1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gt/intel_engine_pm.h" 200 #include "gt/intel_engine_user.h" 201 #include "gt/intel_gt.h" 202 #include "gt/intel_lrc_reg.h" 203 #include "gt/intel_ring.h" 204 205 #include "i915_drv.h" 206 #include "i915_perf.h" 207 #include "oa/i915_oa_hsw.h" 208 #include "oa/i915_oa_bdw.h" 209 #include "oa/i915_oa_chv.h" 210 #include "oa/i915_oa_sklgt2.h" 211 #include "oa/i915_oa_sklgt3.h" 212 #include "oa/i915_oa_sklgt4.h" 213 #include "oa/i915_oa_bxt.h" 214 #include "oa/i915_oa_kblgt2.h" 215 #include "oa/i915_oa_kblgt3.h" 216 #include "oa/i915_oa_glk.h" 217 #include "oa/i915_oa_cflgt2.h" 218 #include "oa/i915_oa_cflgt3.h" 219 #include "oa/i915_oa_cnl.h" 220 #include "oa/i915_oa_icl.h" 221 #include "oa/i915_oa_tgl.h" 222 223 /* HW requires this to be a power of two, between 128k and 16M, though driver 224 * is currently generally designed assuming the largest 16M size is used such 225 * that the overflow cases are unlikely in normal operation. 226 */ 227 #define OA_BUFFER_SIZE SZ_16M 228 229 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 230 231 /** 232 * DOC: OA Tail Pointer Race 233 * 234 * There's a HW race condition between OA unit tail pointer register updates and 235 * writes to memory whereby the tail pointer can sometimes get ahead of what's 236 * been written out to the OA buffer so far (in terms of what's visible to the 237 * CPU). 238 * 239 * Although this can be observed explicitly while copying reports to userspace 240 * by checking for a zeroed report-id field in tail reports, we want to account 241 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant 242 * read() attempts. 243 * 244 * In effect we define a tail pointer for reading that lags the real tail 245 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough 246 * time for the corresponding reports to become visible to the CPU. 247 * 248 * To manage this we actually track two tail pointers: 249 * 1) An 'aging' tail with an associated timestamp that is tracked until we 250 * can trust the corresponding data is visible to the CPU; at which point 251 * it is considered 'aged'. 252 * 2) An 'aged' tail that can be used for read()ing. 253 * 254 * The two separate pointers let us decouple read()s from tail pointer aging. 255 * 256 * The tail pointers are checked and updated at a limited rate within a hrtimer 257 * callback (the same callback that is used for delivering EPOLLIN events) 258 * 259 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which 260 * indicates that an updated tail pointer is needed. 261 * 262 * Most of the implementation details for this workaround are in 263 * oa_buffer_check_unlocked() and _append_oa_reports() 264 * 265 * Note for posterity: previously the driver used to define an effective tail 266 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 267 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 268 * This was flawed considering that the OA unit may also automatically generate 269 * non-periodic reports (such as on context switch) or the OA unit may be 270 * enabled without any periodic sampling. 271 */ 272 #define OA_TAIL_MARGIN_NSEC 100000ULL 273 #define INVALID_TAIL_PTR 0xffffffff 274 275 /* frequency for checking whether the OA unit has written new reports to the 276 * circular OA buffer... 277 */ 278 #define POLL_FREQUENCY 200 279 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY) 280 281 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 282 static u32 i915_perf_stream_paranoid = true; 283 284 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 285 * of the 64bit timestamp bits to trigger reports from) but there's currently 286 * no known use case for sampling as infrequently as once per 47 thousand years. 287 * 288 * Since the timestamps included in OA reports are only 32bits it seems 289 * reasonable to limit the OA exponent where it's still possible to account for 290 * overflow in OA report timestamps. 291 */ 292 #define OA_EXPONENT_MAX 31 293 294 #define INVALID_CTX_ID 0xffffffff 295 296 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 297 #define OAREPORT_REASON_MASK 0x3f 298 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 299 #define OAREPORT_REASON_SHIFT 19 300 #define OAREPORT_REASON_TIMER (1<<0) 301 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 302 #define OAREPORT_REASON_CLK_RATIO (1<<5) 303 304 305 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 306 * 307 * The highest sampling frequency we can theoretically program the OA unit 308 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 309 * 310 * Initialized just before we register the sysctl parameter. 311 */ 312 static int oa_sample_rate_hard_limit; 313 314 /* Theoretically we can program the OA unit to sample every 160ns but don't 315 * allow that by default unless root... 316 * 317 * The default threshold of 100000Hz is based on perf's similar 318 * kernel.perf_event_max_sample_rate sysctl parameter. 319 */ 320 static u32 i915_oa_max_sample_rate = 100000; 321 322 /* XXX: beware if future OA HW adds new report formats that the current 323 * code assumes all reports have a power-of-two size and ~(size - 1) can 324 * be used as a mask to align the OA tail pointer. 325 */ 326 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 327 [I915_OA_FORMAT_A13] = { 0, 64 }, 328 [I915_OA_FORMAT_A29] = { 1, 128 }, 329 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 330 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 331 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 332 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 333 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 334 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 335 }; 336 337 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { 338 [I915_OA_FORMAT_A12] = { 0, 64 }, 339 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 340 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 341 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 342 }; 343 344 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = { 345 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 346 }; 347 348 #define SAMPLE_OA_REPORT (1<<0) 349 350 /** 351 * struct perf_open_properties - for validated properties given to open a stream 352 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 353 * @single_context: Whether a single or all gpu contexts should be monitored 354 * @hold_preemption: Whether the preemption is disabled for the filtered 355 * context 356 * @ctx_handle: A gem ctx handle for use with @single_context 357 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 358 * @oa_format: An OA unit HW report format 359 * @oa_periodic: Whether to enable periodic OA unit sampling 360 * @oa_period_exponent: The OA unit sampling period is derived from this 361 * @engine: The engine (typically rcs0) being monitored by the OA unit 362 * 363 * As read_properties_unlocked() enumerates and validates the properties given 364 * to open a stream of metrics the configuration is built up in the structure 365 * which starts out zero initialized. 366 */ 367 struct perf_open_properties { 368 u32 sample_flags; 369 370 u64 single_context:1; 371 u64 hold_preemption:1; 372 u64 ctx_handle; 373 374 /* OA sampling state */ 375 int metrics_set; 376 int oa_format; 377 bool oa_periodic; 378 int oa_period_exponent; 379 380 struct intel_engine_cs *engine; 381 }; 382 383 struct i915_oa_config_bo { 384 struct llist_node node; 385 386 struct i915_oa_config *oa_config; 387 struct i915_vma *vma; 388 }; 389 390 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 391 392 void i915_oa_config_release(struct kref *ref) 393 { 394 struct i915_oa_config *oa_config = 395 container_of(ref, typeof(*oa_config), ref); 396 397 kfree(oa_config->flex_regs); 398 kfree(oa_config->b_counter_regs); 399 kfree(oa_config->mux_regs); 400 401 kfree_rcu(oa_config, rcu); 402 } 403 404 struct i915_oa_config * 405 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 406 { 407 struct i915_oa_config *oa_config; 408 409 rcu_read_lock(); 410 if (metrics_set == 1) 411 oa_config = &perf->test_config; 412 else 413 oa_config = idr_find(&perf->metrics_idr, metrics_set); 414 if (oa_config) 415 oa_config = i915_oa_config_get(oa_config); 416 rcu_read_unlock(); 417 418 return oa_config; 419 } 420 421 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 422 { 423 i915_oa_config_put(oa_bo->oa_config); 424 i915_vma_put(oa_bo->vma); 425 kfree(oa_bo); 426 } 427 428 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 429 { 430 struct intel_uncore *uncore = stream->uncore; 431 432 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 433 GEN12_OAG_OATAILPTR_MASK; 434 } 435 436 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 437 { 438 struct intel_uncore *uncore = stream->uncore; 439 440 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 441 } 442 443 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 444 { 445 struct intel_uncore *uncore = stream->uncore; 446 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 447 448 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 449 } 450 451 /** 452 * oa_buffer_check_unlocked - check for data and update tail ptr state 453 * @stream: i915 stream instance 454 * 455 * This is either called via fops (for blocking reads in user ctx) or the poll 456 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 457 * if there is data available for userspace to read. 458 * 459 * This function is central to providing a workaround for the OA unit tail 460 * pointer having a race with respect to what data is visible to the CPU. 461 * It is responsible for reading tail pointers from the hardware and giving 462 * the pointers time to 'age' before they are made available for reading. 463 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 464 * 465 * Besides returning true when there is data available to read() this function 466 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp 467 * and .aged_tail_idx state used for reading. 468 * 469 * Note: It's safe to read OA config state here unlocked, assuming that this is 470 * only called while the stream is enabled, while the global OA configuration 471 * can't be modified. 472 * 473 * Returns: %true if the OA buffer contains data, else %false 474 */ 475 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 476 { 477 int report_size = stream->oa_buffer.format_size; 478 unsigned long flags; 479 unsigned int aged_idx; 480 u32 head, hw_tail, aged_tail, aging_tail; 481 u64 now; 482 483 /* We have to consider the (unlikely) possibility that read() errors 484 * could result in an OA buffer reset which might reset the head, 485 * tails[] and aged_tail state. 486 */ 487 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 488 489 /* NB: The head we observe here might effectively be a little out of 490 * date (between head and tails[aged_idx].offset if there is currently 491 * a read() in progress. 492 */ 493 head = stream->oa_buffer.head; 494 495 aged_idx = stream->oa_buffer.aged_tail_idx; 496 aged_tail = stream->oa_buffer.tails[aged_idx].offset; 497 aging_tail = stream->oa_buffer.tails[!aged_idx].offset; 498 499 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 500 501 /* The tail pointer increases in 64 byte increments, 502 * not in report_size steps... 503 */ 504 hw_tail &= ~(report_size - 1); 505 506 now = ktime_get_mono_fast_ns(); 507 508 /* Update the aged tail 509 * 510 * Flip the tail pointer available for read()s once the aging tail is 511 * old enough to trust that the corresponding data will be visible to 512 * the CPU... 513 * 514 * Do this before updating the aging pointer in case we may be able to 515 * immediately start aging a new pointer too (if new data has become 516 * available) without needing to wait for a later hrtimer callback. 517 */ 518 if (aging_tail != INVALID_TAIL_PTR && 519 ((now - stream->oa_buffer.aging_timestamp) > 520 OA_TAIL_MARGIN_NSEC)) { 521 522 aged_idx ^= 1; 523 stream->oa_buffer.aged_tail_idx = aged_idx; 524 525 aged_tail = aging_tail; 526 527 /* Mark that we need a new pointer to start aging... */ 528 stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR; 529 aging_tail = INVALID_TAIL_PTR; 530 } 531 532 /* Update the aging tail 533 * 534 * We throttle aging tail updates until we have a new tail that 535 * represents >= one report more data than is already available for 536 * reading. This ensures there will be enough data for a successful 537 * read once this new pointer has aged and ensures we will give the new 538 * pointer time to age. 539 */ 540 if (aging_tail == INVALID_TAIL_PTR && 541 (aged_tail == INVALID_TAIL_PTR || 542 OA_TAKEN(hw_tail, aged_tail) >= report_size)) { 543 struct i915_vma *vma = stream->oa_buffer.vma; 544 u32 gtt_offset = i915_ggtt_offset(vma); 545 546 /* Be paranoid and do a bounds check on the pointer read back 547 * from hardware, just in case some spurious hardware condition 548 * could put the tail out of bounds... 549 */ 550 if (hw_tail >= gtt_offset && 551 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) { 552 stream->oa_buffer.tails[!aged_idx].offset = 553 aging_tail = hw_tail; 554 stream->oa_buffer.aging_timestamp = now; 555 } else { 556 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %x\n", 557 hw_tail); 558 } 559 } 560 561 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 562 563 return aged_tail == INVALID_TAIL_PTR ? 564 false : OA_TAKEN(aged_tail, head) >= report_size; 565 } 566 567 /** 568 * append_oa_status - Appends a status record to a userspace read() buffer. 569 * @stream: An i915-perf stream opened for OA metrics 570 * @buf: destination buffer given by userspace 571 * @count: the number of bytes userspace wants to read 572 * @offset: (inout): the current position for writing into @buf 573 * @type: The kind of status to report to userspace 574 * 575 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 576 * into the userspace read() buffer. 577 * 578 * The @buf @offset will only be updated on success. 579 * 580 * Returns: 0 on success, negative error code on failure. 581 */ 582 static int append_oa_status(struct i915_perf_stream *stream, 583 char __user *buf, 584 size_t count, 585 size_t *offset, 586 enum drm_i915_perf_record_type type) 587 { 588 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 589 590 if ((count - *offset) < header.size) 591 return -ENOSPC; 592 593 if (copy_to_user(buf + *offset, &header, sizeof(header))) 594 return -EFAULT; 595 596 (*offset) += header.size; 597 598 return 0; 599 } 600 601 /** 602 * append_oa_sample - Copies single OA report into userspace read() buffer. 603 * @stream: An i915-perf stream opened for OA metrics 604 * @buf: destination buffer given by userspace 605 * @count: the number of bytes userspace wants to read 606 * @offset: (inout): the current position for writing into @buf 607 * @report: A single OA report to (optionally) include as part of the sample 608 * 609 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 610 * properties when opening a stream, tracked as `stream->sample_flags`. This 611 * function copies the requested components of a single sample to the given 612 * read() @buf. 613 * 614 * The @buf @offset will only be updated on success. 615 * 616 * Returns: 0 on success, negative error code on failure. 617 */ 618 static int append_oa_sample(struct i915_perf_stream *stream, 619 char __user *buf, 620 size_t count, 621 size_t *offset, 622 const u8 *report) 623 { 624 int report_size = stream->oa_buffer.format_size; 625 struct drm_i915_perf_record_header header; 626 u32 sample_flags = stream->sample_flags; 627 628 header.type = DRM_I915_PERF_RECORD_SAMPLE; 629 header.pad = 0; 630 header.size = stream->sample_size; 631 632 if ((count - *offset) < header.size) 633 return -ENOSPC; 634 635 buf += *offset; 636 if (copy_to_user(buf, &header, sizeof(header))) 637 return -EFAULT; 638 buf += sizeof(header); 639 640 if (sample_flags & SAMPLE_OA_REPORT) { 641 if (copy_to_user(buf, report, report_size)) 642 return -EFAULT; 643 } 644 645 (*offset) += header.size; 646 647 return 0; 648 } 649 650 /** 651 * Copies all buffered OA reports into userspace read() buffer. 652 * @stream: An i915-perf stream opened for OA metrics 653 * @buf: destination buffer given by userspace 654 * @count: the number of bytes userspace wants to read 655 * @offset: (inout): the current position for writing into @buf 656 * 657 * Notably any error condition resulting in a short read (-%ENOSPC or 658 * -%EFAULT) will be returned even though one or more records may 659 * have been successfully copied. In this case it's up to the caller 660 * to decide if the error should be squashed before returning to 661 * userspace. 662 * 663 * Note: reports are consumed from the head, and appended to the 664 * tail, so the tail chases the head?... If you think that's mad 665 * and back-to-front you're not alone, but this follows the 666 * Gen PRM naming convention. 667 * 668 * Returns: 0 on success, negative error code on failure. 