1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "i915_drv.h" 199 #include "i915_oa_hsw.h" 200 #include "i915_oa_bdw.h" 201 #include "i915_oa_chv.h" 202 #include "i915_oa_sklgt2.h" 203 #include "i915_oa_sklgt3.h" 204 #include "i915_oa_sklgt4.h" 205 #include "i915_oa_bxt.h" 206 #include "i915_oa_kblgt2.h" 207 #include "i915_oa_kblgt3.h" 208 #include "i915_oa_glk.h" 209 #include "i915_oa_cflgt2.h" 210 #include "i915_oa_cflgt3.h" 211 #include "i915_oa_cnl.h" 212 #include "i915_oa_icl.h" 213 #include "intel_lrc_reg.h" 214 215 /* HW requires this to be a power of two, between 128k and 16M, though driver 216 * is currently generally designed assuming the largest 16M size is used such 217 * that the overflow cases are unlikely in normal operation. 218 */ 219 #define OA_BUFFER_SIZE SZ_16M 220 221 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 222 223 /** 224 * DOC: OA Tail Pointer Race 225 * 226 * There's a HW race condition between OA unit tail pointer register updates and 227 * writes to memory whereby the tail pointer can sometimes get ahead of what's 228 * been written out to the OA buffer so far (in terms of what's visible to the 229 * CPU). 230 * 231 * Although this can be observed explicitly while copying reports to userspace 232 * by checking for a zeroed report-id field in tail reports, we want to account 233 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant 234 * read() attempts. 235 * 236 * In effect we define a tail pointer for reading that lags the real tail 237 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough 238 * time for the corresponding reports to become visible to the CPU. 239 * 240 * To manage this we actually track two tail pointers: 241 * 1) An 'aging' tail with an associated timestamp that is tracked until we 242 * can trust the corresponding data is visible to the CPU; at which point 243 * it is considered 'aged'. 244 * 2) An 'aged' tail that can be used for read()ing. 245 * 246 * The two separate pointers let us decouple read()s from tail pointer aging. 247 * 248 * The tail pointers are checked and updated at a limited rate within a hrtimer 249 * callback (the same callback that is used for delivering EPOLLIN events) 250 * 251 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which 252 * indicates that an updated tail pointer is needed. 253 * 254 * Most of the implementation details for this workaround are in 255 * oa_buffer_check_unlocked() and _append_oa_reports() 256 * 257 * Note for posterity: previously the driver used to define an effective tail 258 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 259 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 260 * This was flawed considering that the OA unit may also automatically generate 261 * non-periodic reports (such as on context switch) or the OA unit may be 262 * enabled without any periodic sampling. 263 */ 264 #define OA_TAIL_MARGIN_NSEC 100000ULL 265 #define INVALID_TAIL_PTR 0xffffffff 266 267 /* frequency for checking whether the OA unit has written new reports to the 268 * circular OA buffer... 269 */ 270 #define POLL_FREQUENCY 200 271 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY) 272 273 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 274 static int zero; 275 static int one = 1; 276 static u32 i915_perf_stream_paranoid = true; 277 278 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 279 * of the 64bit timestamp bits to trigger reports from) but there's currently 280 * no known use case for sampling as infrequently as once per 47 thousand years. 281 * 282 * Since the timestamps included in OA reports are only 32bits it seems 283 * reasonable to limit the OA exponent where it's still possible to account for 284 * overflow in OA report timestamps. 285 */ 286 #define OA_EXPONENT_MAX 31 287 288 #define INVALID_CTX_ID 0xffffffff 289 290 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 291 #define OAREPORT_REASON_MASK 0x3f 292 #define OAREPORT_REASON_SHIFT 19 293 #define OAREPORT_REASON_TIMER (1<<0) 294 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 295 #define OAREPORT_REASON_CLK_RATIO (1<<5) 296 297 298 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 299 * 300 * The highest sampling frequency we can theoretically program the OA unit 301 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 302 * 303 * Initialized just before we register the sysctl parameter. 304 */ 305 static int oa_sample_rate_hard_limit; 306 307 /* Theoretically we can program the OA unit to sample every 160ns but don't 308 * allow that by default unless root... 309 * 310 * The default threshold of 100000Hz is based on perf's similar 311 * kernel.perf_event_max_sample_rate sysctl parameter. 312 */ 313 static u32 i915_oa_max_sample_rate = 100000; 314 315 /* XXX: beware if future OA HW adds new report formats that the current 316 * code assumes all reports have a power-of-two size and ~(size - 1) can 317 * be used as a mask to align the OA tail pointer. 318 */ 319 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 320 [I915_OA_FORMAT_A13] = { 0, 64 }, 321 [I915_OA_FORMAT_A29] = { 1, 128 }, 322 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 323 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 324 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 325 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 326 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 327 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 328 }; 329 330 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { 331 [I915_OA_FORMAT_A12] = { 0, 64 }, 332 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 333 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 334 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 335 }; 336 337 #define SAMPLE_OA_REPORT (1<<0) 338 339 /** 340 * struct perf_open_properties - for validated properties given to open a stream 341 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 342 * @single_context: Whether a single or all gpu contexts should be monitored 343 * @ctx_handle: A gem ctx handle for use with @single_context 344 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 345 * @oa_format: An OA unit HW report format 346 * @oa_periodic: Whether to enable periodic OA unit sampling 347 * @oa_period_exponent: The OA unit sampling period is derived from this 348 * 349 * As read_properties_unlocked() enumerates and validates the properties given 350 * to open a stream of metrics the configuration is built up in the structure 351 * which starts out zero initialized. 352 */ 353 struct perf_open_properties { 354 u32 sample_flags; 355 356 u64 single_context:1; 357 u64 ctx_handle; 358 359 /* OA sampling state */ 360 int metrics_set; 361 int oa_format; 362 bool oa_periodic; 363 int oa_period_exponent; 364 }; 365 366 static void free_oa_config(struct drm_i915_private *dev_priv, 367 struct i915_oa_config *oa_config) 368 { 369 if (!PTR_ERR(oa_config->flex_regs)) 370 kfree(oa_config->flex_regs); 371 if (!PTR_ERR(oa_config->b_counter_regs)) 372 kfree(oa_config->b_counter_regs); 373 if (!PTR_ERR(oa_config->mux_regs)) 374 kfree(oa_config->mux_regs); 375 kfree(oa_config); 376 } 377 378 static void put_oa_config(struct drm_i915_private *dev_priv, 379 struct i915_oa_config *oa_config) 380 { 381 if (!atomic_dec_and_test(&oa_config->ref_count)) 382 return; 383 384 free_oa_config(dev_priv, oa_config); 385 } 386 387 static int get_oa_config(struct drm_i915_private *dev_priv, 388 int metrics_set, 389 struct i915_oa_config **out_config) 390 { 391 int ret; 392 393 if (metrics_set == 1) { 394 *out_config = &dev_priv->perf.oa.test_config; 395 atomic_inc(&dev_priv->perf.oa.test_config.ref_count); 396 return 0; 397 } 398 399 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 400 if (ret) 401 return ret; 402 403 *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set); 404 if (!*out_config) 405 ret = -EINVAL; 406 else 407 atomic_inc(&(*out_config)->ref_count); 408 409 mutex_unlock(&dev_priv->perf.metrics_lock); 410 411 return ret; 412 } 413 414 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv) 415 { 416 return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 417 } 418 419 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv) 420 { 421 u32 oastatus1 = I915_READ(GEN7_OASTATUS1); 422 423 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 424 } 425 426 /** 427 * oa_buffer_check_unlocked - check for data and update tail ptr state 428 * @dev_priv: i915 device instance 429 * 430 * This is either called via fops (for blocking reads in user ctx) or the poll 431 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 432 * if there is data available for userspace to read. 433 * 434 * This function is central to providing a workaround for the OA unit tail 435 * pointer having a race with respect to what data is visible to the CPU. 436 * It is responsible for reading tail pointers from the hardware and giving 437 * the pointers time to 'age' before they are made available for reading. 438 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 439 * 440 * Besides returning true when there is data available to read() this function 441 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp 442 * and .aged_tail_idx state used for reading. 443 * 444 * Note: It's safe to read OA config state here unlocked, assuming that this is 445 * only called while the stream is enabled, while the global OA configuration 446 * can't be modified. 447 * 448 * Returns: %true if the OA buffer contains data, else %false 449 */ 450 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv) 451 { 452 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 453 unsigned long flags; 454 unsigned int aged_idx; 455 u32 head, hw_tail, aged_tail, aging_tail; 456 u64 now; 457 458 /* We have to consider the (unlikely) possibility that read() errors 459 * could result in an OA buffer reset which might reset the head, 460 * tails[] and aged_tail state. 461 */ 462 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 463 464 /* NB: The head we observe here might effectively be a little out of 465 * date (between head and tails[aged_idx].offset if there is currently 466 * a read() in progress. 467 */ 468 head = dev_priv->perf.oa.oa_buffer.head; 469 470 aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 471 aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset; 472 aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset; 473 474 hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv); 475 476 /* The tail pointer increases in 64 byte increments, 477 * not in report_size steps... 478 */ 479 hw_tail &= ~(report_size - 1); 480 481 now = ktime_get_mono_fast_ns(); 482 483 /* Update the aged tail 484 * 485 * Flip the tail pointer available for read()s once the aging tail is 486 * old enough to trust that the corresponding data will be visible to 487 * the CPU... 488 * 489 * Do this before updating the aging pointer in case we may be able to 490 * immediately start aging a new pointer too (if new data has become 491 * available) without needing to wait for a later hrtimer callback. 492 */ 493 if (aging_tail != INVALID_TAIL_PTR && 494 ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) > 495 OA_TAIL_MARGIN_NSEC)) { 496 497 aged_idx ^= 1; 498 dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx; 499 500 aged_tail = aging_tail; 501 502 /* Mark that we need a new pointer to start aging... */ 503 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR; 504 aging_tail = INVALID_TAIL_PTR; 505 } 506 507 /* Update the aging tail 508 * 509 * We throttle aging tail updates until we have a new tail that 510 * represents >= one report more data than is already available for 511 * reading. This ensures there will be enough data for a successful 512 * read once this new pointer has aged and ensures we will give the new 513 * pointer time to age. 514 */ 515 if (aging_tail == INVALID_TAIL_PTR && 516 (aged_tail == INVALID_TAIL_PTR || 517 OA_TAKEN(hw_tail, aged_tail) >= report_size)) { 518 struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma; 519 u32 gtt_offset = i915_ggtt_offset(vma); 520 521 /* Be paranoid and do a bounds check on the pointer read back 522 * from hardware, just in case some spurious hardware condition 523 * could put the tail out of bounds... 524 */ 525 if (hw_tail >= gtt_offset && 526 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) { 527 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = 528 aging_tail = hw_tail; 529 dev_priv->perf.oa.oa_buffer.aging_timestamp = now; 530 } else { 531 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n", 532 hw_tail); 533 } 534 } 535 536 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 537 538 return aged_tail == INVALID_TAIL_PTR ? 539 false : OA_TAKEN(aged_tail, head) >= report_size; 540 } 541 542 /** 543 * append_oa_status - Appends a status record to a userspace read() buffer. 544 * @stream: An i915-perf stream opened for OA metrics 545 * @buf: destination buffer given by userspace 546 * @count: the number of bytes userspace wants to read 547 * @offset: (inout): the current position for writing into @buf 548 * @type: The kind of status to report to userspace 549 * 550 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 551 * into the userspace read() buffer. 552 * 553 * The @buf @offset will only be updated on success. 554 * 555 * Returns: 0 on success, negative error code on failure. 556 */ 557 static int append_oa_status(struct i915_perf_stream *stream, 558 char __user *buf, 559 size_t count, 560 size_t *offset, 561 enum drm_i915_perf_record_type type) 562 { 563 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 564 565 if ((count - *offset) < header.size) 566 return -ENOSPC; 567 568 if (copy_to_user(buf + *offset, &header, sizeof(header))) 569 return -EFAULT; 570 571 (*offset) += header.size; 572 573 return 0; 574 } 575 576 /** 577 * append_oa_sample - Copies single OA report into userspace read() buffer. 