xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision c56fb2aa)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/nospec.h>
196 #include <linux/sizes.h>
197 #include <linux/uuid.h>
198 
199 #include "gem/i915_gem_context.h"
200 #include "gem/i915_gem_internal.h"
201 #include "gt/intel_engine_pm.h"
202 #include "gt/intel_engine_regs.h"
203 #include "gt/intel_engine_user.h"
204 #include "gt/intel_execlists_submission.h"
205 #include "gt/intel_gpu_commands.h"
206 #include "gt/intel_gt.h"
207 #include "gt/intel_gt_clock_utils.h"
208 #include "gt/intel_gt_mcr.h"
209 #include "gt/intel_gt_regs.h"
210 #include "gt/intel_lrc.h"
211 #include "gt/intel_lrc_reg.h"
212 #include "gt/intel_rc6.h"
213 #include "gt/intel_ring.h"
214 #include "gt/uc/intel_guc_slpc.h"
215 
216 #include "i915_drv.h"
217 #include "i915_file_private.h"
218 #include "i915_perf.h"
219 #include "i915_perf_oa_regs.h"
220 #include "i915_reg.h"
221 
222 /* HW requires this to be a power of two, between 128k and 16M, though driver
223  * is currently generally designed assuming the largest 16M size is used such
224  * that the overflow cases are unlikely in normal operation.
225  */
226 #define OA_BUFFER_SIZE		SZ_16M
227 
228 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
229 
230 /**
231  * DOC: OA Tail Pointer Race
232  *
233  * There's a HW race condition between OA unit tail pointer register updates and
234  * writes to memory whereby the tail pointer can sometimes get ahead of what's
235  * been written out to the OA buffer so far (in terms of what's visible to the
236  * CPU).
237  *
238  * Although this can be observed explicitly while copying reports to userspace
239  * by checking for a zeroed report-id field in tail reports, we want to account
240  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
241  * redundant read() attempts.
242  *
243  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
244  * in the OA buffer, starting from the tail reported by the HW until we find a
245  * report with its first 2 dwords not 0 meaning its previous report is
246  * completely in memory and ready to be read. Those dwords are also set to 0
247  * once read and the whole buffer is cleared upon OA buffer initialization. The
248  * first dword is the reason for this report while the second is the timestamp,
249  * making the chances of having those 2 fields at 0 fairly unlikely. A more
250  * detailed explanation is available in oa_buffer_check_unlocked().
251  *
252  * Most of the implementation details for this workaround are in
253  * oa_buffer_check_unlocked() and _append_oa_reports()
254  *
255  * Note for posterity: previously the driver used to define an effective tail
256  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
257  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
258  * This was flawed considering that the OA unit may also automatically generate
259  * non-periodic reports (such as on context switch) or the OA unit may be
260  * enabled without any periodic sampling.
261  */
262 #define OA_TAIL_MARGIN_NSEC	100000ULL
263 #define INVALID_TAIL_PTR	0xffffffff
264 
265 /* The default frequency for checking whether the OA unit has written new
266  * reports to the circular OA buffer...
267  */
268 #define DEFAULT_POLL_FREQUENCY_HZ 200
269 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
270 
271 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
272 static u32 i915_perf_stream_paranoid = true;
273 
274 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
275  * of the 64bit timestamp bits to trigger reports from) but there's currently
276  * no known use case for sampling as infrequently as once per 47 thousand years.
277  *
278  * Since the timestamps included in OA reports are only 32bits it seems
279  * reasonable to limit the OA exponent where it's still possible to account for
280  * overflow in OA report timestamps.
281  */
282 #define OA_EXPONENT_MAX 31
283 
284 #define INVALID_CTX_ID 0xffffffff
285 
286 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
287 #define OAREPORT_REASON_MASK           0x3f
288 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
289 #define OAREPORT_REASON_SHIFT          19
290 #define OAREPORT_REASON_TIMER          (1<<0)
291 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
292 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
293 
294 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
295 
296 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
297  *
298  * The highest sampling frequency we can theoretically program the OA unit
299  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
300  *
301  * Initialized just before we register the sysctl parameter.
302  */
303 static int oa_sample_rate_hard_limit;
304 
305 /* Theoretically we can program the OA unit to sample every 160ns but don't
306  * allow that by default unless root...
307  *
308  * The default threshold of 100000Hz is based on perf's similar
309  * kernel.perf_event_max_sample_rate sysctl parameter.
310  */
311 static u32 i915_oa_max_sample_rate = 100000;
312 
313 /* XXX: beware if future OA HW adds new report formats that the current
314  * code assumes all reports have a power-of-two size and ~(size - 1) can
315  * be used as a mask to align the OA tail pointer.
316  */
317 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
318 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
319 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
320 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
321 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
322 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
323 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
324 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
325 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
326 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
327 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
328 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
329 	[I915_OAR_FORMAT_A32u40_A4u32_B8_C8]    = { 5, 256 },
330 	[I915_OA_FORMAT_A24u40_A14u32_B8_C8]    = { 5, 256 },
331 	[I915_OAM_FORMAT_MPEC8u64_B8_C8]	= { 1, 192, TYPE_OAM, HDR_64_BIT },
332 	[I915_OAM_FORMAT_MPEC8u32_B8_C8]	= { 2, 128, TYPE_OAM, HDR_64_BIT },
333 };
334 
335 static const u32 mtl_oa_base[] = {
336 	[PERF_GROUP_OAM_SAMEDIA_0] = 0x393000,
337 };
338 
339 #define SAMPLE_OA_REPORT      (1<<0)
340 
341 /**
342  * struct perf_open_properties - for validated properties given to open a stream
343  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
344  * @single_context: Whether a single or all gpu contexts should be monitored
345  * @hold_preemption: Whether the preemption is disabled for the filtered
346  *                   context
347  * @ctx_handle: A gem ctx handle for use with @single_context
348  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
349  * @oa_format: An OA unit HW report format
350  * @oa_periodic: Whether to enable periodic OA unit sampling
351  * @oa_period_exponent: The OA unit sampling period is derived from this
352  * @engine: The engine (typically rcs0) being monitored by the OA unit
353  * @has_sseu: Whether @sseu was specified by userspace
354  * @sseu: internal SSEU configuration computed either from the userspace
355  *        specified configuration in the opening parameters or a default value
356  *        (see get_default_sseu_config())
357  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
358  * data availability
359  *
360  * As read_properties_unlocked() enumerates and validates the properties given
361  * to open a stream of metrics the configuration is built up in the structure
362  * which starts out zero initialized.
363  */
364 struct perf_open_properties {
365 	u32 sample_flags;
366 
367 	u64 single_context:1;
368 	u64 hold_preemption:1;
369 	u64 ctx_handle;
370 
371 	/* OA sampling state */
372 	int metrics_set;
373 	int oa_format;
374 	bool oa_periodic;
375 	int oa_period_exponent;
376 
377 	struct intel_engine_cs *engine;
378 
379 	bool has_sseu;
380 	struct intel_sseu sseu;
381 
382 	u64 poll_oa_period;
383 };
384 
385 struct i915_oa_config_bo {
386 	struct llist_node node;
387 
388 	struct i915_oa_config *oa_config;
389 	struct i915_vma *vma;
390 };
391 
392 static struct ctl_table_header *sysctl_header;
393 
394 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
395 
396 void i915_oa_config_release(struct kref *ref)
397 {
398 	struct i915_oa_config *oa_config =
399 		container_of(ref, typeof(*oa_config), ref);
400 
401 	kfree(oa_config->flex_regs);
402 	kfree(oa_config->b_counter_regs);
403 	kfree(oa_config->mux_regs);
404 
405 	kfree_rcu(oa_config, rcu);
406 }
407 
408 struct i915_oa_config *
409 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
410 {
411 	struct i915_oa_config *oa_config;
412 
413 	rcu_read_lock();
414 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
415 	if (oa_config)
416 		oa_config = i915_oa_config_get(oa_config);
417 	rcu_read_unlock();
418 
419 	return oa_config;
420 }
421 
422 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
423 {
424 	i915_oa_config_put(oa_bo->oa_config);
425 	i915_vma_put(oa_bo->vma);
426 	kfree(oa_bo);
427 }
428 
429 static inline const
430 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream)
431 {
432 	return &stream->engine->oa_group->regs;
433 }
434 
435 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
436 {
437 	struct intel_uncore *uncore = stream->uncore;
438 
439 	return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) &
440 	       GEN12_OAG_OATAILPTR_MASK;
441 }
442 
443 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
444 {
445 	struct intel_uncore *uncore = stream->uncore;
446 
447 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
448 }
449 
450 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
451 {
452 	struct intel_uncore *uncore = stream->uncore;
453 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
454 
455 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
456 }
457 
458 #define oa_report_header_64bit(__s) \
459 	((__s)->oa_buffer.format->header == HDR_64_BIT)
460 
461 static u64 oa_report_id(struct i915_perf_stream *stream, void *report)
462 {
463 	return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report;
464 }
465 
466 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report)
467 {
468 	return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) &
469 	       (GRAPHICS_VER(stream->perf->i915) == 12 ?
470 		OAREPORT_REASON_MASK_EXTENDED :
471 		OAREPORT_REASON_MASK);
472 }
473 
474 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report)
475 {
476 	if (oa_report_header_64bit(stream))
477 		*(u64 *)report = 0;
478 	else
479 		*report = 0;
480 }
481 
482 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report)
483 {
484 	return !(oa_report_id(stream, report) &
485 	       stream->perf->gen8_valid_ctx_bit) &&
486 	       GRAPHICS_VER(stream->perf->i915) <= 11;
487 }
488 
489 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report)
490 {
491 	return oa_report_header_64bit(stream) ?
492 		*((u64 *)report + 1) :
493 		*((u32 *)report + 1);
494 }
495 
496 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report)
497 {
498 	if (oa_report_header_64bit(stream))
499 		*(u64 *)&report[2] = 0;
500 	else
501 		report[1] = 0;
502 }
503 
504 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report)
505 {
506 	u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2];
507 
508 	return ctx_id & stream->specific_ctx_id_mask;
509 }
510 
511 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report)
512 {
513 	if (oa_report_header_64bit(stream))
514 		report[4] = INVALID_CTX_ID;
515 	else
516 		report[2] = INVALID_CTX_ID;
517 }
518 
519 /**
520  * oa_buffer_check_unlocked - check for data and update tail ptr state
521  * @stream: i915 stream instance
522  *
523  * This is either called via fops (for blocking reads in user ctx) or the poll
524  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
525  * if there is data available for userspace to read.
526  *
527  * This function is central to providing a workaround for the OA unit tail
528  * pointer having a race with respect to what data is visible to the CPU.
529  * It is responsible for reading tail pointers from the hardware and giving
530  * the pointers time to 'age' before they are made available for reading.
531  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
532  *
533  * Besides returning true when there is data available to read() this function
534  * also updates the tail in the oa_buffer object.
535  *
536  * Note: It's safe to read OA config state here unlocked, assuming that this is
537  * only called while the stream is enabled, while the global OA configuration
538  * can't be modified.
539  *
540  * Returns: %true if the OA buffer contains data, else %false
541  */
542 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
543 {
544 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
545 	int report_size = stream->oa_buffer.format->size;
546 	u32 head, tail, read_tail;
547 	unsigned long flags;
548 	bool pollin;
549 	u32 hw_tail;
550 	u32 partial_report_size;
551 
552 	/* We have to consider the (unlikely) possibility that read() errors
553 	 * could result in an OA buffer reset which might reset the head and
554 	 * tail state.
555 	 */
556 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
557 
558 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
559 
560 	/* The tail pointer increases in 64 byte increments, not in report_size
561 	 * steps. Also the report size may not be a power of 2. Compute
562 	 * potentially partially landed report in the OA buffer
563 	 */
564 	partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail);
565 	partial_report_size %= report_size;
566 
567 	/* Subtract partial amount off the tail */
568 	hw_tail = OA_TAKEN(hw_tail, partial_report_size);
569 
570 	/* NB: The head we observe here might effectively be a little
571 	 * out of date. If a read() is in progress, the head could be
572 	 * anywhere between this head and stream->oa_buffer.tail.
573 	 */
574 	head = stream->oa_buffer.head - gtt_offset;
575 	read_tail = stream->oa_buffer.tail - gtt_offset;
576 
577 	tail = hw_tail;
578 
579 	/* Walk the stream backward until we find a report with report
580 	 * id and timestmap not at 0. Since the circular buffer pointers
581 	 * progress by increments of 64 bytes and that reports can be up
582 	 * to 256 bytes long, we can't tell whether a report has fully
583 	 * landed in memory before the report id and timestamp of the
584 	 * following report have effectively landed.
