 		 * between the beginning and end of the buffer.
988 		 *
989 		 * Given the initial alignment check a misalignment
990 		 * here would imply a driver bug that would result
991 		 * in an overrun.
992 		 */
993 		if (drm_WARN_ON(&uncore->i915->drm,
994 				(OA_BUFFER_SIZE - head) < report_size)) {
995 			drm_err(&uncore->i915->drm,
996 				"Spurious OA head ptr: non-integral report offset\n");
997 			break;
998 		}
999 
1000 		/* The report-ID field for periodic samples includes
1001 		 * some undocumented flags related to what triggered
1002 		 * the report and is never expected to be zero so we
1003 		 * can check that the report isn't invalid before
1004 		 * copying it to userspace...
1005 		 */
1006 		if (report32[0] == 0) {
1007 			if (__ratelimit(&stream->perf->spurious_report_rs))
1008 				DRM_NOTE("Skipping spurious, invalid OA report\n");
1009 			continue;
1010 		}
1011 
1012 		ret = append_oa_sample(stream, buf, count, offset, report);
1013 		if (ret)
1014 			break;
1015 
1016 		/* Clear out the first 2 dwords as a mean to detect unlanded
1017 		 * reports.
1018 		 */
1019 		report32[0] = 0;
1020 		report32[1] = 0;
1021 	}
1022 
1023 	if (start_offset != *offset) {
1024 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1025 
1026 		/* We removed the gtt_offset for the copy loop above, indexing
1027 		 * relative to oa_buf_base so put back here...
1028 		 */
1029 		head += gtt_offset;
1030 
1031 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1032 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1033 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1034 		stream->oa_buffer.head = head;
1035 
1036 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1037 	}
1038 
1039 	return ret;
1040 }
1041 
1042 /**
1043  * gen7_oa_read - copy status records then buffered OA reports
1044  * @stream: An i915-perf stream opened for OA metrics
1045  * @buf: destination buffer given by userspace
1046  * @count: the number of bytes userspace wants to read
1047  * @offset: (inout): the current position for writing into @buf
1048  *
1049  * Checks Gen 7 specific OA unit status registers and if necessary appends
1050  * corresponding status records for userspace (such as for a buffer full
1051  * condition) and then initiate appending any buffered OA reports.
1052  *
1053  * Updates @offset according to the number of bytes successfully copied into
1054  * the userspace buffer.
1055  *
1056  * Returns: zero on success or a negative error code
1057  */
1058 static int gen7_oa_read(struct i915_perf_stream *stream,
1059 			char __user *buf,
1060 			size_t count,
1061 			size_t *offset)
1062 {
1063 	struct intel_uncore *uncore = stream->uncore;
1064 	u32 oastatus1;
1065 	int ret;
1066 
1067 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1068 		return -EIO;
1069 
1070 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1071 
1072 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1073 	 * bits while the OA unit is enabled (while the tail pointer
1074 	 * may be updated asynchronously) so we ignore status bits
1075 	 * that have already been reported to userspace.
1076 	 */
1077 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1078 
1079 	/* We treat OABUFFER_OVERFLOW as a significant error:
1080 	 *
1081 	 * - The status can be interpreted to mean that the buffer is
1082 	 *   currently full (with a higher precedence than OA_TAKEN()
1083 	 *   which will start to report a near-empty buffer after an
1084 	 *   overflow) but it's awkward that we can't clear the status
1085 	 *   on Haswell, so without a reset we won't be able to catch
1086 	 *   the state again.
1087 	 *
1088 	 * - Since it also implies the HW has started overwriting old
1089 	 *   reports it may also affect our sanity checks for invalid
1090 	 *   reports when copying to userspace that assume new reports
1091 	 *   are being written to cleared memory.
1092 	 *
1093 	 * - In the future we may want to introduce a flight recorder
1094 	 *   mode where the driver will automatically maintain a safe
1095 	 *   guard band between head/tail, avoiding this overflow
1096 	 *   condition, but we avoid the added driver complexity for
1097 	 *   now.
1098 	 */
1099 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1100 		ret = append_oa_status(stream, buf, count, offset,
1101 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1102 		if (ret)
1103 			return ret;
1104 
1105 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1106 			  stream->period_exponent);
1107 
1108 		stream->perf->ops.oa_disable(stream);
1109 		stream->perf->ops.oa_enable(stream);
1110 
1111 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1112 	}
1113 
1114 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1115 		ret = append_oa_status(stream, buf, count, offset,
1116 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1117 		if (ret)
1118 			return ret;
1119 		stream->perf->gen7_latched_oastatus1 |=
1120 			GEN7_OASTATUS1_REPORT_LOST;
1121 	}
1122 
1123 	return gen7_append_oa_reports(stream, buf, count, offset);
1124 }
1125 
1126 /**
1127  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1128  * @stream: An i915-perf stream opened for OA metrics
1129  *
1130  * Called when userspace tries to read() from a blocking stream FD opened
1131  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1132  * OA buffer and wakes us.
1133  *
1134  * Note: it's acceptable to have this return with some false positives
1135  * since any subsequent read handling will return -EAGAIN if there isn't
1136  * really data ready for userspace yet.
1137  *
1138  * Returns: zero on success or a negative error code
1139  */
1140 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1141 {
1142 	/* We would wait indefinitely if periodic sampling is not enabled */
1143 	if (!stream->periodic)
1144 		return -EIO;
1145 
1146 	return wait_event_interruptible(stream->poll_wq,
1147 					oa_buffer_check_unlocked(stream));
1148 }
1149 
1150 /**
1151  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1152  * @stream: An i915-perf stream opened for OA metrics
1153  * @file: An i915 perf stream file
1154  * @wait: poll() state table
1155  *
1156  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1157  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1158  * when it sees data ready to read in the circular OA buffer.
1159  */
1160 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1161 			      struct file *file,
1162 			      poll_table *wait)
1163 {
1164 	poll_wait(file, &stream->poll_wq, wait);
1165 }
1166 
1167 /**
1168  * i915_oa_read - just calls through to &i915_oa_ops->read
1169  * @stream: An i915-perf stream opened for OA metrics
1170  * @buf: destination buffer given by userspace
1171  * @count: the number of bytes userspace wants to read
1172  * @offset: (inout): the current position for writing into @buf
1173  *
1174  * Updates @offset according to the number of bytes successfully copied into
1175  * the userspace buffer.
1176  *
1177  * Returns: zero on success or a negative error code
1178  */
1179 static int i915_oa_read(struct i915_perf_stream *stream,
1180 			char __user *buf,
1181 			size_t count,
1182 			size_t *offset)
1183 {
1184 	return stream->perf->ops.read(stream, buf, count, offset);
1185 }
1186 
1187 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1188 {
1189 	struct i915_gem_engines_iter it;
1190 	struct i915_gem_context *ctx = stream->ctx;
1191 	struct intel_context *ce;
1192 	struct i915_gem_ww_ctx ww;
1193 	int err = -ENODEV;
1194 
1195 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1196 		if (ce->engine != stream->engine) /* first match! */
1197 			continue;
1198 
1199 		err = 0;
1200 		break;
1201 	}
1202 	i915_gem_context_unlock_engines(ctx);
1203 
1204 	if (err)
1205 		return ERR_PTR(err);
1206 
1207 	i915_gem_ww_ctx_init(&ww, true);
1208 retry:
1209 	/*
1210 	 * As the ID is the gtt offset of the context's vma we
1211 	 * pin the vma to ensure the ID remains fixed.
1212 	 */
1213 	err = intel_context_pin_ww(ce, &ww);
1214 	if (err == -EDEADLK) {
1215 		err = i915_gem_ww_ctx_backoff(&ww);
1216 		if (!err)
1217 			goto retry;
1218 	}
1219 	i915_gem_ww_ctx_fini(&ww);
1220 
1221 	if (err)
1222 		return ERR_PTR(err);
1223 
1224 	stream->pinned_ctx = ce;
1225 	return stream->pinned_ctx;
1226 }
1227 
1228 /**
1229  * oa_get_render_ctx_id - determine and hold ctx hw id
1230  * @stream: An i915-perf stream opened for OA metrics
1231  *
1232  * Determine the render context hw id, and ensure it remains fixed for the
1233  * lifetime of the stream. This ensures that we don't have to worry about
1234  * updating the context ID in OACONTROL on the fly.
1235  *
1236  * Returns: zero on success or a negative error code
1237  */
1238 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1239 {
1240 	struct intel_context *ce;
1241 
1242 	ce = oa_pin_context(stream);
1243 	if (IS_ERR(ce))
1244 		return PTR_ERR(ce);
1245 
1246 	switch (GRAPHICS_VER(ce->engine->i915)) {
1247 	case 7: {
1248 		/*
1249 		 * On Haswell we don't do any post processing of the reports
1250 		 * and don't need to use the mask.
1251 		 */
1252 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1253 		stream->specific_ctx_id_mask = 0;
1254 		break;
1255 	}
1256 
1257 	case 8:
1258 	case 9:
1259 		if (intel_engine_uses_guc(ce->engine)) {
1260 			/*
1261 			 * When using GuC, the context descriptor we write in
1262 			 * i915 is read by GuC and rewritten before it's
1263 			 * actually written into the hardware. The LRCA is
1264 			 * what is put into the context id field of the
1265 			 * context descriptor by GuC. Because it's aligned to
1266 			 * a page, the lower 12bits are always at 0 and
1267 			 * dropped by GuC. They won't be part of the context
1268 			 * ID in the OA reports, so squash those lower bits.
1269 			 */
1270 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1271 
1272 			/*
1273 			 * GuC uses the top bit to signal proxy submission, so
1274 			 * ignore that bit.
1275 			 */
1276 			stream->specific_ctx_id_mask =
1277 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1278 		} else {
1279 			stream->specific_ctx_id_mask =
1280 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1281 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1282 		}
1283 		break;
1284 
1285 	case 11:
1286 	case 12:
1287 		if (GRAPHICS_VER_FULL(ce->engine->i915) >= IP_VER(12, 50)) {
1288 			stream->specific_ctx_id_mask =
1289 				((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1290 				(XEHP_SW_CTX_ID_SHIFT - 32);
1291 			stream->specific_ctx_id =
1292 				(XEHP_MAX_CONTEXT_HW_ID - 1) <<
1293 				(XEHP_SW_CTX_ID_SHIFT - 32);
1294 		} else {
1295 			stream->specific_ctx_id_mask =
1296 				((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1297 			/*
1298 			 * Pick an unused context id
1299 			 * 0 - BITS_PER_LONG are used by other contexts
1300 			 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1301 			 */
1302 			stream->specific_ctx_id =
1303 				(GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1304 		}
1305 		break;
1306 
1307 	default:
1308 		MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1309 	}
1310 
1311 	ce->tag = stream->specific_ctx_id;
1312 
1313 	drm_dbg(&stream->perf->i915->drm,
1314 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1315 		stream->specific_ctx_id,
1316 		stream->specific_ctx_id_mask);
1317 
1318 	return 0;
1319 }
1320 
1321 /**
1322  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1323  * @stream: An i915-perf stream opened for OA metrics
1324  *
1325  * In case anything needed doing to ensure the context HW ID would remain valid
1326  * for the lifetime of the stream, then that can be undone here.
1327  */
1328 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1329 {
1330 	struct intel_context *ce;
1331 
1332 	ce = fetch_and_zero(&stream->pinned_ctx);
1333 	if (ce) {
1334 		ce->tag = 0; /* recomputed on next submission after parking */
1335 		intel_context_unpin(ce);
1336 	}
1337 
1338 	stream->specific_ctx_id = INVALID_CTX_ID;
1339 	stream->specific_ctx_id_mask = 0;
1340 }
1341 
1342 static void
1343 free_oa_buffer(struct i915_perf_stream *stream)
1344 {
1345 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1346 				   I915_VMA_RELEASE_MAP);
1347 
1348 	stream->oa_buffer.vaddr = NULL;
1349 }
1350 
1351 static void
1352 free_oa_configs(struct i915_perf_stream *stream)
1353 {
1354 	struct i915_oa_config_bo *oa_bo, *tmp;
1355 
1356 	i915_oa_config_put(stream->oa_config);
1357 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1358 		free_oa_config_bo(oa_bo);
1359 }
1360 
1361 static void
1362 free_noa_wait(struct i915_perf_stream *stream)
1363 {
1364 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1365 }
1366 
1367 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1368 {
1369 	struct i915_perf *perf = stream->perf;
1370 
1371 	BUG_ON(stream != perf->exclusive_stream);
1372 
1373 	/*
1374 	 * Unset exclusive_stream first, it will be checked while disabling
1375 	 * the metric set on gen8+.
1376 	 *
1377 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1378 	 */
1379 	WRITE_ONCE(perf->exclusive_stream, NULL);
1380 	perf->ops.disable_metric_set(stream);
1381 
1382 	free_oa_buffer(stream);
1383 
1384 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1385 	intel_engine_pm_put(stream->engine);
1386 
1387 	if (stream->ctx)
1388 		oa_put_render_ctx_id(stream);
1389 
1390 	free_oa_configs(stream);
1391 	free_noa_wait(stream);
1392 
1393 	if (perf->spurious_report_rs.missed) {
1394 		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1395 			 perf->spurious_report_rs.missed);
1396 	}
1397 }
1398 
1399 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1400 {
1401 	struct intel_uncore *uncore = stream->uncore;
1402 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1403 	unsigned long flags;
1404 
1405 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1406 
1407 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1408 	 * before OASTATUS1, but after OASTATUS2
1409 	 */
1410 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1411 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1412 	stream->oa_buffer.head = gtt_offset;
1413 
1414 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1415 
1416 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1417 			   gtt_offset | OABUFFER_SIZE_16M);
1418 
1419 	/* Mark that we need updated tail pointers to read from... */
1420 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1421 	stream->oa_buffer.tail = gtt_offset;
1422 
1423 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1424 
1425 	/* On Haswell we have to track which OASTATUS1 flags we've
1426 	 * already seen since they can't be cleared while periodic
1427 	 * sampling is enabled.
1428 	 */
1429 	stream->perf->gen7_latched_oastatus1 = 0;
1430 
1431 	/* NB: although the OA buffer will initially be allocated
1432 	 * zeroed via shmfs (and so this memset is redundant when
1433 	 * first allocating), we may re-init the OA buffer, either
1434 	 * when re-enabling a stream or in error/reset paths.
