1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gem/i915_gem_internal.h" 200 #include "gt/intel_engine_pm.h" 201 #include "gt/intel_engine_regs.h" 202 #include "gt/intel_engine_user.h" 203 #include "gt/intel_execlists_submission.h" 204 #include "gt/intel_gpu_commands.h" 205 #include "gt/intel_gt.h" 206 #include "gt/intel_gt_clock_utils.h" 207 #include "gt/intel_gt_regs.h" 208 #include "gt/intel_lrc.h" 209 #include "gt/intel_lrc_reg.h" 210 #include "gt/intel_ring.h" 211 212 #include "i915_drv.h" 213 #include "i915_file_private.h" 214 #include "i915_perf.h" 215 #include "i915_perf_oa_regs.h" 216 217 /* HW requires this to be a power of two, between 128k and 16M, though driver 218 * is currently generally designed assuming the largest 16M size is used such 219 * that the overflow cases are unlikely in normal operation. 220 */ 221 #define OA_BUFFER_SIZE SZ_16M 222 223 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 224 225 /** 226 * DOC: OA Tail Pointer Race 227 * 228 * There's a HW race condition between OA unit tail pointer register updates and 229 * writes to memory whereby the tail pointer can sometimes get ahead of what's 230 * been written out to the OA buffer so far (in terms of what's visible to the 231 * CPU). 232 * 233 * Although this can be observed explicitly while copying reports to userspace 234 * by checking for a zeroed report-id field in tail reports, we want to account 235 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 236 * redundant read() attempts. 237 * 238 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 239 * in the OA buffer, starting from the tail reported by the HW until we find a 240 * report with its first 2 dwords not 0 meaning its previous report is 241 * completely in memory and ready to be read. Those dwords are also set to 0 242 * once read and the whole buffer is cleared upon OA buffer initialization. The 243 * first dword is the reason for this report while the second is the timestamp, 244 * making the chances of having those 2 fields at 0 fairly unlikely. A more 245 * detailed explanation is available in oa_buffer_check_unlocked(). 246 * 247 * Most of the implementation details for this workaround are in 248 * oa_buffer_check_unlocked() and _append_oa_reports() 249 * 250 * Note for posterity: previously the driver used to define an effective tail 251 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 252 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 253 * This was flawed considering that the OA unit may also automatically generate 254 * non-periodic reports (such as on context switch) or the OA unit may be 255 * enabled without any periodic sampling. 256 */ 257 #define OA_TAIL_MARGIN_NSEC 100000ULL 258 #define INVALID_TAIL_PTR 0xffffffff 259 260 /* The default frequency for checking whether the OA unit has written new 261 * reports to the circular OA buffer... 262 */ 263 #define DEFAULT_POLL_FREQUENCY_HZ 200 264 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 265 266 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 267 static u32 i915_perf_stream_paranoid = true; 268 269 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 270 * of the 64bit timestamp bits to trigger reports from) but there's currently 271 * no known use case for sampling as infrequently as once per 47 thousand years. 272 * 273 * Since the timestamps included in OA reports are only 32bits it seems 274 * reasonable to limit the OA exponent where it's still possible to account for 275 * overflow in OA report timestamps. 276 */ 277 #define OA_EXPONENT_MAX 31 278 279 #define INVALID_CTX_ID 0xffffffff 280 281 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 282 #define OAREPORT_REASON_MASK 0x3f 283 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 284 #define OAREPORT_REASON_SHIFT 19 285 #define OAREPORT_REASON_TIMER (1<<0) 286 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 287 #define OAREPORT_REASON_CLK_RATIO (1<<5) 288 289 290 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 291 * 292 * The highest sampling frequency we can theoretically program the OA unit 293 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 294 * 295 * Initialized just before we register the sysctl parameter. 296 */ 297 static int oa_sample_rate_hard_limit; 298 299 /* Theoretically we can program the OA unit to sample every 160ns but don't 300 * allow that by default unless root... 301 * 302 * The default threshold of 100000Hz is based on perf's similar 303 * kernel.perf_event_max_sample_rate sysctl parameter. 304 */ 305 static u32 i915_oa_max_sample_rate = 100000; 306 307 /* XXX: beware if future OA HW adds new report formats that the current 308 * code assumes all reports have a power-of-two size and ~(size - 1) can 309 * be used as a mask to align the OA tail pointer. 310 */ 311 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = { 312 [I915_OA_FORMAT_A13] = { 0, 64 }, 313 [I915_OA_FORMAT_A29] = { 1, 128 }, 314 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 315 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 316 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 317 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 318 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 319 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 320 [I915_OA_FORMAT_A12] = { 0, 64 }, 321 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 322 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 323 }; 324 325 #define SAMPLE_OA_REPORT (1<<0) 326 327 /** 328 * struct perf_open_properties - for validated properties given to open a stream 329 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 330 * @single_context: Whether a single or all gpu contexts should be monitored 331 * @hold_preemption: Whether the preemption is disabled for the filtered 332 * context 333 * @ctx_handle: A gem ctx handle for use with @single_context 334 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 335 * @oa_format: An OA unit HW report format 336 * @oa_periodic: Whether to enable periodic OA unit sampling 337 * @oa_period_exponent: The OA unit sampling period is derived from this 338 * @engine: The engine (typically rcs0) being monitored by the OA unit 339 * @has_sseu: Whether @sseu was specified by userspace 340 * @sseu: internal SSEU configuration computed either from the userspace 341 * specified configuration in the opening parameters or a default value 342 * (see get_default_sseu_config()) 343 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 344 * data availability 345 * 346 * As read_properties_unlocked() enumerates and validates the properties given 347 * to open a stream of metrics the configuration is built up in the structure 348 * which starts out zero initialized. 349 */ 350 struct perf_open_properties { 351 u32 sample_flags; 352 353 u64 single_context:1; 354 u64 hold_preemption:1; 355 u64 ctx_handle; 356 357 /* OA sampling state */ 358 int metrics_set; 359 int oa_format; 360 bool oa_periodic; 361 int oa_period_exponent; 362 363 struct intel_engine_cs *engine; 364 365 bool has_sseu; 366 struct intel_sseu sseu; 367 368 u64 poll_oa_period; 369 }; 370 371 struct i915_oa_config_bo { 372 struct llist_node node; 373 374 struct i915_oa_config *oa_config; 375 struct i915_vma *vma; 376 }; 377 378 static struct ctl_table_header *sysctl_header; 379 380 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 381 382 void i915_oa_config_release(struct kref *ref) 383 { 384 struct i915_oa_config *oa_config = 385 container_of(ref, typeof(*oa_config), ref); 386 387 kfree(oa_config->flex_regs); 388 kfree(oa_config->b_counter_regs); 389 kfree(oa_config->mux_regs); 390 391 kfree_rcu(oa_config, rcu); 392 } 393 394 struct i915_oa_config * 395 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 396 { 397 struct i915_oa_config *oa_config; 398 399 rcu_read_lock(); 400 oa_config = idr_find(&perf->metrics_idr, metrics_set); 401 if (oa_config) 402 oa_config = i915_oa_config_get(oa_config); 403 rcu_read_unlock(); 404 405 return oa_config; 406 } 407 408 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 409 { 410 i915_oa_config_put(oa_bo->oa_config); 411 i915_vma_put(oa_bo->vma); 412 kfree(oa_bo); 413 } 414 415 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 416 { 417 struct intel_uncore *uncore = stream->uncore; 418 419 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 420 GEN12_OAG_OATAILPTR_MASK; 421 } 422 423 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 424 { 425 struct intel_uncore *uncore = stream->uncore; 426 427 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 428 } 429 430 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 431 { 432 struct intel_uncore *uncore = stream->uncore; 433 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 434 435 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 436 } 437 438 /** 439 * oa_buffer_check_unlocked - check for data and update tail ptr state 440 * @stream: i915 stream instance 441 * 442 * This is either called via fops (for blocking reads in user ctx) or the poll 443 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 444 * if there is data available for userspace to read. 445 * 446 * This function is central to providing a workaround for the OA unit tail 447 * pointer having a race with respect to what data is visible to the CPU. 448 * It is responsible for reading tail pointers from the hardware and giving 449 * the pointers time to 'age' before they are made available for reading. 450 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 451 * 452 * Besides returning true when there is data available to read() this function 453 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer 454 * object. 455 * 456 * Note: It's safe to read OA config state here unlocked, assuming that this is 457 * only called while the stream is enabled, while the global OA configuration 458 * can't be modified. 459 * 460 * Returns: %true if the OA buffer contains data, else %false 461 */ 462 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 463 { 464 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 465 int report_size = stream->oa_buffer.format_size; 466 unsigned long flags; 467 bool pollin; 468 u32 hw_tail; 469 u64 now; 470 471 /* We have to consider the (unlikely) possibility that read() errors 472 * could result in an OA buffer reset which might reset the head and 473 * tail state. 474 */ 475 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 476 477 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 478 479 /* The tail pointer increases in 64 byte increments, 480 * not in report_size steps... 481 */ 482 hw_tail &= ~(report_size - 1); 483 484 now = ktime_get_mono_fast_ns(); 485 486 if (hw_tail == stream->oa_buffer.aging_tail && 487 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) { 488 /* If the HW tail hasn't move since the last check and the HW 489 * tail has been aging for long enough, declare it the new 490 * tail. 491 */ 492 stream->oa_buffer.tail = stream->oa_buffer.aging_tail; 493 } else { 494 u32 head, tail, aged_tail; 495 496 /* NB: The head we observe here might effectively be a little 497 * out of date. If a read() is in progress, the head could be 498 * anywhere between this head and stream->oa_buffer.tail. 499 */ 500 head = stream->oa_buffer.head - gtt_offset; 501 aged_tail = stream->oa_buffer.tail - gtt_offset; 502 503 hw_tail -= gtt_offset; 504 tail = hw_tail; 505 506 /* Walk the stream backward until we find a report with dword 0 507 * & 1 not at 0. Since the circular buffer pointers progress by 508 * increments of 64 bytes and that reports can be up to 256 509 * bytes long, we can't tell whether a report has fully landed 510 * in memory before the first 2 dwords of the following report 511 * have effectively landed. 512 * 513 * This is assuming that the writes of the OA unit land in 514 * memory in the order they were written to. 515 * If not : (╯°□°)╯︵ ┻━┻ 516 */ 517 while (OA_TAKEN(tail, aged_tail) >= report_size) { 518 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail); 519 520 if (report32[0] != 0 || report32[1] != 0) 521 break; 522 523 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 524 } 525 526 if (OA_TAKEN(hw_tail, tail) > report_size && 527 __ratelimit(&stream->perf->tail_pointer_race)) 528 DRM_NOTE("unlanded report(s) head=0x%x " 529 "tail=0x%x hw_tail=0x%x\n", 530 head, tail, hw_tail); 531 532 stream->oa_buffer.tail = gtt_offset + tail; 533 stream->oa_buffer.aging_tail = gtt_offset + hw_tail; 534 stream->oa_buffer.aging_timestamp = now; 535 } 536 537 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset, 538 stream->oa_buffer.head - gtt_offset) >= report_size; 539 540 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 541 542 return pollin; 543 } 544 545 /** 546 * append_oa_status - Appends a status record to a userspace read() buffer. 547 * @stream: An i915-perf stream opened for OA metrics 548 * @buf: destination buffer given by userspace 549 * @count: the number of bytes userspace wants to read 550 * @offset: (inout): the current position for writing into @buf 551 * @type: The kind of status to report to userspace 552 * 553 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 554 * into the userspace read() buffer. 555 * 556 * The @buf @offset will only be updated on success. 557 * 558 * Returns: 0 on success, negative error code on failure. 559 */ 560 static int append_oa_status(struct i915_perf_stream *stream, 561 char __user *buf, 562 size_t count, 563 size_t *offset, 564 enum drm_i915_perf_record_type type) 565 { 566 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 567 568 if ((count - *offset) < header.size) 569 return -ENOSPC; 570 571 if (copy_to_user(buf + *offset, &header, sizeof(header))) 572 return -EFAULT; 573 574 (*offset) += header.size; 575 576 return 0; 577 } 578 579 /** 580 * append_oa_sample - Copies single OA report into userspace read() buffer. 581 * @stream: An i915-perf stream opened for OA metrics 582 * @buf: destination buffer given by userspace 583 * @count: the number of bytes userspace wants to read 584 * @offset: (inout): the current position for writing into @buf 585 * @report: A single OA report to (optionally) include as part of the sample 586 * 587 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 588 * properties when opening a stream, tracked as `stream->sample_flags`. This 589 * function copies the requested components of a single sample to the given 590 * read() @buf. 591 * 592 * The @buf @offset will only be updated on success. 593 * 594 * Returns: 0 on success, negative error code on failure. 595 */ 596 static int append_oa_sample(struct i915_perf_stream *stream, 597 char __user *buf, 598 size_t count, 599 size_t *offset, 600 const u8 *report) 601 { 602 int report_size = stream->oa_buffer.format_size; 603 struct drm_i915_perf_record_header header; 604 605 header.type = DRM_I915_PERF_RECORD_SAMPLE; 606 header.pad = 0; 607 header.size = stream->sample_size; 608 609 if ((count - *offset) < header.size) 610 return -ENOSPC; 611 612 buf += *offset; 613 if (copy_to_user(buf, &header, sizeof(header))) 614 return -EFAULT; 615 buf += sizeof(header); 616 617 if (copy_to_user(buf, report, report_size)) 618 return -EFAULT; 619 620 (*offset) += header.size; 621 622 return 0; 623 } 624 625 /** 626 * gen8_append_oa_reports - Copies all buffered OA reports into 627 * userspace read() buffer. 628 * @stream: An i915-perf stream opened for OA metrics 629 * @buf: destination buffer given by userspace 630 * @count: the number of bytes userspace wants to read 631 * @offset: (inout): the current position for writing into @buf 632 * 633 * Notably any error condition resulting in a short read (-%ENOSPC or 634 * -%EFAULT) will be returned even though one or more records may 635 * have been successfully copied. In this case it's up to the caller 636 * to decide if the error should be squashed before returning to 637 * userspace. 638 * 639 * Note: reports are consumed from the head, and appended to the 640 * tail, so the tail chases the head?... If you think that's mad 641 * and back-to-front you're not alone, but this follows the 642 * Gen PRM naming convention. 643 * 644 * Returns: 0 on success, negative error code on failure. 645 */ 646 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 647 char __user *buf, 648 size_t count, 649 size_t *offset) 650 { 651 struct intel_uncore *uncore = stream->uncore; 652 int report_size = stream->oa_buffer.format_size; 653 u8 *oa_buf_base = stream->oa_buffer.vaddr; 654 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 655 u32 mask = (OA_BUFFER_SIZE - 1); 656 size_t start_offset = *offset; 657 unsigned long flags; 658 u32 head, tail; 659 u32 taken; 660 int ret = 0; 661 662 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 663 return -EIO; 664 665 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 666 667 head = stream->oa_buffer.head; 668 tail = stream->oa_buffer.tail; 669 670 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 671 672 /* 673 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 674 * while indexing relative to oa_buf_base. 675 */ 676 head -= gtt_offset; 677 tail -= gtt_offset; 678 679 /* 680 * An out of bounds or misaligned head or tail pointer implies a driver 681 * bug since we validate + align the tail pointers we read from the 682 * hardware and we are in full control of the head pointer which should 683 * only be incremented by multiples of the report size (notably also 684 * all a power of two). 