585 	 *
586 	 * This is assuming that the writes of the OA unit land in
587 	 * memory in the order they were written to.
588 	 * If not : (╯°□°)╯︵ ┻━┻
589 	 */
590 	while (OA_TAKEN(tail, read_tail) >= report_size) {
591 		void *report = stream->oa_buffer.vaddr + tail;
592 
593 		if (oa_report_id(stream, report) ||
594 		    oa_timestamp(stream, report))
595 			break;
596 
597 		tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
598 	}
599 
600 	if (OA_TAKEN(hw_tail, tail) > report_size &&
601 	    __ratelimit(&stream->perf->tail_pointer_race))
602 		drm_notice(&stream->uncore->i915->drm,
603 			   "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n",
604 		 head, tail, hw_tail);
605 
606 	stream->oa_buffer.tail = gtt_offset + tail;
607 
608 	pollin = OA_TAKEN(stream->oa_buffer.tail,
609 			  stream->oa_buffer.head) >= report_size;
610 
611 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
612 
613 	return pollin;
614 }
615 
616 /**
617  * append_oa_status - Appends a status record to a userspace read() buffer.
618  * @stream: An i915-perf stream opened for OA metrics
619  * @buf: destination buffer given by userspace
620  * @count: the number of bytes userspace wants to read
621  * @offset: (inout): the current position for writing into @buf
622  * @type: The kind of status to report to userspace
623  *
624  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
625  * into the userspace read() buffer.
626  *
627  * The @buf @offset will only be updated on success.
628  *
629  * Returns: 0 on success, negative error code on failure.
630  */
631 static int append_oa_status(struct i915_perf_stream *stream,
632 			    char __user *buf,
633 			    size_t count,
634 			    size_t *offset,
635 			    enum drm_i915_perf_record_type type)
636 {
637 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
638 
639 	if ((count - *offset) < header.size)
640 		return -ENOSPC;
641 
642 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
643 		return -EFAULT;
644 
645 	(*offset) += header.size;
646 
647 	return 0;
648 }
649 
650 /**
651  * append_oa_sample - Copies single OA report into userspace read() buffer.
652  * @stream: An i915-perf stream opened for OA metrics
653  * @buf: destination buffer given by userspace
654  * @count: the number of bytes userspace wants to read
655  * @offset: (inout): the current position for writing into @buf
656  * @report: A single OA report to (optionally) include as part of the sample
657  *
658  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
659  * properties when opening a stream, tracked as `stream->sample_flags`. This
660  * function copies the requested components of a single sample to the given
661  * read() @buf.
662  *
663  * The @buf @offset will only be updated on success.
664  *
665  * Returns: 0 on success, negative error code on failure.
666  */
667 static int append_oa_sample(struct i915_perf_stream *stream,
668 			    char __user *buf,
669 			    size_t count,
670 			    size_t *offset,
671 			    const u8 *report)
672 {
673 	int report_size = stream->oa_buffer.format->size;
674 	struct drm_i915_perf_record_header header;
675 	int report_size_partial;
676 	u8 *oa_buf_end;
677 
678 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
679 	header.pad = 0;
680 	header.size = stream->sample_size;
681 
682 	if ((count - *offset) < header.size)
683 		return -ENOSPC;
684 
685 	buf += *offset;
686 	if (copy_to_user(buf, &header, sizeof(header)))
687 		return -EFAULT;
688 	buf += sizeof(header);
689 
690 	oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE;
691 	report_size_partial = oa_buf_end - report;
692 
693 	if (report_size_partial < report_size) {
694 		if (copy_to_user(buf, report, report_size_partial))
695 			return -EFAULT;
696 		buf += report_size_partial;
697 
698 		if (copy_to_user(buf, stream->oa_buffer.vaddr,
699 				 report_size - report_size_partial))
700 			return -EFAULT;
701 	} else if (copy_to_user(buf, report, report_size)) {
702 		return -EFAULT;
703 	}
704 
705 	(*offset) += header.size;
706 
707 	return 0;
708 }
709 
710 /**
711  * gen8_append_oa_reports - Copies all buffered OA reports into
712  *			    userspace read() buffer.
713  * @stream: An i915-perf stream opened for OA metrics
714  * @buf: destination buffer given by userspace
715  * @count: the number of bytes userspace wants to read
716  * @offset: (inout): the current position for writing into @buf
717  *
718  * Notably any error condition resulting in a short read (-%ENOSPC or
719  * -%EFAULT) will be returned even though one or more records may
720  * have been successfully copied. In this case it's up to the caller
721  * to decide if the error should be squashed before returning to
722  * userspace.
723  *
724  * Note: reports are consumed from the head, and appended to the
725  * tail, so the tail chases the head?... If you think that's mad
726  * and back-to-front you're not alone, but this follows the
727  * Gen PRM naming convention.
728  *
729  * Returns: 0 on success, negative error code on failure.
730  */
731 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
732 				  char __user *buf,
733 				  size_t count,
734 				  size_t *offset)
735 {
736 	struct intel_uncore *uncore = stream->uncore;
737 	int report_size = stream->oa_buffer.format->size;
738 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
739 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
740 	u32 mask = (OA_BUFFER_SIZE - 1);
741 	size_t start_offset = *offset;
742 	unsigned long flags;
743 	u32 head, tail;
744 	int ret = 0;
745 
746 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
747 		return -EIO;
748 
749 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
750 
751 	head = stream->oa_buffer.head;
752 	tail = stream->oa_buffer.tail;
753 
754 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
755 
756 	/*
757 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
758 	 * while indexing relative to oa_buf_base.
759 	 */
760 	head -= gtt_offset;
761 	tail -= gtt_offset;
762 
763 	/*
764 	 * An out of bounds or misaligned head or tail pointer implies a driver
765 	 * bug since we validate + align the tail pointers we read from the
766 	 * hardware and we are in full control of the head pointer which should
767 	 * only be incremented by multiples of the report size.
768 	 */
769 	if (drm_WARN_ONCE(&uncore->i915->drm,
770 			  head > OA_BUFFER_SIZE ||
771 			  tail > OA_BUFFER_SIZE,
772 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
773 			  head, tail))
774 		return -EIO;
775 
776 
777 	for (/* none */;
778 	     OA_TAKEN(tail, head);
779 	     head = (head + report_size) & mask) {
780 		u8 *report = oa_buf_base + head;
781 		u32 *report32 = (void *)report;
782 		u32 ctx_id;
783 		u64 reason;
784 
785 		/*
786 		 * The reason field includes flags identifying what
787 		 * triggered this specific report (mostly timer
788 		 * triggered or e.g. due to a context switch).
789 		 *
790 		 * In MMIO triggered reports, some platforms do not set the
791 		 * reason bit in this field and it is valid to have a reason
792 		 * field of zero.
793 		 */
794 		reason = oa_report_reason(stream, report);
795 		ctx_id = oa_context_id(stream, report32);
796 
797 		/*
798 		 * Squash whatever is in the CTX_ID field if it's marked as
799 		 * invalid to be sure we avoid false-positive, single-context
800 		 * filtering below...
801 		 *
802 		 * Note: that we don't clear the valid_ctx_bit so userspace can
803 		 * understand that the ID has been squashed by the kernel.
804 		 */
805 		if (oa_report_ctx_invalid(stream, report)) {
806 			ctx_id = INVALID_CTX_ID;
807 			oa_context_id_squash(stream, report32);
808 		}
809 
810 		/*
811 		 * NB: For Gen 8 the OA unit no longer supports clock gating
812 		 * off for a specific context and the kernel can't securely
813 		 * stop the counters from updating as system-wide / global
814 		 * values.
815 		 *
816 		 * Automatic reports now include a context ID so reports can be
817 		 * filtered on the cpu but it's not worth trying to
818 		 * automatically subtract/hide counter progress for other
819 		 * contexts while filtering since we can't stop userspace
820 		 * issuing MI_REPORT_PERF_COUNT commands which would still
821 		 * provide a side-band view of the real values.
822 		 *
823 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
824 		 * to normalize counters for a single filtered context then it
825 		 * needs be forwarded bookend context-switch reports so that it
826 		 * can track switches in between MI_REPORT_PERF_COUNT commands
827 		 * and can itself subtract/ignore the progress of counters
828 		 * associated with other contexts. Note that the hardware
829 		 * automatically triggers reports when switching to a new
830 		 * context which are tagged with the ID of the newly active
831 		 * context. To avoid the complexity (and likely fragility) of
832 		 * reading ahead while parsing reports to try and minimize
833 		 * forwarding redundant context switch reports (i.e. between
834 		 * other, unrelated contexts) we simply elect to forward them
835 		 * all.
836 		 *
837 		 * We don't rely solely on the reason field to identify context
838 		 * switches since it's not-uncommon for periodic samples to
839 		 * identify a switch before any 'context switch' report.
840 		 */
841 		if (!stream->ctx ||
842 		    stream->specific_ctx_id == ctx_id ||
843 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
844 		    reason & OAREPORT_REASON_CTX_SWITCH) {
845 
846 			/*
847 			 * While filtering for a single context we avoid
848 			 * leaking the IDs of other contexts.
849 			 */
850 			if (stream->ctx &&
851 			    stream->specific_ctx_id != ctx_id) {
852 				oa_context_id_squash(stream, report32);
853 			}
854 
855 			ret = append_oa_sample(stream, buf, count, offset,
856 					       report);
857 			if (ret)
858 				break;
859 
860 			stream->oa_buffer.last_ctx_id = ctx_id;
861 		}
862 
863 		if (is_power_of_2(report_size)) {
864 			/*
865 			 * Clear out the report id and timestamp as a means
866 			 * to detect unlanded reports.
867 			 */
868 			oa_report_id_clear(stream, report32);
869 			oa_timestamp_clear(stream, report32);
870 		} else {
871 			/* Zero out the entire report */
872 			memset(report32, 0, report_size);
873 		}
874 	}
875 
876 	if (start_offset != *offset) {
877 		i915_reg_t oaheadptr;
878 
879 		oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
880 			    __oa_regs(stream)->oa_head_ptr :
881 			    GEN8_OAHEADPTR;
882 
883 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
884 
885 		/*
886 		 * We removed the gtt_offset for the copy loop above, indexing
887 		 * relative to oa_buf_base so put back here...
888 		 */
889 		head += gtt_offset;
890 		intel_uncore_write(uncore, oaheadptr,
891 				   head & GEN12_OAG_OAHEADPTR_MASK);
892 		stream->oa_buffer.head = head;
893 
894 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
895 	}
896 
897 	return ret;
898 }
899 
900 /**
901  * gen8_oa_read - copy status records then buffered OA reports
902  * @stream: An i915-perf stream opened for OA metrics
903  * @buf: destination buffer given by userspace
904  * @count: the number of bytes userspace wants to read
905  * @offset: (inout): the current position for writing into @buf
906  *
907  * Checks OA unit status registers and if necessary appends corresponding
908  * status records for userspace (such as for a buffer full condition) and then
909  * initiate appending any buffered OA reports.
910  *
911  * Updates @offset according to the number of bytes successfully copied into
912  * the userspace buffer.
913  *
914  * NB: some data may be successfully copied to the userspace buffer
915  * even if an error is returned, and this is reflected in the
916  * updated @offset.
917  *
918  * Returns: zero on success or a negative error code
919  */
920 static int gen8_oa_read(struct i915_perf_stream *stream,
921 			char __user *buf,
922 			size_t count,
923 			size_t *offset)
924 {
925 	struct intel_uncore *uncore = stream->uncore;
926 	u32 oastatus;
927 	i915_reg_t oastatus_reg;
928 	int ret;
929 
930 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
931 		return -EIO;
932 
933 	oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
934 		       __oa_regs(stream)->oa_status :
935 		       GEN8_OASTATUS;
936 
937 	oastatus = intel_uncore_read(uncore, oastatus_reg);
938 
939 	/*
940 	 * We treat OABUFFER_OVERFLOW as a significant error:
941 	 *
942 	 * Although theoretically we could handle this more gracefully
943 	 * sometimes, some Gens don't correctly suppress certain
944 	 * automatically triggered reports in this condition and so we
945 	 * have to assume that old reports are now being trampled
946 	 * over.
