1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gem/i915_gem_internal.h" 200 #include "gt/intel_engine_pm.h" 201 #include "gt/intel_engine_regs.h" 202 #include "gt/intel_engine_user.h" 203 #include "gt/intel_execlists_submission.h" 204 #include "gt/intel_gpu_commands.h" 205 #include "gt/intel_gt.h" 206 #include "gt/intel_gt_clock_utils.h" 207 #include "gt/intel_gt_regs.h" 208 #include "gt/intel_lrc.h" 209 #include "gt/intel_lrc_reg.h" 210 #include "gt/intel_ring.h" 211 212 #include "i915_drv.h" 213 #include "i915_file_private.h" 214 #include "i915_perf.h" 215 #include "i915_perf_oa_regs.h" 216 217 /* HW requires this to be a power of two, between 128k and 16M, though driver 218 * is currently generally designed assuming the largest 16M size is used such 219 * that the overflow cases are unlikely in normal operation. 220 */ 221 #define OA_BUFFER_SIZE SZ_16M 222 223 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 224 225 /** 226 * DOC: OA Tail Pointer Race 227 * 228 * There's a HW race condition between OA unit tail pointer register updates and 229 * writes to memory whereby the tail pointer can sometimes get ahead of what's 230 * been written out to the OA buffer so far (in terms of what's visible to the 231 * CPU). 232 * 233 * Although this can be observed explicitly while copying reports to userspace 234 * by checking for a zeroed report-id field in tail reports, we want to account 235 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 236 * redundant read() attempts. 237 * 238 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 239 * in the OA buffer, starting from the tail reported by the HW until we find a 240 * report with its first 2 dwords not 0 meaning its previous report is 241 * completely in memory and ready to be read. Those dwords are also set to 0 242 * once read and the whole buffer is cleared upon OA buffer initialization. The 243 * first dword is the reason for this report while the second is the timestamp, 244 * making the chances of having those 2 fields at 0 fairly unlikely. A more 245 * detailed explanation is available in oa_buffer_check_unlocked(). 246 * 247 * Most of the implementation details for this workaround are in 248 * oa_buffer_check_unlocked() and _append_oa_reports() 249 * 250 * Note for posterity: previously the driver used to define an effective tail 251 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 252 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 253 * This was flawed considering that the OA unit may also automatically generate 254 * non-periodic reports (such as on context switch) or the OA unit may be 255 * enabled without any periodic sampling. 256 */ 257 #define OA_TAIL_MARGIN_NSEC 100000ULL 258 #define INVALID_TAIL_PTR 0xffffffff 259 260 /* The default frequency for checking whether the OA unit has written new 261 * reports to the circular OA buffer... 262 */ 263 #define DEFAULT_POLL_FREQUENCY_HZ 200 264 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 265 266 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 267 static u32 i915_perf_stream_paranoid = true; 268 269 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 270 * of the 64bit timestamp bits to trigger reports from) but there's currently 271 * no known use case for sampling as infrequently as once per 47 thousand years. 272 * 273 * Since the timestamps included in OA reports are only 32bits it seems 274 * reasonable to limit the OA exponent where it's still possible to account for 275 * overflow in OA report timestamps. 276 */ 277 #define OA_EXPONENT_MAX 31 278 279 #define INVALID_CTX_ID 0xffffffff 280 281 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 282 #define OAREPORT_REASON_MASK 0x3f 283 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 284 #define OAREPORT_REASON_SHIFT 19 285 #define OAREPORT_REASON_TIMER (1<<0) 286 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 287 #define OAREPORT_REASON_CLK_RATIO (1<<5) 288 289 290 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 291 * 292 * The highest sampling frequency we can theoretically program the OA unit 293 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 294 * 295 * Initialized just before we register the sysctl parameter. 296 */ 297 static int oa_sample_rate_hard_limit; 298 299 /* Theoretically we can program the OA unit to sample every 160ns but don't 300 * allow that by default unless root... 301 * 302 * The default threshold of 100000Hz is based on perf's similar 303 * kernel.perf_event_max_sample_rate sysctl parameter. 304 */ 305 static u32 i915_oa_max_sample_rate = 100000; 306 307 /* XXX: beware if future OA HW adds new report formats that the current 308 * code assumes all reports have a power-of-two size and ~(size - 1) can 309 * be used as a mask to align the OA tail pointer. 310 */ 311 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = { 312 [I915_OA_FORMAT_A13] = { 0, 64 }, 313 [I915_OA_FORMAT_A29] = { 1, 128 }, 314 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 315 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 316 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 317 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 318 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 319 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 320 [I915_OA_FORMAT_A12] = { 0, 64 }, 321 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 322 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 323 }; 324 325 #define SAMPLE_OA_REPORT (1<<0) 326 327 /** 328 * struct perf_open_properties - for validated properties given to open a stream 329 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 330 * @single_context: Whether a single or all gpu contexts should be monitored 331 * @hold_preemption: Whether the preemption is disabled for the filtered 332 * context 333 * @ctx_handle: A gem ctx handle for use with @single_context 334 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 335 * @oa_format: An OA unit HW report format 336 * @oa_periodic: Whether to enable periodic OA unit sampling 337 * @oa_period_exponent: The OA unit sampling period is derived from this 338 * @engine: The engine (typically rcs0) being monitored by the OA unit 339 * @has_sseu: Whether @sseu was specified by userspace 340 * @sseu: internal SSEU configuration computed either from the userspace 341 * specified configuration in the opening parameters or a default value 342 * (see get_default_sseu_config()) 343 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 344 * data availability 345 * 346 * As read_properties_unlocked() enumerates and validates the properties given 347 * to open a stream of metrics the configuration is built up in the structure 348 * which starts out zero initialized. 349 */ 350 struct perf_open_properties { 351 u32 sample_flags; 352 353 u64 single_context:1; 354 u64 hold_preemption:1; 355 u64 ctx_handle; 356 357 /* OA sampling state */ 358 int metrics_set; 359 int oa_format; 360 bool oa_periodic; 361 int oa_period_exponent; 362 363 struct intel_engine_cs *engine; 364 365 bool has_sseu; 366 struct intel_sseu sseu; 367 368 u64 poll_oa_period; 369 }; 370 371 struct i915_oa_config_bo { 372 struct llist_node node; 373 374 struct i915_oa_config *oa_config; 375 struct i915_vma *vma; 376 }; 377 378 static struct ctl_table_header *sysctl_header; 379 380 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 381 382 void i915_oa_config_release(struct kref *ref) 383 { 384 struct i915_oa_config *oa_config = 385 container_of(ref, typeof(*oa_config), ref); 386 387 kfree(oa_config->flex_regs); 388 kfree(oa_config->b_counter_regs); 389 kfree(oa_config->mux_regs); 390 391 kfree_rcu(oa_config, rcu); 392 } 393 394 struct i915_oa_config * 395 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 396 { 397 struct i915_oa_config *oa_config; 398 399 rcu_read_lock(); 400 oa_config = idr_find(&perf->metrics_idr, metrics_set); 401 if (oa_config) 402 oa_config = i915_oa_config_get(oa_config); 403 rcu_read_unlock(); 404 405 return oa_config; 406 } 407 408 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 409 { 410 i915_oa_config_put(oa_bo->oa_config); 411 i915_vma_put(oa_bo->vma); 412 kfree(oa_bo); 413 } 414 415 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 416 { 417 struct intel_uncore *uncore = stream->uncore; 418 419 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 420 GEN12_OAG_OATAILPTR_MASK; 421 } 422 423 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 424 { 425 struct intel_uncore *uncore = stream->uncore; 426 427 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 428 } 429 430 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 431 { 432 struct intel_uncore *uncore = stream->uncore; 433 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 434 435 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 436 } 437 438 /** 439 * oa_buffer_check_unlocked - check for data and update tail ptr state 440 * @stream: i915 stream instance 441 * 442 * This is either called via fops (for blocking reads in user ctx) or the poll 443 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 444 * if there is data available for userspace to read. 445 * 446 * This function is central to providing a workaround for the OA unit tail 447 * pointer having a race with respect to what data is visible to the CPU. 448 * It is responsible for reading tail pointers from the hardware and giving 449 * the pointers time to 'age' before they are made available for reading. 450 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 451 * 452 * Besides returning true when there is data available to read() this function 453 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer 454 * object. 455 * 456 * Note: It's safe to read OA config state here unlocked, assuming that this is 457 * only called while the stream is enabled, while the global OA configuration 458 * can't be modified. 459 * 460 * Returns: %true if the OA buffer contains data, else %false 461 */ 462 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 463 { 464 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 465 int report_size = stream->oa_buffer.format_size; 466 unsigned long flags; 467 bool pollin; 468 u32 hw_tail; 469 u64 now; 470 471 /* We have to consider the (unlikely) possibility that read() errors 472 * could result in an OA buffer reset which might reset the head and 473 * tail state. 474 */ 475 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 476 477 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 478 479 /* The tail pointer increases in 64 byte increments, 480 * not in report_size steps... 481 */ 482 hw_tail &= ~(report_size - 1); 483 484 now = ktime_get_mono_fast_ns(); 485 486 if (hw_tail == stream->oa_buffer.aging_tail && 487 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) { 488 /* If the HW tail hasn't move since the last check and the HW 489 * tail has been aging for long enough, declare it the new 490 * tail. 491 */ 492 stream->oa_buffer.tail = stream->oa_buffer.aging_tail; 493 } else { 494 u32 head, tail, aged_tail; 495 496 /* NB: The head we observe here might effectively be a little 497 * out of date. If a read() is in progress, the head could be 498 * anywhere between this head and stream->oa_buffer.tail. 499 */ 500 head = stream->oa_buffer.head - gtt_offset; 501 aged_tail = stream->oa_buffer.tail - gtt_offset; 502 503 hw_tail -= gtt_offset; 504 tail = hw_tail; 505 506 /* Walk the stream backward until we find a report with dword 0 507 * & 1 not at 0. Since the circular buffer pointers progress by 508 * increments of 64 bytes and that reports can be up to 256 509 * bytes long, we can't tell whether a report has fully landed 510 * in memory before the first 2 dwords of the following report 511 * have effectively landed. 512 * 513 * This is assuming that the writes of the OA unit land in 514 * memory in the order they were written to. 515 * If not : (╯°□°)╯︵ ┻━┻ 516 */ 517 while (OA_TAKEN(tail, aged_tail) >= report_size) { 518 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail); 519 520 if (report32[0] != 0 || report32[1] != 0) 521 break; 522 523 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 524 } 525 526 if (OA_TAKEN(hw_tail, tail) > report_size && 527 __ratelimit(&stream->perf->tail_pointer_race)) 528 DRM_NOTE("unlanded report(s) head=0x%x " 529 "tail=0x%x hw_tail=0x%x\n", 530 head, tail, hw_tail); 531 532 stream->oa_buffer.tail = gtt_offset + tail; 533 stream->oa_buffer.aging_tail = gtt_offset + hw_tail; 534 stream->oa_buffer.aging_timestamp = now; 535 } 536 537 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset, 538 stream->oa_buffer.head - gtt_offset) >= report_size; 539 540 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 541 542 return pollin; 543 } 544 545 /** 546 * append_oa_status - Appends a status record to a userspace read() buffer. 547 * @stream: An i915-perf stream opened for OA metrics 548 * @buf: destination buffer given by userspace 549 * @count: the number of bytes userspace wants to read 550 * @offset: (inout): the current position for writing into @buf 551 * @type: The kind of status to report to userspace 552 * 553 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 554 * into the userspace read() buffer. 555 * 556 * The @buf @offset will only be updated on success. 557 * 558 * Returns: 0 on success, negative error code on failure. 559 */ 560 static int append_oa_status(struct i915_perf_stream *stream, 561 char __user *buf, 562 size_t count, 563 size_t *offset, 564 enum drm_i915_perf_record_type type) 565 { 566 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 567 568 if ((count - *offset) < header.size) 569 return -ENOSPC; 570 571 if (copy_to_user(buf + *offset, &header, sizeof(header))) 572 return -EFAULT; 573 574 (*offset) += header.size; 575 576 return 0; 577 } 578 579 /** 580 * append_oa_sample - Copies single OA report into userspace read() buffer. 581 * @stream: An i915-perf stream opened for OA metrics 582 * @buf: destination buffer given by userspace 583 * @count: the number of bytes userspace wants to read 584 * @offset: (inout): the current position for writing into @buf 585 * @report: A single OA report to (optionally) include as part of the sample 586 * 587 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 588 * properties when opening a stream, tracked as `stream->sample_flags`. This 589 * function copies the requested components of a single sample to the given 590 * read() @buf. 591 * 592 * The @buf @offset will only be updated on success. 593 * 594 * Returns: 0 on success, negative error code on failure. 595 */ 596 static int append_oa_sample(struct i915_perf_stream *stream, 597 char __user *buf, 598 size_t count, 599 size_t *offset, 600 const u8 *report) 601 { 602 int report_size = stream->oa_buffer.format_size; 603 struct drm_i915_perf_record_header header; 604 605 header.type = DRM_I915_PERF_RECORD_SAMPLE; 606 header.pad = 0; 607 header.size = stream->sample_size; 608 609 if ((count - *offset) < header.size) 610 return -ENOSPC; 611 612 buf += *offset; 613 if (copy_to_user(buf, &header, sizeof(header))) 614 return -EFAULT; 615 buf += sizeof(header); 616 617 if (copy_to_user(buf, report, report_size)) 618 return -EFAULT; 619 620 (*offset) += header.size; 621 622 return 0; 623 } 624 625 /** 626 * gen8_append_oa_reports - Copies all buffered OA reports into 627 * userspace read() buffer. 628 * @stream: An i915-perf stream opened for OA metrics 629 * @buf: destination buffer given by userspace 630 * @count: the number of bytes userspace wants to read 631 * @offset: (inout): the current position for writing into @buf 632 * 633 * Notably any error condition resulting in a short read (-%ENOSPC or 634 * -%EFAULT) will be returned even though one or more records may 635 * have been successfully copied. In this case it's up to the caller 636 * to decide if the error should be squashed before returning to 637 * userspace. 638 * 639 * Note: reports are consumed from the head, and appended to the 640 * tail, so the tail chases the head?... If you think that's mad 641 * and back-to-front you're not alone, but this follows the 642 * Gen PRM naming convention. 643 * 644 * Returns: 0 on success, negative error code on failure. 645 */ 646 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 647 char __user *buf, 648 size_t count, 649 size_t *offset) 650 { 651 struct intel_uncore *uncore = stream->uncore; 652 int report_size = stream->oa_buffer.format_size; 653 u8 *oa_buf_base = stream->oa_buffer.vaddr; 654 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 655 u32 mask = (OA_BUFFER_SIZE - 1); 656 size_t start_offset = *offset; 657 unsigned long flags; 658 u32 head, tail; 659 u32 taken; 660 int ret = 0; 661 662 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 663 return -EIO; 664 665 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 666 667 head = stream->oa_buffer.head; 668 tail = stream->oa_buffer.tail; 669 670 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 671 672 /* 673 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 674 * while indexing relative to oa_buf_base. 675 */ 676 head -= gtt_offset; 677 tail -= gtt_offset; 678 679 /* 680 * An out of bounds or misaligned head or tail pointer implies a driver 681 * bug since we validate + align the tail pointers we read from the 682 * hardware and we are in full control of the head pointer which should 683 * only be incremented by multiples of the report size (notably also 684 * all a power of two). 