1435 	 *
1436 	 * The reason we clear the buffer for each re-init is for the
1437 	 * sanity check in gen7_append_oa_reports() that looks at the
1438 	 * report-id field to make sure it's non-zero which relies on
1439 	 * the assumption that new reports are being written to zeroed
1440 	 * memory...
1441 	 */
1442 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1443 }
1444 
1445 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1446 {
1447 	struct intel_uncore *uncore = stream->uncore;
1448 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1449 	unsigned long flags;
1450 
1451 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1452 
1453 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1454 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1455 	stream->oa_buffer.head = gtt_offset;
1456 
1457 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1458 
1459 	/*
1460 	 * PRM says:
1461 	 *
1462 	 *  "This MMIO must be set before the OATAILPTR
1463 	 *  register and after the OAHEADPTR register. This is
1464 	 *  to enable proper functionality of the overflow
1465 	 *  bit."
1466 	 */
1467 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1468 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1469 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1470 
1471 	/* Mark that we need updated tail pointers to read from... */
1472 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1473 	stream->oa_buffer.tail = gtt_offset;
1474 
1475 	/*
1476 	 * Reset state used to recognise context switches, affecting which
1477 	 * reports we will forward to userspace while filtering for a single
1478 	 * context.
1479 	 */
1480 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1481 
1482 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1483 
1484 	/*
1485 	 * NB: although the OA buffer will initially be allocated
1486 	 * zeroed via shmfs (and so this memset is redundant when
1487 	 * first allocating), we may re-init the OA buffer, either
1488 	 * when re-enabling a stream or in error/reset paths.
1489 	 *
1490 	 * The reason we clear the buffer for each re-init is for the
1491 	 * sanity check in gen8_append_oa_reports() that looks at the
1492 	 * reason field to make sure it's non-zero which relies on
1493 	 * the assumption that new reports are being written to zeroed
1494 	 * memory...
1495 	 */
1496 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1497 }
1498 
1499 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1500 {
1501 	struct intel_uncore *uncore = stream->uncore;
1502 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1503 	unsigned long flags;
1504 
1505 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1506 
1507 	intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1508 	intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1509 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1510 	stream->oa_buffer.head = gtt_offset;
1511 
1512 	/*
1513 	 * PRM says:
1514 	 *
1515 	 *  "This MMIO must be set before the OATAILPTR
1516 	 *  register and after the OAHEADPTR register. This is
1517 	 *  to enable proper functionality of the overflow
1518 	 *  bit."
1519 	 */
1520 	intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1521 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1522 	intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1523 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1524 
1525 	/* Mark that we need updated tail pointers to read from... */
1526 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1527 	stream->oa_buffer.tail = gtt_offset;
1528 
1529 	/*
1530 	 * Reset state used to recognise context switches, affecting which
1531 	 * reports we will forward to userspace while filtering for a single
1532 	 * context.
1533 	 */
1534 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1535 
1536 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1537 
1538 	/*
1539 	 * NB: although the OA buffer will initially be allocated
1540 	 * zeroed via shmfs (and so this memset is redundant when
1541 	 * first allocating), we may re-init the OA buffer, either
1542 	 * when re-enabling a stream or in error/reset paths.
1543 	 *
1544 	 * The reason we clear the buffer for each re-init is for the
1545 	 * sanity check in gen8_append_oa_reports() that looks at the
1546 	 * reason field to make sure it's non-zero which relies on
1547 	 * the assumption that new reports are being written to zeroed
1548 	 * memory...
1549 	 */
1550 	memset(stream->oa_buffer.vaddr, 0,
1551 	       stream->oa_buffer.vma->size);
1552 }
1553 
1554 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1555 {
1556 	struct drm_i915_private *i915 = stream->perf->i915;
1557 	struct drm_i915_gem_object *bo;
1558 	struct i915_vma *vma;
1559 	int ret;
1560 
1561 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1562 		return -ENODEV;
1563 
1564 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1565 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1566 
1567 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1568 	if (IS_ERR(bo)) {
1569 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1570 		return PTR_ERR(bo);
1571 	}
1572 
1573 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1574 
1575 	/* PreHSW required 512K alignment, HSW requires 16M */
1576 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1577 	if (IS_ERR(vma)) {
1578 		ret = PTR_ERR(vma);
1579 		goto err_unref;
1580 	}
1581 	stream->oa_buffer.vma = vma;
1582 
1583 	stream->oa_buffer.vaddr =
1584 		i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1585 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1586 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1587 		goto err_unpin;
1588 	}
1589 
1590 	return 0;
1591 
1592 err_unpin:
1593 	__i915_vma_unpin(vma);
1594 
1595 err_unref:
1596 	i915_gem_object_put(bo);
1597 
1598 	stream->oa_buffer.vaddr = NULL;
1599 	stream->oa_buffer.vma = NULL;
1600 
1601 	return ret;
1602 }
1603 
1604 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1605 				  bool save, i915_reg_t reg, u32 offset,
1606 				  u32 dword_count)
1607 {
1608 	u32 cmd;
1609 	u32 d;
1610 
1611 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1612 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1613 	if (GRAPHICS_VER(stream->perf->i915) >= 8)
1614 		cmd++;
1615 
1616 	for (d = 0; d < dword_count; d++) {
1617 		*cs++ = cmd;
1618 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1619 		*cs++ = intel_gt_scratch_offset(stream->engine->gt,
1620 						offset) + 4 * d;
1621 		*cs++ = 0;
1622 	}
1623 
1624 	return cs;
1625 }
1626 
1627 static int alloc_noa_wait(struct i915_perf_stream *stream)
1628 {
1629 	struct drm_i915_private *i915 = stream->perf->i915;
1630 	struct drm_i915_gem_object *bo;
1631 	struct i915_vma *vma;
1632 	const u64 delay_ticks = 0xffffffffffffffff -
1633 		intel_gt_ns_to_clock_interval(stream->perf->i915->ggtt.vm.gt,
1634 					      atomic64_read(&stream->perf->noa_programming_delay));
1635 	const u32 base = stream->engine->mmio_base;
1636 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1637 	u32 *batch, *ts0, *cs, *jump;
1638 	struct i915_gem_ww_ctx ww;
1639 	int ret, i;
1640 	enum {
1641 		START_TS,
1642 		NOW_TS,
1643 		DELTA_TS,
1644 		JUMP_PREDICATE,
1645 		DELTA_TARGET,
1646 		N_CS_GPR
1647 	};
1648 
1649 	bo = i915_gem_object_create_internal(i915, 4096);
1650 	if (IS_ERR(bo)) {
1651 		drm_err(&i915->drm,
1652 			"Failed to allocate NOA wait batchbuffer\n");
1653 		return PTR_ERR(bo);
1654 	}
1655 
1656 	i915_gem_ww_ctx_init(&ww, true);
1657 retry:
1658 	ret = i915_gem_object_lock(bo, &ww);
1659 	if (ret)
1660 		goto out_ww;
1661 
1662 	/*
1663 	 * We pin in GGTT because we jump into this buffer now because
1664 	 * multiple OA config BOs will have a jump to this address and it
1665 	 * needs to be fixed during the lifetime of the i915/perf stream.
1666 	 */
1667 	vma = i915_gem_object_ggtt_pin_ww(bo, &ww, NULL, 0, 0, PIN_HIGH);
1668 	if (IS_ERR(vma)) {
1669 		ret = PTR_ERR(vma);
1670 		goto out_ww;
1671 	}
1672 
1673 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1674 	if (IS_ERR(batch)) {
1675 		ret = PTR_ERR(batch);
1676 		goto err_unpin;
1677 	}
1678 
1679 	/* Save registers. */
1680 	for (i = 0; i < N_CS_GPR; i++)
1681 		cs = save_restore_register(
1682 			stream, cs, true /* save */, CS_GPR(i),
1683 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1684 	cs = save_restore_register(
1685 		stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1686 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1687 
1688 	/* First timestamp snapshot location. */
1689 	ts0 = cs;
1690 
1691 	/*
1692 	 * Initial snapshot of the timestamp register to implement the wait.
1693 	 * We work with 32b values, so clear out the top 32b bits of the
1694 	 * register because the ALU works 64bits.
1695 	 */
1696 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1697 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1698 	*cs++ = 0;
1699 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1700 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1701 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1702 
1703 	/*
1704 	 * This is the location we're going to jump back into until the
1705 	 * required amount of time has passed.
1706 	 */
1707 	jump = cs;
1708 
1709 	/*
1710 	 * Take another snapshot of the timestamp register. Take care to clear
1711 	 * up the top 32bits of CS_GPR(1) as we're using it for other
1712 	 * operations below.
1713 	 */
1714 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1715 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1716 	*cs++ = 0;
1717 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1718 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1719 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1720 
1721 	/*
1722 	 * Do a diff between the 2 timestamps and store the result back into
1723 	 * CS_GPR(1).
1724 	 */
1725 	*cs++ = MI_MATH(5);
1726 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1727 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1728 	*cs++ = MI_MATH_SUB;
1729 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1730 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1731 
1732 	/*
1733 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1734 	 * timestamp have rolled over the 32bits) into the predicate register
1735 	 * to be used for the predicated jump.
1736 	 */
1737 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1738 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1739 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1740 
1741 	/* Restart from the beginning if we had timestamps roll over. */
1742 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
1743 		 MI_BATCH_BUFFER_START :
1744 		 MI_BATCH_BUFFER_START_GEN8) |
1745 		MI_BATCH_PREDICATE;
1746 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1747 	*cs++ = 0;
1748 
1749 	/*
1750 	 * Now add the diff between to previous timestamps and add it to :
1751 	 *      (((1 * << 64) - 1) - delay_ns)
1752 	 *
1753 	 * When the Carry Flag contains 1 this means the elapsed time is
1754 	 * longer than the expected delay, and we can exit the wait loop.
1755 	 */
1756 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1757 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1758 	*cs++ = lower_32_bits(delay_ticks);
1759 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1760 	*cs++ = upper_32_bits(delay_ticks);
1761 
1762 	*cs++ = MI_MATH(4);
1763 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1764 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1765 	*cs++ = MI_MATH_ADD;
1766 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1767 
1768 	*cs++ = MI_ARB_CHECK;
1769 
1770 	/*
1771 	 * Transfer the result into the predicate register to be used for the
1772 	 * predicated jump.
1773 	 */
1774 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1775 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1776 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1777 
1778 	/* Predicate the jump.  */
1779 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
1780 		 MI_BATCH_BUFFER_START :
1781 		 MI_BATCH_BUFFER_START_GEN8) |
1782 		MI_BATCH_PREDICATE;
1783 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1784 	*cs++ = 0;
1785 
1786 	/* Restore registers. */
1787 	for (i = 0; i < N_CS_GPR; i++)
1788 		cs = save_restore_register(
1789 			stream, cs, false /* restore */, CS_GPR(i),
1790 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1791 	cs = save_restore_register(
1792 		stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1793 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1794 
1795 	/* And return to the ring. */
1796 	*cs++ = MI_BATCH_BUFFER_END;
1797 
1798 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1799 
1800 	i915_gem_object_flush_map(bo);
1801 	__i915_gem_object_release_map(bo);
1802 
1803 	stream->noa_wait = vma;
1804 	goto out_ww;
1805 
1806 err_unpin:
1807 	i915_vma_unpin_and_release(&vma, 0);
1808 out_ww:
1809 	if (ret == -EDEADLK) {
1810 		ret = i915_gem_ww_ctx_backoff(&ww);
1811 		if (!ret)
1812 			goto retry;
1813 	}
1814 	i915_gem_ww_ctx_fini(&ww);
1815 	if (ret)
1816 		i915_gem_object_put(bo);
1817 	return ret;
1818 }
1819 
1820 static u32 *write_cs_mi_lri(u32 *cs,
1821 			    const struct i915_oa_reg *reg_data,
1822 			    u32 n_regs)
1823 {
1824 	u32 i;
1825 
1826 	for (i = 0; i < n_regs; i++) {
1827 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1828 			u32 n_lri = min_t(u32,
1829 					  n_regs - i,
1830 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
1831 
1832 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1833 		}
1834 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1835 		*cs++ = reg_data[i].value;
1836 	}
1837 
1838 	return cs;
1839 }
1840 
1841 static int num_lri_dwords(int num_regs)
1842 {
1843 	int count = 0;
1844 
1845 	if (num_regs > 0) {
1846 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1847 		count += num_regs * 2;
1848 	}
1849 
1850 	return count;
1851 }
1852 
1853 static struct i915_oa_config_bo *
1854 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1855 		       struct i915_oa_config *oa_config)
1856 {
1857 	struct drm_i915_gem_object *obj;
1858 	struct i915_oa_config_bo *oa_bo;
1859 	struct i915_gem_ww_ctx ww;
1860 	size_t config_length = 0;
1861 	u32 *cs;
1862 	int err;
1863 
1864 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1865 	if (!oa_bo)
1866 		return ERR_PTR(-ENOMEM);
1867 
1868 	config_length += num_lri_dwords(oa_config->mux_regs_len);
1869 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1870 	config_length += num_lri_dwords(oa_config->flex_regs_len);
1871 	config_length += 3; /* MI_BATCH_BUFFER_START */
1872 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1873 
1874 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1875 	if (IS_ERR(obj)) {
1876 		err = PTR_ERR(obj);
1877 		goto err_free;
1878 	}
1879 
1880 	i915_gem_ww_ctx_init(&ww, true);
1881 retry:
1882 	err = i915_gem_object_lock(obj, &ww);
1883 	if (err)
1884 		goto out_ww;
1885 
1886 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1887 	if (IS_ERR(cs)) {
1888 		err = PTR_ERR(cs);
1889 		goto out_ww;
1890 	}
1891 
1892 	cs = write_cs_mi_lri(cs,
1893 			     oa_config->mux_regs,
1894 			     oa_config->mux_regs_len);
1895 	cs = write_cs_mi_lri(cs,
1896 			     oa_config->b_counter_regs,
1897 			     oa_config->b_counter_regs_len);
1898 	cs = write_cs_mi_lri(cs,
1899 			     oa_config->flex_regs,
1900 			     oa_config->flex_regs_len);
1901 
1902 	/* Jump into the active wait. */
1903 	*cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
1904 		 MI_BATCH_BUFFER_START :
1905 		 MI_BATCH_BUFFER_START_GEN8);
1906 	*cs++ = i915_ggtt_offset(stream->noa_wait);
1907 	*cs++ = 0;
1908 
1909 	i915_gem_object_flush_map(obj);
1910 	__i915_gem_object_release_map(obj);
1911 
1912 	oa_bo->vma = i915_vma_instance(obj,
1913 				       &stream->engine->gt->ggtt->vm,
1914 				       NULL);
1915 	if (IS_ERR(oa_bo->vma)) {
1916 		err = PTR_ERR(oa_bo->vma);
1917 		goto out_ww;
1918 	}
1919 
1920 	oa_bo->oa_config = i915_oa_config_get(oa_config);
1921 	llist_add(&oa_bo->node, &stream->oa_config_bos);
1922 
1923 out_ww:
1924 	if (err == -EDEADLK) {
1925 		err = i915_gem_ww_ctx_backoff(&ww);
1926 		if (!err)
1927 			goto retry;
1928 	}
1929 	i915_gem_ww_ctx_fini(&ww);
1930 
1931 	if (err)
1932 		i915_gem_object_put(obj);
1933 err_free:
1934 	if (err) {
1935 		kfree(oa_bo);
1936 		return ERR_PTR(err);
1937 	}
1938 	return oa_bo;
1939 }
1940 
1941 static struct i915_vma *
1942 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1943 {
1944 	struct i915_oa_config_bo *oa_bo;
1945 
1946 	/*
1947 	 * Look for the buffer in the already allocated BOs attached
1948 	 * to the stream.