947 	 *
948 	 * Considering how we don't currently give userspace control
949 	 * over the OA buffer size and always configure a large 16MB
950 	 * buffer, then a buffer overflow does anyway likely indicate
951 	 * that something has gone quite badly wrong.
952 	 */
953 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
954 		ret = append_oa_status(stream, buf, count, offset,
955 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
956 		if (ret)
957 			return ret;
958 
959 		drm_dbg(&stream->perf->i915->drm,
960 			"OA buffer overflow (exponent = %d): force restart\n",
961 			stream->period_exponent);
962 
963 		stream->perf->ops.oa_disable(stream);
964 		stream->perf->ops.oa_enable(stream);
965 
966 		/*
967 		 * Note: .oa_enable() is expected to re-init the oabuffer and
968 		 * reset GEN8_OASTATUS for us
969 		 */
970 		oastatus = intel_uncore_read(uncore, oastatus_reg);
971 	}
972 
973 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
974 		ret = append_oa_status(stream, buf, count, offset,
975 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
976 		if (ret)
977 			return ret;
978 
979 		intel_uncore_rmw(uncore, oastatus_reg,
980 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
981 				 GEN8_OASTATUS_REPORT_LOST,
982 				 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
983 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
984 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
985 	}
986 
987 	return gen8_append_oa_reports(stream, buf, count, offset);
988 }
989 
990 /**
991  * gen7_append_oa_reports - Copies all buffered OA reports into
992  *			    userspace read() buffer.
993  * @stream: An i915-perf stream opened for OA metrics
994  * @buf: destination buffer given by userspace
995  * @count: the number of bytes userspace wants to read
996  * @offset: (inout): the current position for writing into @buf
997  *
998  * Notably any error condition resulting in a short read (-%ENOSPC or
999  * -%EFAULT) will be returned even though one or more records may
1000  * have been successfully copied. In this case it's up to the caller
1001  * to decide if the error should be squashed before returning to
1002  * userspace.
1003  *
1004  * Note: reports are consumed from the head, and appended to the
1005  * tail, so the tail chases the head?... If you think that's mad
1006  * and back-to-front you're not alone, but this follows the
1007  * Gen PRM naming convention.
1008  *
1009  * Returns: 0 on success, negative error code on failure.
1010  */
1011 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
1012 				  char __user *buf,
1013 				  size_t count,
1014 				  size_t *offset)
1015 {
1016 	struct intel_uncore *uncore = stream->uncore;
1017 	int report_size = stream->oa_buffer.format->size;
1018 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
1019 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1020 	u32 mask = (OA_BUFFER_SIZE - 1);
1021 	size_t start_offset = *offset;
1022 	unsigned long flags;
1023 	u32 head, tail;
1024 	int ret = 0;
1025 
1026 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
1027 		return -EIO;
1028 
1029 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1030 
1031 	head = stream->oa_buffer.head;
1032 	tail = stream->oa_buffer.tail;
1033 
1034 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1035 
1036 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
1037 	 * while indexing relative to oa_buf_base.
1038 	 */
1039 	head -= gtt_offset;
1040 	tail -= gtt_offset;
1041 
1042 	/* An out of bounds or misaligned head or tail pointer implies a driver
1043 	 * bug since we validate + align the tail pointers we read from the
1044 	 * hardware and we are in full control of the head pointer which should
1045 	 * only be incremented by multiples of the report size (notably also
1046 	 * all a power of two).
1047 	 */
1048 	if (drm_WARN_ONCE(&uncore->i915->drm,
1049 			  head > OA_BUFFER_SIZE || head % report_size ||
1050 			  tail > OA_BUFFER_SIZE || tail % report_size,
1051 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1052 			  head, tail))
1053 		return -EIO;
1054 
1055 
1056 	for (/* none */;
1057 	     OA_TAKEN(tail, head);
1058 	     head = (head + report_size) & mask) {
1059 		u8 *report = oa_buf_base + head;
1060 		u32 *report32 = (void *)report;
1061 
1062 		/* All the report sizes factor neatly into the buffer
1063 		 * size so we never expect to see a report split
1064 		 * between the beginning and end of the buffer.
1065 		 *
1066 		 * Given the initial alignment check a misalignment
1067 		 * here would imply a driver bug that would result
1068 		 * in an overrun.
1069 		 */
1070 		if (drm_WARN_ON(&uncore->i915->drm,
1071 				(OA_BUFFER_SIZE - head) < report_size)) {
1072 			drm_err(&uncore->i915->drm,
1073 				"Spurious OA head ptr: non-integral report offset\n");
1074 			break;
1075 		}
1076 
1077 		/* The report-ID field for periodic samples includes
1078 		 * some undocumented flags related to what triggered
1079 		 * the report and is never expected to be zero so we
1080 		 * can check that the report isn't invalid before
1081 		 * copying it to userspace...
1082 		 */
1083 		if (report32[0] == 0) {
1084 			if (__ratelimit(&stream->perf->spurious_report_rs))
1085 				drm_notice(&uncore->i915->drm,
1086 					   "Skipping spurious, invalid OA report\n");
1087 			continue;
1088 		}
1089 
1090 		ret = append_oa_sample(stream, buf, count, offset, report);
1091 		if (ret)
1092 			break;
1093 
1094 		/* Clear out the first 2 dwords as a mean to detect unlanded
1095 		 * reports.
1096 		 */
1097 		report32[0] = 0;
1098 		report32[1] = 0;
1099 	}
1100 
1101 	if (start_offset != *offset) {
1102 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1103 
1104 		/* We removed the gtt_offset for the copy loop above, indexing
1105 		 * relative to oa_buf_base so put back here...
1106 		 */
1107 		head += gtt_offset;
1108 
1109 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1110 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1111 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1112 		stream->oa_buffer.head = head;
1113 
1114 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1115 	}
1116 
1117 	return ret;
1118 }
1119 
1120 /**
1121  * gen7_oa_read - copy status records then buffered OA reports
1122  * @stream: An i915-perf stream opened for OA metrics
1123  * @buf: destination buffer given by userspace
1124  * @count: the number of bytes userspace wants to read
1125  * @offset: (inout): the current position for writing into @buf
1126  *
1127  * Checks Gen 7 specific OA unit status registers and if necessary appends
1128  * corresponding status records for userspace (such as for a buffer full
1129  * condition) and then initiate appending any buffered OA reports.
1130  *
1131  * Updates @offset according to the number of bytes successfully copied into
1132  * the userspace buffer.
1133  *
1134  * Returns: zero on success or a negative error code
1135  */
1136 static int gen7_oa_read(struct i915_perf_stream *stream,
1137 			char __user *buf,
1138 			size_t count,
1139 			size_t *offset)
1140 {
1141 	struct intel_uncore *uncore = stream->uncore;
1142 	u32 oastatus1;
1143 	int ret;
1144 
1145 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1146 		return -EIO;
1147 
1148 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1149 
1150 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1151 	 * bits while the OA unit is enabled (while the tail pointer
1152 	 * may be updated asynchronously) so we ignore status bits
1153 	 * that have already been reported to userspace.
1154 	 */
1155 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1156 
1157 	/* We treat OABUFFER_OVERFLOW as a significant error:
1158 	 *
1159 	 * - The status can be interpreted to mean that the buffer is
1160 	 *   currently full (with a higher precedence than OA_TAKEN()
1161 	 *   which will start to report a near-empty buffer after an
1162 	 *   overflow) but it's awkward that we can't clear the status
1163 	 *   on Haswell, so without a reset we won't be able to catch
1164 	 *   the state again.
1165 	 *
1166 	 * - Since it also implies the HW has started overwriting old
1167 	 *   reports it may also affect our sanity checks for invalid
1168 	 *   reports when copying to userspace that assume new reports
1169 	 *   are being written to cleared memory.
1170 	 *
1171 	 * - In the future we may want to introduce a flight recorder
1172 	 *   mode where the driver will automatically maintain a safe
1173 	 *   guard band between head/tail, avoiding this overflow
1174 	 *   condition, but we avoid the added driver complexity for
1175 	 *   now.
1176 	 */
1177 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1178 		ret = append_oa_status(stream, buf, count, offset,
1179 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1180 		if (ret)
1181 			return ret;
1182 
1183 		drm_dbg(&stream->perf->i915->drm,
1184 			"OA buffer overflow (exponent = %d): force restart\n",
1185 			stream->period_exponent);
1186 
1187 		stream->perf->ops.oa_disable(stream);
1188 		stream->perf->ops.oa_enable(stream);
1189 
1190 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1191 	}
1192 
1193 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1194 		ret = append_oa_status(stream, buf, count, offset,
1195 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1196 		if (ret)
1197 			return ret;
1198 		stream->perf->gen7_latched_oastatus1 |=
1199 			GEN7_OASTATUS1_REPORT_LOST;
1200 	}
1201 
1202 	return gen7_append_oa_reports(stream, buf, count, offset);
1203 }
1204 
1205 /**
1206  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1207  * @stream: An i915-perf stream opened for OA metrics
1208  *
1209  * Called when userspace tries to read() from a blocking stream FD opened
1210  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1211  * OA buffer and wakes us.
1212  *
1213  * Note: it's acceptable to have this return with some false positives
1214  * since any subsequent read handling will return -EAGAIN if there isn't
1215  * really data ready for userspace yet.
1216  *
1217  * Returns: zero on success or a negative error code
1218  */
1219 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1220 {
1221 	/* We would wait indefinitely if periodic sampling is not enabled */
1222 	if (!stream->periodic)
1223 		return -EIO;
1224 
1225 	return wait_event_interruptible(stream->poll_wq,
1226 					oa_buffer_check_unlocked(stream));
1227 }
1228 
1229 /**
1230  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1231  * @stream: An i915-perf stream opened for OA metrics
1232  * @file: An i915 perf stream file
1233  * @wait: poll() state table
1234  *
1235  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1236  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1237  * when it sees data ready to read in the circular OA buffer.
1238  */
1239 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1240 			      struct file *file,
1241 			      poll_table *wait)
1242 {
1243 	poll_wait(file, &stream->poll_wq, wait);
1244 }
1245 
1246 /**
1247  * i915_oa_read - just calls through to &i915_oa_ops->read
1248  * @stream: An i915-perf stream opened for OA metrics
1249  * @buf: destination buffer given by userspace
1250  * @count: the number of bytes userspace wants to read
1251  * @offset: (inout): the current position for writing into @buf
1252  *
1253  * Updates @offset according to the number of bytes successfully copied into
1254  * the userspace buffer.
1255  *
1256  * Returns: zero on success or a negative error code
1257  */
1258 static int i915_oa_read(struct i915_perf_stream *stream,
1259 			char __user *buf,
1260 			size_t count,
1261 			size_t *offset)
1262 {
1263 	return stream->perf->ops.read(stream, buf, count, offset);
1264 }
1265 
1266 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1267 {
1268 	struct i915_gem_engines_iter it;
1269 	struct i915_gem_context *ctx = stream->ctx;
1270 	struct intel_context *ce;
1271 	struct i915_gem_ww_ctx ww;
1272 	int err = -ENODEV;
1273 
1274 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1275 		if (ce->engine != stream->engine) /* first match! */
1276 			continue;
1277 
1278 		err = 0;
1279 		break;
1280 	}
1281 	i915_gem_context_unlock_engines(ctx);
1282 
1283 	if (err)
1284 		return ERR_PTR(err);
1285 
1286 	i915_gem_ww_ctx_init(&ww, true);
1287 retry:
1288 	/*
1289 	 * As the ID is the gtt offset of the context's vma we
1290 	 * pin the vma to ensure the ID remains fixed.