685 */ 686 if (drm_WARN_ONCE(&uncore->i915->drm, 687 head > OA_BUFFER_SIZE || head % report_size || 688 tail > OA_BUFFER_SIZE || tail % report_size, 689 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 690 head, tail)) 691 return -EIO; 692 693 694 for (/* none */; 695 (taken = OA_TAKEN(tail, head)); 696 head = (head + report_size) & mask) { 697 u8 *report = oa_buf_base + head; 698 u32 *report32 = (void *)report; 699 u32 ctx_id; 700 u32 reason; 701 702 /* 703 * All the report sizes factor neatly into the buffer 704 * size so we never expect to see a report split 705 * between the beginning and end of the buffer. 706 * 707 * Given the initial alignment check a misalignment 708 * here would imply a driver bug that would result 709 * in an overrun. 710 */ 711 if (drm_WARN_ON(&uncore->i915->drm, 712 (OA_BUFFER_SIZE - head) < report_size)) { 713 drm_err(&uncore->i915->drm, 714 "Spurious OA head ptr: non-integral report offset\n"); 715 break; 716 } 717 718 /* 719 * The reason field includes flags identifying what 720 * triggered this specific report (mostly timer 721 * triggered or e.g. due to a context switch). 722 * 723 * This field is never expected to be zero so we can 724 * check that the report isn't invalid before copying 725 * it to userspace... 726 */ 727 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 728 (GRAPHICS_VER(stream->perf->i915) == 12 ? 729 OAREPORT_REASON_MASK_EXTENDED : 730 OAREPORT_REASON_MASK)); 731 732 ctx_id = report32[2] & stream->specific_ctx_id_mask; 733 734 /* 735 * Squash whatever is in the CTX_ID field if it's marked as 736 * invalid to be sure we avoid false-positive, single-context 737 * filtering below... 738 * 739 * Note: that we don't clear the valid_ctx_bit so userspace can 740 * understand that the ID has been squashed by the kernel. 741 */ 742 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 743 GRAPHICS_VER(stream->perf->i915) <= 11) 744 ctx_id = report32[2] = INVALID_CTX_ID; 745 746 /* 747 * NB: For Gen 8 the OA unit no longer supports clock gating 748 * off for a specific context and the kernel can't securely 749 * stop the counters from updating as system-wide / global 750 * values. 751 * 752 * Automatic reports now include a context ID so reports can be 753 * filtered on the cpu but it's not worth trying to 754 * automatically subtract/hide counter progress for other 755 * contexts while filtering since we can't stop userspace 756 * issuing MI_REPORT_PERF_COUNT commands which would still 757 * provide a side-band view of the real values. 758 * 759 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 760 * to normalize counters for a single filtered context then it 761 * needs be forwarded bookend context-switch reports so that it 762 * can track switches in between MI_REPORT_PERF_COUNT commands 763 * and can itself subtract/ignore the progress of counters 764 * associated with other contexts. Note that the hardware 765 * automatically triggers reports when switching to a new 766 * context which are tagged with the ID of the newly active 767 * context. To avoid the complexity (and likely fragility) of 768 * reading ahead while parsing reports to try and minimize 769 * forwarding redundant context switch reports (i.e. between 770 * other, unrelated contexts) we simply elect to forward them 771 * all. 772 * 773 * We don't rely solely on the reason field to identify context 774 * switches since it's not-uncommon for periodic samples to 775 * identify a switch before any 'context switch' report. 776 */ 777 if (!stream->perf->exclusive_stream->ctx || 778 stream->specific_ctx_id == ctx_id || 779 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 780 reason & OAREPORT_REASON_CTX_SWITCH) { 781 782 /* 783 * While filtering for a single context we avoid 784 * leaking the IDs of other contexts. 785 */ 786 if (stream->perf->exclusive_stream->ctx && 787 stream->specific_ctx_id != ctx_id) { 788 report32[2] = INVALID_CTX_ID; 789 } 790 791 ret = append_oa_sample(stream, buf, count, offset, 792 report); 793 if (ret) 794 break; 795 796 stream->oa_buffer.last_ctx_id = ctx_id; 797 } 798 799 /* 800 * Clear out the first 2 dword as a mean to detect unlanded 801 * reports. 802 */ 803 report32[0] = 0; 804 report32[1] = 0; 805 } 806 807 if (start_offset != *offset) { 808 i915_reg_t oaheadptr; 809 810 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ? 811 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 812 813 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 814 815 /* 816 * We removed the gtt_offset for the copy loop above, indexing 817 * relative to oa_buf_base so put back here... 818 */ 819 head += gtt_offset; 820 intel_uncore_write(uncore, oaheadptr, 821 head & GEN12_OAG_OAHEADPTR_MASK); 822 stream->oa_buffer.head = head; 823 824 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 825 } 826 827 return ret; 828 } 829 830 /** 831 * gen8_oa_read - copy status records then buffered OA reports 832 * @stream: An i915-perf stream opened for OA metrics 833 * @buf: destination buffer given by userspace 834 * @count: the number of bytes userspace wants to read 835 * @offset: (inout): the current position for writing into @buf 836 * 837 * Checks OA unit status registers and if necessary appends corresponding 838 * status records for userspace (such as for a buffer full condition) and then 839 * initiate appending any buffered OA reports. 840 * 841 * Updates @offset according to the number of bytes successfully copied into 842 * the userspace buffer. 843 * 844 * NB: some data may be successfully copied to the userspace buffer 845 * even if an error is returned, and this is reflected in the 846 * updated @offset. 847 * 848 * Returns: zero on success or a negative error code 849 */ 850 static int gen8_oa_read(struct i915_perf_stream *stream, 851 char __user *buf, 852 size_t count, 853 size_t *offset) 854 { 855 struct intel_uncore *uncore = stream->uncore; 856 u32 oastatus; 857 i915_reg_t oastatus_reg; 858 int ret; 859 860 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 861 return -EIO; 862 863 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ? 864 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 865 866 oastatus = intel_uncore_read(uncore, oastatus_reg); 867 868 /* 869 * We treat OABUFFER_OVERFLOW as a significant error: 870 * 871 * Although theoretically we could handle this more gracefully 872 * sometimes, some Gens don't correctly suppress certain 873 * automatically triggered reports in this condition and so we 874 * have to assume that old reports are now being trampled 875 * over. 876 * 877 * Considering how we don't currently give userspace control 878 * over the OA buffer size and always configure a large 16MB 879 * buffer, then a buffer overflow does anyway likely indicate 880 * that something has gone quite badly wrong. 881 */ 882 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 883 ret = append_oa_status(stream, buf, count, offset, 884 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 885 if (ret) 886 return ret; 887 888 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 889 stream->period_exponent); 890 891 stream->perf->ops.oa_disable(stream); 892 stream->perf->ops.oa_enable(stream); 893 894 /* 895 * Note: .oa_enable() is expected to re-init the oabuffer and 896 * reset GEN8_OASTATUS for us 897 */ 898 oastatus = intel_uncore_read(uncore, oastatus_reg); 899 } 900 901 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 902 ret = append_oa_status(stream, buf, count, offset, 903 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 904 if (ret) 905 return ret; 906 907 intel_uncore_rmw(uncore, oastatus_reg, 908 GEN8_OASTATUS_COUNTER_OVERFLOW | 909 GEN8_OASTATUS_REPORT_LOST, 910 IS_GRAPHICS_VER(uncore->i915, 8, 11) ? 911 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 912 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 913 } 914 915 return gen8_append_oa_reports(stream, buf, count, offset); 916 } 917 918 /** 919 * gen7_append_oa_reports - Copies all buffered OA reports into 920 * userspace read() buffer. 921 * @stream: An i915-perf stream opened for OA metrics 922 * @buf: destination buffer given by userspace 923 * @count: the number of bytes userspace wants to read 924 * @offset: (inout): the current position for writing into @buf 925 * 926 * Notably any error condition resulting in a short read (-%ENOSPC or 927 * -%EFAULT) will be returned even though one or more records may 928 * have been successfully copied. In this case it's up to the caller 929 * to decide if the error should be squashed before returning to 930 * userspace. 931 * 932 * Note: reports are consumed from the head, and appended to the 933 * tail, so the tail chases the head?... If you think that's mad 934 * and back-to-front you're not alone, but this follows the 935 * Gen PRM naming convention. 936 * 937 * Returns: 0 on success, negative error code on failure. 938 */ 939 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 940 char __user *buf, 941 size_t count, 942 size_t *offset) 943 { 944 struct intel_uncore *uncore = stream->uncore; 945 int report_size = stream->oa_buffer.format_size; 946 u8 *oa_buf_base = stream->oa_buffer.vaddr; 947 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 948 u32 mask = (OA_BUFFER_SIZE - 1); 949 size_t start_offset = *offset; 950 unsigned long flags; 951 u32 head, tail; 952 u32 taken; 953 int ret = 0; 954 955 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 956 return -EIO; 957 958 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 959 960 head = stream->oa_buffer.head; 961 tail = stream->oa_buffer.tail; 962 963 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 964 965 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 966 * while indexing relative to oa_buf_base. 967 */ 968 head -= gtt_offset; 969 tail -= gtt_offset; 970 971 /* An out of bounds or misaligned head or tail pointer implies a driver 972 * bug since we validate + align the tail pointers we read from the 973 * hardware and we are in full control of the head pointer which should 974 * only be incremented by multiples of the report size (notably also 975 * all a power of two). 976 */ 977 if (drm_WARN_ONCE(&uncore->i915->drm, 978 head > OA_BUFFER_SIZE || head % report_size || 979 tail > OA_BUFFER_SIZE || tail % report_size, 980 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 981 head, tail)) 982 return -EIO; 983 984 985 for (/* none */; 986 (taken = OA_TAKEN(tail, head)); 987 head = (head + report_size) & mask) { 988 u8 *report = oa_buf_base + head; 989 u32 *report32 = (void *)report; 990 991 /* All the report sizes factor neatly into the buffer 992 * size so we never expect to see a report split 993 * between the beginning and end of the buffer. 994 * 995 * Given the initial alignment check a misalignment 996 * here would imply a driver bug that would result 997 * in an overrun. 998 */ 999 if (drm_WARN_ON(&uncore->i915->drm, 1000 (OA_BUFFER_SIZE - head) < report_size)) { 1001 drm_err(&uncore->i915->drm, 1002 "Spurious OA head ptr: non-integral report offset\n"); 1003 break; 1004 } 1005 1006 /* The report-ID field for periodic samples includes 1007 * some undocumented flags related to what triggered 1008 * the report and is never expected to be zero so we 1009 * can check that the report isn't invalid before 1010 * copying it to userspace... 1011 */ 1012 if (report32[0] == 0) { 1013 if (__ratelimit(&stream->perf->spurious_report_rs)) 1014 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1015 continue; 1016 } 1017 1018 ret = append_oa_sample(stream, buf, count, offset, report); 1019 if (ret) 1020 break; 1021 1022 /* Clear out the first 2 dwords as a mean to detect unlanded 1023 * reports. 1024 */ 1025 report32[0] = 0; 1026 report32[1] = 0; 1027 } 1028 1029 if (start_offset != *offset) { 1030 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1031 1032 /* We removed the gtt_offset for the copy loop above, indexing 1033 * relative to oa_buf_base so put back here... 1034 */ 1035 head += gtt_offset; 1036 1037 intel_uncore_write(uncore, GEN7_OASTATUS2, 1038 (head & GEN7_OASTATUS2_HEAD_MASK) | 1039 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1040 stream->oa_buffer.head = head; 1041 1042 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1043 } 1044 1045 return ret; 1046 } 1047 1048 /** 1049 * gen7_oa_read - copy status records then buffered OA reports 1050 * @stream: An i915-perf stream opened for OA metrics 1051 * @buf: destination buffer given by userspace 1052 * @count: the number of bytes userspace wants to read 1053 * @offset: (inout): the current position for writing into @buf 1054 * 1055 * Checks Gen 7 specific OA unit status registers and if necessary appends 1056 * corresponding status records for userspace (such as for a buffer full 1057 * condition) and then initiate appending any buffered OA reports. 1058 * 1059 * Updates @offset according to the number of bytes successfully copied into 1060 * the userspace buffer. 1061 * 1062 * Returns: zero on success or a negative error code 1063 */ 1064 static int gen7_oa_read(struct i915_perf_stream *stream, 1065 char __user *buf, 1066 size_t count, 1067 size_t *offset) 1068 { 1069 struct intel_uncore *uncore = stream->uncore; 1070 u32 oastatus1; 1071 int ret; 1072 1073 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1074 return -EIO; 1075 1076 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1077 1078 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1079 * bits while the OA unit is enabled (while the tail pointer 1080 * may be updated asynchronously) so we ignore status bits 1081 * that have already been reported to userspace. 1082 */ 1083 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1084 1085 /* We treat OABUFFER_OVERFLOW as a significant error: 1086 * 1087 * - The status can be interpreted to mean that the buffer is 1088 * currently full (with a higher precedence than OA_TAKEN() 1089 * which will start to report a near-empty buffer after an 1090 * overflow) but it's awkward that we can't clear the status 1091 * on Haswell, so without a reset we won't be able to catch 1092 * the state again. 1093 * 1094 * - Since it also implies the HW has started overwriting old 1095 * reports it may also affect our sanity checks for invalid 1096 * reports when copying to userspace that assume new reports 1097 * are being written to cleared memory. 1098 * 1099 * - In the future we may want to introduce a flight recorder 1100 * mode where the driver will automatically maintain a safe 1101 * guard band between head/tail, avoiding this overflow 1102 * condition, but we avoid the added driver complexity for 1103 * now. 1104 */ 1105 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1106 ret = append_oa_status(stream, buf, count, offset, 1107 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1108 if (ret) 1109 return ret; 1110 1111 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1112 stream->period_exponent); 1113 1114 stream->perf->ops.oa_disable(stream); 1115 stream->perf->ops.oa_enable(stream); 1116 1117 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1118 } 1119 1120 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1121 ret = append_oa_status(stream, buf, count, offset, 1122 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1123 if (ret) 1124 return ret; 1125 stream->perf->gen7_latched_oastatus1 |= 1126 GEN7_OASTATUS1_REPORT_LOST; 1127 } 1128 1129 return gen7_append_oa_reports(stream, buf, count, offset); 1130 } 1131 1132 /** 1133 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1134 * @stream: An i915-perf stream opened for OA metrics 1135 * 1136 * Called when userspace tries to read() from a blocking stream FD opened 1137 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1138 * OA buffer and wakes us. 1139 * 1140 * Note: it's acceptable to have this return with some false positives 1141 * since any subsequent read handling will return -EAGAIN if there isn't 1142 * really data ready for userspace yet. 1143 * 1144 * Returns: zero on success or a negative error code 1145 */ 1146 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1147 { 1148 /* We would wait indefinitely if periodic sampling is not enabled */ 1149 if (!stream->periodic) 1150 return -EIO; 1151 1152 return wait_event_interruptible(stream->poll_wq, 1153 oa_buffer_check_unlocked(stream)); 1154 } 1155 1156 /** 1157 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1158 * @stream: An i915-perf stream opened for OA metrics 1159 * @file: An i915 perf stream file 1160 * @wait: poll() state table 1161 * 1162 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1163 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1164 * when it sees data ready to read in the circular OA buffer. 1165 */ 1166 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1167 struct file *file, 1168 poll_table *wait) 1169 { 1170 poll_wait(file, &stream->poll_wq, wait); 1171 } 1172 1173 /** 1174 * i915_oa_read - just calls through to &i915_oa_ops->read 1175 * @stream: An i915-perf stream opened for OA metrics 1176 * @buf: destination buffer given by userspace 1177 * @count: the number of bytes userspace wants to read 1178 * @offset: (inout): the current position for writing into @buf 1179 * 1180 * Updates @offset according to the number of bytes successfully copied into 1181 * the userspace buffer. 