xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision d40605b6d088b20827e442903022c65f0f165c84)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "gem/i915_gem_context.h"
199 #include "gem/i915_gem_pm.h"
200 #include "gt/intel_lrc_reg.h"
201 
202 #include "i915_drv.h"
203 #include "i915_oa_hsw.h"
204 #include "i915_oa_bdw.h"
205 #include "i915_oa_chv.h"
206 #include "i915_oa_sklgt2.h"
207 #include "i915_oa_sklgt3.h"
208 #include "i915_oa_sklgt4.h"
209 #include "i915_oa_bxt.h"
210 #include "i915_oa_kblgt2.h"
211 #include "i915_oa_kblgt3.h"
212 #include "i915_oa_glk.h"
213 #include "i915_oa_cflgt2.h"
214 #include "i915_oa_cflgt3.h"
215 #include "i915_oa_cnl.h"
216 #include "i915_oa_icl.h"
217 
218 /* HW requires this to be a power of two, between 128k and 16M, though driver
219  * is currently generally designed assuming the largest 16M size is used such
220  * that the overflow cases are unlikely in normal operation.
221  */
222 #define OA_BUFFER_SIZE		SZ_16M
223 
224 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
225 
226 /**
227  * DOC: OA Tail Pointer Race
228  *
229  * There's a HW race condition between OA unit tail pointer register updates and
230  * writes to memory whereby the tail pointer can sometimes get ahead of what's
231  * been written out to the OA buffer so far (in terms of what's visible to the
232  * CPU).
233  *
234  * Although this can be observed explicitly while copying reports to userspace
235  * by checking for a zeroed report-id field in tail reports, we want to account
236  * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
237  * read() attempts.
238  *
239  * In effect we define a tail pointer for reading that lags the real tail
240  * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
241  * time for the corresponding reports to become visible to the CPU.
242  *
243  * To manage this we actually track two tail pointers:
244  *  1) An 'aging' tail with an associated timestamp that is tracked until we
245  *     can trust the corresponding data is visible to the CPU; at which point
246  *     it is considered 'aged'.
247  *  2) An 'aged' tail that can be used for read()ing.
248  *
249  * The two separate pointers let us decouple read()s from tail pointer aging.
250  *
251  * The tail pointers are checked and updated at a limited rate within a hrtimer
252  * callback (the same callback that is used for delivering EPOLLIN events)
253  *
254  * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
255  * indicates that an updated tail pointer is needed.
256  *
257  * Most of the implementation details for this workaround are in
258  * oa_buffer_check_unlocked() and _append_oa_reports()
259  *
260  * Note for posterity: previously the driver used to define an effective tail
261  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
262  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
263  * This was flawed considering that the OA unit may also automatically generate
264  * non-periodic reports (such as on context switch) or the OA unit may be
265  * enabled without any periodic sampling.
266  */
267 #define OA_TAIL_MARGIN_NSEC	100000ULL
268 #define INVALID_TAIL_PTR	0xffffffff
269 
270 /* frequency for checking whether the OA unit has written new reports to the
271  * circular OA buffer...
272  */
273 #define POLL_FREQUENCY 200
274 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
275 
276 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
277 static int zero;
278 static int one = 1;
279 static u32 i915_perf_stream_paranoid = true;
280 
281 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
282  * of the 64bit timestamp bits to trigger reports from) but there's currently
283  * no known use case for sampling as infrequently as once per 47 thousand years.
284  *
285  * Since the timestamps included in OA reports are only 32bits it seems
286  * reasonable to limit the OA exponent where it's still possible to account for
287  * overflow in OA report timestamps.
288  */
289 #define OA_EXPONENT_MAX 31
290 
291 #define INVALID_CTX_ID 0xffffffff
292 
293 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
294 #define OAREPORT_REASON_MASK           0x3f
295 #define OAREPORT_REASON_SHIFT          19
296 #define OAREPORT_REASON_TIMER          (1<<0)
297 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
298 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
299 
300 
301 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
302  *
303  * The highest sampling frequency we can theoretically program the OA unit
304  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
305  *
306  * Initialized just before we register the sysctl parameter.
307  */
308 static int oa_sample_rate_hard_limit;
309 
310 /* Theoretically we can program the OA unit to sample every 160ns but don't
311  * allow that by default unless root...
312  *
313  * The default threshold of 100000Hz is based on perf's similar
314  * kernel.perf_event_max_sample_rate sysctl parameter.
315  */
316 static u32 i915_oa_max_sample_rate = 100000;
317 
318 /* XXX: beware if future OA HW adds new report formats that the current
319  * code assumes all reports have a power-of-two size and ~(size - 1) can
320  * be used as a mask to align the OA tail pointer.
321  */
322 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
323 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
324 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
325 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
326 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
327 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
328 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
329 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
330 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
331 };
332 
333 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
334 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
335 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
336 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
337 	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
338 };
339 
340 #define SAMPLE_OA_REPORT      (1<<0)
341 
342 /**
343  * struct perf_open_properties - for validated properties given to open a stream
344  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
345  * @single_context: Whether a single or all gpu contexts should be monitored
346  * @ctx_handle: A gem ctx handle for use with @single_context
347  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
348  * @oa_format: An OA unit HW report format
349  * @oa_periodic: Whether to enable periodic OA unit sampling
350  * @oa_period_exponent: The OA unit sampling period is derived from this
351  *
352  * As read_properties_unlocked() enumerates and validates the properties given
353  * to open a stream of metrics the configuration is built up in the structure
354  * which starts out zero initialized.
355  */
356 struct perf_open_properties {
357 	u32 sample_flags;
358 
359 	u64 single_context:1;
360 	u64 ctx_handle;
361 
362 	/* OA sampling state */
363 	int metrics_set;
364 	int oa_format;
365 	bool oa_periodic;
366 	int oa_period_exponent;
367 };
368 
369 static void free_oa_config(struct drm_i915_private *dev_priv,
370 			   struct i915_oa_config *oa_config)
371 {
372 	if (!PTR_ERR(oa_config->flex_regs))
373 		kfree(oa_config->flex_regs);
374 	if (!PTR_ERR(oa_config->b_counter_regs))
375 		kfree(oa_config->b_counter_regs);
376 	if (!PTR_ERR(oa_config->mux_regs))
377 		kfree(oa_config->mux_regs);
378 	kfree(oa_config);
379 }
380 
381 static void put_oa_config(struct drm_i915_private *dev_priv,
382 			  struct i915_oa_config *oa_config)
383 {
384 	if (!atomic_dec_and_test(&oa_config->ref_count))
385 		return;
386 
387 	free_oa_config(dev_priv, oa_config);
388 }
389 
390 static int get_oa_config(struct drm_i915_private *dev_priv,
391 			 int metrics_set,
392 			 struct i915_oa_config **out_config)
393 {
394 	int ret;
395 
396 	if (metrics_set == 1) {
397 		*out_config = &dev_priv->perf.oa.test_config;
398 		atomic_inc(&dev_priv->perf.oa.test_config.ref_count);
399 		return 0;
400 	}
401 
402 	ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
403 	if (ret)
404 		return ret;
405 
406 	*out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
407 	if (!*out_config)
408 		ret = -EINVAL;
409 	else
410 		atomic_inc(&(*out_config)->ref_count);
411 
412 	mutex_unlock(&dev_priv->perf.metrics_lock);
413 
414 	return ret;
415 }
416 
417 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
418 {
419 	return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
420 }
421 
422 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
423 {
424 	u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
425 
426 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
427 }
428 
429 /**
430  * oa_buffer_check_unlocked - check for data and update tail ptr state
431  * @dev_priv: i915 device instance
432  *
433  * This is either called via fops (for blocking reads in user ctx) or the poll
434  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
435  * if there is data available for userspace to read.
436  *
437  * This function is central to providing a workaround for the OA unit tail
438  * pointer having a race with respect to what data is visible to the CPU.
439  * It is responsible for reading tail pointers from the hardware and giving
440  * the pointers time to 'age' before they are made available for reading.
441  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
442  *
443  * Besides returning true when there is data available to read() this function
444  * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
445  * and .aged_tail_idx state used for reading.
446  *
447  * Note: It's safe to read OA config state here unlocked, assuming that this is
448  * only called while the stream is enabled, while the global OA configuration
449  * can't be modified.
450  *
451  * Returns: %true if the OA buffer contains data, else %false
452  */
453 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
454 {
455 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
456 	unsigned long flags;
457 	unsigned int aged_idx;
458 	u32 head, hw_tail, aged_tail, aging_tail;
459 	u64 now;
460 
461 	/* We have to consider the (unlikely) possibility that read() errors
462 	 * could result in an OA buffer reset which might reset the head,
463 	 * tails[] and aged_tail state.
464 	 */
465 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
466 
467 	/* NB: The head we observe here might effectively be a little out of
468 	 * date (between head and tails[aged_idx].offset if there is currently
469 	 * a read() in progress.
470 	 */
471 	head = dev_priv->perf.oa.oa_buffer.head;
472 
473 	aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
474 	aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
475 	aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;
476 
477 	hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
478 
479 	/* The tail pointer increases in 64 byte increments,
480 	 * not in report_size steps...
481 	 */
482 	hw_tail &= ~(report_size - 1);
483 
484 	now = ktime_get_mono_fast_ns();
485 
486 	/* Update the aged tail
487 	 *
488 	 * Flip the tail pointer available for read()s once the aging tail is
489 	 * old enough to trust that the corresponding data will be visible to
490 	 * the CPU...
491 	 *
492 	 * Do this before updating the aging pointer in case we may be able to
493 	 * immediately start aging a new pointer too (if new data has become
494 	 * available) without needing to wait for a later hrtimer callback.
495 	 */
496 	if (aging_tail != INVALID_TAIL_PTR &&
497 	    ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
498 	     OA_TAIL_MARGIN_NSEC)) {
499 
500 		aged_idx ^= 1;
501 		dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;
502 
503 		aged_tail = aging_tail;
504 
505 		/* Mark that we need a new pointer to start aging... */
506 		dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
507 		aging_tail = INVALID_TAIL_PTR;
508 	}
509 
510 	/* Update the aging tail
511 	 *
512 	 * We throttle aging tail updates until we have a new tail that
513 	 * represents >= one report more data than is already available for
514 	 * reading. This ensures there will be enough data for a successful
515 	 * read once this new pointer has aged and ensures we will give the new
516 	 * pointer time to age.
517 	 */
518 	if (aging_tail == INVALID_TAIL_PTR &&
519 	    (aged_tail == INVALID_TAIL_PTR ||
520 	     OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
521 		struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
522 		u32 gtt_offset = i915_ggtt_offset(vma);
523 
524 		/* Be paranoid and do a bounds check on the pointer read back
525 		 * from hardware, just in case some spurious hardware condition
526 		 * could put the tail out of bounds...
527 		 */
528 		if (hw_tail >= gtt_offset &&
529 		    hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
530 			dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
531 				aging_tail = hw_tail;
532 			dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
533 		} else {
534 			DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
535 				  hw_tail);
536 		}
537 	}
538 
539 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
540 
541 	return aged_tail == INVALID_TAIL_PTR ?
542 		false : OA_TAKEN(aged_tail, head) >= report_size;
543 }
544 
545 /**
546  * append_oa_status - Appends a status record to a userspace read() buffer.
547  * @stream: An i915-perf stream opened for OA metrics
548  * @buf: destination buffer given by userspace
549  * @count: the number of bytes userspace wants to read
550  * @offset: (inout): the current position for writing into @buf
551  * @type: The kind of status to report to userspace
552  *
553  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
554  * into the userspace read() buffer.
555  *
556  * The @buf @offset will only be updated on success.
557  *
558  * Returns: 0 on success, negative error code on failure.
559  */
560 static int append_oa_status(struct i915_perf_stream *stream,
561 			    char __user *buf,
562 			    size_t count,
563 			    size_t *offset,
564 			    enum drm_i915_perf_record_type type)
565 {
566 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
567 
568 	if ((count - *offset) < header.size)
569 		return -ENOSPC;
570 
571 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
572 		return -EFAULT;
573 
574 	(*offset) += header.size;
575 
576 	return 0;
577 }
578 
579 /**
580  * append_oa_sample - Copies single OA report into userspace read() buffer.
581  * @stream: An i915-perf stream opened for OA metrics
582  * @buf: destination buffer given by userspace
583  * @count: the number of bytes userspace wants to read
584  * @offset: (inout): the current position for writing into @buf
585  * @report: A single OA report to (optionally) include as part of the sample
586  *
587  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
588  * properties when opening a stream, tracked as `stream->sample_flags`. This
589  * function copies the requested components of a single sample to the given
590  * read() @buf.
591  *
592  * The @buf @offset will only be updated on success.
593  *
594  * Returns: 0 on success, negative error code on failure.
595  */
596 static int append_oa_sample(struct i915_perf_stream *stream,
597 			    char __user *buf,
598 			    size_t count,
599 			    size_t *offset,
600 			    const u8 *report)
601 {
602 	struct drm_i915_private *dev_priv = stream->dev_priv;
603 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
604 	struct drm_i915_perf_record_header header;
605 	u32 sample_flags = stream->sample_flags;
606 
607 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
608 	header.pad = 0;
609 	header.size = stream->sample_size;
610 
611 	if ((count - *offset) < header.size)
612 		return -ENOSPC;
613 
614 	buf += *offset;
615 	if (copy_to_user(buf, &header, sizeof(header)))
616 		return -EFAULT;
617 	buf += sizeof(header);
618 
619 	if (sample_flags & SAMPLE_OA_REPORT) {
620 		if (copy_to_user(buf, report, report_size))
621 			return -EFAULT;
622 	}
623 
624 	(*offset) += header.size;
625 
626 	return 0;
627 }
628 
629 /**
630  * Copies all buffered OA reports into userspace read() buffer.
631  * @stream: An i915-perf stream opened for OA metrics
632  * @buf: destination buffer given by userspace
633  * @count: the number of bytes userspace wants to read
634  * @offset: (inout): the current position for writing into @buf
635  *
636  * Notably any error condition resulting in a short read (-%ENOSPC or
637  * -%EFAULT) will be returned even though one or more records may
638  * have been successfully copied. In this case it's up to the caller
639  * to decide if the error should be squashed before returning to
640  * userspace.