1291 	 */
1292 	err = intel_context_pin_ww(ce, &ww);
1293 	if (err == -EDEADLK) {
1294 		err = i915_gem_ww_ctx_backoff(&ww);
1295 		if (!err)
1296 			goto retry;
1297 	}
1298 	i915_gem_ww_ctx_fini(&ww);
1299 
1300 	if (err)
1301 		return ERR_PTR(err);
1302 
1303 	stream->pinned_ctx = ce;
1304 	return stream->pinned_ctx;
1305 }
1306 
1307 static int
1308 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset)
1309 {
1310 	u32 *cs, cmd;
1311 
1312 	cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1313 	if (GRAPHICS_VER(rq->engine->i915) >= 8)
1314 		cmd++;
1315 
1316 	cs = intel_ring_begin(rq, 4);
1317 	if (IS_ERR(cs))
1318 		return PTR_ERR(cs);
1319 
1320 	*cs++ = cmd;
1321 	*cs++ = i915_mmio_reg_offset(reg);
1322 	*cs++ = ggtt_offset;
1323 	*cs++ = 0;
1324 
1325 	intel_ring_advance(rq, cs);
1326 
1327 	return 0;
1328 }
1329 
1330 static int
1331 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset)
1332 {
1333 	struct i915_request *rq;
1334 	int err;
1335 
1336 	rq = i915_request_create(ce);
1337 	if (IS_ERR(rq))
1338 		return PTR_ERR(rq);
1339 
1340 	i915_request_get(rq);
1341 
1342 	err = __store_reg_to_mem(rq, reg, ggtt_offset);
1343 
1344 	i915_request_add(rq);
1345 	if (!err && i915_request_wait(rq, 0, HZ / 2) < 0)
1346 		err = -ETIME;
1347 
1348 	i915_request_put(rq);
1349 
1350 	return err;
1351 }
1352 
1353 static int
1354 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id)
1355 {
1356 	struct i915_vma *scratch;
1357 	u32 *val;
1358 	int err;
1359 
1360 	scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4);
1361 	if (IS_ERR(scratch))
1362 		return PTR_ERR(scratch);
1363 
1364 	err = i915_vma_sync(scratch);
1365 	if (err)
1366 		goto err_scratch;
1367 
1368 	err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base),
1369 			 i915_ggtt_offset(scratch));
1370 	if (err)
1371 		goto err_scratch;
1372 
1373 	val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB);
1374 	if (IS_ERR(val)) {
1375 		err = PTR_ERR(val);
1376 		goto err_scratch;
1377 	}
1378 
1379 	*ctx_id = *val;
1380 	i915_gem_object_unpin_map(scratch->obj);
1381 
1382 err_scratch:
1383 	i915_vma_unpin_and_release(&scratch, 0);
1384 	return err;
1385 }
1386 
1387 /*
1388  * For execlist mode of submission, pick an unused context id
1389  * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts
1390  * XXX_MAX_CONTEXT_HW_ID is used by idle context
1391  *
1392  * For GuC mode of submission read context id from the upper dword of the
1393  * EXECLIST_STATUS register. Note that we read this value only once and expect
1394  * that the value stays fixed for the entire OA use case. There are cases where
1395  * GuC KMD implementation may deregister a context to reuse it's context id, but
1396  * we prevent that from happening to the OA context by pinning it.
1397  */
1398 static int gen12_get_render_context_id(struct i915_perf_stream *stream)
1399 {
1400 	u32 ctx_id, mask;
1401 	int ret;
1402 
1403 	if (intel_engine_uses_guc(stream->engine)) {
1404 		ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id);
1405 		if (ret)
1406 			return ret;
1407 
1408 		mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) <<
1409 			(GEN12_GUC_SW_CTX_ID_SHIFT - 32);
1410 	} else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) {
1411 		ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) <<
1412 			(XEHP_SW_CTX_ID_SHIFT - 32);
1413 
1414 		mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1415 			(XEHP_SW_CTX_ID_SHIFT - 32);
1416 	} else {
1417 		ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) <<
1418 			 (GEN11_SW_CTX_ID_SHIFT - 32);
1419 
1420 		mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) <<
1421 			(GEN11_SW_CTX_ID_SHIFT - 32);
1422 	}
1423 	stream->specific_ctx_id = ctx_id & mask;
1424 	stream->specific_ctx_id_mask = mask;
1425 
1426 	return 0;
1427 }
1428 
1429 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end)
1430 {
1431 	u32 idx = *offset;
1432 	u32 len = min(MI_LRI_LEN(state[idx]) + idx, end);
1433 	bool found = false;
1434 
1435 	idx++;
1436 	for (; idx < len; idx += 2) {
1437 		if (state[idx] == reg) {
1438 			found = true;
1439 			break;
1440 		}
1441 	}
1442 
1443 	*offset = idx;
1444 	return found;
1445 }
1446 
1447 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg)
1448 {
1449 	u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4;
1450 	u32 *state = ce->lrc_reg_state;
1451 
1452 	if (drm_WARN_ON(&ce->engine->i915->drm, !state))
1453 		return U32_MAX;
1454 
1455 	for (offset = 0; offset < len; ) {
1456 		if (IS_MI_LRI_CMD(state[offset])) {
1457 			/*
1458 			 * We expect reg-value pairs in MI_LRI command, so
1459 			 * MI_LRI_LEN() should be even, if not, issue a warning.
1460 			 */
1461 			drm_WARN_ON(&ce->engine->i915->drm,
1462 				    MI_LRI_LEN(state[offset]) & 0x1);
1463 
1464 			if (oa_find_reg_in_lri(state, reg, &offset, len))
1465 				break;
1466 		} else {
1467 			offset++;
1468 		}
1469 	}
1470 
1471 	return offset < len ? offset : U32_MAX;
1472 }
1473 
1474 static int set_oa_ctx_ctrl_offset(struct intel_context *ce)
1475 {
1476 	i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base);
1477 	struct i915_perf *perf = &ce->engine->i915->perf;
1478 	u32 offset = perf->ctx_oactxctrl_offset;
1479 
1480 	/* Do this only once. Failure is stored as offset of U32_MAX */
1481 	if (offset)
1482 		goto exit;
1483 
1484 	offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg));
1485 	perf->ctx_oactxctrl_offset = offset;
1486 
1487 	drm_dbg(&ce->engine->i915->drm,
1488 		"%s oa ctx control at 0x%08x dword offset\n",
1489 		ce->engine->name, offset);
1490 
1491 exit:
1492 	return offset && offset != U32_MAX ? 0 : -ENODEV;
1493 }
1494 
1495 static bool engine_supports_mi_query(struct intel_engine_cs *engine)
1496 {
1497 	return engine->class == RENDER_CLASS;
1498 }
1499 
1500 /**
1501  * oa_get_render_ctx_id - determine and hold ctx hw id
1502  * @stream: An i915-perf stream opened for OA metrics
1503  *
1504  * Determine the render context hw id, and ensure it remains fixed for the
1505  * lifetime of the stream. This ensures that we don't have to worry about
1506  * updating the context ID in OACONTROL on the fly.
1507  *
1508  * Returns: zero on success or a negative error code
1509  */
1510 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1511 {
1512 	struct intel_context *ce;
1513 	int ret = 0;
1514 
1515 	ce = oa_pin_context(stream);
1516 	if (IS_ERR(ce))
1517 		return PTR_ERR(ce);
1518 
1519 	if (engine_supports_mi_query(stream->engine) &&
1520 	    HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) {
1521 		/*
1522 		 * We are enabling perf query here. If we don't find the context
1523 		 * offset here, just return an error.
1524 		 */
1525 		ret = set_oa_ctx_ctrl_offset(ce);
1526 		if (ret) {
1527 			intel_context_unpin(ce);
1528 			drm_err(&stream->perf->i915->drm,
1529 				"Enabling perf query failed for %s\n",
1530 				stream->engine->name);
1531 			return ret;
1532 		}
1533 	}
1534 
1535 	switch (GRAPHICS_VER(ce->engine->i915)) {
1536 	case 7: {
1537 		/*
1538 		 * On Haswell we don't do any post processing of the reports
1539 		 * and don't need to use the mask.
1540 		 */
1541 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1542 		stream->specific_ctx_id_mask = 0;
1543 		break;
1544 	}
1545 
1546 	case 8:
1547 	case 9:
1548 		if (intel_engine_uses_guc(ce->engine)) {
1549 			/*
1550 			 * When using GuC, the context descriptor we write in
1551 			 * i915 is read by GuC and rewritten before it's
1552 			 * actually written into the hardware. The LRCA is
1553 			 * what is put into the context id field of the
1554 			 * context descriptor by GuC. Because it's aligned to
1555 			 * a page, the lower 12bits are always at 0 and
1556 			 * dropped by GuC. They won't be part of the context
1557 			 * ID in the OA reports, so squash those lower bits.
1558 			 */
1559 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1560 
1561 			/*
1562 			 * GuC uses the top bit to signal proxy submission, so
1563 			 * ignore that bit.
1564 			 */
1565 			stream->specific_ctx_id_mask =
1566 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1567 		} else {
1568 			stream->specific_ctx_id_mask =
1569 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1570 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1571 		}
1572 		break;
1573 
1574 	case 11:
1575 	case 12:
1576 		ret = gen12_get_render_context_id(stream);
1577 		break;
1578 
1579 	default:
1580 		MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1581 	}
1582 
1583 	ce->tag = stream->specific_ctx_id;
1584 
1585 	drm_dbg(&stream->perf->i915->drm,
1586 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1587 		stream->specific_ctx_id,
1588 		stream->specific_ctx_id_mask);
1589 
1590 	return ret;
1591 }
1592 
1593 /**
1594  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1595  * @stream: An i915-perf stream opened for OA metrics
1596  *
1597  * In case anything needed doing to ensure the context HW ID would remain valid
1598  * for the lifetime of the stream, then that can be undone here.
1599  */
1600 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1601 {
1602 	struct intel_context *ce;
1603 
1604 	ce = fetch_and_zero(&stream->pinned_ctx);
1605 	if (ce) {
1606 		ce->tag = 0; /* recomputed on next submission after parking */
1607 		intel_context_unpin(ce);
1608 	}
1609 
1610 	stream->specific_ctx_id = INVALID_CTX_ID;
1611 	stream->specific_ctx_id_mask = 0;
1612 }
1613 
1614 static void
1615 free_oa_buffer(struct i915_perf_stream *stream)
1616 {
1617 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1618 				   I915_VMA_RELEASE_MAP);
1619 
1620 	stream->oa_buffer.vaddr = NULL;
1621 }
1622 
1623 static void
1624 free_oa_configs(struct i915_perf_stream *stream)
1625 {
1626 	struct i915_oa_config_bo *oa_bo, *tmp;
1627 
1628 	i915_oa_config_put(stream->oa_config);
1629 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1630 		free_oa_config_bo(oa_bo);
1631 }
1632 
1633 static void
1634 free_noa_wait(struct i915_perf_stream *stream)
1635 {
1636 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1637 }
1638 
1639 static bool engine_supports_oa(const struct intel_engine_cs *engine)
1640 {
1641 	return engine->oa_group;
1642 }
1643 
1644 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type)
1645 {
1646 	return engine->oa_group && engine->oa_group->type == type;
1647 }
1648 
1649 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1650 {
1651 	struct i915_perf *perf = stream->perf;
1652 	struct intel_gt *gt = stream->engine->gt;
1653 	struct i915_perf_group *g = stream->engine->oa_group;
1654 
1655 	if (WARN_ON(stream != g->exclusive_stream))
1656 		return;
1657 
1658 	/*
1659 	 * Unset exclusive_stream first, it will be checked while disabling
1660 	 * the metric set on gen8+.
1661 	 *
1662 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1663 	 */
1664 	WRITE_ONCE(g->exclusive_stream, NULL);
1665 	perf->ops.disable_metric_set(stream);
1666 
1667 	free_oa_buffer(stream);
1668 
1669 	/*
1670 	 * Wa_16011777198:dg2: Unset the override of GUCRC mode to enable rc6.
1671 	 */
1672 	if (stream->override_gucrc)
1673 		drm_WARN_ON(&gt->i915->drm,
1674 			    intel_guc_slpc_unset_gucrc_mode(&gt->uc.guc.slpc));
1675 
1676 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1677 	intel_engine_pm_put(stream->engine);
1678 
1679 	if (stream->ctx)
1680 		oa_put_render_ctx_id(stream);
1681 
1682 	free_oa_configs(stream);
1683 	free_noa_wait(stream);
1684 
1685 	if (perf->spurious_report_rs.missed) {
1686 		drm_notice(&gt->i915->drm,
1687 			   "%d spurious OA report notices suppressed due to ratelimiting\n",
1688 			   perf->spurious_report_rs.missed);
1689 	}
1690 }
1691 
1692 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1693 {
1694 	struct intel_uncore *uncore = stream->uncore;
1695 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1696 	unsigned long flags;
1697 
1698 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1699 
1700 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1701 	 * before OASTATUS1, but after OASTATUS2
1702 	 */
1703 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1704 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1705 	stream->oa_buffer.head = gtt_offset;
1706 
1707 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1708 
1709 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1710 			   gtt_offset | OABUFFER_SIZE_16M);
1711 
1712 	/* Mark that we need updated tail pointers to read from... */
1713 	stream->oa_buffer.tail = gtt_offset;
1714 
1715 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1716 
1717 	/* On Haswell we have to track which OASTATUS1 flags we've
1718 	 * already seen since they can't be cleared while periodic
1719 	 * sampling is enabled.