1182 * 1183 * Returns: zero on success or a negative error code 1184 */ 1185 static int i915_oa_read(struct i915_perf_stream *stream, 1186 char __user *buf, 1187 size_t count, 1188 size_t *offset) 1189 { 1190 return stream->perf->ops.read(stream, buf, count, offset); 1191 } 1192 1193 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1194 { 1195 struct i915_gem_engines_iter it; 1196 struct i915_gem_context *ctx = stream->ctx; 1197 struct intel_context *ce; 1198 struct i915_gem_ww_ctx ww; 1199 int err = -ENODEV; 1200 1201 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1202 if (ce->engine != stream->engine) /* first match! */ 1203 continue; 1204 1205 err = 0; 1206 break; 1207 } 1208 i915_gem_context_unlock_engines(ctx); 1209 1210 if (err) 1211 return ERR_PTR(err); 1212 1213 i915_gem_ww_ctx_init(&ww, true); 1214 retry: 1215 /* 1216 * As the ID is the gtt offset of the context's vma we 1217 * pin the vma to ensure the ID remains fixed. 1218 */ 1219 err = intel_context_pin_ww(ce, &ww); 1220 if (err == -EDEADLK) { 1221 err = i915_gem_ww_ctx_backoff(&ww); 1222 if (!err) 1223 goto retry; 1224 } 1225 i915_gem_ww_ctx_fini(&ww); 1226 1227 if (err) 1228 return ERR_PTR(err); 1229 1230 stream->pinned_ctx = ce; 1231 return stream->pinned_ctx; 1232 } 1233 1234 /** 1235 * oa_get_render_ctx_id - determine and hold ctx hw id 1236 * @stream: An i915-perf stream opened for OA metrics 1237 * 1238 * Determine the render context hw id, and ensure it remains fixed for the 1239 * lifetime of the stream. This ensures that we don't have to worry about 1240 * updating the context ID in OACONTROL on the fly. 1241 * 1242 * Returns: zero on success or a negative error code 1243 */ 1244 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1245 { 1246 struct intel_context *ce; 1247 1248 ce = oa_pin_context(stream); 1249 if (IS_ERR(ce)) 1250 return PTR_ERR(ce); 1251 1252 switch (GRAPHICS_VER(ce->engine->i915)) { 1253 case 7: { 1254 /* 1255 * On Haswell we don't do any post processing of the reports 1256 * and don't need to use the mask. 1257 */ 1258 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1259 stream->specific_ctx_id_mask = 0; 1260 break; 1261 } 1262 1263 case 8: 1264 case 9: 1265 if (intel_engine_uses_guc(ce->engine)) { 1266 /* 1267 * When using GuC, the context descriptor we write in 1268 * i915 is read by GuC and rewritten before it's 1269 * actually written into the hardware. The LRCA is 1270 * what is put into the context id field of the 1271 * context descriptor by GuC. Because it's aligned to 1272 * a page, the lower 12bits are always at 0 and 1273 * dropped by GuC. They won't be part of the context 1274 * ID in the OA reports, so squash those lower bits. 1275 */ 1276 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1277 1278 /* 1279 * GuC uses the top bit to signal proxy submission, so 1280 * ignore that bit. 1281 */ 1282 stream->specific_ctx_id_mask = 1283 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1284 } else { 1285 stream->specific_ctx_id_mask = 1286 (1U << GEN8_CTX_ID_WIDTH) - 1; 1287 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1288 } 1289 break; 1290 1291 case 11: 1292 case 12: 1293 if (GRAPHICS_VER_FULL(ce->engine->i915) >= IP_VER(12, 50)) { 1294 stream->specific_ctx_id_mask = 1295 ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) << 1296 (XEHP_SW_CTX_ID_SHIFT - 32); 1297 stream->specific_ctx_id = 1298 (XEHP_MAX_CONTEXT_HW_ID - 1) << 1299 (XEHP_SW_CTX_ID_SHIFT - 32); 1300 } else { 1301 stream->specific_ctx_id_mask = 1302 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1303 /* 1304 * Pick an unused context id 1305 * 0 - BITS_PER_LONG are used by other contexts 1306 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context 1307 */ 1308 stream->specific_ctx_id = 1309 (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1310 } 1311 break; 1312 1313 default: 1314 MISSING_CASE(GRAPHICS_VER(ce->engine->i915)); 1315 } 1316 1317 ce->tag = stream->specific_ctx_id; 1318 1319 drm_dbg(&stream->perf->i915->drm, 1320 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1321 stream->specific_ctx_id, 1322 stream->specific_ctx_id_mask); 1323 1324 return 0; 1325 } 1326 1327 /** 1328 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1329 * @stream: An i915-perf stream opened for OA metrics 1330 * 1331 * In case anything needed doing to ensure the context HW ID would remain valid 1332 * for the lifetime of the stream, then that can be undone here. 1333 */ 1334 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1335 { 1336 struct intel_context *ce; 1337 1338 ce = fetch_and_zero(&stream->pinned_ctx); 1339 if (ce) { 1340 ce->tag = 0; /* recomputed on next submission after parking */ 1341 intel_context_unpin(ce); 1342 } 1343 1344 stream->specific_ctx_id = INVALID_CTX_ID; 1345 stream->specific_ctx_id_mask = 0; 1346 } 1347 1348 static void 1349 free_oa_buffer(struct i915_perf_stream *stream) 1350 { 1351 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1352 I915_VMA_RELEASE_MAP); 1353 1354 stream->oa_buffer.vaddr = NULL; 1355 } 1356 1357 static void 1358 free_oa_configs(struct i915_perf_stream *stream) 1359 { 1360 struct i915_oa_config_bo *oa_bo, *tmp; 1361 1362 i915_oa_config_put(stream->oa_config); 1363 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1364 free_oa_config_bo(oa_bo); 1365 } 1366 1367 static void 1368 free_noa_wait(struct i915_perf_stream *stream) 1369 { 1370 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1371 } 1372 1373 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1374 { 1375 struct i915_perf *perf = stream->perf; 1376 1377 BUG_ON(stream != perf->exclusive_stream); 1378 1379 /* 1380 * Unset exclusive_stream first, it will be checked while disabling 1381 * the metric set on gen8+. 1382 * 1383 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1384 */ 1385 WRITE_ONCE(perf->exclusive_stream, NULL); 1386 perf->ops.disable_metric_set(stream); 1387 1388 free_oa_buffer(stream); 1389 1390 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1391 intel_engine_pm_put(stream->engine); 1392 1393 if (stream->ctx) 1394 oa_put_render_ctx_id(stream); 1395 1396 free_oa_configs(stream); 1397 free_noa_wait(stream); 1398 1399 if (perf->spurious_report_rs.missed) { 1400 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1401 perf->spurious_report_rs.missed); 1402 } 1403 } 1404 1405 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1406 { 1407 struct intel_uncore *uncore = stream->uncore; 1408 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1409 unsigned long flags; 1410 1411 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1412 1413 /* Pre-DevBDW: OABUFFER must be set with counters off, 1414 * before OASTATUS1, but after OASTATUS2 1415 */ 1416 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1417 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1418 stream->oa_buffer.head = gtt_offset; 1419 1420 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1421 1422 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1423 gtt_offset | OABUFFER_SIZE_16M); 1424 1425 /* Mark that we need updated tail pointers to read from... */ 1426 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1427 stream->oa_buffer.tail = gtt_offset; 1428 1429 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1430 1431 /* On Haswell we have to track which OASTATUS1 flags we've 1432 * already seen since they can't be cleared while periodic 1433 * sampling is enabled. 1434 */ 1435 stream->perf->gen7_latched_oastatus1 = 0; 1436 1437 /* NB: although the OA buffer will initially be allocated 1438 * zeroed via shmfs (and so this memset is redundant when 1439 * first allocating), we may re-init the OA buffer, either 1440 * when re-enabling a stream or in error/reset paths. 1441 * 1442 * The reason we clear the buffer for each re-init is for the 1443 * sanity check in gen7_append_oa_reports() that looks at the 1444 * report-id field to make sure it's non-zero which relies on 1445 * the assumption that new reports are being written to zeroed 1446 * memory... 1447 */ 1448 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1449 } 1450 1451 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1452 { 1453 struct intel_uncore *uncore = stream->uncore; 1454 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1455 unsigned long flags; 1456 1457 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1458 1459 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1460 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1461 stream->oa_buffer.head = gtt_offset; 1462 1463 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1464 1465 /* 1466 * PRM says: 1467 * 1468 * "This MMIO must be set before the OATAILPTR 1469 * register and after the OAHEADPTR register. This is 1470 * to enable proper functionality of the overflow 1471 * bit." 1472 */ 1473 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1474 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1475 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1476 1477 /* Mark that we need updated tail pointers to read from... */ 1478 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1479 stream->oa_buffer.tail = gtt_offset; 1480 1481 /* 1482 * Reset state used to recognise context switches, affecting which 1483 * reports we will forward to userspace while filtering for a single 1484 * context. 1485 */ 1486 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1487 1488 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1489 1490 /* 1491 * NB: although the OA buffer will initially be allocated 1492 * zeroed via shmfs (and so this memset is redundant when 1493 * first allocating), we may re-init the OA buffer, either 1494 * when re-enabling a stream or in error/reset paths. 1495 * 1496 * The reason we clear the buffer for each re-init is for the 1497 * sanity check in gen8_append_oa_reports() that looks at the 1498 * reason field to make sure it's non-zero which relies on 1499 * the assumption that new reports are being written to zeroed 1500 * memory... 1501 */ 1502 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1503 } 1504 1505 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1506 { 1507 struct intel_uncore *uncore = stream->uncore; 1508 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1509 unsigned long flags; 1510 1511 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1512 1513 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1514 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1515 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1516 stream->oa_buffer.head = gtt_offset; 1517 1518 /* 1519 * PRM says: 1520 * 1521 * "This MMIO must be set before the OATAILPTR 1522 * register and after the OAHEADPTR register. This is 1523 * to enable proper functionality of the overflow 1524 * bit." 1525 */ 1526 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1527 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1528 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1529 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1530 1531 /* Mark that we need updated tail pointers to read from... */ 1532 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1533 stream->oa_buffer.tail = gtt_offset; 1534 1535 /* 1536 * Reset state used to recognise context switches, affecting which 1537 * reports we will forward to userspace while filtering for a single 1538 * context. 1539 */ 1540 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1541 1542 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1543 1544 /* 1545 * NB: although the OA buffer will initially be allocated 1546 * zeroed via shmfs (and so this memset is redundant when 1547 * first allocating), we may re-init the OA buffer, either 1548 * when re-enabling a stream or in error/reset paths. 1549 * 1550 * The reason we clear the buffer for each re-init is for the 1551 * sanity check in gen8_append_oa_reports() that looks at the 1552 * reason field to make sure it's non-zero which relies on 1553 * the assumption that new reports are being written to zeroed 1554 * memory... 1555 */ 1556 memset(stream->oa_buffer.vaddr, 0, 1557 stream->oa_buffer.vma->size); 1558 } 1559 1560 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1561 { 1562 struct drm_i915_private *i915 = stream->perf->i915; 1563 struct drm_i915_gem_object *bo; 1564 struct i915_vma *vma; 1565 int ret; 1566 1567 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1568 return -ENODEV; 1569 1570 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1571 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1572 1573 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1574 if (IS_ERR(bo)) { 1575 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1576 return PTR_ERR(bo); 1577 } 1578 1579 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1580 1581 /* PreHSW required 512K alignment, HSW requires 16M */ 1582 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1583 if (IS_ERR(vma)) { 1584 ret = PTR_ERR(vma); 1585 goto err_unref; 1586 } 1587 stream->oa_buffer.vma = vma; 1588 1589 stream->oa_buffer.vaddr = 1590 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB); 1591 if (IS_ERR(stream->oa_buffer.vaddr)) { 1592 ret = PTR_ERR(stream->oa_buffer.vaddr); 1593 goto err_unpin; 1594 } 1595 1596 return 0; 1597 1598 err_unpin: 1599 __i915_vma_unpin(vma); 1600 1601 err_unref: 1602 i915_gem_object_put(bo); 1603 1604 stream->oa_buffer.vaddr = NULL; 1605 stream->oa_buffer.vma = NULL; 1606 1607 return ret; 1608 } 1609 1610 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1611 bool save, i915_reg_t reg, u32 offset, 1612 u32 dword_count) 1613 { 1614 u32 cmd; 1615 u32 d; 1616 1617 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1618 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1619 if (GRAPHICS_VER(stream->perf->i915) >= 8) 1620 cmd++; 1621 1622 for (d = 0; d < dword_count; d++) { 1623 *cs++ = cmd; 1624 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1625 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1626 offset) + 4 * d; 1627 *cs++ = 0; 1628 } 1629 1630 return cs; 1631 } 1632 1633 static int alloc_noa_wait(struct i915_perf_stream *stream) 1634 { 1635 struct drm_i915_private *i915 = stream->perf->i915; 1636 struct drm_i915_gem_object *bo; 1637 struct i915_vma *vma; 1638 const u64 delay_ticks = 0xffffffffffffffff - 1639 intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915), 1640 atomic64_read(&stream->perf->noa_programming_delay)); 1641 const u32 base = stream->engine->mmio_base; 1642 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1643 u32 *batch, *ts0, *cs, *jump; 1644 struct i915_gem_ww_ctx ww; 1645 int ret, i; 1646 enum { 1647 START_TS, 1648 NOW_TS, 1649 DELTA_TS, 1650 JUMP_PREDICATE, 1651 DELTA_TARGET, 1652 N_CS_GPR 1653 }; 1654 1655 bo = i915_gem_object_create_internal(i915, 4096); 1656 if (IS_ERR(bo)) { 1657 drm_err(&i915->drm, 1658 "Failed to allocate NOA wait batchbuffer\n"); 1659 return PTR_ERR(bo); 1660 } 1661 1662 i915_gem_ww_ctx_init(&ww, true); 1663 retry: 1664 ret = i915_gem_object_lock(bo, &ww); 1665 if (ret) 1666 goto out_ww; 1667 1668 /* 1669 * We pin in GGTT because we jump into this buffer now because 1670 * multiple OA config BOs will have a jump to this address and it 1671 * needs to be fixed during the lifetime of the i915/perf stream. 1672 */ 1673 vma = i915_gem_object_ggtt_pin_ww(bo, &ww, NULL, 0, 0, PIN_HIGH); 1674 if (IS_ERR(vma)) { 1675 ret = PTR_ERR(vma); 1676 goto out_ww; 1677 } 1678 1679 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1680 if (IS_ERR(batch)) { 1681 ret = PTR_ERR(batch); 1682 goto err_unpin; 1683 } 1684 1685 /* Save registers. */ 1686 for (i = 0; i < N_CS_GPR; i++) 1687 cs = save_restore_register( 1688 stream, cs, true /* save */, CS_GPR(i), 1689 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1690 cs = save_restore_register( 1691 stream, cs, true /* save */, MI_PREDICATE_RESULT_1(RENDER_RING_BASE), 1692 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1693 1694 /* First timestamp snapshot location. */ 1695 ts0 = cs; 1696 1697 /* 1698 * Initial snapshot of the timestamp register to implement the wait. 1699 * We work with 32b values, so clear out the top 32b bits of the 1700 * register because the ALU works 64bits. 1701 */ 1702 *cs++ = MI_LOAD_REGISTER_IMM(1); 1703 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1704 *cs++ = 0; 1705 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1706 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1707 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1708 1709 /* 1710 * This is the location we're going to jump back into until the 1711 * required amount of time has passed. 1712 */ 1713 jump = cs; 1714 1715 /* 1716 * Take another snapshot of the timestamp register. Take care to clear 1717 * up the top 32bits of CS_GPR(1) as we're using it for other 1718 * operations below. 1719 */ 1720 *cs++ = MI_LOAD_REGISTER_IMM(1); 1721 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1722 *cs++ = 0; 1723 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1724 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1725 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1726 1727 /* 1728 * Do a diff between the 2 timestamps and store the result back into 1729 * CS_GPR(1). 1730 */ 1731 *cs++ = MI_MATH(5); 1732 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1733 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1734 *cs++ = MI_MATH_SUB; 1735 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1736 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1737 1738 /* 1739 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1740 * timestamp have rolled over the 32bits) into the predicate register 1741 * to be used for the predicated jump. 1742 */ 1743 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1744 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1745 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1(RENDER_RING_BASE)); 1746 1747 /* Restart from the beginning if we had timestamps roll over. */ 1748 *cs++ = (GRAPHICS_VER(i915) < 8 ? 