685 */ 686 if (drm_WARN_ONCE(&uncore->i915->drm, 687 head > OA_BUFFER_SIZE || head % report_size || 688 tail > OA_BUFFER_SIZE || tail % report_size, 689 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 690 head, tail)) 691 return -EIO; 692 693 694 for (/* none */; 695 (taken = OA_TAKEN(tail, head)); 696 head = (head + report_size) & mask) { 697 u8 *report = oa_buf_base + head; 698 u32 *report32 = (void *)report; 699 u32 ctx_id; 700 u32 reason; 701 702 /* 703 * All the report sizes factor neatly into the buffer 704 * size so we never expect to see a report split 705 * between the beginning and end of the buffer. 706 * 707 * Given the initial alignment check a misalignment 708 * here would imply a driver bug that would result 709 * in an overrun. 710 */ 711 if (drm_WARN_ON(&uncore->i915->drm, 712 (OA_BUFFER_SIZE - head) < report_size)) { 713 drm_err(&uncore->i915->drm, 714 "Spurious OA head ptr: non-integral report offset\n"); 715 break; 716 } 717 718 /* 719 * The reason field includes flags identifying what 720 * triggered this specific report (mostly timer 721 * triggered or e.g. due to a context switch). 722 * 723 * This field is never expected to be zero so we can 724 * check that the report isn't invalid before copying 725 * it to userspace... 726 */ 727 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 728 (GRAPHICS_VER(stream->perf->i915) == 12 ? 729 OAREPORT_REASON_MASK_EXTENDED : 730 OAREPORT_REASON_MASK)); 731 732 ctx_id = report32[2] & stream->specific_ctx_id_mask; 733 734 /* 735 * Squash whatever is in the CTX_ID field if it's marked as 736 * invalid to be sure we avoid false-positive, single-context 737 * filtering below... 738 * 739 * Note: that we don't clear the valid_ctx_bit so userspace can 740 * understand that the ID has been squashed by the kernel. 741 */ 742 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 743 GRAPHICS_VER(stream->perf->i915) <= 11) 744 ctx_id = report32[2] = INVALID_CTX_ID; 745 746 /* 747 * NB: For Gen 8 the OA unit no longer supports clock gating 748 * off for a specific context and the kernel can't securely 749 * stop the counters from updating as system-wide / global 750 * values. 751 * 752 * Automatic reports now include a context ID so reports can be 753 * filtered on the cpu but it's not worth trying to 754 * automatically subtract/hide counter progress for other 755 * contexts while filtering since we can't stop userspace 756 * issuing MI_REPORT_PERF_COUNT commands which would still 757 * provide a side-band view of the real values. 758 * 759 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 760 * to normalize counters for a single filtered context then it 761 * needs be forwarded bookend context-switch reports so that it 762 * can track switches in between MI_REPORT_PERF_COUNT commands 763 * and can itself subtract/ignore the progress of counters 764 * associated with other contexts. Note that the hardware 765 * automatically triggers reports when switching to a new 766 * context which are tagged with the ID of the newly active 767 * context. To avoid the complexity (and likely fragility) of 768 * reading ahead while parsing reports to try and minimize 769 * forwarding redundant context switch reports (i.e. between 770 * other, unrelated contexts) we simply elect to forward them 771 * all. 772 * 773 * We don't rely solely on the reason field to identify context 774 * switches since it's not-uncommon for periodic samples to 775 * identify a switch before any 'context switch' report. 776 */ 777 if (!stream->perf->exclusive_stream->ctx || 778 stream->specific_ctx_id == ctx_id || 779 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 780 reason & OAREPORT_REASON_CTX_SWITCH) { 781 782 /* 783 * While filtering for a single context we avoid 784 * leaking the IDs of other contexts. 785 */ 786 if (stream->perf->exclusive_stream->ctx && 787 stream->specific_ctx_id != ctx_id) { 788 report32[2] = INVALID_CTX_ID; 789 } 790 791 ret = append_oa_sample(stream, buf, count, offset, 792 report); 793 if (ret) 794 break; 795 796 stream->oa_buffer.last_ctx_id = ctx_id; 797 } 798 799 /* 800 * Clear out the first 2 dword as a mean to detect unlanded 801 * reports. 802 */ 803 report32[0] = 0; 804 report32[1] = 0; 805 } 806 807 if (start_offset != *offset) { 808 i915_reg_t oaheadptr; 809 810 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ? 811 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 812 813 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 814 815 /* 816 * We removed the gtt_offset for the copy loop above, indexing 817 * relative to oa_buf_base so put back here... 818 */ 819 head += gtt_offset; 820 intel_uncore_write(uncore, oaheadptr, 821 head & GEN12_OAG_OAHEADPTR_MASK); 822 stream->oa_buffer.head = head; 823 824 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 825 } 826 827 return ret; 828 } 829 830 /** 831 * gen8_oa_read - copy status records then buffered OA reports 832 * @stream: An i915-perf stream opened for OA metrics 833 * @buf: destination buffer given by userspace 834 * @count: the number of bytes userspace wants to read 835 * @offset: (inout): the current position for writing into @buf 836 * 837 * Checks OA unit status registers and if necessary appends corresponding 838 * status records for userspace (such as for a buffer full condition) and then 839 * initiate appending any buffered OA reports. 840 * 841 * Updates @offset according to the number of bytes successfully copied into 842 * the userspace buffer. 843 * 844 * NB: some data may be successfully copied to the userspace buffer 845 * even if an error is returned, and this is reflected in the 846 * updated @offset. 847 * 848 * Returns: zero on success or a negative error code 849 */ 850 static int gen8_oa_read(struct i915_perf_stream *stream, 851 char __user *buf, 852 size_t count, 853 size_t *offset) 854 { 855 struct intel_uncore *uncore = stream->uncore; 856 u32 oastatus; 857 i915_reg_t oastatus_reg; 858 int ret; 859 860 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 861 return -EIO; 862 863 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ? 864 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 865 866 oastatus = intel_uncore_read(uncore, oastatus_reg); 867 868 /* 869 * We treat OABUFFER_OVERFLOW as a significant error: 870 * 871 * Although theoretically we could handle this more gracefully 872 * sometimes, some Gens don't correctly suppress certain 873 * automatically triggered reports in this condition and so we 874 * have to assume that old reports are now being trampled 875 * over. 876 * 877 * Considering how we don't currently give userspace control 878 * over the OA buffer size and always configure a large 16MB 879 * buffer, then a buffer overflow does anyway likely indicate 880 * that something has gone quite badly wrong. 881 */ 882 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 883 ret = append_oa_status(stream, buf, count, offset, 884 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 885 if (ret) 886 return ret; 887 888 drm_dbg(&stream->perf->i915->drm, 889 "OA buffer overflow (exponent = %d): force restart\n", 890 stream->period_exponent); 891 892 stream->perf->ops.oa_disable(stream); 893 stream->perf->ops.oa_enable(stream); 894 895 /* 896 * Note: .oa_enable() is expected to re-init the oabuffer and 897 * reset GEN8_OASTATUS for us 898 */ 899 oastatus = intel_uncore_read(uncore, oastatus_reg); 900 } 901 902 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 903 ret = append_oa_status(stream, buf, count, offset, 904 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 905 if (ret) 906 return ret; 907 908 intel_uncore_rmw(uncore, oastatus_reg, 909 GEN8_OASTATUS_COUNTER_OVERFLOW | 910 GEN8_OASTATUS_REPORT_LOST, 911 IS_GRAPHICS_VER(uncore->i915, 8, 11) ? 912 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 913 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 914 } 915 916 return gen8_append_oa_reports(stream, buf, count, offset); 917 } 918 919 /** 920 * gen7_append_oa_reports - Copies all buffered OA reports into 921 * userspace read() buffer. 922 * @stream: An i915-perf stream opened for OA metrics 923 * @buf: destination buffer given by userspace 924 * @count: the number of bytes userspace wants to read 925 * @offset: (inout): the current position for writing into @buf 926 * 927 * Notably any error condition resulting in a short read (-%ENOSPC or 928 * -%EFAULT) will be returned even though one or more records may 929 * have been successfully copied. In this case it's up to the caller 930 * to decide if the error should be squashed before returning to 931 * userspace. 932 * 933 * Note: reports are consumed from the head, and appended to the 934 * tail, so the tail chases the head?... If you think that's mad 935 * and back-to-front you're not alone, but this follows the 936 * Gen PRM naming convention. 937 * 938 * Returns: 0 on success, negative error code on failure. 939 */ 940 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 941 char __user *buf, 942 size_t count, 943 size_t *offset) 944 { 945 struct intel_uncore *uncore = stream->uncore; 946 int report_size = stream->oa_buffer.format_size; 947 u8 *oa_buf_base = stream->oa_buffer.vaddr; 948 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 949 u32 mask = (OA_BUFFER_SIZE - 1); 950 size_t start_offset = *offset; 951 unsigned long flags; 952 u32 head, tail; 953 u32 taken; 954 int ret = 0; 955 956 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 957 return -EIO; 958 959 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 960 961 head = stream->oa_buffer.head; 962 tail = stream->oa_buffer.tail; 963 964 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 965 966 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 967 * while indexing relative to oa_buf_base. 968 */ 969 head -= gtt_offset; 970 tail -= gtt_offset; 971 972 /* An out of bounds or misaligned head or tail pointer implies a driver 973 * bug since we validate + align the tail pointers we read from the 974 * hardware and we are in full control of the head pointer which should 975 * only be incremented by multiples of the report size (notably also 976 * all a power of two). 977 */ 978 if (drm_WARN_ONCE(&uncore->i915->drm, 979 head > OA_BUFFER_SIZE || head % report_size || 980 tail > OA_BUFFER_SIZE || tail % report_size, 981 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 982 head, tail)) 983 return -EIO; 984 985 986 for (/* none */; 987 (taken = OA_TAKEN(tail, head)); 988 head = (head + report_size) & mask) { 989 u8 *report = oa_buf_base + head; 990 u32 *report32 = (void *)report; 991 992 /* All the report sizes factor neatly into the buffer 993 * size so we never expect to see a report split 994 * between the beginning and end of the buffer. 995 * 996 * Given the initial alignment check a misalignment 997 * here would imply a driver bug that would result 998 * in an overrun. 999 */ 1000 if (drm_WARN_ON(&uncore->i915->drm, 1001 (OA_BUFFER_SIZE - head) < report_size)) { 1002 drm_err(&uncore->i915->drm, 1003 "Spurious OA head ptr: non-integral report offset\n"); 1004 break; 1005 } 1006 1007 /* The report-ID field for periodic samples includes 1008 * some undocumented flags related to what triggered 1009 * the report and is never expected to be zero so we 1010 * can check that the report isn't invalid before 1011 * copying it to userspace... 1012 */ 1013 if (report32[0] == 0) { 1014 if (__ratelimit(&stream->perf->spurious_report_rs)) 1015 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1016 continue; 1017 } 1018 1019 ret = append_oa_sample(stream, buf, count, offset, report); 1020 if (ret) 1021 break; 1022 1023 /* Clear out the first 2 dwords as a mean to detect unlanded 1024 * reports. 1025 */ 1026 report32[0] = 0; 1027 report32[1] = 0; 1028 } 1029 1030 if (start_offset != *offset) { 1031 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1032 1033 /* We removed the gtt_offset for the copy loop above, indexing 1034 * relative to oa_buf_base so put back here... 1035 */ 1036 head += gtt_offset; 1037 1038 intel_uncore_write(uncore, GEN7_OASTATUS2, 1039 (head & GEN7_OASTATUS2_HEAD_MASK) | 1040 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1041 stream->oa_buffer.head = head; 1042 1043 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1044 } 1045 1046 return ret; 1047 } 1048 1049 /** 1050 * gen7_oa_read - copy status records then buffered OA reports 1051 * @stream: An i915-perf stream opened for OA metrics 1052 * @buf: destination buffer given by userspace 1053 * @count: the number of bytes userspace wants to read 1054 * @offset: (inout): the current position for writing into @buf 1055 * 1056 * Checks Gen 7 specific OA unit status registers and if necessary appends 1057 * corresponding status records for userspace (such as for a buffer full 1058 * condition) and then initiate appending any buffered OA reports. 1059 * 1060 * Updates @offset according to the number of bytes successfully copied into 1061 * the userspace buffer. 1062 * 1063 * Returns: zero on success or a negative error code 1064 */ 1065 static int gen7_oa_read(struct i915_perf_stream *stream, 1066 char __user *buf, 1067 size_t count, 1068 size_t *offset) 1069 { 1070 struct intel_uncore *uncore = stream->uncore; 1071 u32 oastatus1; 1072 int ret; 1073 1074 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1075 return -EIO; 1076 1077 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1078 1079 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1080 * bits while the OA unit is enabled (while the tail pointer 1081 * may be updated asynchronously) so we ignore status bits 1082 * that have already been reported to userspace. 1083 */ 1084 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1085 1086 /* We treat OABUFFER_OVERFLOW as a significant error: 1087 * 1088 * - The status can be interpreted to mean that the buffer is 1089 * currently full (with a higher precedence than OA_TAKEN() 1090 * which will start to report a near-empty buffer after an 1091 * overflow) but it's awkward that we can't clear the status 1092 * on Haswell, so without a reset we won't be able to catch 1093 * the state again. 1094 * 1095 * - Since it also implies the HW has started overwriting old 1096 * reports it may also affect our sanity checks for invalid 1097 * reports when copying to userspace that assume new reports 1098 * are being written to cleared memory. 1099 * 1100 * - In the future we may want to introduce a flight recorder 1101 * mode where the driver will automatically maintain a safe 1102 * guard band between head/tail, avoiding this overflow 1103 * condition, but we avoid the added driver complexity for 1104 * now. 1105 */ 1106 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1107 ret = append_oa_status(stream, buf, count, offset, 1108 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1109 if (ret) 1110 return ret; 1111 1112 drm_dbg(&stream->perf->i915->drm, 1113 "OA buffer overflow (exponent = %d): force restart\n", 1114 stream->period_exponent); 1115 1116 stream->perf->ops.oa_disable(stream); 1117 stream->perf->ops.oa_enable(stream); 1118 1119 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1120 } 1121 1122 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1123 ret = append_oa_status(stream, buf, count, offset, 1124 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1125 if (ret) 1126 return ret; 1127 stream->perf->gen7_latched_oastatus1 |= 1128 GEN7_OASTATUS1_REPORT_LOST; 1129 } 1130 1131 return gen7_append_oa_reports(stream, buf, count, offset); 1132 } 1133 1134 /** 1135 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1136 * @stream: An i915-perf stream opened for OA metrics 1137 * 1138 * Called when userspace tries to read() from a blocking stream FD opened 1139 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1140 * OA buffer and wakes us. 1141 * 1142 * Note: it's acceptable to have this return with some false positives 1143 * since any subsequent read handling will return -EAGAIN if there isn't 1144 * really data ready for userspace yet. 1145 * 1146 * Returns: zero on success or a negative error code 1147 */ 1148 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1149 { 1150 /* We would wait indefinitely if periodic sampling is not enabled */ 1151 if (!stream->periodic) 1152 return -EIO; 1153 1154 return wait_event_interruptible(stream->poll_wq, 1155 oa_buffer_check_unlocked(stream)); 1156 } 1157 1158 /** 1159 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1160 * @stream: An i915-perf stream opened for OA metrics 1161 * @file: An i915 perf stream file 1162 * @wait: poll() state table 1163 * 1164 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1165 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1166 * when it sees data ready to read in the circular OA buffer. 1167 */ 1168 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1169 struct file *file, 1170 poll_table *wait) 1171 { 1172 poll_wait(file, &stream->poll_wq, wait); 1173 } 1174 1175 /** 1176 * i915_oa_read - just calls through to &i915_oa_ops->read 1177 * @stream: An i915-perf stream opened for OA metrics 1178 * @buf: destination buffer given by userspace 1179 * @count: the number of bytes userspace wants to read 1180 * @offset: (inout): the current position for writing into @buf 1181 * 1182 * Updates @offset according to the number of bytes successfully copied into 1183 * the userspace buffer. 1184 * 1185 * Returns: zero on success or a negative error code 1186 */ 1187 static int i915_oa_read(struct i915_perf_stream *stream, 1188 char __user *buf, 1189 size_t count, 1190 size_t *offset) 1191 { 1192 return stream->perf->ops.read(stream, buf, count, offset); 1193 } 1194 1195 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1196 { 1197 struct i915_gem_engines_iter it; 1198 struct i915_gem_context *ctx = stream->ctx; 1199 struct intel_context *ce; 1200 struct i915_gem_ww_ctx ww; 1201 int err = -ENODEV; 1202 1203 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1204 if (ce->engine != stream->engine) /* first match! */ 1205 continue; 1206 1207 err = 0; 1208 break; 1209 } 1210 i915_gem_context_unlock_engines(ctx); 1211 1212 if (err) 1213 return ERR_PTR(err); 1214 1215 i915_gem_ww_ctx_init(&ww, true); 1216 retry: 1217 /* 1218 * As the ID is the gtt offset of the context's vma we 1219 * pin the vma to ensure the ID remains fixed. 