669 */ 670 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 671 char __user *buf, 672 size_t count, 673 size_t *offset) 674 { 675 struct intel_uncore *uncore = stream->uncore; 676 int report_size = stream->oa_buffer.format_size; 677 u8 *oa_buf_base = stream->oa_buffer.vaddr; 678 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 679 u32 mask = (OA_BUFFER_SIZE - 1); 680 size_t start_offset = *offset; 681 unsigned long flags; 682 unsigned int aged_tail_idx; 683 u32 head, tail; 684 u32 taken; 685 int ret = 0; 686 687 if (WARN_ON(!stream->enabled)) 688 return -EIO; 689 690 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 691 692 head = stream->oa_buffer.head; 693 aged_tail_idx = stream->oa_buffer.aged_tail_idx; 694 tail = stream->oa_buffer.tails[aged_tail_idx].offset; 695 696 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 697 698 /* 699 * An invalid tail pointer here means we're still waiting for the poll 700 * hrtimer callback to give us a pointer 701 */ 702 if (tail == INVALID_TAIL_PTR) 703 return -EAGAIN; 704 705 /* 706 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 707 * while indexing relative to oa_buf_base. 708 */ 709 head -= gtt_offset; 710 tail -= gtt_offset; 711 712 /* 713 * An out of bounds or misaligned head or tail pointer implies a driver 714 * bug since we validate + align the tail pointers we read from the 715 * hardware and we are in full control of the head pointer which should 716 * only be incremented by multiples of the report size (notably also 717 * all a power of two). 718 */ 719 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 720 tail > OA_BUFFER_SIZE || tail % report_size, 721 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 722 head, tail)) 723 return -EIO; 724 725 726 for (/* none */; 727 (taken = OA_TAKEN(tail, head)); 728 head = (head + report_size) & mask) { 729 u8 *report = oa_buf_base + head; 730 u32 *report32 = (void *)report; 731 u32 ctx_id; 732 u32 reason; 733 734 /* 735 * All the report sizes factor neatly into the buffer 736 * size so we never expect to see a report split 737 * between the beginning and end of the buffer. 738 * 739 * Given the initial alignment check a misalignment 740 * here would imply a driver bug that would result 741 * in an overrun. 742 */ 743 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 744 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 745 break; 746 } 747 748 /* 749 * The reason field includes flags identifying what 750 * triggered this specific report (mostly timer 751 * triggered or e.g. due to a context switch). 752 * 753 * This field is never expected to be zero so we can 754 * check that the report isn't invalid before copying 755 * it to userspace... 756 */ 757 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 758 (IS_GEN(stream->perf->i915, 12) ? 759 OAREPORT_REASON_MASK_EXTENDED : 760 OAREPORT_REASON_MASK)); 761 if (reason == 0) { 762 if (__ratelimit(&stream->perf->spurious_report_rs)) 763 DRM_NOTE("Skipping spurious, invalid OA report\n"); 764 continue; 765 } 766 767 ctx_id = report32[2] & stream->specific_ctx_id_mask; 768 769 /* 770 * Squash whatever is in the CTX_ID field if it's marked as 771 * invalid to be sure we avoid false-positive, single-context 772 * filtering below... 773 * 774 * Note: that we don't clear the valid_ctx_bit so userspace can 775 * understand that the ID has been squashed by the kernel. 776 */ 777 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 778 INTEL_GEN(stream->perf->i915) <= 11) 779 ctx_id = report32[2] = INVALID_CTX_ID; 780 781 /* 782 * NB: For Gen 8 the OA unit no longer supports clock gating 783 * off for a specific context and the kernel can't securely 784 * stop the counters from updating as system-wide / global 785 * values. 786 * 787 * Automatic reports now include a context ID so reports can be 788 * filtered on the cpu but it's not worth trying to 789 * automatically subtract/hide counter progress for other 790 * contexts while filtering since we can't stop userspace 791 * issuing MI_REPORT_PERF_COUNT commands which would still 792 * provide a side-band view of the real values. 793 * 794 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 795 * to normalize counters for a single filtered context then it 796 * needs be forwarded bookend context-switch reports so that it 797 * can track switches in between MI_REPORT_PERF_COUNT commands 798 * and can itself subtract/ignore the progress of counters 799 * associated with other contexts. Note that the hardware 800 * automatically triggers reports when switching to a new 801 * context which are tagged with the ID of the newly active 802 * context. To avoid the complexity (and likely fragility) of 803 * reading ahead while parsing reports to try and minimize 804 * forwarding redundant context switch reports (i.e. between 805 * other, unrelated contexts) we simply elect to forward them 806 * all. 807 * 808 * We don't rely solely on the reason field to identify context 809 * switches since it's not-uncommon for periodic samples to 810 * identify a switch before any 'context switch' report. 811 */ 812 if (!stream->perf->exclusive_stream->ctx || 813 stream->specific_ctx_id == ctx_id || 814 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 815 reason & OAREPORT_REASON_CTX_SWITCH) { 816 817 /* 818 * While filtering for a single context we avoid 819 * leaking the IDs of other contexts. 820 */ 821 if (stream->perf->exclusive_stream->ctx && 822 stream->specific_ctx_id != ctx_id) { 823 report32[2] = INVALID_CTX_ID; 824 } 825 826 ret = append_oa_sample(stream, buf, count, offset, 827 report); 828 if (ret) 829 break; 830 831 stream->oa_buffer.last_ctx_id = ctx_id; 832 } 833 834 /* 835 * The above reason field sanity check is based on 836 * the assumption that the OA buffer is initially 837 * zeroed and we reset the field after copying so the 838 * check is still meaningful once old reports start 839 * being overwritten. 840 */ 841 report32[0] = 0; 842 } 843 844 if (start_offset != *offset) { 845 i915_reg_t oaheadptr; 846 847 oaheadptr = IS_GEN(stream->perf->i915, 12) ? 848 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 849 850 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 851 852 /* 853 * We removed the gtt_offset for the copy loop above, indexing 854 * relative to oa_buf_base so put back here... 855 */ 856 head += gtt_offset; 857 intel_uncore_write(uncore, oaheadptr, 858 head & GEN12_OAG_OAHEADPTR_MASK); 859 stream->oa_buffer.head = head; 860 861 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 862 } 863 864 return ret; 865 } 866 867 /** 868 * gen8_oa_read - copy status records then buffered OA reports 869 * @stream: An i915-perf stream opened for OA metrics 870 * @buf: destination buffer given by userspace 871 * @count: the number of bytes userspace wants to read 872 * @offset: (inout): the current position for writing into @buf 873 * 874 * Checks OA unit status registers and if necessary appends corresponding 875 * status records for userspace (such as for a buffer full condition) and then 876 * initiate appending any buffered OA reports. 877 * 878 * Updates @offset according to the number of bytes successfully copied into 879 * the userspace buffer. 880 * 881 * NB: some data may be successfully copied to the userspace buffer 882 * even if an error is returned, and this is reflected in the 883 * updated @offset. 884 * 885 * Returns: zero on success or a negative error code 886 */ 887 static int gen8_oa_read(struct i915_perf_stream *stream, 888 char __user *buf, 889 size_t count, 890 size_t *offset) 891 { 892 struct intel_uncore *uncore = stream->uncore; 893 u32 oastatus; 894 i915_reg_t oastatus_reg; 895 int ret; 896 897 if (WARN_ON(!stream->oa_buffer.vaddr)) 898 return -EIO; 899 900 oastatus_reg = IS_GEN(stream->perf->i915, 12) ? 901 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 902 903 oastatus = intel_uncore_read(uncore, oastatus_reg); 904 905 /* 906 * We treat OABUFFER_OVERFLOW as a significant error: 907 * 908 * Although theoretically we could handle this more gracefully 909 * sometimes, some Gens don't correctly suppress certain 910 * automatically triggered reports in this condition and so we 911 * have to assume that old reports are now being trampled 912 * over. 913 * 914 * Considering how we don't currently give userspace control 915 * over the OA buffer size and always configure a large 16MB 916 * buffer, then a buffer overflow does anyway likely indicate 917 * that something has gone quite badly wrong. 918 */ 919 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 920 ret = append_oa_status(stream, buf, count, offset, 921 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 922 if (ret) 923 return ret; 924 925 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 926 stream->period_exponent); 927 928 stream->perf->ops.oa_disable(stream); 929 stream->perf->ops.oa_enable(stream); 930 931 /* 932 * Note: .oa_enable() is expected to re-init the oabuffer and 933 * reset GEN8_OASTATUS for us 934 */ 935 oastatus = intel_uncore_read(uncore, oastatus_reg); 936 } 937 938 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 939 ret = append_oa_status(stream, buf, count, offset, 940 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 941 if (ret) 942 return ret; 943 intel_uncore_write(uncore, oastatus_reg, 944 oastatus & ~GEN8_OASTATUS_REPORT_LOST); 945 } 946 947 return gen8_append_oa_reports(stream, buf, count, offset); 948 } 949 950 /** 951 * Copies all buffered OA reports into userspace read() buffer. 952 * @stream: An i915-perf stream opened for OA metrics 953 * @buf: destination buffer given by userspace 954 * @count: the number of bytes userspace wants to read 955 * @offset: (inout): the current position for writing into @buf 956 * 957 * Notably any error condition resulting in a short read (-%ENOSPC or 958 * -%EFAULT) will be returned even though one or more records may 959 * have been successfully copied. In this case it's up to the caller 960 * to decide if the error should be squashed before returning to 961 * userspace. 962 * 963 * Note: reports are consumed from the head, and appended to the 964 * tail, so the tail chases the head?... If you think that's mad 965 * and back-to-front you're not alone, but this follows the 966 * Gen PRM naming convention. 967 * 968 * Returns: 0 on success, negative error code on failure. 969 */ 970 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 971 char __user *buf, 972 size_t count, 973 size_t *offset) 974 { 975 struct intel_uncore *uncore = stream->uncore; 976 int report_size = stream->oa_buffer.format_size; 977 u8 *oa_buf_base = stream->oa_buffer.vaddr; 978 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 979 u32 mask = (OA_BUFFER_SIZE - 1); 980 size_t start_offset = *offset; 981 unsigned long flags; 982 unsigned int aged_tail_idx; 983 u32 head, tail; 984 u32 taken; 985 int ret = 0; 986 987 if (WARN_ON(!stream->enabled)) 988 return -EIO; 989 990 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 991 992 head = stream->oa_buffer.head; 993 aged_tail_idx = stream->oa_buffer.aged_tail_idx; 994 tail = stream->oa_buffer.tails[aged_tail_idx].offset; 995 996 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 997 998 /* An invalid tail pointer here means we're still waiting for the poll 999 * hrtimer callback to give us a pointer 1000 */ 1001 if (tail == INVALID_TAIL_PTR) 1002 return -EAGAIN; 1003 1004 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 1005 * while indexing relative to oa_buf_base. 1006 */ 1007 head -= gtt_offset; 1008 tail -= gtt_offset; 1009 1010 /* An out of bounds or misaligned head or tail pointer implies a driver 1011 * bug since we validate + align the tail pointers we read from the 1012 * hardware and we are in full control of the head pointer which should 1013 * only be incremented by multiples of the report size (notably also 1014 * all a power of two). 1015 */ 1016 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 1017 tail > OA_BUFFER_SIZE || tail % report_size, 1018 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 1019 head, tail)) 1020 return -EIO; 1021 1022 1023 for (/* none */; 1024 (taken = OA_TAKEN(tail, head)); 1025 head = (head + report_size) & mask) { 1026 u8 *report = oa_buf_base + head; 1027 u32 *report32 = (void *)report; 1028 1029 /* All the report sizes factor neatly into the buffer 1030 * size so we never expect to see a report split 1031 * between the beginning and end of the buffer. 1032 * 1033 * Given the initial alignment check a misalignment 1034 * here would imply a driver bug that would result 1035 * in an overrun. 1036 */ 1037 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 1038 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 1039 break; 1040 } 1041 1042 /* The report-ID field for periodic samples includes 1043 * some undocumented flags related to what triggered 1044 * the report and is never expected to be zero so we 1045 * can check that the report isn't invalid before 1046 * copying it to userspace... 1047 */ 1048 if (report32[0] == 0) { 1049 if (__ratelimit(&stream->perf->spurious_report_rs)) 1050 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1051 continue; 1052 } 1053 1054 ret = append_oa_sample(stream, buf, count, offset, report); 1055 if (ret) 1056 break; 1057 1058 /* The above report-id field sanity check is based on 1059 * the assumption that the OA buffer is initially 1060 * zeroed and we reset the field after copying so the 1061 * check is still meaningful once old reports start 1062 * being overwritten. 1063 */ 1064 report32[0] = 0; 1065 } 1066 1067 if (start_offset != *offset) { 1068 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1069 1070 /* We removed the gtt_offset for the copy loop above, indexing 1071 * relative to oa_buf_base so put back here... 1072 */ 1073 head += gtt_offset; 1074 1075 intel_uncore_write(uncore, GEN7_OASTATUS2, 1076 (head & GEN7_OASTATUS2_HEAD_MASK) | 1077 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1078 stream->oa_buffer.head = head; 1079 1080 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1081 } 1082 1083 return ret; 1084 } 1085 1086 /** 1087 * gen7_oa_read - copy status records then buffered OA reports 1088 * @stream: An i915-perf stream opened for OA metrics 1089 * @buf: destination buffer given by userspace 1090 * @count: the number of bytes userspace wants to read 1091 * @offset: (inout): the current position for writing into @buf 1092 * 1093 * Checks Gen 7 specific OA unit status registers and if necessary appends 1094 * corresponding status records for userspace (such as for a buffer full 1095 * condition) and then initiate appending any buffered OA reports. 1096 * 1097 * Updates @offset according to the number of bytes successfully copied into 1098 * the userspace buffer. 1099 * 1100 * Returns: zero on success or a negative error code 1101 */ 1102 static int gen7_oa_read(struct i915_perf_stream *stream, 1103 char __user *buf, 1104 size_t count, 1105 size_t *offset) 1106 { 1107 struct intel_uncore *uncore = stream->uncore; 1108 u32 oastatus1; 1109 int ret; 1110 1111 if (WARN_ON(!stream->oa_buffer.vaddr)) 1112 return -EIO; 1113 1114 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1115 1116 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1117 * bits while the OA unit is enabled (while the tail pointer 1118 * may be updated asynchronously) so we ignore status bits 1119 * that have already been reported to userspace. 1120 */ 1121 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1122 1123 /* We treat OABUFFER_OVERFLOW as a significant error: 1124 * 1125 * - The status can be interpreted to mean that the buffer is 1126 * currently full (with a higher precedence than OA_TAKEN() 1127 * which will start to report a near-empty buffer after an 1128 * overflow) but it's awkward that we can't clear the status 1129 * on Haswell, so without a reset we won't be able to catch 1130 * the state again. 1131 * 1132 * - Since it also implies the HW has started overwriting old 1133 * reports it may also affect our sanity checks for invalid 1134 * reports when copying to userspace that assume new reports 1135 * are being written to cleared memory. 