578 * @stream: An i915-perf stream opened for OA metrics 579 * @buf: destination buffer given by userspace 580 * @count: the number of bytes userspace wants to read 581 * @offset: (inout): the current position for writing into @buf 582 * @report: A single OA report to (optionally) include as part of the sample 583 * 584 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 585 * properties when opening a stream, tracked as `stream->sample_flags`. This 586 * function copies the requested components of a single sample to the given 587 * read() @buf. 588 * 589 * The @buf @offset will only be updated on success. 590 * 591 * Returns: 0 on success, negative error code on failure. 592 */ 593 static int append_oa_sample(struct i915_perf_stream *stream, 594 char __user *buf, 595 size_t count, 596 size_t *offset, 597 const u8 *report) 598 { 599 struct drm_i915_private *dev_priv = stream->dev_priv; 600 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 601 struct drm_i915_perf_record_header header; 602 u32 sample_flags = stream->sample_flags; 603 604 header.type = DRM_I915_PERF_RECORD_SAMPLE; 605 header.pad = 0; 606 header.size = stream->sample_size; 607 608 if ((count - *offset) < header.size) 609 return -ENOSPC; 610 611 buf += *offset; 612 if (copy_to_user(buf, &header, sizeof(header))) 613 return -EFAULT; 614 buf += sizeof(header); 615 616 if (sample_flags & SAMPLE_OA_REPORT) { 617 if (copy_to_user(buf, report, report_size)) 618 return -EFAULT; 619 } 620 621 (*offset) += header.size; 622 623 return 0; 624 } 625 626 /** 627 * Copies all buffered OA reports into userspace read() buffer. 628 * @stream: An i915-perf stream opened for OA metrics 629 * @buf: destination buffer given by userspace 630 * @count: the number of bytes userspace wants to read 631 * @offset: (inout): the current position for writing into @buf 632 * 633 * Notably any error condition resulting in a short read (-%ENOSPC or 634 * -%EFAULT) will be returned even though one or more records may 635 * have been successfully copied. In this case it's up to the caller 636 * to decide if the error should be squashed before returning to 637 * userspace. 638 * 639 * Note: reports are consumed from the head, and appended to the 640 * tail, so the tail chases the head?... If you think that's mad 641 * and back-to-front you're not alone, but this follows the 642 * Gen PRM naming convention. 643 * 644 * Returns: 0 on success, negative error code on failure. 645 */ 646 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 647 char __user *buf, 648 size_t count, 649 size_t *offset) 650 { 651 struct drm_i915_private *dev_priv = stream->dev_priv; 652 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 653 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr; 654 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 655 u32 mask = (OA_BUFFER_SIZE - 1); 656 size_t start_offset = *offset; 657 unsigned long flags; 658 unsigned int aged_tail_idx; 659 u32 head, tail; 660 u32 taken; 661 int ret = 0; 662 663 if (WARN_ON(!stream->enabled)) 664 return -EIO; 665 666 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 667 668 head = dev_priv->perf.oa.oa_buffer.head; 669 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 670 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset; 671 672 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 673 674 /* 675 * An invalid tail pointer here means we're still waiting for the poll 676 * hrtimer callback to give us a pointer 677 */ 678 if (tail == INVALID_TAIL_PTR) 679 return -EAGAIN; 680 681 /* 682 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 683 * while indexing relative to oa_buf_base. 684 */ 685 head -= gtt_offset; 686 tail -= gtt_offset; 687 688 /* 689 * An out of bounds or misaligned head or tail pointer implies a driver 690 * bug since we validate + align the tail pointers we read from the 691 * hardware and we are in full control of the head pointer which should 692 * only be incremented by multiples of the report size (notably also 693 * all a power of two). 694 */ 695 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 696 tail > OA_BUFFER_SIZE || tail % report_size, 697 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 698 head, tail)) 699 return -EIO; 700 701 702 for (/* none */; 703 (taken = OA_TAKEN(tail, head)); 704 head = (head + report_size) & mask) { 705 u8 *report = oa_buf_base + head; 706 u32 *report32 = (void *)report; 707 u32 ctx_id; 708 u32 reason; 709 710 /* 711 * All the report sizes factor neatly into the buffer 712 * size so we never expect to see a report split 713 * between the beginning and end of the buffer. 714 * 715 * Given the initial alignment check a misalignment 716 * here would imply a driver bug that would result 717 * in an overrun. 718 */ 719 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 720 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 721 break; 722 } 723 724 /* 725 * The reason field includes flags identifying what 726 * triggered this specific report (mostly timer 727 * triggered or e.g. due to a context switch). 728 * 729 * This field is never expected to be zero so we can 730 * check that the report isn't invalid before copying 731 * it to userspace... 732 */ 733 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 734 OAREPORT_REASON_MASK); 735 if (reason == 0) { 736 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs)) 737 DRM_NOTE("Skipping spurious, invalid OA report\n"); 738 continue; 739 } 740 741 ctx_id = report32[2] & dev_priv->perf.oa.specific_ctx_id_mask; 742 743 /* 744 * Squash whatever is in the CTX_ID field if it's marked as 745 * invalid to be sure we avoid false-positive, single-context 746 * filtering below... 747 * 748 * Note: that we don't clear the valid_ctx_bit so userspace can 749 * understand that the ID has been squashed by the kernel. 750 */ 751 if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit)) 752 ctx_id = report32[2] = INVALID_CTX_ID; 753 754 /* 755 * NB: For Gen 8 the OA unit no longer supports clock gating 756 * off for a specific context and the kernel can't securely 757 * stop the counters from updating as system-wide / global 758 * values. 759 * 760 * Automatic reports now include a context ID so reports can be 761 * filtered on the cpu but it's not worth trying to 762 * automatically subtract/hide counter progress for other 763 * contexts while filtering since we can't stop userspace 764 * issuing MI_REPORT_PERF_COUNT commands which would still 765 * provide a side-band view of the real values. 766 * 767 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 768 * to normalize counters for a single filtered context then it 769 * needs be forwarded bookend context-switch reports so that it 770 * can track switches in between MI_REPORT_PERF_COUNT commands 771 * and can itself subtract/ignore the progress of counters 772 * associated with other contexts. Note that the hardware 773 * automatically triggers reports when switching to a new 774 * context which are tagged with the ID of the newly active 775 * context. To avoid the complexity (and likely fragility) of 776 * reading ahead while parsing reports to try and minimize 777 * forwarding redundant context switch reports (i.e. between 778 * other, unrelated contexts) we simply elect to forward them 779 * all. 780 * 781 * We don't rely solely on the reason field to identify context 782 * switches since it's not-uncommon for periodic samples to 783 * identify a switch before any 'context switch' report. 784 */ 785 if (!dev_priv->perf.oa.exclusive_stream->ctx || 786 dev_priv->perf.oa.specific_ctx_id == ctx_id || 787 (dev_priv->perf.oa.oa_buffer.last_ctx_id == 788 dev_priv->perf.oa.specific_ctx_id) || 789 reason & OAREPORT_REASON_CTX_SWITCH) { 790 791 /* 792 * While filtering for a single context we avoid 793 * leaking the IDs of other contexts. 794 */ 795 if (dev_priv->perf.oa.exclusive_stream->ctx && 796 dev_priv->perf.oa.specific_ctx_id != ctx_id) { 797 report32[2] = INVALID_CTX_ID; 798 } 799 800 ret = append_oa_sample(stream, buf, count, offset, 801 report); 802 if (ret) 803 break; 804 805 dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id; 806 } 807 808 /* 809 * The above reason field sanity check is based on 810 * the assumption that the OA buffer is initially 811 * zeroed and we reset the field after copying so the 812 * check is still meaningful once old reports start 813 * being overwritten. 814 */ 815 report32[0] = 0; 816 } 817 818 if (start_offset != *offset) { 819 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 820 821 /* 822 * We removed the gtt_offset for the copy loop above, indexing 823 * relative to oa_buf_base so put back here... 824 */ 825 head += gtt_offset; 826 827 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK); 828 dev_priv->perf.oa.oa_buffer.head = head; 829 830 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 831 } 832 833 return ret; 834 } 835 836 /** 837 * gen8_oa_read - copy status records then buffered OA reports 838 * @stream: An i915-perf stream opened for OA metrics 839 * @buf: destination buffer given by userspace 840 * @count: the number of bytes userspace wants to read 841 * @offset: (inout): the current position for writing into @buf 842 * 843 * Checks OA unit status registers and if necessary appends corresponding 844 * status records for userspace (such as for a buffer full condition) and then 845 * initiate appending any buffered OA reports. 846 * 847 * Updates @offset according to the number of bytes successfully copied into 848 * the userspace buffer. 849 * 850 * NB: some data may be successfully copied to the userspace buffer 851 * even if an error is returned, and this is reflected in the 852 * updated @offset. 853 * 854 * Returns: zero on success or a negative error code 855 */ 856 static int gen8_oa_read(struct i915_perf_stream *stream, 857 char __user *buf, 858 size_t count, 859 size_t *offset) 860 { 861 struct drm_i915_private *dev_priv = stream->dev_priv; 862 u32 oastatus; 863 int ret; 864 865 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr)) 866 return -EIO; 867 868 oastatus = I915_READ(GEN8_OASTATUS); 869 870 /* 871 * We treat OABUFFER_OVERFLOW as a significant error: 872 * 873 * Although theoretically we could handle this more gracefully 874 * sometimes, some Gens don't correctly suppress certain 875 * automatically triggered reports in this condition and so we 876 * have to assume that old reports are now being trampled 877 * over. 878 * 879 * Considering how we don't currently give userspace control 880 * over the OA buffer size and always configure a large 16MB 881 * buffer, then a buffer overflow does anyway likely indicate 882 * that something has gone quite badly wrong. 883 */ 884 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 885 ret = append_oa_status(stream, buf, count, offset, 886 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 887 if (ret) 888 return ret; 889 890 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 891 dev_priv->perf.oa.period_exponent); 892 893 dev_priv->perf.oa.ops.oa_disable(stream); 894 dev_priv->perf.oa.ops.oa_enable(stream); 895 896 /* 897 * Note: .oa_enable() is expected to re-init the oabuffer and 898 * reset GEN8_OASTATUS for us 899 */ 900 oastatus = I915_READ(GEN8_OASTATUS); 901 } 902 903 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 904 ret = append_oa_status(stream, buf, count, offset, 905 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 906 if (ret) 907 return ret; 908 I915_WRITE(GEN8_OASTATUS, 909 oastatus & ~GEN8_OASTATUS_REPORT_LOST); 910 } 911 912 return gen8_append_oa_reports(stream, buf, count, offset); 913 } 914 915 /** 916 * Copies all buffered OA reports into userspace read() buffer. 917 * @stream: An i915-perf stream opened for OA metrics 918 * @buf: destination buffer given by userspace 919 * @count: the number of bytes userspace wants to read 920 * @offset: (inout): the current position for writing into @buf 921 * 922 * Notably any error condition resulting in a short read (-%ENOSPC or 923 * -%EFAULT) will be returned even though one or more records may 924 * have been successfully copied. In this case it's up to the caller 925 * to decide if the error should be squashed before returning to 926 * userspace. 927 * 928 * Note: reports are consumed from the head, and appended to the 929 * tail, so the tail chases the head?... If you think that's mad 930 * and back-to-front you're not alone, but this follows the 931 * Gen PRM naming convention. 932 * 933 * Returns: 0 on success, negative error code on failure. 934 */ 935 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 936 char __user *buf, 937 size_t count, 938 size_t *offset) 939 { 940 struct drm_i915_private *dev_priv = stream->dev_priv; 941 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 942 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr; 943 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 944 u32 mask = (OA_BUFFER_SIZE - 1); 945 size_t start_offset = *offset; 946 unsigned long flags; 947 unsigned int aged_tail_idx; 948 u32 head, tail; 949 u32 taken; 950 int ret = 0; 951 952 if (WARN_ON(!stream->enabled)) 953 return -EIO; 954 955 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 956 957 head = dev_priv->perf.oa.oa_buffer.head; 958 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 959 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset; 960 961 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 962 963 /* An invalid tail pointer here means we're still waiting for the poll 964 * hrtimer callback to give us a pointer 965 */ 966 if (tail == INVALID_TAIL_PTR) 967 return -EAGAIN; 968 969 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 970 * while indexing relative to oa_buf_base. 971 */ 972 head -= gtt_offset; 973 tail -= gtt_offset; 974 975 /* An out of bounds or misaligned head or tail pointer implies a driver 976 * bug since we validate + align the tail pointers we read from the 977 * hardware and we are in full control of the head pointer which should 978 * only be incremented by multiples of the report size (notably also 979 * all a power of two). 