1749 MI_BATCH_BUFFER_START : 1750 MI_BATCH_BUFFER_START_GEN8) | 1751 MI_BATCH_PREDICATE; 1752 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1753 *cs++ = 0; 1754 1755 /* 1756 * Now add the diff between to previous timestamps and add it to : 1757 * (((1 * << 64) - 1) - delay_ns) 1758 * 1759 * When the Carry Flag contains 1 this means the elapsed time is 1760 * longer than the expected delay, and we can exit the wait loop. 1761 */ 1762 *cs++ = MI_LOAD_REGISTER_IMM(2); 1763 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1764 *cs++ = lower_32_bits(delay_ticks); 1765 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 1766 *cs++ = upper_32_bits(delay_ticks); 1767 1768 *cs++ = MI_MATH(4); 1769 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 1770 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 1771 *cs++ = MI_MATH_ADD; 1772 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1773 1774 *cs++ = MI_ARB_CHECK; 1775 1776 /* 1777 * Transfer the result into the predicate register to be used for the 1778 * predicated jump. 1779 */ 1780 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1781 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1782 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1(RENDER_RING_BASE)); 1783 1784 /* Predicate the jump. */ 1785 *cs++ = (GRAPHICS_VER(i915) < 8 ? 1786 MI_BATCH_BUFFER_START : 1787 MI_BATCH_BUFFER_START_GEN8) | 1788 MI_BATCH_PREDICATE; 1789 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 1790 *cs++ = 0; 1791 1792 /* Restore registers. */ 1793 for (i = 0; i < N_CS_GPR; i++) 1794 cs = save_restore_register( 1795 stream, cs, false /* restore */, CS_GPR(i), 1796 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1797 cs = save_restore_register( 1798 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1(RENDER_RING_BASE), 1799 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1800 1801 /* And return to the ring. */ 1802 *cs++ = MI_BATCH_BUFFER_END; 1803 1804 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 1805 1806 i915_gem_object_flush_map(bo); 1807 __i915_gem_object_release_map(bo); 1808 1809 stream->noa_wait = vma; 1810 goto out_ww; 1811 1812 err_unpin: 1813 i915_vma_unpin_and_release(&vma, 0); 1814 out_ww: 1815 if (ret == -EDEADLK) { 1816 ret = i915_gem_ww_ctx_backoff(&ww); 1817 if (!ret) 1818 goto retry; 1819 } 1820 i915_gem_ww_ctx_fini(&ww); 1821 if (ret) 1822 i915_gem_object_put(bo); 1823 return ret; 1824 } 1825 1826 static u32 *write_cs_mi_lri(u32 *cs, 1827 const struct i915_oa_reg *reg_data, 1828 u32 n_regs) 1829 { 1830 u32 i; 1831 1832 for (i = 0; i < n_regs; i++) { 1833 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 1834 u32 n_lri = min_t(u32, 1835 n_regs - i, 1836 MI_LOAD_REGISTER_IMM_MAX_REGS); 1837 1838 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 1839 } 1840 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 1841 *cs++ = reg_data[i].value; 1842 } 1843 1844 return cs; 1845 } 1846 1847 static int num_lri_dwords(int num_regs) 1848 { 1849 int count = 0; 1850 1851 if (num_regs > 0) { 1852 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 1853 count += num_regs * 2; 1854 } 1855 1856 return count; 1857 } 1858 1859 static struct i915_oa_config_bo * 1860 alloc_oa_config_buffer(struct i915_perf_stream *stream, 1861 struct i915_oa_config *oa_config) 1862 { 1863 struct drm_i915_gem_object *obj; 1864 struct i915_oa_config_bo *oa_bo; 1865 struct i915_gem_ww_ctx ww; 1866 size_t config_length = 0; 1867 u32 *cs; 1868 int err; 1869 1870 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 1871 if (!oa_bo) 1872 return ERR_PTR(-ENOMEM); 1873 1874 config_length += num_lri_dwords(oa_config->mux_regs_len); 1875 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 1876 config_length += num_lri_dwords(oa_config->flex_regs_len); 1877 config_length += 3; /* MI_BATCH_BUFFER_START */ 1878 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 1879 1880 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 1881 if (IS_ERR(obj)) { 1882 err = PTR_ERR(obj); 1883 goto err_free; 1884 } 1885 1886 i915_gem_ww_ctx_init(&ww, true); 1887 retry: 1888 err = i915_gem_object_lock(obj, &ww); 1889 if (err) 1890 goto out_ww; 1891 1892 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 1893 if (IS_ERR(cs)) { 1894 err = PTR_ERR(cs); 1895 goto out_ww; 1896 } 1897 1898 cs = write_cs_mi_lri(cs, 1899 oa_config->mux_regs, 1900 oa_config->mux_regs_len); 1901 cs = write_cs_mi_lri(cs, 1902 oa_config->b_counter_regs, 1903 oa_config->b_counter_regs_len); 1904 cs = write_cs_mi_lri(cs, 1905 oa_config->flex_regs, 1906 oa_config->flex_regs_len); 1907 1908 /* Jump into the active wait. */ 1909 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ? 1910 MI_BATCH_BUFFER_START : 1911 MI_BATCH_BUFFER_START_GEN8); 1912 *cs++ = i915_ggtt_offset(stream->noa_wait); 1913 *cs++ = 0; 1914 1915 i915_gem_object_flush_map(obj); 1916 __i915_gem_object_release_map(obj); 1917 1918 oa_bo->vma = i915_vma_instance(obj, 1919 &stream->engine->gt->ggtt->vm, 1920 NULL); 1921 if (IS_ERR(oa_bo->vma)) { 1922 err = PTR_ERR(oa_bo->vma); 1923 goto out_ww; 1924 } 1925 1926 oa_bo->oa_config = i915_oa_config_get(oa_config); 1927 llist_add(&oa_bo->node, &stream->oa_config_bos); 1928 1929 out_ww: 1930 if (err == -EDEADLK) { 1931 err = i915_gem_ww_ctx_backoff(&ww); 1932 if (!err) 1933 goto retry; 1934 } 1935 i915_gem_ww_ctx_fini(&ww); 1936 1937 if (err) 1938 i915_gem_object_put(obj); 1939 err_free: 1940 if (err) { 1941 kfree(oa_bo); 1942 return ERR_PTR(err); 1943 } 1944 return oa_bo; 1945 } 1946 1947 static struct i915_vma * 1948 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 1949 { 1950 struct i915_oa_config_bo *oa_bo; 1951 1952 /* 1953 * Look for the buffer in the already allocated BOs attached 1954 * to the stream. 1955 */ 1956 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 1957 if (oa_bo->oa_config == oa_config && 1958 memcmp(oa_bo->oa_config->uuid, 1959 oa_config->uuid, 1960 sizeof(oa_config->uuid)) == 0) 1961 goto out; 1962 } 1963 1964 oa_bo = alloc_oa_config_buffer(stream, oa_config); 1965 if (IS_ERR(oa_bo)) 1966 return ERR_CAST(oa_bo); 1967 1968 out: 1969 return i915_vma_get(oa_bo->vma); 1970 } 1971 1972 static int 1973 emit_oa_config(struct i915_perf_stream *stream, 1974 struct i915_oa_config *oa_config, 1975 struct intel_context *ce, 1976 struct i915_active *active) 1977 { 1978 struct i915_request *rq; 1979 struct i915_vma *vma; 1980 struct i915_gem_ww_ctx ww; 1981 int err; 1982 1983 vma = get_oa_vma(stream, oa_config); 1984 if (IS_ERR(vma)) 1985 return PTR_ERR(vma); 1986 1987 i915_gem_ww_ctx_init(&ww, true); 1988 retry: 1989 err = i915_gem_object_lock(vma->obj, &ww); 1990 if (err) 1991 goto err; 1992 1993 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 1994 if (err) 1995 goto err; 1996 1997 intel_engine_pm_get(ce->engine); 1998 rq = i915_request_create(ce); 1999 intel_engine_pm_put(ce->engine); 2000 if (IS_ERR(rq)) { 2001 err = PTR_ERR(rq); 2002 goto err_vma_unpin; 2003 } 2004 2005 if (!IS_ERR_OR_NULL(active)) { 2006 /* After all individual context modifications */ 2007 err = i915_request_await_active(rq, active, 2008 I915_ACTIVE_AWAIT_ACTIVE); 2009 if (err) 2010 goto err_add_request; 2011 2012 err = i915_active_add_request(active, rq); 2013 if (err) 2014 goto err_add_request; 2015 } 2016 2017 err = i915_request_await_object(rq, vma->obj, 0); 2018 if (!err) 2019 err = i915_vma_move_to_active(vma, rq, 0); 2020 if (err) 2021 goto err_add_request; 2022 2023 err = rq->engine->emit_bb_start(rq, 2024 vma->node.start, 0, 2025 I915_DISPATCH_SECURE); 2026 if (err) 2027 goto err_add_request; 2028 2029 err_add_request: 2030 i915_request_add(rq); 2031 err_vma_unpin: 2032 i915_vma_unpin(vma); 2033 err: 2034 if (err == -EDEADLK) { 2035 err = i915_gem_ww_ctx_backoff(&ww); 2036 if (!err) 2037 goto retry; 2038 } 2039 2040 i915_gem_ww_ctx_fini(&ww); 2041 i915_vma_put(vma); 2042 return err; 2043 } 2044 2045 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2046 { 2047 return stream->pinned_ctx ?: stream->engine->kernel_context; 2048 } 2049 2050 static int 2051 hsw_enable_metric_set(struct i915_perf_stream *stream, 2052 struct i915_active *active) 2053 { 2054 struct intel_uncore *uncore = stream->uncore; 2055 2056 /* 2057 * PRM: 2058 * 2059 * OA unit is using “crclk” for its functionality. When trunk 2060 * level clock gating takes place, OA clock would be gated, 2061 * unable to count the events from non-render clock domain. 2062 * Render clock gating must be disabled when OA is enabled to 2063 * count the events from non-render domain. Unit level clock 2064 * gating for RCS should also be disabled. 2065 */ 2066 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2067 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2068 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2069 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2070 2071 return emit_oa_config(stream, 2072 stream->oa_config, oa_context(stream), 2073 active); 2074 } 2075 2076 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2077 { 2078 struct intel_uncore *uncore = stream->uncore; 2079 2080 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2081 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2082 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2083 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2084 2085 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2086 } 2087 2088 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2089 i915_reg_t reg) 2090 { 2091 u32 mmio = i915_mmio_reg_offset(reg); 2092 int i; 2093 2094 /* 2095 * This arbitrary default will select the 'EU FPU0 Pipeline 2096 * Active' event. In the future it's anticipated that there 2097 * will be an explicit 'No Event' we can select, but not yet... 2098 */ 2099 if (!oa_config) 2100 return 0; 2101 2102 for (i = 0; i < oa_config->flex_regs_len; i++) { 2103 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2104 return oa_config->flex_regs[i].value; 2105 } 2106 2107 return 0; 2108 } 2109 /* 2110 * NB: It must always remain pointer safe to run this even if the OA unit 2111 * has been disabled. 2112 * 2113 * It's fine to put out-of-date values into these per-context registers 2114 * in the case that the OA unit has been disabled. 2115 */ 2116 static void 2117 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2118 const struct i915_perf_stream *stream) 2119 { 2120 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2121 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2122 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2123 static const i915_reg_t flex_regs[] = { 2124 EU_PERF_CNTL0, 2125 EU_PERF_CNTL1, 2126 EU_PERF_CNTL2, 2127 EU_PERF_CNTL3, 2128 EU_PERF_CNTL4, 2129 EU_PERF_CNTL5, 2130 EU_PERF_CNTL6, 2131 }; 2132 u32 *reg_state = ce->lrc_reg_state; 2133 int i; 2134 2135 reg_state[ctx_oactxctrl + 1] = 2136 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2137 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2138 GEN8_OA_COUNTER_RESUME; 2139 2140 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2141 reg_state[ctx_flexeu0 + i * 2 + 1] = 2142 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2143 } 2144 2145 struct flex { 2146 i915_reg_t reg; 2147 u32 offset; 2148 u32 value; 2149 }; 2150 2151 static int 2152 gen8_store_flex(struct i915_request *rq, 2153 struct intel_context *ce, 2154 const struct flex *flex, unsigned int count) 2155 { 2156 u32 offset; 2157 u32 *cs; 2158 2159 cs = intel_ring_begin(rq, 4 * count); 2160 if (IS_ERR(cs)) 2161 return PTR_ERR(cs); 2162 2163 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2164 do { 2165 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2166 *cs++ = offset + flex->offset * sizeof(u32); 2167 *cs++ = 0; 2168 *cs++ = flex->value; 2169 } while (flex++, --count); 2170 2171 intel_ring_advance(rq, cs); 2172 2173 return 0; 2174 } 2175 2176 static int 2177 gen8_load_flex(struct i915_request *rq, 2178 struct intel_context *ce, 2179 const struct flex *flex, unsigned int count) 2180 { 2181 u32 *cs; 2182 2183 GEM_BUG_ON(!count || count > 63); 2184 2185 cs = intel_ring_begin(rq, 2 * count + 2); 2186 if (IS_ERR(cs)) 2187 return PTR_ERR(cs); 2188 2189 *cs++ = MI_LOAD_REGISTER_IMM(count); 2190 do { 2191 *cs++ = i915_mmio_reg_offset(flex->reg); 2192 *cs++ = flex->value; 2193 } while (flex++, --count); 2194 *cs++ = MI_NOOP; 2195 2196 intel_ring_advance(rq, cs); 2197 2198 return 0; 2199 } 2200 2201 static int gen8_modify_context(struct intel_context *ce, 2202 const struct flex *flex, unsigned int count) 2203 { 2204 struct i915_request *rq; 2205 int err; 2206 2207 rq = intel_engine_create_kernel_request(ce->engine); 2208 if (IS_ERR(rq)) 2209 return PTR_ERR(rq); 2210 2211 /* Serialise with the remote context */ 2212 err = intel_context_prepare_remote_request(ce, rq); 2213 if (err == 0) 2214 err = gen8_store_flex(rq, ce, flex, count); 2215 2216 i915_request_add(rq); 2217 return err; 2218 } 2219 2220 static int 2221 gen8_modify_self(struct intel_context *ce, 2222 const struct flex *flex, unsigned int count, 2223 struct i915_active *active) 2224 { 2225 struct i915_request *rq; 2226 int err; 2227 2228 intel_engine_pm_get(ce->engine); 2229 rq = i915_request_create(ce); 2230 intel_engine_pm_put(ce->engine); 2231 if (IS_ERR(rq)) 2232 return PTR_ERR(rq); 2233 2234 if (!IS_ERR_OR_NULL(active)) { 2235 err = i915_active_add_request(active, rq); 2236 if (err) 2237 goto err_add_request; 2238 } 2239 2240 err = gen8_load_flex(rq, ce, flex, count); 2241 if (err) 2242 goto err_add_request; 2243 2244 err_add_request: 2245 i915_request_add(rq); 2246 return err; 2247 } 2248 2249 static int gen8_configure_context(struct i915_gem_context *ctx, 2250 struct flex *flex, unsigned int count) 2251 { 2252 struct i915_gem_engines_iter it; 2253 struct intel_context *ce; 2254 int err = 0; 2255 2256 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2257 GEM_BUG_ON(ce == ce->engine->kernel_context); 2258 2259 if (ce->engine->class != RENDER_CLASS) 2260 continue; 2261 2262 /* Otherwise OA settings will be set upon first use */ 2263 if (!intel_context_pin_if_active(ce)) 2264 continue; 2265 2266 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2267 err = gen8_modify_context(ce, flex, count); 2268 2269 intel_context_unpin(ce); 2270 if (err) 2271 break; 2272 } 2273 i915_gem_context_unlock_engines(ctx); 2274 2275 return err; 2276 } 2277 2278 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2279 struct i915_active *active) 2280 { 2281 int err; 2282 struct intel_context *ce = stream->pinned_ctx; 2283 u32 format = stream->oa_buffer.format; 2284 struct flex regs_context[] = { 2285 { 2286 GEN8_OACTXCONTROL, 2287 stream->perf->ctx_oactxctrl_offset + 1, 2288 active ? GEN8_OA_COUNTER_RESUME : 0, 2289 }, 2290 }; 2291 /* Offsets in regs_lri are not used since this configuration is only 2292 * applied using LRI. Initialize the correct offsets for posterity. 2293 */ 2294 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2295 struct flex regs_lri[] = { 2296 { 2297 GEN12_OAR_OACONTROL, 2298 GEN12_OAR_OACONTROL_OFFSET + 1, 2299 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2300 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2301 }, 2302 { 2303 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2304 CTX_CONTEXT_CONTROL, 2305 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2306 active ? 2307 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2308 0) 2309 }, 2310 }; 2311 2312 /* Modify the context image of pinned context with regs_context*/ 2313 err = intel_context_lock_pinned(ce); 2314 if (err) 2315 return err; 2316 2317 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context)); 2318 intel_context_unlock_pinned(ce); 2319 if (err) 2320 return err; 2321 2322 /* Apply regs_lri using LRI with pinned context */ 2323 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2324 } 2325 2326 /* 2327 * Manages updating the per-context aspects of the OA stream 2328 * configuration across all contexts. 2329 * 2330 * The awkward consideration here is that OACTXCONTROL controls the 2331 * exponent for periodic sampling which is primarily used for system 2332 * wide profiling where we'd like a consistent sampling period even in 2333 * the face of context switches. 2334 * 2335 * Our approach of updating the register state context (as opposed to 2336 * say using a workaround batch buffer) ensures that the hardware 2337 * won't automatically reload an out-of-date timer exponent even 2338 * transiently before a WA BB could be parsed. 2339 * 2340 * This function needs to: 2341 * - Ensure the currently running context's per-context OA state is 2342 * updated 2343 * - Ensure that all existing contexts will have the correct per-context 2344 * OA state if they are scheduled for use. 2345 * - Ensure any new contexts will be initialized with the correct 2346 * per-context OA state. 2347 * 2348 * Note: it's only the RCS/Render context that has any OA state. 