1949 	 */
1950 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1951 		if (oa_bo->oa_config == oa_config &&
1952 		    memcmp(oa_bo->oa_config->uuid,
1953 			   oa_config->uuid,
1954 			   sizeof(oa_config->uuid)) == 0)
1955 			goto out;
1956 	}
1957 
1958 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
1959 	if (IS_ERR(oa_bo))
1960 		return ERR_CAST(oa_bo);
1961 
1962 out:
1963 	return i915_vma_get(oa_bo->vma);
1964 }
1965 
1966 static int
1967 emit_oa_config(struct i915_perf_stream *stream,
1968 	       struct i915_oa_config *oa_config,
1969 	       struct intel_context *ce,
1970 	       struct i915_active *active)
1971 {
1972 	struct i915_request *rq;
1973 	struct i915_vma *vma;
1974 	struct i915_gem_ww_ctx ww;
1975 	int err;
1976 
1977 	vma = get_oa_vma(stream, oa_config);
1978 	if (IS_ERR(vma))
1979 		return PTR_ERR(vma);
1980 
1981 	i915_gem_ww_ctx_init(&ww, true);
1982 retry:
1983 	err = i915_gem_object_lock(vma->obj, &ww);
1984 	if (err)
1985 		goto err;
1986 
1987 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1988 	if (err)
1989 		goto err;
1990 
1991 	intel_engine_pm_get(ce->engine);
1992 	rq = i915_request_create(ce);
1993 	intel_engine_pm_put(ce->engine);
1994 	if (IS_ERR(rq)) {
1995 		err = PTR_ERR(rq);
1996 		goto err_vma_unpin;
1997 	}
1998 
1999 	if (!IS_ERR_OR_NULL(active)) {
2000 		/* After all individual context modifications */
2001 		err = i915_request_await_active(rq, active,
2002 						I915_ACTIVE_AWAIT_ACTIVE);
2003 		if (err)
2004 			goto err_add_request;
2005 
2006 		err = i915_active_add_request(active, rq);
2007 		if (err)
2008 			goto err_add_request;
2009 	}
2010 
2011 	err = i915_request_await_object(rq, vma->obj, 0);
2012 	if (!err)
2013 		err = i915_vma_move_to_active(vma, rq, 0);
2014 	if (err)
2015 		goto err_add_request;
2016 
2017 	err = rq->engine->emit_bb_start(rq,
2018 					vma->node.start, 0,
2019 					I915_DISPATCH_SECURE);
2020 	if (err)
2021 		goto err_add_request;
2022 
2023 err_add_request:
2024 	i915_request_add(rq);
2025 err_vma_unpin:
2026 	i915_vma_unpin(vma);
2027 err:
2028 	if (err == -EDEADLK) {
2029 		err = i915_gem_ww_ctx_backoff(&ww);
2030 		if (!err)
2031 			goto retry;
2032 	}
2033 
2034 	i915_gem_ww_ctx_fini(&ww);
2035 	i915_vma_put(vma);
2036 	return err;
2037 }
2038 
2039 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2040 {
2041 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2042 }
2043 
2044 static int
2045 hsw_enable_metric_set(struct i915_perf_stream *stream,
2046 		      struct i915_active *active)
2047 {
2048 	struct intel_uncore *uncore = stream->uncore;
2049 
2050 	/*
2051 	 * PRM:
2052 	 *
2053 	 * OA unit is using “crclk” for its functionality. When trunk
2054 	 * level clock gating takes place, OA clock would be gated,
2055 	 * unable to count the events from non-render clock domain.
2056 	 * Render clock gating must be disabled when OA is enabled to
2057 	 * count the events from non-render domain. Unit level clock
2058 	 * gating for RCS should also be disabled.
2059 	 */
2060 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2061 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2062 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2063 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2064 
2065 	return emit_oa_config(stream,
2066 			      stream->oa_config, oa_context(stream),
2067 			      active);
2068 }
2069 
2070 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2071 {
2072 	struct intel_uncore *uncore = stream->uncore;
2073 
2074 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2075 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2076 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2077 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2078 
2079 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2080 }
2081 
2082 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2083 			      i915_reg_t reg)
2084 {
2085 	u32 mmio = i915_mmio_reg_offset(reg);
2086 	int i;
2087 
2088 	/*
2089 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2090 	 * Active' event. In the future it's anticipated that there
2091 	 * will be an explicit 'No Event' we can select, but not yet...
2092 	 */
2093 	if (!oa_config)
2094 		return 0;
2095 
2096 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2097 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2098 			return oa_config->flex_regs[i].value;
2099 	}
2100 
2101 	return 0;
2102 }
2103 /*
2104  * NB: It must always remain pointer safe to run this even if the OA unit
2105  * has been disabled.
2106  *
2107  * It's fine to put out-of-date values into these per-context registers
2108  * in the case that the OA unit has been disabled.
2109  */
2110 static void
2111 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2112 			       const struct i915_perf_stream *stream)
2113 {
2114 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2115 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2116 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2117 	i915_reg_t flex_regs[] = {
2118 		EU_PERF_CNTL0,
2119 		EU_PERF_CNTL1,
2120 		EU_PERF_CNTL2,
2121 		EU_PERF_CNTL3,
2122 		EU_PERF_CNTL4,
2123 		EU_PERF_CNTL5,
2124 		EU_PERF_CNTL6,
2125 	};
2126 	u32 *reg_state = ce->lrc_reg_state;
2127 	int i;
2128 
2129 	reg_state[ctx_oactxctrl + 1] =
2130 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2131 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2132 		GEN8_OA_COUNTER_RESUME;
2133 
2134 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2135 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2136 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2137 }
2138 
2139 struct flex {
2140 	i915_reg_t reg;
2141 	u32 offset;
2142 	u32 value;
2143 };
2144 
2145 static int
2146 gen8_store_flex(struct i915_request *rq,
2147 		struct intel_context *ce,
2148 		const struct flex *flex, unsigned int count)
2149 {
2150 	u32 offset;
2151 	u32 *cs;
2152 
2153 	cs = intel_ring_begin(rq, 4 * count);
2154 	if (IS_ERR(cs))
2155 		return PTR_ERR(cs);
2156 
2157 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2158 	do {
2159 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2160 		*cs++ = offset + flex->offset * sizeof(u32);
2161 		*cs++ = 0;
2162 		*cs++ = flex->value;
2163 	} while (flex++, --count);
2164 
2165 	intel_ring_advance(rq, cs);
2166 
2167 	return 0;
2168 }
2169 
2170 static int
2171 gen8_load_flex(struct i915_request *rq,
2172 	       struct intel_context *ce,
2173 	       const struct flex *flex, unsigned int count)
2174 {
2175 	u32 *cs;
2176 
2177 	GEM_BUG_ON(!count || count > 63);
2178 
2179 	cs = intel_ring_begin(rq, 2 * count + 2);
2180 	if (IS_ERR(cs))
2181 		return PTR_ERR(cs);
2182 
2183 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2184 	do {
2185 		*cs++ = i915_mmio_reg_offset(flex->reg);
2186 		*cs++ = flex->value;
2187 	} while (flex++, --count);
2188 	*cs++ = MI_NOOP;
2189 
2190 	intel_ring_advance(rq, cs);
2191 
2192 	return 0;
2193 }
2194 
2195 static int gen8_modify_context(struct intel_context *ce,
2196 			       const struct flex *flex, unsigned int count)
2197 {
2198 	struct i915_request *rq;
2199 	int err;
2200 
2201 	rq = intel_engine_create_kernel_request(ce->engine);
2202 	if (IS_ERR(rq))
2203 		return PTR_ERR(rq);
2204 
2205 	/* Serialise with the remote context */
2206 	err = intel_context_prepare_remote_request(ce, rq);
2207 	if (err == 0)
2208 		err = gen8_store_flex(rq, ce, flex, count);
2209 
2210 	i915_request_add(rq);
2211 	return err;
2212 }
2213 
2214 static int
2215 gen8_modify_self(struct intel_context *ce,
2216 		 const struct flex *flex, unsigned int count,
2217 		 struct i915_active *active)
2218 {
2219 	struct i915_request *rq;
2220 	int err;
2221 
2222 	intel_engine_pm_get(ce->engine);
2223 	rq = i915_request_create(ce);
2224 	intel_engine_pm_put(ce->engine);
2225 	if (IS_ERR(rq))
2226 		return PTR_ERR(rq);
2227 
2228 	if (!IS_ERR_OR_NULL(active)) {
2229 		err = i915_active_add_request(active, rq);
2230 		if (err)
2231 			goto err_add_request;
2232 	}
2233 
2234 	err = gen8_load_flex(rq, ce, flex, count);
2235 	if (err)
2236 		goto err_add_request;
2237 
2238 err_add_request:
2239 	i915_request_add(rq);
2240 	return err;
2241 }
2242 
2243 static int gen8_configure_context(struct i915_gem_context *ctx,
2244 				  struct flex *flex, unsigned int count)
2245 {
2246 	struct i915_gem_engines_iter it;
2247 	struct intel_context *ce;
2248 	int err = 0;
2249 
2250 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2251 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2252 
2253 		if (ce->engine->class != RENDER_CLASS)
2254 			continue;
2255 
2256 		/* Otherwise OA settings will be set upon first use */
2257 		if (!intel_context_pin_if_active(ce))
2258 			continue;
2259 
2260 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2261 		err = gen8_modify_context(ce, flex, count);
2262 
2263 		intel_context_unpin(ce);
2264 		if (err)
2265 			break;
2266 	}
2267 	i915_gem_context_unlock_engines(ctx);
2268 
2269 	return err;
2270 }
2271 
2272 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2273 				       struct i915_active *active)
2274 {
2275 	int err;
2276 	struct intel_context *ce = stream->pinned_ctx;
2277 	u32 format = stream->oa_buffer.format;
2278 	struct flex regs_context[] = {
2279 		{
2280 			GEN8_OACTXCONTROL,
2281 			stream->perf->ctx_oactxctrl_offset + 1,
2282 			active ? GEN8_OA_COUNTER_RESUME : 0,
2283 		},
2284 	};
2285 	/* Offsets in regs_lri are not used since this configuration is only
2286 	 * applied using LRI. Initialize the correct offsets for posterity.
2287 	 */
2288 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2289 	struct flex regs_lri[] = {
2290 		{
2291 			GEN12_OAR_OACONTROL,
2292 			GEN12_OAR_OACONTROL_OFFSET + 1,
2293 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2294 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2295 		},
2296 		{
2297 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2298 			CTX_CONTEXT_CONTROL,
2299 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2300 				      active ?
2301 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2302 				      0)
2303 		},
2304 	};
2305 
2306 	/* Modify the context image of pinned context with regs_context*/
2307 	err = intel_context_lock_pinned(ce);
2308 	if (err)
2309 		return err;
2310 
2311 	err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2312 	intel_context_unlock_pinned(ce);
2313 	if (err)
2314 		return err;
2315 
2316 	/* Apply regs_lri using LRI with pinned context */
2317 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2318 }
2319 
2320 /*
2321  * Manages updating the per-context aspects of the OA stream
2322  * configuration across all contexts.
2323  *
2324  * The awkward consideration here is that OACTXCONTROL controls the
2325  * exponent for periodic sampling which is primarily used for system
2326  * wide profiling where we'd like a consistent sampling period even in
2327  * the face of context switches.
2328  *
2329  * Our approach of updating the register state context (as opposed to
2330  * say using a workaround batch buffer) ensures that the hardware
2331  * won't automatically reload an out-of-date timer exponent even
2332  * transiently before a WA BB could be parsed.
2333  *
2334  * This function needs to:
2335  * - Ensure the currently running context's per-context OA state is
2336  *   updated
2337  * - Ensure that all existing contexts will have the correct per-context
2338  *   OA state if they are scheduled for use.
2339  * - Ensure any new contexts will be initialized with the correct
2340  *   per-context OA state.
2341  *
2342  * Note: it's only the RCS/Render context that has any OA state.
2343  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2344  */
2345 static int
2346 oa_configure_all_contexts(struct i915_perf_stream *stream,
2347 			  struct flex *regs,
2348 			  size_t num_regs,
2349 			  struct i915_active *active)
2350 {
2351 	struct drm_i915_private *i915 = stream->perf->i915;
2352 	struct intel_engine_cs *engine;
2353 	struct i915_gem_context *ctx, *cn;
2354 	int err;
2355 
2356 	lockdep_assert_held(&stream->perf->lock);
2357 
2358 	/*
2359 	 * The OA register config is setup through the context image. This image
2360 	 * might be written to by the GPU on context switch (in particular on
2361 	 * lite-restore). This means we can't safely update a context's image,
2362 	 * if this context is scheduled/submitted to run on the GPU.