980 */ 981 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 982 tail > OA_BUFFER_SIZE || tail % report_size, 983 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 984 head, tail)) 985 return -EIO; 986 987 988 for (/* none */; 989 (taken = OA_TAKEN(tail, head)); 990 head = (head + report_size) & mask) { 991 u8 *report = oa_buf_base + head; 992 u32 *report32 = (void *)report; 993 994 /* All the report sizes factor neatly into the buffer 995 * size so we never expect to see a report split 996 * between the beginning and end of the buffer. 997 * 998 * Given the initial alignment check a misalignment 999 * here would imply a driver bug that would result 1000 * in an overrun. 1001 */ 1002 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 1003 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 1004 break; 1005 } 1006 1007 /* The report-ID field for periodic samples includes 1008 * some undocumented flags related to what triggered 1009 * the report and is never expected to be zero so we 1010 * can check that the report isn't invalid before 1011 * copying it to userspace... 1012 */ 1013 if (report32[0] == 0) { 1014 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs)) 1015 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1016 continue; 1017 } 1018 1019 ret = append_oa_sample(stream, buf, count, offset, report); 1020 if (ret) 1021 break; 1022 1023 /* The above report-id field sanity check is based on 1024 * the assumption that the OA buffer is initially 1025 * zeroed and we reset the field after copying so the 1026 * check is still meaningful once old reports start 1027 * being overwritten. 1028 */ 1029 report32[0] = 0; 1030 } 1031 1032 if (start_offset != *offset) { 1033 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1034 1035 /* We removed the gtt_offset for the copy loop above, indexing 1036 * relative to oa_buf_base so put back here... 1037 */ 1038 head += gtt_offset; 1039 1040 I915_WRITE(GEN7_OASTATUS2, 1041 ((head & GEN7_OASTATUS2_HEAD_MASK) | 1042 GEN7_OASTATUS2_MEM_SELECT_GGTT)); 1043 dev_priv->perf.oa.oa_buffer.head = head; 1044 1045 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1046 } 1047 1048 return ret; 1049 } 1050 1051 /** 1052 * gen7_oa_read - copy status records then buffered OA reports 1053 * @stream: An i915-perf stream opened for OA metrics 1054 * @buf: destination buffer given by userspace 1055 * @count: the number of bytes userspace wants to read 1056 * @offset: (inout): the current position for writing into @buf 1057 * 1058 * Checks Gen 7 specific OA unit status registers and if necessary appends 1059 * corresponding status records for userspace (such as for a buffer full 1060 * condition) and then initiate appending any buffered OA reports. 1061 * 1062 * Updates @offset according to the number of bytes successfully copied into 1063 * the userspace buffer. 1064 * 1065 * Returns: zero on success or a negative error code 1066 */ 1067 static int gen7_oa_read(struct i915_perf_stream *stream, 1068 char __user *buf, 1069 size_t count, 1070 size_t *offset) 1071 { 1072 struct drm_i915_private *dev_priv = stream->dev_priv; 1073 u32 oastatus1; 1074 int ret; 1075 1076 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr)) 1077 return -EIO; 1078 1079 oastatus1 = I915_READ(GEN7_OASTATUS1); 1080 1081 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1082 * bits while the OA unit is enabled (while the tail pointer 1083 * may be updated asynchronously) so we ignore status bits 1084 * that have already been reported to userspace. 1085 */ 1086 oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1; 1087 1088 /* We treat OABUFFER_OVERFLOW as a significant error: 1089 * 1090 * - The status can be interpreted to mean that the buffer is 1091 * currently full (with a higher precedence than OA_TAKEN() 1092 * which will start to report a near-empty buffer after an 1093 * overflow) but it's awkward that we can't clear the status 1094 * on Haswell, so without a reset we won't be able to catch 1095 * the state again. 1096 * 1097 * - Since it also implies the HW has started overwriting old 1098 * reports it may also affect our sanity checks for invalid 1099 * reports when copying to userspace that assume new reports 1100 * are being written to cleared memory. 1101 * 1102 * - In the future we may want to introduce a flight recorder 1103 * mode where the driver will automatically maintain a safe 1104 * guard band between head/tail, avoiding this overflow 1105 * condition, but we avoid the added driver complexity for 1106 * now. 1107 */ 1108 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1109 ret = append_oa_status(stream, buf, count, offset, 1110 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1111 if (ret) 1112 return ret; 1113 1114 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1115 dev_priv->perf.oa.period_exponent); 1116 1117 dev_priv->perf.oa.ops.oa_disable(stream); 1118 dev_priv->perf.oa.ops.oa_enable(stream); 1119 1120 oastatus1 = I915_READ(GEN7_OASTATUS1); 1121 } 1122 1123 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1124 ret = append_oa_status(stream, buf, count, offset, 1125 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1126 if (ret) 1127 return ret; 1128 dev_priv->perf.oa.gen7_latched_oastatus1 |= 1129 GEN7_OASTATUS1_REPORT_LOST; 1130 } 1131 1132 return gen7_append_oa_reports(stream, buf, count, offset); 1133 } 1134 1135 /** 1136 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1137 * @stream: An i915-perf stream opened for OA metrics 1138 * 1139 * Called when userspace tries to read() from a blocking stream FD opened 1140 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1141 * OA buffer and wakes us. 1142 * 1143 * Note: it's acceptable to have this return with some false positives 1144 * since any subsequent read handling will return -EAGAIN if there isn't 1145 * really data ready for userspace yet. 1146 * 1147 * Returns: zero on success or a negative error code 1148 */ 1149 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1150 { 1151 struct drm_i915_private *dev_priv = stream->dev_priv; 1152 1153 /* We would wait indefinitely if periodic sampling is not enabled */ 1154 if (!dev_priv->perf.oa.periodic) 1155 return -EIO; 1156 1157 return wait_event_interruptible(dev_priv->perf.oa.poll_wq, 1158 oa_buffer_check_unlocked(dev_priv)); 1159 } 1160 1161 /** 1162 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1163 * @stream: An i915-perf stream opened for OA metrics 1164 * @file: An i915 perf stream file 1165 * @wait: poll() state table 1166 * 1167 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1168 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1169 * when it sees data ready to read in the circular OA buffer. 1170 */ 1171 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1172 struct file *file, 1173 poll_table *wait) 1174 { 1175 struct drm_i915_private *dev_priv = stream->dev_priv; 1176 1177 poll_wait(file, &dev_priv->perf.oa.poll_wq, wait); 1178 } 1179 1180 /** 1181 * i915_oa_read - just calls through to &i915_oa_ops->read 1182 * @stream: An i915-perf stream opened for OA metrics 1183 * @buf: destination buffer given by userspace 1184 * @count: the number of bytes userspace wants to read 1185 * @offset: (inout): the current position for writing into @buf 1186 * 1187 * Updates @offset according to the number of bytes successfully copied into 1188 * the userspace buffer. 1189 * 1190 * Returns: zero on success or a negative error code 1191 */ 1192 static int i915_oa_read(struct i915_perf_stream *stream, 1193 char __user *buf, 1194 size_t count, 1195 size_t *offset) 1196 { 1197 struct drm_i915_private *dev_priv = stream->dev_priv; 1198 1199 return dev_priv->perf.oa.ops.read(stream, buf, count, offset); 1200 } 1201 1202 static struct intel_context *oa_pin_context(struct drm_i915_private *i915, 1203 struct i915_gem_context *ctx) 1204 { 1205 struct intel_engine_cs *engine = i915->engine[RCS]; 1206 struct intel_context *ce; 1207 int ret; 1208 1209 ret = i915_mutex_lock_interruptible(&i915->drm); 1210 if (ret) 1211 return ERR_PTR(ret); 1212 1213 /* 1214 * As the ID is the gtt offset of the context's vma we 1215 * pin the vma to ensure the ID remains fixed. 1216 * 1217 * NB: implied RCS engine... 1218 */ 1219 ce = intel_context_pin(ctx, engine); 1220 mutex_unlock(&i915->drm.struct_mutex); 1221 if (IS_ERR(ce)) 1222 return ce; 1223 1224 i915->perf.oa.pinned_ctx = ce; 1225 1226 return ce; 1227 } 1228 1229 /** 1230 * oa_get_render_ctx_id - determine and hold ctx hw id 1231 * @stream: An i915-perf stream opened for OA metrics 1232 * 1233 * Determine the render context hw id, and ensure it remains fixed for the 1234 * lifetime of the stream. This ensures that we don't have to worry about 1235 * updating the context ID in OACONTROL on the fly. 1236 * 1237 * Returns: zero on success or a negative error code 1238 */ 1239 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1240 { 1241 struct drm_i915_private *i915 = stream->dev_priv; 1242 struct intel_context *ce; 1243 1244 ce = oa_pin_context(i915, stream->ctx); 1245 if (IS_ERR(ce)) 1246 return PTR_ERR(ce); 1247 1248 switch (INTEL_GEN(i915)) { 1249 case 7: { 1250 /* 1251 * On Haswell we don't do any post processing of the reports 1252 * and don't need to use the mask. 1253 */ 1254 i915->perf.oa.specific_ctx_id = i915_ggtt_offset(ce->state); 1255 i915->perf.oa.specific_ctx_id_mask = 0; 1256 break; 1257 } 1258 1259 case 8: 1260 case 9: 1261 case 10: 1262 if (USES_GUC_SUBMISSION(i915)) { 1263 /* 1264 * When using GuC, the context descriptor we write in 1265 * i915 is read by GuC and rewritten before it's 1266 * actually written into the hardware. The LRCA is 1267 * what is put into the context id field of the 1268 * context descriptor by GuC. Because it's aligned to 1269 * a page, the lower 12bits are always at 0 and 1270 * dropped by GuC. They won't be part of the context 1271 * ID in the OA reports, so squash those lower bits. 1272 */ 1273 i915->perf.oa.specific_ctx_id = 1274 lower_32_bits(ce->lrc_desc) >> 12; 1275 1276 /* 1277 * GuC uses the top bit to signal proxy submission, so 1278 * ignore that bit. 1279 */ 1280 i915->perf.oa.specific_ctx_id_mask = 1281 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1282 } else { 1283 i915->perf.oa.specific_ctx_id_mask = 1284 (1U << GEN8_CTX_ID_WIDTH) - 1; 1285 i915->perf.oa.specific_ctx_id = 1286 upper_32_bits(ce->lrc_desc); 1287 i915->perf.oa.specific_ctx_id &= 1288 i915->perf.oa.specific_ctx_id_mask; 1289 } 1290 break; 1291 1292 case 11: { 1293 i915->perf.oa.specific_ctx_id_mask = 1294 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32) | 1295 ((1U << GEN11_ENGINE_INSTANCE_WIDTH) - 1) << (GEN11_ENGINE_INSTANCE_SHIFT - 32) | 1296 ((1 << GEN11_ENGINE_CLASS_WIDTH) - 1) << (GEN11_ENGINE_CLASS_SHIFT - 32); 1297 i915->perf.oa.specific_ctx_id = upper_32_bits(ce->lrc_desc); 1298 i915->perf.oa.specific_ctx_id &= 1299 i915->perf.oa.specific_ctx_id_mask; 1300 break; 1301 } 1302 1303 default: 1304 MISSING_CASE(INTEL_GEN(i915)); 1305 } 1306 1307 DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1308 i915->perf.oa.specific_ctx_id, 1309 i915->perf.oa.specific_ctx_id_mask); 1310 1311 return 0; 1312 } 1313 1314 /** 1315 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1316 * @stream: An i915-perf stream opened for OA metrics 1317 * 1318 * In case anything needed doing to ensure the context HW ID would remain valid 1319 * for the lifetime of the stream, then that can be undone here. 1320 */ 1321 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1322 { 1323 struct drm_i915_private *dev_priv = stream->dev_priv; 1324 struct intel_context *ce; 1325 1326 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID; 1327 dev_priv->perf.oa.specific_ctx_id_mask = 0; 1328 1329 ce = fetch_and_zero(&dev_priv->perf.oa.pinned_ctx); 1330 if (ce) { 1331 mutex_lock(&dev_priv->drm.struct_mutex); 1332 intel_context_unpin(ce); 1333 mutex_unlock(&dev_priv->drm.struct_mutex); 1334 } 1335 } 1336 1337 static void 1338 free_oa_buffer(struct drm_i915_private *i915) 1339 { 1340 mutex_lock(&i915->drm.struct_mutex); 1341 1342 i915_vma_unpin_and_release(&i915->perf.oa.oa_buffer.vma, 1343 I915_VMA_RELEASE_MAP); 1344 1345 mutex_unlock(&i915->drm.struct_mutex); 1346 1347 i915->perf.oa.oa_buffer.vaddr = NULL; 1348 } 1349 1350 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1351 { 1352 struct drm_i915_private *dev_priv = stream->dev_priv; 1353 1354 BUG_ON(stream != dev_priv->perf.oa.exclusive_stream); 1355 1356 /* 1357 * Unset exclusive_stream first, it will be checked while disabling 1358 * the metric set on gen8+. 1359 */ 1360 mutex_lock(&dev_priv->drm.struct_mutex); 1361 dev_priv->perf.oa.exclusive_stream = NULL; 1362 dev_priv->perf.oa.ops.disable_metric_set(dev_priv); 1363 mutex_unlock(&dev_priv->drm.struct_mutex); 1364 1365 free_oa_buffer(dev_priv); 1366 1367 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 1368 intel_runtime_pm_put(dev_priv); 1369 1370 if (stream->ctx) 1371 oa_put_render_ctx_id(stream); 1372 1373 put_oa_config(dev_priv, stream->oa_config); 1374 1375 if (dev_priv->perf.oa.spurious_report_rs.missed) { 1376 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1377 dev_priv->perf.oa.spurious_report_rs.missed); 1378 } 1379 } 1380 1381 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv) 1382 { 1383 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 1384 unsigned long flags; 1385 1386 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1387 1388 /* Pre-DevBDW: OABUFFER must be set with counters off, 1389 * before OASTATUS1, but after OASTATUS2 1390 */ 1391 I915_WRITE(GEN7_OASTATUS2, 1392 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); /* head */ 1393 dev_priv->perf.oa.oa_buffer.head = gtt_offset; 1394 1395 I915_WRITE(GEN7_OABUFFER, gtt_offset); 1396 1397 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */ 1398 1399 /* Mark that we need updated tail pointers to read from... */ 1400 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1401 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1402 1403 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1404 1405 /* On Haswell we have to track which OASTATUS1 flags we've 1406 * already seen since they can't be cleared while periodic 1407 * sampling is enabled. 