1220 */ 1221 err = intel_context_pin_ww(ce, &ww); 1222 if (err == -EDEADLK) { 1223 err = i915_gem_ww_ctx_backoff(&ww); 1224 if (!err) 1225 goto retry; 1226 } 1227 i915_gem_ww_ctx_fini(&ww); 1228 1229 if (err) 1230 return ERR_PTR(err); 1231 1232 stream->pinned_ctx = ce; 1233 return stream->pinned_ctx; 1234 } 1235 1236 /** 1237 * oa_get_render_ctx_id - determine and hold ctx hw id 1238 * @stream: An i915-perf stream opened for OA metrics 1239 * 1240 * Determine the render context hw id, and ensure it remains fixed for the 1241 * lifetime of the stream. This ensures that we don't have to worry about 1242 * updating the context ID in OACONTROL on the fly. 1243 * 1244 * Returns: zero on success or a negative error code 1245 */ 1246 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1247 { 1248 struct intel_context *ce; 1249 1250 ce = oa_pin_context(stream); 1251 if (IS_ERR(ce)) 1252 return PTR_ERR(ce); 1253 1254 switch (GRAPHICS_VER(ce->engine->i915)) { 1255 case 7: { 1256 /* 1257 * On Haswell we don't do any post processing of the reports 1258 * and don't need to use the mask. 1259 */ 1260 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1261 stream->specific_ctx_id_mask = 0; 1262 break; 1263 } 1264 1265 case 8: 1266 case 9: 1267 if (intel_engine_uses_guc(ce->engine)) { 1268 /* 1269 * When using GuC, the context descriptor we write in 1270 * i915 is read by GuC and rewritten before it's 1271 * actually written into the hardware. The LRCA is 1272 * what is put into the context id field of the 1273 * context descriptor by GuC. Because it's aligned to 1274 * a page, the lower 12bits are always at 0 and 1275 * dropped by GuC. They won't be part of the context 1276 * ID in the OA reports, so squash those lower bits. 1277 */ 1278 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1279 1280 /* 1281 * GuC uses the top bit to signal proxy submission, so 1282 * ignore that bit. 1283 */ 1284 stream->specific_ctx_id_mask = 1285 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1286 } else { 1287 stream->specific_ctx_id_mask = 1288 (1U << GEN8_CTX_ID_WIDTH) - 1; 1289 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1290 } 1291 break; 1292 1293 case 11: 1294 case 12: 1295 if (GRAPHICS_VER_FULL(ce->engine->i915) >= IP_VER(12, 50)) { 1296 stream->specific_ctx_id_mask = 1297 ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) << 1298 (XEHP_SW_CTX_ID_SHIFT - 32); 1299 stream->specific_ctx_id = 1300 (XEHP_MAX_CONTEXT_HW_ID - 1) << 1301 (XEHP_SW_CTX_ID_SHIFT - 32); 1302 } else { 1303 stream->specific_ctx_id_mask = 1304 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1305 /* 1306 * Pick an unused context id 1307 * 0 - BITS_PER_LONG are used by other contexts 1308 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context 1309 */ 1310 stream->specific_ctx_id = 1311 (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1312 } 1313 break; 1314 1315 default: 1316 MISSING_CASE(GRAPHICS_VER(ce->engine->i915)); 1317 } 1318 1319 ce->tag = stream->specific_ctx_id; 1320 1321 drm_dbg(&stream->perf->i915->drm, 1322 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1323 stream->specific_ctx_id, 1324 stream->specific_ctx_id_mask); 1325 1326 return 0; 1327 } 1328 1329 /** 1330 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1331 * @stream: An i915-perf stream opened for OA metrics 1332 * 1333 * In case anything needed doing to ensure the context HW ID would remain valid 1334 * for the lifetime of the stream, then that can be undone here. 1335 */ 1336 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1337 { 1338 struct intel_context *ce; 1339 1340 ce = fetch_and_zero(&stream->pinned_ctx); 1341 if (ce) { 1342 ce->tag = 0; /* recomputed on next submission after parking */ 1343 intel_context_unpin(ce); 1344 } 1345 1346 stream->specific_ctx_id = INVALID_CTX_ID; 1347 stream->specific_ctx_id_mask = 0; 1348 } 1349 1350 static void 1351 free_oa_buffer(struct i915_perf_stream *stream) 1352 { 1353 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1354 I915_VMA_RELEASE_MAP); 1355 1356 stream->oa_buffer.vaddr = NULL; 1357 } 1358 1359 static void 1360 free_oa_configs(struct i915_perf_stream *stream) 1361 { 1362 struct i915_oa_config_bo *oa_bo, *tmp; 1363 1364 i915_oa_config_put(stream->oa_config); 1365 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1366 free_oa_config_bo(oa_bo); 1367 } 1368 1369 static void 1370 free_noa_wait(struct i915_perf_stream *stream) 1371 { 1372 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1373 } 1374 1375 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1376 { 1377 struct i915_perf *perf = stream->perf; 1378 1379 BUG_ON(stream != perf->exclusive_stream); 1380 1381 /* 1382 * Unset exclusive_stream first, it will be checked while disabling 1383 * the metric set on gen8+. 1384 * 1385 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1386 */ 1387 WRITE_ONCE(perf->exclusive_stream, NULL); 1388 perf->ops.disable_metric_set(stream); 1389 1390 free_oa_buffer(stream); 1391 1392 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1393 intel_engine_pm_put(stream->engine); 1394 1395 if (stream->ctx) 1396 oa_put_render_ctx_id(stream); 1397 1398 free_oa_configs(stream); 1399 free_noa_wait(stream); 1400 1401 if (perf->spurious_report_rs.missed) { 1402 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1403 perf->spurious_report_rs.missed); 1404 } 1405 } 1406 1407 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1408 { 1409 struct intel_uncore *uncore = stream->uncore; 1410 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1411 unsigned long flags; 1412 1413 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1414 1415 /* Pre-DevBDW: OABUFFER must be set with counters off, 1416 * before OASTATUS1, but after OASTATUS2 1417 */ 1418 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1419 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1420 stream->oa_buffer.head = gtt_offset; 1421 1422 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1423 1424 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1425 gtt_offset | OABUFFER_SIZE_16M); 1426 1427 /* Mark that we need updated tail pointers to read from... */ 1428 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1429 stream->oa_buffer.tail = gtt_offset; 1430 1431 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1432 1433 /* On Haswell we have to track which OASTATUS1 flags we've 1434 * already seen since they can't be cleared while periodic 1435 * sampling is enabled. 1436 */ 1437 stream->perf->gen7_latched_oastatus1 = 0; 1438 1439 /* NB: although the OA buffer will initially be allocated 1440 * zeroed via shmfs (and so this memset is redundant when 1441 * first allocating), we may re-init the OA buffer, either 1442 * when re-enabling a stream or in error/reset paths. 1443 * 1444 * The reason we clear the buffer for each re-init is for the 1445 * sanity check in gen7_append_oa_reports() that looks at the 1446 * report-id field to make sure it's non-zero which relies on 1447 * the assumption that new reports are being written to zeroed 1448 * memory... 1449 */ 1450 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1451 } 1452 1453 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1454 { 1455 struct intel_uncore *uncore = stream->uncore; 1456 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1457 unsigned long flags; 1458 1459 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1460 1461 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1462 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1463 stream->oa_buffer.head = gtt_offset; 1464 1465 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1466 1467 /* 1468 * PRM says: 1469 * 1470 * "This MMIO must be set before the OATAILPTR 1471 * register and after the OAHEADPTR register. This is 1472 * to enable proper functionality of the overflow 1473 * bit." 1474 */ 1475 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1476 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1477 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1478 1479 /* Mark that we need updated tail pointers to read from... */ 1480 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1481 stream->oa_buffer.tail = gtt_offset; 1482 1483 /* 1484 * Reset state used to recognise context switches, affecting which 1485 * reports we will forward to userspace while filtering for a single 1486 * context. 1487 */ 1488 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1489 1490 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1491 1492 /* 1493 * NB: although the OA buffer will initially be allocated 1494 * zeroed via shmfs (and so this memset is redundant when 1495 * first allocating), we may re-init the OA buffer, either 1496 * when re-enabling a stream or in error/reset paths. 1497 * 1498 * The reason we clear the buffer for each re-init is for the 1499 * sanity check in gen8_append_oa_reports() that looks at the 1500 * reason field to make sure it's non-zero which relies on 1501 * the assumption that new reports are being written to zeroed 1502 * memory... 1503 */ 1504 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1505 } 1506 1507 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1508 { 1509 struct intel_uncore *uncore = stream->uncore; 1510 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1511 unsigned long flags; 1512 1513 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1514 1515 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1516 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1517 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1518 stream->oa_buffer.head = gtt_offset; 1519 1520 /* 1521 * PRM says: 1522 * 1523 * "This MMIO must be set before the OATAILPTR 1524 * register and after the OAHEADPTR register. This is 1525 * to enable proper functionality of the overflow 1526 * bit." 1527 */ 1528 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1529 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1530 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1531 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1532 1533 /* Mark that we need updated tail pointers to read from... */ 1534 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1535 stream->oa_buffer.tail = gtt_offset; 1536 1537 /* 1538 * Reset state used to recognise context switches, affecting which 1539 * reports we will forward to userspace while filtering for a single 1540 * context. 1541 */ 1542 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1543 1544 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1545 1546 /* 1547 * NB: although the OA buffer will initially be allocated 1548 * zeroed via shmfs (and so this memset is redundant when 1549 * first allocating), we may re-init the OA buffer, either 1550 * when re-enabling a stream or in error/reset paths. 1551 * 1552 * The reason we clear the buffer for each re-init is for the 1553 * sanity check in gen8_append_oa_reports() that looks at the 1554 * reason field to make sure it's non-zero which relies on 1555 * the assumption that new reports are being written to zeroed 1556 * memory... 1557 */ 1558 memset(stream->oa_buffer.vaddr, 0, 1559 stream->oa_buffer.vma->size); 1560 } 1561 1562 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1563 { 1564 struct drm_i915_private *i915 = stream->perf->i915; 1565 struct drm_i915_gem_object *bo; 1566 struct i915_vma *vma; 1567 int ret; 1568 1569 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1570 return -ENODEV; 1571 1572 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1573 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1574 1575 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1576 if (IS_ERR(bo)) { 1577 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1578 return PTR_ERR(bo); 1579 } 1580 1581 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1582 1583 /* PreHSW required 512K alignment, HSW requires 16M */ 1584 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1585 if (IS_ERR(vma)) { 1586 ret = PTR_ERR(vma); 1587 goto err_unref; 1588 } 1589 stream->oa_buffer.vma = vma; 1590 1591 stream->oa_buffer.vaddr = 1592 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB); 1593 if (IS_ERR(stream->oa_buffer.vaddr)) { 1594 ret = PTR_ERR(stream->oa_buffer.vaddr); 1595 goto err_unpin; 1596 } 1597 1598 return 0; 1599 1600 err_unpin: 1601 __i915_vma_unpin(vma); 1602 1603 err_unref: 1604 i915_gem_object_put(bo); 1605 1606 stream->oa_buffer.vaddr = NULL; 1607 stream->oa_buffer.vma = NULL; 1608 1609 return ret; 1610 } 1611 1612 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1613 bool save, i915_reg_t reg, u32 offset, 1614 u32 dword_count) 1615 { 1616 u32 cmd; 1617 u32 d; 1618 1619 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1620 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1621 if (GRAPHICS_VER(stream->perf->i915) >= 8) 1622 cmd++; 1623 1624 for (d = 0; d < dword_count; d++) { 1625 *cs++ = cmd; 1626 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1627 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1628 offset) + 4 * d; 1629 *cs++ = 0; 1630 } 1631 1632 return cs; 1633 } 1634 1635 static int alloc_noa_wait(struct i915_perf_stream *stream) 1636 { 1637 struct drm_i915_private *i915 = stream->perf->i915; 1638 struct drm_i915_gem_object *bo; 1639 struct i915_vma *vma; 1640 const u64 delay_ticks = 0xffffffffffffffff - 1641 intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915), 1642 atomic64_read(&stream->perf->noa_programming_delay)); 1643 const u32 base = stream->engine->mmio_base; 1644 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1645 u32 *batch, *ts0, *cs, *jump; 1646 struct i915_gem_ww_ctx ww; 1647 int ret, i; 1648 enum { 1649 START_TS, 1650 NOW_TS, 1651 DELTA_TS, 1652 JUMP_PREDICATE, 1653 DELTA_TARGET, 1654 N_CS_GPR 1655 }; 1656 1657 bo = i915_gem_object_create_internal(i915, 4096); 1658 if (IS_ERR(bo)) { 1659 drm_err(&i915->drm, 1660 "Failed to allocate NOA wait batchbuffer\n"); 1661 return PTR_ERR(bo); 1662 } 1663 1664 i915_gem_ww_ctx_init(&ww, true); 1665 retry: 1666 ret = i915_gem_object_lock(bo, &ww); 1667 if (ret) 1668 goto out_ww; 1669 1670 /* 1671 * We pin in GGTT because we jump into this buffer now because 1672 * multiple OA config BOs will have a jump to this address and it 1673 * needs to be fixed during the lifetime of the i915/perf stream. 1674 */ 1675 vma = i915_gem_object_ggtt_pin_ww(bo, &ww, NULL, 0, 0, PIN_HIGH); 1676 if (IS_ERR(vma)) { 1677 ret = PTR_ERR(vma); 1678 goto out_ww; 1679 } 1680 1681 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1682 if (IS_ERR(batch)) { 1683 ret = PTR_ERR(batch); 1684 goto err_unpin; 1685 } 1686 1687 /* Save registers. */ 1688 for (i = 0; i < N_CS_GPR; i++) 1689 cs = save_restore_register( 1690 stream, cs, true /* save */, CS_GPR(i), 1691 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1692 cs = save_restore_register( 1693 stream, cs, true /* save */, MI_PREDICATE_RESULT_1(RENDER_RING_BASE), 1694 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1695 1696 /* First timestamp snapshot location. */ 1697 ts0 = cs; 1698 1699 /* 1700 * Initial snapshot of the timestamp register to implement the wait. 1701 * We work with 32b values, so clear out the top 32b bits of the 1702 * register because the ALU works 64bits. 1703 */ 1704 *cs++ = MI_LOAD_REGISTER_IMM(1); 1705 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1706 *cs++ = 0; 1707 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1708 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1709 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1710 1711 /* 1712 * This is the location we're going to jump back into until the 1713 * required amount of time has passed. 1714 */ 1715 jump = cs; 1716 1717 /* 1718 * Take another snapshot of the timestamp register. Take care to clear 1719 * up the top 32bits of CS_GPR(1) as we're using it for other 1720 * operations below. 1721 */ 1722 *cs++ = MI_LOAD_REGISTER_IMM(1); 1723 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1724 *cs++ = 0; 1725 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1726 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1727 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1728 1729 /* 1730 * Do a diff between the 2 timestamps and store the result back into 1731 * CS_GPR(1). 1732 */ 1733 *cs++ = MI_MATH(5); 1734 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1735 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1736 *cs++ = MI_MATH_SUB; 1737 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1738 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1739 1740 /* 1741 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1742 * timestamp have rolled over the 32bits) into the predicate register 1743 * to be used for the predicated jump. 1744 */ 1745 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1746 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1747 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1(RENDER_RING_BASE)); 1748 1749 /* Restart from the beginning if we had timestamps roll over. */ 1750 *cs++ = (GRAPHICS_VER(i915) < 8 ? 