2363 	 *
2364 	 * We could emit the OA register config through the batch buffer but
2365 	 * this might leave small interval of time where the OA unit is
2366 	 * configured at an invalid sampling period.
2367 	 *
2368 	 * Note that since we emit all requests from a single ring, there
2369 	 * is still an implicit global barrier here that may cause a high
2370 	 * priority context to wait for an otherwise independent low priority
2371 	 * context. Contexts idle at the time of reconfiguration are not
2372 	 * trapped behind the barrier.
2373 	 */
2374 	spin_lock(&i915->gem.contexts.lock);
2375 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2376 		if (!kref_get_unless_zero(&ctx->ref))
2377 			continue;
2378 
2379 		spin_unlock(&i915->gem.contexts.lock);
2380 
2381 		err = gen8_configure_context(ctx, regs, num_regs);
2382 		if (err) {
2383 			i915_gem_context_put(ctx);
2384 			return err;
2385 		}
2386 
2387 		spin_lock(&i915->gem.contexts.lock);
2388 		list_safe_reset_next(ctx, cn, link);
2389 		i915_gem_context_put(ctx);
2390 	}
2391 	spin_unlock(&i915->gem.contexts.lock);
2392 
2393 	/*
2394 	 * After updating all other contexts, we need to modify ourselves.
2395 	 * If we don't modify the kernel_context, we do not get events while
2396 	 * idle.
2397 	 */
2398 	for_each_uabi_engine(engine, i915) {
2399 		struct intel_context *ce = engine->kernel_context;
2400 
2401 		if (engine->class != RENDER_CLASS)
2402 			continue;
2403 
2404 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2405 
2406 		err = gen8_modify_self(ce, regs, num_regs, active);
2407 		if (err)
2408 			return err;
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 static int
2415 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2416 			     const struct i915_oa_config *oa_config,
2417 			     struct i915_active *active)
2418 {
2419 	struct flex regs[] = {
2420 		{
2421 			GEN8_R_PWR_CLK_STATE,
2422 			CTX_R_PWR_CLK_STATE,
2423 		},
2424 	};
2425 
2426 	return oa_configure_all_contexts(stream,
2427 					 regs, ARRAY_SIZE(regs),
2428 					 active);
2429 }
2430 
2431 static int
2432 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2433 			   const struct i915_oa_config *oa_config,
2434 			   struct i915_active *active)
2435 {
2436 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2437 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2438 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2439 	struct flex regs[] = {
2440 		{
2441 			GEN8_R_PWR_CLK_STATE,
2442 			CTX_R_PWR_CLK_STATE,
2443 		},
2444 		{
2445 			GEN8_OACTXCONTROL,
2446 			stream->perf->ctx_oactxctrl_offset + 1,
2447 		},
2448 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2449 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2450 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2451 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2452 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2453 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2454 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2455 	};
2456 #undef ctx_flexeuN
2457 	int i;
2458 
2459 	regs[1].value =
2460 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2461 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2462 		GEN8_OA_COUNTER_RESUME;
2463 
2464 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2465 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2466 
2467 	return oa_configure_all_contexts(stream,
2468 					 regs, ARRAY_SIZE(regs),
2469 					 active);
2470 }
2471 
2472 static int
2473 gen8_enable_metric_set(struct i915_perf_stream *stream,
2474 		       struct i915_active *active)
2475 {
2476 	struct intel_uncore *uncore = stream->uncore;
2477 	struct i915_oa_config *oa_config = stream->oa_config;
2478 	int ret;
2479 
2480 	/*
2481 	 * We disable slice/unslice clock ratio change reports on SKL since
2482 	 * they are too noisy. The HW generates a lot of redundant reports
2483 	 * where the ratio hasn't really changed causing a lot of redundant
2484 	 * work to processes and increasing the chances we'll hit buffer
2485 	 * overruns.
2486 	 *
2487 	 * Although we don't currently use the 'disable overrun' OABUFFER
2488 	 * feature it's worth noting that clock ratio reports have to be
2489 	 * disabled before considering to use that feature since the HW doesn't
2490 	 * correctly block these reports.
2491 	 *
2492 	 * Currently none of the high-level metrics we have depend on knowing
2493 	 * this ratio to normalize.
2494 	 *
2495 	 * Note: This register is not power context saved and restored, but
2496 	 * that's OK considering that we disable RC6 while the OA unit is
2497 	 * enabled.
2498 	 *
2499 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2500 	 * be read back from automatically triggered reports, as part of the
2501 	 * RPT_ID field.
2502 	 */
2503 	if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2504 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2505 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2506 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2507 	}
2508 
2509 	/*
2510 	 * Update all contexts prior writing the mux configurations as we need
2511 	 * to make sure all slices/subslices are ON before writing to NOA
2512 	 * registers.
2513 	 */
2514 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2515 	if (ret)
2516 		return ret;
2517 
2518 	return emit_oa_config(stream,
2519 			      stream->oa_config, oa_context(stream),
2520 			      active);
2521 }
2522 
2523 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2524 {
2525 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2526 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2527 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2528 }
2529 
2530 static int
2531 gen12_enable_metric_set(struct i915_perf_stream *stream,
2532 			struct i915_active *active)
2533 {
2534 	struct intel_uncore *uncore = stream->uncore;
2535 	struct i915_oa_config *oa_config = stream->oa_config;
2536 	bool periodic = stream->periodic;
2537 	u32 period_exponent = stream->period_exponent;
2538 	int ret;
2539 
2540 	intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2541 			   /* Disable clk ratio reports, like previous Gens. */
2542 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2543 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2544 			   /*
2545 			    * If the user didn't require OA reports, instruct
2546 			    * the hardware not to emit ctx switch reports.
2547 			    */
2548 			   oag_report_ctx_switches(stream));
2549 
2550 	intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2551 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2552 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2553 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2554 			    : 0);
2555 
2556 	/*
2557 	 * Update all contexts prior writing the mux configurations as we need
2558 	 * to make sure all slices/subslices are ON before writing to NOA
2559 	 * registers.
2560 	 */
2561 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2562 	if (ret)
2563 		return ret;
2564 
2565 	/*
2566 	 * For Gen12, performance counters are context
2567 	 * saved/restored. Only enable it for the context that
2568 	 * requested this.
2569 	 */
2570 	if (stream->ctx) {
2571 		ret = gen12_configure_oar_context(stream, active);
2572 		if (ret)
2573 			return ret;
2574 	}
2575 
2576 	return emit_oa_config(stream,
2577 			      stream->oa_config, oa_context(stream),
2578 			      active);
2579 }
2580 
2581 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2582 {
2583 	struct intel_uncore *uncore = stream->uncore;
2584 
2585 	/* Reset all contexts' slices/subslices configurations. */
2586 	lrc_configure_all_contexts(stream, NULL, NULL);
2587 
2588 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2589 }
2590 
2591 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2592 {
2593 	struct intel_uncore *uncore = stream->uncore;
2594 
2595 	/* Reset all contexts' slices/subslices configurations. */
2596 	lrc_configure_all_contexts(stream, NULL, NULL);
2597 
2598 	/* Make sure we disable noa to save power. */
2599 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2600 }
2601 
2602 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2603 {
2604 	struct intel_uncore *uncore = stream->uncore;
2605 
2606 	/* Reset all contexts' slices/subslices configurations. */
2607 	gen12_configure_all_contexts(stream, NULL, NULL);
2608 
2609 	/* disable the context save/restore or OAR counters */
2610 	if (stream->ctx)
2611 		gen12_configure_oar_context(stream, NULL);
2612 
2613 	/* Make sure we disable noa to save power. */
2614 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2615 }
2616 
2617 static void gen7_oa_enable(struct i915_perf_stream *stream)
2618 {
2619 	struct intel_uncore *uncore = stream->uncore;
2620 	struct i915_gem_context *ctx = stream->ctx;
2621 	u32 ctx_id = stream->specific_ctx_id;
2622 	bool periodic = stream->periodic;
2623 	u32 period_exponent = stream->period_exponent;
2624 	u32 report_format = stream->oa_buffer.format;
2625 
2626 	/*
2627 	 * Reset buf pointers so we don't forward reports from before now.
2628 	 *
2629 	 * Think carefully if considering trying to avoid this, since it
2630 	 * also ensures status flags and the buffer itself are cleared
2631 	 * in error paths, and we have checks for invalid reports based
2632 	 * on the assumption that certain fields are written to zeroed
2633 	 * memory which this helps maintains.
2634 	 */
2635 	gen7_init_oa_buffer(stream);
2636 
2637 	intel_uncore_write(uncore, GEN7_OACONTROL,
2638 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2639 			   (period_exponent <<
2640 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2641 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2642 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2643 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2644 			   GEN7_OACONTROL_ENABLE);
2645 }
2646 
2647 static void gen8_oa_enable(struct i915_perf_stream *stream)
2648 {
2649 	struct intel_uncore *uncore = stream->uncore;
2650 	u32 report_format = stream->oa_buffer.format;
2651 
2652 	/*
2653 	 * Reset buf pointers so we don't forward reports from before now.
2654 	 *
2655 	 * Think carefully if considering trying to avoid this, since it
2656 	 * also ensures status flags and the buffer itself are cleared
2657 	 * in error paths, and we have checks for invalid reports based
2658 	 * on the assumption that certain fields are written to zeroed
2659 	 * memory which this helps maintains.
2660 	 */
2661 	gen8_init_oa_buffer(stream);
2662 
2663 	/*
2664 	 * Note: we don't rely on the hardware to perform single context
2665 	 * filtering and instead filter on the cpu based on the context-id
2666 	 * field of reports
2667 	 */
2668 	intel_uncore_write(uncore, GEN8_OACONTROL,
2669 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2670 			   GEN8_OA_COUNTER_ENABLE);
2671 }
2672 
2673 static void gen12_oa_enable(struct i915_perf_stream *stream)
2674 {
2675 	struct intel_uncore *uncore = stream->uncore;
2676 	u32 report_format = stream->oa_buffer.format;
2677 
2678 	/*
2679 	 * If we don't want OA reports from the OA buffer, then we don't even
2680 	 * need to program the OAG unit.
2681 	 */
2682 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2683 		return;
2684 
2685 	gen12_init_oa_buffer(stream);
2686 
2687 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2688 			   (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2689 			   GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2690 }
2691 
2692 /**
2693  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2694  * @stream: An i915 perf stream opened for OA metrics
2695  *
2696  * [Re]enables hardware periodic sampling according to the period configured
2697  * when opening the stream. This also starts a hrtimer that will periodically
2698  * check for data in the circular OA buffer for notifying userspace (e.g.
2699  * during a read() or poll()).
2700  */
2701 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2702 {
2703 	stream->pollin = false;
2704 
2705 	stream->perf->ops.oa_enable(stream);
2706 
2707 	if (stream->sample_flags & SAMPLE_OA_REPORT)
2708 		hrtimer_start(&stream->poll_check_timer,
2709 			      ns_to_ktime(stream->poll_oa_period),
2710 			      HRTIMER_MODE_REL_PINNED);
2711 }
2712 
2713 static void gen7_oa_disable(struct i915_perf_stream *stream)
2714 {
2715 	struct intel_uncore *uncore = stream->uncore;
2716 
2717 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2718 	if (intel_wait_for_register(uncore,
2719 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2720 				    50))
2721 		drm_err(&stream->perf->i915->drm,
2722 			"wait for OA to be disabled timed out\n");
2723 }
2724 
2725 static void gen8_oa_disable(struct i915_perf_stream *stream)
2726 {
2727 	struct intel_uncore *uncore = stream->uncore;
2728 
2729 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2730 	if (intel_wait_for_register(uncore,
2731 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2732 				    50))
2733 		drm_err(&stream->perf->i915->drm,
2734 			"wait for OA to be disabled timed out\n");
2735 }
2736 
2737 static void gen12_oa_disable(struct i915_perf_stream *stream)
2738 {
2739 	struct intel_uncore *uncore = stream->uncore;
2740 
2741 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2742 	if (intel_wait_for_register(uncore,
2743 				    GEN12_OAG_OACONTROL,
2744 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2745 				    50))
2746 		drm_err(&stream->perf->i915->drm,
2747 			"wait for OA to be disabled timed out\n");
2748 
2749 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2750 	if (intel_wait_for_register(uncore,
2751 				    GEN12_OA_TLB_INV_CR,
2752 				    1, 0,
2753 				    50))
2754 		drm_err(&stream->perf->i915->drm,
2755 			"wait for OA tlb invalidate timed out\n");
2756 }
2757 
2758 /**
2759  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2760  * @stream: An i915 perf stream opened for OA metrics
2761  *
2762  * Stops the OA unit from periodically writing counter reports into the
2763  * circular OA buffer. This also stops the hrtimer that periodically checks for
2764  * data in the circular OA buffer, for notifying userspace.
2765  */
2766 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2767 {
2768 	stream->perf->ops.oa_disable(stream);
2769 
2770 	if (stream->sample_flags & SAMPLE_OA_REPORT)
2771 		hrtimer_cancel(&stream->poll_check_timer);
2772 }
2773 
2774 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2775 	.destroy = i915_oa_stream_destroy,
2776 	.enable = i915_oa_stream_enable,
2777 	.disable = i915_oa_stream_disable,
2778 	.wait_unlocked = i915_oa_wait_unlocked,
2779 	.poll_wait = i915_oa_poll_wait,
2780 	.read = i915_oa_read,
2781 };
2782 
2783 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2784 {
2785 	struct i915_active *active;
2786 	int err;
2787 
2788 	active = i915_active_create();
2789 	if (!active)
2790 		return -ENOMEM;
2791 
2792 	err = stream->perf->ops.enable_metric_set(stream, active);
2793 	if (err == 0)
2794 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2795 
2796 	i915_active_put(active);
2797 	return err;
2798 }
2799 
2800 static void
2801 get_default_sseu_config(struct intel_sseu *out_sseu,
2802 			struct intel_engine_cs *engine)
2803 {
2804 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2805 
2806 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2807 
2808 	if (GRAPHICS_VER(engine->i915) == 11) {
2809 		/*
2810 		 * We only need subslice count so it doesn't matter which ones
2811 		 * we select - just turn off low bits in the amount of half of
2812 		 * all available subslices per slice.