1408 */ 1409 dev_priv->perf.oa.gen7_latched_oastatus1 = 0; 1410 1411 /* NB: although the OA buffer will initially be allocated 1412 * zeroed via shmfs (and so this memset is redundant when 1413 * first allocating), we may re-init the OA buffer, either 1414 * when re-enabling a stream or in error/reset paths. 1415 * 1416 * The reason we clear the buffer for each re-init is for the 1417 * sanity check in gen7_append_oa_reports() that looks at the 1418 * report-id field to make sure it's non-zero which relies on 1419 * the assumption that new reports are being written to zeroed 1420 * memory... 1421 */ 1422 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1423 1424 /* Maybe make ->pollin per-stream state if we support multiple 1425 * concurrent streams in the future. 1426 */ 1427 dev_priv->perf.oa.pollin = false; 1428 } 1429 1430 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv) 1431 { 1432 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 1433 unsigned long flags; 1434 1435 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1436 1437 I915_WRITE(GEN8_OASTATUS, 0); 1438 I915_WRITE(GEN8_OAHEADPTR, gtt_offset); 1439 dev_priv->perf.oa.oa_buffer.head = gtt_offset; 1440 1441 I915_WRITE(GEN8_OABUFFER_UDW, 0); 1442 1443 /* 1444 * PRM says: 1445 * 1446 * "This MMIO must be set before the OATAILPTR 1447 * register and after the OAHEADPTR register. This is 1448 * to enable proper functionality of the overflow 1449 * bit." 1450 */ 1451 I915_WRITE(GEN8_OABUFFER, gtt_offset | 1452 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1453 I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1454 1455 /* Mark that we need updated tail pointers to read from... */ 1456 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1457 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1458 1459 /* 1460 * Reset state used to recognise context switches, affecting which 1461 * reports we will forward to userspace while filtering for a single 1462 * context. 1463 */ 1464 dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID; 1465 1466 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1467 1468 /* 1469 * NB: although the OA buffer will initially be allocated 1470 * zeroed via shmfs (and so this memset is redundant when 1471 * first allocating), we may re-init the OA buffer, either 1472 * when re-enabling a stream or in error/reset paths. 1473 * 1474 * The reason we clear the buffer for each re-init is for the 1475 * sanity check in gen8_append_oa_reports() that looks at the 1476 * reason field to make sure it's non-zero which relies on 1477 * the assumption that new reports are being written to zeroed 1478 * memory... 1479 */ 1480 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1481 1482 /* 1483 * Maybe make ->pollin per-stream state if we support multiple 1484 * concurrent streams in the future. 1485 */ 1486 dev_priv->perf.oa.pollin = false; 1487 } 1488 1489 static int alloc_oa_buffer(struct drm_i915_private *dev_priv) 1490 { 1491 struct drm_i915_gem_object *bo; 1492 struct i915_vma *vma; 1493 int ret; 1494 1495 if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma)) 1496 return -ENODEV; 1497 1498 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 1499 if (ret) 1500 return ret; 1501 1502 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1503 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1504 1505 bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE); 1506 if (IS_ERR(bo)) { 1507 DRM_ERROR("Failed to allocate OA buffer\n"); 1508 ret = PTR_ERR(bo); 1509 goto unlock; 1510 } 1511 1512 ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC); 1513 if (ret) 1514 goto err_unref; 1515 1516 /* PreHSW required 512K alignment, HSW requires 16M */ 1517 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1518 if (IS_ERR(vma)) { 1519 ret = PTR_ERR(vma); 1520 goto err_unref; 1521 } 1522 dev_priv->perf.oa.oa_buffer.vma = vma; 1523 1524 dev_priv->perf.oa.oa_buffer.vaddr = 1525 i915_gem_object_pin_map(bo, I915_MAP_WB); 1526 if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) { 1527 ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr); 1528 goto err_unpin; 1529 } 1530 1531 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n", 1532 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma), 1533 dev_priv->perf.oa.oa_buffer.vaddr); 1534 1535 goto unlock; 1536 1537 err_unpin: 1538 __i915_vma_unpin(vma); 1539 1540 err_unref: 1541 i915_gem_object_put(bo); 1542 1543 dev_priv->perf.oa.oa_buffer.vaddr = NULL; 1544 dev_priv->perf.oa.oa_buffer.vma = NULL; 1545 1546 unlock: 1547 mutex_unlock(&dev_priv->drm.struct_mutex); 1548 return ret; 1549 } 1550 1551 static void config_oa_regs(struct drm_i915_private *dev_priv, 1552 const struct i915_oa_reg *regs, 1553 u32 n_regs) 1554 { 1555 u32 i; 1556 1557 for (i = 0; i < n_regs; i++) { 1558 const struct i915_oa_reg *reg = regs + i; 1559 1560 I915_WRITE(reg->addr, reg->value); 1561 } 1562 } 1563 1564 static int hsw_enable_metric_set(struct i915_perf_stream *stream) 1565 { 1566 struct drm_i915_private *dev_priv = stream->dev_priv; 1567 const struct i915_oa_config *oa_config = stream->oa_config; 1568 1569 /* PRM: 1570 * 1571 * OA unit is using “crclk” for its functionality. When trunk 1572 * level clock gating takes place, OA clock would be gated, 1573 * unable to count the events from non-render clock domain. 1574 * Render clock gating must be disabled when OA is enabled to 1575 * count the events from non-render domain. Unit level clock 1576 * gating for RCS should also be disabled. 1577 */ 1578 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) & 1579 ~GEN7_DOP_CLOCK_GATE_ENABLE)); 1580 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) | 1581 GEN6_CSUNIT_CLOCK_GATE_DISABLE)); 1582 1583 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len); 1584 1585 /* It apparently takes a fairly long time for a new MUX 1586 * configuration to be be applied after these register writes. 1587 * This delay duration was derived empirically based on the 1588 * render_basic config but hopefully it covers the maximum 1589 * configuration latency. 1590 * 1591 * As a fallback, the checks in _append_oa_reports() to skip 1592 * invalid OA reports do also seem to work to discard reports 1593 * generated before this config has completed - albeit not 1594 * silently. 1595 * 1596 * Unfortunately this is essentially a magic number, since we 1597 * don't currently know of a reliable mechanism for predicting 1598 * how long the MUX config will take to apply and besides 1599 * seeing invalid reports we don't know of a reliable way to 1600 * explicitly check that the MUX config has landed. 1601 * 1602 * It's even possible we've miss characterized the underlying 1603 * problem - it just seems like the simplest explanation why 1604 * a delay at this location would mitigate any invalid reports. 1605 */ 1606 usleep_range(15000, 20000); 1607 1608 config_oa_regs(dev_priv, oa_config->b_counter_regs, 1609 oa_config->b_counter_regs_len); 1610 1611 return 0; 1612 } 1613 1614 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv) 1615 { 1616 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) & 1617 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE)); 1618 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) | 1619 GEN7_DOP_CLOCK_GATE_ENABLE)); 1620 1621 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) & 1622 ~GT_NOA_ENABLE)); 1623 } 1624 1625 /* 1626 * NB: It must always remain pointer safe to run this even if the OA unit 1627 * has been disabled. 1628 * 1629 * It's fine to put out-of-date values into these per-context registers 1630 * in the case that the OA unit has been disabled. 1631 */ 1632 static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx, 1633 u32 *reg_state, 1634 const struct i915_oa_config *oa_config) 1635 { 1636 struct drm_i915_private *dev_priv = ctx->i915; 1637 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset; 1638 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset; 1639 /* The MMIO offsets for Flex EU registers aren't contiguous */ 1640 i915_reg_t flex_regs[] = { 1641 EU_PERF_CNTL0, 1642 EU_PERF_CNTL1, 1643 EU_PERF_CNTL2, 1644 EU_PERF_CNTL3, 1645 EU_PERF_CNTL4, 1646 EU_PERF_CNTL5, 1647 EU_PERF_CNTL6, 1648 }; 1649 int i; 1650 1651 CTX_REG(reg_state, ctx_oactxctrl, GEN8_OACTXCONTROL, 1652 (dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 1653 (dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) | 1654 GEN8_OA_COUNTER_RESUME); 1655 1656 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) { 1657 u32 state_offset = ctx_flexeu0 + i * 2; 1658 u32 mmio = i915_mmio_reg_offset(flex_regs[i]); 1659 1660 /* 1661 * This arbitrary default will select the 'EU FPU0 Pipeline 1662 * Active' event. In the future it's anticipated that there 1663 * will be an explicit 'No Event' we can select, but not yet... 1664 */ 1665 u32 value = 0; 1666 1667 if (oa_config) { 1668 u32 j; 1669 1670 for (j = 0; j < oa_config->flex_regs_len; j++) { 1671 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) { 1672 value = oa_config->flex_regs[j].value; 1673 break; 1674 } 1675 } 1676 } 1677 1678 CTX_REG(reg_state, state_offset, flex_regs[i], value); 1679 } 1680 } 1681 1682 /* 1683 * Manages updating the per-context aspects of the OA stream 1684 * configuration across all contexts. 1685 * 1686 * The awkward consideration here is that OACTXCONTROL controls the 1687 * exponent for periodic sampling which is primarily used for system 1688 * wide profiling where we'd like a consistent sampling period even in 1689 * the face of context switches. 1690 * 1691 * Our approach of updating the register state context (as opposed to 1692 * say using a workaround batch buffer) ensures that the hardware 1693 * won't automatically reload an out-of-date timer exponent even 1694 * transiently before a WA BB could be parsed. 1695 * 1696 * This function needs to: 1697 * - Ensure the currently running context's per-context OA state is 1698 * updated 1699 * - Ensure that all existing contexts will have the correct per-context 1700 * OA state if they are scheduled for use. 1701 * - Ensure any new contexts will be initialized with the correct 1702 * per-context OA state. 1703 * 1704 * Note: it's only the RCS/Render context that has any OA state. 1705 */ 1706 static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv, 1707 const struct i915_oa_config *oa_config) 1708 { 1709 struct intel_engine_cs *engine = dev_priv->engine[RCS]; 1710 unsigned int map_type = i915_coherent_map_type(dev_priv); 1711 struct i915_gem_context *ctx; 1712 struct i915_request *rq; 1713 int ret; 1714 1715 lockdep_assert_held(&dev_priv->drm.struct_mutex); 1716 1717 /* 1718 * The OA register config is setup through the context image. This image 1719 * might be written to by the GPU on context switch (in particular on 1720 * lite-restore). This means we can't safely update a context's image, 1721 * if this context is scheduled/submitted to run on the GPU. 1722 * 1723 * We could emit the OA register config through the batch buffer but 1724 * this might leave small interval of time where the OA unit is 1725 * configured at an invalid sampling period. 1726 * 1727 * So far the best way to work around this issue seems to be draining 1728 * the GPU from any submitted work. 1729 */ 1730 ret = i915_gem_wait_for_idle(dev_priv, 1731 I915_WAIT_LOCKED, 1732 MAX_SCHEDULE_TIMEOUT); 1733 if (ret) 1734 return ret; 1735 1736 /* Update all contexts now that we've stalled the submission. */ 1737 list_for_each_entry(ctx, &dev_priv->contexts.list, link) { 1738 struct intel_context *ce = to_intel_context(ctx, engine); 1739 u32 *regs; 1740 1741 /* OA settings will be set upon first use */ 1742 if (!ce->state) 1743 continue; 1744 1745 regs = i915_gem_object_pin_map(ce->state->obj, map_type); 1746 if (IS_ERR(regs)) 1747 return PTR_ERR(regs); 1748 1749 ce->state->obj->mm.dirty = true; 1750 regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs); 1751 1752 gen8_update_reg_state_unlocked(ctx, regs, oa_config); 1753 1754 i915_gem_object_unpin_map(ce->state->obj); 1755 } 1756 1757 /* 1758 * Apply the configuration by doing one context restore of the edited 1759 * context image. 1760 */ 1761 rq = i915_request_alloc(engine, dev_priv->kernel_context); 1762 if (IS_ERR(rq)) 1763 return PTR_ERR(rq); 1764 1765 i915_request_add(rq); 1766 1767 return 0; 1768 } 1769 1770 static int gen8_enable_metric_set(struct i915_perf_stream *stream) 1771 { 1772 struct drm_i915_private *dev_priv = stream->dev_priv; 1773 const struct i915_oa_config *oa_config = stream->oa_config; 1774 int ret; 1775 1776 /* 1777 * We disable slice/unslice clock ratio change reports on SKL since 1778 * they are too noisy. The HW generates a lot of redundant reports 1779 * where the ratio hasn't really changed causing a lot of redundant 1780 * work to processes and increasing the chances we'll hit buffer 1781 * overruns. 1782 * 1783 * Although we don't currently use the 'disable overrun' OABUFFER 1784 * feature it's worth noting that clock ratio reports have to be 1785 * disabled before considering to use that feature since the HW doesn't 1786 * correctly block these reports. 1787 * 1788 * Currently none of the high-level metrics we have depend on knowing 1789 * this ratio to normalize. 1790 * 1791 * Note: This register is not power context saved and restored, but 1792 * that's OK considering that we disable RC6 while the OA unit is 1793 * enabled. 1794 * 1795 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 1796 * be read back from automatically triggered reports, as part of the 1797 * RPT_ID field. 