1751 MI_BATCH_BUFFER_START : 1752 MI_BATCH_BUFFER_START_GEN8) | 1753 MI_BATCH_PREDICATE; 1754 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1755 *cs++ = 0; 1756 1757 /* 1758 * Now add the diff between to previous timestamps and add it to : 1759 * (((1 * << 64) - 1) - delay_ns) 1760 * 1761 * When the Carry Flag contains 1 this means the elapsed time is 1762 * longer than the expected delay, and we can exit the wait loop. 1763 */ 1764 *cs++ = MI_LOAD_REGISTER_IMM(2); 1765 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1766 *cs++ = lower_32_bits(delay_ticks); 1767 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 1768 *cs++ = upper_32_bits(delay_ticks); 1769 1770 *cs++ = MI_MATH(4); 1771 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 1772 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 1773 *cs++ = MI_MATH_ADD; 1774 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1775 1776 *cs++ = MI_ARB_CHECK; 1777 1778 /* 1779 * Transfer the result into the predicate register to be used for the 1780 * predicated jump. 1781 */ 1782 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1783 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1784 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1(RENDER_RING_BASE)); 1785 1786 /* Predicate the jump. */ 1787 *cs++ = (GRAPHICS_VER(i915) < 8 ? 1788 MI_BATCH_BUFFER_START : 1789 MI_BATCH_BUFFER_START_GEN8) | 1790 MI_BATCH_PREDICATE; 1791 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 1792 *cs++ = 0; 1793 1794 /* Restore registers. */ 1795 for (i = 0; i < N_CS_GPR; i++) 1796 cs = save_restore_register( 1797 stream, cs, false /* restore */, CS_GPR(i), 1798 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1799 cs = save_restore_register( 1800 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1(RENDER_RING_BASE), 1801 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1802 1803 /* And return to the ring. */ 1804 *cs++ = MI_BATCH_BUFFER_END; 1805 1806 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 1807 1808 i915_gem_object_flush_map(bo); 1809 __i915_gem_object_release_map(bo); 1810 1811 stream->noa_wait = vma; 1812 goto out_ww; 1813 1814 err_unpin: 1815 i915_vma_unpin_and_release(&vma, 0); 1816 out_ww: 1817 if (ret == -EDEADLK) { 1818 ret = i915_gem_ww_ctx_backoff(&ww); 1819 if (!ret) 1820 goto retry; 1821 } 1822 i915_gem_ww_ctx_fini(&ww); 1823 if (ret) 1824 i915_gem_object_put(bo); 1825 return ret; 1826 } 1827 1828 static u32 *write_cs_mi_lri(u32 *cs, 1829 const struct i915_oa_reg *reg_data, 1830 u32 n_regs) 1831 { 1832 u32 i; 1833 1834 for (i = 0; i < n_regs; i++) { 1835 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 1836 u32 n_lri = min_t(u32, 1837 n_regs - i, 1838 MI_LOAD_REGISTER_IMM_MAX_REGS); 1839 1840 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 1841 } 1842 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 1843 *cs++ = reg_data[i].value; 1844 } 1845 1846 return cs; 1847 } 1848 1849 static int num_lri_dwords(int num_regs) 1850 { 1851 int count = 0; 1852 1853 if (num_regs > 0) { 1854 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 1855 count += num_regs * 2; 1856 } 1857 1858 return count; 1859 } 1860 1861 static struct i915_oa_config_bo * 1862 alloc_oa_config_buffer(struct i915_perf_stream *stream, 1863 struct i915_oa_config *oa_config) 1864 { 1865 struct drm_i915_gem_object *obj; 1866 struct i915_oa_config_bo *oa_bo; 1867 struct i915_gem_ww_ctx ww; 1868 size_t config_length = 0; 1869 u32 *cs; 1870 int err; 1871 1872 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 1873 if (!oa_bo) 1874 return ERR_PTR(-ENOMEM); 1875 1876 config_length += num_lri_dwords(oa_config->mux_regs_len); 1877 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 1878 config_length += num_lri_dwords(oa_config->flex_regs_len); 1879 config_length += 3; /* MI_BATCH_BUFFER_START */ 1880 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 1881 1882 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 1883 if (IS_ERR(obj)) { 1884 err = PTR_ERR(obj); 1885 goto err_free; 1886 } 1887 1888 i915_gem_ww_ctx_init(&ww, true); 1889 retry: 1890 err = i915_gem_object_lock(obj, &ww); 1891 if (err) 1892 goto out_ww; 1893 1894 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 1895 if (IS_ERR(cs)) { 1896 err = PTR_ERR(cs); 1897 goto out_ww; 1898 } 1899 1900 cs = write_cs_mi_lri(cs, 1901 oa_config->mux_regs, 1902 oa_config->mux_regs_len); 1903 cs = write_cs_mi_lri(cs, 1904 oa_config->b_counter_regs, 1905 oa_config->b_counter_regs_len); 1906 cs = write_cs_mi_lri(cs, 1907 oa_config->flex_regs, 1908 oa_config->flex_regs_len); 1909 1910 /* Jump into the active wait. */ 1911 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ? 1912 MI_BATCH_BUFFER_START : 1913 MI_BATCH_BUFFER_START_GEN8); 1914 *cs++ = i915_ggtt_offset(stream->noa_wait); 1915 *cs++ = 0; 1916 1917 i915_gem_object_flush_map(obj); 1918 __i915_gem_object_release_map(obj); 1919 1920 oa_bo->vma = i915_vma_instance(obj, 1921 &stream->engine->gt->ggtt->vm, 1922 NULL); 1923 if (IS_ERR(oa_bo->vma)) { 1924 err = PTR_ERR(oa_bo->vma); 1925 goto out_ww; 1926 } 1927 1928 oa_bo->oa_config = i915_oa_config_get(oa_config); 1929 llist_add(&oa_bo->node, &stream->oa_config_bos); 1930 1931 out_ww: 1932 if (err == -EDEADLK) { 1933 err = i915_gem_ww_ctx_backoff(&ww); 1934 if (!err) 1935 goto retry; 1936 } 1937 i915_gem_ww_ctx_fini(&ww); 1938 1939 if (err) 1940 i915_gem_object_put(obj); 1941 err_free: 1942 if (err) { 1943 kfree(oa_bo); 1944 return ERR_PTR(err); 1945 } 1946 return oa_bo; 1947 } 1948 1949 static struct i915_vma * 1950 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 1951 { 1952 struct i915_oa_config_bo *oa_bo; 1953 1954 /* 1955 * Look for the buffer in the already allocated BOs attached 1956 * to the stream. 1957 */ 1958 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 1959 if (oa_bo->oa_config == oa_config && 1960 memcmp(oa_bo->oa_config->uuid, 1961 oa_config->uuid, 1962 sizeof(oa_config->uuid)) == 0) 1963 goto out; 1964 } 1965 1966 oa_bo = alloc_oa_config_buffer(stream, oa_config); 1967 if (IS_ERR(oa_bo)) 1968 return ERR_CAST(oa_bo); 1969 1970 out: 1971 return i915_vma_get(oa_bo->vma); 1972 } 1973 1974 static int 1975 emit_oa_config(struct i915_perf_stream *stream, 1976 struct i915_oa_config *oa_config, 1977 struct intel_context *ce, 1978 struct i915_active *active) 1979 { 1980 struct i915_request *rq; 1981 struct i915_vma *vma; 1982 struct i915_gem_ww_ctx ww; 1983 int err; 1984 1985 vma = get_oa_vma(stream, oa_config); 1986 if (IS_ERR(vma)) 1987 return PTR_ERR(vma); 1988 1989 i915_gem_ww_ctx_init(&ww, true); 1990 retry: 1991 err = i915_gem_object_lock(vma->obj, &ww); 1992 if (err) 1993 goto err; 1994 1995 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 1996 if (err) 1997 goto err; 1998 1999 intel_engine_pm_get(ce->engine); 2000 rq = i915_request_create(ce); 2001 intel_engine_pm_put(ce->engine); 2002 if (IS_ERR(rq)) { 2003 err = PTR_ERR(rq); 2004 goto err_vma_unpin; 2005 } 2006 2007 if (!IS_ERR_OR_NULL(active)) { 2008 /* After all individual context modifications */ 2009 err = i915_request_await_active(rq, active, 2010 I915_ACTIVE_AWAIT_ACTIVE); 2011 if (err) 2012 goto err_add_request; 2013 2014 err = i915_active_add_request(active, rq); 2015 if (err) 2016 goto err_add_request; 2017 } 2018 2019 err = i915_request_await_object(rq, vma->obj, 0); 2020 if (!err) 2021 err = i915_vma_move_to_active(vma, rq, 0); 2022 if (err) 2023 goto err_add_request; 2024 2025 err = rq->engine->emit_bb_start(rq, 2026 vma->node.start, 0, 2027 I915_DISPATCH_SECURE); 2028 if (err) 2029 goto err_add_request; 2030 2031 err_add_request: 2032 i915_request_add(rq); 2033 err_vma_unpin: 2034 i915_vma_unpin(vma); 2035 err: 2036 if (err == -EDEADLK) { 2037 err = i915_gem_ww_ctx_backoff(&ww); 2038 if (!err) 2039 goto retry; 2040 } 2041 2042 i915_gem_ww_ctx_fini(&ww); 2043 i915_vma_put(vma); 2044 return err; 2045 } 2046 2047 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2048 { 2049 return stream->pinned_ctx ?: stream->engine->kernel_context; 2050 } 2051 2052 static int 2053 hsw_enable_metric_set(struct i915_perf_stream *stream, 2054 struct i915_active *active) 2055 { 2056 struct intel_uncore *uncore = stream->uncore; 2057 2058 /* 2059 * PRM: 2060 * 2061 * OA unit is using “crclk” for its functionality. When trunk 2062 * level clock gating takes place, OA clock would be gated, 2063 * unable to count the events from non-render clock domain. 2064 * Render clock gating must be disabled when OA is enabled to 2065 * count the events from non-render domain. Unit level clock 2066 * gating for RCS should also be disabled. 2067 */ 2068 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2069 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2070 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2071 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2072 2073 return emit_oa_config(stream, 2074 stream->oa_config, oa_context(stream), 2075 active); 2076 } 2077 2078 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2079 { 2080 struct intel_uncore *uncore = stream->uncore; 2081 2082 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2083 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2084 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2085 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2086 2087 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2088 } 2089 2090 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2091 i915_reg_t reg) 2092 { 2093 u32 mmio = i915_mmio_reg_offset(reg); 2094 int i; 2095 2096 /* 2097 * This arbitrary default will select the 'EU FPU0 Pipeline 2098 * Active' event. In the future it's anticipated that there 2099 * will be an explicit 'No Event' we can select, but not yet... 2100 */ 2101 if (!oa_config) 2102 return 0; 2103 2104 for (i = 0; i < oa_config->flex_regs_len; i++) { 2105 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2106 return oa_config->flex_regs[i].value; 2107 } 2108 2109 return 0; 2110 } 2111 /* 2112 * NB: It must always remain pointer safe to run this even if the OA unit 2113 * has been disabled. 2114 * 2115 * It's fine to put out-of-date values into these per-context registers 2116 * in the case that the OA unit has been disabled. 2117 */ 2118 static void 2119 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2120 const struct i915_perf_stream *stream) 2121 { 2122 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2123 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2124 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2125 static const i915_reg_t flex_regs[] = { 2126 EU_PERF_CNTL0, 2127 EU_PERF_CNTL1, 2128 EU_PERF_CNTL2, 2129 EU_PERF_CNTL3, 2130 EU_PERF_CNTL4, 2131 EU_PERF_CNTL5, 2132 EU_PERF_CNTL6, 2133 }; 2134 u32 *reg_state = ce->lrc_reg_state; 2135 int i; 2136 2137 reg_state[ctx_oactxctrl + 1] = 2138 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2139 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2140 GEN8_OA_COUNTER_RESUME; 2141 2142 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2143 reg_state[ctx_flexeu0 + i * 2 + 1] = 2144 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2145 } 2146 2147 struct flex { 2148 i915_reg_t reg; 2149 u32 offset; 2150 u32 value; 2151 }; 2152 2153 static int 2154 gen8_store_flex(struct i915_request *rq, 2155 struct intel_context *ce, 2156 const struct flex *flex, unsigned int count) 2157 { 2158 u32 offset; 2159 u32 *cs; 2160 2161 cs = intel_ring_begin(rq, 4 * count); 2162 if (IS_ERR(cs)) 2163 return PTR_ERR(cs); 2164 2165 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2166 do { 2167 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2168 *cs++ = offset + flex->offset * sizeof(u32); 2169 *cs++ = 0; 2170 *cs++ = flex->value; 2171 } while (flex++, --count); 2172 2173 intel_ring_advance(rq, cs); 2174 2175 return 0; 2176 } 2177 2178 static int 2179 gen8_load_flex(struct i915_request *rq, 2180 struct intel_context *ce, 2181 const struct flex *flex, unsigned int count) 2182 { 2183 u32 *cs; 2184 2185 GEM_BUG_ON(!count || count > 63); 2186 2187 cs = intel_ring_begin(rq, 2 * count + 2); 2188 if (IS_ERR(cs)) 2189 return PTR_ERR(cs); 2190 2191 *cs++ = MI_LOAD_REGISTER_IMM(count); 2192 do { 2193 *cs++ = i915_mmio_reg_offset(flex->reg); 2194 *cs++ = flex->value; 2195 } while (flex++, --count); 2196 *cs++ = MI_NOOP; 2197 2198 intel_ring_advance(rq, cs); 2199 2200 return 0; 2201 } 2202 2203 static int gen8_modify_context(struct intel_context *ce, 2204 const struct flex *flex, unsigned int count) 2205 { 2206 struct i915_request *rq; 2207 int err; 2208 2209 rq = intel_engine_create_kernel_request(ce->engine); 2210 if (IS_ERR(rq)) 2211 return PTR_ERR(rq); 2212 2213 /* Serialise with the remote context */ 2214 err = intel_context_prepare_remote_request(ce, rq); 2215 if (err == 0) 2216 err = gen8_store_flex(rq, ce, flex, count); 2217 2218 i915_request_add(rq); 2219 return err; 2220 } 2221 2222 static int 2223 gen8_modify_self(struct intel_context *ce, 2224 const struct flex *flex, unsigned int count, 2225 struct i915_active *active) 2226 { 2227 struct i915_request *rq; 2228 int err; 2229 2230 intel_engine_pm_get(ce->engine); 2231 rq = i915_request_create(ce); 2232 intel_engine_pm_put(ce->engine); 2233 if (IS_ERR(rq)) 2234 return PTR_ERR(rq); 2235 2236 if (!IS_ERR_OR_NULL(active)) { 2237 err = i915_active_add_request(active, rq); 2238 if (err) 2239 goto err_add_request; 2240 } 2241 2242 err = gen8_load_flex(rq, ce, flex, count); 2243 if (err) 2244 goto err_add_request; 2245 2246 err_add_request: 2247 i915_request_add(rq); 2248 return err; 2249 } 2250 2251 static int gen8_configure_context(struct i915_gem_context *ctx, 2252 struct flex *flex, unsigned int count) 2253 { 2254 struct i915_gem_engines_iter it; 2255 struct intel_context *ce; 2256 int err = 0; 2257 2258 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2259 GEM_BUG_ON(ce == ce->engine->kernel_context); 2260 2261 if (ce->engine->class != RENDER_CLASS) 2262 continue; 2263 2264 /* Otherwise OA settings will be set upon first use */ 2265 if (!intel_context_pin_if_active(ce)) 2266 continue; 2267 2268 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2269 err = gen8_modify_context(ce, flex, count); 2270 2271 intel_context_unpin(ce); 2272 if (err) 2273 break; 2274 } 2275 i915_gem_context_unlock_engines(ctx); 2276 2277 return err; 2278 } 2279 2280 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2281 struct i915_active *active) 2282 { 2283 int err; 2284 struct intel_context *ce = stream->pinned_ctx; 2285 u32 format = stream->oa_buffer.format; 2286 struct flex regs_context[] = { 2287 { 2288 GEN8_OACTXCONTROL, 2289 stream->perf->ctx_oactxctrl_offset + 1, 2290 active ? GEN8_OA_COUNTER_RESUME : 0, 2291 }, 2292 }; 2293 /* Offsets in regs_lri are not used since this configuration is only 2294 * applied using LRI. Initialize the correct offsets for posterity. 2295 */ 2296 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2297 struct flex regs_lri[] = { 2298 { 2299 GEN12_OAR_OACONTROL, 2300 GEN12_OAR_OACONTROL_OFFSET + 1, 2301 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2302 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2303 }, 2304 { 2305 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2306 CTX_CONTEXT_CONTROL, 2307 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2308 active ? 2309 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2310 0) 2311 }, 2312 }; 2313 2314 /* Modify the context image of pinned context with regs_context*/ 2315 err = intel_context_lock_pinned(ce); 2316 if (err) 2317 return err; 2318 2319 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context)); 2320 intel_context_unlock_pinned(ce); 2321 if (err) 2322 return err; 2323 2324 /* Apply regs_lri using LRI with pinned context */ 2325 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2326 } 2327 2328 /* 2329 * Manages updating the per-context aspects of the OA stream 2330 * configuration across all contexts. 2331 * 2332 * The awkward consideration here is that OACTXCONTROL controls the 2333 * exponent for periodic sampling which is primarily used for system 2334 * wide profiling where we'd like a consistent sampling period even in 2335 * the face of context switches. 2336 * 2337 * Our approach of updating the register state context (as opposed to 2338 * say using a workaround batch buffer) ensures that the hardware 2339 * won't automatically reload an out-of-date timer exponent even 2340 * transiently before a WA BB could be parsed. 2341 * 2342 * This function needs to: 2343 * - Ensure the currently running context's per-context OA state is 2344 * updated 2345 * - Ensure that all existing contexts will have the correct per-context 2346 * OA state if they are scheduled for use. 2347 * - Ensure any new contexts will be initialized with the correct 2348 * per-context OA state. 2349 * 2350 * Note: it's only the RCS/Render context that has any OA state. 2351 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2352 */ 2353 static int 2354 oa_configure_all_contexts(struct i915_perf_stream *stream, 2355 struct flex *regs, 2356 size_t num_regs, 2357 struct i915_active *active) 2358 { 2359 struct drm_i915_private *i915 = stream->perf->i915; 2360 struct intel_engine_cs *engine; 2361 struct i915_gem_context *ctx, *cn; 2362 int err; 2363 2364 lockdep_assert_held(&stream->perf->lock); 2365 2366 /* 2367 * The OA register config is setup through the context image. This image 2368 * might be written to by the GPU on context switch (in particular on 2369 * lite-restore). This means we can't safely update a context's image, 2370 * if this context is scheduled/submitted to run on the GPU. 2371 * 2372 * We could emit the OA register config through the batch buffer but 2373 * this might leave small interval of time where the OA unit is 2374 * configured at an invalid sampling period. 