1136 * 1137 * - In the future we may want to introduce a flight recorder 1138 * mode where the driver will automatically maintain a safe 1139 * guard band between head/tail, avoiding this overflow 1140 * condition, but we avoid the added driver complexity for 1141 * now. 1142 */ 1143 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1144 ret = append_oa_status(stream, buf, count, offset, 1145 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1146 if (ret) 1147 return ret; 1148 1149 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1150 stream->period_exponent); 1151 1152 stream->perf->ops.oa_disable(stream); 1153 stream->perf->ops.oa_enable(stream); 1154 1155 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1156 } 1157 1158 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1159 ret = append_oa_status(stream, buf, count, offset, 1160 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1161 if (ret) 1162 return ret; 1163 stream->perf->gen7_latched_oastatus1 |= 1164 GEN7_OASTATUS1_REPORT_LOST; 1165 } 1166 1167 return gen7_append_oa_reports(stream, buf, count, offset); 1168 } 1169 1170 /** 1171 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1172 * @stream: An i915-perf stream opened for OA metrics 1173 * 1174 * Called when userspace tries to read() from a blocking stream FD opened 1175 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1176 * OA buffer and wakes us. 1177 * 1178 * Note: it's acceptable to have this return with some false positives 1179 * since any subsequent read handling will return -EAGAIN if there isn't 1180 * really data ready for userspace yet. 1181 * 1182 * Returns: zero on success or a negative error code 1183 */ 1184 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1185 { 1186 /* We would wait indefinitely if periodic sampling is not enabled */ 1187 if (!stream->periodic) 1188 return -EIO; 1189 1190 return wait_event_interruptible(stream->poll_wq, 1191 oa_buffer_check_unlocked(stream)); 1192 } 1193 1194 /** 1195 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1196 * @stream: An i915-perf stream opened for OA metrics 1197 * @file: An i915 perf stream file 1198 * @wait: poll() state table 1199 * 1200 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1201 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1202 * when it sees data ready to read in the circular OA buffer. 1203 */ 1204 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1205 struct file *file, 1206 poll_table *wait) 1207 { 1208 poll_wait(file, &stream->poll_wq, wait); 1209 } 1210 1211 /** 1212 * i915_oa_read - just calls through to &i915_oa_ops->read 1213 * @stream: An i915-perf stream opened for OA metrics 1214 * @buf: destination buffer given by userspace 1215 * @count: the number of bytes userspace wants to read 1216 * @offset: (inout): the current position for writing into @buf 1217 * 1218 * Updates @offset according to the number of bytes successfully copied into 1219 * the userspace buffer. 1220 * 1221 * Returns: zero on success or a negative error code 1222 */ 1223 static int i915_oa_read(struct i915_perf_stream *stream, 1224 char __user *buf, 1225 size_t count, 1226 size_t *offset) 1227 { 1228 return stream->perf->ops.read(stream, buf, count, offset); 1229 } 1230 1231 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1232 { 1233 struct i915_gem_engines_iter it; 1234 struct i915_gem_context *ctx = stream->ctx; 1235 struct intel_context *ce; 1236 int err; 1237 1238 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1239 if (ce->engine != stream->engine) /* first match! */ 1240 continue; 1241 1242 /* 1243 * As the ID is the gtt offset of the context's vma we 1244 * pin the vma to ensure the ID remains fixed. 1245 */ 1246 err = intel_context_pin(ce); 1247 if (err == 0) { 1248 stream->pinned_ctx = ce; 1249 break; 1250 } 1251 } 1252 i915_gem_context_unlock_engines(ctx); 1253 1254 return stream->pinned_ctx; 1255 } 1256 1257 /** 1258 * oa_get_render_ctx_id - determine and hold ctx hw id 1259 * @stream: An i915-perf stream opened for OA metrics 1260 * 1261 * Determine the render context hw id, and ensure it remains fixed for the 1262 * lifetime of the stream. This ensures that we don't have to worry about 1263 * updating the context ID in OACONTROL on the fly. 1264 * 1265 * Returns: zero on success or a negative error code 1266 */ 1267 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1268 { 1269 struct intel_context *ce; 1270 1271 ce = oa_pin_context(stream); 1272 if (IS_ERR(ce)) 1273 return PTR_ERR(ce); 1274 1275 switch (INTEL_GEN(ce->engine->i915)) { 1276 case 7: { 1277 /* 1278 * On Haswell we don't do any post processing of the reports 1279 * and don't need to use the mask. 1280 */ 1281 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1282 stream->specific_ctx_id_mask = 0; 1283 break; 1284 } 1285 1286 case 8: 1287 case 9: 1288 case 10: 1289 if (intel_engine_in_execlists_submission_mode(ce->engine)) { 1290 stream->specific_ctx_id_mask = 1291 (1U << GEN8_CTX_ID_WIDTH) - 1; 1292 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1293 } else { 1294 /* 1295 * When using GuC, the context descriptor we write in 1296 * i915 is read by GuC and rewritten before it's 1297 * actually written into the hardware. The LRCA is 1298 * what is put into the context id field of the 1299 * context descriptor by GuC. Because it's aligned to 1300 * a page, the lower 12bits are always at 0 and 1301 * dropped by GuC. They won't be part of the context 1302 * ID in the OA reports, so squash those lower bits. 1303 */ 1304 stream->specific_ctx_id = 1305 lower_32_bits(ce->lrc_desc) >> 12; 1306 1307 /* 1308 * GuC uses the top bit to signal proxy submission, so 1309 * ignore that bit. 1310 */ 1311 stream->specific_ctx_id_mask = 1312 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1313 } 1314 break; 1315 1316 case 11: 1317 case 12: { 1318 stream->specific_ctx_id_mask = 1319 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1320 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1321 break; 1322 } 1323 1324 default: 1325 MISSING_CASE(INTEL_GEN(ce->engine->i915)); 1326 } 1327 1328 ce->tag = stream->specific_ctx_id_mask; 1329 1330 DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1331 stream->specific_ctx_id, 1332 stream->specific_ctx_id_mask); 1333 1334 return 0; 1335 } 1336 1337 /** 1338 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1339 * @stream: An i915-perf stream opened for OA metrics 1340 * 1341 * In case anything needed doing to ensure the context HW ID would remain valid 1342 * for the lifetime of the stream, then that can be undone here. 1343 */ 1344 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1345 { 1346 struct intel_context *ce; 1347 1348 ce = fetch_and_zero(&stream->pinned_ctx); 1349 if (ce) { 1350 ce->tag = 0; /* recomputed on next submission after parking */ 1351 intel_context_unpin(ce); 1352 } 1353 1354 stream->specific_ctx_id = INVALID_CTX_ID; 1355 stream->specific_ctx_id_mask = 0; 1356 } 1357 1358 static void 1359 free_oa_buffer(struct i915_perf_stream *stream) 1360 { 1361 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1362 I915_VMA_RELEASE_MAP); 1363 1364 stream->oa_buffer.vaddr = NULL; 1365 } 1366 1367 static void 1368 free_oa_configs(struct i915_perf_stream *stream) 1369 { 1370 struct i915_oa_config_bo *oa_bo, *tmp; 1371 1372 i915_oa_config_put(stream->oa_config); 1373 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1374 free_oa_config_bo(oa_bo); 1375 } 1376 1377 static void 1378 free_noa_wait(struct i915_perf_stream *stream) 1379 { 1380 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1381 } 1382 1383 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1384 { 1385 struct i915_perf *perf = stream->perf; 1386 1387 BUG_ON(stream != perf->exclusive_stream); 1388 1389 /* 1390 * Unset exclusive_stream first, it will be checked while disabling 1391 * the metric set on gen8+. 1392 */ 1393 perf->exclusive_stream = NULL; 1394 perf->ops.disable_metric_set(stream); 1395 1396 free_oa_buffer(stream); 1397 1398 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1399 intel_engine_pm_put(stream->engine); 1400 1401 if (stream->ctx) 1402 oa_put_render_ctx_id(stream); 1403 1404 free_oa_configs(stream); 1405 free_noa_wait(stream); 1406 1407 if (perf->spurious_report_rs.missed) { 1408 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1409 perf->spurious_report_rs.missed); 1410 } 1411 } 1412 1413 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1414 { 1415 struct intel_uncore *uncore = stream->uncore; 1416 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1417 unsigned long flags; 1418 1419 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1420 1421 /* Pre-DevBDW: OABUFFER must be set with counters off, 1422 * before OASTATUS1, but after OASTATUS2 1423 */ 1424 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1425 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1426 stream->oa_buffer.head = gtt_offset; 1427 1428 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1429 1430 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1431 gtt_offset | OABUFFER_SIZE_16M); 1432 1433 /* Mark that we need updated tail pointers to read from... */ 1434 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1435 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1436 1437 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1438 1439 /* On Haswell we have to track which OASTATUS1 flags we've 1440 * already seen since they can't be cleared while periodic 1441 * sampling is enabled. 1442 */ 1443 stream->perf->gen7_latched_oastatus1 = 0; 1444 1445 /* NB: although the OA buffer will initially be allocated 1446 * zeroed via shmfs (and so this memset is redundant when 1447 * first allocating), we may re-init the OA buffer, either 1448 * when re-enabling a stream or in error/reset paths. 1449 * 1450 * The reason we clear the buffer for each re-init is for the 1451 * sanity check in gen7_append_oa_reports() that looks at the 1452 * report-id field to make sure it's non-zero which relies on 1453 * the assumption that new reports are being written to zeroed 1454 * memory... 1455 */ 1456 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1457 1458 stream->pollin = false; 1459 } 1460 1461 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1462 { 1463 struct intel_uncore *uncore = stream->uncore; 1464 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1465 unsigned long flags; 1466 1467 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1468 1469 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1470 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1471 stream->oa_buffer.head = gtt_offset; 1472 1473 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1474 1475 /* 1476 * PRM says: 1477 * 1478 * "This MMIO must be set before the OATAILPTR 1479 * register and after the OAHEADPTR register. This is 1480 * to enable proper functionality of the overflow 1481 * bit." 1482 */ 1483 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1484 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1485 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1486 1487 /* Mark that we need updated tail pointers to read from... */ 1488 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1489 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1490 1491 /* 1492 * Reset state used to recognise context switches, affecting which 1493 * reports we will forward to userspace while filtering for a single 1494 * context. 1495 */ 1496 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1497 1498 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1499 1500 /* 1501 * NB: although the OA buffer will initially be allocated 1502 * zeroed via shmfs (and so this memset is redundant when 1503 * first allocating), we may re-init the OA buffer, either 1504 * when re-enabling a stream or in error/reset paths. 1505 * 1506 * The reason we clear the buffer for each re-init is for the 1507 * sanity check in gen8_append_oa_reports() that looks at the 1508 * reason field to make sure it's non-zero which relies on 1509 * the assumption that new reports are being written to zeroed 1510 * memory... 1511 */ 1512 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1513 1514 stream->pollin = false; 1515 } 1516 1517 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1518 { 1519 struct intel_uncore *uncore = stream->uncore; 1520 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1521 unsigned long flags; 1522 1523 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1524 1525 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1526 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1527 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1528 stream->oa_buffer.head = gtt_offset; 1529 1530 /* 1531 * PRM says: 1532 * 1533 * "This MMIO must be set before the OATAILPTR 1534 * register and after the OAHEADPTR register. This is 1535 * to enable proper functionality of the overflow 1536 * bit." 1537 */ 1538 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1539 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1540 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1541 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1542 1543 /* Mark that we need updated tail pointers to read from... */ 1544 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1545 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1546 1547 /* 1548 * Reset state used to recognise context switches, affecting which 1549 * reports we will forward to userspace while filtering for a single 1550 * context. 1551 */ 1552 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1553 1554 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1555 1556 /* 1557 * NB: although the OA buffer will initially be allocated 1558 * zeroed via shmfs (and so this memset is redundant when 1559 * first allocating), we may re-init the OA buffer, either 1560 * when re-enabling a stream or in error/reset paths. 1561 * 1562 * The reason we clear the buffer for each re-init is for the 1563 * sanity check in gen8_append_oa_reports() that looks at the 1564 * reason field to make sure it's non-zero which relies on 1565 * the assumption that new reports are being written to zeroed 1566 * memory... 1567 */ 1568 memset(stream->oa_buffer.vaddr, 0, 1569 stream->oa_buffer.vma->size); 1570 1571 stream->pollin = false; 1572 } 1573 1574 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1575 { 1576 struct drm_i915_gem_object *bo; 1577 struct i915_vma *vma; 1578 int ret; 1579 1580 if (WARN_ON(stream->oa_buffer.vma)) 1581 return -ENODEV; 1582 1583 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1584 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1585 1586 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1587 if (IS_ERR(bo)) { 1588 DRM_ERROR("Failed to allocate OA buffer\n"); 1589 return PTR_ERR(bo); 1590 } 1591 1592 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1593 1594 /* PreHSW required 512K alignment, HSW requires 16M */ 1595 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1596 if (IS_ERR(vma)) { 1597 ret = PTR_ERR(vma); 1598 goto err_unref; 1599 } 1600 stream->oa_buffer.vma = vma; 1601 1602 stream->oa_buffer.vaddr = 1603 i915_gem_object_pin_map(bo, I915_MAP_WB); 1604 if (IS_ERR(stream->oa_buffer.vaddr)) { 1605 ret = PTR_ERR(stream->oa_buffer.vaddr); 1606 goto err_unpin; 1607 } 1608 1609 return 0; 1610 1611 err_unpin: 1612 __i915_vma_unpin(vma); 1613 1614 err_unref: 1615 i915_gem_object_put(bo); 1616 1617 stream->oa_buffer.vaddr = NULL; 1618 stream->oa_buffer.vma = NULL; 1619 1620 return ret; 1621 } 1622 1623 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1624 bool save, i915_reg_t reg, u32 offset, 1625 u32 dword_count) 1626 { 1627 u32 cmd; 1628 u32 d; 1629 1630 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1631 if (INTEL_GEN(stream->perf->i915) >= 8) 1632 cmd++; 1633 1634 for (d = 0; d < dword_count; d++) { 1635 *cs++ = cmd; 1636 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1637 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1638 offset) + 4 * d; 1639 *cs++ = 0; 1640 } 1641 1642 return cs; 1643 } 1644 1645 static int alloc_noa_wait(struct i915_perf_stream *stream) 1646 { 1647 struct drm_i915_private *i915 = stream->perf->i915; 1648 struct drm_i915_gem_object *bo; 1649 struct i915_vma *vma; 1650 const u64 delay_ticks = 0xffffffffffffffff - 1651 DIV64_U64_ROUND_UP( 1652 atomic64_read(&stream->perf->noa_programming_delay) * 1653 RUNTIME_INFO(i915)->cs_timestamp_frequency_khz, 1654 1000000ull); 1655 const u32 base = stream->engine->mmio_base; 1656 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1657 u32 *batch, *ts0, *cs, *jump; 1658 int ret, i; 1659 enum { 1660 START_TS, 1661 NOW_TS, 1662 DELTA_TS, 1663 JUMP_PREDICATE, 1664 DELTA_TARGET, 1665 N_CS_GPR 1666 }; 1667 1668 bo = i915_gem_object_create_internal(i915, 4096); 1669 if (IS_ERR(bo)) { 1670 DRM_ERROR("Failed to allocate NOA wait batchbuffer\n"); 1671 return PTR_ERR(bo); 1672 } 1673 1674 /* 1675 * We pin in GGTT because we jump into this buffer now because 1676 * multiple OA config BOs will have a jump to this address and it 1677 * needs to be fixed during the lifetime of the i915/perf stream. 