1798 */ 1799 if (IS_GEN(dev_priv, 9, 11)) { 1800 I915_WRITE(GEN8_OA_DEBUG, 1801 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 1802 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 1803 } 1804 1805 /* 1806 * Update all contexts prior writing the mux configurations as we need 1807 * to make sure all slices/subslices are ON before writing to NOA 1808 * registers. 1809 */ 1810 ret = gen8_configure_all_contexts(dev_priv, oa_config); 1811 if (ret) 1812 return ret; 1813 1814 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len); 1815 1816 config_oa_regs(dev_priv, oa_config->b_counter_regs, 1817 oa_config->b_counter_regs_len); 1818 1819 return 0; 1820 } 1821 1822 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv) 1823 { 1824 /* Reset all contexts' slices/subslices configurations. */ 1825 gen8_configure_all_contexts(dev_priv, NULL); 1826 1827 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) & 1828 ~GT_NOA_ENABLE)); 1829 } 1830 1831 static void gen10_disable_metric_set(struct drm_i915_private *dev_priv) 1832 { 1833 /* Reset all contexts' slices/subslices configurations. */ 1834 gen8_configure_all_contexts(dev_priv, NULL); 1835 1836 /* Make sure we disable noa to save power. */ 1837 I915_WRITE(RPM_CONFIG1, 1838 I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE); 1839 } 1840 1841 static void gen7_oa_enable(struct i915_perf_stream *stream) 1842 { 1843 struct drm_i915_private *dev_priv = stream->dev_priv; 1844 struct i915_gem_context *ctx = stream->ctx; 1845 u32 ctx_id = dev_priv->perf.oa.specific_ctx_id; 1846 bool periodic = dev_priv->perf.oa.periodic; 1847 u32 period_exponent = dev_priv->perf.oa.period_exponent; 1848 u32 report_format = dev_priv->perf.oa.oa_buffer.format; 1849 1850 /* 1851 * Reset buf pointers so we don't forward reports from before now. 1852 * 1853 * Think carefully if considering trying to avoid this, since it 1854 * also ensures status flags and the buffer itself are cleared 1855 * in error paths, and we have checks for invalid reports based 1856 * on the assumption that certain fields are written to zeroed 1857 * memory which this helps maintains. 1858 */ 1859 gen7_init_oa_buffer(dev_priv); 1860 1861 I915_WRITE(GEN7_OACONTROL, 1862 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 1863 (period_exponent << 1864 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 1865 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 1866 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 1867 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 1868 GEN7_OACONTROL_ENABLE); 1869 } 1870 1871 static void gen8_oa_enable(struct i915_perf_stream *stream) 1872 { 1873 struct drm_i915_private *dev_priv = stream->dev_priv; 1874 u32 report_format = dev_priv->perf.oa.oa_buffer.format; 1875 1876 /* 1877 * Reset buf pointers so we don't forward reports from before now. 1878 * 1879 * Think carefully if considering trying to avoid this, since it 1880 * also ensures status flags and the buffer itself are cleared 1881 * in error paths, and we have checks for invalid reports based 1882 * on the assumption that certain fields are written to zeroed 1883 * memory which this helps maintains. 1884 */ 1885 gen8_init_oa_buffer(dev_priv); 1886 1887 /* 1888 * Note: we don't rely on the hardware to perform single context 1889 * filtering and instead filter on the cpu based on the context-id 1890 * field of reports 1891 */ 1892 I915_WRITE(GEN8_OACONTROL, (report_format << 1893 GEN8_OA_REPORT_FORMAT_SHIFT) | 1894 GEN8_OA_COUNTER_ENABLE); 1895 } 1896 1897 /** 1898 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 1899 * @stream: An i915 perf stream opened for OA metrics 1900 * 1901 * [Re]enables hardware periodic sampling according to the period configured 1902 * when opening the stream. This also starts a hrtimer that will periodically 1903 * check for data in the circular OA buffer for notifying userspace (e.g. 1904 * during a read() or poll()). 1905 */ 1906 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 1907 { 1908 struct drm_i915_private *dev_priv = stream->dev_priv; 1909 1910 dev_priv->perf.oa.ops.oa_enable(stream); 1911 1912 if (dev_priv->perf.oa.periodic) 1913 hrtimer_start(&dev_priv->perf.oa.poll_check_timer, 1914 ns_to_ktime(POLL_PERIOD), 1915 HRTIMER_MODE_REL_PINNED); 1916 } 1917 1918 static void gen7_oa_disable(struct i915_perf_stream *stream) 1919 { 1920 struct drm_i915_private *dev_priv = stream->dev_priv; 1921 1922 I915_WRITE(GEN7_OACONTROL, 0); 1923 if (intel_wait_for_register(dev_priv, 1924 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 1925 50)) 1926 DRM_ERROR("wait for OA to be disabled timed out\n"); 1927 } 1928 1929 static void gen8_oa_disable(struct i915_perf_stream *stream) 1930 { 1931 struct drm_i915_private *dev_priv = stream->dev_priv; 1932 1933 I915_WRITE(GEN8_OACONTROL, 0); 1934 if (intel_wait_for_register(dev_priv, 1935 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 1936 50)) 1937 DRM_ERROR("wait for OA to be disabled timed out\n"); 1938 } 1939 1940 /** 1941 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 1942 * @stream: An i915 perf stream opened for OA metrics 1943 * 1944 * Stops the OA unit from periodically writing counter reports into the 1945 * circular OA buffer. This also stops the hrtimer that periodically checks for 1946 * data in the circular OA buffer, for notifying userspace. 1947 */ 1948 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 1949 { 1950 struct drm_i915_private *dev_priv = stream->dev_priv; 1951 1952 dev_priv->perf.oa.ops.oa_disable(stream); 1953 1954 if (dev_priv->perf.oa.periodic) 1955 hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer); 1956 } 1957 1958 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 1959 .destroy = i915_oa_stream_destroy, 1960 .enable = i915_oa_stream_enable, 1961 .disable = i915_oa_stream_disable, 1962 .wait_unlocked = i915_oa_wait_unlocked, 1963 .poll_wait = i915_oa_poll_wait, 1964 .read = i915_oa_read, 1965 }; 1966 1967 /** 1968 * i915_oa_stream_init - validate combined props for OA stream and init 1969 * @stream: An i915 perf stream 1970 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 1971 * @props: The property state that configures stream (individually validated) 1972 * 1973 * While read_properties_unlocked() validates properties in isolation it 1974 * doesn't ensure that the combination necessarily makes sense. 1975 * 1976 * At this point it has been determined that userspace wants a stream of 1977 * OA metrics, but still we need to further validate the combined 1978 * properties are OK. 1979 * 1980 * If the configuration makes sense then we can allocate memory for 1981 * a circular OA buffer and apply the requested metric set configuration. 1982 * 1983 * Returns: zero on success or a negative error code. 1984 */ 1985 static int i915_oa_stream_init(struct i915_perf_stream *stream, 1986 struct drm_i915_perf_open_param *param, 1987 struct perf_open_properties *props) 1988 { 1989 struct drm_i915_private *dev_priv = stream->dev_priv; 1990 int format_size; 1991 int ret; 1992 1993 /* If the sysfs metrics/ directory wasn't registered for some 1994 * reason then don't let userspace try their luck with config 1995 * IDs 1996 */ 1997 if (!dev_priv->perf.metrics_kobj) { 1998 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 1999 return -EINVAL; 2000 } 2001 2002 if (!(props->sample_flags & SAMPLE_OA_REPORT)) { 2003 DRM_DEBUG("Only OA report sampling supported\n"); 2004 return -EINVAL; 2005 } 2006 2007 if (!dev_priv->perf.oa.ops.enable_metric_set) { 2008 DRM_DEBUG("OA unit not supported\n"); 2009 return -ENODEV; 2010 } 2011 2012 /* To avoid the complexity of having to accurately filter 2013 * counter reports and marshal to the appropriate client 2014 * we currently only allow exclusive access 2015 */ 2016 if (dev_priv->perf.oa.exclusive_stream) { 2017 DRM_DEBUG("OA unit already in use\n"); 2018 return -EBUSY; 2019 } 2020 2021 if (!props->oa_format) { 2022 DRM_DEBUG("OA report format not specified\n"); 2023 return -EINVAL; 2024 } 2025 2026 /* We set up some ratelimit state to potentially throttle any _NOTES 2027 * about spurious, invalid OA reports which we don't forward to 2028 * userspace. 2029 * 2030 * The initialization is associated with opening the stream (not driver 2031 * init) considering we print a _NOTE about any throttling when closing 2032 * the stream instead of waiting until driver _fini which no one would 2033 * ever see. 2034 * 2035 * Using the same limiting factors as printk_ratelimit() 2036 */ 2037 ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs, 2038 5 * HZ, 10); 2039 /* Since we use a DRM_NOTE for spurious reports it would be 2040 * inconsistent to let __ratelimit() automatically print a warning for 2041 * throttling. 2042 */ 2043 ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs, 2044 RATELIMIT_MSG_ON_RELEASE); 2045 2046 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2047 2048 format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size; 2049 2050 stream->sample_flags |= SAMPLE_OA_REPORT; 2051 stream->sample_size += format_size; 2052 2053 dev_priv->perf.oa.oa_buffer.format_size = format_size; 2054 if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0)) 2055 return -EINVAL; 2056 2057 dev_priv->perf.oa.oa_buffer.format = 2058 dev_priv->perf.oa.oa_formats[props->oa_format].format; 2059 2060 dev_priv->perf.oa.periodic = props->oa_periodic; 2061 if (dev_priv->perf.oa.periodic) 2062 dev_priv->perf.oa.period_exponent = props->oa_period_exponent; 2063 2064 if (stream->ctx) { 2065 ret = oa_get_render_ctx_id(stream); 2066 if (ret) { 2067 DRM_DEBUG("Invalid context id to filter with\n"); 2068 return ret; 2069 } 2070 } 2071 2072 ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config); 2073 if (ret) { 2074 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2075 goto err_config; 2076 } 2077 2078 /* PRM - observability performance counters: 2079 * 2080 * OACONTROL, performance counter enable, note: 2081 * 2082 * "When this bit is set, in order to have coherent counts, 2083 * RC6 power state and trunk clock gating must be disabled. 2084 * This can be achieved by programming MMIO registers as 2085 * 0xA094=0 and 0xA090[31]=1" 2086 * 2087 * In our case we are expecting that taking pm + FORCEWAKE 2088 * references will effectively disable RC6. 2089 */ 2090 intel_runtime_pm_get(dev_priv); 2091 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 2092 2093 ret = alloc_oa_buffer(dev_priv); 2094 if (ret) 2095 goto err_oa_buf_alloc; 2096 2097 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 2098 if (ret) 2099 goto err_lock; 2100 2101 ret = dev_priv->perf.oa.ops.enable_metric_set(stream); 2102 if (ret) { 2103 DRM_DEBUG("Unable to enable metric set\n"); 2104 goto err_enable; 2105 } 2106 2107 stream->ops = &i915_oa_stream_ops; 2108 2109 dev_priv->perf.oa.exclusive_stream = stream; 2110 2111 mutex_unlock(&dev_priv->drm.struct_mutex); 2112 2113 return 0; 2114 2115 err_enable: 2116 dev_priv->perf.oa.ops.disable_metric_set(dev_priv); 2117 mutex_unlock(&dev_priv->drm.struct_mutex); 2118 2119 err_lock: 2120 free_oa_buffer(dev_priv); 2121 2122 err_oa_buf_alloc: 2123 put_oa_config(dev_priv, stream->oa_config); 2124 2125 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 2126 intel_runtime_pm_put(dev_priv); 2127 2128 err_config: 2129 if (stream->ctx) 2130 oa_put_render_ctx_id(stream); 2131 2132 return ret; 2133 } 2134 2135 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 2136 struct i915_gem_context *ctx, 2137 u32 *reg_state) 2138 { 2139 struct i915_perf_stream *stream; 2140 2141 if (engine->id != RCS) 2142 return; 2143 2144 stream = engine->i915->perf.oa.exclusive_stream; 2145 if (stream) 2146 gen8_update_reg_state_unlocked(ctx, reg_state, stream->oa_config); 2147 } 2148 2149 /** 2150 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation 2151 * @stream: An i915 perf stream 2152 * @file: An i915 perf stream file 2153 * @buf: destination buffer given by userspace 2154 * @count: the number of bytes userspace wants to read 2155 * @ppos: (inout) file seek position (unused) 2156 * 2157 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to 2158 * ensure that if we've successfully copied any data then reporting that takes 2159 * precedence over any internal error status, so the data isn't lost. 2160 * 2161 * For example ret will be -ENOSPC whenever there is more buffered data than 2162 * can be copied to userspace, but that's only interesting if we weren't able 2163 * to copy some data because it implies the userspace buffer is too small to 2164 * receive a single record (and we never split records). 2165 * 2166 * Another case with ret == -EFAULT is more of a grey area since it would seem 2167 * like bad form for userspace to ask us to overrun its buffer, but the user 2168 * knows best: 2169 * 2170 * http://yarchive.net/comp/linux/partial_reads_writes.html 2171 * 2172 * Returns: The number of bytes copied or a negative error code on failure. 2173 */ 2174 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream, 2175 struct file *file, 2176 char __user *buf, 2177 size_t count, 2178 loff_t *ppos) 2179 { 2180 /* Note we keep the offset (aka bytes read) separate from any 2181 * error status so that the final check for whether we return 2182 * the bytes read with a higher precedence than any error (see 2183 * comment below) doesn't need to be handled/duplicated in 2184 * stream->ops->read() implementations. 2185 */ 2186 size_t offset = 0; 2187 int ret = stream->ops->read(stream, buf, count, &offset); 2188 2189 return offset ?: (ret ?: -EAGAIN); 2190 } 2191 2192 /** 2193 * i915_perf_read - handles read() FOP for i915 perf stream FDs 2194 * @file: An i915 perf stream file 2195 * @buf: destination buffer given by userspace 2196 * @count: the number of bytes userspace wants to read 2197 * @ppos: (inout) file seek position (unused) 2198 * 2199 * The entry point for handling a read() on a stream file descriptor from 2200 * userspace. Most of the work is left to the i915_perf_read_locked() and 2201 * &i915_perf_stream_ops->read but to save having stream implementations (of 2202 * which we might have multiple later) we handle blocking read here. 2203 * 2204 * We can also consistently treat trying to read from a disabled stream 2205 * as an IO error so implementations can assume the stream is enabled 2206 * while reading. 