2375 * 2376 * Note that since we emit all requests from a single ring, there 2377 * is still an implicit global barrier here that may cause a high 2378 * priority context to wait for an otherwise independent low priority 2379 * context. Contexts idle at the time of reconfiguration are not 2380 * trapped behind the barrier. 2381 */ 2382 spin_lock(&i915->gem.contexts.lock); 2383 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2384 if (!kref_get_unless_zero(&ctx->ref)) 2385 continue; 2386 2387 spin_unlock(&i915->gem.contexts.lock); 2388 2389 err = gen8_configure_context(ctx, regs, num_regs); 2390 if (err) { 2391 i915_gem_context_put(ctx); 2392 return err; 2393 } 2394 2395 spin_lock(&i915->gem.contexts.lock); 2396 list_safe_reset_next(ctx, cn, link); 2397 i915_gem_context_put(ctx); 2398 } 2399 spin_unlock(&i915->gem.contexts.lock); 2400 2401 /* 2402 * After updating all other contexts, we need to modify ourselves. 2403 * If we don't modify the kernel_context, we do not get events while 2404 * idle. 2405 */ 2406 for_each_uabi_engine(engine, i915) { 2407 struct intel_context *ce = engine->kernel_context; 2408 2409 if (engine->class != RENDER_CLASS) 2410 continue; 2411 2412 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2413 2414 err = gen8_modify_self(ce, regs, num_regs, active); 2415 if (err) 2416 return err; 2417 } 2418 2419 return 0; 2420 } 2421 2422 static int 2423 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2424 const struct i915_oa_config *oa_config, 2425 struct i915_active *active) 2426 { 2427 struct flex regs[] = { 2428 { 2429 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2430 CTX_R_PWR_CLK_STATE, 2431 }, 2432 }; 2433 2434 return oa_configure_all_contexts(stream, 2435 regs, ARRAY_SIZE(regs), 2436 active); 2437 } 2438 2439 static int 2440 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2441 const struct i915_oa_config *oa_config, 2442 struct i915_active *active) 2443 { 2444 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2445 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2446 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2447 struct flex regs[] = { 2448 { 2449 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2450 CTX_R_PWR_CLK_STATE, 2451 }, 2452 { 2453 GEN8_OACTXCONTROL, 2454 stream->perf->ctx_oactxctrl_offset + 1, 2455 }, 2456 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2457 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2458 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2459 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2460 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2461 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2462 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2463 }; 2464 #undef ctx_flexeuN 2465 int i; 2466 2467 regs[1].value = 2468 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2469 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2470 GEN8_OA_COUNTER_RESUME; 2471 2472 for (i = 2; i < ARRAY_SIZE(regs); i++) 2473 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2474 2475 return oa_configure_all_contexts(stream, 2476 regs, ARRAY_SIZE(regs), 2477 active); 2478 } 2479 2480 static int 2481 gen8_enable_metric_set(struct i915_perf_stream *stream, 2482 struct i915_active *active) 2483 { 2484 struct intel_uncore *uncore = stream->uncore; 2485 struct i915_oa_config *oa_config = stream->oa_config; 2486 int ret; 2487 2488 /* 2489 * We disable slice/unslice clock ratio change reports on SKL since 2490 * they are too noisy. The HW generates a lot of redundant reports 2491 * where the ratio hasn't really changed causing a lot of redundant 2492 * work to processes and increasing the chances we'll hit buffer 2493 * overruns. 2494 * 2495 * Although we don't currently use the 'disable overrun' OABUFFER 2496 * feature it's worth noting that clock ratio reports have to be 2497 * disabled before considering to use that feature since the HW doesn't 2498 * correctly block these reports. 2499 * 2500 * Currently none of the high-level metrics we have depend on knowing 2501 * this ratio to normalize. 2502 * 2503 * Note: This register is not power context saved and restored, but 2504 * that's OK considering that we disable RC6 while the OA unit is 2505 * enabled. 2506 * 2507 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2508 * be read back from automatically triggered reports, as part of the 2509 * RPT_ID field. 2510 */ 2511 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) { 2512 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2513 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2514 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2515 } 2516 2517 /* 2518 * Update all contexts prior writing the mux configurations as we need 2519 * to make sure all slices/subslices are ON before writing to NOA 2520 * registers. 2521 */ 2522 ret = lrc_configure_all_contexts(stream, oa_config, active); 2523 if (ret) 2524 return ret; 2525 2526 return emit_oa_config(stream, 2527 stream->oa_config, oa_context(stream), 2528 active); 2529 } 2530 2531 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2532 { 2533 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2534 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2535 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2536 } 2537 2538 static int 2539 gen12_enable_metric_set(struct i915_perf_stream *stream, 2540 struct i915_active *active) 2541 { 2542 struct intel_uncore *uncore = stream->uncore; 2543 struct i915_oa_config *oa_config = stream->oa_config; 2544 bool periodic = stream->periodic; 2545 u32 period_exponent = stream->period_exponent; 2546 int ret; 2547 2548 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2549 /* Disable clk ratio reports, like previous Gens. */ 2550 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2551 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2552 /* 2553 * If the user didn't require OA reports, instruct 2554 * the hardware not to emit ctx switch reports. 2555 */ 2556 oag_report_ctx_switches(stream)); 2557 2558 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2559 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2560 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2561 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2562 : 0); 2563 2564 /* 2565 * Update all contexts prior writing the mux configurations as we need 2566 * to make sure all slices/subslices are ON before writing to NOA 2567 * registers. 2568 */ 2569 ret = gen12_configure_all_contexts(stream, oa_config, active); 2570 if (ret) 2571 return ret; 2572 2573 /* 2574 * For Gen12, performance counters are context 2575 * saved/restored. Only enable it for the context that 2576 * requested this. 2577 */ 2578 if (stream->ctx) { 2579 ret = gen12_configure_oar_context(stream, active); 2580 if (ret) 2581 return ret; 2582 } 2583 2584 return emit_oa_config(stream, 2585 stream->oa_config, oa_context(stream), 2586 active); 2587 } 2588 2589 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2590 { 2591 struct intel_uncore *uncore = stream->uncore; 2592 2593 /* Reset all contexts' slices/subslices configurations. */ 2594 lrc_configure_all_contexts(stream, NULL, NULL); 2595 2596 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2597 } 2598 2599 static void gen11_disable_metric_set(struct i915_perf_stream *stream) 2600 { 2601 struct intel_uncore *uncore = stream->uncore; 2602 2603 /* Reset all contexts' slices/subslices configurations. */ 2604 lrc_configure_all_contexts(stream, NULL, NULL); 2605 2606 /* Make sure we disable noa to save power. */ 2607 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2608 } 2609 2610 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2611 { 2612 struct intel_uncore *uncore = stream->uncore; 2613 2614 /* Reset all contexts' slices/subslices configurations. */ 2615 gen12_configure_all_contexts(stream, NULL, NULL); 2616 2617 /* disable the context save/restore or OAR counters */ 2618 if (stream->ctx) 2619 gen12_configure_oar_context(stream, NULL); 2620 2621 /* Make sure we disable noa to save power. */ 2622 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2623 } 2624 2625 static void gen7_oa_enable(struct i915_perf_stream *stream) 2626 { 2627 struct intel_uncore *uncore = stream->uncore; 2628 struct i915_gem_context *ctx = stream->ctx; 2629 u32 ctx_id = stream->specific_ctx_id; 2630 bool periodic = stream->periodic; 2631 u32 period_exponent = stream->period_exponent; 2632 u32 report_format = stream->oa_buffer.format; 2633 2634 /* 2635 * Reset buf pointers so we don't forward reports from before now. 2636 * 2637 * Think carefully if considering trying to avoid this, since it 2638 * also ensures status flags and the buffer itself are cleared 2639 * in error paths, and we have checks for invalid reports based 2640 * on the assumption that certain fields are written to zeroed 2641 * memory which this helps maintains. 2642 */ 2643 gen7_init_oa_buffer(stream); 2644 2645 intel_uncore_write(uncore, GEN7_OACONTROL, 2646 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2647 (period_exponent << 2648 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2649 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2650 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2651 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2652 GEN7_OACONTROL_ENABLE); 2653 } 2654 2655 static void gen8_oa_enable(struct i915_perf_stream *stream) 2656 { 2657 struct intel_uncore *uncore = stream->uncore; 2658 u32 report_format = stream->oa_buffer.format; 2659 2660 /* 2661 * Reset buf pointers so we don't forward reports from before now. 2662 * 2663 * Think carefully if considering trying to avoid this, since it 2664 * also ensures status flags and the buffer itself are cleared 2665 * in error paths, and we have checks for invalid reports based 2666 * on the assumption that certain fields are written to zeroed 2667 * memory which this helps maintains. 2668 */ 2669 gen8_init_oa_buffer(stream); 2670 2671 /* 2672 * Note: we don't rely on the hardware to perform single context 2673 * filtering and instead filter on the cpu based on the context-id 2674 * field of reports 2675 */ 2676 intel_uncore_write(uncore, GEN8_OACONTROL, 2677 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2678 GEN8_OA_COUNTER_ENABLE); 2679 } 2680 2681 static void gen12_oa_enable(struct i915_perf_stream *stream) 2682 { 2683 struct intel_uncore *uncore = stream->uncore; 2684 u32 report_format = stream->oa_buffer.format; 2685 2686 /* 2687 * If we don't want OA reports from the OA buffer, then we don't even 2688 * need to program the OAG unit. 2689 */ 2690 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2691 return; 2692 2693 gen12_init_oa_buffer(stream); 2694 2695 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2696 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2697 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2698 } 2699 2700 /** 2701 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2702 * @stream: An i915 perf stream opened for OA metrics 2703 * 2704 * [Re]enables hardware periodic sampling according to the period configured 2705 * when opening the stream. This also starts a hrtimer that will periodically 2706 * check for data in the circular OA buffer for notifying userspace (e.g. 2707 * during a read() or poll()). 2708 */ 2709 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2710 { 2711 stream->pollin = false; 2712 2713 stream->perf->ops.oa_enable(stream); 2714 2715 if (stream->sample_flags & SAMPLE_OA_REPORT) 2716 hrtimer_start(&stream->poll_check_timer, 2717 ns_to_ktime(stream->poll_oa_period), 2718 HRTIMER_MODE_REL_PINNED); 2719 } 2720 2721 static void gen7_oa_disable(struct i915_perf_stream *stream) 2722 { 2723 struct intel_uncore *uncore = stream->uncore; 2724 2725 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2726 if (intel_wait_for_register(uncore, 2727 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2728 50)) 2729 drm_err(&stream->perf->i915->drm, 2730 "wait for OA to be disabled timed out\n"); 2731 } 2732 2733 static void gen8_oa_disable(struct i915_perf_stream *stream) 2734 { 2735 struct intel_uncore *uncore = stream->uncore; 2736 2737 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2738 if (intel_wait_for_register(uncore, 2739 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2740 50)) 2741 drm_err(&stream->perf->i915->drm, 2742 "wait for OA to be disabled timed out\n"); 2743 } 2744 2745 static void gen12_oa_disable(struct i915_perf_stream *stream) 2746 { 2747 struct intel_uncore *uncore = stream->uncore; 2748 2749 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 2750 if (intel_wait_for_register(uncore, 2751 GEN12_OAG_OACONTROL, 2752 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 2753 50)) 2754 drm_err(&stream->perf->i915->drm, 2755 "wait for OA to be disabled timed out\n"); 2756 2757 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 2758 if (intel_wait_for_register(uncore, 2759 GEN12_OA_TLB_INV_CR, 2760 1, 0, 2761 50)) 2762 drm_err(&stream->perf->i915->drm, 2763 "wait for OA tlb invalidate timed out\n"); 2764 } 2765 2766 /** 2767 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2768 * @stream: An i915 perf stream opened for OA metrics 2769 * 2770 * Stops the OA unit from periodically writing counter reports into the 2771 * circular OA buffer. This also stops the hrtimer that periodically checks for 2772 * data in the circular OA buffer, for notifying userspace. 2773 */ 2774 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2775 { 2776 stream->perf->ops.oa_disable(stream); 2777 2778 if (stream->sample_flags & SAMPLE_OA_REPORT) 2779 hrtimer_cancel(&stream->poll_check_timer); 2780 } 2781 2782 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2783 .destroy = i915_oa_stream_destroy, 2784 .enable = i915_oa_stream_enable, 2785 .disable = i915_oa_stream_disable, 2786 .wait_unlocked = i915_oa_wait_unlocked, 2787 .poll_wait = i915_oa_poll_wait, 2788 .read = i915_oa_read, 2789 }; 2790 2791 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 2792 { 2793 struct i915_active *active; 2794 int err; 2795 2796 active = i915_active_create(); 2797 if (!active) 2798 return -ENOMEM; 2799 2800 err = stream->perf->ops.enable_metric_set(stream, active); 2801 if (err == 0) 2802 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 2803 2804 i915_active_put(active); 2805 return err; 2806 } 2807 2808 static void 2809 get_default_sseu_config(struct intel_sseu *out_sseu, 2810 struct intel_engine_cs *engine) 2811 { 2812 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 2813 2814 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 2815 2816 if (GRAPHICS_VER(engine->i915) == 11) { 2817 /* 2818 * We only need subslice count so it doesn't matter which ones 2819 * we select - just turn off low bits in the amount of half of 2820 * all available subslices per slice. 2821 */ 2822 out_sseu->subslice_mask = 2823 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 2824 out_sseu->slice_mask = 0x1; 2825 } 2826 } 2827 2828 static int 2829 get_sseu_config(struct intel_sseu *out_sseu, 2830 struct intel_engine_cs *engine, 2831 const struct drm_i915_gem_context_param_sseu *drm_sseu) 2832 { 2833 if (drm_sseu->engine.engine_class != engine->uabi_class || 2834 drm_sseu->engine.engine_instance != engine->uabi_instance) 2835 return -EINVAL; 2836 2837 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 2838 } 2839 2840 /** 2841 * i915_oa_stream_init - validate combined props for OA stream and init 2842 * @stream: An i915 perf stream 2843 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2844 * @props: The property state that configures stream (individually validated) 2845 * 2846 * While read_properties_unlocked() validates properties in isolation it 2847 * doesn't ensure that the combination necessarily makes sense. 2848 * 2849 * At this point it has been determined that userspace wants a stream of 2850 * OA metrics, but still we need to further validate the combined 2851 * properties are OK. 2852 * 2853 * If the configuration makes sense then we can allocate memory for 2854 * a circular OA buffer and apply the requested metric set configuration. 2855 * 2856 * Returns: zero on success or a negative error code. 2857 */ 2858 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2859 struct drm_i915_perf_open_param *param, 2860 struct perf_open_properties *props) 2861 { 2862 struct drm_i915_private *i915 = stream->perf->i915; 2863 struct i915_perf *perf = stream->perf; 2864 int format_size; 2865 int ret; 2866 2867 if (!props->engine) { 2868 drm_dbg(&stream->perf->i915->drm, 2869 "OA engine not specified\n"); 2870 return -EINVAL; 2871 } 2872 2873 /* 2874 * If the sysfs metrics/ directory wasn't registered for some 2875 * reason then don't let userspace try their luck with config 2876 * IDs 2877 */ 2878 if (!perf->metrics_kobj) { 2879 drm_dbg(&stream->perf->i915->drm, 2880 "OA metrics weren't advertised via sysfs\n"); 2881 return -EINVAL; 2882 } 2883 2884 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 2885 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) { 2886 drm_dbg(&stream->perf->i915->drm, 2887 "Only OA report sampling supported\n"); 2888 return -EINVAL; 2889 } 2890 2891 if (!perf->ops.enable_metric_set) { 2892 drm_dbg(&stream->perf->i915->drm, 2893 "OA unit not supported\n"); 2894 return -ENODEV; 2895 } 2896 2897 /* 2898 * To avoid the complexity of having to accurately filter 2899 * counter reports and marshal to the appropriate client 2900 * we currently only allow exclusive access 2901 */ 2902 if (perf->exclusive_stream) { 2903 drm_dbg(&stream->perf->i915->drm, 2904 "OA unit already in use\n"); 2905 return -EBUSY; 2906 } 2907 2908 if (!props->oa_format) { 2909 drm_dbg(&stream->perf->i915->drm, 2910 "OA report format not specified\n"); 2911 return -EINVAL; 2912 } 2913 2914 stream->engine = props->engine; 2915 stream->uncore = stream->engine->gt->uncore; 2916 2917 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2918 2919 format_size = perf->oa_formats[props->oa_format].size; 2920 2921 stream->sample_flags = props->sample_flags; 2922 stream->sample_size += format_size; 2923 2924 stream->oa_buffer.format_size = format_size; 2925 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0)) 2926 return -EINVAL; 2927 2928 stream->hold_preemption = props->hold_preemption; 2929 2930 stream->oa_buffer.format = 2931 perf->oa_formats[props->oa_format].format; 2932 2933 stream->periodic = props->oa_periodic; 2934 if (stream->periodic) 2935 stream->period_exponent = props->oa_period_exponent; 2936 2937 if (stream->ctx) { 2938 ret = oa_get_render_ctx_id(stream); 2939 if (ret) { 2940 drm_dbg(&stream->perf->i915->drm, 2941 "Invalid context id to filter with\n"); 2942 return ret; 2943 } 2944 } 2945 2946 ret = alloc_noa_wait(stream); 2947 if (ret) { 2948 drm_dbg(&stream->perf->i915->drm, 2949 "Unable to allocate NOA wait batch buffer\n"); 2950 goto err_noa_wait_alloc; 2951 } 2952 2953 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 2954 if (!stream->oa_config) { 2955 drm_dbg(&stream->perf->i915->drm, 2956 "Invalid OA config id=%i\n", props->metrics_set); 2957 ret = -EINVAL; 2958 goto err_config; 2959 } 2960 2961 /* PRM - observability performance counters: 2962 * 2963 * OACONTROL, performance counter enable, note: 2964 * 2965 * "When this bit is set, in order to have coherent counts, 2966 * RC6 power state and trunk clock gating must be disabled. 