641  *
642  * Note: reports are consumed from the head, and appended to the
643  * tail, so the tail chases the head?... If you think that's mad
644  * and back-to-front you're not alone, but this follows the
645  * Gen PRM naming convention.
646  *
647  * Returns: 0 on success, negative error code on failure.
648  */
649 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
650 				  char __user *buf,
651 				  size_t count,
652 				  size_t *offset)
653 {
654 	struct drm_i915_private *dev_priv = stream->dev_priv;
655 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
656 	u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
657 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
658 	u32 mask = (OA_BUFFER_SIZE - 1);
659 	size_t start_offset = *offset;
660 	unsigned long flags;
661 	unsigned int aged_tail_idx;
662 	u32 head, tail;
663 	u32 taken;
664 	int ret = 0;
665 
666 	if (WARN_ON(!stream->enabled))
667 		return -EIO;
668 
669 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
670 
671 	head = dev_priv->perf.oa.oa_buffer.head;
672 	aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
673 	tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
674 
675 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
676 
677 	/*
678 	 * An invalid tail pointer here means we're still waiting for the poll
679 	 * hrtimer callback to give us a pointer
680 	 */
681 	if (tail == INVALID_TAIL_PTR)
682 		return -EAGAIN;
683 
684 	/*
685 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
686 	 * while indexing relative to oa_buf_base.
687 	 */
688 	head -= gtt_offset;
689 	tail -= gtt_offset;
690 
691 	/*
692 	 * An out of bounds or misaligned head or tail pointer implies a driver
693 	 * bug since we validate + align the tail pointers we read from the
694 	 * hardware and we are in full control of the head pointer which should
695 	 * only be incremented by multiples of the report size (notably also
696 	 * all a power of two).
697 	 */
698 	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
699 		      tail > OA_BUFFER_SIZE || tail % report_size,
700 		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
701 		      head, tail))
702 		return -EIO;
703 
704 
705 	for (/* none */;
706 	     (taken = OA_TAKEN(tail, head));
707 	     head = (head + report_size) & mask) {
708 		u8 *report = oa_buf_base + head;
709 		u32 *report32 = (void *)report;
710 		u32 ctx_id;
711 		u32 reason;
712 
713 		/*
714 		 * All the report sizes factor neatly into the buffer
715 		 * size so we never expect to see a report split
716 		 * between the beginning and end of the buffer.
717 		 *
718 		 * Given the initial alignment check a misalignment
719 		 * here would imply a driver bug that would result
720 		 * in an overrun.
721 		 */
722 		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
723 			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
724 			break;
725 		}
726 
727 		/*
728 		 * The reason field includes flags identifying what
729 		 * triggered this specific report (mostly timer
730 		 * triggered or e.g. due to a context switch).
731 		 *
732 		 * This field is never expected to be zero so we can
733 		 * check that the report isn't invalid before copying
734 		 * it to userspace...
735 		 */
736 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
737 			  OAREPORT_REASON_MASK);
738 		if (reason == 0) {
739 			if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
740 				DRM_NOTE("Skipping spurious, invalid OA report\n");
741 			continue;
742 		}
743 
744 		ctx_id = report32[2] & dev_priv->perf.oa.specific_ctx_id_mask;
745 
746 		/*
747 		 * Squash whatever is in the CTX_ID field if it's marked as
748 		 * invalid to be sure we avoid false-positive, single-context
749 		 * filtering below...
750 		 *
751 		 * Note: that we don't clear the valid_ctx_bit so userspace can
752 		 * understand that the ID has been squashed by the kernel.
753 		 */
754 		if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
755 			ctx_id = report32[2] = INVALID_CTX_ID;
756 
757 		/*
758 		 * NB: For Gen 8 the OA unit no longer supports clock gating
759 		 * off for a specific context and the kernel can't securely
760 		 * stop the counters from updating as system-wide / global
761 		 * values.
762 		 *
763 		 * Automatic reports now include a context ID so reports can be
764 		 * filtered on the cpu but it's not worth trying to
765 		 * automatically subtract/hide counter progress for other
766 		 * contexts while filtering since we can't stop userspace
767 		 * issuing MI_REPORT_PERF_COUNT commands which would still
768 		 * provide a side-band view of the real values.
769 		 *
770 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
771 		 * to normalize counters for a single filtered context then it
772 		 * needs be forwarded bookend context-switch reports so that it
773 		 * can track switches in between MI_REPORT_PERF_COUNT commands
774 		 * and can itself subtract/ignore the progress of counters
775 		 * associated with other contexts. Note that the hardware
776 		 * automatically triggers reports when switching to a new
777 		 * context which are tagged with the ID of the newly active
778 		 * context. To avoid the complexity (and likely fragility) of
779 		 * reading ahead while parsing reports to try and minimize
780 		 * forwarding redundant context switch reports (i.e. between
781 		 * other, unrelated contexts) we simply elect to forward them
782 		 * all.
783 		 *
784 		 * We don't rely solely on the reason field to identify context
785 		 * switches since it's not-uncommon for periodic samples to
786 		 * identify a switch before any 'context switch' report.
787 		 */
788 		if (!dev_priv->perf.oa.exclusive_stream->ctx ||
789 		    dev_priv->perf.oa.specific_ctx_id == ctx_id ||
790 		    (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
791 		     dev_priv->perf.oa.specific_ctx_id) ||
792 		    reason & OAREPORT_REASON_CTX_SWITCH) {
793 
794 			/*
795 			 * While filtering for a single context we avoid
796 			 * leaking the IDs of other contexts.
797 			 */
798 			if (dev_priv->perf.oa.exclusive_stream->ctx &&
799 			    dev_priv->perf.oa.specific_ctx_id != ctx_id) {
800 				report32[2] = INVALID_CTX_ID;
801 			}
802 
803 			ret = append_oa_sample(stream, buf, count, offset,
804 					       report);
805 			if (ret)
806 				break;
807 
808 			dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
809 		}
810 
811 		/*
812 		 * The above reason field sanity check is based on
813 		 * the assumption that the OA buffer is initially
814 		 * zeroed and we reset the field after copying so the
815 		 * check is still meaningful once old reports start
816 		 * being overwritten.
817 		 */
818 		report32[0] = 0;
819 	}
820 
821 	if (start_offset != *offset) {
822 		spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
823 
824 		/*
825 		 * We removed the gtt_offset for the copy loop above, indexing
826 		 * relative to oa_buf_base so put back here...
827 		 */
828 		head += gtt_offset;
829 
830 		I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
831 		dev_priv->perf.oa.oa_buffer.head = head;
832 
833 		spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
834 	}
835 
836 	return ret;
837 }
838 
839 /**
840  * gen8_oa_read - copy status records then buffered OA reports
841  * @stream: An i915-perf stream opened for OA metrics
842  * @buf: destination buffer given by userspace
843  * @count: the number of bytes userspace wants to read
844  * @offset: (inout): the current position for writing into @buf
845  *
846  * Checks OA unit status registers and if necessary appends corresponding
847  * status records for userspace (such as for a buffer full condition) and then
848  * initiate appending any buffered OA reports.
849  *
850  * Updates @offset according to the number of bytes successfully copied into
851  * the userspace buffer.
852  *
853  * NB: some data may be successfully copied to the userspace buffer
854  * even if an error is returned, and this is reflected in the
855  * updated @offset.
856  *
857  * Returns: zero on success or a negative error code
858  */
859 static int gen8_oa_read(struct i915_perf_stream *stream,
860 			char __user *buf,
861 			size_t count,
862 			size_t *offset)
863 {
864 	struct drm_i915_private *dev_priv = stream->dev_priv;
865 	u32 oastatus;
866 	int ret;
867 
868 	if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
869 		return -EIO;
870 
871 	oastatus = I915_READ(GEN8_OASTATUS);
872 
873 	/*
874 	 * We treat OABUFFER_OVERFLOW as a significant error:
875 	 *
876 	 * Although theoretically we could handle this more gracefully
877 	 * sometimes, some Gens don't correctly suppress certain
878 	 * automatically triggered reports in this condition and so we
879 	 * have to assume that old reports are now being trampled
880 	 * over.
881 	 *
882 	 * Considering how we don't currently give userspace control
883 	 * over the OA buffer size and always configure a large 16MB
884 	 * buffer, then a buffer overflow does anyway likely indicate
885 	 * that something has gone quite badly wrong.
886 	 */
887 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
888 		ret = append_oa_status(stream, buf, count, offset,
889 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
890 		if (ret)
891 			return ret;
892 
893 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
894 			  dev_priv->perf.oa.period_exponent);
895 
896 		dev_priv->perf.oa.ops.oa_disable(stream);
897 		dev_priv->perf.oa.ops.oa_enable(stream);
898 
899 		/*
900 		 * Note: .oa_enable() is expected to re-init the oabuffer and
901 		 * reset GEN8_OASTATUS for us
902 		 */
903 		oastatus = I915_READ(GEN8_OASTATUS);
904 	}
905 
906 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
907 		ret = append_oa_status(stream, buf, count, offset,
908 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
909 		if (ret)
910 			return ret;
911 		I915_WRITE(GEN8_OASTATUS,
912 			   oastatus & ~GEN8_OASTATUS_REPORT_LOST);
913 	}
914 
915 	return gen8_append_oa_reports(stream, buf, count, offset);
916 }
917 
918 /**
919  * Copies all buffered OA reports into userspace read() buffer.
920  * @stream: An i915-perf stream opened for OA metrics
921  * @buf: destination buffer given by userspace
922  * @count: the number of bytes userspace wants to read
923  * @offset: (inout): the current position for writing into @buf
924  *
925  * Notably any error condition resulting in a short read (-%ENOSPC or
926  * -%EFAULT) will be returned even though one or more records may
927  * have been successfully copied. In this case it's up to the caller
928  * to decide if the error should be squashed before returning to
929  * userspace.
930  *
931  * Note: reports are consumed from the head, and appended to the
932  * tail, so the tail chases the head?... If you think that's mad
933  * and back-to-front you're not alone, but this follows the
934  * Gen PRM naming convention.
935  *
936  * Returns: 0 on success, negative error code on failure.
937  */
938 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
939 				  char __user *buf,
940 				  size_t count,
941 				  size_t *offset)
942 {
943 	struct drm_i915_private *dev_priv = stream->dev_priv;
944 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
945 	u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
946 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
947 	u32 mask = (OA_BUFFER_SIZE - 1);
948 	size_t start_offset = *offset;
949 	unsigned long flags;
950 	unsigned int aged_tail_idx;
951 	u32 head, tail;
952 	u32 taken;
953 	int ret = 0;
954 
955 	if (WARN_ON(!stream->enabled))
956 		return -EIO;
957 
958 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
959 
960 	head = dev_priv->perf.oa.oa_buffer.head;
961 	aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
962 	tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
963 
964 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
965 
966 	/* An invalid tail pointer here means we're still waiting for the poll
967 	 * hrtimer callback to give us a pointer
968 	 */
969 	if (tail == INVALID_TAIL_PTR)
970 		return -EAGAIN;
971 
972 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
973 	 * while indexing relative to oa_buf_base.
974 	 */
975 	head -= gtt_offset;
976 	tail -= gtt_offset;
977 
978 	/* An out of bounds or misaligned head or tail pointer implies a driver
979 	 * bug since we validate + align the tail pointers we read from the
980 	 * hardware and we are in full control of the head pointer which should
981 	 * only be incremented by multiples of the report size (notably also
982 	 * all a power of two).
983 	 */
984 	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
985 		      tail > OA_BUFFER_SIZE || tail % report_size,
986 		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
987 		      head, tail))
988 		return -EIO;
989 
990 
991 	for (/* none */;
992 	     (taken = OA_TAKEN(tail, head));
993 	     head = (head + report_size) & mask) {
994 		u8 *report = oa_buf_base + head;
995 		u32 *report32 = (void *)report;
996 
997 		/* All the report sizes factor neatly into the buffer
998 		 * size so we never expect to see a report split
999 		 * between the beginning and end of the buffer.
1000 		 *
1001 		 * Given the initial alignment check a misalignment
1002 		 * here would imply a driver bug that would result
1003 		 * in an overrun.
1004 		 */
1005 		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1006 			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1007 			break;
1008 		}
1009 
1010 		/* The report-ID field for periodic samples includes
1011 		 * some undocumented flags related to what triggered
1012 		 * the report and is never expected to be zero so we
1013 		 * can check that the report isn't invalid before
1014 		 * copying it to userspace...
1015 		 */
1016 		if (report32[0] == 0) {
1017 			if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
1018 				DRM_NOTE("Skipping spurious, invalid OA report\n");
1019 			continue;
1020 		}
1021 
1022 		ret = append_oa_sample(stream, buf, count, offset, report);
1023 		if (ret)
1024 			break;
1025 
1026 		/* The above report-id field sanity check is based on
1027 		 * the assumption that the OA buffer is initially
1028 		 * zeroed and we reset the field after copying so the
1029 		 * check is still meaningful once old reports start
1030 		 * being overwritten.
1031 		 */
1032 		report32[0] = 0;
1033 	}
1034 
1035 	if (start_offset != *offset) {
1036 		spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1037 
1038 		/* We removed the gtt_offset for the copy loop above, indexing
1039 		 * relative to oa_buf_base so put back here...
1040 		 */
1041 		head += gtt_offset;
1042 
1043 		I915_WRITE(GEN7_OASTATUS2,
1044 			   ((head & GEN7_OASTATUS2_HEAD_MASK) |
1045 			    GEN7_OASTATUS2_MEM_SELECT_GGTT));
1046 		dev_priv->perf.oa.oa_buffer.head = head;
1047 
1048 		spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1049 	}
1050 
1051 	return ret;
1052 }
1053 
1054 /**
1055  * gen7_oa_read - copy status records then buffered OA reports
1056  * @stream: An i915-perf stream opened for OA metrics
1057  * @buf: destination buffer given by userspace
1058  * @count: the number of bytes userspace wants to read
1059  * @offset: (inout): the current position for writing into @buf
1060  *
1061  * Checks Gen 7 specific OA unit status registers and if necessary appends
1062  * corresponding status records for userspace (such as for a buffer full
1063  * condition) and then initiate appending any buffered OA reports.
1064  *
1065  * Updates @offset according to the number of bytes successfully copied into
1066  * the userspace buffer.