2207 * 2208 * Returns: The number of bytes copied or a negative error code on failure. 2209 */ 2210 static ssize_t i915_perf_read(struct file *file, 2211 char __user *buf, 2212 size_t count, 2213 loff_t *ppos) 2214 { 2215 struct i915_perf_stream *stream = file->private_data; 2216 struct drm_i915_private *dev_priv = stream->dev_priv; 2217 ssize_t ret; 2218 2219 /* To ensure it's handled consistently we simply treat all reads of a 2220 * disabled stream as an error. In particular it might otherwise lead 2221 * to a deadlock for blocking file descriptors... 2222 */ 2223 if (!stream->enabled) 2224 return -EIO; 2225 2226 if (!(file->f_flags & O_NONBLOCK)) { 2227 /* There's the small chance of false positives from 2228 * stream->ops->wait_unlocked. 2229 * 2230 * E.g. with single context filtering since we only wait until 2231 * oabuffer has >= 1 report we don't immediately know whether 2232 * any reports really belong to the current context 2233 */ 2234 do { 2235 ret = stream->ops->wait_unlocked(stream); 2236 if (ret) 2237 return ret; 2238 2239 mutex_lock(&dev_priv->perf.lock); 2240 ret = i915_perf_read_locked(stream, file, 2241 buf, count, ppos); 2242 mutex_unlock(&dev_priv->perf.lock); 2243 } while (ret == -EAGAIN); 2244 } else { 2245 mutex_lock(&dev_priv->perf.lock); 2246 ret = i915_perf_read_locked(stream, file, buf, count, ppos); 2247 mutex_unlock(&dev_priv->perf.lock); 2248 } 2249 2250 /* We allow the poll checking to sometimes report false positive EPOLLIN 2251 * events where we might actually report EAGAIN on read() if there's 2252 * not really any data available. In this situation though we don't 2253 * want to enter a busy loop between poll() reporting a EPOLLIN event 2254 * and read() returning -EAGAIN. Clearing the oa.pollin state here 2255 * effectively ensures we back off until the next hrtimer callback 2256 * before reporting another EPOLLIN event. 2257 */ 2258 if (ret >= 0 || ret == -EAGAIN) { 2259 /* Maybe make ->pollin per-stream state if we support multiple 2260 * concurrent streams in the future. 2261 */ 2262 dev_priv->perf.oa.pollin = false; 2263 } 2264 2265 return ret; 2266 } 2267 2268 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 2269 { 2270 struct drm_i915_private *dev_priv = 2271 container_of(hrtimer, typeof(*dev_priv), 2272 perf.oa.poll_check_timer); 2273 2274 if (oa_buffer_check_unlocked(dev_priv)) { 2275 dev_priv->perf.oa.pollin = true; 2276 wake_up(&dev_priv->perf.oa.poll_wq); 2277 } 2278 2279 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD)); 2280 2281 return HRTIMER_RESTART; 2282 } 2283 2284 /** 2285 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 2286 * @dev_priv: i915 device instance 2287 * @stream: An i915 perf stream 2288 * @file: An i915 perf stream file 2289 * @wait: poll() state table 2290 * 2291 * For handling userspace polling on an i915 perf stream, this calls through to 2292 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 2293 * will be woken for new stream data. 2294 * 2295 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2296 * with any non-file-operation driver hooks. 2297 * 2298 * Returns: any poll events that are ready without sleeping 2299 */ 2300 static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv, 2301 struct i915_perf_stream *stream, 2302 struct file *file, 2303 poll_table *wait) 2304 { 2305 __poll_t events = 0; 2306 2307 stream->ops->poll_wait(stream, file, wait); 2308 2309 /* Note: we don't explicitly check whether there's something to read 2310 * here since this path may be very hot depending on what else 2311 * userspace is polling, or on the timeout in use. We rely solely on 2312 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 2313 * samples to read. 2314 */ 2315 if (dev_priv->perf.oa.pollin) 2316 events |= EPOLLIN; 2317 2318 return events; 2319 } 2320 2321 /** 2322 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 2323 * @file: An i915 perf stream file 2324 * @wait: poll() state table 2325 * 2326 * For handling userspace polling on an i915 perf stream, this ensures 2327 * poll_wait() gets called with a wait queue that will be woken for new stream 2328 * data. 2329 * 2330 * Note: Implementation deferred to i915_perf_poll_locked() 2331 * 2332 * Returns: any poll events that are ready without sleeping 2333 */ 2334 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 2335 { 2336 struct i915_perf_stream *stream = file->private_data; 2337 struct drm_i915_private *dev_priv = stream->dev_priv; 2338 __poll_t ret; 2339 2340 mutex_lock(&dev_priv->perf.lock); 2341 ret = i915_perf_poll_locked(dev_priv, stream, file, wait); 2342 mutex_unlock(&dev_priv->perf.lock); 2343 2344 return ret; 2345 } 2346 2347 /** 2348 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 2349 * @stream: A disabled i915 perf stream 2350 * 2351 * [Re]enables the associated capture of data for this stream. 2352 * 2353 * If a stream was previously enabled then there's currently no intention 2354 * to provide userspace any guarantee about the preservation of previously 2355 * buffered data. 2356 */ 2357 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 2358 { 2359 if (stream->enabled) 2360 return; 2361 2362 /* Allow stream->ops->enable() to refer to this */ 2363 stream->enabled = true; 2364 2365 if (stream->ops->enable) 2366 stream->ops->enable(stream); 2367 } 2368 2369 /** 2370 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 2371 * @stream: An enabled i915 perf stream 2372 * 2373 * Disables the associated capture of data for this stream. 2374 * 2375 * The intention is that disabling an re-enabling a stream will ideally be 2376 * cheaper than destroying and re-opening a stream with the same configuration, 2377 * though there are no formal guarantees about what state or buffered data 2378 * must be retained between disabling and re-enabling a stream. 2379 * 2380 * Note: while a stream is disabled it's considered an error for userspace 2381 * to attempt to read from the stream (-EIO). 2382 */ 2383 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 2384 { 2385 if (!stream->enabled) 2386 return; 2387 2388 /* Allow stream->ops->disable() to refer to this */ 2389 stream->enabled = false; 2390 2391 if (stream->ops->disable) 2392 stream->ops->disable(stream); 2393 } 2394 2395 /** 2396 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 2397 * @stream: An i915 perf stream 2398 * @cmd: the ioctl request 2399 * @arg: the ioctl data 2400 * 2401 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2402 * with any non-file-operation driver hooks. 2403 * 2404 * Returns: zero on success or a negative error code. Returns -EINVAL for 2405 * an unknown ioctl request. 2406 */ 2407 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 2408 unsigned int cmd, 2409 unsigned long arg) 2410 { 2411 switch (cmd) { 2412 case I915_PERF_IOCTL_ENABLE: 2413 i915_perf_enable_locked(stream); 2414 return 0; 2415 case I915_PERF_IOCTL_DISABLE: 2416 i915_perf_disable_locked(stream); 2417 return 0; 2418 } 2419 2420 return -EINVAL; 2421 } 2422 2423 /** 2424 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 2425 * @file: An i915 perf stream file 2426 * @cmd: the ioctl request 2427 * @arg: the ioctl data 2428 * 2429 * Implementation deferred to i915_perf_ioctl_locked(). 2430 * 2431 * Returns: zero on success or a negative error code. Returns -EINVAL for 2432 * an unknown ioctl request. 2433 */ 2434 static long i915_perf_ioctl(struct file *file, 2435 unsigned int cmd, 2436 unsigned long arg) 2437 { 2438 struct i915_perf_stream *stream = file->private_data; 2439 struct drm_i915_private *dev_priv = stream->dev_priv; 2440 long ret; 2441 2442 mutex_lock(&dev_priv->perf.lock); 2443 ret = i915_perf_ioctl_locked(stream, cmd, arg); 2444 mutex_unlock(&dev_priv->perf.lock); 2445 2446 return ret; 2447 } 2448 2449 /** 2450 * i915_perf_destroy_locked - destroy an i915 perf stream 2451 * @stream: An i915 perf stream 2452 * 2453 * Frees all resources associated with the given i915 perf @stream, disabling 2454 * any associated data capture in the process. 2455 * 2456 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2457 * with any non-file-operation driver hooks. 2458 */ 2459 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 2460 { 2461 if (stream->enabled) 2462 i915_perf_disable_locked(stream); 2463 2464 if (stream->ops->destroy) 2465 stream->ops->destroy(stream); 2466 2467 list_del(&stream->link); 2468 2469 if (stream->ctx) 2470 i915_gem_context_put(stream->ctx); 2471 2472 kfree(stream); 2473 } 2474 2475 /** 2476 * i915_perf_release - handles userspace close() of a stream file 2477 * @inode: anonymous inode associated with file 2478 * @file: An i915 perf stream file 2479 * 2480 * Cleans up any resources associated with an open i915 perf stream file. 2481 * 2482 * NB: close() can't really fail from the userspace point of view. 2483 * 2484 * Returns: zero on success or a negative error code. 2485 */ 2486 static int i915_perf_release(struct inode *inode, struct file *file) 2487 { 2488 struct i915_perf_stream *stream = file->private_data; 2489 struct drm_i915_private *dev_priv = stream->dev_priv; 2490 2491 mutex_lock(&dev_priv->perf.lock); 2492 i915_perf_destroy_locked(stream); 2493 mutex_unlock(&dev_priv->perf.lock); 2494 2495 return 0; 2496 } 2497 2498 2499 static const struct file_operations fops = { 2500 .owner = THIS_MODULE, 2501 .llseek = no_llseek, 2502 .release = i915_perf_release, 2503 .poll = i915_perf_poll, 2504 .read = i915_perf_read, 2505 .unlocked_ioctl = i915_perf_ioctl, 2506 /* Our ioctl have no arguments, so it's safe to use the same function 2507 * to handle 32bits compatibility. 2508 */ 2509 .compat_ioctl = i915_perf_ioctl, 2510 }; 2511 2512 2513 /** 2514 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 2515 * @dev_priv: i915 device instance 2516 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 2517 * @props: individually validated u64 property value pairs 2518 * @file: drm file 2519 * 2520 * See i915_perf_ioctl_open() for interface details. 2521 * 2522 * Implements further stream config validation and stream initialization on 2523 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex 2524 * taken to serialize with any non-file-operation driver hooks. 2525 * 2526 * Note: at this point the @props have only been validated in isolation and 2527 * it's still necessary to validate that the combination of properties makes 2528 * sense. 2529 * 2530 * In the case where userspace is interested in OA unit metrics then further 2531 * config validation and stream initialization details will be handled by 2532 * i915_oa_stream_init(). The code here should only validate config state that 2533 * will be relevant to all stream types / backends. 2534 * 2535 * Returns: zero on success or a negative error code. 2536 */ 2537 static int 2538 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv, 2539 struct drm_i915_perf_open_param *param, 2540 struct perf_open_properties *props, 2541 struct drm_file *file) 2542 { 2543 struct i915_gem_context *specific_ctx = NULL; 2544 struct i915_perf_stream *stream = NULL; 2545 unsigned long f_flags = 0; 2546 bool privileged_op = true; 2547 int stream_fd; 2548 int ret; 2549 2550 if (props->single_context) { 2551 u32 ctx_handle = props->ctx_handle; 2552 struct drm_i915_file_private *file_priv = file->driver_priv; 2553 2554 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 2555 if (!specific_ctx) { 2556 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 2557 ctx_handle); 2558 ret = -ENOENT; 2559 goto err; 2560 } 2561 } 2562 2563 /* 2564 * On Haswell the OA unit supports clock gating off for a specific 2565 * context and in this mode there's no visibility of metrics for the 2566 * rest of the system, which we consider acceptable for a 2567 * non-privileged client. 2568 * 2569 * For Gen8+ the OA unit no longer supports clock gating off for a 2570 * specific context and the kernel can't securely stop the counters 2571 * from updating as system-wide / global values. Even though we can 2572 * filter reports based on the included context ID we can't block 2573 * clients from seeing the raw / global counter values via 2574 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 2575 * enable the OA unit by default. 2576 */ 2577 if (IS_HASWELL(dev_priv) && specific_ctx) 2578 privileged_op = false; 2579 2580 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 2581 * we check a dev.i915.perf_stream_paranoid sysctl option 2582 * to determine if it's ok to access system wide OA counters 2583 * without CAP_SYS_ADMIN privileges. 2584 */ 2585 if (privileged_op && 2586 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 2587 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n"); 2588 ret = -EACCES; 2589 goto err_ctx; 2590 } 2591 2592 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 2593 if (!stream) { 2594 ret = -ENOMEM; 2595 goto err_ctx; 2596 } 2597 2598 stream->dev_priv = dev_priv; 2599 stream->ctx = specific_ctx; 2600 2601 ret = i915_oa_stream_init(stream, param, props); 2602 if (ret) 2603 goto err_alloc; 2604 2605 /* we avoid simply assigning stream->sample_flags = props->sample_flags 2606 * to have _stream_init check the combination of sample flags more 2607 * thoroughly, but still this is the expected result at this point. 