2349 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2350 */ 2351 static int 2352 oa_configure_all_contexts(struct i915_perf_stream *stream, 2353 struct flex *regs, 2354 size_t num_regs, 2355 struct i915_active *active) 2356 { 2357 struct drm_i915_private *i915 = stream->perf->i915; 2358 struct intel_engine_cs *engine; 2359 struct i915_gem_context *ctx, *cn; 2360 int err; 2361 2362 lockdep_assert_held(&stream->perf->lock); 2363 2364 /* 2365 * The OA register config is setup through the context image. This image 2366 * might be written to by the GPU on context switch (in particular on 2367 * lite-restore). This means we can't safely update a context's image, 2368 * if this context is scheduled/submitted to run on the GPU. 2369 * 2370 * We could emit the OA register config through the batch buffer but 2371 * this might leave small interval of time where the OA unit is 2372 * configured at an invalid sampling period. 2373 * 2374 * Note that since we emit all requests from a single ring, there 2375 * is still an implicit global barrier here that may cause a high 2376 * priority context to wait for an otherwise independent low priority 2377 * context. Contexts idle at the time of reconfiguration are not 2378 * trapped behind the barrier. 2379 */ 2380 spin_lock(&i915->gem.contexts.lock); 2381 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2382 if (!kref_get_unless_zero(&ctx->ref)) 2383 continue; 2384 2385 spin_unlock(&i915->gem.contexts.lock); 2386 2387 err = gen8_configure_context(ctx, regs, num_regs); 2388 if (err) { 2389 i915_gem_context_put(ctx); 2390 return err; 2391 } 2392 2393 spin_lock(&i915->gem.contexts.lock); 2394 list_safe_reset_next(ctx, cn, link); 2395 i915_gem_context_put(ctx); 2396 } 2397 spin_unlock(&i915->gem.contexts.lock); 2398 2399 /* 2400 * After updating all other contexts, we need to modify ourselves. 2401 * If we don't modify the kernel_context, we do not get events while 2402 * idle. 2403 */ 2404 for_each_uabi_engine(engine, i915) { 2405 struct intel_context *ce = engine->kernel_context; 2406 2407 if (engine->class != RENDER_CLASS) 2408 continue; 2409 2410 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2411 2412 err = gen8_modify_self(ce, regs, num_regs, active); 2413 if (err) 2414 return err; 2415 } 2416 2417 return 0; 2418 } 2419 2420 static int 2421 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2422 const struct i915_oa_config *oa_config, 2423 struct i915_active *active) 2424 { 2425 struct flex regs[] = { 2426 { 2427 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2428 CTX_R_PWR_CLK_STATE, 2429 }, 2430 }; 2431 2432 return oa_configure_all_contexts(stream, 2433 regs, ARRAY_SIZE(regs), 2434 active); 2435 } 2436 2437 static int 2438 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2439 const struct i915_oa_config *oa_config, 2440 struct i915_active *active) 2441 { 2442 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2443 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2444 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2445 struct flex regs[] = { 2446 { 2447 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2448 CTX_R_PWR_CLK_STATE, 2449 }, 2450 { 2451 GEN8_OACTXCONTROL, 2452 stream->perf->ctx_oactxctrl_offset + 1, 2453 }, 2454 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2455 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2456 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2457 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2458 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2459 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2460 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2461 }; 2462 #undef ctx_flexeuN 2463 int i; 2464 2465 regs[1].value = 2466 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2467 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2468 GEN8_OA_COUNTER_RESUME; 2469 2470 for (i = 2; i < ARRAY_SIZE(regs); i++) 2471 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2472 2473 return oa_configure_all_contexts(stream, 2474 regs, ARRAY_SIZE(regs), 2475 active); 2476 } 2477 2478 static int 2479 gen8_enable_metric_set(struct i915_perf_stream *stream, 2480 struct i915_active *active) 2481 { 2482 struct intel_uncore *uncore = stream->uncore; 2483 struct i915_oa_config *oa_config = stream->oa_config; 2484 int ret; 2485 2486 /* 2487 * We disable slice/unslice clock ratio change reports on SKL since 2488 * they are too noisy. The HW generates a lot of redundant reports 2489 * where the ratio hasn't really changed causing a lot of redundant 2490 * work to processes and increasing the chances we'll hit buffer 2491 * overruns. 2492 * 2493 * Although we don't currently use the 'disable overrun' OABUFFER 2494 * feature it's worth noting that clock ratio reports have to be 2495 * disabled before considering to use that feature since the HW doesn't 2496 * correctly block these reports. 2497 * 2498 * Currently none of the high-level metrics we have depend on knowing 2499 * this ratio to normalize. 2500 * 2501 * Note: This register is not power context saved and restored, but 2502 * that's OK considering that we disable RC6 while the OA unit is 2503 * enabled. 2504 * 2505 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2506 * be read back from automatically triggered reports, as part of the 2507 * RPT_ID field. 2508 */ 2509 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) { 2510 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2511 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2512 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2513 } 2514 2515 /* 2516 * Update all contexts prior writing the mux configurations as we need 2517 * to make sure all slices/subslices are ON before writing to NOA 2518 * registers. 2519 */ 2520 ret = lrc_configure_all_contexts(stream, oa_config, active); 2521 if (ret) 2522 return ret; 2523 2524 return emit_oa_config(stream, 2525 stream->oa_config, oa_context(stream), 2526 active); 2527 } 2528 2529 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2530 { 2531 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2532 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2533 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2534 } 2535 2536 static int 2537 gen12_enable_metric_set(struct i915_perf_stream *stream, 2538 struct i915_active *active) 2539 { 2540 struct intel_uncore *uncore = stream->uncore; 2541 struct i915_oa_config *oa_config = stream->oa_config; 2542 bool periodic = stream->periodic; 2543 u32 period_exponent = stream->period_exponent; 2544 int ret; 2545 2546 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2547 /* Disable clk ratio reports, like previous Gens. */ 2548 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2549 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2550 /* 2551 * If the user didn't require OA reports, instruct 2552 * the hardware not to emit ctx switch reports. 2553 */ 2554 oag_report_ctx_switches(stream)); 2555 2556 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2557 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2558 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2559 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2560 : 0); 2561 2562 /* 2563 * Update all contexts prior writing the mux configurations as we need 2564 * to make sure all slices/subslices are ON before writing to NOA 2565 * registers. 2566 */ 2567 ret = gen12_configure_all_contexts(stream, oa_config, active); 2568 if (ret) 2569 return ret; 2570 2571 /* 2572 * For Gen12, performance counters are context 2573 * saved/restored. Only enable it for the context that 2574 * requested this. 2575 */ 2576 if (stream->ctx) { 2577 ret = gen12_configure_oar_context(stream, active); 2578 if (ret) 2579 return ret; 2580 } 2581 2582 return emit_oa_config(stream, 2583 stream->oa_config, oa_context(stream), 2584 active); 2585 } 2586 2587 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2588 { 2589 struct intel_uncore *uncore = stream->uncore; 2590 2591 /* Reset all contexts' slices/subslices configurations. */ 2592 lrc_configure_all_contexts(stream, NULL, NULL); 2593 2594 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2595 } 2596 2597 static void gen11_disable_metric_set(struct i915_perf_stream *stream) 2598 { 2599 struct intel_uncore *uncore = stream->uncore; 2600 2601 /* Reset all contexts' slices/subslices configurations. */ 2602 lrc_configure_all_contexts(stream, NULL, NULL); 2603 2604 /* Make sure we disable noa to save power. */ 2605 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2606 } 2607 2608 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2609 { 2610 struct intel_uncore *uncore = stream->uncore; 2611 2612 /* Reset all contexts' slices/subslices configurations. */ 2613 gen12_configure_all_contexts(stream, NULL, NULL); 2614 2615 /* disable the context save/restore or OAR counters */ 2616 if (stream->ctx) 2617 gen12_configure_oar_context(stream, NULL); 2618 2619 /* Make sure we disable noa to save power. */ 2620 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2621 } 2622 2623 static void gen7_oa_enable(struct i915_perf_stream *stream) 2624 { 2625 struct intel_uncore *uncore = stream->uncore; 2626 struct i915_gem_context *ctx = stream->ctx; 2627 u32 ctx_id = stream->specific_ctx_id; 2628 bool periodic = stream->periodic; 2629 u32 period_exponent = stream->period_exponent; 2630 u32 report_format = stream->oa_buffer.format; 2631 2632 /* 2633 * Reset buf pointers so we don't forward reports from before now. 2634 * 2635 * Think carefully if considering trying to avoid this, since it 2636 * also ensures status flags and the buffer itself are cleared 2637 * in error paths, and we have checks for invalid reports based 2638 * on the assumption that certain fields are written to zeroed 2639 * memory which this helps maintains. 2640 */ 2641 gen7_init_oa_buffer(stream); 2642 2643 intel_uncore_write(uncore, GEN7_OACONTROL, 2644 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2645 (period_exponent << 2646 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2647 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2648 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2649 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2650 GEN7_OACONTROL_ENABLE); 2651 } 2652 2653 static void gen8_oa_enable(struct i915_perf_stream *stream) 2654 { 2655 struct intel_uncore *uncore = stream->uncore; 2656 u32 report_format = stream->oa_buffer.format; 2657 2658 /* 2659 * Reset buf pointers so we don't forward reports from before now. 2660 * 2661 * Think carefully if considering trying to avoid this, since it 2662 * also ensures status flags and the buffer itself are cleared 2663 * in error paths, and we have checks for invalid reports based 2664 * on the assumption that certain fields are written to zeroed 2665 * memory which this helps maintains. 2666 */ 2667 gen8_init_oa_buffer(stream); 2668 2669 /* 2670 * Note: we don't rely on the hardware to perform single context 2671 * filtering and instead filter on the cpu based on the context-id 2672 * field of reports 2673 */ 2674 intel_uncore_write(uncore, GEN8_OACONTROL, 2675 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2676 GEN8_OA_COUNTER_ENABLE); 2677 } 2678 2679 static void gen12_oa_enable(struct i915_perf_stream *stream) 2680 { 2681 struct intel_uncore *uncore = stream->uncore; 2682 u32 report_format = stream->oa_buffer.format; 2683 2684 /* 2685 * If we don't want OA reports from the OA buffer, then we don't even 2686 * need to program the OAG unit. 2687 */ 2688 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2689 return; 2690 2691 gen12_init_oa_buffer(stream); 2692 2693 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2694 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2695 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2696 } 2697 2698 /** 2699 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2700 * @stream: An i915 perf stream opened for OA metrics 2701 * 2702 * [Re]enables hardware periodic sampling according to the period configured 2703 * when opening the stream. This also starts a hrtimer that will periodically 2704 * check for data in the circular OA buffer for notifying userspace (e.g. 2705 * during a read() or poll()). 2706 */ 2707 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2708 { 2709 stream->pollin = false; 2710 2711 stream->perf->ops.oa_enable(stream); 2712 2713 if (stream->sample_flags & SAMPLE_OA_REPORT) 2714 hrtimer_start(&stream->poll_check_timer, 2715 ns_to_ktime(stream->poll_oa_period), 2716 HRTIMER_MODE_REL_PINNED); 2717 } 2718 2719 static void gen7_oa_disable(struct i915_perf_stream *stream) 2720 { 2721 struct intel_uncore *uncore = stream->uncore; 2722 2723 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2724 if (intel_wait_for_register(uncore, 2725 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2726 50)) 2727 drm_err(&stream->perf->i915->drm, 2728 "wait for OA to be disabled timed out\n"); 2729 } 2730 2731 static void gen8_oa_disable(struct i915_perf_stream *stream) 2732 { 2733 struct intel_uncore *uncore = stream->uncore; 2734 2735 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2736 if (intel_wait_for_register(uncore, 2737 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2738 50)) 2739 drm_err(&stream->perf->i915->drm, 2740 "wait for OA to be disabled timed out\n"); 2741 } 2742 2743 static void gen12_oa_disable(struct i915_perf_stream *stream) 2744 { 2745 struct intel_uncore *uncore = stream->uncore; 2746 2747 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 2748 if (intel_wait_for_register(uncore, 2749 GEN12_OAG_OACONTROL, 2750 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 2751 50)) 2752 drm_err(&stream->perf->i915->drm, 2753 "wait for OA to be disabled timed out\n"); 2754 2755 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 2756 if (intel_wait_for_register(uncore, 2757 GEN12_OA_TLB_INV_CR, 2758 1, 0, 2759 50)) 2760 drm_err(&stream->perf->i915->drm, 2761 "wait for OA tlb invalidate timed out\n"); 2762 } 2763 2764 /** 2765 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2766 * @stream: An i915 perf stream opened for OA metrics 2767 * 2768 * Stops the OA unit from periodically writing counter reports into the 2769 * circular OA buffer. This also stops the hrtimer that periodically checks for 2770 * data in the circular OA buffer, for notifying userspace. 2771 */ 2772 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2773 { 2774 stream->perf->ops.oa_disable(stream); 2775 2776 if (stream->sample_flags & SAMPLE_OA_REPORT) 2777 hrtimer_cancel(&stream->poll_check_timer); 2778 } 2779 2780 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2781 .destroy = i915_oa_stream_destroy, 2782 .enable = i915_oa_stream_enable, 2783 .disable = i915_oa_stream_disable, 2784 .wait_unlocked = i915_oa_wait_unlocked, 2785 .poll_wait = i915_oa_poll_wait, 2786 .read = i915_oa_read, 2787 }; 2788 2789 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 2790 { 2791 struct i915_active *active; 2792 int err; 2793 2794 active = i915_active_create(); 2795 if (!active) 2796 return -ENOMEM; 2797 2798 err = stream->perf->ops.enable_metric_set(stream, active); 2799 if (err == 0) 2800 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 2801 2802 i915_active_put(active); 2803 return err; 2804 } 2805 2806 static void 2807 get_default_sseu_config(struct intel_sseu *out_sseu, 2808 struct intel_engine_cs *engine) 2809 { 2810 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 2811 2812 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 2813 2814 if (GRAPHICS_VER(engine->i915) == 11) { 2815 /* 2816 * We only need subslice count so it doesn't matter which ones 2817 * we select - just turn off low bits in the amount of half of 2818 * all available subslices per slice. 2819 */ 2820 out_sseu->subslice_mask = 2821 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 2822 out_sseu->slice_mask = 0x1; 2823 } 2824 } 2825 2826 static int 2827 get_sseu_config(struct intel_sseu *out_sseu, 2828 struct intel_engine_cs *engine, 2829 const struct drm_i915_gem_context_param_sseu *drm_sseu) 2830 { 2831 if (drm_sseu->engine.engine_class != engine->uabi_class || 2832 drm_sseu->engine.engine_instance != engine->uabi_instance) 2833 return -EINVAL; 2834 2835 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 2836 } 2837 2838 /** 2839 * i915_oa_stream_init - validate combined props for OA stream and init 2840 * @stream: An i915 perf stream 2841 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2842 * @props: The property state that configures stream (individually validated) 2843 * 2844 * While read_properties_unlocked() validates properties in isolation it 2845 * doesn't ensure that the combination necessarily makes sense. 2846 * 2847 * At this point it has been determined that userspace wants a stream of 2848 * OA metrics, but still we need to further validate the combined 2849 * properties are OK. 2850 * 2851 * If the configuration makes sense then we can allocate memory for 2852 * a circular OA buffer and apply the requested metric set configuration. 