1067  *
1068  * Returns: zero on success or a negative error code
1069  */
1070 static int gen7_oa_read(struct i915_perf_stream *stream,
1071 			char __user *buf,
1072 			size_t count,
1073 			size_t *offset)
1074 {
1075 	struct drm_i915_private *dev_priv = stream->dev_priv;
1076 	u32 oastatus1;
1077 	int ret;
1078 
1079 	if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
1080 		return -EIO;
1081 
1082 	oastatus1 = I915_READ(GEN7_OASTATUS1);
1083 
1084 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1085 	 * bits while the OA unit is enabled (while the tail pointer
1086 	 * may be updated asynchronously) so we ignore status bits
1087 	 * that have already been reported to userspace.
1088 	 */
1089 	oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
1090 
1091 	/* We treat OABUFFER_OVERFLOW as a significant error:
1092 	 *
1093 	 * - The status can be interpreted to mean that the buffer is
1094 	 *   currently full (with a higher precedence than OA_TAKEN()
1095 	 *   which will start to report a near-empty buffer after an
1096 	 *   overflow) but it's awkward that we can't clear the status
1097 	 *   on Haswell, so without a reset we won't be able to catch
1098 	 *   the state again.
1099 	 *
1100 	 * - Since it also implies the HW has started overwriting old
1101 	 *   reports it may also affect our sanity checks for invalid
1102 	 *   reports when copying to userspace that assume new reports
1103 	 *   are being written to cleared memory.
1104 	 *
1105 	 * - In the future we may want to introduce a flight recorder
1106 	 *   mode where the driver will automatically maintain a safe
1107 	 *   guard band between head/tail, avoiding this overflow
1108 	 *   condition, but we avoid the added driver complexity for
1109 	 *   now.
1110 	 */
1111 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1112 		ret = append_oa_status(stream, buf, count, offset,
1113 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1114 		if (ret)
1115 			return ret;
1116 
1117 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1118 			  dev_priv->perf.oa.period_exponent);
1119 
1120 		dev_priv->perf.oa.ops.oa_disable(stream);
1121 		dev_priv->perf.oa.ops.oa_enable(stream);
1122 
1123 		oastatus1 = I915_READ(GEN7_OASTATUS1);
1124 	}
1125 
1126 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1127 		ret = append_oa_status(stream, buf, count, offset,
1128 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1129 		if (ret)
1130 			return ret;
1131 		dev_priv->perf.oa.gen7_latched_oastatus1 |=
1132 			GEN7_OASTATUS1_REPORT_LOST;
1133 	}
1134 
1135 	return gen7_append_oa_reports(stream, buf, count, offset);
1136 }
1137 
1138 /**
1139  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1140  * @stream: An i915-perf stream opened for OA metrics
1141  *
1142  * Called when userspace tries to read() from a blocking stream FD opened
1143  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1144  * OA buffer and wakes us.
1145  *
1146  * Note: it's acceptable to have this return with some false positives
1147  * since any subsequent read handling will return -EAGAIN if there isn't
1148  * really data ready for userspace yet.
1149  *
1150  * Returns: zero on success or a negative error code
1151  */
1152 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1153 {
1154 	struct drm_i915_private *dev_priv = stream->dev_priv;
1155 
1156 	/* We would wait indefinitely if periodic sampling is not enabled */
1157 	if (!dev_priv->perf.oa.periodic)
1158 		return -EIO;
1159 
1160 	return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
1161 					oa_buffer_check_unlocked(dev_priv));
1162 }
1163 
1164 /**
1165  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1166  * @stream: An i915-perf stream opened for OA metrics
1167  * @file: An i915 perf stream file
1168  * @wait: poll() state table
1169  *
1170  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1171  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1172  * when it sees data ready to read in the circular OA buffer.
1173  */
1174 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1175 			      struct file *file,
1176 			      poll_table *wait)
1177 {
1178 	struct drm_i915_private *dev_priv = stream->dev_priv;
1179 
1180 	poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
1181 }
1182 
1183 /**
1184  * i915_oa_read - just calls through to &i915_oa_ops->read
1185  * @stream: An i915-perf stream opened for OA metrics
1186  * @buf: destination buffer given by userspace
1187  * @count: the number of bytes userspace wants to read
1188  * @offset: (inout): the current position for writing into @buf
1189  *
1190  * Updates @offset according to the number of bytes successfully copied into
1191  * the userspace buffer.
1192  *
1193  * Returns: zero on success or a negative error code
1194  */
1195 static int i915_oa_read(struct i915_perf_stream *stream,
1196 			char __user *buf,
1197 			size_t count,
1198 			size_t *offset)
1199 {
1200 	struct drm_i915_private *dev_priv = stream->dev_priv;
1201 
1202 	return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
1203 }
1204 
1205 static struct intel_context *oa_pin_context(struct drm_i915_private *i915,
1206 					    struct i915_gem_context *ctx)
1207 {
1208 	struct i915_gem_engines_iter it;
1209 	struct intel_context *ce;
1210 	int err;
1211 
1212 	err = i915_mutex_lock_interruptible(&i915->drm);
1213 	if (err)
1214 		return ERR_PTR(err);
1215 
1216 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1217 		if (ce->engine->class != RENDER_CLASS)
1218 			continue;
1219 
1220 		/*
1221 		 * As the ID is the gtt offset of the context's vma we
1222 		 * pin the vma to ensure the ID remains fixed.
1223 		 */
1224 		err = intel_context_pin(ce);
1225 		if (err == 0) {
1226 			i915->perf.oa.pinned_ctx = ce;
1227 			break;
1228 		}
1229 	}
1230 	i915_gem_context_unlock_engines(ctx);
1231 
1232 	mutex_unlock(&i915->drm.struct_mutex);
1233 	if (err)
1234 		return ERR_PTR(err);
1235 
1236 	return i915->perf.oa.pinned_ctx;
1237 }
1238 
1239 /**
1240  * oa_get_render_ctx_id - determine and hold ctx hw id
1241  * @stream: An i915-perf stream opened for OA metrics
1242  *
1243  * Determine the render context hw id, and ensure it remains fixed for the
1244  * lifetime of the stream. This ensures that we don't have to worry about
1245  * updating the context ID in OACONTROL on the fly.
1246  *
1247  * Returns: zero on success or a negative error code
1248  */
1249 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1250 {
1251 	struct drm_i915_private *i915 = stream->dev_priv;
1252 	struct intel_context *ce;
1253 
1254 	ce = oa_pin_context(i915, stream->ctx);
1255 	if (IS_ERR(ce))
1256 		return PTR_ERR(ce);
1257 
1258 	switch (INTEL_GEN(i915)) {
1259 	case 7: {
1260 		/*
1261 		 * On Haswell we don't do any post processing of the reports
1262 		 * and don't need to use the mask.
1263 		 */
1264 		i915->perf.oa.specific_ctx_id = i915_ggtt_offset(ce->state);
1265 		i915->perf.oa.specific_ctx_id_mask = 0;
1266 		break;
1267 	}
1268 
1269 	case 8:
1270 	case 9:
1271 	case 10:
1272 		if (USES_GUC_SUBMISSION(i915)) {
1273 			/*
1274 			 * When using GuC, the context descriptor we write in
1275 			 * i915 is read by GuC and rewritten before it's
1276 			 * actually written into the hardware. The LRCA is
1277 			 * what is put into the context id field of the
1278 			 * context descriptor by GuC. Because it's aligned to
1279 			 * a page, the lower 12bits are always at 0 and
1280 			 * dropped by GuC. They won't be part of the context
1281 			 * ID in the OA reports, so squash those lower bits.
1282 			 */
1283 			i915->perf.oa.specific_ctx_id =
1284 				lower_32_bits(ce->lrc_desc) >> 12;
1285 
1286 			/*
1287 			 * GuC uses the top bit to signal proxy submission, so
1288 			 * ignore that bit.
1289 			 */
1290 			i915->perf.oa.specific_ctx_id_mask =
1291 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1292 		} else {
1293 			i915->perf.oa.specific_ctx_id_mask =
1294 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1295 			i915->perf.oa.specific_ctx_id =
1296 				upper_32_bits(ce->lrc_desc);
1297 			i915->perf.oa.specific_ctx_id &=
1298 				i915->perf.oa.specific_ctx_id_mask;
1299 		}
1300 		break;
1301 
1302 	case 11: {
1303 		i915->perf.oa.specific_ctx_id_mask =
1304 			((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32) |
1305 			((1U << GEN11_ENGINE_INSTANCE_WIDTH) - 1) << (GEN11_ENGINE_INSTANCE_SHIFT - 32) |
1306 			((1 << GEN11_ENGINE_CLASS_WIDTH) - 1) << (GEN11_ENGINE_CLASS_SHIFT - 32);
1307 		i915->perf.oa.specific_ctx_id = upper_32_bits(ce->lrc_desc);
1308 		i915->perf.oa.specific_ctx_id &=
1309 			i915->perf.oa.specific_ctx_id_mask;
1310 		break;
1311 	}
1312 
1313 	default:
1314 		MISSING_CASE(INTEL_GEN(i915));
1315 	}
1316 
1317 	DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1318 			 i915->perf.oa.specific_ctx_id,
1319 			 i915->perf.oa.specific_ctx_id_mask);
1320 
1321 	return 0;
1322 }
1323 
1324 /**
1325  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1326  * @stream: An i915-perf stream opened for OA metrics
1327  *
1328  * In case anything needed doing to ensure the context HW ID would remain valid
1329  * for the lifetime of the stream, then that can be undone here.
1330  */
1331 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1332 {
1333 	struct drm_i915_private *dev_priv = stream->dev_priv;
1334 	struct intel_context *ce;
1335 
1336 	dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1337 	dev_priv->perf.oa.specific_ctx_id_mask = 0;
1338 
1339 	ce = fetch_and_zero(&dev_priv->perf.oa.pinned_ctx);
1340 	if (ce) {
1341 		mutex_lock(&dev_priv->drm.struct_mutex);
1342 		intel_context_unpin(ce);
1343 		mutex_unlock(&dev_priv->drm.struct_mutex);
1344 	}
1345 }
1346 
1347 static void
1348 free_oa_buffer(struct drm_i915_private *i915)
1349 {
1350 	mutex_lock(&i915->drm.struct_mutex);
1351 
1352 	i915_vma_unpin_and_release(&i915->perf.oa.oa_buffer.vma,
1353 				   I915_VMA_RELEASE_MAP);
1354 
1355 	mutex_unlock(&i915->drm.struct_mutex);
1356 
1357 	i915->perf.oa.oa_buffer.vaddr = NULL;
1358 }
1359 
1360 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1361 {
1362 	struct drm_i915_private *dev_priv = stream->dev_priv;
1363 
1364 	BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
1365 
1366 	/*
1367 	 * Unset exclusive_stream first, it will be checked while disabling
1368 	 * the metric set on gen8+.
1369 	 */
1370 	mutex_lock(&dev_priv->drm.struct_mutex);
1371 	dev_priv->perf.oa.exclusive_stream = NULL;
1372 	dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
1373 	mutex_unlock(&dev_priv->drm.struct_mutex);
1374 
1375 	free_oa_buffer(dev_priv);
1376 
1377 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1378 	intel_runtime_pm_put(&dev_priv->runtime_pm, stream->wakeref);
1379 
1380 	if (stream->ctx)
1381 		oa_put_render_ctx_id(stream);
1382 
1383 	put_oa_config(dev_priv, stream->oa_config);
1384 
1385 	if (dev_priv->perf.oa.spurious_report_rs.missed) {
1386 		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1387 			 dev_priv->perf.oa.spurious_report_rs.missed);
1388 	}
1389 }
1390 
1391 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
1392 {
1393 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1394 	unsigned long flags;
1395 
1396 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1397 
1398 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1399 	 * before OASTATUS1, but after OASTATUS2
1400 	 */
1401 	I915_WRITE(GEN7_OASTATUS2,
1402 		   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); /* head */
1403 	dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1404 
1405 	I915_WRITE(GEN7_OABUFFER, gtt_offset);
1406 
1407 	I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1408 
1409 	/* Mark that we need updated tail pointers to read from... */
1410 	dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1411 	dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1412 
1413 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1414 
1415 	/* On Haswell we have to track which OASTATUS1 flags we've
1416 	 * already seen since they can't be cleared while periodic
1417 	 * sampling is enabled.
1418 	 */
1419 	dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
1420 
1421 	/* NB: although the OA buffer will initially be allocated
1422 	 * zeroed via shmfs (and so this memset is redundant when
1423 	 * first allocating), we may re-init the OA buffer, either
1424 	 * when re-enabling a stream or in error/reset paths.
1425 	 *
1426 	 * The reason we clear the buffer for each re-init is for the
1427 	 * sanity check in gen7_append_oa_reports() that looks at the
1428 	 * report-id field to make sure it's non-zero which relies on
1429 	 * the assumption that new reports are being written to zeroed
1430 	 * memory...
1431 	 */
1432 	memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1433 
1434 	/* Maybe make ->pollin per-stream state if we support multiple
1435 	 * concurrent streams in the future.
1436 	 */
1437 	dev_priv->perf.oa.pollin = false;
1438 }
1439 
1440 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
1441 {
1442 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1443 	unsigned long flags;
1444 
1445 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1446 
1447 	I915_WRITE(GEN8_OASTATUS, 0);
1448 	I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1449 	dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1450 
1451 	I915_WRITE(GEN8_OABUFFER_UDW, 0);
1452 
1453 	/*
1454 	 * PRM says:
1455 	 *
1456 	 *  "This MMIO must be set before the OATAILPTR
1457 	 *  register and after the OAHEADPTR register. This is
1458 	 *  to enable proper functionality of the overflow
1459 	 *  bit."
1460 	 */
1461 	I915_WRITE(GEN8_OABUFFER, gtt_offset |
1462 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1463 	I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1464 
1465 	/* Mark that we need updated tail pointers to read from... */
1466 	dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1467 	dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1468 
1469 	/*
1470 	 * Reset state used to recognise context switches, affecting which
1471 	 * reports we will forward to userspace while filtering for a single
1472 	 * context.
1473 	 */
1474 	dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;
1475 
1476 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1477 
1478 	/*
1479 	 * NB: although the OA buffer will initially be allocated
1480 	 * zeroed via shmfs (and so this memset is redundant when
1481 	 * first allocating), we may re-init the OA buffer, either
1482 	 * when re-enabling a stream or in error/reset paths.