2608 */ 2609 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 2610 ret = -ENODEV; 2611 goto err_flags; 2612 } 2613 2614 list_add(&stream->link, &dev_priv->perf.streams); 2615 2616 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 2617 f_flags |= O_CLOEXEC; 2618 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 2619 f_flags |= O_NONBLOCK; 2620 2621 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 2622 if (stream_fd < 0) { 2623 ret = stream_fd; 2624 goto err_open; 2625 } 2626 2627 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 2628 i915_perf_enable_locked(stream); 2629 2630 return stream_fd; 2631 2632 err_open: 2633 list_del(&stream->link); 2634 err_flags: 2635 if (stream->ops->destroy) 2636 stream->ops->destroy(stream); 2637 err_alloc: 2638 kfree(stream); 2639 err_ctx: 2640 if (specific_ctx) 2641 i915_gem_context_put(specific_ctx); 2642 err: 2643 return ret; 2644 } 2645 2646 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent) 2647 { 2648 return div64_u64(1000000000ULL * (2ULL << exponent), 2649 1000ULL * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz); 2650 } 2651 2652 /** 2653 * read_properties_unlocked - validate + copy userspace stream open properties 2654 * @dev_priv: i915 device instance 2655 * @uprops: The array of u64 key value pairs given by userspace 2656 * @n_props: The number of key value pairs expected in @uprops 2657 * @props: The stream configuration built up while validating properties 2658 * 2659 * Note this function only validates properties in isolation it doesn't 2660 * validate that the combination of properties makes sense or that all 2661 * properties necessary for a particular kind of stream have been set. 2662 * 2663 * Note that there currently aren't any ordering requirements for properties so 2664 * we shouldn't validate or assume anything about ordering here. This doesn't 2665 * rule out defining new properties with ordering requirements in the future. 2666 */ 2667 static int read_properties_unlocked(struct drm_i915_private *dev_priv, 2668 u64 __user *uprops, 2669 u32 n_props, 2670 struct perf_open_properties *props) 2671 { 2672 u64 __user *uprop = uprops; 2673 u32 i; 2674 2675 memset(props, 0, sizeof(struct perf_open_properties)); 2676 2677 if (!n_props) { 2678 DRM_DEBUG("No i915 perf properties given\n"); 2679 return -EINVAL; 2680 } 2681 2682 /* Considering that ID = 0 is reserved and assuming that we don't 2683 * (currently) expect any configurations to ever specify duplicate 2684 * values for a particular property ID then the last _PROP_MAX value is 2685 * one greater than the maximum number of properties we expect to get 2686 * from userspace. 2687 */ 2688 if (n_props >= DRM_I915_PERF_PROP_MAX) { 2689 DRM_DEBUG("More i915 perf properties specified than exist\n"); 2690 return -EINVAL; 2691 } 2692 2693 for (i = 0; i < n_props; i++) { 2694 u64 oa_period, oa_freq_hz; 2695 u64 id, value; 2696 int ret; 2697 2698 ret = get_user(id, uprop); 2699 if (ret) 2700 return ret; 2701 2702 ret = get_user(value, uprop + 1); 2703 if (ret) 2704 return ret; 2705 2706 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 2707 DRM_DEBUG("Unknown i915 perf property ID\n"); 2708 return -EINVAL; 2709 } 2710 2711 switch ((enum drm_i915_perf_property_id)id) { 2712 case DRM_I915_PERF_PROP_CTX_HANDLE: 2713 props->single_context = 1; 2714 props->ctx_handle = value; 2715 break; 2716 case DRM_I915_PERF_PROP_SAMPLE_OA: 2717 if (value) 2718 props->sample_flags |= SAMPLE_OA_REPORT; 2719 break; 2720 case DRM_I915_PERF_PROP_OA_METRICS_SET: 2721 if (value == 0) { 2722 DRM_DEBUG("Unknown OA metric set ID\n"); 2723 return -EINVAL; 2724 } 2725 props->metrics_set = value; 2726 break; 2727 case DRM_I915_PERF_PROP_OA_FORMAT: 2728 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 2729 DRM_DEBUG("Out-of-range OA report format %llu\n", 2730 value); 2731 return -EINVAL; 2732 } 2733 if (!dev_priv->perf.oa.oa_formats[value].size) { 2734 DRM_DEBUG("Unsupported OA report format %llu\n", 2735 value); 2736 return -EINVAL; 2737 } 2738 props->oa_format = value; 2739 break; 2740 case DRM_I915_PERF_PROP_OA_EXPONENT: 2741 if (value > OA_EXPONENT_MAX) { 2742 DRM_DEBUG("OA timer exponent too high (> %u)\n", 2743 OA_EXPONENT_MAX); 2744 return -EINVAL; 2745 } 2746 2747 /* Theoretically we can program the OA unit to sample 2748 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 2749 * for BXT. We don't allow such high sampling 2750 * frequencies by default unless root. 2751 */ 2752 2753 BUILD_BUG_ON(sizeof(oa_period) != 8); 2754 oa_period = oa_exponent_to_ns(dev_priv, value); 2755 2756 /* This check is primarily to ensure that oa_period <= 2757 * UINT32_MAX (before passing to do_div which only 2758 * accepts a u32 denominator), but we can also skip 2759 * checking anything < 1Hz which implicitly can't be 2760 * limited via an integer oa_max_sample_rate. 2761 */ 2762 if (oa_period <= NSEC_PER_SEC) { 2763 u64 tmp = NSEC_PER_SEC; 2764 do_div(tmp, oa_period); 2765 oa_freq_hz = tmp; 2766 } else 2767 oa_freq_hz = 0; 2768 2769 if (oa_freq_hz > i915_oa_max_sample_rate && 2770 !capable(CAP_SYS_ADMIN)) { 2771 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n", 2772 i915_oa_max_sample_rate); 2773 return -EACCES; 2774 } 2775 2776 props->oa_periodic = true; 2777 props->oa_period_exponent = value; 2778 break; 2779 case DRM_I915_PERF_PROP_MAX: 2780 MISSING_CASE(id); 2781 return -EINVAL; 2782 } 2783 2784 uprop += 2; 2785 } 2786 2787 return 0; 2788 } 2789 2790 /** 2791 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 2792 * @dev: drm device 2793 * @data: ioctl data copied from userspace (unvalidated) 2794 * @file: drm file 2795 * 2796 * Validates the stream open parameters given by userspace including flags 2797 * and an array of u64 key, value pair properties. 2798 * 2799 * Very little is assumed up front about the nature of the stream being 2800 * opened (for instance we don't assume it's for periodic OA unit metrics). An 2801 * i915-perf stream is expected to be a suitable interface for other forms of 2802 * buffered data written by the GPU besides periodic OA metrics. 2803 * 2804 * Note we copy the properties from userspace outside of the i915 perf 2805 * mutex to avoid an awkward lockdep with mmap_sem. 2806 * 2807 * Most of the implementation details are handled by 2808 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock 2809 * mutex for serializing with any non-file-operation driver hooks. 2810 * 2811 * Return: A newly opened i915 Perf stream file descriptor or negative 2812 * error code on failure. 2813 */ 2814 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 2815 struct drm_file *file) 2816 { 2817 struct drm_i915_private *dev_priv = dev->dev_private; 2818 struct drm_i915_perf_open_param *param = data; 2819 struct perf_open_properties props; 2820 u32 known_open_flags; 2821 int ret; 2822 2823 if (!dev_priv->perf.initialized) { 2824 DRM_DEBUG("i915 perf interface not available for this system\n"); 2825 return -ENOTSUPP; 2826 } 2827 2828 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 2829 I915_PERF_FLAG_FD_NONBLOCK | 2830 I915_PERF_FLAG_DISABLED; 2831 if (param->flags & ~known_open_flags) { 2832 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 2833 return -EINVAL; 2834 } 2835 2836 ret = read_properties_unlocked(dev_priv, 2837 u64_to_user_ptr(param->properties_ptr), 2838 param->num_properties, 2839 &props); 2840 if (ret) 2841 return ret; 2842 2843 mutex_lock(&dev_priv->perf.lock); 2844 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file); 2845 mutex_unlock(&dev_priv->perf.lock); 2846 2847 return ret; 2848 } 2849 2850 /** 2851 * i915_perf_register - exposes i915-perf to userspace 2852 * @dev_priv: i915 device instance 2853 * 2854 * In particular OA metric sets are advertised under a sysfs metrics/ 2855 * directory allowing userspace to enumerate valid IDs that can be 2856 * used to open an i915-perf stream. 2857 */ 2858 void i915_perf_register(struct drm_i915_private *dev_priv) 2859 { 2860 int ret; 2861 2862 if (!dev_priv->perf.initialized) 2863 return; 2864 2865 /* To be sure we're synchronized with an attempted 2866 * i915_perf_open_ioctl(); considering that we register after 2867 * being exposed to userspace. 2868 */ 2869 mutex_lock(&dev_priv->perf.lock); 2870 2871 dev_priv->perf.metrics_kobj = 2872 kobject_create_and_add("metrics", 2873 &dev_priv->drm.primary->kdev->kobj); 2874 if (!dev_priv->perf.metrics_kobj) 2875 goto exit; 2876 2877 sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr); 2878 2879 if (IS_HASWELL(dev_priv)) { 2880 i915_perf_load_test_config_hsw(dev_priv); 2881 } else if (IS_BROADWELL(dev_priv)) { 2882 i915_perf_load_test_config_bdw(dev_priv); 2883 } else if (IS_CHERRYVIEW(dev_priv)) { 2884 i915_perf_load_test_config_chv(dev_priv); 2885 } else if (IS_SKYLAKE(dev_priv)) { 2886 if (IS_SKL_GT2(dev_priv)) 2887 i915_perf_load_test_config_sklgt2(dev_priv); 2888 else if (IS_SKL_GT3(dev_priv)) 2889 i915_perf_load_test_config_sklgt3(dev_priv); 2890 else if (IS_SKL_GT4(dev_priv)) 2891 i915_perf_load_test_config_sklgt4(dev_priv); 2892 } else if (IS_BROXTON(dev_priv)) { 2893 i915_perf_load_test_config_bxt(dev_priv); 2894 } else if (IS_KABYLAKE(dev_priv)) { 2895 if (IS_KBL_GT2(dev_priv)) 2896 i915_perf_load_test_config_kblgt2(dev_priv); 2897 else if (IS_KBL_GT3(dev_priv)) 2898 i915_perf_load_test_config_kblgt3(dev_priv); 2899 } else if (IS_GEMINILAKE(dev_priv)) { 2900 i915_perf_load_test_config_glk(dev_priv); 2901 } else if (IS_COFFEELAKE(dev_priv)) { 2902 if (IS_CFL_GT2(dev_priv)) 2903 i915_perf_load_test_config_cflgt2(dev_priv); 2904 if (IS_CFL_GT3(dev_priv)) 2905 i915_perf_load_test_config_cflgt3(dev_priv); 2906 } else if (IS_CANNONLAKE(dev_priv)) { 2907 i915_perf_load_test_config_cnl(dev_priv); 2908 } else if (IS_ICELAKE(dev_priv)) { 2909 i915_perf_load_test_config_icl(dev_priv); 2910 } 2911 2912 if (dev_priv->perf.oa.test_config.id == 0) 2913 goto sysfs_error; 2914 2915 ret = sysfs_create_group(dev_priv->perf.metrics_kobj, 2916 &dev_priv->perf.oa.test_config.sysfs_metric); 2917 if (ret) 2918 goto sysfs_error; 2919 2920 atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1); 2921 2922 goto exit; 2923 2924 sysfs_error: 2925 kobject_put(dev_priv->perf.metrics_kobj); 2926 dev_priv->perf.metrics_kobj = NULL; 2927 2928 exit: 2929 mutex_unlock(&dev_priv->perf.lock); 2930 } 2931 2932 /** 2933 * i915_perf_unregister - hide i915-perf from userspace 2934 * @dev_priv: i915 device instance 2935 * 2936 * i915-perf state cleanup is split up into an 'unregister' and 2937 * 'deinit' phase where the interface is first hidden from 2938 * userspace by i915_perf_unregister() before cleaning up 2939 * remaining state in i915_perf_fini(). 2940 */ 2941 void i915_perf_unregister(struct drm_i915_private *dev_priv) 2942 { 2943 if (!dev_priv->perf.metrics_kobj) 2944 return; 2945 2946 sysfs_remove_group(dev_priv->perf.metrics_kobj, 2947 &dev_priv->perf.oa.test_config.sysfs_metric); 2948 2949 kobject_put(dev_priv->perf.metrics_kobj); 2950 dev_priv->perf.metrics_kobj = NULL; 2951 } 2952 2953 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr) 2954 { 2955 static const i915_reg_t flex_eu_regs[] = { 2956 EU_PERF_CNTL0, 2957 EU_PERF_CNTL1, 2958 EU_PERF_CNTL2, 2959 EU_PERF_CNTL3, 2960 EU_PERF_CNTL4, 2961 EU_PERF_CNTL5, 2962 EU_PERF_CNTL6, 2963 }; 2964 int i; 2965 2966 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 2967 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 2968 return true; 2969 } 2970 return false; 2971 } 2972 2973 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr) 2974 { 2975 return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) && 2976 addr <= i915_mmio_reg_offset(OASTARTTRIG8)) || 2977 (addr >= i915_mmio_reg_offset(OAREPORTTRIG1) && 2978 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) || 2979 (addr >= i915_mmio_reg_offset(OACEC0_0) && 2980 addr <= i915_mmio_reg_offset(OACEC7_1)); 2981 } 2982 2983 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 2984 { 2985 return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) || 2986 (addr >= i915_mmio_reg_offset(MICRO_BP0_0) && 2987 addr <= i915_mmio_reg_offset(NOA_WRITE)) || 2988 (addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) && 2989 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) || 2990 (addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) && 2991 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI)); 2992 } 2993 2994 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 2995 { 2996 return gen7_is_valid_mux_addr(dev_priv, addr) || 2997 addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) || 2998 (addr >= i915_mmio_reg_offset(RPM_CONFIG0) && 2999 addr <= i915_mmio_reg_offset(NOA_CONFIG(8))); 3000 } 3001 3002 static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3003 { 3004 return gen8_is_valid_mux_addr(dev_priv, addr) || 3005 (addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) && 3006 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI)); 3007 } 3008 3009 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3010 { 3011 return gen7_is_valid_mux_addr(dev_priv, addr) || 3012 (addr >= 0x25100 && addr <= 0x2FF90) || 3013 (addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) && 3014 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) || 3015 addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0); 3016 } 3017 3018 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3019 { 3020 return gen7_is_valid_mux_addr(dev_priv, addr) || 3021 (addr >= 0x182300 && addr <= 0x1823A4); 3022 } 3023 3024 static uint32_t mask_reg_value(u32 reg, u32 val) 3025 { 3026 /* HALF_SLICE_CHICKEN2 is programmed with a the 3027 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3028 * programmed by userspace doesn't change this. 3029 */ 3030 if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg) 3031 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3032 3033 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3034 * indicated by its name and a bunch of selection fields used by OA 3035 * configs. 