2853 * 2854 * Returns: zero on success or a negative error code. 2855 */ 2856 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2857 struct drm_i915_perf_open_param *param, 2858 struct perf_open_properties *props) 2859 { 2860 struct drm_i915_private *i915 = stream->perf->i915; 2861 struct i915_perf *perf = stream->perf; 2862 int format_size; 2863 int ret; 2864 2865 if (!props->engine) { 2866 DRM_DEBUG("OA engine not specified\n"); 2867 return -EINVAL; 2868 } 2869 2870 /* 2871 * If the sysfs metrics/ directory wasn't registered for some 2872 * reason then don't let userspace try their luck with config 2873 * IDs 2874 */ 2875 if (!perf->metrics_kobj) { 2876 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2877 return -EINVAL; 2878 } 2879 2880 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 2881 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) { 2882 DRM_DEBUG("Only OA report sampling supported\n"); 2883 return -EINVAL; 2884 } 2885 2886 if (!perf->ops.enable_metric_set) { 2887 DRM_DEBUG("OA unit not supported\n"); 2888 return -ENODEV; 2889 } 2890 2891 /* 2892 * To avoid the complexity of having to accurately filter 2893 * counter reports and marshal to the appropriate client 2894 * we currently only allow exclusive access 2895 */ 2896 if (perf->exclusive_stream) { 2897 DRM_DEBUG("OA unit already in use\n"); 2898 return -EBUSY; 2899 } 2900 2901 if (!props->oa_format) { 2902 DRM_DEBUG("OA report format not specified\n"); 2903 return -EINVAL; 2904 } 2905 2906 stream->engine = props->engine; 2907 stream->uncore = stream->engine->gt->uncore; 2908 2909 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2910 2911 format_size = perf->oa_formats[props->oa_format].size; 2912 2913 stream->sample_flags = props->sample_flags; 2914 stream->sample_size += format_size; 2915 2916 stream->oa_buffer.format_size = format_size; 2917 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0)) 2918 return -EINVAL; 2919 2920 stream->hold_preemption = props->hold_preemption; 2921 2922 stream->oa_buffer.format = 2923 perf->oa_formats[props->oa_format].format; 2924 2925 stream->periodic = props->oa_periodic; 2926 if (stream->periodic) 2927 stream->period_exponent = props->oa_period_exponent; 2928 2929 if (stream->ctx) { 2930 ret = oa_get_render_ctx_id(stream); 2931 if (ret) { 2932 DRM_DEBUG("Invalid context id to filter with\n"); 2933 return ret; 2934 } 2935 } 2936 2937 ret = alloc_noa_wait(stream); 2938 if (ret) { 2939 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n"); 2940 goto err_noa_wait_alloc; 2941 } 2942 2943 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 2944 if (!stream->oa_config) { 2945 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2946 ret = -EINVAL; 2947 goto err_config; 2948 } 2949 2950 /* PRM - observability performance counters: 2951 * 2952 * OACONTROL, performance counter enable, note: 2953 * 2954 * "When this bit is set, in order to have coherent counts, 2955 * RC6 power state and trunk clock gating must be disabled. 2956 * This can be achieved by programming MMIO registers as 2957 * 0xA094=0 and 0xA090[31]=1" 2958 * 2959 * In our case we are expecting that taking pm + FORCEWAKE 2960 * references will effectively disable RC6. 2961 */ 2962 intel_engine_pm_get(stream->engine); 2963 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 2964 2965 ret = alloc_oa_buffer(stream); 2966 if (ret) 2967 goto err_oa_buf_alloc; 2968 2969 stream->ops = &i915_oa_stream_ops; 2970 2971 perf->sseu = props->sseu; 2972 WRITE_ONCE(perf->exclusive_stream, stream); 2973 2974 ret = i915_perf_stream_enable_sync(stream); 2975 if (ret) { 2976 DRM_DEBUG("Unable to enable metric set\n"); 2977 goto err_enable; 2978 } 2979 2980 DRM_DEBUG("opening stream oa config uuid=%s\n", 2981 stream->oa_config->uuid); 2982 2983 hrtimer_init(&stream->poll_check_timer, 2984 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2985 stream->poll_check_timer.function = oa_poll_check_timer_cb; 2986 init_waitqueue_head(&stream->poll_wq); 2987 spin_lock_init(&stream->oa_buffer.ptr_lock); 2988 2989 return 0; 2990 2991 err_enable: 2992 WRITE_ONCE(perf->exclusive_stream, NULL); 2993 perf->ops.disable_metric_set(stream); 2994 2995 free_oa_buffer(stream); 2996 2997 err_oa_buf_alloc: 2998 free_oa_configs(stream); 2999 3000 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 3001 intel_engine_pm_put(stream->engine); 3002 3003 err_config: 3004 free_noa_wait(stream); 3005 3006 err_noa_wait_alloc: 3007 if (stream->ctx) 3008 oa_put_render_ctx_id(stream); 3009 3010 return ret; 3011 } 3012 3013 void i915_oa_init_reg_state(const struct intel_context *ce, 3014 const struct intel_engine_cs *engine) 3015 { 3016 struct i915_perf_stream *stream; 3017 3018 if (engine->class != RENDER_CLASS) 3019 return; 3020 3021 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 3022 stream = READ_ONCE(engine->i915->perf.exclusive_stream); 3023 if (stream && GRAPHICS_VER(stream->perf->i915) < 12) 3024 gen8_update_reg_state_unlocked(ce, stream); 3025 } 3026 3027 /** 3028 * i915_perf_read - handles read() FOP for i915 perf stream FDs 3029 * @file: An i915 perf stream file 3030 * @buf: destination buffer given by userspace 3031 * @count: the number of bytes userspace wants to read 3032 * @ppos: (inout) file seek position (unused) 3033 * 3034 * The entry point for handling a read() on a stream file descriptor from 3035 * userspace. Most of the work is left to the i915_perf_read_locked() and 3036 * &i915_perf_stream_ops->read but to save having stream implementations (of 3037 * which we might have multiple later) we handle blocking read here. 3038 * 3039 * We can also consistently treat trying to read from a disabled stream 3040 * as an IO error so implementations can assume the stream is enabled 3041 * while reading. 3042 * 3043 * Returns: The number of bytes copied or a negative error code on failure. 3044 */ 3045 static ssize_t i915_perf_read(struct file *file, 3046 char __user *buf, 3047 size_t count, 3048 loff_t *ppos) 3049 { 3050 struct i915_perf_stream *stream = file->private_data; 3051 struct i915_perf *perf = stream->perf; 3052 size_t offset = 0; 3053 int ret; 3054 3055 /* To ensure it's handled consistently we simply treat all reads of a 3056 * disabled stream as an error. In particular it might otherwise lead 3057 * to a deadlock for blocking file descriptors... 3058 */ 3059 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT)) 3060 return -EIO; 3061 3062 if (!(file->f_flags & O_NONBLOCK)) { 3063 /* There's the small chance of false positives from 3064 * stream->ops->wait_unlocked. 3065 * 3066 * E.g. with single context filtering since we only wait until 3067 * oabuffer has >= 1 report we don't immediately know whether 3068 * any reports really belong to the current context 3069 */ 3070 do { 3071 ret = stream->ops->wait_unlocked(stream); 3072 if (ret) 3073 return ret; 3074 3075 mutex_lock(&perf->lock); 3076 ret = stream->ops->read(stream, buf, count, &offset); 3077 mutex_unlock(&perf->lock); 3078 } while (!offset && !ret); 3079 } else { 3080 mutex_lock(&perf->lock); 3081 ret = stream->ops->read(stream, buf, count, &offset); 3082 mutex_unlock(&perf->lock); 3083 } 3084 3085 /* We allow the poll checking to sometimes report false positive EPOLLIN 3086 * events where we might actually report EAGAIN on read() if there's 3087 * not really any data available. In this situation though we don't 3088 * want to enter a busy loop between poll() reporting a EPOLLIN event 3089 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3090 * effectively ensures we back off until the next hrtimer callback 3091 * before reporting another EPOLLIN event. 3092 * The exception to this is if ops->read() returned -ENOSPC which means 3093 * that more OA data is available than could fit in the user provided 3094 * buffer. In this case we want the next poll() call to not block. 3095 */ 3096 if (ret != -ENOSPC) 3097 stream->pollin = false; 3098 3099 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3100 return offset ?: (ret ?: -EAGAIN); 3101 } 3102 3103 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3104 { 3105 struct i915_perf_stream *stream = 3106 container_of(hrtimer, typeof(*stream), poll_check_timer); 3107 3108 if (oa_buffer_check_unlocked(stream)) { 3109 stream->pollin = true; 3110 wake_up(&stream->poll_wq); 3111 } 3112 3113 hrtimer_forward_now(hrtimer, 3114 ns_to_ktime(stream->poll_oa_period)); 3115 3116 return HRTIMER_RESTART; 3117 } 3118 3119 /** 3120 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3121 * @stream: An i915 perf stream 3122 * @file: An i915 perf stream file 3123 * @wait: poll() state table 3124 * 3125 * For handling userspace polling on an i915 perf stream, this calls through to 3126 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3127 * will be woken for new stream data. 3128 * 3129 * Note: The &perf->lock mutex has been taken to serialize 3130 * with any non-file-operation driver hooks. 3131 * 3132 * Returns: any poll events that are ready without sleeping 3133 */ 3134 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3135 struct file *file, 3136 poll_table *wait) 3137 { 3138 __poll_t events = 0; 3139 3140 stream->ops->poll_wait(stream, file, wait); 3141 3142 /* Note: we don't explicitly check whether there's something to read 3143 * here since this path may be very hot depending on what else 3144 * userspace is polling, or on the timeout in use. We rely solely on 3145 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3146 * samples to read. 3147 */ 3148 if (stream->pollin) 3149 events |= EPOLLIN; 3150 3151 return events; 3152 } 3153 3154 /** 3155 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3156 * @file: An i915 perf stream file 3157 * @wait: poll() state table 3158 * 3159 * For handling userspace polling on an i915 perf stream, this ensures 3160 * poll_wait() gets called with a wait queue that will be woken for new stream 3161 * data. 3162 * 3163 * Note: Implementation deferred to i915_perf_poll_locked() 3164 * 3165 * Returns: any poll events that are ready without sleeping 3166 */ 3167 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3168 { 3169 struct i915_perf_stream *stream = file->private_data; 3170 struct i915_perf *perf = stream->perf; 3171 __poll_t ret; 3172 3173 mutex_lock(&perf->lock); 3174 ret = i915_perf_poll_locked(stream, file, wait); 3175 mutex_unlock(&perf->lock); 3176 3177 return ret; 3178 } 3179 3180 /** 3181 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3182 * @stream: A disabled i915 perf stream 3183 * 3184 * [Re]enables the associated capture of data for this stream. 3185 * 3186 * If a stream was previously enabled then there's currently no intention 3187 * to provide userspace any guarantee about the preservation of previously 3188 * buffered data. 3189 */ 3190 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3191 { 3192 if (stream->enabled) 3193 return; 3194 3195 /* Allow stream->ops->enable() to refer to this */ 3196 stream->enabled = true; 3197 3198 if (stream->ops->enable) 3199 stream->ops->enable(stream); 3200 3201 if (stream->hold_preemption) 3202 intel_context_set_nopreempt(stream->pinned_ctx); 3203 } 3204 3205 /** 3206 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3207 * @stream: An enabled i915 perf stream 3208 * 3209 * Disables the associated capture of data for this stream. 3210 * 3211 * The intention is that disabling an re-enabling a stream will ideally be 3212 * cheaper than destroying and re-opening a stream with the same configuration, 3213 * though there are no formal guarantees about what state or buffered data 3214 * must be retained between disabling and re-enabling a stream. 3215 * 3216 * Note: while a stream is disabled it's considered an error for userspace 3217 * to attempt to read from the stream (-EIO). 3218 */ 3219 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3220 { 3221 if (!stream->enabled) 3222 return; 3223 3224 /* Allow stream->ops->disable() to refer to this */ 3225 stream->enabled = false; 3226 3227 if (stream->hold_preemption) 3228 intel_context_clear_nopreempt(stream->pinned_ctx); 3229 3230 if (stream->ops->disable) 3231 stream->ops->disable(stream); 3232 } 3233 3234 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3235 unsigned long metrics_set) 3236 { 3237 struct i915_oa_config *config; 3238 long ret = stream->oa_config->id; 3239 3240 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3241 if (!config) 3242 return -EINVAL; 3243 3244 if (config != stream->oa_config) { 3245 int err; 3246 3247 /* 3248 * If OA is bound to a specific context, emit the 3249 * reconfiguration inline from that context. The update 3250 * will then be ordered with respect to submission on that 3251 * context. 3252 * 3253 * When set globally, we use a low priority kernel context, 3254 * so it will effectively take effect when idle. 3255 */ 3256 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3257 if (!err) 3258 config = xchg(&stream->oa_config, config); 3259 else 3260 ret = err; 3261 } 3262 3263 i915_oa_config_put(config); 3264 3265 return ret; 3266 } 3267 3268 /** 3269 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3270 * @stream: An i915 perf stream 3271 * @cmd: the ioctl request 3272 * @arg: the ioctl data 3273 * 3274 * Note: The &perf->lock mutex has been taken to serialize 3275 * with any non-file-operation driver hooks. 3276 * 3277 * Returns: zero on success or a negative error code. Returns -EINVAL for 3278 * an unknown ioctl request. 3279 */ 3280 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3281 unsigned int cmd, 3282 unsigned long arg) 3283 { 3284 switch (cmd) { 3285 case I915_PERF_IOCTL_ENABLE: 3286 i915_perf_enable_locked(stream); 3287 return 0; 3288 case I915_PERF_IOCTL_DISABLE: 3289 i915_perf_disable_locked(stream); 3290 return 0; 3291 case I915_PERF_IOCTL_CONFIG: 3292 return i915_perf_config_locked(stream, arg); 3293 } 3294 3295 return -EINVAL; 3296 } 3297 3298 /** 3299 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3300 * @file: An i915 perf stream file 3301 * @cmd: the ioctl request 3302 * @arg: the ioctl data 3303 * 3304 * Implementation deferred to i915_perf_ioctl_locked(). 3305 * 3306 * Returns: zero on success or a negative error code. Returns -EINVAL for 3307 * an unknown ioctl request. 3308 */ 3309 static long i915_perf_ioctl(struct file *file, 3310 unsigned int cmd, 3311 unsigned long arg) 3312 { 3313 struct i915_perf_stream *stream = file->private_data; 3314 struct i915_perf *perf = stream->perf; 3315 long ret; 3316 3317 mutex_lock(&perf->lock); 3318 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3319 mutex_unlock(&perf->lock); 3320 3321 return ret; 3322 } 3323 3324 /** 3325 * i915_perf_destroy_locked - destroy an i915 perf stream 3326 * @stream: An i915 perf stream 3327 * 3328 * Frees all resources associated with the given i915 perf @stream, disabling 3329 * any associated data capture in the process. 3330 * 3331 * Note: The &perf->lock mutex has been taken to serialize 3332 * with any non-file-operation driver hooks. 3333 */ 3334 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3335 { 3336 if (stream->enabled) 3337 i915_perf_disable_locked(stream); 3338 3339 if (stream->ops->destroy) 3340 stream->ops->destroy(stream); 3341 3342 if (stream->ctx) 3343 i915_gem_context_put(stream->ctx); 3344 3345 kfree(stream); 3346 } 3347 3348 /** 3349 * i915_perf_release - handles userspace close() of a stream file 3350 * @inode: anonymous inode associated with file 3351 * @file: An i915 perf stream file 3352 * 3353 * Cleans up any resources associated with an open i915 perf stream file. 3354 * 3355 * NB: close() can't really fail from the userspace point of view. 3356 * 3357 * Returns: zero on success or a negative error code. 3358 */ 3359 static int i915_perf_release(struct inode *inode, struct file *file) 3360 { 3361 struct i915_perf_stream *stream = file->private_data; 3362 struct i915_perf *perf = stream->perf; 3363 3364 mutex_lock(&perf->lock); 3365 i915_perf_destroy_locked(stream); 3366 mutex_unlock(&perf->lock); 3367 3368 /* Release the reference the perf stream kept on the driver. */ 3369 drm_dev_put(&perf->i915->drm); 3370 3371 return 0; 3372 } 3373 3374 3375 static const struct file_operations fops = { 3376 .owner = THIS_MODULE, 3377 .llseek = no_llseek, 3378 .release = i915_perf_release, 3379 .poll = i915_perf_poll, 3380 .read = i915_perf_read, 3381 .unlocked_ioctl = i915_perf_ioctl, 3382 /* Our ioctl have no arguments, so it's safe to use the same function 3383 * to handle 32bits compatibility. 3384 */ 3385 .compat_ioctl = i915_perf_ioctl, 3386 }; 3387 3388 3389 /** 3390 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3391 * @perf: i915 perf instance 3392 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3393 * @props: individually validated u64 property value pairs 3394 * @file: drm file 3395 * 3396 * See i915_perf_ioctl_open() for interface details. 3397 * 3398 * Implements further stream config validation and stream initialization on 3399 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex 3400 * taken to serialize with any non-file-operation driver hooks. 3401 * 3402 * Note: at this point the @props have only been validated in isolation and 3403 * it's still necessary to validate that the combination of properties makes 3404 * sense. 3405 * 3406 * In the case where userspace is interested in OA unit metrics then further 3407 * config validation and stream initialization details will be handled by 3408 * i915_oa_stream_init(). The code here should only validate config state that 3409 * will be relevant to all stream types / backends. 3410 * 3411 * Returns: zero on success or a negative error code. 3412 */ 3413 static int 3414 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3415 struct drm_i915_perf_open_param *param, 3416 struct perf_open_properties *props, 3417 struct drm_file *file) 3418 { 3419 struct i915_gem_context *specific_ctx = NULL; 3420 struct i915_perf_stream *stream = NULL; 3421 unsigned long f_flags = 0; 3422 bool privileged_op = true; 3423 int stream_fd; 3424 int ret; 3425 3426 if (props->single_context) { 3427 u32 ctx_handle = props->ctx_handle; 3428 struct drm_i915_file_private *file_priv = file->driver_priv; 3429 3430 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3431 if (IS_ERR(specific_ctx)) { 3432 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 3433 ctx_handle); 3434 ret = PTR_ERR(specific_ctx); 3435 goto err; 3436 } 3437 } 3438 3439 /* 3440 * On Haswell the OA unit supports clock gating off for a specific 3441 * context and in this mode there's no visibility of metrics for the 3442 * rest of the system, which we consider acceptable for a 3443 * non-privileged client. 