1483 	 *
1484 	 * The reason we clear the buffer for each re-init is for the
1485 	 * sanity check in gen8_append_oa_reports() that looks at the
1486 	 * reason field to make sure it's non-zero which relies on
1487 	 * the assumption that new reports are being written to zeroed
1488 	 * memory...
1489 	 */
1490 	memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1491 
1492 	/*
1493 	 * Maybe make ->pollin per-stream state if we support multiple
1494 	 * concurrent streams in the future.
1495 	 */
1496 	dev_priv->perf.oa.pollin = false;
1497 }
1498 
1499 static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
1500 {
1501 	struct drm_i915_gem_object *bo;
1502 	struct i915_vma *vma;
1503 	int ret;
1504 
1505 	if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
1506 		return -ENODEV;
1507 
1508 	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1509 	if (ret)
1510 		return ret;
1511 
1512 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1513 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1514 
1515 	bo = i915_gem_object_create_shmem(dev_priv, OA_BUFFER_SIZE);
1516 	if (IS_ERR(bo)) {
1517 		DRM_ERROR("Failed to allocate OA buffer\n");
1518 		ret = PTR_ERR(bo);
1519 		goto unlock;
1520 	}
1521 
1522 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1523 
1524 	/* PreHSW required 512K alignment, HSW requires 16M */
1525 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1526 	if (IS_ERR(vma)) {
1527 		ret = PTR_ERR(vma);
1528 		goto err_unref;
1529 	}
1530 	dev_priv->perf.oa.oa_buffer.vma = vma;
1531 
1532 	dev_priv->perf.oa.oa_buffer.vaddr =
1533 		i915_gem_object_pin_map(bo, I915_MAP_WB);
1534 	if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
1535 		ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
1536 		goto err_unpin;
1537 	}
1538 
1539 	DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1540 			 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
1541 			 dev_priv->perf.oa.oa_buffer.vaddr);
1542 
1543 	goto unlock;
1544 
1545 err_unpin:
1546 	__i915_vma_unpin(vma);
1547 
1548 err_unref:
1549 	i915_gem_object_put(bo);
1550 
1551 	dev_priv->perf.oa.oa_buffer.vaddr = NULL;
1552 	dev_priv->perf.oa.oa_buffer.vma = NULL;
1553 
1554 unlock:
1555 	mutex_unlock(&dev_priv->drm.struct_mutex);
1556 	return ret;
1557 }
1558 
1559 static void config_oa_regs(struct drm_i915_private *dev_priv,
1560 			   const struct i915_oa_reg *regs,
1561 			   u32 n_regs)
1562 {
1563 	u32 i;
1564 
1565 	for (i = 0; i < n_regs; i++) {
1566 		const struct i915_oa_reg *reg = regs + i;
1567 
1568 		I915_WRITE(reg->addr, reg->value);
1569 	}
1570 }
1571 
1572 static int hsw_enable_metric_set(struct i915_perf_stream *stream)
1573 {
1574 	struct drm_i915_private *dev_priv = stream->dev_priv;
1575 	const struct i915_oa_config *oa_config = stream->oa_config;
1576 
1577 	/* PRM:
1578 	 *
1579 	 * OA unit is using “crclk” for its functionality. When trunk
1580 	 * level clock gating takes place, OA clock would be gated,
1581 	 * unable to count the events from non-render clock domain.
1582 	 * Render clock gating must be disabled when OA is enabled to
1583 	 * count the events from non-render domain. Unit level clock
1584 	 * gating for RCS should also be disabled.
1585 	 */
1586 	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1587 				    ~GEN7_DOP_CLOCK_GATE_ENABLE));
1588 	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1589 				  GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1590 
1591 	config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1592 
1593 	/* It apparently takes a fairly long time for a new MUX
1594 	 * configuration to be be applied after these register writes.
1595 	 * This delay duration was derived empirically based on the
1596 	 * render_basic config but hopefully it covers the maximum
1597 	 * configuration latency.
1598 	 *
1599 	 * As a fallback, the checks in _append_oa_reports() to skip
1600 	 * invalid OA reports do also seem to work to discard reports
1601 	 * generated before this config has completed - albeit not
1602 	 * silently.
1603 	 *
1604 	 * Unfortunately this is essentially a magic number, since we
1605 	 * don't currently know of a reliable mechanism for predicting
1606 	 * how long the MUX config will take to apply and besides
1607 	 * seeing invalid reports we don't know of a reliable way to
1608 	 * explicitly check that the MUX config has landed.
1609 	 *
1610 	 * It's even possible we've miss characterized the underlying
1611 	 * problem - it just seems like the simplest explanation why
1612 	 * a delay at this location would mitigate any invalid reports.
1613 	 */
1614 	usleep_range(15000, 20000);
1615 
1616 	config_oa_regs(dev_priv, oa_config->b_counter_regs,
1617 		       oa_config->b_counter_regs_len);
1618 
1619 	return 0;
1620 }
1621 
1622 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1623 {
1624 	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1625 				  ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1626 	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1627 				    GEN7_DOP_CLOCK_GATE_ENABLE));
1628 
1629 	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1630 				      ~GT_NOA_ENABLE));
1631 }
1632 
1633 /*
1634  * NB: It must always remain pointer safe to run this even if the OA unit
1635  * has been disabled.
1636  *
1637  * It's fine to put out-of-date values into these per-context registers
1638  * in the case that the OA unit has been disabled.
1639  */
1640 static void
1641 gen8_update_reg_state_unlocked(struct intel_context *ce,
1642 			       u32 *reg_state,
1643 			       const struct i915_oa_config *oa_config)
1644 {
1645 	struct drm_i915_private *i915 = ce->gem_context->i915;
1646 	u32 ctx_oactxctrl = i915->perf.oa.ctx_oactxctrl_offset;
1647 	u32 ctx_flexeu0 = i915->perf.oa.ctx_flexeu0_offset;
1648 	/* The MMIO offsets for Flex EU registers aren't contiguous */
1649 	i915_reg_t flex_regs[] = {
1650 		EU_PERF_CNTL0,
1651 		EU_PERF_CNTL1,
1652 		EU_PERF_CNTL2,
1653 		EU_PERF_CNTL3,
1654 		EU_PERF_CNTL4,
1655 		EU_PERF_CNTL5,
1656 		EU_PERF_CNTL6,
1657 	};
1658 	int i;
1659 
1660 	CTX_REG(reg_state, ctx_oactxctrl, GEN8_OACTXCONTROL,
1661 		(i915->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1662 		(i915->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1663 		GEN8_OA_COUNTER_RESUME);
1664 
1665 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++) {
1666 		u32 state_offset = ctx_flexeu0 + i * 2;
1667 		u32 mmio = i915_mmio_reg_offset(flex_regs[i]);
1668 
1669 		/*
1670 		 * This arbitrary default will select the 'EU FPU0 Pipeline
1671 		 * Active' event. In the future it's anticipated that there
1672 		 * will be an explicit 'No Event' we can select, but not yet...
1673 		 */
1674 		u32 value = 0;
1675 
1676 		if (oa_config) {
1677 			u32 j;
1678 
1679 			for (j = 0; j < oa_config->flex_regs_len; j++) {
1680 				if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1681 					value = oa_config->flex_regs[j].value;
1682 					break;
1683 				}
1684 			}
1685 		}
1686 
1687 		CTX_REG(reg_state, state_offset, flex_regs[i], value);
1688 	}
1689 
1690 	CTX_REG(reg_state,
1691 		CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1692 		intel_sseu_make_rpcs(i915, &ce->sseu));
1693 }
1694 
1695 /*
1696  * Manages updating the per-context aspects of the OA stream
1697  * configuration across all contexts.
1698  *
1699  * The awkward consideration here is that OACTXCONTROL controls the
1700  * exponent for periodic sampling which is primarily used for system
1701  * wide profiling where we'd like a consistent sampling period even in
1702  * the face of context switches.
1703  *
1704  * Our approach of updating the register state context (as opposed to
1705  * say using a workaround batch buffer) ensures that the hardware
1706  * won't automatically reload an out-of-date timer exponent even
1707  * transiently before a WA BB could be parsed.
1708  *
1709  * This function needs to:
1710  * - Ensure the currently running context's per-context OA state is
1711  *   updated
1712  * - Ensure that all existing contexts will have the correct per-context
1713  *   OA state if they are scheduled for use.
1714  * - Ensure any new contexts will be initialized with the correct
1715  *   per-context OA state.
1716  *
1717  * Note: it's only the RCS/Render context that has any OA state.
1718  */
1719 static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
1720 				       const struct i915_oa_config *oa_config)
1721 {
1722 	unsigned int map_type = i915_coherent_map_type(dev_priv);
1723 	struct i915_gem_context *ctx;
1724 	struct i915_request *rq;
1725 	int ret;
1726 
1727 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
1728 
1729 	/*
1730 	 * The OA register config is setup through the context image. This image
1731 	 * might be written to by the GPU on context switch (in particular on
1732 	 * lite-restore). This means we can't safely update a context's image,
1733 	 * if this context is scheduled/submitted to run on the GPU.
1734 	 *
1735 	 * We could emit the OA register config through the batch buffer but
1736 	 * this might leave small interval of time where the OA unit is
1737 	 * configured at an invalid sampling period.
1738 	 *
1739 	 * So far the best way to work around this issue seems to be draining
1740 	 * the GPU from any submitted work.
1741 	 */
1742 	ret = i915_gem_wait_for_idle(dev_priv,
1743 				     I915_WAIT_LOCKED,
1744 				     MAX_SCHEDULE_TIMEOUT);
1745 	if (ret)
1746 		return ret;
1747 
1748 	/* Update all contexts now that we've stalled the submission. */
1749 	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1750 		struct i915_gem_engines_iter it;
1751 		struct intel_context *ce;
1752 
1753 		for_each_gem_engine(ce,
1754 				    i915_gem_context_lock_engines(ctx),
1755 				    it) {
1756 			u32 *regs;
1757 
1758 			if (ce->engine->class != RENDER_CLASS)
1759 				continue;
1760 
1761 			/* OA settings will be set upon first use */
1762 			if (!ce->state)
1763 				continue;
1764 
1765 			regs = i915_gem_object_pin_map(ce->state->obj,
1766 						       map_type);
1767 			if (IS_ERR(regs)) {
1768 				i915_gem_context_unlock_engines(ctx);
1769 				return PTR_ERR(regs);
1770 			}
1771 
1772 			ce->state->obj->mm.dirty = true;
1773 			regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);
1774 
1775 			gen8_update_reg_state_unlocked(ce, regs, oa_config);
1776 
1777 			i915_gem_object_unpin_map(ce->state->obj);
1778 		}
1779 		i915_gem_context_unlock_engines(ctx);
1780 	}
1781 
1782 	/*
1783 	 * Apply the configuration by doing one context restore of the edited
1784 	 * context image.
1785 	 */
1786 	rq = i915_request_create(dev_priv->engine[RCS0]->kernel_context);
1787 	if (IS_ERR(rq))
1788 		return PTR_ERR(rq);
1789 
1790 	i915_request_add(rq);
1791 
1792 	return 0;
1793 }
1794 
1795 static int gen8_enable_metric_set(struct i915_perf_stream *stream)
1796 {
1797 	struct drm_i915_private *dev_priv = stream->dev_priv;
1798 	const struct i915_oa_config *oa_config = stream->oa_config;
1799 	int ret;
1800 
1801 	/*
1802 	 * We disable slice/unslice clock ratio change reports on SKL since
1803 	 * they are too noisy. The HW generates a lot of redundant reports
1804 	 * where the ratio hasn't really changed causing a lot of redundant
1805 	 * work to processes and increasing the chances we'll hit buffer
1806 	 * overruns.
1807 	 *
1808 	 * Although we don't currently use the 'disable overrun' OABUFFER
1809 	 * feature it's worth noting that clock ratio reports have to be
1810 	 * disabled before considering to use that feature since the HW doesn't
1811 	 * correctly block these reports.
1812 	 *
1813 	 * Currently none of the high-level metrics we have depend on knowing
1814 	 * this ratio to normalize.
1815 	 *
1816 	 * Note: This register is not power context saved and restored, but
1817 	 * that's OK considering that we disable RC6 while the OA unit is
1818 	 * enabled.
1819 	 *
1820 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1821 	 * be read back from automatically triggered reports, as part of the
1822 	 * RPT_ID field.
1823 	 */
1824 	if (IS_GEN_RANGE(dev_priv, 9, 11)) {
1825 		I915_WRITE(GEN8_OA_DEBUG,
1826 			   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1827 					      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1828 	}
1829 
1830 	/*
1831 	 * Update all contexts prior writing the mux configurations as we need
1832 	 * to make sure all slices/subslices are ON before writing to NOA
1833 	 * registers.
1834 	 */
1835 	ret = gen8_configure_all_contexts(dev_priv, oa_config);
1836 	if (ret)
1837 		return ret;
1838 
1839 	config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1840 
1841 	config_oa_regs(dev_priv, oa_config->b_counter_regs,
1842 		       oa_config->b_counter_regs_len);
1843 
1844 	return 0;
1845 }
1846 
1847 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
1848 {
1849 	/* Reset all contexts' slices/subslices configurations. */
1850 	gen8_configure_all_contexts(dev_priv, NULL);
1851 
1852 	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1853 				      ~GT_NOA_ENABLE));
1854 }
1855 
1856 static void gen10_disable_metric_set(struct drm_i915_private *dev_priv)
1857 {
1858 	/* Reset all contexts' slices/subslices configurations. */
1859 	gen8_configure_all_contexts(dev_priv, NULL);
1860 
1861 	/* Make sure we disable noa to save power. */
1862 	I915_WRITE(RPM_CONFIG1,
1863 		   I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE);
1864 }
1865 
1866 static void gen7_oa_enable(struct i915_perf_stream *stream)
1867 {
1868 	struct drm_i915_private *dev_priv = stream->dev_priv;
1869 	struct i915_gem_context *ctx = stream->ctx;
1870 	u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1871 	bool periodic = dev_priv->perf.oa.periodic;
1872 	u32 period_exponent = dev_priv->perf.oa.period_exponent;
1873 	u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1874 
1875 	/*
1876 	 * Reset buf pointers so we don't forward reports from before now.