3036 */ 3037 if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg) 3038 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3039 3040 return val; 3041 } 3042 3043 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv, 3044 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr), 3045 u32 __user *regs, 3046 u32 n_regs) 3047 { 3048 struct i915_oa_reg *oa_regs; 3049 int err; 3050 u32 i; 3051 3052 if (!n_regs) 3053 return NULL; 3054 3055 if (!access_ok(regs, n_regs * sizeof(u32) * 2)) 3056 return ERR_PTR(-EFAULT); 3057 3058 /* No is_valid function means we're not allowing any register to be programmed. */ 3059 GEM_BUG_ON(!is_valid); 3060 if (!is_valid) 3061 return ERR_PTR(-EINVAL); 3062 3063 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3064 if (!oa_regs) 3065 return ERR_PTR(-ENOMEM); 3066 3067 for (i = 0; i < n_regs; i++) { 3068 u32 addr, value; 3069 3070 err = get_user(addr, regs); 3071 if (err) 3072 goto addr_err; 3073 3074 if (!is_valid(dev_priv, addr)) { 3075 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3076 err = -EINVAL; 3077 goto addr_err; 3078 } 3079 3080 err = get_user(value, regs + 1); 3081 if (err) 3082 goto addr_err; 3083 3084 oa_regs[i].addr = _MMIO(addr); 3085 oa_regs[i].value = mask_reg_value(addr, value); 3086 3087 regs += 2; 3088 } 3089 3090 return oa_regs; 3091 3092 addr_err: 3093 kfree(oa_regs); 3094 return ERR_PTR(err); 3095 } 3096 3097 static ssize_t show_dynamic_id(struct device *dev, 3098 struct device_attribute *attr, 3099 char *buf) 3100 { 3101 struct i915_oa_config *oa_config = 3102 container_of(attr, typeof(*oa_config), sysfs_metric_id); 3103 3104 return sprintf(buf, "%d\n", oa_config->id); 3105 } 3106 3107 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv, 3108 struct i915_oa_config *oa_config) 3109 { 3110 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 3111 oa_config->sysfs_metric_id.attr.name = "id"; 3112 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 3113 oa_config->sysfs_metric_id.show = show_dynamic_id; 3114 oa_config->sysfs_metric_id.store = NULL; 3115 3116 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 3117 oa_config->attrs[1] = NULL; 3118 3119 oa_config->sysfs_metric.name = oa_config->uuid; 3120 oa_config->sysfs_metric.attrs = oa_config->attrs; 3121 3122 return sysfs_create_group(dev_priv->perf.metrics_kobj, 3123 &oa_config->sysfs_metric); 3124 } 3125 3126 /** 3127 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 3128 * @dev: drm device 3129 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 3130 * userspace (unvalidated) 3131 * @file: drm file 3132 * 3133 * Validates the submitted OA register to be saved into a new OA config that 3134 * can then be used for programming the OA unit and its NOA network. 3135 * 3136 * Returns: A new allocated config number to be used with the perf open ioctl 3137 * or a negative error code on failure. 3138 */ 3139 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3140 struct drm_file *file) 3141 { 3142 struct drm_i915_private *dev_priv = dev->dev_private; 3143 struct drm_i915_perf_oa_config *args = data; 3144 struct i915_oa_config *oa_config, *tmp; 3145 int err, id; 3146 3147 if (!dev_priv->perf.initialized) { 3148 DRM_DEBUG("i915 perf interface not available for this system\n"); 3149 return -ENOTSUPP; 3150 } 3151 3152 if (!dev_priv->perf.metrics_kobj) { 3153 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 3154 return -EINVAL; 3155 } 3156 3157 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3158 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 3159 return -EACCES; 3160 } 3161 3162 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 3163 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 3164 (!args->flex_regs_ptr || !args->n_flex_regs)) { 3165 DRM_DEBUG("No OA registers given\n"); 3166 return -EINVAL; 3167 } 3168 3169 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 3170 if (!oa_config) { 3171 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 3172 return -ENOMEM; 3173 } 3174 3175 atomic_set(&oa_config->ref_count, 1); 3176 3177 if (!uuid_is_valid(args->uuid)) { 3178 DRM_DEBUG("Invalid uuid format for OA config\n"); 3179 err = -EINVAL; 3180 goto reg_err; 3181 } 3182 3183 /* Last character in oa_config->uuid will be 0 because oa_config is 3184 * kzalloc. 3185 */ 3186 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 3187 3188 oa_config->mux_regs_len = args->n_mux_regs; 3189 oa_config->mux_regs = 3190 alloc_oa_regs(dev_priv, 3191 dev_priv->perf.oa.ops.is_valid_mux_reg, 3192 u64_to_user_ptr(args->mux_regs_ptr), 3193 args->n_mux_regs); 3194 3195 if (IS_ERR(oa_config->mux_regs)) { 3196 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 3197 err = PTR_ERR(oa_config->mux_regs); 3198 goto reg_err; 3199 } 3200 3201 oa_config->b_counter_regs_len = args->n_boolean_regs; 3202 oa_config->b_counter_regs = 3203 alloc_oa_regs(dev_priv, 3204 dev_priv->perf.oa.ops.is_valid_b_counter_reg, 3205 u64_to_user_ptr(args->boolean_regs_ptr), 3206 args->n_boolean_regs); 3207 3208 if (IS_ERR(oa_config->b_counter_regs)) { 3209 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 3210 err = PTR_ERR(oa_config->b_counter_regs); 3211 goto reg_err; 3212 } 3213 3214 if (INTEL_GEN(dev_priv) < 8) { 3215 if (args->n_flex_regs != 0) { 3216 err = -EINVAL; 3217 goto reg_err; 3218 } 3219 } else { 3220 oa_config->flex_regs_len = args->n_flex_regs; 3221 oa_config->flex_regs = 3222 alloc_oa_regs(dev_priv, 3223 dev_priv->perf.oa.ops.is_valid_flex_reg, 3224 u64_to_user_ptr(args->flex_regs_ptr), 3225 args->n_flex_regs); 3226 3227 if (IS_ERR(oa_config->flex_regs)) { 3228 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 3229 err = PTR_ERR(oa_config->flex_regs); 3230 goto reg_err; 3231 } 3232 } 3233 3234 err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 3235 if (err) 3236 goto reg_err; 3237 3238 /* We shouldn't have too many configs, so this iteration shouldn't be 3239 * too costly. 3240 */ 3241 idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) { 3242 if (!strcmp(tmp->uuid, oa_config->uuid)) { 3243 DRM_DEBUG("OA config already exists with this uuid\n"); 3244 err = -EADDRINUSE; 3245 goto sysfs_err; 3246 } 3247 } 3248 3249 err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config); 3250 if (err) { 3251 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 3252 goto sysfs_err; 3253 } 3254 3255 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 3256 oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr, 3257 oa_config, 2, 3258 0, GFP_KERNEL); 3259 if (oa_config->id < 0) { 3260 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 3261 err = oa_config->id; 3262 goto sysfs_err; 3263 } 3264 3265 mutex_unlock(&dev_priv->perf.metrics_lock); 3266 3267 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 3268 3269 return oa_config->id; 3270 3271 sysfs_err: 3272 mutex_unlock(&dev_priv->perf.metrics_lock); 3273 reg_err: 3274 put_oa_config(dev_priv, oa_config); 3275 DRM_DEBUG("Failed to add new OA config\n"); 3276 return err; 3277 } 3278 3279 /** 3280 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 3281 * @dev: drm device 3282 * @data: ioctl data (pointer to u64 integer) copied from userspace 3283 * @file: drm file 3284 * 3285 * Configs can be removed while being used, the will stop appearing in sysfs 3286 * and their content will be freed when the stream using the config is closed. 3287 * 3288 * Returns: 0 on success or a negative error code on failure. 3289 */ 3290 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3291 struct drm_file *file) 3292 { 3293 struct drm_i915_private *dev_priv = dev->dev_private; 3294 u64 *arg = data; 3295 struct i915_oa_config *oa_config; 3296 int ret; 3297 3298 if (!dev_priv->perf.initialized) { 3299 DRM_DEBUG("i915 perf interface not available for this system\n"); 3300 return -ENOTSUPP; 3301 } 3302 3303 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3304 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 3305 return -EACCES; 3306 } 3307 3308 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 3309 if (ret) 3310 goto lock_err; 3311 3312 oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg); 3313 if (!oa_config) { 3314 DRM_DEBUG("Failed to remove unknown OA config\n"); 3315 ret = -ENOENT; 3316 goto config_err; 3317 } 3318 3319 GEM_BUG_ON(*arg != oa_config->id); 3320 3321 sysfs_remove_group(dev_priv->perf.metrics_kobj, 3322 &oa_config->sysfs_metric); 3323 3324 idr_remove(&dev_priv->perf.metrics_idr, *arg); 3325 3326 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 3327 3328 put_oa_config(dev_priv, oa_config); 3329 3330 config_err: 3331 mutex_unlock(&dev_priv->perf.metrics_lock); 3332 lock_err: 3333 return ret; 3334 } 3335 3336 static struct ctl_table oa_table[] = { 3337 { 3338 .procname = "perf_stream_paranoid", 3339 .data = &i915_perf_stream_paranoid, 3340 .maxlen = sizeof(i915_perf_stream_paranoid), 3341 .mode = 0644, 3342 .proc_handler = proc_dointvec_minmax, 3343 .extra1 = &zero, 3344 .extra2 = &one, 3345 }, 3346 { 3347 .procname = "oa_max_sample_rate", 3348 .data = &i915_oa_max_sample_rate, 3349 .maxlen = sizeof(i915_oa_max_sample_rate), 3350 .mode = 0644, 3351 .proc_handler = proc_dointvec_minmax, 3352 .extra1 = &zero, 3353 .extra2 = &oa_sample_rate_hard_limit, 3354 }, 3355 {} 3356 }; 3357 3358 static struct ctl_table i915_root[] = { 3359 { 3360 .procname = "i915", 3361 .maxlen = 0, 3362 .mode = 0555, 3363 .child = oa_table, 3364 }, 3365 {} 3366 }; 3367 3368 static struct ctl_table dev_root[] = { 3369 { 3370 .procname = "dev", 3371 .maxlen = 0, 3372 .mode = 0555, 3373 .child = i915_root, 3374 }, 3375 {} 3376 }; 3377 3378 /** 3379 * i915_perf_init - initialize i915-perf state on module load 3380 * @dev_priv: i915 device instance 3381 * 3382 * Initializes i915-perf state without exposing anything to userspace. 3383 * 3384 * Note: i915-perf initialization is split into an 'init' and 'register' 3385 * phase with the i915_perf_register() exposing state to userspace. 3386 */ 3387 void i915_perf_init(struct drm_i915_private *dev_priv) 3388 { 3389 if (IS_HASWELL(dev_priv)) { 3390 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3391 gen7_is_valid_b_counter_addr; 3392 dev_priv->perf.oa.ops.is_valid_mux_reg = 3393 hsw_is_valid_mux_addr; 3394 dev_priv->perf.oa.ops.is_valid_flex_reg = NULL; 3395 dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set; 3396 dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set; 3397 dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable; 3398 dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable; 3399 dev_priv->perf.oa.ops.read = gen7_oa_read; 3400 dev_priv->perf.oa.ops.oa_hw_tail_read = 3401 gen7_oa_hw_tail_read; 3402 3403 dev_priv->perf.oa.oa_formats = hsw_oa_formats; 3404 } else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) { 3405 /* Note: that although we could theoretically also support the 3406 * legacy ringbuffer mode on BDW (and earlier iterations of 3407 * this driver, before upstreaming did this) it didn't seem 3408 * worth the complexity to maintain now that BDW+ enable 3409 * execlist mode by default. 3410 */ 3411 dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats; 3412 3413 dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable; 3414 dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable; 3415 dev_priv->perf.oa.ops.read = gen8_oa_read; 3416 dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 3417 3418 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv)) { 3419 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3420 gen7_is_valid_b_counter_addr; 3421 dev_priv->perf.oa.ops.is_valid_mux_reg = 3422 gen8_is_valid_mux_addr; 3423 dev_priv->perf.oa.ops.is_valid_flex_reg = 3424 gen8_is_valid_flex_addr; 3425 3426 if (IS_CHERRYVIEW(dev_priv)) { 3427 dev_priv->perf.oa.ops.is_valid_mux_reg = 3428 chv_is_valid_mux_addr; 3429 } 3430 3431 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set; 3432 dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set; 3433 3434 if (IS_GEN8(dev_priv)) { 3435 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120; 3436 dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce; 3437 3438 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25); 3439 } else { 3440 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128; 3441 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de; 3442 3443 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16); 3444 } 3445 } else if (IS_GEN(dev_priv, 10, 11)) { 3446 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3447 gen7_is_valid_b_counter_addr; 3448 dev_priv->perf.oa.ops.is_valid_mux_reg = 3449 gen10_is_valid_mux_addr; 3450 dev_priv->perf.oa.ops.is_valid_flex_reg = 3451 gen8_is_valid_flex_addr; 3452 3453 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set; 3454 dev_priv->perf.oa.ops.disable_metric_set = gen10_disable_metric_set; 3455 3456 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128; 3457 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de; 3458 3459 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16); 3460 } 3461 } 3462 3463 if (dev_priv->perf.oa.ops.enable_metric_set) { 3464 hrtimer_init(&dev_priv->perf.oa.poll_check_timer, 3465 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3466 dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb; 3467 init_waitqueue_head(&dev_priv->perf.oa.poll_wq); 3468 3469 INIT_LIST_HEAD(&dev_priv->perf.streams); 3470 mutex_init(&dev_priv->perf.lock); 3471 spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock); 3472 3473 oa_sample_rate_hard_limit = 1000 * 3474 (INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz / 2); 3475 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root); 3476 3477 mutex_init(&dev_priv->perf.metrics_lock); 3478 idr_init(&dev_priv->perf.metrics_idr); 3479 3480 dev_priv->perf.initialized = true; 3481 } 3482 } 3483 3484 static int destroy_config(int id, void *p, void *data) 3485 { 3486 struct drm_i915_private *dev_priv = data; 3487 struct i915_oa_config *oa_config = p; 3488 3489 put_oa_config(dev_priv, oa_config); 3490 3491 return 0; 3492 } 3493 3494 /** 3495 * i915_perf_fini - Counter part to i915_perf_init() 3496 * @dev_priv: i915 device instance 3497 */ 3498 void i915_perf_fini(struct drm_i915_private *dev_priv) 3499 { 3500 if (!dev_priv->perf.initialized) 3501 return; 3502 3503 idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv); 3504 idr_destroy(&dev_priv->perf.metrics_idr); 3505 3506 unregister_sysctl_table(dev_priv->perf.sysctl_header); 3507 3508 memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops)); 3509 3510 dev_priv->perf.initialized = false; 3511 } 3512