2967 * This can be achieved by programming MMIO registers as 2968 * 0xA094=0 and 0xA090[31]=1" 2969 * 2970 * In our case we are expecting that taking pm + FORCEWAKE 2971 * references will effectively disable RC6. 2972 */ 2973 intel_engine_pm_get(stream->engine); 2974 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 2975 2976 ret = alloc_oa_buffer(stream); 2977 if (ret) 2978 goto err_oa_buf_alloc; 2979 2980 stream->ops = &i915_oa_stream_ops; 2981 2982 perf->sseu = props->sseu; 2983 WRITE_ONCE(perf->exclusive_stream, stream); 2984 2985 ret = i915_perf_stream_enable_sync(stream); 2986 if (ret) { 2987 drm_dbg(&stream->perf->i915->drm, 2988 "Unable to enable metric set\n"); 2989 goto err_enable; 2990 } 2991 2992 drm_dbg(&stream->perf->i915->drm, 2993 "opening stream oa config uuid=%s\n", 2994 stream->oa_config->uuid); 2995 2996 hrtimer_init(&stream->poll_check_timer, 2997 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2998 stream->poll_check_timer.function = oa_poll_check_timer_cb; 2999 init_waitqueue_head(&stream->poll_wq); 3000 spin_lock_init(&stream->oa_buffer.ptr_lock); 3001 3002 return 0; 3003 3004 err_enable: 3005 WRITE_ONCE(perf->exclusive_stream, NULL); 3006 perf->ops.disable_metric_set(stream); 3007 3008 free_oa_buffer(stream); 3009 3010 err_oa_buf_alloc: 3011 free_oa_configs(stream); 3012 3013 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 3014 intel_engine_pm_put(stream->engine); 3015 3016 err_config: 3017 free_noa_wait(stream); 3018 3019 err_noa_wait_alloc: 3020 if (stream->ctx) 3021 oa_put_render_ctx_id(stream); 3022 3023 return ret; 3024 } 3025 3026 void i915_oa_init_reg_state(const struct intel_context *ce, 3027 const struct intel_engine_cs *engine) 3028 { 3029 struct i915_perf_stream *stream; 3030 3031 if (engine->class != RENDER_CLASS) 3032 return; 3033 3034 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 3035 stream = READ_ONCE(engine->i915->perf.exclusive_stream); 3036 if (stream && GRAPHICS_VER(stream->perf->i915) < 12) 3037 gen8_update_reg_state_unlocked(ce, stream); 3038 } 3039 3040 /** 3041 * i915_perf_read - handles read() FOP for i915 perf stream FDs 3042 * @file: An i915 perf stream file 3043 * @buf: destination buffer given by userspace 3044 * @count: the number of bytes userspace wants to read 3045 * @ppos: (inout) file seek position (unused) 3046 * 3047 * The entry point for handling a read() on a stream file descriptor from 3048 * userspace. Most of the work is left to the i915_perf_read_locked() and 3049 * &i915_perf_stream_ops->read but to save having stream implementations (of 3050 * which we might have multiple later) we handle blocking read here. 3051 * 3052 * We can also consistently treat trying to read from a disabled stream 3053 * as an IO error so implementations can assume the stream is enabled 3054 * while reading. 3055 * 3056 * Returns: The number of bytes copied or a negative error code on failure. 3057 */ 3058 static ssize_t i915_perf_read(struct file *file, 3059 char __user *buf, 3060 size_t count, 3061 loff_t *ppos) 3062 { 3063 struct i915_perf_stream *stream = file->private_data; 3064 struct i915_perf *perf = stream->perf; 3065 size_t offset = 0; 3066 int ret; 3067 3068 /* To ensure it's handled consistently we simply treat all reads of a 3069 * disabled stream as an error. In particular it might otherwise lead 3070 * to a deadlock for blocking file descriptors... 3071 */ 3072 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT)) 3073 return -EIO; 3074 3075 if (!(file->f_flags & O_NONBLOCK)) { 3076 /* There's the small chance of false positives from 3077 * stream->ops->wait_unlocked. 3078 * 3079 * E.g. with single context filtering since we only wait until 3080 * oabuffer has >= 1 report we don't immediately know whether 3081 * any reports really belong to the current context 3082 */ 3083 do { 3084 ret = stream->ops->wait_unlocked(stream); 3085 if (ret) 3086 return ret; 3087 3088 mutex_lock(&perf->lock); 3089 ret = stream->ops->read(stream, buf, count, &offset); 3090 mutex_unlock(&perf->lock); 3091 } while (!offset && !ret); 3092 } else { 3093 mutex_lock(&perf->lock); 3094 ret = stream->ops->read(stream, buf, count, &offset); 3095 mutex_unlock(&perf->lock); 3096 } 3097 3098 /* We allow the poll checking to sometimes report false positive EPOLLIN 3099 * events where we might actually report EAGAIN on read() if there's 3100 * not really any data available. In this situation though we don't 3101 * want to enter a busy loop between poll() reporting a EPOLLIN event 3102 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3103 * effectively ensures we back off until the next hrtimer callback 3104 * before reporting another EPOLLIN event. 3105 * The exception to this is if ops->read() returned -ENOSPC which means 3106 * that more OA data is available than could fit in the user provided 3107 * buffer. In this case we want the next poll() call to not block. 3108 */ 3109 if (ret != -ENOSPC) 3110 stream->pollin = false; 3111 3112 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3113 return offset ?: (ret ?: -EAGAIN); 3114 } 3115 3116 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3117 { 3118 struct i915_perf_stream *stream = 3119 container_of(hrtimer, typeof(*stream), poll_check_timer); 3120 3121 if (oa_buffer_check_unlocked(stream)) { 3122 stream->pollin = true; 3123 wake_up(&stream->poll_wq); 3124 } 3125 3126 hrtimer_forward_now(hrtimer, 3127 ns_to_ktime(stream->poll_oa_period)); 3128 3129 return HRTIMER_RESTART; 3130 } 3131 3132 /** 3133 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3134 * @stream: An i915 perf stream 3135 * @file: An i915 perf stream file 3136 * @wait: poll() state table 3137 * 3138 * For handling userspace polling on an i915 perf stream, this calls through to 3139 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3140 * will be woken for new stream data. 3141 * 3142 * Note: The &perf->lock mutex has been taken to serialize 3143 * with any non-file-operation driver hooks. 3144 * 3145 * Returns: any poll events that are ready without sleeping 3146 */ 3147 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3148 struct file *file, 3149 poll_table *wait) 3150 { 3151 __poll_t events = 0; 3152 3153 stream->ops->poll_wait(stream, file, wait); 3154 3155 /* Note: we don't explicitly check whether there's something to read 3156 * here since this path may be very hot depending on what else 3157 * userspace is polling, or on the timeout in use. We rely solely on 3158 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3159 * samples to read. 3160 */ 3161 if (stream->pollin) 3162 events |= EPOLLIN; 3163 3164 return events; 3165 } 3166 3167 /** 3168 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3169 * @file: An i915 perf stream file 3170 * @wait: poll() state table 3171 * 3172 * For handling userspace polling on an i915 perf stream, this ensures 3173 * poll_wait() gets called with a wait queue that will be woken for new stream 3174 * data. 3175 * 3176 * Note: Implementation deferred to i915_perf_poll_locked() 3177 * 3178 * Returns: any poll events that are ready without sleeping 3179 */ 3180 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3181 { 3182 struct i915_perf_stream *stream = file->private_data; 3183 struct i915_perf *perf = stream->perf; 3184 __poll_t ret; 3185 3186 mutex_lock(&perf->lock); 3187 ret = i915_perf_poll_locked(stream, file, wait); 3188 mutex_unlock(&perf->lock); 3189 3190 return ret; 3191 } 3192 3193 /** 3194 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3195 * @stream: A disabled i915 perf stream 3196 * 3197 * [Re]enables the associated capture of data for this stream. 3198 * 3199 * If a stream was previously enabled then there's currently no intention 3200 * to provide userspace any guarantee about the preservation of previously 3201 * buffered data. 3202 */ 3203 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3204 { 3205 if (stream->enabled) 3206 return; 3207 3208 /* Allow stream->ops->enable() to refer to this */ 3209 stream->enabled = true; 3210 3211 if (stream->ops->enable) 3212 stream->ops->enable(stream); 3213 3214 if (stream->hold_preemption) 3215 intel_context_set_nopreempt(stream->pinned_ctx); 3216 } 3217 3218 /** 3219 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3220 * @stream: An enabled i915 perf stream 3221 * 3222 * Disables the associated capture of data for this stream. 3223 * 3224 * The intention is that disabling an re-enabling a stream will ideally be 3225 * cheaper than destroying and re-opening a stream with the same configuration, 3226 * though there are no formal guarantees about what state or buffered data 3227 * must be retained between disabling and re-enabling a stream. 3228 * 3229 * Note: while a stream is disabled it's considered an error for userspace 3230 * to attempt to read from the stream (-EIO). 3231 */ 3232 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3233 { 3234 if (!stream->enabled) 3235 return; 3236 3237 /* Allow stream->ops->disable() to refer to this */ 3238 stream->enabled = false; 3239 3240 if (stream->hold_preemption) 3241 intel_context_clear_nopreempt(stream->pinned_ctx); 3242 3243 if (stream->ops->disable) 3244 stream->ops->disable(stream); 3245 } 3246 3247 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3248 unsigned long metrics_set) 3249 { 3250 struct i915_oa_config *config; 3251 long ret = stream->oa_config->id; 3252 3253 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3254 if (!config) 3255 return -EINVAL; 3256 3257 if (config != stream->oa_config) { 3258 int err; 3259 3260 /* 3261 * If OA is bound to a specific context, emit the 3262 * reconfiguration inline from that context. The update 3263 * will then be ordered with respect to submission on that 3264 * context. 3265 * 3266 * When set globally, we use a low priority kernel context, 3267 * so it will effectively take effect when idle. 3268 */ 3269 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3270 if (!err) 3271 config = xchg(&stream->oa_config, config); 3272 else 3273 ret = err; 3274 } 3275 3276 i915_oa_config_put(config); 3277 3278 return ret; 3279 } 3280 3281 /** 3282 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3283 * @stream: An i915 perf stream 3284 * @cmd: the ioctl request 3285 * @arg: the ioctl data 3286 * 3287 * Note: The &perf->lock mutex has been taken to serialize 3288 * with any non-file-operation driver hooks. 3289 * 3290 * Returns: zero on success or a negative error code. Returns -EINVAL for 3291 * an unknown ioctl request. 3292 */ 3293 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3294 unsigned int cmd, 3295 unsigned long arg) 3296 { 3297 switch (cmd) { 3298 case I915_PERF_IOCTL_ENABLE: 3299 i915_perf_enable_locked(stream); 3300 return 0; 3301 case I915_PERF_IOCTL_DISABLE: 3302 i915_perf_disable_locked(stream); 3303 return 0; 3304 case I915_PERF_IOCTL_CONFIG: 3305 return i915_perf_config_locked(stream, arg); 3306 } 3307 3308 return -EINVAL; 3309 } 3310 3311 /** 3312 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3313 * @file: An i915 perf stream file 3314 * @cmd: the ioctl request 3315 * @arg: the ioctl data 3316 * 3317 * Implementation deferred to i915_perf_ioctl_locked(). 3318 * 3319 * Returns: zero on success or a negative error code. Returns -EINVAL for 3320 * an unknown ioctl request. 3321 */ 3322 static long i915_perf_ioctl(struct file *file, 3323 unsigned int cmd, 3324 unsigned long arg) 3325 { 3326 struct i915_perf_stream *stream = file->private_data; 3327 struct i915_perf *perf = stream->perf; 3328 long ret; 3329 3330 mutex_lock(&perf->lock); 3331 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3332 mutex_unlock(&perf->lock); 3333 3334 return ret; 3335 } 3336 3337 /** 3338 * i915_perf_destroy_locked - destroy an i915 perf stream 3339 * @stream: An i915 perf stream 3340 * 3341 * Frees all resources associated with the given i915 perf @stream, disabling 3342 * any associated data capture in the process. 3343 * 3344 * Note: The &perf->lock mutex has been taken to serialize 3345 * with any non-file-operation driver hooks. 3346 */ 3347 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3348 { 3349 if (stream->enabled) 3350 i915_perf_disable_locked(stream); 3351 3352 if (stream->ops->destroy) 3353 stream->ops->destroy(stream); 3354 3355 if (stream->ctx) 3356 i915_gem_context_put(stream->ctx); 3357 3358 kfree(stream); 3359 } 3360 3361 /** 3362 * i915_perf_release - handles userspace close() of a stream file 3363 * @inode: anonymous inode associated with file 3364 * @file: An i915 perf stream file 3365 * 3366 * Cleans up any resources associated with an open i915 perf stream file. 3367 * 3368 * NB: close() can't really fail from the userspace point of view. 3369 * 3370 * Returns: zero on success or a negative error code. 3371 */ 3372 static int i915_perf_release(struct inode *inode, struct file *file) 3373 { 3374 struct i915_perf_stream *stream = file->private_data; 3375 struct i915_perf *perf = stream->perf; 3376 3377 mutex_lock(&perf->lock); 3378 i915_perf_destroy_locked(stream); 3379 mutex_unlock(&perf->lock); 3380 3381 /* Release the reference the perf stream kept on the driver. */ 3382 drm_dev_put(&perf->i915->drm); 3383 3384 return 0; 3385 } 3386 3387 3388 static const struct file_operations fops = { 3389 .owner = THIS_MODULE, 3390 .llseek = no_llseek, 3391 .release = i915_perf_release, 3392 .poll = i915_perf_poll, 3393 .read = i915_perf_read, 3394 .unlocked_ioctl = i915_perf_ioctl, 3395 /* Our ioctl have no arguments, so it's safe to use the same function 3396 * to handle 32bits compatibility. 3397 */ 3398 .compat_ioctl = i915_perf_ioctl, 3399 }; 3400 3401 3402 /** 3403 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3404 * @perf: i915 perf instance 3405 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3406 * @props: individually validated u64 property value pairs 3407 * @file: drm file 3408 * 3409 * See i915_perf_ioctl_open() for interface details. 3410 * 3411 * Implements further stream config validation and stream initialization on 3412 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex 3413 * taken to serialize with any non-file-operation driver hooks. 3414 * 3415 * Note: at this point the @props have only been validated in isolation and 3416 * it's still necessary to validate that the combination of properties makes 3417 * sense. 3418 * 3419 * In the case where userspace is interested in OA unit metrics then further 3420 * config validation and stream initialization details will be handled by 3421 * i915_oa_stream_init(). The code here should only validate config state that 3422 * will be relevant to all stream types / backends. 3423 * 3424 * Returns: zero on success or a negative error code. 3425 */ 3426 static int 3427 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3428 struct drm_i915_perf_open_param *param, 3429 struct perf_open_properties *props, 3430 struct drm_file *file) 3431 { 3432 struct i915_gem_context *specific_ctx = NULL; 3433 struct i915_perf_stream *stream = NULL; 3434 unsigned long f_flags = 0; 3435 bool privileged_op = true; 3436 int stream_fd; 3437 int ret; 3438 3439 if (props->single_context) { 3440 u32 ctx_handle = props->ctx_handle; 3441 struct drm_i915_file_private *file_priv = file->driver_priv; 3442 3443 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3444 if (IS_ERR(specific_ctx)) { 3445 drm_dbg(&perf->i915->drm, 3446 "Failed to look up context with ID %u for opening perf stream\n", 3447 ctx_handle); 3448 ret = PTR_ERR(specific_ctx); 3449 goto err; 3450 } 3451 } 3452 3453 /* 3454 * On Haswell the OA unit supports clock gating off for a specific 3455 * context and in this mode there's no visibility of metrics for the 3456 * rest of the system, which we consider acceptable for a 3457 * non-privileged client. 3458 * 3459 * For Gen8->11 the OA unit no longer supports clock gating off for a 3460 * specific context and the kernel can't securely stop the counters 3461 * from updating as system-wide / global values. Even though we can 3462 * filter reports based on the included context ID we can't block 3463 * clients from seeing the raw / global counter values via 3464 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3465 * enable the OA unit by default. 