1877 	 *
1878 	 * Think carefully if considering trying to avoid this, since it
1879 	 * also ensures status flags and the buffer itself are cleared
1880 	 * in error paths, and we have checks for invalid reports based
1881 	 * on the assumption that certain fields are written to zeroed
1882 	 * memory which this helps maintains.
1883 	 */
1884 	gen7_init_oa_buffer(dev_priv);
1885 
1886 	I915_WRITE(GEN7_OACONTROL,
1887 		   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1888 		   (period_exponent <<
1889 		    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1890 		   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1891 		   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1892 		   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1893 		   GEN7_OACONTROL_ENABLE);
1894 }
1895 
1896 static void gen8_oa_enable(struct i915_perf_stream *stream)
1897 {
1898 	struct drm_i915_private *dev_priv = stream->dev_priv;
1899 	u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1900 
1901 	/*
1902 	 * Reset buf pointers so we don't forward reports from before now.
1903 	 *
1904 	 * Think carefully if considering trying to avoid this, since it
1905 	 * also ensures status flags and the buffer itself are cleared
1906 	 * in error paths, and we have checks for invalid reports based
1907 	 * on the assumption that certain fields are written to zeroed
1908 	 * memory which this helps maintains.
1909 	 */
1910 	gen8_init_oa_buffer(dev_priv);
1911 
1912 	/*
1913 	 * Note: we don't rely on the hardware to perform single context
1914 	 * filtering and instead filter on the cpu based on the context-id
1915 	 * field of reports
1916 	 */
1917 	I915_WRITE(GEN8_OACONTROL, (report_format <<
1918 				    GEN8_OA_REPORT_FORMAT_SHIFT) |
1919 				   GEN8_OA_COUNTER_ENABLE);
1920 }
1921 
1922 /**
1923  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1924  * @stream: An i915 perf stream opened for OA metrics
1925  *
1926  * [Re]enables hardware periodic sampling according to the period configured
1927  * when opening the stream. This also starts a hrtimer that will periodically
1928  * check for data in the circular OA buffer for notifying userspace (e.g.
1929  * during a read() or poll()).
1930  */
1931 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
1932 {
1933 	struct drm_i915_private *dev_priv = stream->dev_priv;
1934 
1935 	dev_priv->perf.oa.ops.oa_enable(stream);
1936 
1937 	if (dev_priv->perf.oa.periodic)
1938 		hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
1939 			      ns_to_ktime(POLL_PERIOD),
1940 			      HRTIMER_MODE_REL_PINNED);
1941 }
1942 
1943 static void gen7_oa_disable(struct i915_perf_stream *stream)
1944 {
1945 	struct intel_uncore *uncore = &stream->dev_priv->uncore;
1946 
1947 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
1948 	if (intel_wait_for_register(uncore,
1949 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
1950 				    50))
1951 		DRM_ERROR("wait for OA to be disabled timed out\n");
1952 }
1953 
1954 static void gen8_oa_disable(struct i915_perf_stream *stream)
1955 {
1956 	struct intel_uncore *uncore = &stream->dev_priv->uncore;
1957 
1958 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
1959 	if (intel_wait_for_register(uncore,
1960 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
1961 				    50))
1962 		DRM_ERROR("wait for OA to be disabled timed out\n");
1963 }
1964 
1965 /**
1966  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1967  * @stream: An i915 perf stream opened for OA metrics
1968  *
1969  * Stops the OA unit from periodically writing counter reports into the
1970  * circular OA buffer. This also stops the hrtimer that periodically checks for
1971  * data in the circular OA buffer, for notifying userspace.
1972  */
1973 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
1974 {
1975 	struct drm_i915_private *dev_priv = stream->dev_priv;
1976 
1977 	dev_priv->perf.oa.ops.oa_disable(stream);
1978 
1979 	if (dev_priv->perf.oa.periodic)
1980 		hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
1981 }
1982 
1983 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
1984 	.destroy = i915_oa_stream_destroy,
1985 	.enable = i915_oa_stream_enable,
1986 	.disable = i915_oa_stream_disable,
1987 	.wait_unlocked = i915_oa_wait_unlocked,
1988 	.poll_wait = i915_oa_poll_wait,
1989 	.read = i915_oa_read,
1990 };
1991 
1992 /**
1993  * i915_oa_stream_init - validate combined props for OA stream and init
1994  * @stream: An i915 perf stream
1995  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
1996  * @props: The property state that configures stream (individually validated)
1997  *
1998  * While read_properties_unlocked() validates properties in isolation it
1999  * doesn't ensure that the combination necessarily makes sense.
2000  *
2001  * At this point it has been determined that userspace wants a stream of
2002  * OA metrics, but still we need to further validate the combined
2003  * properties are OK.
2004  *
2005  * If the configuration makes sense then we can allocate memory for
2006  * a circular OA buffer and apply the requested metric set configuration.
2007  *
2008  * Returns: zero on success or a negative error code.
2009  */
2010 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2011 			       struct drm_i915_perf_open_param *param,
2012 			       struct perf_open_properties *props)
2013 {
2014 	struct drm_i915_private *dev_priv = stream->dev_priv;
2015 	int format_size;
2016 	int ret;
2017 
2018 	/* If the sysfs metrics/ directory wasn't registered for some
2019 	 * reason then don't let userspace try their luck with config
2020 	 * IDs
2021 	 */
2022 	if (!dev_priv->perf.metrics_kobj) {
2023 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2024 		return -EINVAL;
2025 	}
2026 
2027 	if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2028 		DRM_DEBUG("Only OA report sampling supported\n");
2029 		return -EINVAL;
2030 	}
2031 
2032 	if (!dev_priv->perf.oa.ops.enable_metric_set) {
2033 		DRM_DEBUG("OA unit not supported\n");
2034 		return -ENODEV;
2035 	}
2036 
2037 	/* To avoid the complexity of having to accurately filter
2038 	 * counter reports and marshal to the appropriate client
2039 	 * we currently only allow exclusive access
2040 	 */
2041 	if (dev_priv->perf.oa.exclusive_stream) {
2042 		DRM_DEBUG("OA unit already in use\n");
2043 		return -EBUSY;
2044 	}
2045 
2046 	if (!props->oa_format) {
2047 		DRM_DEBUG("OA report format not specified\n");
2048 		return -EINVAL;
2049 	}
2050 
2051 	/* We set up some ratelimit state to potentially throttle any _NOTES
2052 	 * about spurious, invalid OA reports which we don't forward to
2053 	 * userspace.
2054 	 *
2055 	 * The initialization is associated with opening the stream (not driver
2056 	 * init) considering we print a _NOTE about any throttling when closing
2057 	 * the stream instead of waiting until driver _fini which no one would
2058 	 * ever see.
2059 	 *
2060 	 * Using the same limiting factors as printk_ratelimit()
2061 	 */
2062 	ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
2063 			     5 * HZ, 10);
2064 	/* Since we use a DRM_NOTE for spurious reports it would be
2065 	 * inconsistent to let __ratelimit() automatically print a warning for
2066 	 * throttling.
2067 	 */
2068 	ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
2069 			    RATELIMIT_MSG_ON_RELEASE);
2070 
2071 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2072 
2073 	format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
2074 
2075 	stream->sample_flags |= SAMPLE_OA_REPORT;
2076 	stream->sample_size += format_size;
2077 
2078 	dev_priv->perf.oa.oa_buffer.format_size = format_size;
2079 	if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
2080 		return -EINVAL;
2081 
2082 	dev_priv->perf.oa.oa_buffer.format =
2083 		dev_priv->perf.oa.oa_formats[props->oa_format].format;
2084 
2085 	dev_priv->perf.oa.periodic = props->oa_periodic;
2086 	if (dev_priv->perf.oa.periodic)
2087 		dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
2088 
2089 	if (stream->ctx) {
2090 		ret = oa_get_render_ctx_id(stream);
2091 		if (ret) {
2092 			DRM_DEBUG("Invalid context id to filter with\n");
2093 			return ret;
2094 		}
2095 	}
2096 
2097 	ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2098 	if (ret) {
2099 		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2100 		goto err_config;
2101 	}
2102 
2103 	/* PRM - observability performance counters:
2104 	 *
2105 	 *   OACONTROL, performance counter enable, note:
2106 	 *
2107 	 *   "When this bit is set, in order to have coherent counts,
2108 	 *   RC6 power state and trunk clock gating must be disabled.
2109 	 *   This can be achieved by programming MMIO registers as
2110 	 *   0xA094=0 and 0xA090[31]=1"
2111 	 *
2112 	 *   In our case we are expecting that taking pm + FORCEWAKE
2113 	 *   references will effectively disable RC6.
2114 	 */
2115 	stream->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2116 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
2117 
2118 	ret = alloc_oa_buffer(dev_priv);
2119 	if (ret)
2120 		goto err_oa_buf_alloc;
2121 
2122 	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2123 	if (ret)
2124 		goto err_lock;
2125 
2126 	stream->ops = &i915_oa_stream_ops;
2127 	dev_priv->perf.oa.exclusive_stream = stream;
2128 
2129 	ret = dev_priv->perf.oa.ops.enable_metric_set(stream);
2130 	if (ret) {
2131 		DRM_DEBUG("Unable to enable metric set\n");
2132 		goto err_enable;
2133 	}
2134 
2135 	mutex_unlock(&dev_priv->drm.struct_mutex);
2136 
2137 	return 0;
2138 
2139 err_enable:
2140 	dev_priv->perf.oa.exclusive_stream = NULL;
2141 	dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
2142 	mutex_unlock(&dev_priv->drm.struct_mutex);
2143 
2144 err_lock:
2145 	free_oa_buffer(dev_priv);
2146 
2147 err_oa_buf_alloc:
2148 	put_oa_config(dev_priv, stream->oa_config);
2149 
2150 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
2151 	intel_runtime_pm_put(&dev_priv->runtime_pm, stream->wakeref);
2152 
2153 err_config:
2154 	if (stream->ctx)
2155 		oa_put_render_ctx_id(stream);
2156 
2157 	return ret;
2158 }
2159 
2160 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2161 			    struct intel_context *ce,
2162 			    u32 *regs)
2163 {
2164 	struct i915_perf_stream *stream;
2165 
2166 	if (engine->class != RENDER_CLASS)
2167 		return;
2168 
2169 	stream = engine->i915->perf.oa.exclusive_stream;
2170 	if (stream)
2171 		gen8_update_reg_state_unlocked(ce, regs, stream->oa_config);
2172 }
2173 
2174 /**
2175  * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2176  * @stream: An i915 perf stream
2177  * @file: An i915 perf stream file
2178  * @buf: destination buffer given by userspace
2179  * @count: the number of bytes userspace wants to read
2180  * @ppos: (inout) file seek position (unused)
2181  *
2182  * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2183  * ensure that if we've successfully copied any data then reporting that takes
2184  * precedence over any internal error status, so the data isn't lost.
2185  *
2186  * For example ret will be -ENOSPC whenever there is more buffered data than
2187  * can be copied to userspace, but that's only interesting if we weren't able
2188  * to copy some data because it implies the userspace buffer is too small to
2189  * receive a single record (and we never split records).
2190  *
2191  * Another case with ret == -EFAULT is more of a grey area since it would seem
2192  * like bad form for userspace to ask us to overrun its buffer, but the user
2193  * knows best:
2194  *
2195  *   http://yarchive.net/comp/linux/partial_reads_writes.html
2196  *
2197  * Returns: The number of bytes copied or a negative error code on failure.
2198  */
2199 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2200 				     struct file *file,
2201 				     char __user *buf,
2202 				     size_t count,
2203 				     loff_t *ppos)
2204 {
2205 	/* Note we keep the offset (aka bytes read) separate from any
2206 	 * error status so that the final check for whether we return
2207 	 * the bytes read with a higher precedence than any error (see
2208 	 * comment below) doesn't need to be handled/duplicated in
2209 	 * stream->ops->read() implementations.
2210 	 */
2211 	size_t offset = 0;
2212 	int ret = stream->ops->read(stream, buf, count, &offset);
2213 
2214 	return offset ?: (ret ?: -EAGAIN);
2215 }
2216 
2217 /**
2218  * i915_perf_read - handles read() FOP for i915 perf stream FDs
2219  * @file: An i915 perf stream file
2220  * @buf: destination buffer given by userspace
2221  * @count: the number of bytes userspace wants to read
2222  * @ppos: (inout) file seek position (unused)
2223  *
2224  * The entry point for handling a read() on a stream file descriptor from
2225  * userspace. Most of the work is left to the i915_perf_read_locked() and
2226  * &i915_perf_stream_ops->read but to save having stream implementations (of
2227  * which we might have multiple later) we handle blocking read here.
2228  *
2229  * We can also consistently treat trying to read from a disabled stream
2230  * as an IO error so implementations can assume the stream is enabled
2231  * while reading.
2232  *
2233  * Returns: The number of bytes copied or a negative error code on failure.
2234  */
2235 static ssize_t i915_perf_read(struct file *file,
2236 			      char __user *buf,
2237 			      size_t count,
2238 			      loff_t *ppos)
2239 {
2240 	struct i915_perf_stream *stream = file->private_data;
2241 	struct drm_i915_private *dev_priv = stream->dev_priv;
2242 	ssize_t ret;
2243 
2244 	/* To ensure it's handled consistently we simply treat all reads of a
2245 	 * disabled stream as an error. In particular it might otherwise lead
2246 	 * to a deadlock for blocking file descriptors...
2247 	 */
2248 	if (!stream->enabled)
2249 		return -EIO;
2250 
2251 	if (!(file->f_flags & O_NONBLOCK)) {
2252 		/* There's the small chance of false positives from
2253 		 * stream->ops->wait_unlocked.
2254 		 *
2255 		 * E.g. with single context filtering since we only wait until
2256 		 * oabuffer has >= 1 report we don't immediately know whether
2257 		 * any reports really belong to the current context
2258 		 */
2259 		do {
2260 			ret = stream->ops->wait_unlocked(stream);
2261 			if (ret)
2262 				return ret;
2263 
2264 			mutex_lock(&dev_priv->perf.lock);
2265 			ret = i915_perf_read_locked(stream, file,
2266 						    buf, count, ppos);
2267 			mutex_unlock(&dev_priv->perf.lock);
2268 		} while (ret == -EAGAIN);
2269 	} else {
2270 		mutex_lock(&dev_priv->perf.lock);
2271 		ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2272 		mutex_unlock(&dev_priv->perf.lock);
2273 	}
2274 
2275 	/* We allow the poll checking to sometimes report false positive EPOLLIN
2276 	 * events where we might actually report EAGAIN on read() if there's
2277 	 * not really any data available. In this situation though we don't
2278 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
2279 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2280 	 * effectively ensures we back off until the next hrtimer callback
2281 	 * before reporting another EPOLLIN event.