1678 */ 1679 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH); 1680 if (IS_ERR(vma)) { 1681 ret = PTR_ERR(vma); 1682 goto err_unref; 1683 } 1684 1685 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1686 if (IS_ERR(batch)) { 1687 ret = PTR_ERR(batch); 1688 goto err_unpin; 1689 } 1690 1691 /* Save registers. */ 1692 for (i = 0; i < N_CS_GPR; i++) 1693 cs = save_restore_register( 1694 stream, cs, true /* save */, CS_GPR(i), 1695 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1696 cs = save_restore_register( 1697 stream, cs, true /* save */, MI_PREDICATE_RESULT_1, 1698 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1699 1700 /* First timestamp snapshot location. */ 1701 ts0 = cs; 1702 1703 /* 1704 * Initial snapshot of the timestamp register to implement the wait. 1705 * We work with 32b values, so clear out the top 32b bits of the 1706 * register because the ALU works 64bits. 1707 */ 1708 *cs++ = MI_LOAD_REGISTER_IMM(1); 1709 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1710 *cs++ = 0; 1711 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1712 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1713 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1714 1715 /* 1716 * This is the location we're going to jump back into until the 1717 * required amount of time has passed. 1718 */ 1719 jump = cs; 1720 1721 /* 1722 * Take another snapshot of the timestamp register. Take care to clear 1723 * up the top 32bits of CS_GPR(1) as we're using it for other 1724 * operations below. 1725 */ 1726 *cs++ = MI_LOAD_REGISTER_IMM(1); 1727 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1728 *cs++ = 0; 1729 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1730 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1731 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1732 1733 /* 1734 * Do a diff between the 2 timestamps and store the result back into 1735 * CS_GPR(1). 1736 */ 1737 *cs++ = MI_MATH(5); 1738 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1739 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1740 *cs++ = MI_MATH_SUB; 1741 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1742 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1743 1744 /* 1745 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1746 * timestamp have rolled over the 32bits) into the predicate register 1747 * to be used for the predicated jump. 1748 */ 1749 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1750 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1751 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1752 1753 /* Restart from the beginning if we had timestamps roll over. */ 1754 *cs++ = (INTEL_GEN(i915) < 8 ? 1755 MI_BATCH_BUFFER_START : 1756 MI_BATCH_BUFFER_START_GEN8) | 1757 MI_BATCH_PREDICATE; 1758 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1759 *cs++ = 0; 1760 1761 /* 1762 * Now add the diff between to previous timestamps and add it to : 1763 * (((1 * << 64) - 1) - delay_ns) 1764 * 1765 * When the Carry Flag contains 1 this means the elapsed time is 1766 * longer than the expected delay, and we can exit the wait loop. 1767 */ 1768 *cs++ = MI_LOAD_REGISTER_IMM(2); 1769 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1770 *cs++ = lower_32_bits(delay_ticks); 1771 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 1772 *cs++ = upper_32_bits(delay_ticks); 1773 1774 *cs++ = MI_MATH(4); 1775 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 1776 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 1777 *cs++ = MI_MATH_ADD; 1778 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1779 1780 /* 1781 * Transfer the result into the predicate register to be used for the 1782 * predicated jump. 1783 */ 1784 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1785 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1786 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1787 1788 /* Predicate the jump. */ 1789 *cs++ = (INTEL_GEN(i915) < 8 ? 1790 MI_BATCH_BUFFER_START : 1791 MI_BATCH_BUFFER_START_GEN8) | 1792 MI_BATCH_PREDICATE; 1793 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 1794 *cs++ = 0; 1795 1796 /* Restore registers. */ 1797 for (i = 0; i < N_CS_GPR; i++) 1798 cs = save_restore_register( 1799 stream, cs, false /* restore */, CS_GPR(i), 1800 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1801 cs = save_restore_register( 1802 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1, 1803 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1804 1805 /* And return to the ring. */ 1806 *cs++ = MI_BATCH_BUFFER_END; 1807 1808 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 1809 1810 i915_gem_object_flush_map(bo); 1811 i915_gem_object_unpin_map(bo); 1812 1813 stream->noa_wait = vma; 1814 return 0; 1815 1816 err_unpin: 1817 i915_vma_unpin_and_release(&vma, 0); 1818 err_unref: 1819 i915_gem_object_put(bo); 1820 return ret; 1821 } 1822 1823 static u32 *write_cs_mi_lri(u32 *cs, 1824 const struct i915_oa_reg *reg_data, 1825 u32 n_regs) 1826 { 1827 u32 i; 1828 1829 for (i = 0; i < n_regs; i++) { 1830 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 1831 u32 n_lri = min_t(u32, 1832 n_regs - i, 1833 MI_LOAD_REGISTER_IMM_MAX_REGS); 1834 1835 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 1836 } 1837 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 1838 *cs++ = reg_data[i].value; 1839 } 1840 1841 return cs; 1842 } 1843 1844 static int num_lri_dwords(int num_regs) 1845 { 1846 int count = 0; 1847 1848 if (num_regs > 0) { 1849 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 1850 count += num_regs * 2; 1851 } 1852 1853 return count; 1854 } 1855 1856 static struct i915_oa_config_bo * 1857 alloc_oa_config_buffer(struct i915_perf_stream *stream, 1858 struct i915_oa_config *oa_config) 1859 { 1860 struct drm_i915_gem_object *obj; 1861 struct i915_oa_config_bo *oa_bo; 1862 size_t config_length = 0; 1863 u32 *cs; 1864 int err; 1865 1866 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 1867 if (!oa_bo) 1868 return ERR_PTR(-ENOMEM); 1869 1870 config_length += num_lri_dwords(oa_config->mux_regs_len); 1871 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 1872 config_length += num_lri_dwords(oa_config->flex_regs_len); 1873 config_length += 3; /* MI_BATCH_BUFFER_START */ 1874 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 1875 1876 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 1877 if (IS_ERR(obj)) { 1878 err = PTR_ERR(obj); 1879 goto err_free; 1880 } 1881 1882 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 1883 if (IS_ERR(cs)) { 1884 err = PTR_ERR(cs); 1885 goto err_oa_bo; 1886 } 1887 1888 cs = write_cs_mi_lri(cs, 1889 oa_config->mux_regs, 1890 oa_config->mux_regs_len); 1891 cs = write_cs_mi_lri(cs, 1892 oa_config->b_counter_regs, 1893 oa_config->b_counter_regs_len); 1894 cs = write_cs_mi_lri(cs, 1895 oa_config->flex_regs, 1896 oa_config->flex_regs_len); 1897 1898 /* Jump into the active wait. */ 1899 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ? 1900 MI_BATCH_BUFFER_START : 1901 MI_BATCH_BUFFER_START_GEN8); 1902 *cs++ = i915_ggtt_offset(stream->noa_wait); 1903 *cs++ = 0; 1904 1905 i915_gem_object_flush_map(obj); 1906 i915_gem_object_unpin_map(obj); 1907 1908 oa_bo->vma = i915_vma_instance(obj, 1909 &stream->engine->gt->ggtt->vm, 1910 NULL); 1911 if (IS_ERR(oa_bo->vma)) { 1912 err = PTR_ERR(oa_bo->vma); 1913 goto err_oa_bo; 1914 } 1915 1916 oa_bo->oa_config = i915_oa_config_get(oa_config); 1917 llist_add(&oa_bo->node, &stream->oa_config_bos); 1918 1919 return oa_bo; 1920 1921 err_oa_bo: 1922 i915_gem_object_put(obj); 1923 err_free: 1924 kfree(oa_bo); 1925 return ERR_PTR(err); 1926 } 1927 1928 static struct i915_vma * 1929 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 1930 { 1931 struct i915_oa_config_bo *oa_bo; 1932 1933 /* 1934 * Look for the buffer in the already allocated BOs attached 1935 * to the stream. 1936 */ 1937 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 1938 if (oa_bo->oa_config == oa_config && 1939 memcmp(oa_bo->oa_config->uuid, 1940 oa_config->uuid, 1941 sizeof(oa_config->uuid)) == 0) 1942 goto out; 1943 } 1944 1945 oa_bo = alloc_oa_config_buffer(stream, oa_config); 1946 if (IS_ERR(oa_bo)) 1947 return ERR_CAST(oa_bo); 1948 1949 out: 1950 return i915_vma_get(oa_bo->vma); 1951 } 1952 1953 static int emit_oa_config(struct i915_perf_stream *stream, 1954 struct i915_oa_config *oa_config, 1955 struct intel_context *ce) 1956 { 1957 struct i915_request *rq; 1958 struct i915_vma *vma; 1959 int err; 1960 1961 vma = get_oa_vma(stream, oa_config); 1962 if (IS_ERR(vma)) 1963 return PTR_ERR(vma); 1964 1965 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH); 1966 if (err) 1967 goto err_vma_put; 1968 1969 rq = i915_request_create(ce); 1970 if (IS_ERR(rq)) { 1971 err = PTR_ERR(rq); 1972 goto err_vma_unpin; 1973 } 1974 1975 i915_vma_lock(vma); 1976 err = i915_request_await_object(rq, vma->obj, 0); 1977 if (!err) 1978 err = i915_vma_move_to_active(vma, rq, 0); 1979 i915_vma_unlock(vma); 1980 if (err) 1981 goto err_add_request; 1982 1983 err = rq->engine->emit_bb_start(rq, 1984 vma->node.start, 0, 1985 I915_DISPATCH_SECURE); 1986 err_add_request: 1987 i915_request_add(rq); 1988 err_vma_unpin: 1989 i915_vma_unpin(vma); 1990 err_vma_put: 1991 i915_vma_put(vma); 1992 return err; 1993 } 1994 1995 static struct intel_context *oa_context(struct i915_perf_stream *stream) 1996 { 1997 return stream->pinned_ctx ?: stream->engine->kernel_context; 1998 } 1999 2000 static int hsw_enable_metric_set(struct i915_perf_stream *stream) 2001 { 2002 struct intel_uncore *uncore = stream->uncore; 2003 2004 /* 2005 * PRM: 2006 * 2007 * OA unit is using “crclk” for its functionality. When trunk 2008 * level clock gating takes place, OA clock would be gated, 2009 * unable to count the events from non-render clock domain. 2010 * Render clock gating must be disabled when OA is enabled to 2011 * count the events from non-render domain. Unit level clock 2012 * gating for RCS should also be disabled. 2013 */ 2014 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2015 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2016 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2017 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2018 2019 return emit_oa_config(stream, stream->oa_config, oa_context(stream)); 2020 } 2021 2022 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2023 { 2024 struct intel_uncore *uncore = stream->uncore; 2025 2026 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2027 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2028 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2029 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2030 2031 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2032 } 2033 2034 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2035 i915_reg_t reg) 2036 { 2037 u32 mmio = i915_mmio_reg_offset(reg); 2038 int i; 2039 2040 /* 2041 * This arbitrary default will select the 'EU FPU0 Pipeline 2042 * Active' event. In the future it's anticipated that there 2043 * will be an explicit 'No Event' we can select, but not yet... 2044 */ 2045 if (!oa_config) 2046 return 0; 2047 2048 for (i = 0; i < oa_config->flex_regs_len; i++) { 2049 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2050 return oa_config->flex_regs[i].value; 2051 } 2052 2053 return 0; 2054 } 2055 /* 2056 * NB: It must always remain pointer safe to run this even if the OA unit 2057 * has been disabled. 2058 * 2059 * It's fine to put out-of-date values into these per-context registers 2060 * in the case that the OA unit has been disabled. 2061 */ 2062 static void 2063 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2064 const struct i915_perf_stream *stream) 2065 { 2066 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2067 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2068 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2069 i915_reg_t flex_regs[] = { 2070 EU_PERF_CNTL0, 2071 EU_PERF_CNTL1, 2072 EU_PERF_CNTL2, 2073 EU_PERF_CNTL3, 2074 EU_PERF_CNTL4, 2075 EU_PERF_CNTL5, 2076 EU_PERF_CNTL6, 2077 }; 2078 u32 *reg_state = ce->lrc_reg_state; 2079 int i; 2080 2081 if (IS_GEN(stream->perf->i915, 12)) { 2082 u32 format = stream->oa_buffer.format; 2083 2084 reg_state[ctx_oactxctrl + 1] = 2085 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2086 (stream->oa_config ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0); 2087 } else { 2088 reg_state[ctx_oactxctrl + 1] = 2089 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2090 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2091 GEN8_OA_COUNTER_RESUME; 2092 } 2093 2094 for (i = 0; !!ctx_flexeu0 && i < ARRAY_SIZE(flex_regs); i++) 2095 reg_state[ctx_flexeu0 + i * 2 + 1] = 2096 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2097 2098 reg_state[CTX_R_PWR_CLK_STATE] = 2099 intel_sseu_make_rpcs(ce->engine->i915, &ce->sseu); 2100 } 2101 2102 struct flex { 2103 i915_reg_t reg; 2104 u32 offset; 2105 u32 value; 2106 }; 2107 2108 static int 2109 gen8_store_flex(struct i915_request *rq, 2110 struct intel_context *ce, 2111 const struct flex *flex, unsigned int count) 2112 { 2113 u32 offset; 2114 u32 *cs; 2115 2116 cs = intel_ring_begin(rq, 4 * count); 2117 if (IS_ERR(cs)) 2118 return PTR_ERR(cs); 2119 2120 offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE; 2121 do { 2122 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2123 *cs++ = offset + flex->offset * sizeof(u32); 2124 *cs++ = 0; 2125 *cs++ = flex->value; 2126 } while (flex++, --count); 2127 2128 intel_ring_advance(rq, cs); 2129 2130 return 0; 2131 } 2132 2133 static int 2134 gen8_load_flex(struct i915_request *rq, 2135 struct intel_context *ce, 2136 const struct flex *flex, unsigned int count) 2137 { 2138 u32 *cs; 2139 2140 GEM_BUG_ON(!count || count > 63); 2141 2142 cs = intel_ring_begin(rq, 2 * count + 2); 2143 if (IS_ERR(cs)) 2144 return PTR_ERR(cs); 2145 2146 *cs++ = MI_LOAD_REGISTER_IMM(count); 2147 do { 2148 *cs++ = i915_mmio_reg_offset(flex->reg); 2149 *cs++ = flex->value; 2150 } while (flex++, --count); 2151 *cs++ = MI_NOOP; 2152 2153 intel_ring_advance(rq, cs); 2154 2155 return 0; 2156 } 2157 2158 static int gen8_modify_context(struct intel_context *ce, 2159 const struct flex *flex, unsigned int count) 2160 { 2161 struct i915_request *rq; 2162 int err; 2163 2164 lockdep_assert_held(&ce->pin_mutex); 2165 2166 rq = i915_request_create(ce->engine->kernel_context); 2167 if (IS_ERR(rq)) 2168 return PTR_ERR(rq); 2169 2170 /* Serialise with the remote context */ 2171 err = intel_context_prepare_remote_request(ce, rq); 2172 if (err == 0) 2173 err = gen8_store_flex(rq, ce, flex, count); 2174 2175 i915_request_add(rq); 2176 return err; 2177 } 2178 2179 static int gen8_modify_self(struct intel_context *ce, 2180 const struct flex *flex, unsigned int count) 2181 { 2182 struct i915_request *rq; 2183 int err; 2184 2185 rq = i915_request_create(ce); 2186 if (IS_ERR(rq)) 2187 return PTR_ERR(rq); 2188 2189 err = gen8_load_flex(rq, ce, flex, count); 2190 2191 i915_request_add(rq); 2192 return err; 2193 } 2194 2195 static int gen8_configure_context(struct i915_gem_context *ctx, 2196 struct flex *flex, unsigned int count) 2197 { 2198 struct i915_gem_engines_iter it; 2199 struct intel_context *ce; 2200 int err = 0; 2201 2202 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2203 GEM_BUG_ON(ce == ce->engine->kernel_context); 2204 2205 if (ce->engine->class != RENDER_CLASS) 2206 continue; 2207 2208 err = intel_context_lock_pinned(ce); 2209 if (err) 2210 break; 2211 2212 flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu); 2213 2214 /* Otherwise OA settings will be set upon first use */ 2215 if (intel_context_is_pinned(ce)) 2216 err = gen8_modify_context(ce, flex, count); 2217 2218 intel_context_unlock_pinned(ce); 2219 if (err) 2220 break; 2221 } 2222 i915_gem_context_unlock_engines(ctx); 2223 2224 return err; 2225 } 2226 2227 static int gen12_emit_oar_config(struct intel_context *ce, bool enable) 2228 { 2229 struct i915_request *rq; 2230 u32 *cs; 2231 int err = 0; 2232 2233 rq = i915_request_create(ce); 2234 if (IS_ERR(rq)) 2235 return PTR_ERR(rq); 2236 2237 cs = intel_ring_begin(rq, 4); 2238 if (IS_ERR(cs)) { 2239 err = PTR_ERR(cs); 2240 goto out; 2241 } 2242 2243 *cs++ = MI_LOAD_REGISTER_IMM(1); 2244 *cs++ = i915_mmio_reg_offset(RING_CONTEXT_CONTROL(ce->engine->mmio_base)); 2245 *cs++ = _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2246 enable ? GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 0); 2247 *cs++ = MI_NOOP; 2248 2249 intel_ring_advance(rq, cs); 2250 2251 out: 2252 i915_request_add(rq); 2253 2254 return err; 2255 } 2256 2257 /* 2258 * Manages updating the per-context aspects of the OA stream 2259 * configuration across all contexts. 2260 * 2261 * The awkward consideration here is that OACTXCONTROL controls the 2262 * exponent for periodic sampling which is primarily used for system 2263 * wide profiling where we'd like a consistent sampling period even in 2264 * the face of context switches. 2265 * 2266 * Our approach of updating the register state context (as opposed to 2267 * say using a workaround batch buffer) ensures that the hardware 2268 * won't automatically reload an out-of-date timer exponent even 2269 * transiently before a WA BB could be parsed. 2270 * 2271 * This function needs to: 2272 * - Ensure the currently running context's per-context OA state is 2273 * updated 2274 * - Ensure that all existing contexts will have the correct per-context 2275 * OA state if they are scheduled for use. 2276 * - Ensure any new contexts will be initialized with the correct 2277 * per-context OA state. 