3444 * 3445 * For Gen8->11 the OA unit no longer supports clock gating off for a 3446 * specific context and the kernel can't securely stop the counters 3447 * from updating as system-wide / global values. Even though we can 3448 * filter reports based on the included context ID we can't block 3449 * clients from seeing the raw / global counter values via 3450 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3451 * enable the OA unit by default. 3452 * 3453 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3454 * per context basis. So we can relax requirements there if the user 3455 * doesn't request global stream access (i.e. query based sampling 3456 * using MI_RECORD_PERF_COUNT. 3457 */ 3458 if (IS_HASWELL(perf->i915) && specific_ctx) 3459 privileged_op = false; 3460 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx && 3461 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3462 privileged_op = false; 3463 3464 if (props->hold_preemption) { 3465 if (!props->single_context) { 3466 DRM_DEBUG("preemption disable with no context\n"); 3467 ret = -EINVAL; 3468 goto err; 3469 } 3470 privileged_op = true; 3471 } 3472 3473 /* 3474 * Asking for SSEU configuration is a priviliged operation. 3475 */ 3476 if (props->has_sseu) 3477 privileged_op = true; 3478 else 3479 get_default_sseu_config(&props->sseu, props->engine); 3480 3481 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3482 * we check a dev.i915.perf_stream_paranoid sysctl option 3483 * to determine if it's ok to access system wide OA counters 3484 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3485 */ 3486 if (privileged_op && 3487 i915_perf_stream_paranoid && !perfmon_capable()) { 3488 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n"); 3489 ret = -EACCES; 3490 goto err_ctx; 3491 } 3492 3493 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3494 if (!stream) { 3495 ret = -ENOMEM; 3496 goto err_ctx; 3497 } 3498 3499 stream->perf = perf; 3500 stream->ctx = specific_ctx; 3501 stream->poll_oa_period = props->poll_oa_period; 3502 3503 ret = i915_oa_stream_init(stream, param, props); 3504 if (ret) 3505 goto err_alloc; 3506 3507 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3508 * to have _stream_init check the combination of sample flags more 3509 * thoroughly, but still this is the expected result at this point. 3510 */ 3511 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3512 ret = -ENODEV; 3513 goto err_flags; 3514 } 3515 3516 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3517 f_flags |= O_CLOEXEC; 3518 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3519 f_flags |= O_NONBLOCK; 3520 3521 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3522 if (stream_fd < 0) { 3523 ret = stream_fd; 3524 goto err_flags; 3525 } 3526 3527 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3528 i915_perf_enable_locked(stream); 3529 3530 /* Take a reference on the driver that will be kept with stream_fd 3531 * until its release. 3532 */ 3533 drm_dev_get(&perf->i915->drm); 3534 3535 return stream_fd; 3536 3537 err_flags: 3538 if (stream->ops->destroy) 3539 stream->ops->destroy(stream); 3540 err_alloc: 3541 kfree(stream); 3542 err_ctx: 3543 if (specific_ctx) 3544 i915_gem_context_put(specific_ctx); 3545 err: 3546 return ret; 3547 } 3548 3549 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3550 { 3551 return intel_gt_clock_interval_to_ns(to_gt(perf->i915), 3552 2ULL << exponent); 3553 } 3554 3555 static __always_inline bool 3556 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format) 3557 { 3558 return test_bit(format, perf->format_mask); 3559 } 3560 3561 static __always_inline void 3562 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format) 3563 { 3564 __set_bit(format, perf->format_mask); 3565 } 3566 3567 /** 3568 * read_properties_unlocked - validate + copy userspace stream open properties 3569 * @perf: i915 perf instance 3570 * @uprops: The array of u64 key value pairs given by userspace 3571 * @n_props: The number of key value pairs expected in @uprops 3572 * @props: The stream configuration built up while validating properties 3573 * 3574 * Note this function only validates properties in isolation it doesn't 3575 * validate that the combination of properties makes sense or that all 3576 * properties necessary for a particular kind of stream have been set. 3577 * 3578 * Note that there currently aren't any ordering requirements for properties so 3579 * we shouldn't validate or assume anything about ordering here. This doesn't 3580 * rule out defining new properties with ordering requirements in the future. 3581 */ 3582 static int read_properties_unlocked(struct i915_perf *perf, 3583 u64 __user *uprops, 3584 u32 n_props, 3585 struct perf_open_properties *props) 3586 { 3587 u64 __user *uprop = uprops; 3588 u32 i; 3589 int ret; 3590 3591 memset(props, 0, sizeof(struct perf_open_properties)); 3592 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 3593 3594 if (!n_props) { 3595 DRM_DEBUG("No i915 perf properties given\n"); 3596 return -EINVAL; 3597 } 3598 3599 /* At the moment we only support using i915-perf on the RCS. */ 3600 props->engine = intel_engine_lookup_user(perf->i915, 3601 I915_ENGINE_CLASS_RENDER, 3602 0); 3603 if (!props->engine) { 3604 DRM_DEBUG("No RENDER-capable engines\n"); 3605 return -EINVAL; 3606 } 3607 3608 /* Considering that ID = 0 is reserved and assuming that we don't 3609 * (currently) expect any configurations to ever specify duplicate 3610 * values for a particular property ID then the last _PROP_MAX value is 3611 * one greater than the maximum number of properties we expect to get 3612 * from userspace. 3613 */ 3614 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3615 DRM_DEBUG("More i915 perf properties specified than exist\n"); 3616 return -EINVAL; 3617 } 3618 3619 for (i = 0; i < n_props; i++) { 3620 u64 oa_period, oa_freq_hz; 3621 u64 id, value; 3622 3623 ret = get_user(id, uprop); 3624 if (ret) 3625 return ret; 3626 3627 ret = get_user(value, uprop + 1); 3628 if (ret) 3629 return ret; 3630 3631 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3632 DRM_DEBUG("Unknown i915 perf property ID\n"); 3633 return -EINVAL; 3634 } 3635 3636 switch ((enum drm_i915_perf_property_id)id) { 3637 case DRM_I915_PERF_PROP_CTX_HANDLE: 3638 props->single_context = 1; 3639 props->ctx_handle = value; 3640 break; 3641 case DRM_I915_PERF_PROP_SAMPLE_OA: 3642 if (value) 3643 props->sample_flags |= SAMPLE_OA_REPORT; 3644 break; 3645 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3646 if (value == 0) { 3647 DRM_DEBUG("Unknown OA metric set ID\n"); 3648 return -EINVAL; 3649 } 3650 props->metrics_set = value; 3651 break; 3652 case DRM_I915_PERF_PROP_OA_FORMAT: 3653 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3654 DRM_DEBUG("Out-of-range OA report format %llu\n", 3655 value); 3656 return -EINVAL; 3657 } 3658 if (!oa_format_valid(perf, value)) { 3659 DRM_DEBUG("Unsupported OA report format %llu\n", 3660 value); 3661 return -EINVAL; 3662 } 3663 props->oa_format = value; 3664 break; 3665 case DRM_I915_PERF_PROP_OA_EXPONENT: 3666 if (value > OA_EXPONENT_MAX) { 3667 DRM_DEBUG("OA timer exponent too high (> %u)\n", 3668 OA_EXPONENT_MAX); 3669 return -EINVAL; 3670 } 3671 3672 /* Theoretically we can program the OA unit to sample 3673 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 3674 * for BXT. We don't allow such high sampling 3675 * frequencies by default unless root. 3676 */ 3677 3678 BUILD_BUG_ON(sizeof(oa_period) != 8); 3679 oa_period = oa_exponent_to_ns(perf, value); 3680 3681 /* This check is primarily to ensure that oa_period <= 3682 * UINT32_MAX (before passing to do_div which only 3683 * accepts a u32 denominator), but we can also skip 3684 * checking anything < 1Hz which implicitly can't be 3685 * limited via an integer oa_max_sample_rate. 3686 */ 3687 if (oa_period <= NSEC_PER_SEC) { 3688 u64 tmp = NSEC_PER_SEC; 3689 do_div(tmp, oa_period); 3690 oa_freq_hz = tmp; 3691 } else 3692 oa_freq_hz = 0; 3693 3694 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 3695 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 3696 i915_oa_max_sample_rate); 3697 return -EACCES; 3698 } 3699 3700 props->oa_periodic = true; 3701 props->oa_period_exponent = value; 3702 break; 3703 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 3704 props->hold_preemption = !!value; 3705 break; 3706 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 3707 struct drm_i915_gem_context_param_sseu user_sseu; 3708 3709 if (copy_from_user(&user_sseu, 3710 u64_to_user_ptr(value), 3711 sizeof(user_sseu))) { 3712 DRM_DEBUG("Unable to copy global sseu parameter\n"); 3713 return -EFAULT; 3714 } 3715 3716 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 3717 if (ret) { 3718 DRM_DEBUG("Invalid SSEU configuration\n"); 3719 return ret; 3720 } 3721 props->has_sseu = true; 3722 break; 3723 } 3724 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 3725 if (value < 100000 /* 100us */) { 3726 DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n", 3727 value); 3728 return -EINVAL; 3729 } 3730 props->poll_oa_period = value; 3731 break; 3732 case DRM_I915_PERF_PROP_MAX: 3733 MISSING_CASE(id); 3734 return -EINVAL; 3735 } 3736 3737 uprop += 2; 3738 } 3739 3740 return 0; 3741 } 3742 3743 /** 3744 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 3745 * @dev: drm device 3746 * @data: ioctl data copied from userspace (unvalidated) 3747 * @file: drm file 3748 * 3749 * Validates the stream open parameters given by userspace including flags 3750 * and an array of u64 key, value pair properties. 3751 * 3752 * Very little is assumed up front about the nature of the stream being 3753 * opened (for instance we don't assume it's for periodic OA unit metrics). An 3754 * i915-perf stream is expected to be a suitable interface for other forms of 3755 * buffered data written by the GPU besides periodic OA metrics. 3756 * 3757 * Note we copy the properties from userspace outside of the i915 perf 3758 * mutex to avoid an awkward lockdep with mmap_lock. 3759 * 3760 * Most of the implementation details are handled by 3761 * i915_perf_open_ioctl_locked() after taking the &perf->lock 3762 * mutex for serializing with any non-file-operation driver hooks. 3763 * 3764 * Return: A newly opened i915 Perf stream file descriptor or negative 3765 * error code on failure. 3766 */ 3767 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3768 struct drm_file *file) 3769 { 3770 struct i915_perf *perf = &to_i915(dev)->perf; 3771 struct drm_i915_perf_open_param *param = data; 3772 struct perf_open_properties props; 3773 u32 known_open_flags; 3774 int ret; 3775 3776 if (!perf->i915) { 3777 DRM_DEBUG("i915 perf interface not available for this system\n"); 3778 return -ENOTSUPP; 3779 } 3780 3781 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3782 I915_PERF_FLAG_FD_NONBLOCK | 3783 I915_PERF_FLAG_DISABLED; 3784 if (param->flags & ~known_open_flags) { 3785 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 3786 return -EINVAL; 3787 } 3788 3789 ret = read_properties_unlocked(perf, 3790 u64_to_user_ptr(param->properties_ptr), 3791 param->num_properties, 3792 &props); 3793 if (ret) 3794 return ret; 3795 3796 mutex_lock(&perf->lock); 3797 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 3798 mutex_unlock(&perf->lock); 3799 3800 return ret; 3801 } 3802 3803 /** 3804 * i915_perf_register - exposes i915-perf to userspace 3805 * @i915: i915 device instance 3806 * 3807 * In particular OA metric sets are advertised under a sysfs metrics/ 3808 * directory allowing userspace to enumerate valid IDs that can be 3809 * used to open an i915-perf stream. 3810 */ 3811 void i915_perf_register(struct drm_i915_private *i915) 3812 { 3813 struct i915_perf *perf = &i915->perf; 3814 3815 if (!perf->i915) 3816 return; 3817 3818 /* To be sure we're synchronized with an attempted 3819 * i915_perf_open_ioctl(); considering that we register after 3820 * being exposed to userspace. 3821 */ 3822 mutex_lock(&perf->lock); 3823 3824 perf->metrics_kobj = 3825 kobject_create_and_add("metrics", 3826 &i915->drm.primary->kdev->kobj); 3827 3828 mutex_unlock(&perf->lock); 3829 } 3830 3831 /** 3832 * i915_perf_unregister - hide i915-perf from userspace 3833 * @i915: i915 device instance 3834 * 3835 * i915-perf state cleanup is split up into an 'unregister' and 3836 * 'deinit' phase where the interface is first hidden from 3837 * userspace by i915_perf_unregister() before cleaning up 3838 * remaining state in i915_perf_fini(). 3839 */ 3840 void i915_perf_unregister(struct drm_i915_private *i915) 3841 { 3842 struct i915_perf *perf = &i915->perf; 3843 3844 if (!perf->metrics_kobj) 3845 return; 3846 3847 kobject_put(perf->metrics_kobj); 3848 perf->metrics_kobj = NULL; 3849 } 3850 3851 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 3852 { 3853 static const i915_reg_t flex_eu_regs[] = { 3854 EU_PERF_CNTL0, 3855 EU_PERF_CNTL1, 3856 EU_PERF_CNTL2, 3857 EU_PERF_CNTL3, 3858 EU_PERF_CNTL4, 3859 EU_PERF_CNTL5, 3860 EU_PERF_CNTL6, 3861 }; 3862 int i; 3863 3864 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3865 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3866 return true; 3867 } 3868 return false; 3869 } 3870 3871 static bool reg_in_range_table(u32 addr, const struct i915_range *table) 3872 { 3873 while (table->start || table->end) { 3874 if (addr >= table->start && addr <= table->end) 3875 return true; 3876 3877 table++; 3878 } 3879 3880 return false; 3881 } 3882 3883 #define REG_EQUAL(addr, mmio) \ 3884 ((addr) == i915_mmio_reg_offset(mmio)) 3885 3886 static const struct i915_range gen7_oa_b_counters[] = { 3887 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */ 3888 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */ 3889 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */ 3890 {} 3891 }; 3892 3893 static const struct i915_range gen12_oa_b_counters[] = { 3894 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */ 3895 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */ 3896 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */ 3897 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */ 3898 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */ 3899 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */ 3900 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */ 3901 {} 3902 }; 3903 3904 static const struct i915_range gen7_oa_mux_regs[] = { 3905 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */ 3906 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */ 3907 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */ 3908 {} 3909 }; 3910 3911 static const struct i915_range hsw_oa_mux_regs[] = { 3912 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */ 3913 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */ 3914 { .start = 0x25100, .end = 0x2ff90 }, 3915 {} 3916 }; 3917 3918 static const struct i915_range chv_oa_mux_regs[] = { 3919 { .start = 0x182300, .end = 0x1823a4 }, 3920 {} 3921 }; 3922 3923 static const struct i915_range gen8_oa_mux_regs[] = { 3924 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */ 3925 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 3926 {} 3927 }; 3928 3929 static const struct i915_range gen11_oa_mux_regs[] = { 3930 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */ 3931 {} 3932 }; 3933 3934 static const struct i915_range gen12_oa_mux_regs[] = { 3935 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 3936 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 3937 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 3938 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 3939 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 3940 {} 3941 }; 3942 3943 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3944 { 3945 return reg_in_range_table(addr, gen7_oa_b_counters); 3946 } 3947 3948 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3949 { 3950 return reg_in_range_table(addr, gen7_oa_mux_regs) || 3951 reg_in_range_table(addr, gen8_oa_mux_regs); 3952 } 3953 3954 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3955 { 3956 return reg_in_range_table(addr, gen7_oa_mux_regs) || 3957 reg_in_range_table(addr, gen8_oa_mux_regs) || 3958 reg_in_range_table(addr, gen11_oa_mux_regs); 3959 } 3960 3961 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3962 { 3963 return reg_in_range_table(addr, gen7_oa_mux_regs) || 3964 reg_in_range_table(addr, hsw_oa_mux_regs); 3965 } 3966 3967 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3968 { 3969 return reg_in_range_table(addr, gen7_oa_mux_regs) || 3970 reg_in_range_table(addr, chv_oa_mux_regs); 3971 } 3972 3973 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3974 { 3975 return reg_in_range_table(addr, gen12_oa_b_counters); 3976 } 3977 3978 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3979 { 3980 return reg_in_range_table(addr, gen12_oa_mux_regs); 3981 } 3982 3983 static u32 mask_reg_value(u32 reg, u32 val) 3984 { 3985 /* HALF_SLICE_CHICKEN2 is programmed with a the 3986 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3987 * programmed by userspace doesn't change this. 3988 */ 3989 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 3990 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3991 3992 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3993 * indicated by its name and a bunch of selection fields used by OA 3994 * configs. 