2282 	 */
2283 	if (ret >= 0 || ret == -EAGAIN) {
2284 		/* Maybe make ->pollin per-stream state if we support multiple
2285 		 * concurrent streams in the future.
2286 		 */
2287 		dev_priv->perf.oa.pollin = false;
2288 	}
2289 
2290 	return ret;
2291 }
2292 
2293 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2294 {
2295 	struct drm_i915_private *dev_priv =
2296 		container_of(hrtimer, typeof(*dev_priv),
2297 			     perf.oa.poll_check_timer);
2298 
2299 	if (oa_buffer_check_unlocked(dev_priv)) {
2300 		dev_priv->perf.oa.pollin = true;
2301 		wake_up(&dev_priv->perf.oa.poll_wq);
2302 	}
2303 
2304 	hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2305 
2306 	return HRTIMER_RESTART;
2307 }
2308 
2309 /**
2310  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2311  * @dev_priv: i915 device instance
2312  * @stream: An i915 perf stream
2313  * @file: An i915 perf stream file
2314  * @wait: poll() state table
2315  *
2316  * For handling userspace polling on an i915 perf stream, this calls through to
2317  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2318  * will be woken for new stream data.
2319  *
2320  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2321  * with any non-file-operation driver hooks.
2322  *
2323  * Returns: any poll events that are ready without sleeping
2324  */
2325 static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2326 					  struct i915_perf_stream *stream,
2327 					  struct file *file,
2328 					  poll_table *wait)
2329 {
2330 	__poll_t events = 0;
2331 
2332 	stream->ops->poll_wait(stream, file, wait);
2333 
2334 	/* Note: we don't explicitly check whether there's something to read
2335 	 * here since this path may be very hot depending on what else
2336 	 * userspace is polling, or on the timeout in use. We rely solely on
2337 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2338 	 * samples to read.
2339 	 */
2340 	if (dev_priv->perf.oa.pollin)
2341 		events |= EPOLLIN;
2342 
2343 	return events;
2344 }
2345 
2346 /**
2347  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2348  * @file: An i915 perf stream file
2349  * @wait: poll() state table
2350  *
2351  * For handling userspace polling on an i915 perf stream, this ensures
2352  * poll_wait() gets called with a wait queue that will be woken for new stream
2353  * data.
2354  *
2355  * Note: Implementation deferred to i915_perf_poll_locked()
2356  *
2357  * Returns: any poll events that are ready without sleeping
2358  */
2359 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
2360 {
2361 	struct i915_perf_stream *stream = file->private_data;
2362 	struct drm_i915_private *dev_priv = stream->dev_priv;
2363 	__poll_t ret;
2364 
2365 	mutex_lock(&dev_priv->perf.lock);
2366 	ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2367 	mutex_unlock(&dev_priv->perf.lock);
2368 
2369 	return ret;
2370 }
2371 
2372 /**
2373  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2374  * @stream: A disabled i915 perf stream
2375  *
2376  * [Re]enables the associated capture of data for this stream.
2377  *
2378  * If a stream was previously enabled then there's currently no intention
2379  * to provide userspace any guarantee about the preservation of previously
2380  * buffered data.
2381  */
2382 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2383 {
2384 	if (stream->enabled)
2385 		return;
2386 
2387 	/* Allow stream->ops->enable() to refer to this */
2388 	stream->enabled = true;
2389 
2390 	if (stream->ops->enable)
2391 		stream->ops->enable(stream);
2392 }
2393 
2394 /**
2395  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2396  * @stream: An enabled i915 perf stream
2397  *
2398  * Disables the associated capture of data for this stream.
2399  *
2400  * The intention is that disabling an re-enabling a stream will ideally be
2401  * cheaper than destroying and re-opening a stream with the same configuration,
2402  * though there are no formal guarantees about what state or buffered data
2403  * must be retained between disabling and re-enabling a stream.
2404  *
2405  * Note: while a stream is disabled it's considered an error for userspace
2406  * to attempt to read from the stream (-EIO).
2407  */
2408 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2409 {
2410 	if (!stream->enabled)
2411 		return;
2412 
2413 	/* Allow stream->ops->disable() to refer to this */
2414 	stream->enabled = false;
2415 
2416 	if (stream->ops->disable)
2417 		stream->ops->disable(stream);
2418 }
2419 
2420 /**
2421  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2422  * @stream: An i915 perf stream
2423  * @cmd: the ioctl request
2424  * @arg: the ioctl data
2425  *
2426  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2427  * with any non-file-operation driver hooks.
2428  *
2429  * Returns: zero on success or a negative error code. Returns -EINVAL for
2430  * an unknown ioctl request.
2431  */
2432 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2433 				   unsigned int cmd,
2434 				   unsigned long arg)
2435 {
2436 	switch (cmd) {
2437 	case I915_PERF_IOCTL_ENABLE:
2438 		i915_perf_enable_locked(stream);
2439 		return 0;
2440 	case I915_PERF_IOCTL_DISABLE:
2441 		i915_perf_disable_locked(stream);
2442 		return 0;
2443 	}
2444 
2445 	return -EINVAL;
2446 }
2447 
2448 /**
2449  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2450  * @file: An i915 perf stream file
2451  * @cmd: the ioctl request
2452  * @arg: the ioctl data
2453  *
2454  * Implementation deferred to i915_perf_ioctl_locked().
2455  *
2456  * Returns: zero on success or a negative error code. Returns -EINVAL for
2457  * an unknown ioctl request.
2458  */
2459 static long i915_perf_ioctl(struct file *file,
2460 			    unsigned int cmd,
2461 			    unsigned long arg)
2462 {
2463 	struct i915_perf_stream *stream = file->private_data;
2464 	struct drm_i915_private *dev_priv = stream->dev_priv;
2465 	long ret;
2466 
2467 	mutex_lock(&dev_priv->perf.lock);
2468 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
2469 	mutex_unlock(&dev_priv->perf.lock);
2470 
2471 	return ret;
2472 }
2473 
2474 /**
2475  * i915_perf_destroy_locked - destroy an i915 perf stream
2476  * @stream: An i915 perf stream
2477  *
2478  * Frees all resources associated with the given i915 perf @stream, disabling
2479  * any associated data capture in the process.
2480  *
2481  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2482  * with any non-file-operation driver hooks.
2483  */
2484 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2485 {
2486 	if (stream->enabled)
2487 		i915_perf_disable_locked(stream);
2488 
2489 	if (stream->ops->destroy)
2490 		stream->ops->destroy(stream);
2491 
2492 	list_del(&stream->link);
2493 
2494 	if (stream->ctx)
2495 		i915_gem_context_put(stream->ctx);
2496 
2497 	kfree(stream);
2498 }
2499 
2500 /**
2501  * i915_perf_release - handles userspace close() of a stream file
2502  * @inode: anonymous inode associated with file
2503  * @file: An i915 perf stream file
2504  *
2505  * Cleans up any resources associated with an open i915 perf stream file.
2506  *
2507  * NB: close() can't really fail from the userspace point of view.
2508  *
2509  * Returns: zero on success or a negative error code.
2510  */
2511 static int i915_perf_release(struct inode *inode, struct file *file)
2512 {
2513 	struct i915_perf_stream *stream = file->private_data;
2514 	struct drm_i915_private *dev_priv = stream->dev_priv;
2515 
2516 	mutex_lock(&dev_priv->perf.lock);
2517 	i915_perf_destroy_locked(stream);
2518 	mutex_unlock(&dev_priv->perf.lock);
2519 
2520 	return 0;
2521 }
2522 
2523 
2524 static const struct file_operations fops = {
2525 	.owner		= THIS_MODULE,
2526 	.llseek		= no_llseek,
2527 	.release	= i915_perf_release,
2528 	.poll		= i915_perf_poll,
2529 	.read		= i915_perf_read,
2530 	.unlocked_ioctl	= i915_perf_ioctl,
2531 	/* Our ioctl have no arguments, so it's safe to use the same function
2532 	 * to handle 32bits compatibility.
2533 	 */
2534 	.compat_ioctl   = i915_perf_ioctl,
2535 };
2536 
2537 
2538 /**
2539  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2540  * @dev_priv: i915 device instance
2541  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2542  * @props: individually validated u64 property value pairs
2543  * @file: drm file
2544  *
2545  * See i915_perf_ioctl_open() for interface details.
2546  *
2547  * Implements further stream config validation and stream initialization on
2548  * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2549  * taken to serialize with any non-file-operation driver hooks.
2550  *
2551  * Note: at this point the @props have only been validated in isolation and
2552  * it's still necessary to validate that the combination of properties makes
2553  * sense.
2554  *
2555  * In the case where userspace is interested in OA unit metrics then further
2556  * config validation and stream initialization details will be handled by
2557  * i915_oa_stream_init(). The code here should only validate config state that
2558  * will be relevant to all stream types / backends.
2559  *
2560  * Returns: zero on success or a negative error code.
2561  */
2562 static int
2563 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2564 			    struct drm_i915_perf_open_param *param,
2565 			    struct perf_open_properties *props,
2566 			    struct drm_file *file)
2567 {
2568 	struct i915_gem_context *specific_ctx = NULL;
2569 	struct i915_perf_stream *stream = NULL;
2570 	unsigned long f_flags = 0;
2571 	bool privileged_op = true;
2572 	int stream_fd;
2573 	int ret;
2574 
2575 	if (props->single_context) {
2576 		u32 ctx_handle = props->ctx_handle;
2577 		struct drm_i915_file_private *file_priv = file->driver_priv;
2578 
2579 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2580 		if (!specific_ctx) {
2581 			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2582 				  ctx_handle);
2583 			ret = -ENOENT;
2584 			goto err;
2585 		}
2586 	}
2587 
2588 	/*
2589 	 * On Haswell the OA unit supports clock gating off for a specific
2590 	 * context and in this mode there's no visibility of metrics for the
2591 	 * rest of the system, which we consider acceptable for a
2592 	 * non-privileged client.
2593 	 *
2594 	 * For Gen8+ the OA unit no longer supports clock gating off for a
2595 	 * specific context and the kernel can't securely stop the counters
2596 	 * from updating as system-wide / global values. Even though we can
2597 	 * filter reports based on the included context ID we can't block
2598 	 * clients from seeing the raw / global counter values via
2599 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2600 	 * enable the OA unit by default.
2601 	 */
2602 	if (IS_HASWELL(dev_priv) && specific_ctx)
2603 		privileged_op = false;
2604 
2605 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2606 	 * we check a dev.i915.perf_stream_paranoid sysctl option
2607 	 * to determine if it's ok to access system wide OA counters
2608 	 * without CAP_SYS_ADMIN privileges.
2609 	 */
2610 	if (privileged_op &&
2611 	    i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2612 		DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2613 		ret = -EACCES;
2614 		goto err_ctx;
2615 	}
2616 
2617 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2618 	if (!stream) {
2619 		ret = -ENOMEM;
2620 		goto err_ctx;
2621 	}
2622 
2623 	stream->dev_priv = dev_priv;
2624 	stream->ctx = specific_ctx;
2625 
2626 	ret = i915_oa_stream_init(stream, param, props);
2627 	if (ret)
2628 		goto err_alloc;
2629 
2630 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
2631 	 * to have _stream_init check the combination of sample flags more
2632 	 * thoroughly, but still this is the expected result at this point.
2633 	 */
2634 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2635 		ret = -ENODEV;
2636 		goto err_flags;
2637 	}
2638 
2639 	list_add(&stream->link, &dev_priv->perf.streams);
2640 
2641 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2642 		f_flags |= O_CLOEXEC;
2643 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2644 		f_flags |= O_NONBLOCK;
2645 
2646 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2647 	if (stream_fd < 0) {
2648 		ret = stream_fd;
2649 		goto err_open;
2650 	}
2651 
2652 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
2653 		i915_perf_enable_locked(stream);
2654 
2655 	return stream_fd;
2656 
2657 err_open:
2658 	list_del(&stream->link);
2659 err_flags:
2660 	if (stream->ops->destroy)
2661 		stream->ops->destroy(stream);
2662 err_alloc:
2663 	kfree(stream);
2664 err_ctx:
2665 	if (specific_ctx)
2666 		i915_gem_context_put(specific_ctx);
2667 err:
2668 	return ret;
2669 }
2670 
2671 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2672 {
2673 	return div64_u64(1000000000ULL * (2ULL << exponent),
2674 			 1000ULL * RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz);
2675 }
2676 
2677 /**
2678  * read_properties_unlocked - validate + copy userspace stream open properties
2679  * @dev_priv: i915 device instance
2680  * @uprops: The array of u64 key value pairs given by userspace
2681  * @n_props: The number of key value pairs expected in @uprops
2682  * @props: The stream configuration built up while validating properties
2683  *
2684  * Note this function only validates properties in isolation it doesn't
2685  * validate that the combination of properties makes sense or that all
2686  * properties necessary for a particular kind of stream have been set.
2687  *
2688  * Note that there currently aren't any ordering requirements for properties so
2689  * we shouldn't validate or assume anything about ordering here. This doesn't
2690  * rule out defining new properties with ordering requirements in the future.
2691  */
2692 static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2693 				    u64 __user *uprops,
2694 				    u32 n_props,
2695 				    struct perf_open_properties *props)
2696 {
2697 	u64 __user *uprop = uprops;
2698 	u32 i;
2699 
2700 	memset(props, 0, sizeof(struct perf_open_properties));
2701 
2702 	if (!n_props) {
2703 		DRM_DEBUG("No i915 perf properties given\n");
2704 		return -EINVAL;
2705 	}
2706 
2707 	/* Considering that ID = 0 is reserved and assuming that we don't
2708 	 * (currently) expect any configurations to ever specify duplicate
2709 	 * values for a particular property ID then the last _PROP_MAX value is
2710 	 * one greater than the maximum number of properties we expect to get
2711 	 * from userspace.