2278 * 2279 * Note: it's only the RCS/Render context that has any OA state. 2280 */ 2281 static int lrc_configure_all_contexts(struct i915_perf_stream *stream, 2282 const struct i915_oa_config *oa_config) 2283 { 2284 struct drm_i915_private *i915 = stream->perf->i915; 2285 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2286 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2287 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2288 struct flex regs[] = { 2289 { 2290 GEN8_R_PWR_CLK_STATE, 2291 CTX_R_PWR_CLK_STATE, 2292 }, 2293 { 2294 IS_GEN(i915, 12) ? 2295 GEN12_OAR_OACONTROL : GEN8_OACTXCONTROL, 2296 stream->perf->ctx_oactxctrl_offset + 1, 2297 }, 2298 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2299 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2300 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2301 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2302 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2303 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2304 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2305 }; 2306 #undef ctx_flexeuN 2307 struct intel_engine_cs *engine; 2308 struct i915_gem_context *ctx, *cn; 2309 size_t array_size = IS_GEN(i915, 12) ? 2 : ARRAY_SIZE(regs); 2310 int i, err; 2311 2312 if (IS_GEN(i915, 12)) { 2313 u32 format = stream->oa_buffer.format; 2314 2315 regs[1].value = 2316 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2317 (oa_config ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0); 2318 } else { 2319 regs[1].value = 2320 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2321 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2322 GEN8_OA_COUNTER_RESUME; 2323 } 2324 2325 for (i = 2; !!ctx_flexeu0 && i < array_size; i++) 2326 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2327 2328 lockdep_assert_held(&stream->perf->lock); 2329 2330 /* 2331 * The OA register config is setup through the context image. This image 2332 * might be written to by the GPU on context switch (in particular on 2333 * lite-restore). This means we can't safely update a context's image, 2334 * if this context is scheduled/submitted to run on the GPU. 2335 * 2336 * We could emit the OA register config through the batch buffer but 2337 * this might leave small interval of time where the OA unit is 2338 * configured at an invalid sampling period. 2339 * 2340 * Note that since we emit all requests from a single ring, there 2341 * is still an implicit global barrier here that may cause a high 2342 * priority context to wait for an otherwise independent low priority 2343 * context. Contexts idle at the time of reconfiguration are not 2344 * trapped behind the barrier. 2345 */ 2346 spin_lock(&i915->gem.contexts.lock); 2347 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2348 if (ctx == i915->kernel_context) 2349 continue; 2350 2351 if (!kref_get_unless_zero(&ctx->ref)) 2352 continue; 2353 2354 spin_unlock(&i915->gem.contexts.lock); 2355 2356 err = gen8_configure_context(ctx, regs, array_size); 2357 if (err) { 2358 i915_gem_context_put(ctx); 2359 return err; 2360 } 2361 2362 spin_lock(&i915->gem.contexts.lock); 2363 list_safe_reset_next(ctx, cn, link); 2364 i915_gem_context_put(ctx); 2365 } 2366 spin_unlock(&i915->gem.contexts.lock); 2367 2368 /* 2369 * After updating all other contexts, we need to modify ourselves. 2370 * If we don't modify the kernel_context, we do not get events while 2371 * idle. 2372 */ 2373 for_each_uabi_engine(engine, i915) { 2374 struct intel_context *ce = engine->kernel_context; 2375 2376 if (engine->class != RENDER_CLASS) 2377 continue; 2378 2379 regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu); 2380 2381 err = gen8_modify_self(ce, regs, array_size); 2382 if (err) 2383 return err; 2384 } 2385 2386 return 0; 2387 } 2388 2389 static int gen8_enable_metric_set(struct i915_perf_stream *stream) 2390 { 2391 struct intel_uncore *uncore = stream->uncore; 2392 struct i915_oa_config *oa_config = stream->oa_config; 2393 int ret; 2394 2395 /* 2396 * We disable slice/unslice clock ratio change reports on SKL since 2397 * they are too noisy. The HW generates a lot of redundant reports 2398 * where the ratio hasn't really changed causing a lot of redundant 2399 * work to processes and increasing the chances we'll hit buffer 2400 * overruns. 2401 * 2402 * Although we don't currently use the 'disable overrun' OABUFFER 2403 * feature it's worth noting that clock ratio reports have to be 2404 * disabled before considering to use that feature since the HW doesn't 2405 * correctly block these reports. 2406 * 2407 * Currently none of the high-level metrics we have depend on knowing 2408 * this ratio to normalize. 2409 * 2410 * Note: This register is not power context saved and restored, but 2411 * that's OK considering that we disable RC6 while the OA unit is 2412 * enabled. 2413 * 2414 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2415 * be read back from automatically triggered reports, as part of the 2416 * RPT_ID field. 2417 */ 2418 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) { 2419 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2420 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2421 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2422 } 2423 2424 /* 2425 * Update all contexts prior writing the mux configurations as we need 2426 * to make sure all slices/subslices are ON before writing to NOA 2427 * registers. 2428 */ 2429 ret = lrc_configure_all_contexts(stream, oa_config); 2430 if (ret) 2431 return ret; 2432 2433 return emit_oa_config(stream, oa_config, oa_context(stream)); 2434 } 2435 2436 static int gen12_enable_metric_set(struct i915_perf_stream *stream) 2437 { 2438 struct intel_uncore *uncore = stream->uncore; 2439 struct i915_oa_config *oa_config = stream->oa_config; 2440 bool periodic = stream->periodic; 2441 u32 period_exponent = stream->period_exponent; 2442 int ret; 2443 2444 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2445 /* Disable clk ratio reports, like previous Gens. */ 2446 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2447 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2448 /* 2449 * If the user didn't require OA reports, instruct the 2450 * hardware not to emit ctx switch reports. 2451 */ 2452 !(stream->sample_flags & SAMPLE_OA_REPORT) ? 2453 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS) : 2454 _MASKED_BIT_DISABLE(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS)); 2455 2456 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2457 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2458 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2459 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2460 : 0); 2461 2462 /* 2463 * Update all contexts prior writing the mux configurations as we need 2464 * to make sure all slices/subslices are ON before writing to NOA 2465 * registers. 2466 */ 2467 ret = lrc_configure_all_contexts(stream, oa_config); 2468 if (ret) 2469 return ret; 2470 2471 /* 2472 * For Gen12, performance counters are context 2473 * saved/restored. Only enable it for the context that 2474 * requested this. 2475 */ 2476 if (stream->ctx) { 2477 ret = gen12_emit_oar_config(stream->pinned_ctx, 2478 oa_config != NULL); 2479 if (ret) 2480 return ret; 2481 } 2482 2483 return emit_oa_config(stream, oa_config, oa_context(stream)); 2484 } 2485 2486 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2487 { 2488 struct intel_uncore *uncore = stream->uncore; 2489 2490 /* Reset all contexts' slices/subslices configurations. */ 2491 lrc_configure_all_contexts(stream, NULL); 2492 2493 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2494 } 2495 2496 static void gen10_disable_metric_set(struct i915_perf_stream *stream) 2497 { 2498 struct intel_uncore *uncore = stream->uncore; 2499 2500 /* Reset all contexts' slices/subslices configurations. */ 2501 lrc_configure_all_contexts(stream, NULL); 2502 2503 /* Make sure we disable noa to save power. */ 2504 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2505 } 2506 2507 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2508 { 2509 struct intel_uncore *uncore = stream->uncore; 2510 2511 /* Reset all contexts' slices/subslices configurations. */ 2512 lrc_configure_all_contexts(stream, NULL); 2513 2514 /* disable the context save/restore or OAR counters */ 2515 if (stream->ctx) 2516 gen12_emit_oar_config(stream->pinned_ctx, false); 2517 2518 /* Make sure we disable noa to save power. */ 2519 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2520 } 2521 2522 static void gen7_oa_enable(struct i915_perf_stream *stream) 2523 { 2524 struct intel_uncore *uncore = stream->uncore; 2525 struct i915_gem_context *ctx = stream->ctx; 2526 u32 ctx_id = stream->specific_ctx_id; 2527 bool periodic = stream->periodic; 2528 u32 period_exponent = stream->period_exponent; 2529 u32 report_format = stream->oa_buffer.format; 2530 2531 /* 2532 * Reset buf pointers so we don't forward reports from before now. 2533 * 2534 * Think carefully if considering trying to avoid this, since it 2535 * also ensures status flags and the buffer itself are cleared 2536 * in error paths, and we have checks for invalid reports based 2537 * on the assumption that certain fields are written to zeroed 2538 * memory which this helps maintains. 2539 */ 2540 gen7_init_oa_buffer(stream); 2541 2542 intel_uncore_write(uncore, GEN7_OACONTROL, 2543 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2544 (period_exponent << 2545 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2546 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2547 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2548 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2549 GEN7_OACONTROL_ENABLE); 2550 } 2551 2552 static void gen8_oa_enable(struct i915_perf_stream *stream) 2553 { 2554 struct intel_uncore *uncore = stream->uncore; 2555 u32 report_format = stream->oa_buffer.format; 2556 2557 /* 2558 * Reset buf pointers so we don't forward reports from before now. 2559 * 2560 * Think carefully if considering trying to avoid this, since it 2561 * also ensures status flags and the buffer itself are cleared 2562 * in error paths, and we have checks for invalid reports based 2563 * on the assumption that certain fields are written to zeroed 2564 * memory which this helps maintains. 2565 */ 2566 gen8_init_oa_buffer(stream); 2567 2568 /* 2569 * Note: we don't rely on the hardware to perform single context 2570 * filtering and instead filter on the cpu based on the context-id 2571 * field of reports 2572 */ 2573 intel_uncore_write(uncore, GEN8_OACONTROL, 2574 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2575 GEN8_OA_COUNTER_ENABLE); 2576 } 2577 2578 static void gen12_oa_enable(struct i915_perf_stream *stream) 2579 { 2580 struct intel_uncore *uncore = stream->uncore; 2581 u32 report_format = stream->oa_buffer.format; 2582 2583 /* 2584 * If we don't want OA reports from the OA buffer, then we don't even 2585 * need to program the OAG unit. 2586 */ 2587 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2588 return; 2589 2590 gen12_init_oa_buffer(stream); 2591 2592 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2593 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2594 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2595 } 2596 2597 /** 2598 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2599 * @stream: An i915 perf stream opened for OA metrics 2600 * 2601 * [Re]enables hardware periodic sampling according to the period configured 2602 * when opening the stream. This also starts a hrtimer that will periodically 2603 * check for data in the circular OA buffer for notifying userspace (e.g. 2604 * during a read() or poll()). 2605 */ 2606 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2607 { 2608 stream->perf->ops.oa_enable(stream); 2609 2610 if (stream->periodic) 2611 hrtimer_start(&stream->poll_check_timer, 2612 ns_to_ktime(POLL_PERIOD), 2613 HRTIMER_MODE_REL_PINNED); 2614 } 2615 2616 static void gen7_oa_disable(struct i915_perf_stream *stream) 2617 { 2618 struct intel_uncore *uncore = stream->uncore; 2619 2620 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2621 if (intel_wait_for_register(uncore, 2622 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2623 50)) 2624 DRM_ERROR("wait for OA to be disabled timed out\n"); 2625 } 2626 2627 static void gen8_oa_disable(struct i915_perf_stream *stream) 2628 { 2629 struct intel_uncore *uncore = stream->uncore; 2630 2631 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2632 if (intel_wait_for_register(uncore, 2633 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2634 50)) 2635 DRM_ERROR("wait for OA to be disabled timed out\n"); 2636 } 2637 2638 static void gen12_oa_disable(struct i915_perf_stream *stream) 2639 { 2640 struct intel_uncore *uncore = stream->uncore; 2641 2642 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 2643 if (intel_wait_for_register(uncore, 2644 GEN12_OAG_OACONTROL, 2645 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 2646 50)) 2647 DRM_ERROR("wait for OA to be disabled timed out\n"); 2648 } 2649 2650 /** 2651 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2652 * @stream: An i915 perf stream opened for OA metrics 2653 * 2654 * Stops the OA unit from periodically writing counter reports into the 2655 * circular OA buffer. This also stops the hrtimer that periodically checks for 2656 * data in the circular OA buffer, for notifying userspace. 2657 */ 2658 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2659 { 2660 stream->perf->ops.oa_disable(stream); 2661 2662 if (stream->periodic) 2663 hrtimer_cancel(&stream->poll_check_timer); 2664 } 2665 2666 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2667 .destroy = i915_oa_stream_destroy, 2668 .enable = i915_oa_stream_enable, 2669 .disable = i915_oa_stream_disable, 2670 .wait_unlocked = i915_oa_wait_unlocked, 2671 .poll_wait = i915_oa_poll_wait, 2672 .read = i915_oa_read, 2673 }; 2674 2675 /** 2676 * i915_oa_stream_init - validate combined props for OA stream and init 2677 * @stream: An i915 perf stream 2678 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2679 * @props: The property state that configures stream (individually validated) 2680 * 2681 * While read_properties_unlocked() validates properties in isolation it 2682 * doesn't ensure that the combination necessarily makes sense. 2683 * 2684 * At this point it has been determined that userspace wants a stream of 2685 * OA metrics, but still we need to further validate the combined 2686 * properties are OK. 2687 * 2688 * If the configuration makes sense then we can allocate memory for 2689 * a circular OA buffer and apply the requested metric set configuration. 2690 * 2691 * Returns: zero on success or a negative error code. 2692 */ 2693 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2694 struct drm_i915_perf_open_param *param, 2695 struct perf_open_properties *props) 2696 { 2697 struct i915_perf *perf = stream->perf; 2698 int format_size; 2699 int ret; 2700 2701 if (!props->engine) { 2702 DRM_DEBUG("OA engine not specified\n"); 2703 return -EINVAL; 2704 } 2705 2706 /* 2707 * If the sysfs metrics/ directory wasn't registered for some 2708 * reason then don't let userspace try their luck with config 2709 * IDs 2710 */ 2711 if (!perf->metrics_kobj) { 2712 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2713 return -EINVAL; 2714 } 2715 2716 if (!(props->sample_flags & SAMPLE_OA_REPORT)) { 2717 DRM_DEBUG("Only OA report sampling supported\n"); 2718 return -EINVAL; 2719 } 2720 2721 if (!perf->ops.enable_metric_set) { 2722 DRM_DEBUG("OA unit not supported\n"); 2723 return -ENODEV; 2724 } 2725 2726 /* 2727 * To avoid the complexity of having to accurately filter 2728 * counter reports and marshal to the appropriate client 2729 * we currently only allow exclusive access 2730 */ 2731 if (perf->exclusive_stream) { 2732 DRM_DEBUG("OA unit already in use\n"); 2733 return -EBUSY; 2734 } 2735 2736 if (!props->oa_format) { 2737 DRM_DEBUG("OA report format not specified\n"); 2738 return -EINVAL; 2739 } 2740 2741 stream->engine = props->engine; 2742 stream->uncore = stream->engine->gt->uncore; 2743 2744 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2745 2746 format_size = perf->oa_formats[props->oa_format].size; 2747 2748 stream->sample_flags |= SAMPLE_OA_REPORT; 2749 stream->sample_size += format_size; 2750 2751 stream->oa_buffer.format_size = format_size; 2752 if (WARN_ON(stream->oa_buffer.format_size == 0)) 2753 return -EINVAL; 2754 2755 stream->hold_preemption = props->hold_preemption; 2756 2757 stream->oa_buffer.format = 2758 perf->oa_formats[props->oa_format].format; 2759 2760 stream->periodic = props->oa_periodic; 2761 if (stream->periodic) 2762 stream->period_exponent = props->oa_period_exponent; 2763 2764 if (stream->ctx) { 2765 ret = oa_get_render_ctx_id(stream); 2766 if (ret) { 2767 DRM_DEBUG("Invalid context id to filter with\n"); 2768 return ret; 2769 } 2770 } 2771 2772 ret = alloc_noa_wait(stream); 2773 if (ret) { 2774 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n"); 2775 goto err_noa_wait_alloc; 2776 } 2777 2778 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 2779 if (!stream->oa_config) { 2780 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2781 ret = -EINVAL; 2782 goto err_config; 2783 } 2784 2785 /* PRM - observability performance counters: 2786 * 2787 * OACONTROL, performance counter enable, note: 2788 * 2789 * "When this bit is set, in order to have coherent counts, 2790 * RC6 power state and trunk clock gating must be disabled. 