1720 	 */
1721 	stream->perf->gen7_latched_oastatus1 = 0;
1722 
1723 	/* NB: although the OA buffer will initially be allocated
1724 	 * zeroed via shmfs (and so this memset is redundant when
1725 	 * first allocating), we may re-init the OA buffer, either
1726 	 * when re-enabling a stream or in error/reset paths.
1727 	 *
1728 	 * The reason we clear the buffer for each re-init is for the
1729 	 * sanity check in gen7_append_oa_reports() that looks at the
1730 	 * report-id field to make sure it's non-zero which relies on
1731 	 * the assumption that new reports are being written to zeroed
1732 	 * memory...
1733 	 */
1734 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1735 }
1736 
1737 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1738 {
1739 	struct intel_uncore *uncore = stream->uncore;
1740 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1741 	unsigned long flags;
1742 
1743 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1744 
1745 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1746 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1747 	stream->oa_buffer.head = gtt_offset;
1748 
1749 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1750 
1751 	/*
1752 	 * PRM says:
1753 	 *
1754 	 *  "This MMIO must be set before the OATAILPTR
1755 	 *  register and after the OAHEADPTR register. This is
1756 	 *  to enable proper functionality of the overflow
1757 	 *  bit."
1758 	 */
1759 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1760 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1761 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1762 
1763 	/* Mark that we need updated tail pointers to read from... */
1764 	stream->oa_buffer.tail = gtt_offset;
1765 
1766 	/*
1767 	 * Reset state used to recognise context switches, affecting which
1768 	 * reports we will forward to userspace while filtering for a single
1769 	 * context.
1770 	 */
1771 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1772 
1773 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1774 
1775 	/*
1776 	 * NB: although the OA buffer will initially be allocated
1777 	 * zeroed via shmfs (and so this memset is redundant when
1778 	 * first allocating), we may re-init the OA buffer, either
1779 	 * when re-enabling a stream or in error/reset paths.
1780 	 *
1781 	 * The reason we clear the buffer for each re-init is for the
1782 	 * sanity check in gen8_append_oa_reports() that looks at the
1783 	 * reason field to make sure it's non-zero which relies on
1784 	 * the assumption that new reports are being written to zeroed
1785 	 * memory...
1786 	 */
1787 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1788 }
1789 
1790 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1791 {
1792 	struct intel_uncore *uncore = stream->uncore;
1793 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1794 	unsigned long flags;
1795 
1796 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1797 
1798 	intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0);
1799 	intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr,
1800 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1801 	stream->oa_buffer.head = gtt_offset;
1802 
1803 	/*
1804 	 * PRM says:
1805 	 *
1806 	 *  "This MMIO must be set before the OATAILPTR
1807 	 *  register and after the OAHEADPTR register. This is
1808 	 *  to enable proper functionality of the overflow
1809 	 *  bit."
1810 	 */
1811 	intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset |
1812 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1813 	intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr,
1814 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1815 
1816 	/* Mark that we need updated tail pointers to read from... */
1817 	stream->oa_buffer.tail = gtt_offset;
1818 
1819 	/*
1820 	 * Reset state used to recognise context switches, affecting which
1821 	 * reports we will forward to userspace while filtering for a single
1822 	 * context.
1823 	 */
1824 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1825 
1826 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1827 
1828 	/*
1829 	 * NB: although the OA buffer will initially be allocated
1830 	 * zeroed via shmfs (and so this memset is redundant when
1831 	 * first allocating), we may re-init the OA buffer, either
1832 	 * when re-enabling a stream or in error/reset paths.
1833 	 *
1834 	 * The reason we clear the buffer for each re-init is for the
1835 	 * sanity check in gen8_append_oa_reports() that looks at the
1836 	 * reason field to make sure it's non-zero which relies on
1837 	 * the assumption that new reports are being written to zeroed
1838 	 * memory...
1839 	 */
1840 	memset(stream->oa_buffer.vaddr, 0,
1841 	       stream->oa_buffer.vma->size);
1842 }
1843 
1844 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1845 {
1846 	struct drm_i915_private *i915 = stream->perf->i915;
1847 	struct intel_gt *gt = stream->engine->gt;
1848 	struct drm_i915_gem_object *bo;
1849 	struct i915_vma *vma;
1850 	int ret;
1851 
1852 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1853 		return -ENODEV;
1854 
1855 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1856 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1857 
1858 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1859 	if (IS_ERR(bo)) {
1860 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1861 		return PTR_ERR(bo);
1862 	}
1863 
1864 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1865 
1866 	/* PreHSW required 512K alignment, HSW requires 16M */
1867 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1868 	if (IS_ERR(vma)) {
1869 		ret = PTR_ERR(vma);
1870 		goto err_unref;
1871 	}
1872 
1873 	/*
1874 	 * PreHSW required 512K alignment.
1875 	 * HSW and onwards, align to requested size of OA buffer.
1876 	 */
1877 	ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH);
1878 	if (ret) {
1879 		drm_err(&gt->i915->drm, "Failed to pin OA buffer %d\n", ret);
1880 		goto err_unref;
1881 	}
1882 
1883 	stream->oa_buffer.vma = vma;
1884 
1885 	stream->oa_buffer.vaddr =
1886 		i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1887 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1888 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1889 		goto err_unpin;
1890 	}
1891 
1892 	return 0;
1893 
1894 err_unpin:
1895 	__i915_vma_unpin(vma);
1896 
1897 err_unref:
1898 	i915_gem_object_put(bo);
1899 
1900 	stream->oa_buffer.vaddr = NULL;
1901 	stream->oa_buffer.vma = NULL;
1902 
1903 	return ret;
1904 }
1905 
1906 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1907 				  bool save, i915_reg_t reg, u32 offset,
1908 				  u32 dword_count)
1909 {
1910 	u32 cmd;
1911 	u32 d;
1912 
1913 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1914 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1915 	if (GRAPHICS_VER(stream->perf->i915) >= 8)
1916 		cmd++;
1917 
1918 	for (d = 0; d < dword_count; d++) {
1919 		*cs++ = cmd;
1920 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1921 		*cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d;
1922 		*cs++ = 0;
1923 	}
1924 
1925 	return cs;
1926 }
1927 
1928 static int alloc_noa_wait(struct i915_perf_stream *stream)
1929 {
1930 	struct drm_i915_private *i915 = stream->perf->i915;
1931 	struct intel_gt *gt = stream->engine->gt;
1932 	struct drm_i915_gem_object *bo;
1933 	struct i915_vma *vma;
1934 	const u64 delay_ticks = 0xffffffffffffffff -
1935 		intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1936 		atomic64_read(&stream->perf->noa_programming_delay));
1937 	const u32 base = stream->engine->mmio_base;
1938 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1939 	u32 *batch, *ts0, *cs, *jump;
1940 	struct i915_gem_ww_ctx ww;
1941 	int ret, i;
1942 	enum {
1943 		START_TS,
1944 		NOW_TS,
1945 		DELTA_TS,
1946 		JUMP_PREDICATE,
1947 		DELTA_TARGET,
1948 		N_CS_GPR
1949 	};
1950 	i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ?
1951 					  MI_PREDICATE_RESULT_2_ENGINE(base) :
1952 					  MI_PREDICATE_RESULT_1(RENDER_RING_BASE);
1953 
1954 	/*
1955 	 * gt->scratch was being used to save/restore the GPR registers, but on
1956 	 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region
1957 	 * causes an engine hang. Instead allocate an additional page here to
1958 	 * save/restore GPR registers
1959 	 */
1960 	bo = i915_gem_object_create_internal(i915, 8192);
1961 	if (IS_ERR(bo)) {
1962 		drm_err(&i915->drm,
1963 			"Failed to allocate NOA wait batchbuffer\n");
1964 		return PTR_ERR(bo);
1965 	}
1966 
1967 	i915_gem_ww_ctx_init(&ww, true);
1968 retry:
1969 	ret = i915_gem_object_lock(bo, &ww);
1970 	if (ret)
1971 		goto out_ww;
1972 
1973 	/*
1974 	 * We pin in GGTT because we jump into this buffer now because
1975 	 * multiple OA config BOs will have a jump to this address and it
1976 	 * needs to be fixed during the lifetime of the i915/perf stream.
1977 	 */
1978 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1979 	if (IS_ERR(vma)) {
1980 		ret = PTR_ERR(vma);
1981 		goto out_ww;
1982 	}
1983 
1984 	ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1985 	if (ret)
1986 		goto out_ww;
1987 
1988 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1989 	if (IS_ERR(batch)) {
1990 		ret = PTR_ERR(batch);
1991 		goto err_unpin;
1992 	}
1993 
1994 	stream->noa_wait = vma;
1995 
1996 #define GPR_SAVE_OFFSET 4096
1997 #define PREDICATE_SAVE_OFFSET 4160
1998 
1999 	/* Save registers. */
2000 	for (i = 0; i < N_CS_GPR; i++)
2001 		cs = save_restore_register(
2002 			stream, cs, true /* save */, CS_GPR(i),
2003 			GPR_SAVE_OFFSET + 8 * i, 2);
2004 	cs = save_restore_register(
2005 		stream, cs, true /* save */, mi_predicate_result,
2006 		PREDICATE_SAVE_OFFSET, 1);
2007 
2008 	/* First timestamp snapshot location. */
2009 	ts0 = cs;
2010 
2011 	/*
2012 	 * Initial snapshot of the timestamp register to implement the wait.
2013 	 * We work with 32b values, so clear out the top 32b bits of the
2014 	 * register because the ALU works 64bits.
2015 	 */
2016 	*cs++ = MI_LOAD_REGISTER_IMM(1);
2017 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
2018 	*cs++ = 0;
2019 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2020 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2021 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
2022 
2023 	/*
2024 	 * This is the location we're going to jump back into until the
2025 	 * required amount of time has passed.
2026 	 */
2027 	jump = cs;
2028 
2029 	/*
2030 	 * Take another snapshot of the timestamp register. Take care to clear
2031 	 * up the top 32bits of CS_GPR(1) as we're using it for other
2032 	 * operations below.
2033 	 */
2034 	*cs++ = MI_LOAD_REGISTER_IMM(1);
2035 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
2036 	*cs++ = 0;
2037 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2038 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2039 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
2040 
2041 	/*
2042 	 * Do a diff between the 2 timestamps and store the result back into
2043 	 * CS_GPR(1).
2044 	 */
2045 	*cs++ = MI_MATH(5);
2046 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
2047 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
2048 	*cs++ = MI_MATH_SUB;
2049 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
2050 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2051 
2052 	/*
2053 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
2054 	 * timestamp have rolled over the 32bits) into the predicate register
2055 	 * to be used for the predicated jump.
2056 	 */
2057 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2058 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2059 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2060 
2061 	if (HAS_MI_SET_PREDICATE(i915))
2062 		*cs++ = MI_SET_PREDICATE | 1;
2063 
2064 	/* Restart from the beginning if we had timestamps roll over. */
2065 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2066 		 MI_BATCH_BUFFER_START :
2067 		 MI_BATCH_BUFFER_START_GEN8) |
2068 		MI_BATCH_PREDICATE;
2069 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
2070 	*cs++ = 0;
2071 
2072 	if (HAS_MI_SET_PREDICATE(i915))
2073 		*cs++ = MI_SET_PREDICATE;
2074 
2075 	/*
2076 	 * Now add the diff between to previous timestamps and add it to :
2077 	 *      (((1 * << 64) - 1) - delay_ns)
2078 	 *
2079 	 * When the Carry Flag contains 1 this means the elapsed time is
2080 	 * longer than the expected delay, and we can exit the wait loop.
2081 	 */
2082 	*cs++ = MI_LOAD_REGISTER_IMM(2);
2083 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
2084 	*cs++ = lower_32_bits(delay_ticks);
2085 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
2086 	*cs++ = upper_32_bits(delay_ticks);
2087 
2088 	*cs++ = MI_MATH(4);
2089 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
2090 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
2091 	*cs++ = MI_MATH_ADD;
2092 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2093 
2094 	*cs++ = MI_ARB_CHECK;
2095 
2096 	/*
2097 	 * Transfer the result into the predicate register to be used for the
2098 	 * predicated jump.