3466 * 3467 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3468 * per context basis. So we can relax requirements there if the user 3469 * doesn't request global stream access (i.e. query based sampling 3470 * using MI_RECORD_PERF_COUNT. 3471 */ 3472 if (IS_HASWELL(perf->i915) && specific_ctx) 3473 privileged_op = false; 3474 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx && 3475 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3476 privileged_op = false; 3477 3478 if (props->hold_preemption) { 3479 if (!props->single_context) { 3480 drm_dbg(&perf->i915->drm, 3481 "preemption disable with no context\n"); 3482 ret = -EINVAL; 3483 goto err; 3484 } 3485 privileged_op = true; 3486 } 3487 3488 /* 3489 * Asking for SSEU configuration is a priviliged operation. 3490 */ 3491 if (props->has_sseu) 3492 privileged_op = true; 3493 else 3494 get_default_sseu_config(&props->sseu, props->engine); 3495 3496 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3497 * we check a dev.i915.perf_stream_paranoid sysctl option 3498 * to determine if it's ok to access system wide OA counters 3499 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3500 */ 3501 if (privileged_op && 3502 i915_perf_stream_paranoid && !perfmon_capable()) { 3503 drm_dbg(&perf->i915->drm, 3504 "Insufficient privileges to open i915 perf stream\n"); 3505 ret = -EACCES; 3506 goto err_ctx; 3507 } 3508 3509 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3510 if (!stream) { 3511 ret = -ENOMEM; 3512 goto err_ctx; 3513 } 3514 3515 stream->perf = perf; 3516 stream->ctx = specific_ctx; 3517 stream->poll_oa_period = props->poll_oa_period; 3518 3519 ret = i915_oa_stream_init(stream, param, props); 3520 if (ret) 3521 goto err_alloc; 3522 3523 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3524 * to have _stream_init check the combination of sample flags more 3525 * thoroughly, but still this is the expected result at this point. 3526 */ 3527 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3528 ret = -ENODEV; 3529 goto err_flags; 3530 } 3531 3532 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3533 f_flags |= O_CLOEXEC; 3534 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3535 f_flags |= O_NONBLOCK; 3536 3537 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3538 if (stream_fd < 0) { 3539 ret = stream_fd; 3540 goto err_flags; 3541 } 3542 3543 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3544 i915_perf_enable_locked(stream); 3545 3546 /* Take a reference on the driver that will be kept with stream_fd 3547 * until its release. 3548 */ 3549 drm_dev_get(&perf->i915->drm); 3550 3551 return stream_fd; 3552 3553 err_flags: 3554 if (stream->ops->destroy) 3555 stream->ops->destroy(stream); 3556 err_alloc: 3557 kfree(stream); 3558 err_ctx: 3559 if (specific_ctx) 3560 i915_gem_context_put(specific_ctx); 3561 err: 3562 return ret; 3563 } 3564 3565 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3566 { 3567 return intel_gt_clock_interval_to_ns(to_gt(perf->i915), 3568 2ULL << exponent); 3569 } 3570 3571 static __always_inline bool 3572 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format) 3573 { 3574 return test_bit(format, perf->format_mask); 3575 } 3576 3577 static __always_inline void 3578 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format) 3579 { 3580 __set_bit(format, perf->format_mask); 3581 } 3582 3583 /** 3584 * read_properties_unlocked - validate + copy userspace stream open properties 3585 * @perf: i915 perf instance 3586 * @uprops: The array of u64 key value pairs given by userspace 3587 * @n_props: The number of key value pairs expected in @uprops 3588 * @props: The stream configuration built up while validating properties 3589 * 3590 * Note this function only validates properties in isolation it doesn't 3591 * validate that the combination of properties makes sense or that all 3592 * properties necessary for a particular kind of stream have been set. 3593 * 3594 * Note that there currently aren't any ordering requirements for properties so 3595 * we shouldn't validate or assume anything about ordering here. This doesn't 3596 * rule out defining new properties with ordering requirements in the future. 3597 */ 3598 static int read_properties_unlocked(struct i915_perf *perf, 3599 u64 __user *uprops, 3600 u32 n_props, 3601 struct perf_open_properties *props) 3602 { 3603 u64 __user *uprop = uprops; 3604 u32 i; 3605 int ret; 3606 3607 memset(props, 0, sizeof(struct perf_open_properties)); 3608 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 3609 3610 if (!n_props) { 3611 drm_dbg(&perf->i915->drm, 3612 "No i915 perf properties given\n"); 3613 return -EINVAL; 3614 } 3615 3616 /* At the moment we only support using i915-perf on the RCS. */ 3617 props->engine = intel_engine_lookup_user(perf->i915, 3618 I915_ENGINE_CLASS_RENDER, 3619 0); 3620 if (!props->engine) { 3621 drm_dbg(&perf->i915->drm, 3622 "No RENDER-capable engines\n"); 3623 return -EINVAL; 3624 } 3625 3626 /* Considering that ID = 0 is reserved and assuming that we don't 3627 * (currently) expect any configurations to ever specify duplicate 3628 * values for a particular property ID then the last _PROP_MAX value is 3629 * one greater than the maximum number of properties we expect to get 3630 * from userspace. 3631 */ 3632 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3633 drm_dbg(&perf->i915->drm, 3634 "More i915 perf properties specified than exist\n"); 3635 return -EINVAL; 3636 } 3637 3638 for (i = 0; i < n_props; i++) { 3639 u64 oa_period, oa_freq_hz; 3640 u64 id, value; 3641 3642 ret = get_user(id, uprop); 3643 if (ret) 3644 return ret; 3645 3646 ret = get_user(value, uprop + 1); 3647 if (ret) 3648 return ret; 3649 3650 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3651 drm_dbg(&perf->i915->drm, 3652 "Unknown i915 perf property ID\n"); 3653 return -EINVAL; 3654 } 3655 3656 switch ((enum drm_i915_perf_property_id)id) { 3657 case DRM_I915_PERF_PROP_CTX_HANDLE: 3658 props->single_context = 1; 3659 props->ctx_handle = value; 3660 break; 3661 case DRM_I915_PERF_PROP_SAMPLE_OA: 3662 if (value) 3663 props->sample_flags |= SAMPLE_OA_REPORT; 3664 break; 3665 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3666 if (value == 0) { 3667 drm_dbg(&perf->i915->drm, 3668 "Unknown OA metric set ID\n"); 3669 return -EINVAL; 3670 } 3671 props->metrics_set = value; 3672 break; 3673 case DRM_I915_PERF_PROP_OA_FORMAT: 3674 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3675 drm_dbg(&perf->i915->drm, 3676 "Out-of-range OA report format %llu\n", 3677 value); 3678 return -EINVAL; 3679 } 3680 if (!oa_format_valid(perf, value)) { 3681 drm_dbg(&perf->i915->drm, 3682 "Unsupported OA report format %llu\n", 3683 value); 3684 return -EINVAL; 3685 } 3686 props->oa_format = value; 3687 break; 3688 case DRM_I915_PERF_PROP_OA_EXPONENT: 3689 if (value > OA_EXPONENT_MAX) { 3690 drm_dbg(&perf->i915->drm, 3691 "OA timer exponent too high (> %u)\n", 3692 OA_EXPONENT_MAX); 3693 return -EINVAL; 3694 } 3695 3696 /* Theoretically we can program the OA unit to sample 3697 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 3698 * for BXT. We don't allow such high sampling 3699 * frequencies by default unless root. 3700 */ 3701 3702 BUILD_BUG_ON(sizeof(oa_period) != 8); 3703 oa_period = oa_exponent_to_ns(perf, value); 3704 3705 /* This check is primarily to ensure that oa_period <= 3706 * UINT32_MAX (before passing to do_div which only 3707 * accepts a u32 denominator), but we can also skip 3708 * checking anything < 1Hz which implicitly can't be 3709 * limited via an integer oa_max_sample_rate. 3710 */ 3711 if (oa_period <= NSEC_PER_SEC) { 3712 u64 tmp = NSEC_PER_SEC; 3713 do_div(tmp, oa_period); 3714 oa_freq_hz = tmp; 3715 } else 3716 oa_freq_hz = 0; 3717 3718 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 3719 drm_dbg(&perf->i915->drm, 3720 "OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 3721 i915_oa_max_sample_rate); 3722 return -EACCES; 3723 } 3724 3725 props->oa_periodic = true; 3726 props->oa_period_exponent = value; 3727 break; 3728 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 3729 props->hold_preemption = !!value; 3730 break; 3731 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 3732 struct drm_i915_gem_context_param_sseu user_sseu; 3733 3734 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) { 3735 drm_dbg(&perf->i915->drm, 3736 "SSEU config not supported on gfx %x\n", 3737 GRAPHICS_VER_FULL(perf->i915)); 3738 return -ENODEV; 3739 } 3740 3741 if (copy_from_user(&user_sseu, 3742 u64_to_user_ptr(value), 3743 sizeof(user_sseu))) { 3744 drm_dbg(&perf->i915->drm, 3745 "Unable to copy global sseu parameter\n"); 3746 return -EFAULT; 3747 } 3748 3749 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 3750 if (ret) { 3751 drm_dbg(&perf->i915->drm, 3752 "Invalid SSEU configuration\n"); 3753 return ret; 3754 } 3755 props->has_sseu = true; 3756 break; 3757 } 3758 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 3759 if (value < 100000 /* 100us */) { 3760 drm_dbg(&perf->i915->drm, 3761 "OA availability timer too small (%lluns < 100us)\n", 3762 value); 3763 return -EINVAL; 3764 } 3765 props->poll_oa_period = value; 3766 break; 3767 case DRM_I915_PERF_PROP_MAX: 3768 MISSING_CASE(id); 3769 return -EINVAL; 3770 } 3771 3772 uprop += 2; 3773 } 3774 3775 return 0; 3776 } 3777 3778 /** 3779 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 3780 * @dev: drm device 3781 * @data: ioctl data copied from userspace (unvalidated) 3782 * @file: drm file 3783 * 3784 * Validates the stream open parameters given by userspace including flags 3785 * and an array of u64 key, value pair properties. 3786 * 3787 * Very little is assumed up front about the nature of the stream being 3788 * opened (for instance we don't assume it's for periodic OA unit metrics). An 3789 * i915-perf stream is expected to be a suitable interface for other forms of 3790 * buffered data written by the GPU besides periodic OA metrics. 3791 * 3792 * Note we copy the properties from userspace outside of the i915 perf 3793 * mutex to avoid an awkward lockdep with mmap_lock. 3794 * 3795 * Most of the implementation details are handled by 3796 * i915_perf_open_ioctl_locked() after taking the &perf->lock 3797 * mutex for serializing with any non-file-operation driver hooks. 3798 * 3799 * Return: A newly opened i915 Perf stream file descriptor or negative 3800 * error code on failure. 3801 */ 3802 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3803 struct drm_file *file) 3804 { 3805 struct i915_perf *perf = &to_i915(dev)->perf; 3806 struct drm_i915_perf_open_param *param = data; 3807 struct perf_open_properties props; 3808 u32 known_open_flags; 3809 int ret; 3810 3811 if (!perf->i915) { 3812 drm_dbg(&perf->i915->drm, 3813 "i915 perf interface not available for this system\n"); 3814 return -ENOTSUPP; 3815 } 3816 3817 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3818 I915_PERF_FLAG_FD_NONBLOCK | 3819 I915_PERF_FLAG_DISABLED; 3820 if (param->flags & ~known_open_flags) { 3821 drm_dbg(&perf->i915->drm, 3822 "Unknown drm_i915_perf_open_param flag\n"); 3823 return -EINVAL; 3824 } 3825 3826 ret = read_properties_unlocked(perf, 3827 u64_to_user_ptr(param->properties_ptr), 3828 param->num_properties, 3829 &props); 3830 if (ret) 3831 return ret; 3832 3833 mutex_lock(&perf->lock); 3834 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 3835 mutex_unlock(&perf->lock); 3836 3837 return ret; 3838 } 3839 3840 /** 3841 * i915_perf_register - exposes i915-perf to userspace 3842 * @i915: i915 device instance 3843 * 3844 * In particular OA metric sets are advertised under a sysfs metrics/ 3845 * directory allowing userspace to enumerate valid IDs that can be 3846 * used to open an i915-perf stream. 3847 */ 3848 void i915_perf_register(struct drm_i915_private *i915) 3849 { 3850 struct i915_perf *perf = &i915->perf; 3851 3852 if (!perf->i915) 3853 return; 3854 3855 /* To be sure we're synchronized with an attempted 3856 * i915_perf_open_ioctl(); considering that we register after 3857 * being exposed to userspace. 3858 */ 3859 mutex_lock(&perf->lock); 3860 3861 perf->metrics_kobj = 3862 kobject_create_and_add("metrics", 3863 &i915->drm.primary->kdev->kobj); 3864 3865 mutex_unlock(&perf->lock); 3866 } 3867 3868 /** 3869 * i915_perf_unregister - hide i915-perf from userspace 3870 * @i915: i915 device instance 3871 * 3872 * i915-perf state cleanup is split up into an 'unregister' and 3873 * 'deinit' phase where the interface is first hidden from 3874 * userspace by i915_perf_unregister() before cleaning up 3875 * remaining state in i915_perf_fini(). 3876 */ 3877 void i915_perf_unregister(struct drm_i915_private *i915) 3878 { 3879 struct i915_perf *perf = &i915->perf; 3880 3881 if (!perf->metrics_kobj) 3882 return; 3883 3884 kobject_put(perf->metrics_kobj); 3885 perf->metrics_kobj = NULL; 3886 } 3887 3888 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 3889 { 3890 static const i915_reg_t flex_eu_regs[] = { 3891 EU_PERF_CNTL0, 3892 EU_PERF_CNTL1, 3893 EU_PERF_CNTL2, 3894 EU_PERF_CNTL3, 3895 EU_PERF_CNTL4, 3896 EU_PERF_CNTL5, 3897 EU_PERF_CNTL6, 3898 }; 3899 int i; 3900 3901 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3902 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3903 return true; 3904 } 3905 return false; 3906 } 3907 3908 static bool reg_in_range_table(u32 addr, const struct i915_range *table) 3909 { 3910 while (table->start || table->end) { 3911 if (addr >= table->start && addr <= table->end) 3912 return true; 3913 3914 table++; 3915 } 3916 3917 return false; 3918 } 3919 3920 #define REG_EQUAL(addr, mmio) \ 3921 ((addr) == i915_mmio_reg_offset(mmio)) 3922 3923 static const struct i915_range gen7_oa_b_counters[] = { 3924 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */ 3925 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */ 3926 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */ 3927 {} 3928 }; 3929 3930 static const struct i915_range gen12_oa_b_counters[] = { 3931 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */ 3932 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */ 3933 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */ 3934 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */ 3935 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */ 3936 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */ 3937 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */ 3938 {} 3939 }; 3940 3941 static const struct i915_range gen7_oa_mux_regs[] = { 3942 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */ 3943 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */ 3944 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */ 3945 {} 3946 }; 3947 3948 static const struct i915_range hsw_oa_mux_regs[] = { 3949 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */ 3950 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */ 3951 { .start = 0x25100, .end = 0x2ff90 }, 3952 {} 3953 }; 3954 3955 static const struct i915_range chv_oa_mux_regs[] = { 3956 { .start = 0x182300, .end = 0x1823a4 }, 3957 {} 3958 }; 3959 3960 static const struct i915_range gen8_oa_mux_regs[] = { 3961 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */ 3962 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 3963 {} 3964 }; 3965 3966 static const struct i915_range gen11_oa_mux_regs[] = { 3967 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */ 3968 {} 3969 }; 3970 3971 static const struct i915_range gen12_oa_mux_regs[] = { 3972 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 3973 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 3974 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 3975 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 3976 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 3977 {} 3978 }; 3979 3980 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3981 { 3982 return reg_in_range_table(addr, gen7_oa_b_counters); 3983 } 3984 3985 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3986 { 3987 return reg_in_range_table(addr, gen7_oa_mux_regs) || 3988 reg_in_range_table(addr, gen8_oa_mux_regs); 3989 } 3990 3991 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3992 { 3993 return reg_in_range_table(addr, gen7_oa_mux_regs) || 3994 reg_in_range_table(addr, gen8_oa_mux_regs) || 3995 reg_in_range_table(addr, gen11_oa_mux_regs); 3996 } 3997 3998 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3999 { 4000 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4001 reg_in_range_table(addr, hsw_oa_mux_regs); 4002 } 4003 4004 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4005 { 4006 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4007 reg_in_range_table(addr, chv_oa_mux_regs); 4008 } 4009 4010 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4011 { 4012 return reg_in_range_table(addr, gen12_oa_b_counters); 4013 } 4014 4015 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4016 { 4017 return reg_in_range_table(addr, gen12_oa_mux_regs); 4018 } 4019 4020 static u32 mask_reg_value(u32 reg, u32 val) 4021 { 4022 /* HALF_SLICE_CHICKEN2 is programmed with a the 4023 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 4024 * programmed by userspace doesn't change this. 4025 */ 4026 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 4027 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 4028 4029 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 4030 * indicated by its name and a bunch of selection fields used by OA 4031 * configs. 