2791 * This can be achieved by programming MMIO registers as 2792 * 0xA094=0 and 0xA090[31]=1" 2793 * 2794 * In our case we are expecting that taking pm + FORCEWAKE 2795 * references will effectively disable RC6. 2796 */ 2797 intel_engine_pm_get(stream->engine); 2798 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 2799 2800 ret = alloc_oa_buffer(stream); 2801 if (ret) 2802 goto err_oa_buf_alloc; 2803 2804 stream->ops = &i915_oa_stream_ops; 2805 perf->exclusive_stream = stream; 2806 2807 ret = perf->ops.enable_metric_set(stream); 2808 if (ret) { 2809 DRM_DEBUG("Unable to enable metric set\n"); 2810 goto err_enable; 2811 } 2812 2813 DRM_DEBUG("opening stream oa config uuid=%s\n", 2814 stream->oa_config->uuid); 2815 2816 hrtimer_init(&stream->poll_check_timer, 2817 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2818 stream->poll_check_timer.function = oa_poll_check_timer_cb; 2819 init_waitqueue_head(&stream->poll_wq); 2820 spin_lock_init(&stream->oa_buffer.ptr_lock); 2821 2822 return 0; 2823 2824 err_enable: 2825 perf->exclusive_stream = NULL; 2826 perf->ops.disable_metric_set(stream); 2827 2828 free_oa_buffer(stream); 2829 2830 err_oa_buf_alloc: 2831 free_oa_configs(stream); 2832 2833 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 2834 intel_engine_pm_put(stream->engine); 2835 2836 err_config: 2837 free_noa_wait(stream); 2838 2839 err_noa_wait_alloc: 2840 if (stream->ctx) 2841 oa_put_render_ctx_id(stream); 2842 2843 return ret; 2844 } 2845 2846 void i915_oa_init_reg_state(const struct intel_context *ce, 2847 const struct intel_engine_cs *engine) 2848 { 2849 struct i915_perf_stream *stream; 2850 2851 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 2852 2853 if (engine->class != RENDER_CLASS) 2854 return; 2855 2856 stream = engine->i915->perf.exclusive_stream; 2857 if (stream) 2858 gen8_update_reg_state_unlocked(ce, stream); 2859 } 2860 2861 /** 2862 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation 2863 * @stream: An i915 perf stream 2864 * @file: An i915 perf stream file 2865 * @buf: destination buffer given by userspace 2866 * @count: the number of bytes userspace wants to read 2867 * @ppos: (inout) file seek position (unused) 2868 * 2869 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to 2870 * ensure that if we've successfully copied any data then reporting that takes 2871 * precedence over any internal error status, so the data isn't lost. 2872 * 2873 * For example ret will be -ENOSPC whenever there is more buffered data than 2874 * can be copied to userspace, but that's only interesting if we weren't able 2875 * to copy some data because it implies the userspace buffer is too small to 2876 * receive a single record (and we never split records). 2877 * 2878 * Another case with ret == -EFAULT is more of a grey area since it would seem 2879 * like bad form for userspace to ask us to overrun its buffer, but the user 2880 * knows best: 2881 * 2882 * http://yarchive.net/comp/linux/partial_reads_writes.html 2883 * 2884 * Returns: The number of bytes copied or a negative error code on failure. 2885 */ 2886 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream, 2887 struct file *file, 2888 char __user *buf, 2889 size_t count, 2890 loff_t *ppos) 2891 { 2892 /* Note we keep the offset (aka bytes read) separate from any 2893 * error status so that the final check for whether we return 2894 * the bytes read with a higher precedence than any error (see 2895 * comment below) doesn't need to be handled/duplicated in 2896 * stream->ops->read() implementations. 2897 */ 2898 size_t offset = 0; 2899 int ret = stream->ops->read(stream, buf, count, &offset); 2900 2901 return offset ?: (ret ?: -EAGAIN); 2902 } 2903 2904 /** 2905 * i915_perf_read - handles read() FOP for i915 perf stream FDs 2906 * @file: An i915 perf stream file 2907 * @buf: destination buffer given by userspace 2908 * @count: the number of bytes userspace wants to read 2909 * @ppos: (inout) file seek position (unused) 2910 * 2911 * The entry point for handling a read() on a stream file descriptor from 2912 * userspace. Most of the work is left to the i915_perf_read_locked() and 2913 * &i915_perf_stream_ops->read but to save having stream implementations (of 2914 * which we might have multiple later) we handle blocking read here. 2915 * 2916 * We can also consistently treat trying to read from a disabled stream 2917 * as an IO error so implementations can assume the stream is enabled 2918 * while reading. 2919 * 2920 * Returns: The number of bytes copied or a negative error code on failure. 2921 */ 2922 static ssize_t i915_perf_read(struct file *file, 2923 char __user *buf, 2924 size_t count, 2925 loff_t *ppos) 2926 { 2927 struct i915_perf_stream *stream = file->private_data; 2928 struct i915_perf *perf = stream->perf; 2929 ssize_t ret; 2930 2931 /* To ensure it's handled consistently we simply treat all reads of a 2932 * disabled stream as an error. In particular it might otherwise lead 2933 * to a deadlock for blocking file descriptors... 2934 */ 2935 if (!stream->enabled) 2936 return -EIO; 2937 2938 if (!(file->f_flags & O_NONBLOCK)) { 2939 /* There's the small chance of false positives from 2940 * stream->ops->wait_unlocked. 2941 * 2942 * E.g. with single context filtering since we only wait until 2943 * oabuffer has >= 1 report we don't immediately know whether 2944 * any reports really belong to the current context 2945 */ 2946 do { 2947 ret = stream->ops->wait_unlocked(stream); 2948 if (ret) 2949 return ret; 2950 2951 mutex_lock(&perf->lock); 2952 ret = i915_perf_read_locked(stream, file, 2953 buf, count, ppos); 2954 mutex_unlock(&perf->lock); 2955 } while (ret == -EAGAIN); 2956 } else { 2957 mutex_lock(&perf->lock); 2958 ret = i915_perf_read_locked(stream, file, buf, count, ppos); 2959 mutex_unlock(&perf->lock); 2960 } 2961 2962 /* We allow the poll checking to sometimes report false positive EPOLLIN 2963 * events where we might actually report EAGAIN on read() if there's 2964 * not really any data available. In this situation though we don't 2965 * want to enter a busy loop between poll() reporting a EPOLLIN event 2966 * and read() returning -EAGAIN. Clearing the oa.pollin state here 2967 * effectively ensures we back off until the next hrtimer callback 2968 * before reporting another EPOLLIN event. 2969 */ 2970 if (ret >= 0 || ret == -EAGAIN) { 2971 /* Maybe make ->pollin per-stream state if we support multiple 2972 * concurrent streams in the future. 2973 */ 2974 stream->pollin = false; 2975 } 2976 2977 return ret; 2978 } 2979 2980 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 2981 { 2982 struct i915_perf_stream *stream = 2983 container_of(hrtimer, typeof(*stream), poll_check_timer); 2984 2985 if (oa_buffer_check_unlocked(stream)) { 2986 stream->pollin = true; 2987 wake_up(&stream->poll_wq); 2988 } 2989 2990 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD)); 2991 2992 return HRTIMER_RESTART; 2993 } 2994 2995 /** 2996 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 2997 * @stream: An i915 perf stream 2998 * @file: An i915 perf stream file 2999 * @wait: poll() state table 3000 * 3001 * For handling userspace polling on an i915 perf stream, this calls through to 3002 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3003 * will be woken for new stream data. 3004 * 3005 * Note: The &perf->lock mutex has been taken to serialize 3006 * with any non-file-operation driver hooks. 3007 * 3008 * Returns: any poll events that are ready without sleeping 3009 */ 3010 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3011 struct file *file, 3012 poll_table *wait) 3013 { 3014 __poll_t events = 0; 3015 3016 stream->ops->poll_wait(stream, file, wait); 3017 3018 /* Note: we don't explicitly check whether there's something to read 3019 * here since this path may be very hot depending on what else 3020 * userspace is polling, or on the timeout in use. We rely solely on 3021 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3022 * samples to read. 3023 */ 3024 if (stream->pollin) 3025 events |= EPOLLIN; 3026 3027 return events; 3028 } 3029 3030 /** 3031 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3032 * @file: An i915 perf stream file 3033 * @wait: poll() state table 3034 * 3035 * For handling userspace polling on an i915 perf stream, this ensures 3036 * poll_wait() gets called with a wait queue that will be woken for new stream 3037 * data. 3038 * 3039 * Note: Implementation deferred to i915_perf_poll_locked() 3040 * 3041 * Returns: any poll events that are ready without sleeping 3042 */ 3043 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3044 { 3045 struct i915_perf_stream *stream = file->private_data; 3046 struct i915_perf *perf = stream->perf; 3047 __poll_t ret; 3048 3049 mutex_lock(&perf->lock); 3050 ret = i915_perf_poll_locked(stream, file, wait); 3051 mutex_unlock(&perf->lock); 3052 3053 return ret; 3054 } 3055 3056 /** 3057 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3058 * @stream: A disabled i915 perf stream 3059 * 3060 * [Re]enables the associated capture of data for this stream. 3061 * 3062 * If a stream was previously enabled then there's currently no intention 3063 * to provide userspace any guarantee about the preservation of previously 3064 * buffered data. 3065 */ 3066 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3067 { 3068 if (stream->enabled) 3069 return; 3070 3071 /* Allow stream->ops->enable() to refer to this */ 3072 stream->enabled = true; 3073 3074 if (stream->ops->enable) 3075 stream->ops->enable(stream); 3076 3077 if (stream->hold_preemption) 3078 i915_gem_context_set_nopreempt(stream->ctx); 3079 } 3080 3081 /** 3082 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3083 * @stream: An enabled i915 perf stream 3084 * 3085 * Disables the associated capture of data for this stream. 3086 * 3087 * The intention is that disabling an re-enabling a stream will ideally be 3088 * cheaper than destroying and re-opening a stream with the same configuration, 3089 * though there are no formal guarantees about what state or buffered data 3090 * must be retained between disabling and re-enabling a stream. 3091 * 3092 * Note: while a stream is disabled it's considered an error for userspace 3093 * to attempt to read from the stream (-EIO). 3094 */ 3095 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3096 { 3097 if (!stream->enabled) 3098 return; 3099 3100 /* Allow stream->ops->disable() to refer to this */ 3101 stream->enabled = false; 3102 3103 if (stream->hold_preemption) 3104 i915_gem_context_clear_nopreempt(stream->ctx); 3105 3106 if (stream->ops->disable) 3107 stream->ops->disable(stream); 3108 } 3109 3110 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3111 unsigned long metrics_set) 3112 { 3113 struct i915_oa_config *config; 3114 long ret = stream->oa_config->id; 3115 3116 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3117 if (!config) 3118 return -EINVAL; 3119 3120 if (config != stream->oa_config) { 3121 int err; 3122 3123 /* 3124 * If OA is bound to a specific context, emit the 3125 * reconfiguration inline from that context. The update 3126 * will then be ordered with respect to submission on that 3127 * context. 3128 * 3129 * When set globally, we use a low priority kernel context, 3130 * so it will effectively take effect when idle. 3131 */ 3132 err = emit_oa_config(stream, config, oa_context(stream)); 3133 if (err == 0) 3134 config = xchg(&stream->oa_config, config); 3135 else 3136 ret = err; 3137 } 3138 3139 i915_oa_config_put(config); 3140 3141 return ret; 3142 } 3143 3144 /** 3145 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3146 * @stream: An i915 perf stream 3147 * @cmd: the ioctl request 3148 * @arg: the ioctl data 3149 * 3150 * Note: The &perf->lock mutex has been taken to serialize 3151 * with any non-file-operation driver hooks. 3152 * 3153 * Returns: zero on success or a negative error code. Returns -EINVAL for 3154 * an unknown ioctl request. 3155 */ 3156 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3157 unsigned int cmd, 3158 unsigned long arg) 3159 { 3160 switch (cmd) { 3161 case I915_PERF_IOCTL_ENABLE: 3162 i915_perf_enable_locked(stream); 3163 return 0; 3164 case I915_PERF_IOCTL_DISABLE: 3165 i915_perf_disable_locked(stream); 3166 return 0; 3167 case I915_PERF_IOCTL_CONFIG: 3168 return i915_perf_config_locked(stream, arg); 3169 } 3170 3171 return -EINVAL; 3172 } 3173 3174 /** 3175 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3176 * @file: An i915 perf stream file 3177 * @cmd: the ioctl request 3178 * @arg: the ioctl data 3179 * 3180 * Implementation deferred to i915_perf_ioctl_locked(). 3181 * 3182 * Returns: zero on success or a negative error code. Returns -EINVAL for 3183 * an unknown ioctl request. 3184 */ 3185 static long i915_perf_ioctl(struct file *file, 3186 unsigned int cmd, 3187 unsigned long arg) 3188 { 3189 struct i915_perf_stream *stream = file->private_data; 3190 struct i915_perf *perf = stream->perf; 3191 long ret; 3192 3193 mutex_lock(&perf->lock); 3194 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3195 mutex_unlock(&perf->lock); 3196 3197 return ret; 3198 } 3199 3200 /** 3201 * i915_perf_destroy_locked - destroy an i915 perf stream 3202 * @stream: An i915 perf stream 3203 * 3204 * Frees all resources associated with the given i915 perf @stream, disabling 3205 * any associated data capture in the process. 3206 * 3207 * Note: The &perf->lock mutex has been taken to serialize 3208 * with any non-file-operation driver hooks. 3209 */ 3210 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3211 { 3212 if (stream->enabled) 3213 i915_perf_disable_locked(stream); 3214 3215 if (stream->ops->destroy) 3216 stream->ops->destroy(stream); 3217 3218 if (stream->ctx) 3219 i915_gem_context_put(stream->ctx); 3220 3221 kfree(stream); 3222 } 3223 3224 /** 3225 * i915_perf_release - handles userspace close() of a stream file 3226 * @inode: anonymous inode associated with file 3227 * @file: An i915 perf stream file 3228 * 3229 * Cleans up any resources associated with an open i915 perf stream file. 3230 * 3231 * NB: close() can't really fail from the userspace point of view. 3232 * 3233 * Returns: zero on success or a negative error code. 3234 */ 3235 static int i915_perf_release(struct inode *inode, struct file *file) 3236 { 3237 struct i915_perf_stream *stream = file->private_data; 3238 struct i915_perf *perf = stream->perf; 3239 3240 mutex_lock(&perf->lock); 3241 i915_perf_destroy_locked(stream); 3242 mutex_unlock(&perf->lock); 3243 3244 /* Release the reference the perf stream kept on the driver. */ 3245 drm_dev_put(&perf->i915->drm); 3246 3247 return 0; 3248 } 3249 3250 3251 static const struct file_operations fops = { 3252 .owner = THIS_MODULE, 3253 .llseek = no_llseek, 3254 .release = i915_perf_release, 3255 .poll = i915_perf_poll, 3256 .read = i915_perf_read, 3257 .unlocked_ioctl = i915_perf_ioctl, 3258 /* Our ioctl have no arguments, so it's safe to use the same function 3259 * to handle 32bits compatibility. 3260 */ 3261 .compat_ioctl = i915_perf_ioctl, 3262 }; 3263 3264 3265 /** 3266 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3267 * @perf: i915 perf instance 3268 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3269 * @props: individually validated u64 property value pairs 3270 * @file: drm file 3271 * 3272 * See i915_perf_ioctl_open() for interface details. 3273 * 3274 * Implements further stream config validation and stream initialization on 3275 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex 3276 * taken to serialize with any non-file-operation driver hooks. 3277 * 3278 * Note: at this point the @props have only been validated in isolation and 3279 * it's still necessary to validate that the combination of properties makes 3280 * sense. 3281 * 3282 * In the case where userspace is interested in OA unit metrics then further 3283 * config validation and stream initialization details will be handled by 3284 * i915_oa_stream_init(). The code here should only validate config state that 3285 * will be relevant to all stream types / backends. 