2099 	 */
2100 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2101 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2102 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2103 
2104 	if (HAS_MI_SET_PREDICATE(i915))
2105 		*cs++ = MI_SET_PREDICATE | 1;
2106 
2107 	/* Predicate the jump.  */
2108 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2109 		 MI_BATCH_BUFFER_START :
2110 		 MI_BATCH_BUFFER_START_GEN8) |
2111 		MI_BATCH_PREDICATE;
2112 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
2113 	*cs++ = 0;
2114 
2115 	if (HAS_MI_SET_PREDICATE(i915))
2116 		*cs++ = MI_SET_PREDICATE;
2117 
2118 	/* Restore registers. */
2119 	for (i = 0; i < N_CS_GPR; i++)
2120 		cs = save_restore_register(
2121 			stream, cs, false /* restore */, CS_GPR(i),
2122 			GPR_SAVE_OFFSET + 8 * i, 2);
2123 	cs = save_restore_register(
2124 		stream, cs, false /* restore */, mi_predicate_result,
2125 		PREDICATE_SAVE_OFFSET, 1);
2126 
2127 	/* And return to the ring. */
2128 	*cs++ = MI_BATCH_BUFFER_END;
2129 
2130 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
2131 
2132 	i915_gem_object_flush_map(bo);
2133 	__i915_gem_object_release_map(bo);
2134 
2135 	goto out_ww;
2136 
2137 err_unpin:
2138 	i915_vma_unpin_and_release(&vma, 0);
2139 out_ww:
2140 	if (ret == -EDEADLK) {
2141 		ret = i915_gem_ww_ctx_backoff(&ww);
2142 		if (!ret)
2143 			goto retry;
2144 	}
2145 	i915_gem_ww_ctx_fini(&ww);
2146 	if (ret)
2147 		i915_gem_object_put(bo);
2148 	return ret;
2149 }
2150 
2151 static u32 *write_cs_mi_lri(u32 *cs,
2152 			    const struct i915_oa_reg *reg_data,
2153 			    u32 n_regs)
2154 {
2155 	u32 i;
2156 
2157 	for (i = 0; i < n_regs; i++) {
2158 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
2159 			u32 n_lri = min_t(u32,
2160 					  n_regs - i,
2161 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
2162 
2163 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
2164 		}
2165 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
2166 		*cs++ = reg_data[i].value;
2167 	}
2168 
2169 	return cs;
2170 }
2171 
2172 static int num_lri_dwords(int num_regs)
2173 {
2174 	int count = 0;
2175 
2176 	if (num_regs > 0) {
2177 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
2178 		count += num_regs * 2;
2179 	}
2180 
2181 	return count;
2182 }
2183 
2184 static struct i915_oa_config_bo *
2185 alloc_oa_config_buffer(struct i915_perf_stream *stream,
2186 		       struct i915_oa_config *oa_config)
2187 {
2188 	struct drm_i915_gem_object *obj;
2189 	struct i915_oa_config_bo *oa_bo;
2190 	struct i915_gem_ww_ctx ww;
2191 	size_t config_length = 0;
2192 	u32 *cs;
2193 	int err;
2194 
2195 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
2196 	if (!oa_bo)
2197 		return ERR_PTR(-ENOMEM);
2198 
2199 	config_length += num_lri_dwords(oa_config->mux_regs_len);
2200 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
2201 	config_length += num_lri_dwords(oa_config->flex_regs_len);
2202 	config_length += 3; /* MI_BATCH_BUFFER_START */
2203 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
2204 
2205 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
2206 	if (IS_ERR(obj)) {
2207 		err = PTR_ERR(obj);
2208 		goto err_free;
2209 	}
2210 
2211 	i915_gem_ww_ctx_init(&ww, true);
2212 retry:
2213 	err = i915_gem_object_lock(obj, &ww);
2214 	if (err)
2215 		goto out_ww;
2216 
2217 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
2218 	if (IS_ERR(cs)) {
2219 		err = PTR_ERR(cs);
2220 		goto out_ww;
2221 	}
2222 
2223 	cs = write_cs_mi_lri(cs,
2224 			     oa_config->mux_regs,
2225 			     oa_config->mux_regs_len);
2226 	cs = write_cs_mi_lri(cs,
2227 			     oa_config->b_counter_regs,
2228 			     oa_config->b_counter_regs_len);
2229 	cs = write_cs_mi_lri(cs,
2230 			     oa_config->flex_regs,
2231 			     oa_config->flex_regs_len);
2232 
2233 	/* Jump into the active wait. */
2234 	*cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
2235 		 MI_BATCH_BUFFER_START :
2236 		 MI_BATCH_BUFFER_START_GEN8);
2237 	*cs++ = i915_ggtt_offset(stream->noa_wait);
2238 	*cs++ = 0;
2239 
2240 	i915_gem_object_flush_map(obj);
2241 	__i915_gem_object_release_map(obj);
2242 
2243 	oa_bo->vma = i915_vma_instance(obj,
2244 				       &stream->engine->gt->ggtt->vm,
2245 				       NULL);
2246 	if (IS_ERR(oa_bo->vma)) {
2247 		err = PTR_ERR(oa_bo->vma);
2248 		goto out_ww;
2249 	}
2250 
2251 	oa_bo->oa_config = i915_oa_config_get(oa_config);
2252 	llist_add(&oa_bo->node, &stream->oa_config_bos);
2253 
2254 out_ww:
2255 	if (err == -EDEADLK) {
2256 		err = i915_gem_ww_ctx_backoff(&ww);
2257 		if (!err)
2258 			goto retry;
2259 	}
2260 	i915_gem_ww_ctx_fini(&ww);
2261 
2262 	if (err)
2263 		i915_gem_object_put(obj);
2264 err_free:
2265 	if (err) {
2266 		kfree(oa_bo);
2267 		return ERR_PTR(err);
2268 	}
2269 	return oa_bo;
2270 }
2271 
2272 static struct i915_vma *
2273 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
2274 {
2275 	struct i915_oa_config_bo *oa_bo;
2276 
2277 	/*
2278 	 * Look for the buffer in the already allocated BOs attached
2279 	 * to the stream.
2280 	 */
2281 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
2282 		if (oa_bo->oa_config == oa_config &&
2283 		    memcmp(oa_bo->oa_config->uuid,
2284 			   oa_config->uuid,
2285 			   sizeof(oa_config->uuid)) == 0)
2286 			goto out;
2287 	}
2288 
2289 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
2290 	if (IS_ERR(oa_bo))
2291 		return ERR_CAST(oa_bo);
2292 
2293 out:
2294 	return i915_vma_get(oa_bo->vma);
2295 }
2296 
2297 static int
2298 emit_oa_config(struct i915_perf_stream *stream,
2299 	       struct i915_oa_config *oa_config,
2300 	       struct intel_context *ce,
2301 	       struct i915_active *active)
2302 {
2303 	struct i915_request *rq;
2304 	struct i915_vma *vma;
2305 	struct i915_gem_ww_ctx ww;
2306 	int err;
2307 
2308 	vma = get_oa_vma(stream, oa_config);
2309 	if (IS_ERR(vma))
2310 		return PTR_ERR(vma);
2311 
2312 	i915_gem_ww_ctx_init(&ww, true);
2313 retry:
2314 	err = i915_gem_object_lock(vma->obj, &ww);
2315 	if (err)
2316 		goto err;
2317 
2318 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
2319 	if (err)
2320 		goto err;
2321 
2322 	intel_engine_pm_get(ce->engine);
2323 	rq = i915_request_create(ce);
2324 	intel_engine_pm_put(ce->engine);
2325 	if (IS_ERR(rq)) {
2326 		err = PTR_ERR(rq);
2327 		goto err_vma_unpin;
2328 	}
2329 
2330 	if (!IS_ERR_OR_NULL(active)) {
2331 		/* After all individual context modifications */
2332 		err = i915_request_await_active(rq, active,
2333 						I915_ACTIVE_AWAIT_ACTIVE);
2334 		if (err)
2335 			goto err_add_request;
2336 
2337 		err = i915_active_add_request(active, rq);
2338 		if (err)
2339 			goto err_add_request;
2340 	}
2341 
2342 	err = i915_vma_move_to_active(vma, rq, 0);
2343 	if (err)
2344 		goto err_add_request;
2345 
2346 	err = rq->engine->emit_bb_start(rq,
2347 					i915_vma_offset(vma), 0,
2348 					I915_DISPATCH_SECURE);
2349 	if (err)
2350 		goto err_add_request;
2351 
2352 err_add_request:
2353 	i915_request_add(rq);
2354 err_vma_unpin:
2355 	i915_vma_unpin(vma);
2356 err:
2357 	if (err == -EDEADLK) {
2358 		err = i915_gem_ww_ctx_backoff(&ww);
2359 		if (!err)
2360 			goto retry;
2361 	}
2362 
2363 	i915_gem_ww_ctx_fini(&ww);
2364 	i915_vma_put(vma);
2365 	return err;
2366 }
2367 
2368 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2369 {
2370 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2371 }
2372 
2373 static int
2374 hsw_enable_metric_set(struct i915_perf_stream *stream,
2375 		      struct i915_active *active)
2376 {
2377 	struct intel_uncore *uncore = stream->uncore;
2378 
2379 	/*
2380 	 * PRM:
2381 	 *
2382 	 * OA unit is using “crclk” for its functionality. When trunk
2383 	 * level clock gating takes place, OA clock would be gated,
2384 	 * unable to count the events from non-render clock domain.
2385 	 * Render clock gating must be disabled when OA is enabled to
2386 	 * count the events from non-render domain. Unit level clock
2387 	 * gating for RCS should also be disabled.
2388 	 */
2389 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2390 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2391 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2392 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2393 
2394 	return emit_oa_config(stream,
2395 			      stream->oa_config, oa_context(stream),
2396 			      active);
2397 }
2398 
2399 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2400 {
2401 	struct intel_uncore *uncore = stream->uncore;
2402 
2403 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2404 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2405 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2406 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2407 
2408 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2409 }
2410 
2411 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2412 			      i915_reg_t reg)
2413 {
2414 	u32 mmio = i915_mmio_reg_offset(reg);
2415 	int i;
2416 
2417 	/*
2418 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2419 	 * Active' event. In the future it's anticipated that there
2420 	 * will be an explicit 'No Event' we can select, but not yet...
2421 	 */
2422 	if (!oa_config)
2423 		return 0;
2424 
2425 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2426 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2427 			return oa_config->flex_regs[i].value;
2428 	}
2429 
2430 	return 0;
2431 }
2432 /*
2433  * NB: It must always remain pointer safe to run this even if the OA unit
2434  * has been disabled.
2435  *
2436  * It's fine to put out-of-date values into these per-context registers
2437  * in the case that the OA unit has been disabled.