2712 	 */
2713 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
2714 		DRM_DEBUG("More i915 perf properties specified than exist\n");
2715 		return -EINVAL;
2716 	}
2717 
2718 	for (i = 0; i < n_props; i++) {
2719 		u64 oa_period, oa_freq_hz;
2720 		u64 id, value;
2721 		int ret;
2722 
2723 		ret = get_user(id, uprop);
2724 		if (ret)
2725 			return ret;
2726 
2727 		ret = get_user(value, uprop + 1);
2728 		if (ret)
2729 			return ret;
2730 
2731 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2732 			DRM_DEBUG("Unknown i915 perf property ID\n");
2733 			return -EINVAL;
2734 		}
2735 
2736 		switch ((enum drm_i915_perf_property_id)id) {
2737 		case DRM_I915_PERF_PROP_CTX_HANDLE:
2738 			props->single_context = 1;
2739 			props->ctx_handle = value;
2740 			break;
2741 		case DRM_I915_PERF_PROP_SAMPLE_OA:
2742 			if (value)
2743 				props->sample_flags |= SAMPLE_OA_REPORT;
2744 			break;
2745 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
2746 			if (value == 0) {
2747 				DRM_DEBUG("Unknown OA metric set ID\n");
2748 				return -EINVAL;
2749 			}
2750 			props->metrics_set = value;
2751 			break;
2752 		case DRM_I915_PERF_PROP_OA_FORMAT:
2753 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2754 				DRM_DEBUG("Out-of-range OA report format %llu\n",
2755 					  value);
2756 				return -EINVAL;
2757 			}
2758 			if (!dev_priv->perf.oa.oa_formats[value].size) {
2759 				DRM_DEBUG("Unsupported OA report format %llu\n",
2760 					  value);
2761 				return -EINVAL;
2762 			}
2763 			props->oa_format = value;
2764 			break;
2765 		case DRM_I915_PERF_PROP_OA_EXPONENT:
2766 			if (value > OA_EXPONENT_MAX) {
2767 				DRM_DEBUG("OA timer exponent too high (> %u)\n",
2768 					 OA_EXPONENT_MAX);
2769 				return -EINVAL;
2770 			}
2771 
2772 			/* Theoretically we can program the OA unit to sample
2773 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2774 			 * for BXT. We don't allow such high sampling
2775 			 * frequencies by default unless root.
2776 			 */
2777 
2778 			BUILD_BUG_ON(sizeof(oa_period) != 8);
2779 			oa_period = oa_exponent_to_ns(dev_priv, value);
2780 
2781 			/* This check is primarily to ensure that oa_period <=
2782 			 * UINT32_MAX (before passing to do_div which only
2783 			 * accepts a u32 denominator), but we can also skip
2784 			 * checking anything < 1Hz which implicitly can't be
2785 			 * limited via an integer oa_max_sample_rate.
2786 			 */
2787 			if (oa_period <= NSEC_PER_SEC) {
2788 				u64 tmp = NSEC_PER_SEC;
2789 				do_div(tmp, oa_period);
2790 				oa_freq_hz = tmp;
2791 			} else
2792 				oa_freq_hz = 0;
2793 
2794 			if (oa_freq_hz > i915_oa_max_sample_rate &&
2795 			    !capable(CAP_SYS_ADMIN)) {
2796 				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2797 					  i915_oa_max_sample_rate);
2798 				return -EACCES;
2799 			}
2800 
2801 			props->oa_periodic = true;
2802 			props->oa_period_exponent = value;
2803 			break;
2804 		case DRM_I915_PERF_PROP_MAX:
2805 			MISSING_CASE(id);
2806 			return -EINVAL;
2807 		}
2808 
2809 		uprop += 2;
2810 	}
2811 
2812 	return 0;
2813 }
2814 
2815 /**
2816  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2817  * @dev: drm device
2818  * @data: ioctl data copied from userspace (unvalidated)
2819  * @file: drm file
2820  *
2821  * Validates the stream open parameters given by userspace including flags
2822  * and an array of u64 key, value pair properties.
2823  *
2824  * Very little is assumed up front about the nature of the stream being
2825  * opened (for instance we don't assume it's for periodic OA unit metrics). An
2826  * i915-perf stream is expected to be a suitable interface for other forms of
2827  * buffered data written by the GPU besides periodic OA metrics.
2828  *
2829  * Note we copy the properties from userspace outside of the i915 perf
2830  * mutex to avoid an awkward lockdep with mmap_sem.
2831  *
2832  * Most of the implementation details are handled by
2833  * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2834  * mutex for serializing with any non-file-operation driver hooks.
2835  *
2836  * Return: A newly opened i915 Perf stream file descriptor or negative
2837  * error code on failure.
2838  */
2839 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2840 			 struct drm_file *file)
2841 {
2842 	struct drm_i915_private *dev_priv = dev->dev_private;
2843 	struct drm_i915_perf_open_param *param = data;
2844 	struct perf_open_properties props;
2845 	u32 known_open_flags;
2846 	int ret;
2847 
2848 	if (!dev_priv->perf.initialized) {
2849 		DRM_DEBUG("i915 perf interface not available for this system\n");
2850 		return -ENOTSUPP;
2851 	}
2852 
2853 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
2854 			   I915_PERF_FLAG_FD_NONBLOCK |
2855 			   I915_PERF_FLAG_DISABLED;
2856 	if (param->flags & ~known_open_flags) {
2857 		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
2858 		return -EINVAL;
2859 	}
2860 
2861 	ret = read_properties_unlocked(dev_priv,
2862 				       u64_to_user_ptr(param->properties_ptr),
2863 				       param->num_properties,
2864 				       &props);
2865 	if (ret)
2866 		return ret;
2867 
2868 	mutex_lock(&dev_priv->perf.lock);
2869 	ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
2870 	mutex_unlock(&dev_priv->perf.lock);
2871 
2872 	return ret;
2873 }
2874 
2875 /**
2876  * i915_perf_register - exposes i915-perf to userspace
2877  * @dev_priv: i915 device instance
2878  *
2879  * In particular OA metric sets are advertised under a sysfs metrics/
2880  * directory allowing userspace to enumerate valid IDs that can be
2881  * used to open an i915-perf stream.
2882  */
2883 void i915_perf_register(struct drm_i915_private *dev_priv)
2884 {
2885 	int ret;
2886 
2887 	if (!dev_priv->perf.initialized)
2888 		return;
2889 
2890 	/* To be sure we're synchronized with an attempted
2891 	 * i915_perf_open_ioctl(); considering that we register after
2892 	 * being exposed to userspace.
2893 	 */
2894 	mutex_lock(&dev_priv->perf.lock);
2895 
2896 	dev_priv->perf.metrics_kobj =
2897 		kobject_create_and_add("metrics",
2898 				       &dev_priv->drm.primary->kdev->kobj);
2899 	if (!dev_priv->perf.metrics_kobj)
2900 		goto exit;
2901 
2902 	sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr);
2903 
2904 	if (INTEL_GEN(dev_priv) >= 11) {
2905 		i915_perf_load_test_config_icl(dev_priv);
2906 	} else if (IS_CANNONLAKE(dev_priv)) {
2907 		i915_perf_load_test_config_cnl(dev_priv);
2908 	} else if (IS_COFFEELAKE(dev_priv)) {
2909 		if (IS_CFL_GT2(dev_priv))
2910 			i915_perf_load_test_config_cflgt2(dev_priv);
2911 		if (IS_CFL_GT3(dev_priv))
2912 			i915_perf_load_test_config_cflgt3(dev_priv);
2913 	} else if (IS_GEMINILAKE(dev_priv)) {
2914 		i915_perf_load_test_config_glk(dev_priv);
2915 	} else if (IS_KABYLAKE(dev_priv)) {
2916 		if (IS_KBL_GT2(dev_priv))
2917 			i915_perf_load_test_config_kblgt2(dev_priv);
2918 		else if (IS_KBL_GT3(dev_priv))
2919 			i915_perf_load_test_config_kblgt3(dev_priv);
2920 	} else if (IS_BROXTON(dev_priv)) {
2921 		i915_perf_load_test_config_bxt(dev_priv);
2922 	} else if (IS_SKYLAKE(dev_priv)) {
2923 		if (IS_SKL_GT2(dev_priv))
2924 			i915_perf_load_test_config_sklgt2(dev_priv);
2925 		else if (IS_SKL_GT3(dev_priv))
2926 			i915_perf_load_test_config_sklgt3(dev_priv);
2927 		else if (IS_SKL_GT4(dev_priv))
2928 			i915_perf_load_test_config_sklgt4(dev_priv);
2929 	} else if (IS_CHERRYVIEW(dev_priv)) {
2930 		i915_perf_load_test_config_chv(dev_priv);
2931 	} else if (IS_BROADWELL(dev_priv)) {
2932 		i915_perf_load_test_config_bdw(dev_priv);
2933 	} else if (IS_HASWELL(dev_priv)) {
2934 		i915_perf_load_test_config_hsw(dev_priv);
2935 }
2936 
2937 	if (dev_priv->perf.oa.test_config.id == 0)
2938 		goto sysfs_error;
2939 
2940 	ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
2941 				 &dev_priv->perf.oa.test_config.sysfs_metric);
2942 	if (ret)
2943 		goto sysfs_error;
2944 
2945 	atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1);
2946 
2947 	goto exit;
2948 
2949 sysfs_error:
2950 	kobject_put(dev_priv->perf.metrics_kobj);
2951 	dev_priv->perf.metrics_kobj = NULL;
2952 
2953 exit:
2954 	mutex_unlock(&dev_priv->perf.lock);
2955 }
2956 
2957 /**
2958  * i915_perf_unregister - hide i915-perf from userspace
2959  * @dev_priv: i915 device instance
2960  *
2961  * i915-perf state cleanup is split up into an 'unregister' and
2962  * 'deinit' phase where the interface is first hidden from
2963  * userspace by i915_perf_unregister() before cleaning up
2964  * remaining state in i915_perf_fini().
2965  */
2966 void i915_perf_unregister(struct drm_i915_private *dev_priv)
2967 {
2968 	if (!dev_priv->perf.metrics_kobj)
2969 		return;
2970 
2971 	sysfs_remove_group(dev_priv->perf.metrics_kobj,
2972 			   &dev_priv->perf.oa.test_config.sysfs_metric);
2973 
2974 	kobject_put(dev_priv->perf.metrics_kobj);
2975 	dev_priv->perf.metrics_kobj = NULL;
2976 }
2977 
2978 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
2979 {
2980 	static const i915_reg_t flex_eu_regs[] = {
2981 		EU_PERF_CNTL0,
2982 		EU_PERF_CNTL1,
2983 		EU_PERF_CNTL2,
2984 		EU_PERF_CNTL3,
2985 		EU_PERF_CNTL4,
2986 		EU_PERF_CNTL5,
2987 		EU_PERF_CNTL6,
2988 	};
2989 	int i;
2990 
2991 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
2992 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
2993 			return true;
2994 	}
2995 	return false;
2996 }
2997 
2998 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
2999 {
3000 	return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) &&
3001 		addr <= i915_mmio_reg_offset(OASTARTTRIG8)) ||
3002 		(addr >= i915_mmio_reg_offset(OAREPORTTRIG1) &&
3003 		 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) ||
3004 		(addr >= i915_mmio_reg_offset(OACEC0_0) &&
3005 		 addr <= i915_mmio_reg_offset(OACEC7_1));
3006 }
3007 
3008 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3009 {
3010 	return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) ||
3011 		(addr >= i915_mmio_reg_offset(MICRO_BP0_0) &&
3012 		 addr <= i915_mmio_reg_offset(NOA_WRITE)) ||
3013 		(addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) &&
3014 		 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) ||
3015 		(addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) &&
3016 		 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI));
3017 }
3018 
3019 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3020 {
3021 	return gen7_is_valid_mux_addr(dev_priv, addr) ||
3022 		addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) ||
3023 		(addr >= i915_mmio_reg_offset(RPM_CONFIG0) &&
3024 		 addr <= i915_mmio_reg_offset(NOA_CONFIG(8)));
3025 }
3026 
3027 static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3028 {
3029 	return gen8_is_valid_mux_addr(dev_priv, addr) ||
3030 		addr == i915_mmio_reg_offset(GEN10_NOA_WRITE_HIGH) ||
3031 		(addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) &&
3032 		 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI));
3033 }
3034 
3035 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3036 {
3037 	return gen7_is_valid_mux_addr(dev_priv, addr) ||
3038 		(addr >= 0x25100 && addr <= 0x2FF90) ||
3039 		(addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) &&
3040 		 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) ||
3041 		addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0);
3042 }
3043 
3044 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3045 {
3046 	return gen7_is_valid_mux_addr(dev_priv, addr) ||
3047 		(addr >= 0x182300 && addr <= 0x1823A4);
3048 }
3049 
3050 static u32 mask_reg_value(u32 reg, u32 val)
3051 {
3052 	/* HALF_SLICE_CHICKEN2 is programmed with a the
3053 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3054 	 * programmed by userspace doesn't change this.
3055 	 */
3056 	if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg)
3057 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3058 
3059 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3060 	 * indicated by its name and a bunch of selection fields used by OA
3061 	 * configs.