2813 		 */
2814 		out_sseu->subslice_mask =
2815 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2816 		out_sseu->slice_mask = 0x1;
2817 	}
2818 }
2819 
2820 static int
2821 get_sseu_config(struct intel_sseu *out_sseu,
2822 		struct intel_engine_cs *engine,
2823 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
2824 {
2825 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
2826 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
2827 		return -EINVAL;
2828 
2829 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2830 }
2831 
2832 /**
2833  * i915_oa_stream_init - validate combined props for OA stream and init
2834  * @stream: An i915 perf stream
2835  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2836  * @props: The property state that configures stream (individually validated)
2837  *
2838  * While read_properties_unlocked() validates properties in isolation it
2839  * doesn't ensure that the combination necessarily makes sense.
2840  *
2841  * At this point it has been determined that userspace wants a stream of
2842  * OA metrics, but still we need to further validate the combined
2843  * properties are OK.
2844  *
2845  * If the configuration makes sense then we can allocate memory for
2846  * a circular OA buffer and apply the requested metric set configuration.
2847  *
2848  * Returns: zero on success or a negative error code.
2849  */
2850 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2851 			       struct drm_i915_perf_open_param *param,
2852 			       struct perf_open_properties *props)
2853 {
2854 	struct drm_i915_private *i915 = stream->perf->i915;
2855 	struct i915_perf *perf = stream->perf;
2856 	int format_size;
2857 	int ret;
2858 
2859 	if (!props->engine) {
2860 		DRM_DEBUG("OA engine not specified\n");
2861 		return -EINVAL;
2862 	}
2863 
2864 	/*
2865 	 * If the sysfs metrics/ directory wasn't registered for some
2866 	 * reason then don't let userspace try their luck with config
2867 	 * IDs
2868 	 */
2869 	if (!perf->metrics_kobj) {
2870 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2871 		return -EINVAL;
2872 	}
2873 
2874 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2875 	    (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
2876 		DRM_DEBUG("Only OA report sampling supported\n");
2877 		return -EINVAL;
2878 	}
2879 
2880 	if (!perf->ops.enable_metric_set) {
2881 		DRM_DEBUG("OA unit not supported\n");
2882 		return -ENODEV;
2883 	}
2884 
2885 	/*
2886 	 * To avoid the complexity of having to accurately filter
2887 	 * counter reports and marshal to the appropriate client
2888 	 * we currently only allow exclusive access
2889 	 */
2890 	if (perf->exclusive_stream) {
2891 		DRM_DEBUG("OA unit already in use\n");
2892 		return -EBUSY;
2893 	}
2894 
2895 	if (!props->oa_format) {
2896 		DRM_DEBUG("OA report format not specified\n");
2897 		return -EINVAL;
2898 	}
2899 
2900 	stream->engine = props->engine;
2901 	stream->uncore = stream->engine->gt->uncore;
2902 
2903 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2904 
2905 	format_size = perf->oa_formats[props->oa_format].size;
2906 
2907 	stream->sample_flags = props->sample_flags;
2908 	stream->sample_size += format_size;
2909 
2910 	stream->oa_buffer.format_size = format_size;
2911 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2912 		return -EINVAL;
2913 
2914 	stream->hold_preemption = props->hold_preemption;
2915 
2916 	stream->oa_buffer.format =
2917 		perf->oa_formats[props->oa_format].format;
2918 
2919 	stream->periodic = props->oa_periodic;
2920 	if (stream->periodic)
2921 		stream->period_exponent = props->oa_period_exponent;
2922 
2923 	if (stream->ctx) {
2924 		ret = oa_get_render_ctx_id(stream);
2925 		if (ret) {
2926 			DRM_DEBUG("Invalid context id to filter with\n");
2927 			return ret;
2928 		}
2929 	}
2930 
2931 	ret = alloc_noa_wait(stream);
2932 	if (ret) {
2933 		DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2934 		goto err_noa_wait_alloc;
2935 	}
2936 
2937 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2938 	if (!stream->oa_config) {
2939 		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2940 		ret = -EINVAL;
2941 		goto err_config;
2942 	}
2943 
2944 	/* PRM - observability performance counters:
2945 	 *
2946 	 *   OACONTROL, performance counter enable, note:
2947 	 *
2948 	 *   "When this bit is set, in order to have coherent counts,
2949 	 *   RC6 power state and trunk clock gating must be disabled.
2950 	 *   This can be achieved by programming MMIO registers as
2951 	 *   0xA094=0 and 0xA090[31]=1"
2952 	 *
2953 	 *   In our case we are expecting that taking pm + FORCEWAKE
2954 	 *   references will effectively disable RC6.
2955 	 */
2956 	intel_engine_pm_get(stream->engine);
2957 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2958 
2959 	ret = alloc_oa_buffer(stream);
2960 	if (ret)
2961 		goto err_oa_buf_alloc;
2962 
2963 	stream->ops = &i915_oa_stream_ops;
2964 
2965 	perf->sseu = props->sseu;
2966 	WRITE_ONCE(perf->exclusive_stream, stream);
2967 
2968 	ret = i915_perf_stream_enable_sync(stream);
2969 	if (ret) {
2970 		DRM_DEBUG("Unable to enable metric set\n");
2971 		goto err_enable;
2972 	}
2973 
2974 	DRM_DEBUG("opening stream oa config uuid=%s\n",
2975 		  stream->oa_config->uuid);
2976 
2977 	hrtimer_init(&stream->poll_check_timer,
2978 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2979 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
2980 	init_waitqueue_head(&stream->poll_wq);
2981 	spin_lock_init(&stream->oa_buffer.ptr_lock);
2982 
2983 	return 0;
2984 
2985 err_enable:
2986 	WRITE_ONCE(perf->exclusive_stream, NULL);
2987 	perf->ops.disable_metric_set(stream);
2988 
2989 	free_oa_buffer(stream);
2990 
2991 err_oa_buf_alloc:
2992 	free_oa_configs(stream);
2993 
2994 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2995 	intel_engine_pm_put(stream->engine);
2996 
2997 err_config:
2998 	free_noa_wait(stream);
2999 
3000 err_noa_wait_alloc:
3001 	if (stream->ctx)
3002 		oa_put_render_ctx_id(stream);
3003 
3004 	return ret;
3005 }
3006 
3007 void i915_oa_init_reg_state(const struct intel_context *ce,
3008 			    const struct intel_engine_cs *engine)
3009 {
3010 	struct i915_perf_stream *stream;
3011 
3012 	if (engine->class != RENDER_CLASS)
3013 		return;
3014 
3015 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3016 	stream = READ_ONCE(engine->i915->perf.exclusive_stream);
3017 	if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3018 		gen8_update_reg_state_unlocked(ce, stream);
3019 }
3020 
3021 /**
3022  * i915_perf_read - handles read() FOP for i915 perf stream FDs
3023  * @file: An i915 perf stream file
3024  * @buf: destination buffer given by userspace
3025  * @count: the number of bytes userspace wants to read
3026  * @ppos: (inout) file seek position (unused)
3027  *
3028  * The entry point for handling a read() on a stream file descriptor from
3029  * userspace. Most of the work is left to the i915_perf_read_locked() and
3030  * &i915_perf_stream_ops->read but to save having stream implementations (of
3031  * which we might have multiple later) we handle blocking read here.
3032  *
3033  * We can also consistently treat trying to read from a disabled stream
3034  * as an IO error so implementations can assume the stream is enabled
3035  * while reading.
3036  *
3037  * Returns: The number of bytes copied or a negative error code on failure.
3038  */
3039 static ssize_t i915_perf_read(struct file *file,
3040 			      char __user *buf,
3041 			      size_t count,
3042 			      loff_t *ppos)
3043 {
3044 	struct i915_perf_stream *stream = file->private_data;
3045 	struct i915_perf *perf = stream->perf;
3046 	size_t offset = 0;
3047 	int ret;
3048 
3049 	/* To ensure it's handled consistently we simply treat all reads of a
3050 	 * disabled stream as an error. In particular it might otherwise lead
3051 	 * to a deadlock for blocking file descriptors...
3052 	 */
3053 	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3054 		return -EIO;
3055 
3056 	if (!(file->f_flags & O_NONBLOCK)) {
3057 		/* There's the small chance of false positives from
3058 		 * stream->ops->wait_unlocked.
3059 		 *
3060 		 * E.g. with single context filtering since we only wait until
3061 		 * oabuffer has >= 1 report we don't immediately know whether
3062 		 * any reports really belong to the current context
3063 		 */
3064 		do {
3065 			ret = stream->ops->wait_unlocked(stream);
3066 			if (ret)
3067 				return ret;
3068 
3069 			mutex_lock(&perf->lock);
3070 			ret = stream->ops->read(stream, buf, count, &offset);
3071 			mutex_unlock(&perf->lock);
3072 		} while (!offset && !ret);
3073 	} else {
3074 		mutex_lock(&perf->lock);
3075 		ret = stream->ops->read(stream, buf, count, &offset);
3076 		mutex_unlock(&perf->lock);
3077 	}
3078 
3079 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3080 	 * events where we might actually report EAGAIN on read() if there's
3081 	 * not really any data available. In this situation though we don't
3082 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3083 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3084 	 * effectively ensures we back off until the next hrtimer callback
3085 	 * before reporting another EPOLLIN event.
3086 	 * The exception to this is if ops->read() returned -ENOSPC which means
3087 	 * that more OA data is available than could fit in the user provided
3088 	 * buffer. In this case we want the next poll() call to not block.
3089 	 */
3090 	if (ret != -ENOSPC)
3091 		stream->pollin = false;
3092 
3093 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3094 	return offset ?: (ret ?: -EAGAIN);
3095 }
3096 
3097 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3098 {
3099 	struct i915_perf_stream *stream =
3100 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3101 
3102 	if (oa_buffer_check_unlocked(stream)) {
3103 		stream->pollin = true;
3104 		wake_up(&stream->poll_wq);
3105 	}
3106 
3107 	hrtimer_forward_now(hrtimer,
3108 			    ns_to_ktime(stream->poll_oa_period));
3109 
3110 	return HRTIMER_RESTART;
3111 }
3112 
3113 /**
3114  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3115  * @stream: An i915 perf stream
3116  * @file: An i915 perf stream file
3117  * @wait: poll() state table
3118  *
3119  * For handling userspace polling on an i915 perf stream, this calls through to
3120  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3121  * will be woken for new stream data.
3122  *
3123  * Note: The &perf->lock mutex has been taken to serialize
3124  * with any non-file-operation driver hooks.
3125  *
3126  * Returns: any poll events that are ready without sleeping
3127  */
3128 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3129 				      struct file *file,
3130 				      poll_table *wait)
3131 {
3132 	__poll_t events = 0;
3133 
3134 	stream->ops->poll_wait(stream, file, wait);
3135 
3136 	/* Note: we don't explicitly check whether there's something to read
3137 	 * here since this path may be very hot depending on what else
3138 	 * userspace is polling, or on the timeout in use. We rely solely on
3139 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3140 	 * samples to read.
3141 	 */
3142 	if (stream->pollin)
3143 		events |= EPOLLIN;
3144 
3145 	return events;
3146 }
3147 
3148 /**
3149  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3150  * @file: An i915 perf stream file
3151  * @wait: poll() state table
3152  *
3153  * For handling userspace polling on an i915 perf stream, this ensures
3154  * poll_wait() gets called with a wait queue that will be woken for new stream
3155  * data.
3156  *
3157  * Note: Implementation deferred to i915_perf_poll_locked()
3158  *
3159  * Returns: any poll events that are ready without sleeping
3160  */
3161 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3162 {
3163 	struct i915_perf_stream *stream = file->private_data;
3164 	struct i915_perf *perf = stream->perf;
3165 	__poll_t ret;
3166 
3167 	mutex_lock(&perf->lock);
3168 	ret = i915_perf_poll_locked(stream, file, wait);
3169 	mutex_unlock(&perf->lock);
3170 
3171 	return ret;
3172 }
3173 
3174 /**
3175  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3176  * @stream: A disabled i915 perf stream
3177  *
3178  * [Re]enables the associated capture of data for this stream.
3179  *
3180  * If a stream was previously enabled then there's currently no intention
3181  * to provide userspace any guarantee about the preservation of previously
3182  * buffered data.
3183  */
3184 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3185 {
3186 	if (stream->enabled)
3187 		return;
3188 
3189 	/* Allow stream->ops->enable() to refer to this */
3190 	stream->enabled = true;
3191 
3192 	if (stream->ops->enable)
3193 		stream->ops->enable(stream);
3194 
3195 	if (stream->hold_preemption)
3196 		intel_context_set_nopreempt(stream->pinned_ctx);
3197 }
3198 
3199 /**
3200  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3201  * @stream: An enabled i915 perf stream
3202  *
3203  * Disables the associated capture of data for this stream.
3204  *
3205  * The intention is that disabling an re-enabling a stream will ideally be
3206  * cheaper than destroying and re-opening a stream with the same configuration,
3207  * though there are no formal guarantees about what state or buffered data
3208  * must be retained between disabling and re-enabling a stream.
3209  *
3210  * Note: while a stream is disabled it's considered an error for userspace
3211  * to attempt to read from the stream (-EIO).
3212  */
3213 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3214 {
3215 	if (!stream->enabled)
3216 		return;
3217 
3218 	/* Allow stream->ops->disable() to refer to this */
3219 	stream->enabled = false;
3220 
3221 	if (stream->hold_preemption)
3222 		intel_context_clear_nopreempt(stream->pinned_ctx);
3223 
3224 	if (stream->ops->disable)
3225 		stream->ops->disable(stream);
3226 }
3227 
3228 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3229 				    unsigned long metrics_set)
3230 {
3231 	struct i915_oa_config *config;
3232 	long ret = stream->oa_config->id;
3233 
3234 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3235 	if (!config)
3236 		return -EINVAL;
3237 
3238 	if (config != stream->oa_config) {
3239 		int err;
3240 
3241 		/*
3242 		 * If OA is bound to a specific context, emit the
3243 		 * reconfiguration inline from that context. The update
3244 		 * will then be ordered with respect to submission on that
3245 		 * context.
3246 		 *
3247 		 * When set globally, we use a low priority kernel context,
3248 		 * so it will effectively take effect when idle.