2438  */
2439 static void
2440 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2441 			       const struct i915_perf_stream *stream)
2442 {
2443 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2444 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2445 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2446 	static const i915_reg_t flex_regs[] = {
2447 		EU_PERF_CNTL0,
2448 		EU_PERF_CNTL1,
2449 		EU_PERF_CNTL2,
2450 		EU_PERF_CNTL3,
2451 		EU_PERF_CNTL4,
2452 		EU_PERF_CNTL5,
2453 		EU_PERF_CNTL6,
2454 	};
2455 	u32 *reg_state = ce->lrc_reg_state;
2456 	int i;
2457 
2458 	reg_state[ctx_oactxctrl + 1] =
2459 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2460 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2461 		GEN8_OA_COUNTER_RESUME;
2462 
2463 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2464 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2465 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2466 }
2467 
2468 struct flex {
2469 	i915_reg_t reg;
2470 	u32 offset;
2471 	u32 value;
2472 };
2473 
2474 static int
2475 gen8_store_flex(struct i915_request *rq,
2476 		struct intel_context *ce,
2477 		const struct flex *flex, unsigned int count)
2478 {
2479 	u32 offset;
2480 	u32 *cs;
2481 
2482 	cs = intel_ring_begin(rq, 4 * count);
2483 	if (IS_ERR(cs))
2484 		return PTR_ERR(cs);
2485 
2486 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2487 	do {
2488 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2489 		*cs++ = offset + flex->offset * sizeof(u32);
2490 		*cs++ = 0;
2491 		*cs++ = flex->value;
2492 	} while (flex++, --count);
2493 
2494 	intel_ring_advance(rq, cs);
2495 
2496 	return 0;
2497 }
2498 
2499 static int
2500 gen8_load_flex(struct i915_request *rq,
2501 	       struct intel_context *ce,
2502 	       const struct flex *flex, unsigned int count)
2503 {
2504 	u32 *cs;
2505 
2506 	GEM_BUG_ON(!count || count > 63);
2507 
2508 	cs = intel_ring_begin(rq, 2 * count + 2);
2509 	if (IS_ERR(cs))
2510 		return PTR_ERR(cs);
2511 
2512 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2513 	do {
2514 		*cs++ = i915_mmio_reg_offset(flex->reg);
2515 		*cs++ = flex->value;
2516 	} while (flex++, --count);
2517 	*cs++ = MI_NOOP;
2518 
2519 	intel_ring_advance(rq, cs);
2520 
2521 	return 0;
2522 }
2523 
2524 static int gen8_modify_context(struct intel_context *ce,
2525 			       const struct flex *flex, unsigned int count)
2526 {
2527 	struct i915_request *rq;
2528 	int err;
2529 
2530 	rq = intel_engine_create_kernel_request(ce->engine);
2531 	if (IS_ERR(rq))
2532 		return PTR_ERR(rq);
2533 
2534 	/* Serialise with the remote context */
2535 	err = intel_context_prepare_remote_request(ce, rq);
2536 	if (err == 0)
2537 		err = gen8_store_flex(rq, ce, flex, count);
2538 
2539 	i915_request_add(rq);
2540 	return err;
2541 }
2542 
2543 static int
2544 gen8_modify_self(struct intel_context *ce,
2545 		 const struct flex *flex, unsigned int count,
2546 		 struct i915_active *active)
2547 {
2548 	struct i915_request *rq;
2549 	int err;
2550 
2551 	intel_engine_pm_get(ce->engine);
2552 	rq = i915_request_create(ce);
2553 	intel_engine_pm_put(ce->engine);
2554 	if (IS_ERR(rq))
2555 		return PTR_ERR(rq);
2556 
2557 	if (!IS_ERR_OR_NULL(active)) {
2558 		err = i915_active_add_request(active, rq);
2559 		if (err)
2560 			goto err_add_request;
2561 	}
2562 
2563 	err = gen8_load_flex(rq, ce, flex, count);
2564 	if (err)
2565 		goto err_add_request;
2566 
2567 err_add_request:
2568 	i915_request_add(rq);
2569 	return err;
2570 }
2571 
2572 static int gen8_configure_context(struct i915_perf_stream *stream,
2573 				  struct i915_gem_context *ctx,
2574 				  struct flex *flex, unsigned int count)
2575 {
2576 	struct i915_gem_engines_iter it;
2577 	struct intel_context *ce;
2578 	int err = 0;
2579 
2580 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2581 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2582 
2583 		if (ce->engine->class != RENDER_CLASS)
2584 			continue;
2585 
2586 		/* Otherwise OA settings will be set upon first use */
2587 		if (!intel_context_pin_if_active(ce))
2588 			continue;
2589 
2590 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2591 		err = gen8_modify_context(ce, flex, count);
2592 
2593 		intel_context_unpin(ce);
2594 		if (err)
2595 			break;
2596 	}
2597 	i915_gem_context_unlock_engines(ctx);
2598 
2599 	return err;
2600 }
2601 
2602 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2603 				       struct i915_active *active)
2604 {
2605 	int err;
2606 	struct intel_context *ce = stream->pinned_ctx;
2607 	u32 format = stream->oa_buffer.format->format;
2608 	u32 offset = stream->perf->ctx_oactxctrl_offset;
2609 	struct flex regs_context[] = {
2610 		{
2611 			GEN8_OACTXCONTROL,
2612 			offset + 1,
2613 			active ? GEN8_OA_COUNTER_RESUME : 0,
2614 		},
2615 	};
2616 	/* Offsets in regs_lri are not used since this configuration is only
2617 	 * applied using LRI. Initialize the correct offsets for posterity.
2618 	 */
2619 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2620 	struct flex regs_lri[] = {
2621 		{
2622 			GEN12_OAR_OACONTROL,
2623 			GEN12_OAR_OACONTROL_OFFSET + 1,
2624 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2625 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2626 		},
2627 		{
2628 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2629 			CTX_CONTEXT_CONTROL,
2630 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2631 				      active ?
2632 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2633 				      0)
2634 		},
2635 	};
2636 
2637 	/* Modify the context image of pinned context with regs_context */
2638 	err = intel_context_lock_pinned(ce);
2639 	if (err)
2640 		return err;
2641 
2642 	err = gen8_modify_context(ce, regs_context,
2643 				  ARRAY_SIZE(regs_context));
2644 	intel_context_unlock_pinned(ce);
2645 	if (err)
2646 		return err;
2647 
2648 	/* Apply regs_lri using LRI with pinned context */
2649 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2650 }
2651 
2652 /*
2653  * Manages updating the per-context aspects of the OA stream
2654  * configuration across all contexts.
2655  *
2656  * The awkward consideration here is that OACTXCONTROL controls the
2657  * exponent for periodic sampling which is primarily used for system
2658  * wide profiling where we'd like a consistent sampling period even in
2659  * the face of context switches.
2660  *
2661  * Our approach of updating the register state context (as opposed to
2662  * say using a workaround batch buffer) ensures that the hardware
2663  * won't automatically reload an out-of-date timer exponent even
2664  * transiently before a WA BB could be parsed.
2665  *
2666  * This function needs to:
2667  * - Ensure the currently running context's per-context OA state is
2668  *   updated
2669  * - Ensure that all existing contexts will have the correct per-context
2670  *   OA state if they are scheduled for use.
2671  * - Ensure any new contexts will be initialized with the correct
2672  *   per-context OA state.
2673  *
2674  * Note: it's only the RCS/Render context that has any OA state.
2675  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2676  */
2677 static int
2678 oa_configure_all_contexts(struct i915_perf_stream *stream,
2679 			  struct flex *regs,
2680 			  size_t num_regs,
2681 			  struct i915_active *active)
2682 {
2683 	struct drm_i915_private *i915 = stream->perf->i915;
2684 	struct intel_engine_cs *engine;
2685 	struct intel_gt *gt = stream->engine->gt;
2686 	struct i915_gem_context *ctx, *cn;
2687 	int err;
2688 
2689 	lockdep_assert_held(&gt->perf.lock);
2690 
2691 	/*
2692 	 * The OA register config is setup through the context image. This image
2693 	 * might be written to by the GPU on context switch (in particular on
2694 	 * lite-restore). This means we can't safely update a context's image,
2695 	 * if this context is scheduled/submitted to run on the GPU.
2696 	 *
2697 	 * We could emit the OA register config through the batch buffer but
2698 	 * this might leave small interval of time where the OA unit is
2699 	 * configured at an invalid sampling period.
2700 	 *
2701 	 * Note that since we emit all requests from a single ring, there
2702 	 * is still an implicit global barrier here that may cause a high
2703 	 * priority context to wait for an otherwise independent low priority
2704 	 * context. Contexts idle at the time of reconfiguration are not
2705 	 * trapped behind the barrier.
2706 	 */
2707 	spin_lock(&i915->gem.contexts.lock);
2708 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2709 		if (!kref_get_unless_zero(&ctx->ref))
2710 			continue;
2711 
2712 		spin_unlock(&i915->gem.contexts.lock);
2713 
2714 		err = gen8_configure_context(stream, ctx, regs, num_regs);
2715 		if (err) {
2716 			i915_gem_context_put(ctx);
2717 			return err;
2718 		}
2719 
2720 		spin_lock(&i915->gem.contexts.lock);
2721 		list_safe_reset_next(ctx, cn, link);
2722 		i915_gem_context_put(ctx);
2723 	}
2724 	spin_unlock(&i915->gem.contexts.lock);
2725 
2726 	/*
2727 	 * After updating all other contexts, we need to modify ourselves.
2728 	 * If we don't modify the kernel_context, we do not get events while
2729 	 * idle.
2730 	 */
2731 	for_each_uabi_engine(engine, i915) {
2732 		struct intel_context *ce = engine->kernel_context;
2733 
2734 		if (engine->class != RENDER_CLASS)
2735 			continue;
2736 
2737 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2738 
2739 		err = gen8_modify_self(ce, regs, num_regs, active);
2740 		if (err)
2741 			return err;
2742 	}
2743 
2744 	return 0;
2745 }
2746 
2747 static int
2748 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2749 			     const struct i915_oa_config *oa_config,
2750 			     struct i915_active *active)
2751 {
2752 	struct flex regs[] = {
2753 		{
2754 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2755 			CTX_R_PWR_CLK_STATE,
2756 		},
2757 	};
2758 
2759 	if (stream->engine->class != RENDER_CLASS)
2760 		return 0;
2761 
2762 	return oa_configure_all_contexts(stream,
2763 					 regs, ARRAY_SIZE(regs),
2764 					 active);
2765 }
2766 
2767 static int
2768 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2769 			   const struct i915_oa_config *oa_config,
2770 			   struct i915_active *active)
2771 {
2772 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2773 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2774 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2775 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2776 	struct flex regs[] = {
2777 		{
2778 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2779 			CTX_R_PWR_CLK_STATE,
2780 		},
2781 		{
2782 			GEN8_OACTXCONTROL,
2783 			ctx_oactxctrl + 1,
2784 		},
2785 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2786 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2787 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2788 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2789 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2790 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2791 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2792 	};
2793 #undef ctx_flexeuN
2794 	int i;
2795 
2796 	regs[1].value =
2797 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2798 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2799 		GEN8_OA_COUNTER_RESUME;
2800 
2801 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2802 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2803 
2804 	return oa_configure_all_contexts(stream,
2805 					 regs, ARRAY_SIZE(regs),
2806 					 active);
2807 }
2808 
2809 static int
2810 gen8_enable_metric_set(struct i915_perf_stream *stream,
2811 		       struct i915_active *active)
2812 {
2813 	struct intel_uncore *uncore = stream->uncore;
2814 	struct i915_oa_config *oa_config = stream->oa_config;
2815 	int ret;
2816 
2817 	/*
2818 	 * We disable slice/unslice clock ratio change reports on SKL since
2819 	 * they are too noisy. The HW generates a lot of redundant reports
2820 	 * where the ratio hasn't really changed causing a lot of redundant
2821 	 * work to processes and increasing the chances we'll hit buffer
2822 	 * overruns.
2823 	 *
2824 	 * Although we don't currently use the 'disable overrun' OABUFFER
2825 	 * feature it's worth noting that clock ratio reports have to be
2826 	 * disabled before considering to use that feature since the HW doesn't
2827 	 * correctly block these reports.
2828 	 *
2829 	 * Currently none of the high-level metrics we have depend on knowing
2830 	 * this ratio to normalize.
2831 	 *
2832 	 * Note: This register is not power context saved and restored, but
2833 	 * that's OK considering that we disable RC6 while the OA unit is
2834 	 * enabled.
2835 	 *
2836 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2837 	 * be read back from automatically triggered reports, as part of the
2838 	 * RPT_ID field.
2839 	 */
2840 	if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2841 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2842 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2843 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2844 	}
2845 
2846 	/*
2847 	 * Update all contexts prior writing the mux configurations as we need
2848 	 * to make sure all slices/subslices are ON before writing to NOA
2849 	 * registers.
2850 	 */
2851 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2852 	if (ret)
2853 		return ret;
2854 
2855 	return emit_oa_config(stream,
2856 			      stream->oa_config, oa_context(stream),
2857 			      active);
2858 }
2859 
2860 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2861 {
2862 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2863 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2864 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2865 }
2866 
2867 static int
2868 gen12_enable_metric_set(struct i915_perf_stream *stream,
2869 			struct i915_active *active)
2870 {
2871 	struct drm_i915_private *i915 = stream->perf->i915;
2872 	struct intel_uncore *uncore = stream->uncore;
2873 	struct i915_oa_config *oa_config = stream->oa_config;
2874 	bool periodic = stream->periodic;
2875 	u32 period_exponent = stream->period_exponent;
2876 	u32 sqcnt1;
2877 	int ret;
2878 
2879 	/*
2880 	 * Wa_1508761755:xehpsdv, dg2
2881 	 * EU NOA signals behave incorrectly if EU clock gating is enabled.
2882 	 * Disable thread stall DOP gating and EU DOP gating.