3062 	 */
3063 	if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg)
3064 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3065 
3066 	return val;
3067 }
3068 
3069 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3070 					 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3071 					 u32 __user *regs,
3072 					 u32 n_regs)
3073 {
3074 	struct i915_oa_reg *oa_regs;
3075 	int err;
3076 	u32 i;
3077 
3078 	if (!n_regs)
3079 		return NULL;
3080 
3081 	if (!access_ok(regs, n_regs * sizeof(u32) * 2))
3082 		return ERR_PTR(-EFAULT);
3083 
3084 	/* No is_valid function means we're not allowing any register to be programmed. */
3085 	GEM_BUG_ON(!is_valid);
3086 	if (!is_valid)
3087 		return ERR_PTR(-EINVAL);
3088 
3089 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3090 	if (!oa_regs)
3091 		return ERR_PTR(-ENOMEM);
3092 
3093 	for (i = 0; i < n_regs; i++) {
3094 		u32 addr, value;
3095 
3096 		err = get_user(addr, regs);
3097 		if (err)
3098 			goto addr_err;
3099 
3100 		if (!is_valid(dev_priv, addr)) {
3101 			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3102 			err = -EINVAL;
3103 			goto addr_err;
3104 		}
3105 
3106 		err = get_user(value, regs + 1);
3107 		if (err)
3108 			goto addr_err;
3109 
3110 		oa_regs[i].addr = _MMIO(addr);
3111 		oa_regs[i].value = mask_reg_value(addr, value);
3112 
3113 		regs += 2;
3114 	}
3115 
3116 	return oa_regs;
3117 
3118 addr_err:
3119 	kfree(oa_regs);
3120 	return ERR_PTR(err);
3121 }
3122 
3123 static ssize_t show_dynamic_id(struct device *dev,
3124 			       struct device_attribute *attr,
3125 			       char *buf)
3126 {
3127 	struct i915_oa_config *oa_config =
3128 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
3129 
3130 	return sprintf(buf, "%d\n", oa_config->id);
3131 }
3132 
3133 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3134 					 struct i915_oa_config *oa_config)
3135 {
3136 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3137 	oa_config->sysfs_metric_id.attr.name = "id";
3138 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3139 	oa_config->sysfs_metric_id.show = show_dynamic_id;
3140 	oa_config->sysfs_metric_id.store = NULL;
3141 
3142 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3143 	oa_config->attrs[1] = NULL;
3144 
3145 	oa_config->sysfs_metric.name = oa_config->uuid;
3146 	oa_config->sysfs_metric.attrs = oa_config->attrs;
3147 
3148 	return sysfs_create_group(dev_priv->perf.metrics_kobj,
3149 				  &oa_config->sysfs_metric);
3150 }
3151 
3152 /**
3153  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3154  * @dev: drm device
3155  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3156  *        userspace (unvalidated)
3157  * @file: drm file
3158  *
3159  * Validates the submitted OA register to be saved into a new OA config that
3160  * can then be used for programming the OA unit and its NOA network.
3161  *
3162  * Returns: A new allocated config number to be used with the perf open ioctl
3163  * or a negative error code on failure.
3164  */
3165 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3166 			       struct drm_file *file)
3167 {
3168 	struct drm_i915_private *dev_priv = dev->dev_private;
3169 	struct drm_i915_perf_oa_config *args = data;
3170 	struct i915_oa_config *oa_config, *tmp;
3171 	int err, id;
3172 
3173 	if (!dev_priv->perf.initialized) {
3174 		DRM_DEBUG("i915 perf interface not available for this system\n");
3175 		return -ENOTSUPP;
3176 	}
3177 
3178 	if (!dev_priv->perf.metrics_kobj) {
3179 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3180 		return -EINVAL;
3181 	}
3182 
3183 	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3184 		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3185 		return -EACCES;
3186 	}
3187 
3188 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3189 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3190 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
3191 		DRM_DEBUG("No OA registers given\n");
3192 		return -EINVAL;
3193 	}
3194 
3195 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3196 	if (!oa_config) {
3197 		DRM_DEBUG("Failed to allocate memory for the OA config\n");
3198 		return -ENOMEM;
3199 	}
3200 
3201 	atomic_set(&oa_config->ref_count, 1);
3202 
3203 	if (!uuid_is_valid(args->uuid)) {
3204 		DRM_DEBUG("Invalid uuid format for OA config\n");
3205 		err = -EINVAL;
3206 		goto reg_err;
3207 	}
3208 
3209 	/* Last character in oa_config->uuid will be 0 because oa_config is
3210 	 * kzalloc.
3211 	 */
3212 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3213 
3214 	oa_config->mux_regs_len = args->n_mux_regs;
3215 	oa_config->mux_regs =
3216 		alloc_oa_regs(dev_priv,
3217 			      dev_priv->perf.oa.ops.is_valid_mux_reg,
3218 			      u64_to_user_ptr(args->mux_regs_ptr),
3219 			      args->n_mux_regs);
3220 
3221 	if (IS_ERR(oa_config->mux_regs)) {
3222 		DRM_DEBUG("Failed to create OA config for mux_regs\n");
3223 		err = PTR_ERR(oa_config->mux_regs);
3224 		goto reg_err;
3225 	}
3226 
3227 	oa_config->b_counter_regs_len = args->n_boolean_regs;
3228 	oa_config->b_counter_regs =
3229 		alloc_oa_regs(dev_priv,
3230 			      dev_priv->perf.oa.ops.is_valid_b_counter_reg,
3231 			      u64_to_user_ptr(args->boolean_regs_ptr),
3232 			      args->n_boolean_regs);
3233 
3234 	if (IS_ERR(oa_config->b_counter_regs)) {
3235 		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3236 		err = PTR_ERR(oa_config->b_counter_regs);
3237 		goto reg_err;
3238 	}
3239 
3240 	if (INTEL_GEN(dev_priv) < 8) {
3241 		if (args->n_flex_regs != 0) {
3242 			err = -EINVAL;
3243 			goto reg_err;
3244 		}
3245 	} else {
3246 		oa_config->flex_regs_len = args->n_flex_regs;
3247 		oa_config->flex_regs =
3248 			alloc_oa_regs(dev_priv,
3249 				      dev_priv->perf.oa.ops.is_valid_flex_reg,
3250 				      u64_to_user_ptr(args->flex_regs_ptr),
3251 				      args->n_flex_regs);
3252 
3253 		if (IS_ERR(oa_config->flex_regs)) {
3254 			DRM_DEBUG("Failed to create OA config for flex_regs\n");
3255 			err = PTR_ERR(oa_config->flex_regs);
3256 			goto reg_err;
3257 		}
3258 	}
3259 
3260 	err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3261 	if (err)
3262 		goto reg_err;
3263 
3264 	/* We shouldn't have too many configs, so this iteration shouldn't be
3265 	 * too costly.
3266 	 */
3267 	idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3268 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
3269 			DRM_DEBUG("OA config already exists with this uuid\n");
3270 			err = -EADDRINUSE;
3271 			goto sysfs_err;
3272 		}
3273 	}
3274 
3275 	err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3276 	if (err) {
3277 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3278 		goto sysfs_err;
3279 	}
3280 
3281 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
3282 	oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3283 				  oa_config, 2,
3284 				  0, GFP_KERNEL);
3285 	if (oa_config->id < 0) {
3286 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3287 		err = oa_config->id;
3288 		goto sysfs_err;
3289 	}
3290 
3291 	mutex_unlock(&dev_priv->perf.metrics_lock);
3292 
3293 	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
3294 
3295 	return oa_config->id;
3296 
3297 sysfs_err:
3298 	mutex_unlock(&dev_priv->perf.metrics_lock);
3299 reg_err:
3300 	put_oa_config(dev_priv, oa_config);
3301 	DRM_DEBUG("Failed to add new OA config\n");
3302 	return err;
3303 }
3304 
3305 /**
3306  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3307  * @dev: drm device
3308  * @data: ioctl data (pointer to u64 integer) copied from userspace
3309  * @file: drm file
3310  *
3311  * Configs can be removed while being used, the will stop appearing in sysfs
3312  * and their content will be freed when the stream using the config is closed.
3313  *
3314  * Returns: 0 on success or a negative error code on failure.
3315  */
3316 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3317 				  struct drm_file *file)
3318 {
3319 	struct drm_i915_private *dev_priv = dev->dev_private;
3320 	u64 *arg = data;
3321 	struct i915_oa_config *oa_config;
3322 	int ret;
3323 
3324 	if (!dev_priv->perf.initialized) {
3325 		DRM_DEBUG("i915 perf interface not available for this system\n");
3326 		return -ENOTSUPP;
3327 	}
3328 
3329 	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3330 		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3331 		return -EACCES;
3332 	}
3333 
3334 	ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3335 	if (ret)
3336 		goto lock_err;
3337 
3338 	oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3339 	if (!oa_config) {
3340 		DRM_DEBUG("Failed to remove unknown OA config\n");
3341 		ret = -ENOENT;
3342 		goto config_err;
3343 	}
3344 
3345 	GEM_BUG_ON(*arg != oa_config->id);
3346 
3347 	sysfs_remove_group(dev_priv->perf.metrics_kobj,
3348 			   &oa_config->sysfs_metric);
3349 
3350 	idr_remove(&dev_priv->perf.metrics_idr, *arg);
3351 
3352 	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
3353 
3354 	put_oa_config(dev_priv, oa_config);
3355 
3356 config_err:
3357 	mutex_unlock(&dev_priv->perf.metrics_lock);
3358 lock_err:
3359 	return ret;
3360 }
3361 
3362 static struct ctl_table oa_table[] = {
3363 	{
3364 	 .procname = "perf_stream_paranoid",
3365 	 .data = &i915_perf_stream_paranoid,
3366 	 .maxlen = sizeof(i915_perf_stream_paranoid),
3367 	 .mode = 0644,
3368 	 .proc_handler = proc_dointvec_minmax,
3369 	 .extra1 = &zero,
3370 	 .extra2 = &one,
3371 	 },
3372 	{
3373 	 .procname = "oa_max_sample_rate",
3374 	 .data = &i915_oa_max_sample_rate,
3375 	 .maxlen = sizeof(i915_oa_max_sample_rate),
3376 	 .mode = 0644,
3377 	 .proc_handler = proc_dointvec_minmax,
3378 	 .extra1 = &zero,
3379 	 .extra2 = &oa_sample_rate_hard_limit,
3380 	 },
3381 	{}
3382 };
3383 
3384 static struct ctl_table i915_root[] = {
3385 	{
3386 	 .procname = "i915",
3387 	 .maxlen = 0,
3388 	 .mode = 0555,
3389 	 .child = oa_table,
3390 	 },
3391 	{}
3392 };
3393 
3394 static struct ctl_table dev_root[] = {
3395 	{
3396 	 .procname = "dev",
3397 	 .maxlen = 0,
3398 	 .mode = 0555,
3399 	 .child = i915_root,
3400 	 },
3401 	{}
3402 };
3403 
3404 /**
3405  * i915_perf_init - initialize i915-perf state on module load
3406  * @dev_priv: i915 device instance
3407  *
3408  * Initializes i915-perf state without exposing anything to userspace.
3409  *
3410  * Note: i915-perf initialization is split into an 'init' and 'register'
3411  * phase with the i915_perf_register() exposing state to userspace.
3412  */
3413 void i915_perf_init(struct drm_i915_private *dev_priv)
3414 {
3415 	if (IS_HASWELL(dev_priv)) {
3416 		dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3417 			gen7_is_valid_b_counter_addr;
3418 		dev_priv->perf.oa.ops.is_valid_mux_reg =
3419 			hsw_is_valid_mux_addr;
3420 		dev_priv->perf.oa.ops.is_valid_flex_reg = NULL;
3421 		dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
3422 		dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
3423 		dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
3424 		dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
3425 		dev_priv->perf.oa.ops.read = gen7_oa_read;
3426 		dev_priv->perf.oa.ops.oa_hw_tail_read =
3427 			gen7_oa_hw_tail_read;
3428 
3429 		dev_priv->perf.oa.oa_formats = hsw_oa_formats;
3430 	} else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
3431 		/* Note: that although we could theoretically also support the
3432 		 * legacy ringbuffer mode on BDW (and earlier iterations of
3433 		 * this driver, before upstreaming did this) it didn't seem
3434 		 * worth the complexity to maintain now that BDW+ enable
3435 		 * execlist mode by default.
3436 		 */
3437 		dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
3438 
3439 		dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
3440 		dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
3441 		dev_priv->perf.oa.ops.read = gen8_oa_read;
3442 		dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3443 
3444 		if (IS_GEN_RANGE(dev_priv, 8, 9)) {
3445 			dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3446 				gen7_is_valid_b_counter_addr;
3447 			dev_priv->perf.oa.ops.is_valid_mux_reg =
3448 				gen8_is_valid_mux_addr;
3449 			dev_priv->perf.oa.ops.is_valid_flex_reg =
3450 				gen8_is_valid_flex_addr;
3451 
3452 			if (IS_CHERRYVIEW(dev_priv)) {
3453 				dev_priv->perf.oa.ops.is_valid_mux_reg =
3454 					chv_is_valid_mux_addr;
3455 			}
3456 
3457 			dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3458 			dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set;
3459 
3460 			if (IS_GEN(dev_priv, 8)) {
3461 				dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
3462 				dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
3463 
3464 				dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);
3465 			} else {
3466 				dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3467 				dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3468 
3469 				dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3470 			}
3471 		} else if (IS_GEN_RANGE(dev_priv, 10, 11)) {
3472 			dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3473 				gen7_is_valid_b_counter_addr;
3474 			dev_priv->perf.oa.ops.is_valid_mux_reg =
3475 				gen10_is_valid_mux_addr;
3476 			dev_priv->perf.oa.ops.is_valid_flex_reg =
3477 				gen8_is_valid_flex_addr;
3478 
3479 			dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3480 			dev_priv->perf.oa.ops.disable_metric_set = gen10_disable_metric_set;
3481 
3482 			dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3483 			dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3484 
3485 			dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3486 		}
3487 	}
3488 
3489 	if (dev_priv->perf.oa.ops.enable_metric_set) {
3490 		hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
3491 				CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3492 		dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
3493 		init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
3494 
3495 		INIT_LIST_HEAD(&dev_priv->perf.streams);
3496 		mutex_init(&dev_priv->perf.lock);
3497 		spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
3498 
3499 		oa_sample_rate_hard_limit = 1000 *
3500 			(RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz / 2);
3501 		dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3502 
3503 		mutex_init(&dev_priv->perf.metrics_lock);
3504 		idr_init(&dev_priv->perf.metrics_idr);
3505 
3506 		dev_priv->perf.initialized = true;
3507 	}
3508 }
3509 
3510 static int destroy_config(int id, void *p, void *data)
3511 {
3512 	struct drm_i915_private *dev_priv = data;
3513 	struct i915_oa_config *oa_config = p;
3514 
3515 	put_oa_config(dev_priv, oa_config);
3516 
3517 	return 0;
3518 }
3519 
3520 /**
3521  * i915_perf_fini - Counter part to i915_perf_init()
3522  * @dev_priv: i915 device instance
3523  */
3524 void i915_perf_fini(struct drm_i915_private *dev_priv)
3525 {
3526 	if (!dev_priv->perf.initialized)
3527 		return;
3528 
3529 	idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3530 	idr_destroy(&dev_priv->perf.metrics_idr);
3531 
3532 	unregister_sysctl_table(dev_priv->perf.sysctl_header);
3533 
3534 	memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
3535 
3536 	dev_priv->perf.initialized = false;
3537 }
3538