3249 		 */
3250 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3251 		if (!err)
3252 			config = xchg(&stream->oa_config, config);
3253 		else
3254 			ret = err;
3255 	}
3256 
3257 	i915_oa_config_put(config);
3258 
3259 	return ret;
3260 }
3261 
3262 /**
3263  * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3264  * @stream: An i915 perf stream
3265  * @cmd: the ioctl request
3266  * @arg: the ioctl data
3267  *
3268  * Note: The &perf->lock mutex has been taken to serialize
3269  * with any non-file-operation driver hooks.
3270  *
3271  * Returns: zero on success or a negative error code. Returns -EINVAL for
3272  * an unknown ioctl request.
3273  */
3274 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3275 				   unsigned int cmd,
3276 				   unsigned long arg)
3277 {
3278 	switch (cmd) {
3279 	case I915_PERF_IOCTL_ENABLE:
3280 		i915_perf_enable_locked(stream);
3281 		return 0;
3282 	case I915_PERF_IOCTL_DISABLE:
3283 		i915_perf_disable_locked(stream);
3284 		return 0;
3285 	case I915_PERF_IOCTL_CONFIG:
3286 		return i915_perf_config_locked(stream, arg);
3287 	}
3288 
3289 	return -EINVAL;
3290 }
3291 
3292 /**
3293  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3294  * @file: An i915 perf stream file
3295  * @cmd: the ioctl request
3296  * @arg: the ioctl data
3297  *
3298  * Implementation deferred to i915_perf_ioctl_locked().
3299  *
3300  * Returns: zero on success or a negative error code. Returns -EINVAL for
3301  * an unknown ioctl request.
3302  */
3303 static long i915_perf_ioctl(struct file *file,
3304 			    unsigned int cmd,
3305 			    unsigned long arg)
3306 {
3307 	struct i915_perf_stream *stream = file->private_data;
3308 	struct i915_perf *perf = stream->perf;
3309 	long ret;
3310 
3311 	mutex_lock(&perf->lock);
3312 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3313 	mutex_unlock(&perf->lock);
3314 
3315 	return ret;
3316 }
3317 
3318 /**
3319  * i915_perf_destroy_locked - destroy an i915 perf stream
3320  * @stream: An i915 perf stream
3321  *
3322  * Frees all resources associated with the given i915 perf @stream, disabling
3323  * any associated data capture in the process.
3324  *
3325  * Note: The &perf->lock mutex has been taken to serialize
3326  * with any non-file-operation driver hooks.
3327  */
3328 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3329 {
3330 	if (stream->enabled)
3331 		i915_perf_disable_locked(stream);
3332 
3333 	if (stream->ops->destroy)
3334 		stream->ops->destroy(stream);
3335 
3336 	if (stream->ctx)
3337 		i915_gem_context_put(stream->ctx);
3338 
3339 	kfree(stream);
3340 }
3341 
3342 /**
3343  * i915_perf_release - handles userspace close() of a stream file
3344  * @inode: anonymous inode associated with file
3345  * @file: An i915 perf stream file
3346  *
3347  * Cleans up any resources associated with an open i915 perf stream file.
3348  *
3349  * NB: close() can't really fail from the userspace point of view.
3350  *
3351  * Returns: zero on success or a negative error code.
3352  */
3353 static int i915_perf_release(struct inode *inode, struct file *file)
3354 {
3355 	struct i915_perf_stream *stream = file->private_data;
3356 	struct i915_perf *perf = stream->perf;
3357 
3358 	mutex_lock(&perf->lock);
3359 	i915_perf_destroy_locked(stream);
3360 	mutex_unlock(&perf->lock);
3361 
3362 	/* Release the reference the perf stream kept on the driver. */
3363 	drm_dev_put(&perf->i915->drm);
3364 
3365 	return 0;
3366 }
3367 
3368 
3369 static const struct file_operations fops = {
3370 	.owner		= THIS_MODULE,
3371 	.llseek		= no_llseek,
3372 	.release	= i915_perf_release,
3373 	.poll		= i915_perf_poll,
3374 	.read		= i915_perf_read,
3375 	.unlocked_ioctl	= i915_perf_ioctl,
3376 	/* Our ioctl have no arguments, so it's safe to use the same function
3377 	 * to handle 32bits compatibility.
3378 	 */
3379 	.compat_ioctl   = i915_perf_ioctl,
3380 };
3381 
3382 
3383 /**
3384  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3385  * @perf: i915 perf instance
3386  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3387  * @props: individually validated u64 property value pairs
3388  * @file: drm file
3389  *
3390  * See i915_perf_ioctl_open() for interface details.
3391  *
3392  * Implements further stream config validation and stream initialization on
3393  * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3394  * taken to serialize with any non-file-operation driver hooks.
3395  *
3396  * Note: at this point the @props have only been validated in isolation and
3397  * it's still necessary to validate that the combination of properties makes
3398  * sense.
3399  *
3400  * In the case where userspace is interested in OA unit metrics then further
3401  * config validation and stream initialization details will be handled by
3402  * i915_oa_stream_init(). The code here should only validate config state that
3403  * will be relevant to all stream types / backends.
3404  *
3405  * Returns: zero on success or a negative error code.
3406  */
3407 static int
3408 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3409 			    struct drm_i915_perf_open_param *param,
3410 			    struct perf_open_properties *props,
3411 			    struct drm_file *file)
3412 {
3413 	struct i915_gem_context *specific_ctx = NULL;
3414 	struct i915_perf_stream *stream = NULL;
3415 	unsigned long f_flags = 0;
3416 	bool privileged_op = true;
3417 	int stream_fd;
3418 	int ret;
3419 
3420 	if (props->single_context) {
3421 		u32 ctx_handle = props->ctx_handle;
3422 		struct drm_i915_file_private *file_priv = file->driver_priv;
3423 
3424 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3425 		if (IS_ERR(specific_ctx)) {
3426 			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3427 				  ctx_handle);
3428 			ret = PTR_ERR(specific_ctx);
3429 			goto err;
3430 		}
3431 	}
3432 
3433 	/*
3434 	 * On Haswell the OA unit supports clock gating off for a specific
3435 	 * context and in this mode there's no visibility of metrics for the
3436 	 * rest of the system, which we consider acceptable for a
3437 	 * non-privileged client.
3438 	 *
3439 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3440 	 * specific context and the kernel can't securely stop the counters
3441 	 * from updating as system-wide / global values. Even though we can
3442 	 * filter reports based on the included context ID we can't block
3443 	 * clients from seeing the raw / global counter values via
3444 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3445 	 * enable the OA unit by default.
3446 	 *
3447 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3448 	 * per context basis. So we can relax requirements there if the user
3449 	 * doesn't request global stream access (i.e. query based sampling
3450 	 * using MI_RECORD_PERF_COUNT.
3451 	 */
3452 	if (IS_HASWELL(perf->i915) && specific_ctx)
3453 		privileged_op = false;
3454 	else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3455 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3456 		privileged_op = false;
3457 
3458 	if (props->hold_preemption) {
3459 		if (!props->single_context) {
3460 			DRM_DEBUG("preemption disable with no context\n");
3461 			ret = -EINVAL;
3462 			goto err;
3463 		}
3464 		privileged_op = true;
3465 	}
3466 
3467 	/*
3468 	 * Asking for SSEU configuration is a priviliged operation.
3469 	 */
3470 	if (props->has_sseu)
3471 		privileged_op = true;
3472 	else
3473 		get_default_sseu_config(&props->sseu, props->engine);
3474 
3475 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3476 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3477 	 * to determine if it's ok to access system wide OA counters
3478 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3479 	 */
3480 	if (privileged_op &&
3481 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3482 		DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3483 		ret = -EACCES;
3484 		goto err_ctx;
3485 	}
3486 
3487 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3488 	if (!stream) {
3489 		ret = -ENOMEM;
3490 		goto err_ctx;
3491 	}
3492 
3493 	stream->perf = perf;
3494 	stream->ctx = specific_ctx;
3495 	stream->poll_oa_period = props->poll_oa_period;
3496 
3497 	ret = i915_oa_stream_init(stream, param, props);
3498 	if (ret)
3499 		goto err_alloc;
3500 
3501 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3502 	 * to have _stream_init check the combination of sample flags more
3503 	 * thoroughly, but still this is the expected result at this point.
3504 	 */
3505 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3506 		ret = -ENODEV;
3507 		goto err_flags;
3508 	}
3509 
3510 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3511 		f_flags |= O_CLOEXEC;
3512 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3513 		f_flags |= O_NONBLOCK;
3514 
3515 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3516 	if (stream_fd < 0) {
3517 		ret = stream_fd;
3518 		goto err_flags;
3519 	}
3520 
3521 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3522 		i915_perf_enable_locked(stream);
3523 
3524 	/* Take a reference on the driver that will be kept with stream_fd
3525 	 * until its release.
3526 	 */
3527 	drm_dev_get(&perf->i915->drm);
3528 
3529 	return stream_fd;
3530 
3531 err_flags:
3532 	if (stream->ops->destroy)
3533 		stream->ops->destroy(stream);
3534 err_alloc:
3535 	kfree(stream);
3536 err_ctx:
3537 	if (specific_ctx)
3538 		i915_gem_context_put(specific_ctx);
3539 err:
3540 	return ret;
3541 }
3542 
3543 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3544 {
3545 	return intel_gt_clock_interval_to_ns(perf->i915->ggtt.vm.gt,
3546 					     2ULL << exponent);
3547 }
3548 
3549 static __always_inline bool
3550 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
3551 {
3552 	return test_bit(format, perf->format_mask);
3553 }
3554 
3555 static __always_inline void
3556 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
3557 {
3558 	__set_bit(format, perf->format_mask);
3559 }
3560 
3561 /**
3562  * read_properties_unlocked - validate + copy userspace stream open properties
3563  * @perf: i915 perf instance
3564  * @uprops: The array of u64 key value pairs given by userspace
3565  * @n_props: The number of key value pairs expected in @uprops
3566  * @props: The stream configuration built up while validating properties
3567  *
3568  * Note this function only validates properties in isolation it doesn't
3569  * validate that the combination of properties makes sense or that all
3570  * properties necessary for a particular kind of stream have been set.
3571  *
3572  * Note that there currently aren't any ordering requirements for properties so
3573  * we shouldn't validate or assume anything about ordering here. This doesn't
3574  * rule out defining new properties with ordering requirements in the future.
3575  */
3576 static int read_properties_unlocked(struct i915_perf *perf,
3577 				    u64 __user *uprops,
3578 				    u32 n_props,
3579 				    struct perf_open_properties *props)
3580 {
3581 	u64 __user *uprop = uprops;
3582 	u32 i;
3583 	int ret;
3584 
3585 	memset(props, 0, sizeof(struct perf_open_properties));
3586 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3587 
3588 	if (!n_props) {
3589 		DRM_DEBUG("No i915 perf properties given\n");
3590 		return -EINVAL;
3591 	}
3592 
3593 	/* At the moment we only support using i915-perf on the RCS. */
3594 	props->engine = intel_engine_lookup_user(perf->i915,
3595 						 I915_ENGINE_CLASS_RENDER,
3596 						 0);
3597 	if (!props->engine) {
3598 		DRM_DEBUG("No RENDER-capable engines\n");
3599 		return -EINVAL;
3600 	}
3601 
3602 	/* Considering that ID = 0 is reserved and assuming that we don't
3603 	 * (currently) expect any configurations to ever specify duplicate
3604 	 * values for a particular property ID then the last _PROP_MAX value is
3605 	 * one greater than the maximum number of properties we expect to get
3606 	 * from userspace.
3607 	 */
3608 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
3609 		DRM_DEBUG("More i915 perf properties specified than exist\n");
3610 		return -EINVAL;
3611 	}
3612 
3613 	for (i = 0; i < n_props; i++) {
3614 		u64 oa_period, oa_freq_hz;
3615 		u64 id, value;
3616 
3617 		ret = get_user(id, uprop);
3618 		if (ret)
3619 			return ret;
3620 
3621 		ret = get_user(value, uprop + 1);
3622 		if (ret)
3623 			return ret;
3624 
3625 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3626 			DRM_DEBUG("Unknown i915 perf property ID\n");
3627 			return -EINVAL;
3628 		}
3629 
3630 		switch ((enum drm_i915_perf_property_id)id) {
3631 		case DRM_I915_PERF_PROP_CTX_HANDLE:
3632 			props->single_context = 1;
3633 			props->ctx_handle = value;
3634 			break;
3635 		case DRM_I915_PERF_PROP_SAMPLE_OA:
3636 			if (value)
3637 				props->sample_flags |= SAMPLE_OA_REPORT;
3638 			break;
3639 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
3640 			if (value == 0) {
3641 				DRM_DEBUG("Unknown OA metric set ID\n");
3642 				return -EINVAL;
3643 			}
3644 			props->metrics_set = value;
3645 			break;
3646 		case DRM_I915_PERF_PROP_OA_FORMAT:
3647 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3648 				DRM_DEBUG("Out-of-range OA report format %llu\n",
3649 					  value);
3650 				return -EINVAL;
3651 			}
3652 			if (!oa_format_valid(perf, value)) {
3653 				DRM_DEBUG("Unsupported OA report format %llu\n",
3654 					  value);
3655 				return -EINVAL;
3656 			}
3657 			props->oa_format = value;
3658 			break;
3659 		case DRM_I915_PERF_PROP_OA_EXPONENT:
3660 			if (value > OA_EXPONENT_MAX) {
3661 				DRM_DEBUG("OA timer exponent too high (> %u)\n",
3662 					 OA_EXPONENT_MAX);
3663 				return -EINVAL;
3664 			}
3665 
3666 			/* Theoretically we can program the OA unit to sample
3667 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3668 			 * for BXT. We don't allow such high sampling
3669 			 * frequencies by default unless root.
3670 			 */
3671 
3672 			BUILD_BUG_ON(sizeof(oa_period) != 8);
3673 			oa_period = oa_exponent_to_ns(perf, value);
3674 
3675 			/* This check is primarily to ensure that oa_period <=
3676 			 * UINT32_MAX (before passing to do_div which only
3677 			 * accepts a u32 denominator), but we can also skip
3678 			 * checking anything < 1Hz which implicitly can't be
3679 			 * limited via an integer oa_max_sample_rate.