3286 * 3287 * Returns: zero on success or a negative error code. 3288 */ 3289 static int 3290 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3291 struct drm_i915_perf_open_param *param, 3292 struct perf_open_properties *props, 3293 struct drm_file *file) 3294 { 3295 struct i915_gem_context *specific_ctx = NULL; 3296 struct i915_perf_stream *stream = NULL; 3297 unsigned long f_flags = 0; 3298 bool privileged_op = true; 3299 int stream_fd; 3300 int ret; 3301 3302 if (props->single_context) { 3303 u32 ctx_handle = props->ctx_handle; 3304 struct drm_i915_file_private *file_priv = file->driver_priv; 3305 3306 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3307 if (!specific_ctx) { 3308 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 3309 ctx_handle); 3310 ret = -ENOENT; 3311 goto err; 3312 } 3313 } 3314 3315 /* 3316 * On Haswell the OA unit supports clock gating off for a specific 3317 * context and in this mode there's no visibility of metrics for the 3318 * rest of the system, which we consider acceptable for a 3319 * non-privileged client. 3320 * 3321 * For Gen8->11 the OA unit no longer supports clock gating off for a 3322 * specific context and the kernel can't securely stop the counters 3323 * from updating as system-wide / global values. Even though we can 3324 * filter reports based on the included context ID we can't block 3325 * clients from seeing the raw / global counter values via 3326 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3327 * enable the OA unit by default. 3328 * 3329 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3330 * per context basis. So we can relax requirements there if the user 3331 * doesn't request global stream access (i.e. query based sampling 3332 * using MI_RECORD_PERF_COUNT. 3333 */ 3334 if (IS_HASWELL(perf->i915) && specific_ctx) 3335 privileged_op = false; 3336 else if (IS_GEN(perf->i915, 12) && specific_ctx && 3337 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3338 privileged_op = false; 3339 3340 if (props->hold_preemption) { 3341 if (!props->single_context) { 3342 DRM_DEBUG("preemption disable with no context\n"); 3343 ret = -EINVAL; 3344 goto err; 3345 } 3346 privileged_op = true; 3347 } 3348 3349 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3350 * we check a dev.i915.perf_stream_paranoid sysctl option 3351 * to determine if it's ok to access system wide OA counters 3352 * without CAP_SYS_ADMIN privileges. 3353 */ 3354 if (privileged_op && 3355 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3356 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n"); 3357 ret = -EACCES; 3358 goto err_ctx; 3359 } 3360 3361 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3362 if (!stream) { 3363 ret = -ENOMEM; 3364 goto err_ctx; 3365 } 3366 3367 stream->perf = perf; 3368 stream->ctx = specific_ctx; 3369 3370 ret = i915_oa_stream_init(stream, param, props); 3371 if (ret) 3372 goto err_alloc; 3373 3374 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3375 * to have _stream_init check the combination of sample flags more 3376 * thoroughly, but still this is the expected result at this point. 3377 */ 3378 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3379 ret = -ENODEV; 3380 goto err_flags; 3381 } 3382 3383 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3384 f_flags |= O_CLOEXEC; 3385 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3386 f_flags |= O_NONBLOCK; 3387 3388 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3389 if (stream_fd < 0) { 3390 ret = stream_fd; 3391 goto err_flags; 3392 } 3393 3394 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3395 i915_perf_enable_locked(stream); 3396 3397 /* Take a reference on the driver that will be kept with stream_fd 3398 * until its release. 3399 */ 3400 drm_dev_get(&perf->i915->drm); 3401 3402 return stream_fd; 3403 3404 err_flags: 3405 if (stream->ops->destroy) 3406 stream->ops->destroy(stream); 3407 err_alloc: 3408 kfree(stream); 3409 err_ctx: 3410 if (specific_ctx) 3411 i915_gem_context_put(specific_ctx); 3412 err: 3413 return ret; 3414 } 3415 3416 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3417 { 3418 return div64_u64(1000000000ULL * (2ULL << exponent), 3419 1000ULL * RUNTIME_INFO(perf->i915)->cs_timestamp_frequency_khz); 3420 } 3421 3422 /** 3423 * read_properties_unlocked - validate + copy userspace stream open properties 3424 * @perf: i915 perf instance 3425 * @uprops: The array of u64 key value pairs given by userspace 3426 * @n_props: The number of key value pairs expected in @uprops 3427 * @props: The stream configuration built up while validating properties 3428 * 3429 * Note this function only validates properties in isolation it doesn't 3430 * validate that the combination of properties makes sense or that all 3431 * properties necessary for a particular kind of stream have been set. 3432 * 3433 * Note that there currently aren't any ordering requirements for properties so 3434 * we shouldn't validate or assume anything about ordering here. This doesn't 3435 * rule out defining new properties with ordering requirements in the future. 3436 */ 3437 static int read_properties_unlocked(struct i915_perf *perf, 3438 u64 __user *uprops, 3439 u32 n_props, 3440 struct perf_open_properties *props) 3441 { 3442 u64 __user *uprop = uprops; 3443 u32 i; 3444 3445 memset(props, 0, sizeof(struct perf_open_properties)); 3446 3447 if (!n_props) { 3448 DRM_DEBUG("No i915 perf properties given\n"); 3449 return -EINVAL; 3450 } 3451 3452 /* At the moment we only support using i915-perf on the RCS. */ 3453 props->engine = intel_engine_lookup_user(perf->i915, 3454 I915_ENGINE_CLASS_RENDER, 3455 0); 3456 if (!props->engine) { 3457 DRM_DEBUG("No RENDER-capable engines\n"); 3458 return -EINVAL; 3459 } 3460 3461 /* Considering that ID = 0 is reserved and assuming that we don't 3462 * (currently) expect any configurations to ever specify duplicate 3463 * values for a particular property ID then the last _PROP_MAX value is 3464 * one greater than the maximum number of properties we expect to get 3465 * from userspace. 3466 */ 3467 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3468 DRM_DEBUG("More i915 perf properties specified than exist\n"); 3469 return -EINVAL; 3470 } 3471 3472 for (i = 0; i < n_props; i++) { 3473 u64 oa_period, oa_freq_hz; 3474 u64 id, value; 3475 int ret; 3476 3477 ret = get_user(id, uprop); 3478 if (ret) 3479 return ret; 3480 3481 ret = get_user(value, uprop + 1); 3482 if (ret) 3483 return ret; 3484 3485 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3486 DRM_DEBUG("Unknown i915 perf property ID\n"); 3487 return -EINVAL; 3488 } 3489 3490 switch ((enum drm_i915_perf_property_id)id) { 3491 case DRM_I915_PERF_PROP_CTX_HANDLE: 3492 props->single_context = 1; 3493 props->ctx_handle = value; 3494 break; 3495 case DRM_I915_PERF_PROP_SAMPLE_OA: 3496 if (value) 3497 props->sample_flags |= SAMPLE_OA_REPORT; 3498 break; 3499 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3500 if (value == 0) { 3501 DRM_DEBUG("Unknown OA metric set ID\n"); 3502 return -EINVAL; 3503 } 3504 props->metrics_set = value; 3505 break; 3506 case DRM_I915_PERF_PROP_OA_FORMAT: 3507 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3508 DRM_DEBUG("Out-of-range OA report format %llu\n", 3509 value); 3510 return -EINVAL; 3511 } 3512 if (!perf->oa_formats[value].size) { 3513 DRM_DEBUG("Unsupported OA report format %llu\n", 3514 value); 3515 return -EINVAL; 3516 } 3517 props->oa_format = value; 3518 break; 3519 case DRM_I915_PERF_PROP_OA_EXPONENT: 3520 if (value > OA_EXPONENT_MAX) { 3521 DRM_DEBUG("OA timer exponent too high (> %u)\n", 3522 OA_EXPONENT_MAX); 3523 return -EINVAL; 3524 } 3525 3526 /* Theoretically we can program the OA unit to sample 3527 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 3528 * for BXT. We don't allow such high sampling 3529 * frequencies by default unless root. 3530 */ 3531 3532 BUILD_BUG_ON(sizeof(oa_period) != 8); 3533 oa_period = oa_exponent_to_ns(perf, value); 3534 3535 /* This check is primarily to ensure that oa_period <= 3536 * UINT32_MAX (before passing to do_div which only 3537 * accepts a u32 denominator), but we can also skip 3538 * checking anything < 1Hz which implicitly can't be 3539 * limited via an integer oa_max_sample_rate. 3540 */ 3541 if (oa_period <= NSEC_PER_SEC) { 3542 u64 tmp = NSEC_PER_SEC; 3543 do_div(tmp, oa_period); 3544 oa_freq_hz = tmp; 3545 } else 3546 oa_freq_hz = 0; 3547 3548 if (oa_freq_hz > i915_oa_max_sample_rate && 3549 !capable(CAP_SYS_ADMIN)) { 3550 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n", 3551 i915_oa_max_sample_rate); 3552 return -EACCES; 3553 } 3554 3555 props->oa_periodic = true; 3556 props->oa_period_exponent = value; 3557 break; 3558 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 3559 props->hold_preemption = !!value; 3560 break; 3561 case DRM_I915_PERF_PROP_MAX: 3562 MISSING_CASE(id); 3563 return -EINVAL; 3564 } 3565 3566 uprop += 2; 3567 } 3568 3569 return 0; 3570 } 3571 3572 /** 3573 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 3574 * @dev: drm device 3575 * @data: ioctl data copied from userspace (unvalidated) 3576 * @file: drm file 3577 * 3578 * Validates the stream open parameters given by userspace including flags 3579 * and an array of u64 key, value pair properties. 3580 * 3581 * Very little is assumed up front about the nature of the stream being 3582 * opened (for instance we don't assume it's for periodic OA unit metrics). An 3583 * i915-perf stream is expected to be a suitable interface for other forms of 3584 * buffered data written by the GPU besides periodic OA metrics. 3585 * 3586 * Note we copy the properties from userspace outside of the i915 perf 3587 * mutex to avoid an awkward lockdep with mmap_sem. 3588 * 3589 * Most of the implementation details are handled by 3590 * i915_perf_open_ioctl_locked() after taking the &perf->lock 3591 * mutex for serializing with any non-file-operation driver hooks. 3592 * 3593 * Return: A newly opened i915 Perf stream file descriptor or negative 3594 * error code on failure. 3595 */ 3596 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3597 struct drm_file *file) 3598 { 3599 struct i915_perf *perf = &to_i915(dev)->perf; 3600 struct drm_i915_perf_open_param *param = data; 3601 struct perf_open_properties props; 3602 u32 known_open_flags; 3603 int ret; 3604 3605 if (!perf->i915) { 3606 DRM_DEBUG("i915 perf interface not available for this system\n"); 3607 return -ENOTSUPP; 3608 } 3609 3610 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3611 I915_PERF_FLAG_FD_NONBLOCK | 3612 I915_PERF_FLAG_DISABLED; 3613 if (param->flags & ~known_open_flags) { 3614 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 3615 return -EINVAL; 3616 } 3617 3618 ret = read_properties_unlocked(perf, 3619 u64_to_user_ptr(param->properties_ptr), 3620 param->num_properties, 3621 &props); 3622 if (ret) 3623 return ret; 3624 3625 mutex_lock(&perf->lock); 3626 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 3627 mutex_unlock(&perf->lock); 3628 3629 return ret; 3630 } 3631 3632 /** 3633 * i915_perf_register - exposes i915-perf to userspace 3634 * @i915: i915 device instance 3635 * 3636 * In particular OA metric sets are advertised under a sysfs metrics/ 3637 * directory allowing userspace to enumerate valid IDs that can be 3638 * used to open an i915-perf stream. 3639 */ 3640 void i915_perf_register(struct drm_i915_private *i915) 3641 { 3642 struct i915_perf *perf = &i915->perf; 3643 int ret; 3644 3645 if (!perf->i915) 3646 return; 3647 3648 /* To be sure we're synchronized with an attempted 3649 * i915_perf_open_ioctl(); considering that we register after 3650 * being exposed to userspace. 3651 */ 3652 mutex_lock(&perf->lock); 3653 3654 perf->metrics_kobj = 3655 kobject_create_and_add("metrics", 3656 &i915->drm.primary->kdev->kobj); 3657 if (!perf->metrics_kobj) 3658 goto exit; 3659 3660 sysfs_attr_init(&perf->test_config.sysfs_metric_id.attr); 3661 3662 if (IS_TIGERLAKE(i915)) { 3663 i915_perf_load_test_config_tgl(i915); 3664 } else if (INTEL_GEN(i915) >= 11) { 3665 i915_perf_load_test_config_icl(i915); 3666 } else if (IS_CANNONLAKE(i915)) { 3667 i915_perf_load_test_config_cnl(i915); 3668 } else if (IS_COFFEELAKE(i915)) { 3669 if (IS_CFL_GT2(i915)) 3670 i915_perf_load_test_config_cflgt2(i915); 3671 if (IS_CFL_GT3(i915)) 3672 i915_perf_load_test_config_cflgt3(i915); 3673 } else if (IS_GEMINILAKE(i915)) { 3674 i915_perf_load_test_config_glk(i915); 3675 } else if (IS_KABYLAKE(i915)) { 3676 if (IS_KBL_GT2(i915)) 3677 i915_perf_load_test_config_kblgt2(i915); 3678 else if (IS_KBL_GT3(i915)) 3679 i915_perf_load_test_config_kblgt3(i915); 3680 } else if (IS_BROXTON(i915)) { 3681 i915_perf_load_test_config_bxt(i915); 3682 } else if (IS_SKYLAKE(i915)) { 3683 if (IS_SKL_GT2(i915)) 3684 i915_perf_load_test_config_sklgt2(i915); 3685 else if (IS_SKL_GT3(i915)) 3686 i915_perf_load_test_config_sklgt3(i915); 3687 else if (IS_SKL_GT4(i915)) 3688 i915_perf_load_test_config_sklgt4(i915); 3689 } else if (IS_CHERRYVIEW(i915)) { 3690 i915_perf_load_test_config_chv(i915); 3691 } else if (IS_BROADWELL(i915)) { 3692 i915_perf_load_test_config_bdw(i915); 3693 } else if (IS_HASWELL(i915)) { 3694 i915_perf_load_test_config_hsw(i915); 3695 } 3696 3697 if (perf->test_config.id == 0) 3698 goto sysfs_error; 3699 3700 ret = sysfs_create_group(perf->metrics_kobj, 3701 &perf->test_config.sysfs_metric); 3702 if (ret) 3703 goto sysfs_error; 3704 3705 perf->test_config.perf = perf; 3706 kref_init(&perf->test_config.ref); 3707 3708 goto exit; 3709 3710 sysfs_error: 3711 kobject_put(perf->metrics_kobj); 3712 perf->metrics_kobj = NULL; 3713 3714 exit: 3715 mutex_unlock(&perf->lock); 3716 } 3717 3718 /** 3719 * i915_perf_unregister - hide i915-perf from userspace 3720 * @i915: i915 device instance 3721 * 3722 * i915-perf state cleanup is split up into an 'unregister' and 3723 * 'deinit' phase where the interface is first hidden from 3724 * userspace by i915_perf_unregister() before cleaning up 3725 * remaining state in i915_perf_fini(). 3726 */ 3727 void i915_perf_unregister(struct drm_i915_private *i915) 3728 { 3729 struct i915_perf *perf = &i915->perf; 3730 3731 if (!perf->metrics_kobj) 3732 return; 3733 3734 sysfs_remove_group(perf->metrics_kobj, 3735 &perf->test_config.sysfs_metric); 3736 3737 kobject_put(perf->metrics_kobj); 3738 perf->metrics_kobj = NULL; 3739 } 3740 3741 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 3742 { 3743 static const i915_reg_t flex_eu_regs[] = { 3744 EU_PERF_CNTL0, 3745 EU_PERF_CNTL1, 3746 EU_PERF_CNTL2, 3747 EU_PERF_CNTL3, 3748 EU_PERF_CNTL4, 3749 EU_PERF_CNTL5, 3750 EU_PERF_CNTL6, 3751 }; 3752 int i; 3753 3754 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3755 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3756 return true; 3757 } 3758 return false; 3759 } 3760 3761 #define ADDR_IN_RANGE(addr, start, end) \ 3762 ((addr) >= (start) && \ 3763 (addr) <= (end)) 3764 3765 #define REG_IN_RANGE(addr, start, end) \ 3766 ((addr) >= i915_mmio_reg_offset(start) && \ 3767 (addr) <= i915_mmio_reg_offset(end)) 3768 3769 #define REG_EQUAL(addr, mmio) \ 3770 ((addr) == i915_mmio_reg_offset(mmio)) 3771 3772 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3773 { 3774 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) || 3775 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) || 3776 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1); 3777 } 3778 3779 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3780 { 3781 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) || 3782 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) || 3783 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) || 3784 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI); 3785 } 3786 3787 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3788 { 3789 return gen7_is_valid_mux_addr(perf, addr) || 3790 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3791 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8)); 3792 } 3793 3794 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3795 { 3796 return gen8_is_valid_mux_addr(perf, addr) || 3797 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3798 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI); 3799 } 3800 3801 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3802 { 3803 return gen7_is_valid_mux_addr(perf, addr) || 3804 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) || 3805 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) || 3806 REG_EQUAL(addr, HSW_MBVID2_MISR0); 3807 } 3808 3809 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3810 { 3811 return gen7_is_valid_mux_addr(perf, addr) || 3812 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4); 3813 } 3814 3815 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3816 { 3817 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) || 3818 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) || 3819 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) || 3820 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) || 3821 REG_EQUAL(addr, GEN12_OAA_DBG_REG) || 3822 REG_EQUAL(addr, GEN12_OAG_OA_PESS) || 3823 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF); 3824 } 3825 3826 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3827 { 3828 return REG_EQUAL(addr, NOA_WRITE) || 3829 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3830 REG_EQUAL(addr, GDT_CHICKEN_BITS) || 3831 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3832 REG_EQUAL(addr, RPM_CONFIG0) || 3833 REG_EQUAL(addr, RPM_CONFIG1) || 3834 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8)); 3835 } 3836 3837 static u32 mask_reg_value(u32 reg, u32 val) 3838 { 3839 /* HALF_SLICE_CHICKEN2 is programmed with a the 3840 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3841 * programmed by userspace doesn't change this. 3842 */ 3843 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 3844 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3845 3846 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3847 * indicated by its name and a bunch of selection fields used by OA 3848 * configs. 