3995 */ 3996 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 3997 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3998 3999 return val; 4000 } 4001 4002 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 4003 bool (*is_valid)(struct i915_perf *perf, u32 addr), 4004 u32 __user *regs, 4005 u32 n_regs) 4006 { 4007 struct i915_oa_reg *oa_regs; 4008 int err; 4009 u32 i; 4010 4011 if (!n_regs) 4012 return NULL; 4013 4014 /* No is_valid function means we're not allowing any register to be programmed. */ 4015 GEM_BUG_ON(!is_valid); 4016 if (!is_valid) 4017 return ERR_PTR(-EINVAL); 4018 4019 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 4020 if (!oa_regs) 4021 return ERR_PTR(-ENOMEM); 4022 4023 for (i = 0; i < n_regs; i++) { 4024 u32 addr, value; 4025 4026 err = get_user(addr, regs); 4027 if (err) 4028 goto addr_err; 4029 4030 if (!is_valid(perf, addr)) { 4031 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 4032 err = -EINVAL; 4033 goto addr_err; 4034 } 4035 4036 err = get_user(value, regs + 1); 4037 if (err) 4038 goto addr_err; 4039 4040 oa_regs[i].addr = _MMIO(addr); 4041 oa_regs[i].value = mask_reg_value(addr, value); 4042 4043 regs += 2; 4044 } 4045 4046 return oa_regs; 4047 4048 addr_err: 4049 kfree(oa_regs); 4050 return ERR_PTR(err); 4051 } 4052 4053 static ssize_t show_dynamic_id(struct kobject *kobj, 4054 struct kobj_attribute *attr, 4055 char *buf) 4056 { 4057 struct i915_oa_config *oa_config = 4058 container_of(attr, typeof(*oa_config), sysfs_metric_id); 4059 4060 return sprintf(buf, "%d\n", oa_config->id); 4061 } 4062 4063 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 4064 struct i915_oa_config *oa_config) 4065 { 4066 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 4067 oa_config->sysfs_metric_id.attr.name = "id"; 4068 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 4069 oa_config->sysfs_metric_id.show = show_dynamic_id; 4070 oa_config->sysfs_metric_id.store = NULL; 4071 4072 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 4073 oa_config->attrs[1] = NULL; 4074 4075 oa_config->sysfs_metric.name = oa_config->uuid; 4076 oa_config->sysfs_metric.attrs = oa_config->attrs; 4077 4078 return sysfs_create_group(perf->metrics_kobj, 4079 &oa_config->sysfs_metric); 4080 } 4081 4082 /** 4083 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4084 * @dev: drm device 4085 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4086 * userspace (unvalidated) 4087 * @file: drm file 4088 * 4089 * Validates the submitted OA register to be saved into a new OA config that 4090 * can then be used for programming the OA unit and its NOA network. 4091 * 4092 * Returns: A new allocated config number to be used with the perf open ioctl 4093 * or a negative error code on failure. 4094 */ 4095 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4096 struct drm_file *file) 4097 { 4098 struct i915_perf *perf = &to_i915(dev)->perf; 4099 struct drm_i915_perf_oa_config *args = data; 4100 struct i915_oa_config *oa_config, *tmp; 4101 struct i915_oa_reg *regs; 4102 int err, id; 4103 4104 if (!perf->i915) { 4105 DRM_DEBUG("i915 perf interface not available for this system\n"); 4106 return -ENOTSUPP; 4107 } 4108 4109 if (!perf->metrics_kobj) { 4110 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 4111 return -EINVAL; 4112 } 4113 4114 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4115 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 4116 return -EACCES; 4117 } 4118 4119 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4120 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4121 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4122 DRM_DEBUG("No OA registers given\n"); 4123 return -EINVAL; 4124 } 4125 4126 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4127 if (!oa_config) { 4128 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 4129 return -ENOMEM; 4130 } 4131 4132 oa_config->perf = perf; 4133 kref_init(&oa_config->ref); 4134 4135 if (!uuid_is_valid(args->uuid)) { 4136 DRM_DEBUG("Invalid uuid format for OA config\n"); 4137 err = -EINVAL; 4138 goto reg_err; 4139 } 4140 4141 /* Last character in oa_config->uuid will be 0 because oa_config is 4142 * kzalloc. 4143 */ 4144 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4145 4146 oa_config->mux_regs_len = args->n_mux_regs; 4147 regs = alloc_oa_regs(perf, 4148 perf->ops.is_valid_mux_reg, 4149 u64_to_user_ptr(args->mux_regs_ptr), 4150 args->n_mux_regs); 4151 4152 if (IS_ERR(regs)) { 4153 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 4154 err = PTR_ERR(regs); 4155 goto reg_err; 4156 } 4157 oa_config->mux_regs = regs; 4158 4159 oa_config->b_counter_regs_len = args->n_boolean_regs; 4160 regs = alloc_oa_regs(perf, 4161 perf->ops.is_valid_b_counter_reg, 4162 u64_to_user_ptr(args->boolean_regs_ptr), 4163 args->n_boolean_regs); 4164 4165 if (IS_ERR(regs)) { 4166 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 4167 err = PTR_ERR(regs); 4168 goto reg_err; 4169 } 4170 oa_config->b_counter_regs = regs; 4171 4172 if (GRAPHICS_VER(perf->i915) < 8) { 4173 if (args->n_flex_regs != 0) { 4174 err = -EINVAL; 4175 goto reg_err; 4176 } 4177 } else { 4178 oa_config->flex_regs_len = args->n_flex_regs; 4179 regs = alloc_oa_regs(perf, 4180 perf->ops.is_valid_flex_reg, 4181 u64_to_user_ptr(args->flex_regs_ptr), 4182 args->n_flex_regs); 4183 4184 if (IS_ERR(regs)) { 4185 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 4186 err = PTR_ERR(regs); 4187 goto reg_err; 4188 } 4189 oa_config->flex_regs = regs; 4190 } 4191 4192 err = mutex_lock_interruptible(&perf->metrics_lock); 4193 if (err) 4194 goto reg_err; 4195 4196 /* We shouldn't have too many configs, so this iteration shouldn't be 4197 * too costly. 4198 */ 4199 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4200 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4201 DRM_DEBUG("OA config already exists with this uuid\n"); 4202 err = -EADDRINUSE; 4203 goto sysfs_err; 4204 } 4205 } 4206 4207 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4208 if (err) { 4209 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4210 goto sysfs_err; 4211 } 4212 4213 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4214 oa_config->id = idr_alloc(&perf->metrics_idr, 4215 oa_config, 2, 4216 0, GFP_KERNEL); 4217 if (oa_config->id < 0) { 4218 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4219 err = oa_config->id; 4220 goto sysfs_err; 4221 } 4222 4223 mutex_unlock(&perf->metrics_lock); 4224 4225 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4226 4227 return oa_config->id; 4228 4229 sysfs_err: 4230 mutex_unlock(&perf->metrics_lock); 4231 reg_err: 4232 i915_oa_config_put(oa_config); 4233 DRM_DEBUG("Failed to add new OA config\n"); 4234 return err; 4235 } 4236 4237 /** 4238 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4239 * @dev: drm device 4240 * @data: ioctl data (pointer to u64 integer) copied from userspace 4241 * @file: drm file 4242 * 4243 * Configs can be removed while being used, the will stop appearing in sysfs 4244 * and their content will be freed when the stream using the config is closed. 4245 * 4246 * Returns: 0 on success or a negative error code on failure. 4247 */ 4248 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4249 struct drm_file *file) 4250 { 4251 struct i915_perf *perf = &to_i915(dev)->perf; 4252 u64 *arg = data; 4253 struct i915_oa_config *oa_config; 4254 int ret; 4255 4256 if (!perf->i915) { 4257 DRM_DEBUG("i915 perf interface not available for this system\n"); 4258 return -ENOTSUPP; 4259 } 4260 4261 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4262 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 4263 return -EACCES; 4264 } 4265 4266 ret = mutex_lock_interruptible(&perf->metrics_lock); 4267 if (ret) 4268 return ret; 4269 4270 oa_config = idr_find(&perf->metrics_idr, *arg); 4271 if (!oa_config) { 4272 DRM_DEBUG("Failed to remove unknown OA config\n"); 4273 ret = -ENOENT; 4274 goto err_unlock; 4275 } 4276 4277 GEM_BUG_ON(*arg != oa_config->id); 4278 4279 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4280 4281 idr_remove(&perf->metrics_idr, *arg); 4282 4283 mutex_unlock(&perf->metrics_lock); 4284 4285 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4286 4287 i915_oa_config_put(oa_config); 4288 4289 return 0; 4290 4291 err_unlock: 4292 mutex_unlock(&perf->metrics_lock); 4293 return ret; 4294 } 4295 4296 static struct ctl_table oa_table[] = { 4297 { 4298 .procname = "perf_stream_paranoid", 4299 .data = &i915_perf_stream_paranoid, 4300 .maxlen = sizeof(i915_perf_stream_paranoid), 4301 .mode = 0644, 4302 .proc_handler = proc_dointvec_minmax, 4303 .extra1 = SYSCTL_ZERO, 4304 .extra2 = SYSCTL_ONE, 4305 }, 4306 { 4307 .procname = "oa_max_sample_rate", 4308 .data = &i915_oa_max_sample_rate, 4309 .maxlen = sizeof(i915_oa_max_sample_rate), 4310 .mode = 0644, 4311 .proc_handler = proc_dointvec_minmax, 4312 .extra1 = SYSCTL_ZERO, 4313 .extra2 = &oa_sample_rate_hard_limit, 4314 }, 4315 {} 4316 }; 4317 4318 static void oa_init_supported_formats(struct i915_perf *perf) 4319 { 4320 struct drm_i915_private *i915 = perf->i915; 4321 enum intel_platform platform = INTEL_INFO(i915)->platform; 4322 4323 switch (platform) { 4324 case INTEL_HASWELL: 4325 oa_format_add(perf, I915_OA_FORMAT_A13); 4326 oa_format_add(perf, I915_OA_FORMAT_A13); 4327 oa_format_add(perf, I915_OA_FORMAT_A29); 4328 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8); 4329 oa_format_add(perf, I915_OA_FORMAT_B4_C8); 4330 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8); 4331 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16); 4332 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4333 break; 4334 4335 case INTEL_BROADWELL: 4336 case INTEL_CHERRYVIEW: 4337 case INTEL_SKYLAKE: 4338 case INTEL_BROXTON: 4339 case INTEL_KABYLAKE: 4340 case INTEL_GEMINILAKE: 4341 case INTEL_COFFEELAKE: 4342 case INTEL_COMETLAKE: 4343 case INTEL_ICELAKE: 4344 case INTEL_ELKHARTLAKE: 4345 case INTEL_JASPERLAKE: 4346 case INTEL_TIGERLAKE: 4347 case INTEL_ROCKETLAKE: 4348 case INTEL_DG1: 4349 case INTEL_ALDERLAKE_S: 4350 case INTEL_ALDERLAKE_P: 4351 oa_format_add(perf, I915_OA_FORMAT_A12); 4352 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8); 4353 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8); 4354 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4355 break; 4356 4357 default: 4358 MISSING_CASE(platform); 4359 } 4360 } 4361 4362 /** 4363 * i915_perf_init - initialize i915-perf state on module bind 4364 * @i915: i915 device instance 4365 * 4366 * Initializes i915-perf state without exposing anything to userspace. 4367 * 4368 * Note: i915-perf initialization is split into an 'init' and 'register' 4369 * phase with the i915_perf_register() exposing state to userspace. 4370 */ 4371 void i915_perf_init(struct drm_i915_private *i915) 4372 { 4373 struct i915_perf *perf = &i915->perf; 4374 4375 /* XXX const struct i915_perf_ops! */ 4376 4377 /* i915_perf is not enabled for DG2 yet */ 4378 if (IS_DG2(i915)) 4379 return; 4380 4381 perf->oa_formats = oa_formats; 4382 if (IS_HASWELL(i915)) { 4383 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4384 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4385 perf->ops.is_valid_flex_reg = NULL; 4386 perf->ops.enable_metric_set = hsw_enable_metric_set; 4387 perf->ops.disable_metric_set = hsw_disable_metric_set; 4388 perf->ops.oa_enable = gen7_oa_enable; 4389 perf->ops.oa_disable = gen7_oa_disable; 4390 perf->ops.read = gen7_oa_read; 4391 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4392 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4393 /* Note: that although we could theoretically also support the 4394 * legacy ringbuffer mode on BDW (and earlier iterations of 4395 * this driver, before upstreaming did this) it didn't seem 4396 * worth the complexity to maintain now that BDW+ enable 4397 * execlist mode by default. 4398 */ 4399 perf->ops.read = gen8_oa_read; 4400 4401 if (IS_GRAPHICS_VER(i915, 8, 9)) { 4402 perf->ops.is_valid_b_counter_reg = 4403 gen7_is_valid_b_counter_addr; 4404 perf->ops.is_valid_mux_reg = 4405 gen8_is_valid_mux_addr; 4406 perf->ops.is_valid_flex_reg = 4407 gen8_is_valid_flex_addr; 4408 4409 if (IS_CHERRYVIEW(i915)) { 4410 perf->ops.is_valid_mux_reg = 4411 chv_is_valid_mux_addr; 4412 } 4413 4414 perf->ops.oa_enable = gen8_oa_enable; 4415 perf->ops.oa_disable = gen8_oa_disable; 4416 perf->ops.enable_metric_set = gen8_enable_metric_set; 4417 perf->ops.disable_metric_set = gen8_disable_metric_set; 4418 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4419 4420 if (GRAPHICS_VER(i915) == 8) { 4421 perf->ctx_oactxctrl_offset = 0x120; 4422 perf->ctx_flexeu0_offset = 0x2ce; 4423 4424 perf->gen8_valid_ctx_bit = BIT(25); 4425 } else { 4426 perf->ctx_oactxctrl_offset = 0x128; 4427 perf->ctx_flexeu0_offset = 0x3de; 4428 4429 perf->gen8_valid_ctx_bit = BIT(16); 4430 } 4431 } else if (GRAPHICS_VER(i915) == 11) { 4432 perf->ops.is_valid_b_counter_reg = 4433 gen7_is_valid_b_counter_addr; 4434 perf->ops.is_valid_mux_reg = 4435 gen11_is_valid_mux_addr; 4436 perf->ops.is_valid_flex_reg = 4437 gen8_is_valid_flex_addr; 4438 4439 perf->ops.oa_enable = gen8_oa_enable; 4440 perf->ops.oa_disable = gen8_oa_disable; 4441 perf->ops.enable_metric_set = gen8_enable_metric_set; 4442 perf->ops.disable_metric_set = gen11_disable_metric_set; 4443 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4444 4445 perf->ctx_oactxctrl_offset = 0x124; 4446 perf->ctx_flexeu0_offset = 0x78e; 4447 4448 perf->gen8_valid_ctx_bit = BIT(16); 4449 } else if (GRAPHICS_VER(i915) == 12) { 4450 perf->ops.is_valid_b_counter_reg = 4451 gen12_is_valid_b_counter_addr; 4452 perf->ops.is_valid_mux_reg = 4453 gen12_is_valid_mux_addr; 4454 perf->ops.is_valid_flex_reg = 4455 gen8_is_valid_flex_addr; 4456 4457 perf->ops.oa_enable = gen12_oa_enable; 4458 perf->ops.oa_disable = gen12_oa_disable; 4459 perf->ops.enable_metric_set = gen12_enable_metric_set; 4460 perf->ops.disable_metric_set = gen12_disable_metric_set; 4461 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4462 4463 perf->ctx_flexeu0_offset = 0; 4464 perf->ctx_oactxctrl_offset = 0x144; 4465 } 4466 } 4467 4468 if (perf->ops.enable_metric_set) { 4469 mutex_init(&perf->lock); 4470 4471 /* Choose a representative limit */ 4472 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2; 4473 4474 mutex_init(&perf->metrics_lock); 4475 idr_init_base(&perf->metrics_idr, 1); 4476 4477 /* We set up some ratelimit state to potentially throttle any 4478 * _NOTES about spurious, invalid OA reports which we don't 4479 * forward to userspace. 4480 * 4481 * We print a _NOTE about any throttling when closing the 4482 * stream instead of waiting until driver _fini which no one 4483 * would ever see. 4484 * 4485 * Using the same limiting factors as printk_ratelimit() 4486 */ 4487 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4488 /* Since we use a DRM_NOTE for spurious reports it would be 4489 * inconsistent to let __ratelimit() automatically print a 4490 * warning for throttling. 4491 */ 4492 ratelimit_set_flags(&perf->spurious_report_rs, 4493 RATELIMIT_MSG_ON_RELEASE); 4494 4495 ratelimit_state_init(&perf->tail_pointer_race, 4496 5 * HZ, 10); 4497 ratelimit_set_flags(&perf->tail_pointer_race, 4498 RATELIMIT_MSG_ON_RELEASE); 4499 4500 atomic64_set(&perf->noa_programming_delay, 4501 500 * 1000 /* 500us */); 4502 4503 perf->i915 = i915; 4504 4505 oa_init_supported_formats(perf); 4506 } 4507 } 4508 4509 static int destroy_config(int id, void *p, void *data) 4510 { 4511 i915_oa_config_put(p); 4512 return 0; 4513 } 4514 4515 int i915_perf_sysctl_register(void) 4516 { 4517 sysctl_header = register_sysctl("dev/i915", oa_table); 4518 return 0; 4519 } 4520 4521 void i915_perf_sysctl_unregister(void) 4522 { 4523 unregister_sysctl_table(sysctl_header); 4524 } 4525 4526 /** 4527 * i915_perf_fini - Counter part to i915_perf_init() 4528 * @i915: i915 device instance 4529 */ 4530 void i915_perf_fini(struct drm_i915_private *i915) 4531 { 4532 struct i915_perf *perf = &i915->perf; 4533 4534 if (!perf->i915) 4535 return; 4536 4537 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4538 idr_destroy(&perf->metrics_idr); 4539 4540 memset(&perf->ops, 0, sizeof(perf->ops)); 4541 perf->i915 = NULL; 4542 } 4543 4544 /** 4545 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4546 * 4547 * This version number is used by userspace to detect available features. 4548 */ 4549 int i915_perf_ioctl_version(void) 4550 { 4551 /* 4552 * 1: Initial version 4553 * I915_PERF_IOCTL_ENABLE 4554 * I915_PERF_IOCTL_DISABLE 4555 * 4556 * 2: Added runtime modification of OA config. 4557 * I915_PERF_IOCTL_CONFIG 4558 * 4559 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4560 * preemption on a particular context so that performance data is 4561 * accessible from a delta of MI_RPC reports without looking at the 4562 * OA buffer. 4563 * 4564 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 4565 * be run for the duration of the performance recording based on 4566 * their SSEU configuration. 4567 * 4568 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 4569 * interval for the hrtimer used to check for OA data. 4570 */ 4571 return 5; 4572 } 4573 4574 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4575 #include "selftests/i915_perf.c" 4576 #endif 4577