3680 			 */
3681 			if (oa_period <= NSEC_PER_SEC) {
3682 				u64 tmp = NSEC_PER_SEC;
3683 				do_div(tmp, oa_period);
3684 				oa_freq_hz = tmp;
3685 			} else
3686 				oa_freq_hz = 0;
3687 
3688 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3689 				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3690 					  i915_oa_max_sample_rate);
3691 				return -EACCES;
3692 			}
3693 
3694 			props->oa_periodic = true;
3695 			props->oa_period_exponent = value;
3696 			break;
3697 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3698 			props->hold_preemption = !!value;
3699 			break;
3700 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3701 			struct drm_i915_gem_context_param_sseu user_sseu;
3702 
3703 			if (copy_from_user(&user_sseu,
3704 					   u64_to_user_ptr(value),
3705 					   sizeof(user_sseu))) {
3706 				DRM_DEBUG("Unable to copy global sseu parameter\n");
3707 				return -EFAULT;
3708 			}
3709 
3710 			ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3711 			if (ret) {
3712 				DRM_DEBUG("Invalid SSEU configuration\n");
3713 				return ret;
3714 			}
3715 			props->has_sseu = true;
3716 			break;
3717 		}
3718 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3719 			if (value < 100000 /* 100us */) {
3720 				DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
3721 					  value);
3722 				return -EINVAL;
3723 			}
3724 			props->poll_oa_period = value;
3725 			break;
3726 		case DRM_I915_PERF_PROP_MAX:
3727 			MISSING_CASE(id);
3728 			return -EINVAL;
3729 		}
3730 
3731 		uprop += 2;
3732 	}
3733 
3734 	return 0;
3735 }
3736 
3737 /**
3738  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3739  * @dev: drm device
3740  * @data: ioctl data copied from userspace (unvalidated)
3741  * @file: drm file
3742  *
3743  * Validates the stream open parameters given by userspace including flags
3744  * and an array of u64 key, value pair properties.
3745  *
3746  * Very little is assumed up front about the nature of the stream being
3747  * opened (for instance we don't assume it's for periodic OA unit metrics). An
3748  * i915-perf stream is expected to be a suitable interface for other forms of
3749  * buffered data written by the GPU besides periodic OA metrics.
3750  *
3751  * Note we copy the properties from userspace outside of the i915 perf
3752  * mutex to avoid an awkward lockdep with mmap_lock.
3753  *
3754  * Most of the implementation details are handled by
3755  * i915_perf_open_ioctl_locked() after taking the &perf->lock
3756  * mutex for serializing with any non-file-operation driver hooks.
3757  *
3758  * Return: A newly opened i915 Perf stream file descriptor or negative
3759  * error code on failure.
3760  */
3761 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3762 			 struct drm_file *file)
3763 {
3764 	struct i915_perf *perf = &to_i915(dev)->perf;
3765 	struct drm_i915_perf_open_param *param = data;
3766 	struct perf_open_properties props;
3767 	u32 known_open_flags;
3768 	int ret;
3769 
3770 	if (!perf->i915) {
3771 		DRM_DEBUG("i915 perf interface not available for this system\n");
3772 		return -ENOTSUPP;
3773 	}
3774 
3775 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3776 			   I915_PERF_FLAG_FD_NONBLOCK |
3777 			   I915_PERF_FLAG_DISABLED;
3778 	if (param->flags & ~known_open_flags) {
3779 		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3780 		return -EINVAL;
3781 	}
3782 
3783 	ret = read_properties_unlocked(perf,
3784 				       u64_to_user_ptr(param->properties_ptr),
3785 				       param->num_properties,
3786 				       &props);
3787 	if (ret)
3788 		return ret;
3789 
3790 	mutex_lock(&perf->lock);
3791 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3792 	mutex_unlock(&perf->lock);
3793 
3794 	return ret;
3795 }
3796 
3797 /**
3798  * i915_perf_register - exposes i915-perf to userspace
3799  * @i915: i915 device instance
3800  *
3801  * In particular OA metric sets are advertised under a sysfs metrics/
3802  * directory allowing userspace to enumerate valid IDs that can be
3803  * used to open an i915-perf stream.
3804  */
3805 void i915_perf_register(struct drm_i915_private *i915)
3806 {
3807 	struct i915_perf *perf = &i915->perf;
3808 
3809 	if (!perf->i915)
3810 		return;
3811 
3812 	/* To be sure we're synchronized with an attempted
3813 	 * i915_perf_open_ioctl(); considering that we register after
3814 	 * being exposed to userspace.
3815 	 */
3816 	mutex_lock(&perf->lock);
3817 
3818 	perf->metrics_kobj =
3819 		kobject_create_and_add("metrics",
3820 				       &i915->drm.primary->kdev->kobj);
3821 
3822 	mutex_unlock(&perf->lock);
3823 }
3824 
3825 /**
3826  * i915_perf_unregister - hide i915-perf from userspace
3827  * @i915: i915 device instance
3828  *
3829  * i915-perf state cleanup is split up into an 'unregister' and
3830  * 'deinit' phase where the interface is first hidden from
3831  * userspace by i915_perf_unregister() before cleaning up
3832  * remaining state in i915_perf_fini().
3833  */
3834 void i915_perf_unregister(struct drm_i915_private *i915)
3835 {
3836 	struct i915_perf *perf = &i915->perf;
3837 
3838 	if (!perf->metrics_kobj)
3839 		return;
3840 
3841 	kobject_put(perf->metrics_kobj);
3842 	perf->metrics_kobj = NULL;
3843 }
3844 
3845 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3846 {
3847 	static const i915_reg_t flex_eu_regs[] = {
3848 		EU_PERF_CNTL0,
3849 		EU_PERF_CNTL1,
3850 		EU_PERF_CNTL2,
3851 		EU_PERF_CNTL3,
3852 		EU_PERF_CNTL4,
3853 		EU_PERF_CNTL5,
3854 		EU_PERF_CNTL6,
3855 	};
3856 	int i;
3857 
3858 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3859 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3860 			return true;
3861 	}
3862 	return false;
3863 }
3864 
3865 #define ADDR_IN_RANGE(addr, start, end) \
3866 	((addr) >= (start) && \
3867 	 (addr) <= (end))
3868 
3869 #define REG_IN_RANGE(addr, start, end) \
3870 	((addr) >= i915_mmio_reg_offset(start) && \
3871 	 (addr) <= i915_mmio_reg_offset(end))
3872 
3873 #define REG_EQUAL(addr, mmio) \
3874 	((addr) == i915_mmio_reg_offset(mmio))
3875 
3876 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3877 {
3878 	return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3879 	       REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3880 	       REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3881 }
3882 
3883 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3884 {
3885 	return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3886 	       REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3887 	       REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3888 	       REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3889 }
3890 
3891 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3892 {
3893 	return gen7_is_valid_mux_addr(perf, addr) ||
3894 	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3895 	       REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3896 }
3897 
3898 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3899 {
3900 	return gen8_is_valid_mux_addr(perf, addr) ||
3901 	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3902 	       REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3903 }
3904 
3905 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3906 {
3907 	return gen7_is_valid_mux_addr(perf, addr) ||
3908 	       ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3909 	       REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3910 	       REG_EQUAL(addr, HSW_MBVID2_MISR0);
3911 }
3912 
3913 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3914 {
3915 	return gen7_is_valid_mux_addr(perf, addr) ||
3916 	       ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3917 }
3918 
3919 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3920 {
3921 	return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3922 	       REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3923 	       REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3924 	       REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3925 	       REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3926 	       REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3927 	       REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3928 }
3929 
3930 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3931 {
3932 	return REG_EQUAL(addr, NOA_WRITE) ||
3933 	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3934 	       REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3935 	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3936 	       REG_EQUAL(addr, RPM_CONFIG0) ||
3937 	       REG_EQUAL(addr, RPM_CONFIG1) ||
3938 	       REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3939 }
3940 
3941 static u32 mask_reg_value(u32 reg, u32 val)
3942 {
3943 	/* HALF_SLICE_CHICKEN2 is programmed with a the
3944 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3945 	 * programmed by userspace doesn't change this.
3946 	 */
3947 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3948 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3949 
3950 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3951 	 * indicated by its name and a bunch of selection fields used by OA
3952 	 * configs.
3953 	 */
3954 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3955 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3956 
3957 	return val;
3958 }
3959 
3960 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3961 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3962 					 u32 __user *regs,
3963 					 u32 n_regs)
3964 {
3965 	struct i915_oa_reg *oa_regs;
3966 	int err;
3967 	u32 i;
3968 
3969 	if (!n_regs)
3970 		return NULL;
3971 
3972 	/* No is_valid function means we're not allowing any register to be programmed. */
3973 	GEM_BUG_ON(!is_valid);
3974 	if (!is_valid)
3975 		return ERR_PTR(-EINVAL);
3976 
3977 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3978 	if (!oa_regs)
3979 		return ERR_PTR(-ENOMEM);
3980 
3981 	for (i = 0; i < n_regs; i++) {
3982 		u32 addr, value;
3983 
3984 		err = get_user(addr, regs);
3985 		if (err)
3986 			goto addr_err;
3987 
3988 		if (!is_valid(perf, addr)) {
3989 			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3990 			err = -EINVAL;
3991 			goto addr_err;
3992 		}
3993 
3994 		err = get_user(value, regs + 1);
3995 		if (err)
3996 			goto addr_err;
3997 
3998 		oa_regs[i].addr = _MMIO(addr);
3999 		oa_regs[i].value = mask_reg_value(addr, value);
4000 
4001 		regs += 2;
4002 	}
4003 
4004 	return oa_regs;
4005 
4006 addr_err:
4007 	kfree(oa_regs);
4008 	return ERR_PTR(err);
4009 }
4010 
4011 static ssize_t show_dynamic_id(struct device *dev,
4012 			       struct device_attribute *attr,
4013 			       char *buf)
4014 {
4015 	struct i915_oa_config *oa_config =
4016 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
4017 
4018 	return sprintf(buf, "%d\n", oa_config->id);
4019 }
4020 
4021 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4022 					 struct i915_oa_config *oa_config)
4023 {
4024 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4025 	oa_config->sysfs_metric_id.attr.name = "id";
4026 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4027 	oa_config->sysfs_metric_id.show = show_dynamic_id;
4028 	oa_config->sysfs_metric_id.store = NULL;
4029 
4030 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4031 	oa_config->attrs[1] = NULL;
4032 
4033 	oa_config->sysfs_metric.name = oa_config->uuid;
4034 	oa_config->sysfs_metric.attrs = oa_config->attrs;
4035 
4036 	return sysfs_create_group(perf->metrics_kobj,
4037 				  &oa_config->sysfs_metric);
4038 }
4039 
4040 /**
4041  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4042  * @dev: drm device
4043  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4044  *        userspace (unvalidated)
4045  * @file: drm file
4046  *
4047  * Validates the submitted OA register to be saved into a new OA config that
4048  * can then be used for programming the OA unit and its NOA network.
4049  *
4050  * Returns: A new allocated config number to be used with the perf open ioctl
4051  * or a negative error code on failure.
4052  */
4053 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4054 			       struct drm_file *file)
4055 {
4056 	struct i915_perf *perf = &to_i915(dev)->perf;
4057 	struct drm_i915_perf_oa_config *args = data;
4058 	struct i915_oa_config *oa_config, *tmp;
4059 	struct i915_oa_reg *regs;
4060 	int err, id;
4061 
4062 	if (!perf->i915) {
4063 		DRM_DEBUG("i915 perf interface not available for this system\n");
4064 		return -ENOTSUPP;
4065 	}
4066 
4067 	if (!perf->metrics_kobj) {
4068 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
4069 		return -EINVAL;
4070 	}
4071 
4072 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4073 		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4074 		return -EACCES;
4075 	}
4076 
4077 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4078 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4079 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4080 		DRM_DEBUG("No OA registers given\n");
4081 		return -EINVAL;
4082 	}
4083 
4084 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4085 	if (!oa_config) {
4086 		DRM_DEBUG("Failed to allocate memory for the OA config\n");
4087 		return -ENOMEM;
4088 	}
4089 
4090 	oa_config->perf = perf;
4091 	kref_init(&oa_config->ref);
4092 
4093 	if (!uuid_is_valid(args->uuid)) {
4094 		DRM_DEBUG("Invalid uuid format for OA config\n");
4095 		err = -EINVAL;
4096 		goto reg_err;
4097 	}
4098 
4099 	/* Last character in oa_config->uuid will be 0 because oa_config is
4100 	 * kzalloc.
4101 	 */
4102 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4103 
4104 	oa_config->mux_regs_len = args->n_mux_regs;
4105 	regs = alloc_oa_regs(perf,
4106 			     perf->ops.is_valid_mux_reg,
4107 			     u64_to_user_ptr(args->mux_regs_ptr),
4108 			     args->n_mux_regs);
4109 
4110 	if (IS_ERR(regs)) {
4111 		DRM_DEBUG("Failed to create OA config for mux_regs\n");
4112 		err = PTR_ERR(regs);
4113 		goto reg_err;
4114 	}
4115 	oa_config->mux_regs = regs;
4116 
4117 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4118 	regs = alloc_oa_regs(perf,
4119 			     perf->ops.is_valid_b_counter_reg,
4120 			     u64_to_user_ptr(args->boolean_regs_ptr),
4121 			     args->n_boolean_regs);
4122 
4123 	if (IS_ERR(regs)) {
4124 		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4125 		err = PTR_ERR(regs);
4126 		goto reg_err;
4127 	}
4128 	oa_config->b_counter_regs = regs;
4129 
4130 	if (GRAPHICS_VER(perf->i915) < 8) {
4131 		if (args->n_flex_regs != 0) {
4132 			err = -EINVAL;
4133 			goto reg_err;
4134 		}
4135 	} else {
4136 		oa_config->flex_regs_len = args->n_flex_regs;
4137 		regs = alloc_oa_regs(perf,
4138 				     perf->ops.is_valid_flex_reg,
4139 				     u64_to_user_ptr(args->flex_regs_ptr),
4140 				     args->n_flex_regs);
4141 
4142 		if (IS_ERR(regs)) {
4143 			DRM_DEBUG("Failed to create OA config for flex_regs\n");
4144 			err = PTR_ERR(regs);
4145 			goto reg_err;
4146 		}
4147 		oa_config->flex_regs = regs;
4148 	}
4149 
4150 	err = mutex_lock_interruptible(&perf->metrics_lock);
4151 	if (err)
4152 		goto reg_err;
4153 
4154 	/* We shouldn't have too many configs, so this iteration shouldn't be
4155 	 * too costly.