3849 */ 3850 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 3851 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3852 3853 return val; 3854 } 3855 3856 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 3857 bool (*is_valid)(struct i915_perf *perf, u32 addr), 3858 u32 __user *regs, 3859 u32 n_regs) 3860 { 3861 struct i915_oa_reg *oa_regs; 3862 int err; 3863 u32 i; 3864 3865 if (!n_regs) 3866 return NULL; 3867 3868 if (!access_ok(regs, n_regs * sizeof(u32) * 2)) 3869 return ERR_PTR(-EFAULT); 3870 3871 /* No is_valid function means we're not allowing any register to be programmed. */ 3872 GEM_BUG_ON(!is_valid); 3873 if (!is_valid) 3874 return ERR_PTR(-EINVAL); 3875 3876 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3877 if (!oa_regs) 3878 return ERR_PTR(-ENOMEM); 3879 3880 for (i = 0; i < n_regs; i++) { 3881 u32 addr, value; 3882 3883 err = get_user(addr, regs); 3884 if (err) 3885 goto addr_err; 3886 3887 if (!is_valid(perf, addr)) { 3888 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3889 err = -EINVAL; 3890 goto addr_err; 3891 } 3892 3893 err = get_user(value, regs + 1); 3894 if (err) 3895 goto addr_err; 3896 3897 oa_regs[i].addr = _MMIO(addr); 3898 oa_regs[i].value = mask_reg_value(addr, value); 3899 3900 regs += 2; 3901 } 3902 3903 return oa_regs; 3904 3905 addr_err: 3906 kfree(oa_regs); 3907 return ERR_PTR(err); 3908 } 3909 3910 static ssize_t show_dynamic_id(struct device *dev, 3911 struct device_attribute *attr, 3912 char *buf) 3913 { 3914 struct i915_oa_config *oa_config = 3915 container_of(attr, typeof(*oa_config), sysfs_metric_id); 3916 3917 return sprintf(buf, "%d\n", oa_config->id); 3918 } 3919 3920 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 3921 struct i915_oa_config *oa_config) 3922 { 3923 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 3924 oa_config->sysfs_metric_id.attr.name = "id"; 3925 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 3926 oa_config->sysfs_metric_id.show = show_dynamic_id; 3927 oa_config->sysfs_metric_id.store = NULL; 3928 3929 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 3930 oa_config->attrs[1] = NULL; 3931 3932 oa_config->sysfs_metric.name = oa_config->uuid; 3933 oa_config->sysfs_metric.attrs = oa_config->attrs; 3934 3935 return sysfs_create_group(perf->metrics_kobj, 3936 &oa_config->sysfs_metric); 3937 } 3938 3939 /** 3940 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 3941 * @dev: drm device 3942 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 3943 * userspace (unvalidated) 3944 * @file: drm file 3945 * 3946 * Validates the submitted OA register to be saved into a new OA config that 3947 * can then be used for programming the OA unit and its NOA network. 3948 * 3949 * Returns: A new allocated config number to be used with the perf open ioctl 3950 * or a negative error code on failure. 3951 */ 3952 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3953 struct drm_file *file) 3954 { 3955 struct i915_perf *perf = &to_i915(dev)->perf; 3956 struct drm_i915_perf_oa_config *args = data; 3957 struct i915_oa_config *oa_config, *tmp; 3958 static struct i915_oa_reg *regs; 3959 int err, id; 3960 3961 if (!perf->i915) { 3962 DRM_DEBUG("i915 perf interface not available for this system\n"); 3963 return -ENOTSUPP; 3964 } 3965 3966 if (!perf->metrics_kobj) { 3967 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 3968 return -EINVAL; 3969 } 3970 3971 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3972 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 3973 return -EACCES; 3974 } 3975 3976 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 3977 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 3978 (!args->flex_regs_ptr || !args->n_flex_regs)) { 3979 DRM_DEBUG("No OA registers given\n"); 3980 return -EINVAL; 3981 } 3982 3983 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 3984 if (!oa_config) { 3985 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 3986 return -ENOMEM; 3987 } 3988 3989 oa_config->perf = perf; 3990 kref_init(&oa_config->ref); 3991 3992 if (!uuid_is_valid(args->uuid)) { 3993 DRM_DEBUG("Invalid uuid format for OA config\n"); 3994 err = -EINVAL; 3995 goto reg_err; 3996 } 3997 3998 /* Last character in oa_config->uuid will be 0 because oa_config is 3999 * kzalloc. 4000 */ 4001 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4002 4003 oa_config->mux_regs_len = args->n_mux_regs; 4004 regs = alloc_oa_regs(perf, 4005 perf->ops.is_valid_mux_reg, 4006 u64_to_user_ptr(args->mux_regs_ptr), 4007 args->n_mux_regs); 4008 4009 if (IS_ERR(regs)) { 4010 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 4011 err = PTR_ERR(regs); 4012 goto reg_err; 4013 } 4014 oa_config->mux_regs = regs; 4015 4016 oa_config->b_counter_regs_len = args->n_boolean_regs; 4017 regs = alloc_oa_regs(perf, 4018 perf->ops.is_valid_b_counter_reg, 4019 u64_to_user_ptr(args->boolean_regs_ptr), 4020 args->n_boolean_regs); 4021 4022 if (IS_ERR(regs)) { 4023 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 4024 err = PTR_ERR(regs); 4025 goto reg_err; 4026 } 4027 oa_config->b_counter_regs = regs; 4028 4029 if (INTEL_GEN(perf->i915) < 8) { 4030 if (args->n_flex_regs != 0) { 4031 err = -EINVAL; 4032 goto reg_err; 4033 } 4034 } else { 4035 oa_config->flex_regs_len = args->n_flex_regs; 4036 regs = alloc_oa_regs(perf, 4037 perf->ops.is_valid_flex_reg, 4038 u64_to_user_ptr(args->flex_regs_ptr), 4039 args->n_flex_regs); 4040 4041 if (IS_ERR(regs)) { 4042 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 4043 err = PTR_ERR(regs); 4044 goto reg_err; 4045 } 4046 oa_config->flex_regs = regs; 4047 } 4048 4049 err = mutex_lock_interruptible(&perf->metrics_lock); 4050 if (err) 4051 goto reg_err; 4052 4053 /* We shouldn't have too many configs, so this iteration shouldn't be 4054 * too costly. 4055 */ 4056 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4057 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4058 DRM_DEBUG("OA config already exists with this uuid\n"); 4059 err = -EADDRINUSE; 4060 goto sysfs_err; 4061 } 4062 } 4063 4064 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4065 if (err) { 4066 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4067 goto sysfs_err; 4068 } 4069 4070 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4071 oa_config->id = idr_alloc(&perf->metrics_idr, 4072 oa_config, 2, 4073 0, GFP_KERNEL); 4074 if (oa_config->id < 0) { 4075 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4076 err = oa_config->id; 4077 goto sysfs_err; 4078 } 4079 4080 mutex_unlock(&perf->metrics_lock); 4081 4082 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4083 4084 return oa_config->id; 4085 4086 sysfs_err: 4087 mutex_unlock(&perf->metrics_lock); 4088 reg_err: 4089 i915_oa_config_put(oa_config); 4090 DRM_DEBUG("Failed to add new OA config\n"); 4091 return err; 4092 } 4093 4094 /** 4095 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4096 * @dev: drm device 4097 * @data: ioctl data (pointer to u64 integer) copied from userspace 4098 * @file: drm file 4099 * 4100 * Configs can be removed while being used, the will stop appearing in sysfs 4101 * and their content will be freed when the stream using the config is closed. 4102 * 4103 * Returns: 0 on success or a negative error code on failure. 4104 */ 4105 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4106 struct drm_file *file) 4107 { 4108 struct i915_perf *perf = &to_i915(dev)->perf; 4109 u64 *arg = data; 4110 struct i915_oa_config *oa_config; 4111 int ret; 4112 4113 if (!perf->i915) { 4114 DRM_DEBUG("i915 perf interface not available for this system\n"); 4115 return -ENOTSUPP; 4116 } 4117 4118 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 4119 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 4120 return -EACCES; 4121 } 4122 4123 ret = mutex_lock_interruptible(&perf->metrics_lock); 4124 if (ret) 4125 return ret; 4126 4127 oa_config = idr_find(&perf->metrics_idr, *arg); 4128 if (!oa_config) { 4129 DRM_DEBUG("Failed to remove unknown OA config\n"); 4130 ret = -ENOENT; 4131 goto err_unlock; 4132 } 4133 4134 GEM_BUG_ON(*arg != oa_config->id); 4135 4136 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4137 4138 idr_remove(&perf->metrics_idr, *arg); 4139 4140 mutex_unlock(&perf->metrics_lock); 4141 4142 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4143 4144 i915_oa_config_put(oa_config); 4145 4146 return 0; 4147 4148 err_unlock: 4149 mutex_unlock(&perf->metrics_lock); 4150 return ret; 4151 } 4152 4153 static struct ctl_table oa_table[] = { 4154 { 4155 .procname = "perf_stream_paranoid", 4156 .data = &i915_perf_stream_paranoid, 4157 .maxlen = sizeof(i915_perf_stream_paranoid), 4158 .mode = 0644, 4159 .proc_handler = proc_dointvec_minmax, 4160 .extra1 = SYSCTL_ZERO, 4161 .extra2 = SYSCTL_ONE, 4162 }, 4163 { 4164 .procname = "oa_max_sample_rate", 4165 .data = &i915_oa_max_sample_rate, 4166 .maxlen = sizeof(i915_oa_max_sample_rate), 4167 .mode = 0644, 4168 .proc_handler = proc_dointvec_minmax, 4169 .extra1 = SYSCTL_ZERO, 4170 .extra2 = &oa_sample_rate_hard_limit, 4171 }, 4172 {} 4173 }; 4174 4175 static struct ctl_table i915_root[] = { 4176 { 4177 .procname = "i915", 4178 .maxlen = 0, 4179 .mode = 0555, 4180 .child = oa_table, 4181 }, 4182 {} 4183 }; 4184 4185 static struct ctl_table dev_root[] = { 4186 { 4187 .procname = "dev", 4188 .maxlen = 0, 4189 .mode = 0555, 4190 .child = i915_root, 4191 }, 4192 {} 4193 }; 4194 4195 /** 4196 * i915_perf_init - initialize i915-perf state on module load 4197 * @i915: i915 device instance 4198 * 4199 * Initializes i915-perf state without exposing anything to userspace. 4200 * 4201 * Note: i915-perf initialization is split into an 'init' and 'register' 4202 * phase with the i915_perf_register() exposing state to userspace. 4203 */ 4204 void i915_perf_init(struct drm_i915_private *i915) 4205 { 4206 struct i915_perf *perf = &i915->perf; 4207 4208 /* XXX const struct i915_perf_ops! */ 4209 4210 if (IS_HASWELL(i915)) { 4211 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4212 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4213 perf->ops.is_valid_flex_reg = NULL; 4214 perf->ops.enable_metric_set = hsw_enable_metric_set; 4215 perf->ops.disable_metric_set = hsw_disable_metric_set; 4216 perf->ops.oa_enable = gen7_oa_enable; 4217 perf->ops.oa_disable = gen7_oa_disable; 4218 perf->ops.read = gen7_oa_read; 4219 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4220 4221 perf->oa_formats = hsw_oa_formats; 4222 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4223 /* Note: that although we could theoretically also support the 4224 * legacy ringbuffer mode on BDW (and earlier iterations of 4225 * this driver, before upstreaming did this) it didn't seem 4226 * worth the complexity to maintain now that BDW+ enable 4227 * execlist mode by default. 4228 */ 4229 perf->ops.read = gen8_oa_read; 4230 4231 if (IS_GEN_RANGE(i915, 8, 9)) { 4232 perf->oa_formats = gen8_plus_oa_formats; 4233 4234 perf->ops.is_valid_b_counter_reg = 4235 gen7_is_valid_b_counter_addr; 4236 perf->ops.is_valid_mux_reg = 4237 gen8_is_valid_mux_addr; 4238 perf->ops.is_valid_flex_reg = 4239 gen8_is_valid_flex_addr; 4240 4241 if (IS_CHERRYVIEW(i915)) { 4242 perf->ops.is_valid_mux_reg = 4243 chv_is_valid_mux_addr; 4244 } 4245 4246 perf->ops.oa_enable = gen8_oa_enable; 4247 perf->ops.oa_disable = gen8_oa_disable; 4248 perf->ops.enable_metric_set = gen8_enable_metric_set; 4249 perf->ops.disable_metric_set = gen8_disable_metric_set; 4250 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4251 4252 if (IS_GEN(i915, 8)) { 4253 perf->ctx_oactxctrl_offset = 0x120; 4254 perf->ctx_flexeu0_offset = 0x2ce; 4255 4256 perf->gen8_valid_ctx_bit = BIT(25); 4257 } else { 4258 perf->ctx_oactxctrl_offset = 0x128; 4259 perf->ctx_flexeu0_offset = 0x3de; 4260 4261 perf->gen8_valid_ctx_bit = BIT(16); 4262 } 4263 } else if (IS_GEN_RANGE(i915, 10, 11)) { 4264 perf->oa_formats = gen8_plus_oa_formats; 4265 4266 perf->ops.is_valid_b_counter_reg = 4267 gen7_is_valid_b_counter_addr; 4268 perf->ops.is_valid_mux_reg = 4269 gen10_is_valid_mux_addr; 4270 perf->ops.is_valid_flex_reg = 4271 gen8_is_valid_flex_addr; 4272 4273 perf->ops.oa_enable = gen8_oa_enable; 4274 perf->ops.oa_disable = gen8_oa_disable; 4275 perf->ops.enable_metric_set = gen8_enable_metric_set; 4276 perf->ops.disable_metric_set = gen10_disable_metric_set; 4277 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4278 4279 if (IS_GEN(i915, 10)) { 4280 perf->ctx_oactxctrl_offset = 0x128; 4281 perf->ctx_flexeu0_offset = 0x3de; 4282 } else { 4283 perf->ctx_oactxctrl_offset = 0x124; 4284 perf->ctx_flexeu0_offset = 0x78e; 4285 } 4286 perf->gen8_valid_ctx_bit = BIT(16); 4287 } else if (IS_GEN(i915, 12)) { 4288 perf->oa_formats = gen12_oa_formats; 4289 4290 perf->ops.is_valid_b_counter_reg = 4291 gen12_is_valid_b_counter_addr; 4292 perf->ops.is_valid_mux_reg = 4293 gen12_is_valid_mux_addr; 4294 perf->ops.is_valid_flex_reg = 4295 gen8_is_valid_flex_addr; 4296 4297 perf->ops.oa_enable = gen12_oa_enable; 4298 perf->ops.oa_disable = gen12_oa_disable; 4299 perf->ops.enable_metric_set = gen12_enable_metric_set; 4300 perf->ops.disable_metric_set = gen12_disable_metric_set; 4301 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4302 4303 perf->ctx_flexeu0_offset = 0; 4304 perf->ctx_oactxctrl_offset = 0x144; 4305 } 4306 } 4307 4308 if (perf->ops.enable_metric_set) { 4309 mutex_init(&perf->lock); 4310 4311 oa_sample_rate_hard_limit = 1000 * 4312 (RUNTIME_INFO(i915)->cs_timestamp_frequency_khz / 2); 4313 perf->sysctl_header = register_sysctl_table(dev_root); 4314 4315 mutex_init(&perf->metrics_lock); 4316 idr_init(&perf->metrics_idr); 4317 4318 /* We set up some ratelimit state to potentially throttle any 4319 * _NOTES about spurious, invalid OA reports which we don't 4320 * forward to userspace. 4321 * 4322 * We print a _NOTE about any throttling when closing the 4323 * stream instead of waiting until driver _fini which no one 4324 * would ever see. 4325 * 4326 * Using the same limiting factors as printk_ratelimit() 4327 */ 4328 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4329 /* Since we use a DRM_NOTE for spurious reports it would be 4330 * inconsistent to let __ratelimit() automatically print a 4331 * warning for throttling. 4332 */ 4333 ratelimit_set_flags(&perf->spurious_report_rs, 4334 RATELIMIT_MSG_ON_RELEASE); 4335 4336 atomic64_set(&perf->noa_programming_delay, 4337 500 * 1000 /* 500us */); 4338 4339 perf->i915 = i915; 4340 } 4341 } 4342 4343 static int destroy_config(int id, void *p, void *data) 4344 { 4345 i915_oa_config_put(p); 4346 return 0; 4347 } 4348 4349 /** 4350 * i915_perf_fini - Counter part to i915_perf_init() 4351 * @i915: i915 device instance 4352 */ 4353 void i915_perf_fini(struct drm_i915_private *i915) 4354 { 4355 struct i915_perf *perf = &i915->perf; 4356 4357 if (!perf->i915) 4358 return; 4359 4360 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4361 idr_destroy(&perf->metrics_idr); 4362 4363 unregister_sysctl_table(perf->sysctl_header); 4364 4365 memset(&perf->ops, 0, sizeof(perf->ops)); 4366 perf->i915 = NULL; 4367 } 4368 4369 /** 4370 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4371 * 4372 * This version number is used by userspace to detect available features. 4373 */ 4374 int i915_perf_ioctl_version(void) 4375 { 4376 /* 4377 * 1: Initial version 4378 * I915_PERF_IOCTL_ENABLE 4379 * I915_PERF_IOCTL_DISABLE 4380 * 4381 * 2: Added runtime modification of OA config. 4382 * I915_PERF_IOCTL_CONFIG 4383 * 4384 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4385 * preemption on a particular context so that performance data is 4386 * accessible from a delta of MI_RPC reports without looking at the 4387 * OA buffer. 4388 */ 4389 return 3; 4390 } 4391 4392 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4393 #include "selftests/i915_perf.c" 4394 #endif 4395