4032 */ 4033 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 4034 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 4035 4036 return val; 4037 } 4038 4039 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 4040 bool (*is_valid)(struct i915_perf *perf, u32 addr), 4041 u32 __user *regs, 4042 u32 n_regs) 4043 { 4044 struct i915_oa_reg *oa_regs; 4045 int err; 4046 u32 i; 4047 4048 if (!n_regs) 4049 return NULL; 4050 4051 /* No is_valid function means we're not allowing any register to be programmed. */ 4052 GEM_BUG_ON(!is_valid); 4053 if (!is_valid) 4054 return ERR_PTR(-EINVAL); 4055 4056 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 4057 if (!oa_regs) 4058 return ERR_PTR(-ENOMEM); 4059 4060 for (i = 0; i < n_regs; i++) { 4061 u32 addr, value; 4062 4063 err = get_user(addr, regs); 4064 if (err) 4065 goto addr_err; 4066 4067 if (!is_valid(perf, addr)) { 4068 drm_dbg(&perf->i915->drm, 4069 "Invalid oa_reg address: %X\n", addr); 4070 err = -EINVAL; 4071 goto addr_err; 4072 } 4073 4074 err = get_user(value, regs + 1); 4075 if (err) 4076 goto addr_err; 4077 4078 oa_regs[i].addr = _MMIO(addr); 4079 oa_regs[i].value = mask_reg_value(addr, value); 4080 4081 regs += 2; 4082 } 4083 4084 return oa_regs; 4085 4086 addr_err: 4087 kfree(oa_regs); 4088 return ERR_PTR(err); 4089 } 4090 4091 static ssize_t show_dynamic_id(struct kobject *kobj, 4092 struct kobj_attribute *attr, 4093 char *buf) 4094 { 4095 struct i915_oa_config *oa_config = 4096 container_of(attr, typeof(*oa_config), sysfs_metric_id); 4097 4098 return sprintf(buf, "%d\n", oa_config->id); 4099 } 4100 4101 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 4102 struct i915_oa_config *oa_config) 4103 { 4104 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 4105 oa_config->sysfs_metric_id.attr.name = "id"; 4106 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 4107 oa_config->sysfs_metric_id.show = show_dynamic_id; 4108 oa_config->sysfs_metric_id.store = NULL; 4109 4110 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 4111 oa_config->attrs[1] = NULL; 4112 4113 oa_config->sysfs_metric.name = oa_config->uuid; 4114 oa_config->sysfs_metric.attrs = oa_config->attrs; 4115 4116 return sysfs_create_group(perf->metrics_kobj, 4117 &oa_config->sysfs_metric); 4118 } 4119 4120 /** 4121 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4122 * @dev: drm device 4123 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4124 * userspace (unvalidated) 4125 * @file: drm file 4126 * 4127 * Validates the submitted OA register to be saved into a new OA config that 4128 * can then be used for programming the OA unit and its NOA network. 4129 * 4130 * Returns: A new allocated config number to be used with the perf open ioctl 4131 * or a negative error code on failure. 4132 */ 4133 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4134 struct drm_file *file) 4135 { 4136 struct i915_perf *perf = &to_i915(dev)->perf; 4137 struct drm_i915_perf_oa_config *args = data; 4138 struct i915_oa_config *oa_config, *tmp; 4139 struct i915_oa_reg *regs; 4140 int err, id; 4141 4142 if (!perf->i915) { 4143 drm_dbg(&perf->i915->drm, 4144 "i915 perf interface not available for this system\n"); 4145 return -ENOTSUPP; 4146 } 4147 4148 if (!perf->metrics_kobj) { 4149 drm_dbg(&perf->i915->drm, 4150 "OA metrics weren't advertised via sysfs\n"); 4151 return -EINVAL; 4152 } 4153 4154 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4155 drm_dbg(&perf->i915->drm, 4156 "Insufficient privileges to add i915 OA config\n"); 4157 return -EACCES; 4158 } 4159 4160 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4161 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4162 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4163 drm_dbg(&perf->i915->drm, 4164 "No OA registers given\n"); 4165 return -EINVAL; 4166 } 4167 4168 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4169 if (!oa_config) { 4170 drm_dbg(&perf->i915->drm, 4171 "Failed to allocate memory for the OA config\n"); 4172 return -ENOMEM; 4173 } 4174 4175 oa_config->perf = perf; 4176 kref_init(&oa_config->ref); 4177 4178 if (!uuid_is_valid(args->uuid)) { 4179 drm_dbg(&perf->i915->drm, 4180 "Invalid uuid format for OA config\n"); 4181 err = -EINVAL; 4182 goto reg_err; 4183 } 4184 4185 /* Last character in oa_config->uuid will be 0 because oa_config is 4186 * kzalloc. 4187 */ 4188 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4189 4190 oa_config->mux_regs_len = args->n_mux_regs; 4191 regs = alloc_oa_regs(perf, 4192 perf->ops.is_valid_mux_reg, 4193 u64_to_user_ptr(args->mux_regs_ptr), 4194 args->n_mux_regs); 4195 4196 if (IS_ERR(regs)) { 4197 drm_dbg(&perf->i915->drm, 4198 "Failed to create OA config for mux_regs\n"); 4199 err = PTR_ERR(regs); 4200 goto reg_err; 4201 } 4202 oa_config->mux_regs = regs; 4203 4204 oa_config->b_counter_regs_len = args->n_boolean_regs; 4205 regs = alloc_oa_regs(perf, 4206 perf->ops.is_valid_b_counter_reg, 4207 u64_to_user_ptr(args->boolean_regs_ptr), 4208 args->n_boolean_regs); 4209 4210 if (IS_ERR(regs)) { 4211 drm_dbg(&perf->i915->drm, 4212 "Failed to create OA config for b_counter_regs\n"); 4213 err = PTR_ERR(regs); 4214 goto reg_err; 4215 } 4216 oa_config->b_counter_regs = regs; 4217 4218 if (GRAPHICS_VER(perf->i915) < 8) { 4219 if (args->n_flex_regs != 0) { 4220 err = -EINVAL; 4221 goto reg_err; 4222 } 4223 } else { 4224 oa_config->flex_regs_len = args->n_flex_regs; 4225 regs = alloc_oa_regs(perf, 4226 perf->ops.is_valid_flex_reg, 4227 u64_to_user_ptr(args->flex_regs_ptr), 4228 args->n_flex_regs); 4229 4230 if (IS_ERR(regs)) { 4231 drm_dbg(&perf->i915->drm, 4232 "Failed to create OA config for flex_regs\n"); 4233 err = PTR_ERR(regs); 4234 goto reg_err; 4235 } 4236 oa_config->flex_regs = regs; 4237 } 4238 4239 err = mutex_lock_interruptible(&perf->metrics_lock); 4240 if (err) 4241 goto reg_err; 4242 4243 /* We shouldn't have too many configs, so this iteration shouldn't be 4244 * too costly. 4245 */ 4246 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4247 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4248 drm_dbg(&perf->i915->drm, 4249 "OA config already exists with this uuid\n"); 4250 err = -EADDRINUSE; 4251 goto sysfs_err; 4252 } 4253 } 4254 4255 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4256 if (err) { 4257 drm_dbg(&perf->i915->drm, 4258 "Failed to create sysfs entry for OA config\n"); 4259 goto sysfs_err; 4260 } 4261 4262 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4263 oa_config->id = idr_alloc(&perf->metrics_idr, 4264 oa_config, 2, 4265 0, GFP_KERNEL); 4266 if (oa_config->id < 0) { 4267 drm_dbg(&perf->i915->drm, 4268 "Failed to create sysfs entry for OA config\n"); 4269 err = oa_config->id; 4270 goto sysfs_err; 4271 } 4272 4273 mutex_unlock(&perf->metrics_lock); 4274 4275 drm_dbg(&perf->i915->drm, 4276 "Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4277 4278 return oa_config->id; 4279 4280 sysfs_err: 4281 mutex_unlock(&perf->metrics_lock); 4282 reg_err: 4283 i915_oa_config_put(oa_config); 4284 drm_dbg(&perf->i915->drm, 4285 "Failed to add new OA config\n"); 4286 return err; 4287 } 4288 4289 /** 4290 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4291 * @dev: drm device 4292 * @data: ioctl data (pointer to u64 integer) copied from userspace 4293 * @file: drm file 4294 * 4295 * Configs can be removed while being used, the will stop appearing in sysfs 4296 * and their content will be freed when the stream using the config is closed. 4297 * 4298 * Returns: 0 on success or a negative error code on failure. 4299 */ 4300 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4301 struct drm_file *file) 4302 { 4303 struct i915_perf *perf = &to_i915(dev)->perf; 4304 u64 *arg = data; 4305 struct i915_oa_config *oa_config; 4306 int ret; 4307 4308 if (!perf->i915) { 4309 drm_dbg(&perf->i915->drm, 4310 "i915 perf interface not available for this system\n"); 4311 return -ENOTSUPP; 4312 } 4313 4314 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4315 drm_dbg(&perf->i915->drm, 4316 "Insufficient privileges to remove i915 OA config\n"); 4317 return -EACCES; 4318 } 4319 4320 ret = mutex_lock_interruptible(&perf->metrics_lock); 4321 if (ret) 4322 return ret; 4323 4324 oa_config = idr_find(&perf->metrics_idr, *arg); 4325 if (!oa_config) { 4326 drm_dbg(&perf->i915->drm, 4327 "Failed to remove unknown OA config\n"); 4328 ret = -ENOENT; 4329 goto err_unlock; 4330 } 4331 4332 GEM_BUG_ON(*arg != oa_config->id); 4333 4334 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4335 4336 idr_remove(&perf->metrics_idr, *arg); 4337 4338 mutex_unlock(&perf->metrics_lock); 4339 4340 drm_dbg(&perf->i915->drm, 4341 "Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4342 4343 i915_oa_config_put(oa_config); 4344 4345 return 0; 4346 4347 err_unlock: 4348 mutex_unlock(&perf->metrics_lock); 4349 return ret; 4350 } 4351 4352 static struct ctl_table oa_table[] = { 4353 { 4354 .procname = "perf_stream_paranoid", 4355 .data = &i915_perf_stream_paranoid, 4356 .maxlen = sizeof(i915_perf_stream_paranoid), 4357 .mode = 0644, 4358 .proc_handler = proc_dointvec_minmax, 4359 .extra1 = SYSCTL_ZERO, 4360 .extra2 = SYSCTL_ONE, 4361 }, 4362 { 4363 .procname = "oa_max_sample_rate", 4364 .data = &i915_oa_max_sample_rate, 4365 .maxlen = sizeof(i915_oa_max_sample_rate), 4366 .mode = 0644, 4367 .proc_handler = proc_dointvec_minmax, 4368 .extra1 = SYSCTL_ZERO, 4369 .extra2 = &oa_sample_rate_hard_limit, 4370 }, 4371 {} 4372 }; 4373 4374 static void oa_init_supported_formats(struct i915_perf *perf) 4375 { 4376 struct drm_i915_private *i915 = perf->i915; 4377 enum intel_platform platform = INTEL_INFO(i915)->platform; 4378 4379 switch (platform) { 4380 case INTEL_HASWELL: 4381 oa_format_add(perf, I915_OA_FORMAT_A13); 4382 oa_format_add(perf, I915_OA_FORMAT_A13); 4383 oa_format_add(perf, I915_OA_FORMAT_A29); 4384 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8); 4385 oa_format_add(perf, I915_OA_FORMAT_B4_C8); 4386 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8); 4387 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16); 4388 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4389 break; 4390 4391 case INTEL_BROADWELL: 4392 case INTEL_CHERRYVIEW: 4393 case INTEL_SKYLAKE: 4394 case INTEL_BROXTON: 4395 case INTEL_KABYLAKE: 4396 case INTEL_GEMINILAKE: 4397 case INTEL_COFFEELAKE: 4398 case INTEL_COMETLAKE: 4399 case INTEL_ICELAKE: 4400 case INTEL_ELKHARTLAKE: 4401 case INTEL_JASPERLAKE: 4402 case INTEL_TIGERLAKE: 4403 case INTEL_ROCKETLAKE: 4404 case INTEL_DG1: 4405 case INTEL_ALDERLAKE_S: 4406 case INTEL_ALDERLAKE_P: 4407 oa_format_add(perf, I915_OA_FORMAT_A12); 4408 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8); 4409 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8); 4410 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4411 break; 4412 4413 default: 4414 MISSING_CASE(platform); 4415 } 4416 } 4417 4418 /** 4419 * i915_perf_init - initialize i915-perf state on module bind 4420 * @i915: i915 device instance 4421 * 4422 * Initializes i915-perf state without exposing anything to userspace. 4423 * 4424 * Note: i915-perf initialization is split into an 'init' and 'register' 4425 * phase with the i915_perf_register() exposing state to userspace. 4426 */ 4427 void i915_perf_init(struct drm_i915_private *i915) 4428 { 4429 struct i915_perf *perf = &i915->perf; 4430 4431 /* XXX const struct i915_perf_ops! */ 4432 4433 /* i915_perf is not enabled for DG2 yet */ 4434 if (IS_DG2(i915)) 4435 return; 4436 4437 perf->oa_formats = oa_formats; 4438 if (IS_HASWELL(i915)) { 4439 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4440 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4441 perf->ops.is_valid_flex_reg = NULL; 4442 perf->ops.enable_metric_set = hsw_enable_metric_set; 4443 perf->ops.disable_metric_set = hsw_disable_metric_set; 4444 perf->ops.oa_enable = gen7_oa_enable; 4445 perf->ops.oa_disable = gen7_oa_disable; 4446 perf->ops.read = gen7_oa_read; 4447 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4448 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4449 /* Note: that although we could theoretically also support the 4450 * legacy ringbuffer mode on BDW (and earlier iterations of 4451 * this driver, before upstreaming did this) it didn't seem 4452 * worth the complexity to maintain now that BDW+ enable 4453 * execlist mode by default. 4454 */ 4455 perf->ops.read = gen8_oa_read; 4456 4457 if (IS_GRAPHICS_VER(i915, 8, 9)) { 4458 perf->ops.is_valid_b_counter_reg = 4459 gen7_is_valid_b_counter_addr; 4460 perf->ops.is_valid_mux_reg = 4461 gen8_is_valid_mux_addr; 4462 perf->ops.is_valid_flex_reg = 4463 gen8_is_valid_flex_addr; 4464 4465 if (IS_CHERRYVIEW(i915)) { 4466 perf->ops.is_valid_mux_reg = 4467 chv_is_valid_mux_addr; 4468 } 4469 4470 perf->ops.oa_enable = gen8_oa_enable; 4471 perf->ops.oa_disable = gen8_oa_disable; 4472 perf->ops.enable_metric_set = gen8_enable_metric_set; 4473 perf->ops.disable_metric_set = gen8_disable_metric_set; 4474 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4475 4476 if (GRAPHICS_VER(i915) == 8) { 4477 perf->ctx_oactxctrl_offset = 0x120; 4478 perf->ctx_flexeu0_offset = 0x2ce; 4479 4480 perf->gen8_valid_ctx_bit = BIT(25); 4481 } else { 4482 perf->ctx_oactxctrl_offset = 0x128; 4483 perf->ctx_flexeu0_offset = 0x3de; 4484 4485 perf->gen8_valid_ctx_bit = BIT(16); 4486 } 4487 } else if (GRAPHICS_VER(i915) == 11) { 4488 perf->ops.is_valid_b_counter_reg = 4489 gen7_is_valid_b_counter_addr; 4490 perf->ops.is_valid_mux_reg = 4491 gen11_is_valid_mux_addr; 4492 perf->ops.is_valid_flex_reg = 4493 gen8_is_valid_flex_addr; 4494 4495 perf->ops.oa_enable = gen8_oa_enable; 4496 perf->ops.oa_disable = gen8_oa_disable; 4497 perf->ops.enable_metric_set = gen8_enable_metric_set; 4498 perf->ops.disable_metric_set = gen11_disable_metric_set; 4499 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4500 4501 perf->ctx_oactxctrl_offset = 0x124; 4502 perf->ctx_flexeu0_offset = 0x78e; 4503 4504 perf->gen8_valid_ctx_bit = BIT(16); 4505 } else if (GRAPHICS_VER(i915) == 12) { 4506 perf->ops.is_valid_b_counter_reg = 4507 gen12_is_valid_b_counter_addr; 4508 perf->ops.is_valid_mux_reg = 4509 gen12_is_valid_mux_addr; 4510 perf->ops.is_valid_flex_reg = 4511 gen8_is_valid_flex_addr; 4512 4513 perf->ops.oa_enable = gen12_oa_enable; 4514 perf->ops.oa_disable = gen12_oa_disable; 4515 perf->ops.enable_metric_set = gen12_enable_metric_set; 4516 perf->ops.disable_metric_set = gen12_disable_metric_set; 4517 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4518 4519 perf->ctx_flexeu0_offset = 0; 4520 perf->ctx_oactxctrl_offset = 0x144; 4521 } 4522 } 4523 4524 if (perf->ops.enable_metric_set) { 4525 mutex_init(&perf->lock); 4526 4527 /* Choose a representative limit */ 4528 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2; 4529 4530 mutex_init(&perf->metrics_lock); 4531 idr_init_base(&perf->metrics_idr, 1); 4532 4533 /* We set up some ratelimit state to potentially throttle any 4534 * _NOTES about spurious, invalid OA reports which we don't 4535 * forward to userspace. 4536 * 4537 * We print a _NOTE about any throttling when closing the 4538 * stream instead of waiting until driver _fini which no one 4539 * would ever see. 4540 * 4541 * Using the same limiting factors as printk_ratelimit() 4542 */ 4543 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4544 /* Since we use a DRM_NOTE for spurious reports it would be 4545 * inconsistent to let __ratelimit() automatically print a 4546 * warning for throttling. 4547 */ 4548 ratelimit_set_flags(&perf->spurious_report_rs, 4549 RATELIMIT_MSG_ON_RELEASE); 4550 4551 ratelimit_state_init(&perf->tail_pointer_race, 4552 5 * HZ, 10); 4553 ratelimit_set_flags(&perf->tail_pointer_race, 4554 RATELIMIT_MSG_ON_RELEASE); 4555 4556 atomic64_set(&perf->noa_programming_delay, 4557 500 * 1000 /* 500us */); 4558 4559 perf->i915 = i915; 4560 4561 oa_init_supported_formats(perf); 4562 } 4563 } 4564 4565 static int destroy_config(int id, void *p, void *data) 4566 { 4567 i915_oa_config_put(p); 4568 return 0; 4569 } 4570 4571 int i915_perf_sysctl_register(void) 4572 { 4573 sysctl_header = register_sysctl("dev/i915", oa_table); 4574 return 0; 4575 } 4576 4577 void i915_perf_sysctl_unregister(void) 4578 { 4579 unregister_sysctl_table(sysctl_header); 4580 } 4581 4582 /** 4583 * i915_perf_fini - Counter part to i915_perf_init() 4584 * @i915: i915 device instance 4585 */ 4586 void i915_perf_fini(struct drm_i915_private *i915) 4587 { 4588 struct i915_perf *perf = &i915->perf; 4589 4590 if (!perf->i915) 4591 return; 4592 4593 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4594 idr_destroy(&perf->metrics_idr); 4595 4596 memset(&perf->ops, 0, sizeof(perf->ops)); 4597 perf->i915 = NULL; 4598 } 4599 4600 /** 4601 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4602 * 4603 * This version number is used by userspace to detect available features. 4604 */ 4605 int i915_perf_ioctl_version(void) 4606 { 4607 /* 4608 * 1: Initial version 4609 * I915_PERF_IOCTL_ENABLE 4610 * I915_PERF_IOCTL_DISABLE 4611 * 4612 * 2: Added runtime modification of OA config. 4613 * I915_PERF_IOCTL_CONFIG 4614 * 4615 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4616 * preemption on a particular context so that performance data is 4617 * accessible from a delta of MI_RPC reports without looking at the 4618 * OA buffer. 4619 * 4620 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 4621 * be run for the duration of the performance recording based on 4622 * their SSEU configuration. 4623 * 4624 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 4625 * interval for the hrtimer used to check for OA data. 4626 */ 4627 return 5; 4628 } 4629 4630 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4631 #include "selftests/i915_perf.c" 4632 #endif 4633