4156 	 */
4157 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4158 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4159 			DRM_DEBUG("OA config already exists with this uuid\n");
4160 			err = -EADDRINUSE;
4161 			goto sysfs_err;
4162 		}
4163 	}
4164 
4165 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4166 	if (err) {
4167 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4168 		goto sysfs_err;
4169 	}
4170 
4171 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4172 	oa_config->id = idr_alloc(&perf->metrics_idr,
4173 				  oa_config, 2,
4174 				  0, GFP_KERNEL);
4175 	if (oa_config->id < 0) {
4176 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4177 		err = oa_config->id;
4178 		goto sysfs_err;
4179 	}
4180 
4181 	mutex_unlock(&perf->metrics_lock);
4182 
4183 	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4184 
4185 	return oa_config->id;
4186 
4187 sysfs_err:
4188 	mutex_unlock(&perf->metrics_lock);
4189 reg_err:
4190 	i915_oa_config_put(oa_config);
4191 	DRM_DEBUG("Failed to add new OA config\n");
4192 	return err;
4193 }
4194 
4195 /**
4196  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4197  * @dev: drm device
4198  * @data: ioctl data (pointer to u64 integer) copied from userspace
4199  * @file: drm file
4200  *
4201  * Configs can be removed while being used, the will stop appearing in sysfs
4202  * and their content will be freed when the stream using the config is closed.
4203  *
4204  * Returns: 0 on success or a negative error code on failure.
4205  */
4206 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4207 				  struct drm_file *file)
4208 {
4209 	struct i915_perf *perf = &to_i915(dev)->perf;
4210 	u64 *arg = data;
4211 	struct i915_oa_config *oa_config;
4212 	int ret;
4213 
4214 	if (!perf->i915) {
4215 		DRM_DEBUG("i915 perf interface not available for this system\n");
4216 		return -ENOTSUPP;
4217 	}
4218 
4219 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4220 		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4221 		return -EACCES;
4222 	}
4223 
4224 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4225 	if (ret)
4226 		return ret;
4227 
4228 	oa_config = idr_find(&perf->metrics_idr, *arg);
4229 	if (!oa_config) {
4230 		DRM_DEBUG("Failed to remove unknown OA config\n");
4231 		ret = -ENOENT;
4232 		goto err_unlock;
4233 	}
4234 
4235 	GEM_BUG_ON(*arg != oa_config->id);
4236 
4237 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4238 
4239 	idr_remove(&perf->metrics_idr, *arg);
4240 
4241 	mutex_unlock(&perf->metrics_lock);
4242 
4243 	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4244 
4245 	i915_oa_config_put(oa_config);
4246 
4247 	return 0;
4248 
4249 err_unlock:
4250 	mutex_unlock(&perf->metrics_lock);
4251 	return ret;
4252 }
4253 
4254 static struct ctl_table oa_table[] = {
4255 	{
4256 	 .procname = "perf_stream_paranoid",
4257 	 .data = &i915_perf_stream_paranoid,
4258 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4259 	 .mode = 0644,
4260 	 .proc_handler = proc_dointvec_minmax,
4261 	 .extra1 = SYSCTL_ZERO,
4262 	 .extra2 = SYSCTL_ONE,
4263 	 },
4264 	{
4265 	 .procname = "oa_max_sample_rate",
4266 	 .data = &i915_oa_max_sample_rate,
4267 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4268 	 .mode = 0644,
4269 	 .proc_handler = proc_dointvec_minmax,
4270 	 .extra1 = SYSCTL_ZERO,
4271 	 .extra2 = &oa_sample_rate_hard_limit,
4272 	 },
4273 	{}
4274 };
4275 
4276 static struct ctl_table i915_root[] = {
4277 	{
4278 	 .procname = "i915",
4279 	 .maxlen = 0,
4280 	 .mode = 0555,
4281 	 .child = oa_table,
4282 	 },
4283 	{}
4284 };
4285 
4286 static struct ctl_table dev_root[] = {
4287 	{
4288 	 .procname = "dev",
4289 	 .maxlen = 0,
4290 	 .mode = 0555,
4291 	 .child = i915_root,
4292 	 },
4293 	{}
4294 };
4295 
4296 static void oa_init_supported_formats(struct i915_perf *perf)
4297 {
4298 	struct drm_i915_private *i915 = perf->i915;
4299 	enum intel_platform platform = INTEL_INFO(i915)->platform;
4300 
4301 	switch (platform) {
4302 	case INTEL_HASWELL:
4303 		oa_format_add(perf, I915_OA_FORMAT_A13);
4304 		oa_format_add(perf, I915_OA_FORMAT_A13);
4305 		oa_format_add(perf, I915_OA_FORMAT_A29);
4306 		oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
4307 		oa_format_add(perf, I915_OA_FORMAT_B4_C8);
4308 		oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
4309 		oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
4310 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4311 		break;
4312 
4313 	case INTEL_BROADWELL:
4314 	case INTEL_CHERRYVIEW:
4315 	case INTEL_SKYLAKE:
4316 	case INTEL_BROXTON:
4317 	case INTEL_KABYLAKE:
4318 	case INTEL_GEMINILAKE:
4319 	case INTEL_COFFEELAKE:
4320 	case INTEL_COMETLAKE:
4321 	case INTEL_ICELAKE:
4322 	case INTEL_ELKHARTLAKE:
4323 	case INTEL_JASPERLAKE:
4324 	case INTEL_TIGERLAKE:
4325 	case INTEL_ROCKETLAKE:
4326 	case INTEL_DG1:
4327 	case INTEL_ALDERLAKE_S:
4328 	case INTEL_ALDERLAKE_P:
4329 		oa_format_add(perf, I915_OA_FORMAT_A12);
4330 		oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
4331 		oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
4332 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4333 		break;
4334 
4335 	default:
4336 		MISSING_CASE(platform);
4337 	}
4338 }
4339 
4340 /**
4341  * i915_perf_init - initialize i915-perf state on module bind
4342  * @i915: i915 device instance
4343  *
4344  * Initializes i915-perf state without exposing anything to userspace.
4345  *
4346  * Note: i915-perf initialization is split into an 'init' and 'register'
4347  * phase with the i915_perf_register() exposing state to userspace.
4348  */
4349 void i915_perf_init(struct drm_i915_private *i915)
4350 {
4351 	struct i915_perf *perf = &i915->perf;
4352 
4353 	/* XXX const struct i915_perf_ops! */
4354 
4355 	perf->oa_formats = oa_formats;
4356 	if (IS_HASWELL(i915)) {
4357 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4358 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4359 		perf->ops.is_valid_flex_reg = NULL;
4360 		perf->ops.enable_metric_set = hsw_enable_metric_set;
4361 		perf->ops.disable_metric_set = hsw_disable_metric_set;
4362 		perf->ops.oa_enable = gen7_oa_enable;
4363 		perf->ops.oa_disable = gen7_oa_disable;
4364 		perf->ops.read = gen7_oa_read;
4365 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4366 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4367 		/* Note: that although we could theoretically also support the
4368 		 * legacy ringbuffer mode on BDW (and earlier iterations of
4369 		 * this driver, before upstreaming did this) it didn't seem
4370 		 * worth the complexity to maintain now that BDW+ enable
4371 		 * execlist mode by default.
4372 		 */
4373 		perf->ops.read = gen8_oa_read;
4374 
4375 		if (IS_GRAPHICS_VER(i915, 8, 9)) {
4376 			perf->ops.is_valid_b_counter_reg =
4377 				gen7_is_valid_b_counter_addr;
4378 			perf->ops.is_valid_mux_reg =
4379 				gen8_is_valid_mux_addr;
4380 			perf->ops.is_valid_flex_reg =
4381 				gen8_is_valid_flex_addr;
4382 
4383 			if (IS_CHERRYVIEW(i915)) {
4384 				perf->ops.is_valid_mux_reg =
4385 					chv_is_valid_mux_addr;
4386 			}
4387 
4388 			perf->ops.oa_enable = gen8_oa_enable;
4389 			perf->ops.oa_disable = gen8_oa_disable;
4390 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4391 			perf->ops.disable_metric_set = gen8_disable_metric_set;
4392 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4393 
4394 			if (GRAPHICS_VER(i915) == 8) {
4395 				perf->ctx_oactxctrl_offset = 0x120;
4396 				perf->ctx_flexeu0_offset = 0x2ce;
4397 
4398 				perf->gen8_valid_ctx_bit = BIT(25);
4399 			} else {
4400 				perf->ctx_oactxctrl_offset = 0x128;
4401 				perf->ctx_flexeu0_offset = 0x3de;
4402 
4403 				perf->gen8_valid_ctx_bit = BIT(16);
4404 			}
4405 		} else if (GRAPHICS_VER(i915) == 11) {
4406 			perf->ops.is_valid_b_counter_reg =
4407 				gen7_is_valid_b_counter_addr;
4408 			perf->ops.is_valid_mux_reg =
4409 				gen11_is_valid_mux_addr;
4410 			perf->ops.is_valid_flex_reg =
4411 				gen8_is_valid_flex_addr;
4412 
4413 			perf->ops.oa_enable = gen8_oa_enable;
4414 			perf->ops.oa_disable = gen8_oa_disable;
4415 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4416 			perf->ops.disable_metric_set = gen11_disable_metric_set;
4417 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4418 
4419 			perf->ctx_oactxctrl_offset = 0x124;
4420 			perf->ctx_flexeu0_offset = 0x78e;
4421 
4422 			perf->gen8_valid_ctx_bit = BIT(16);
4423 		} else if (GRAPHICS_VER(i915) == 12) {
4424 			perf->ops.is_valid_b_counter_reg =
4425 				gen12_is_valid_b_counter_addr;
4426 			perf->ops.is_valid_mux_reg =
4427 				gen12_is_valid_mux_addr;
4428 			perf->ops.is_valid_flex_reg =
4429 				gen8_is_valid_flex_addr;
4430 
4431 			perf->ops.oa_enable = gen12_oa_enable;
4432 			perf->ops.oa_disable = gen12_oa_disable;
4433 			perf->ops.enable_metric_set = gen12_enable_metric_set;
4434 			perf->ops.disable_metric_set = gen12_disable_metric_set;
4435 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4436 
4437 			perf->ctx_flexeu0_offset = 0;
4438 			perf->ctx_oactxctrl_offset = 0x144;
4439 		}
4440 	}
4441 
4442 	if (perf->ops.enable_metric_set) {
4443 		mutex_init(&perf->lock);
4444 
4445 		/* Choose a representative limit */
4446 		oa_sample_rate_hard_limit = i915->gt.clock_frequency / 2;
4447 
4448 		mutex_init(&perf->metrics_lock);
4449 		idr_init_base(&perf->metrics_idr, 1);
4450 
4451 		/* We set up some ratelimit state to potentially throttle any
4452 		 * _NOTES about spurious, invalid OA reports which we don't
4453 		 * forward to userspace.
4454 		 *
4455 		 * We print a _NOTE about any throttling when closing the
4456 		 * stream instead of waiting until driver _fini which no one
4457 		 * would ever see.
4458 		 *
4459 		 * Using the same limiting factors as printk_ratelimit()
4460 		 */
4461 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4462 		/* Since we use a DRM_NOTE for spurious reports it would be
4463 		 * inconsistent to let __ratelimit() automatically print a
4464 		 * warning for throttling.
4465 		 */
4466 		ratelimit_set_flags(&perf->spurious_report_rs,
4467 				    RATELIMIT_MSG_ON_RELEASE);
4468 
4469 		ratelimit_state_init(&perf->tail_pointer_race,
4470 				     5 * HZ, 10);
4471 		ratelimit_set_flags(&perf->tail_pointer_race,
4472 				    RATELIMIT_MSG_ON_RELEASE);
4473 
4474 		atomic64_set(&perf->noa_programming_delay,
4475 			     500 * 1000 /* 500us */);
4476 
4477 		perf->i915 = i915;
4478 
4479 		oa_init_supported_formats(perf);
4480 	}
4481 }
4482 
4483 static int destroy_config(int id, void *p, void *data)
4484 {
4485 	i915_oa_config_put(p);
4486 	return 0;
4487 }
4488 
4489 int i915_perf_sysctl_register(void)
4490 {
4491 	sysctl_header = register_sysctl_table(dev_root);
4492 	return 0;
4493 }
4494 
4495 void i915_perf_sysctl_unregister(void)
4496 {
4497 	unregister_sysctl_table(sysctl_header);
4498 }
4499 
4500 /**
4501  * i915_perf_fini - Counter part to i915_perf_init()
4502  * @i915: i915 device instance
4503  */
4504 void i915_perf_fini(struct drm_i915_private *i915)
4505 {
4506 	struct i915_perf *perf = &i915->perf;
4507 
4508 	if (!perf->i915)
4509 		return;
4510 
4511 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
4512 	idr_destroy(&perf->metrics_idr);
4513 
4514 	memset(&perf->ops, 0, sizeof(perf->ops));
4515 	perf->i915 = NULL;
4516 }
4517 
4518 /**
4519  * i915_perf_ioctl_version - Version of the i915-perf subsystem
4520  *
4521  * This version number is used by userspace to detect available features.
4522  */
4523 int i915_perf_ioctl_version(void)
4524 {
4525 	/*
4526 	 * 1: Initial version
4527 	 *   I915_PERF_IOCTL_ENABLE
4528 	 *   I915_PERF_IOCTL_DISABLE
4529 	 *
4530 	 * 2: Added runtime modification of OA config.
4531 	 *   I915_PERF_IOCTL_CONFIG
4532 	 *
4533 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4534 	 *    preemption on a particular context so that performance data is
4535 	 *    accessible from a delta of MI_RPC reports without looking at the
4536 	 *    OA buffer.
4537 	 *
4538 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4539 	 *    be run for the duration of the performance recording based on
4540 	 *    their SSEU configuration.
4541 	 *
4542 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4543 	 *    interval for the hrtimer used to check for OA data.
4544 	 */
4545 	return 5;
4546 }
4547 
4548 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4549 #include "selftests/i915_perf.c"
4550 #endif
4551