2883 	 */
2884 	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2885 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2886 					     _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
2887 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2888 				   _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING));
2889 	}
2890 
2891 	intel_uncore_write(uncore, __oa_regs(stream)->oa_debug,
2892 			   /* Disable clk ratio reports, like previous Gens. */
2893 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2894 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2895 			   /*
2896 			    * If the user didn't require OA reports, instruct
2897 			    * the hardware not to emit ctx switch reports.
2898 			    */
2899 			   oag_report_ctx_switches(stream));
2900 
2901 	intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ?
2902 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2903 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2904 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2905 			    : 0);
2906 
2907 	/*
2908 	 * Initialize Super Queue Internal Cnt Register
2909 	 * Set PMON Enable in order to collect valid metrics.
2910 	 * Enable byets per clock reporting in OA for XEHPSDV onward.
2911 	 */
2912 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2913 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2914 
2915 	intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1);
2916 
2917 	/*
2918 	 * Update all contexts prior writing the mux configurations as we need
2919 	 * to make sure all slices/subslices are ON before writing to NOA
2920 	 * registers.
2921 	 */
2922 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2923 	if (ret)
2924 		return ret;
2925 
2926 	/*
2927 	 * For Gen12, performance counters are context
2928 	 * saved/restored. Only enable it for the context that
2929 	 * requested this.
2930 	 */
2931 	if (stream->ctx) {
2932 		ret = gen12_configure_oar_context(stream, active);
2933 		if (ret)
2934 			return ret;
2935 	}
2936 
2937 	return emit_oa_config(stream,
2938 			      stream->oa_config, oa_context(stream),
2939 			      active);
2940 }
2941 
2942 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2943 {
2944 	struct intel_uncore *uncore = stream->uncore;
2945 
2946 	/* Reset all contexts' slices/subslices configurations. */
2947 	lrc_configure_all_contexts(stream, NULL, NULL);
2948 
2949 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2950 }
2951 
2952 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2953 {
2954 	struct intel_uncore *uncore = stream->uncore;
2955 
2956 	/* Reset all contexts' slices/subslices configurations. */
2957 	lrc_configure_all_contexts(stream, NULL, NULL);
2958 
2959 	/* Make sure we disable noa to save power. */
2960 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2961 }
2962 
2963 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2964 {
2965 	struct intel_uncore *uncore = stream->uncore;
2966 	struct drm_i915_private *i915 = stream->perf->i915;
2967 	u32 sqcnt1;
2968 
2969 	/*
2970 	 * Wa_1508761755:xehpsdv, dg2
2971 	 * Enable thread stall DOP gating and EU DOP gating.
2972 	 */
2973 	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2974 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2975 					     _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE));
2976 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2977 				   _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING));
2978 	}
2979 
2980 	/* Reset all contexts' slices/subslices configurations. */
2981 	gen12_configure_all_contexts(stream, NULL, NULL);
2982 
2983 	/* disable the context save/restore or OAR counters */
2984 	if (stream->ctx)
2985 		gen12_configure_oar_context(stream, NULL);
2986 
2987 	/* Make sure we disable noa to save power. */
2988 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2989 
2990 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2991 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2992 
2993 	/* Reset PMON Enable to save power. */
2994 	intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0);
2995 }
2996 
2997 static void gen7_oa_enable(struct i915_perf_stream *stream)
2998 {
2999 	struct intel_uncore *uncore = stream->uncore;
3000 	struct i915_gem_context *ctx = stream->ctx;
3001 	u32 ctx_id = stream->specific_ctx_id;
3002 	bool periodic = stream->periodic;
3003 	u32 period_exponent = stream->period_exponent;
3004 	u32 report_format = stream->oa_buffer.format->format;
3005 
3006 	/*
3007 	 * Reset buf pointers so we don't forward reports from before now.
3008 	 *
3009 	 * Think carefully if considering trying to avoid this, since it
3010 	 * also ensures status flags and the buffer itself are cleared
3011 	 * in error paths, and we have checks for invalid reports based
3012 	 * on the assumption that certain fields are written to zeroed
3013 	 * memory which this helps maintains.
3014 	 */
3015 	gen7_init_oa_buffer(stream);
3016 
3017 	intel_uncore_write(uncore, GEN7_OACONTROL,
3018 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
3019 			   (period_exponent <<
3020 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
3021 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
3022 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
3023 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
3024 			   GEN7_OACONTROL_ENABLE);
3025 }
3026 
3027 static void gen8_oa_enable(struct i915_perf_stream *stream)
3028 {
3029 	struct intel_uncore *uncore = stream->uncore;
3030 	u32 report_format = stream->oa_buffer.format->format;
3031 
3032 	/*
3033 	 * Reset buf pointers so we don't forward reports from before now.
3034 	 *
3035 	 * Think carefully if considering trying to avoid this, since it
3036 	 * also ensures status flags and the buffer itself are cleared
3037 	 * in error paths, and we have checks for invalid reports based
3038 	 * on the assumption that certain fields are written to zeroed
3039 	 * memory which this helps maintains.
3040 	 */
3041 	gen8_init_oa_buffer(stream);
3042 
3043 	/*
3044 	 * Note: we don't rely on the hardware to perform single context
3045 	 * filtering and instead filter on the cpu based on the context-id
3046 	 * field of reports
3047 	 */
3048 	intel_uncore_write(uncore, GEN8_OACONTROL,
3049 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
3050 			   GEN8_OA_COUNTER_ENABLE);
3051 }
3052 
3053 static void gen12_oa_enable(struct i915_perf_stream *stream)
3054 {
3055 	const struct i915_perf_regs *regs;
3056 	u32 val;
3057 
3058 	/*
3059 	 * If we don't want OA reports from the OA buffer, then we don't even
3060 	 * need to program the OAG unit.
3061 	 */
3062 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
3063 		return;
3064 
3065 	gen12_init_oa_buffer(stream);
3066 
3067 	regs = __oa_regs(stream);
3068 	val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) |
3069 	      GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE;
3070 
3071 	intel_uncore_write(stream->uncore, regs->oa_ctrl, val);
3072 }
3073 
3074 /**
3075  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
3076  * @stream: An i915 perf stream opened for OA metrics
3077  *
3078  * [Re]enables hardware periodic sampling according to the period configured
3079  * when opening the stream. This also starts a hrtimer that will periodically
3080  * check for data in the circular OA buffer for notifying userspace (e.g.
3081  * during a read() or poll()).
3082  */
3083 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
3084 {
3085 	stream->pollin = false;
3086 
3087 	stream->perf->ops.oa_enable(stream);
3088 
3089 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3090 		hrtimer_start(&stream->poll_check_timer,
3091 			      ns_to_ktime(stream->poll_oa_period),
3092 			      HRTIMER_MODE_REL_PINNED);
3093 }
3094 
3095 static void gen7_oa_disable(struct i915_perf_stream *stream)
3096 {
3097 	struct intel_uncore *uncore = stream->uncore;
3098 
3099 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
3100 	if (intel_wait_for_register(uncore,
3101 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
3102 				    50))
3103 		drm_err(&stream->perf->i915->drm,
3104 			"wait for OA to be disabled timed out\n");
3105 }
3106 
3107 static void gen8_oa_disable(struct i915_perf_stream *stream)
3108 {
3109 	struct intel_uncore *uncore = stream->uncore;
3110 
3111 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
3112 	if (intel_wait_for_register(uncore,
3113 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
3114 				    50))
3115 		drm_err(&stream->perf->i915->drm,
3116 			"wait for OA to be disabled timed out\n");
3117 }
3118 
3119 static void gen12_oa_disable(struct i915_perf_stream *stream)
3120 {
3121 	struct intel_uncore *uncore = stream->uncore;
3122 
3123 	intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0);
3124 	if (intel_wait_for_register(uncore,
3125 				    __oa_regs(stream)->oa_ctrl,
3126 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
3127 				    50))
3128 		drm_err(&stream->perf->i915->drm,
3129 			"wait for OA to be disabled timed out\n");
3130 
3131 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
3132 	if (intel_wait_for_register(uncore,
3133 				    GEN12_OA_TLB_INV_CR,
3134 				    1, 0,
3135 				    50))
3136 		drm_err(&stream->perf->i915->drm,
3137 			"wait for OA tlb invalidate timed out\n");
3138 }
3139 
3140 /**
3141  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
3142  * @stream: An i915 perf stream opened for OA metrics
3143  *
3144  * Stops the OA unit from periodically writing counter reports into the
3145  * circular OA buffer. This also stops the hrtimer that periodically checks for
3146  * data in the circular OA buffer, for notifying userspace.
3147  */
3148 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
3149 {
3150 	stream->perf->ops.oa_disable(stream);
3151 
3152 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3153 		hrtimer_cancel(&stream->poll_check_timer);
3154 }
3155 
3156 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
3157 	.destroy = i915_oa_stream_destroy,
3158 	.enable = i915_oa_stream_enable,
3159 	.disable = i915_oa_stream_disable,
3160 	.wait_unlocked = i915_oa_wait_unlocked,
3161 	.poll_wait = i915_oa_poll_wait,
3162 	.read = i915_oa_read,
3163 };
3164 
3165 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
3166 {
3167 	struct i915_active *active;
3168 	int err;
3169 
3170 	active = i915_active_create();
3171 	if (!active)
3172 		return -ENOMEM;
3173 
3174 	err = stream->perf->ops.enable_metric_set(stream, active);
3175 	if (err == 0)
3176 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
3177 
3178 	i915_active_put(active);
3179 	return err;
3180 }
3181 
3182 static void
3183 get_default_sseu_config(struct intel_sseu *out_sseu,
3184 			struct intel_engine_cs *engine)
3185 {
3186 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
3187 
3188 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
3189 
3190 	if (GRAPHICS_VER(engine->i915) == 11) {
3191 		/*
3192 		 * We only need subslice count so it doesn't matter which ones
3193 		 * we select - just turn off low bits in the amount of half of
3194 		 * all available subslices per slice.
3195 		 */
3196 		out_sseu->subslice_mask =
3197 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
3198 		out_sseu->slice_mask = 0x1;
3199 	}
3200 }
3201 
3202 static int
3203 get_sseu_config(struct intel_sseu *out_sseu,
3204 		struct intel_engine_cs *engine,
3205 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
3206 {
3207 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
3208 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
3209 		return -EINVAL;
3210 
3211 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
3212 }
3213 
3214 /*
3215  * OA timestamp frequency = CS timestamp frequency in most platforms. On some
3216  * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such
3217  * cases, return the adjusted CS timestamp frequency to the user.
3218  */
3219 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915)
3220 {
3221 	/*
3222 	 * Wa_18013179988:dg2
3223 	 * Wa_14015846243:mtl
3224 	 */
3225 	if (IS_DG2(i915) || IS_METEORLAKE(i915)) {
3226 		intel_wakeref_t wakeref;
3227 		u32 reg, shift;
3228 
3229 		with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref)
3230 			reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0);
3231 
3232 		shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK,
3233 				      reg);
3234 
3235 		return to_gt(i915)->clock_frequency << (3 - shift);
3236 	}
3237 
3238 	return to_gt(i915)->clock_frequency;
3239 }
3240 
3241 /**
3242  * i915_oa_stream_init - validate combined props for OA stream and init
3243  * @stream: An i915 perf stream
3244  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
3245  * @props: The property state that configures stream (individually validated)
3246  *
3247  * While read_properties_unlocked() validates properties in isolation it
3248  * doesn't ensure that the combination necessarily makes sense.
3249  *
3250  * At this point it has been determined that userspace wants a stream of
3251  * OA metrics, but still we need to further validate the combined
3252  * properties are OK.
3253  *
3254  * If the configuration makes sense then we can allocate memory for
3255  * a circular OA buffer and apply the requested metric set configuration.
3256  *
3257  * Returns: zero on success or a negative error code.
3258  */
3259 static int i915_oa_stream_init(struct i915_perf_stream *stream,
3260 			       struct drm_i915_perf_open_param *param,
3261 			       struct perf_open_properties *props)
3262 {
3263 	struct drm_i915_private *i915 = stream->perf->i915;
3264 	struct i915_perf *perf = stream->perf;
3265 	struct i915_perf_group *g;
3266 	struct intel_gt *gt;
3267 	int ret;
3268 
3269 	if (!props->engine) {
3270 		drm_dbg(&stream->perf->i915->drm,
3271 			"OA engine not specified\n");
3272 		return -EINVAL;
3273 	}
3274 	gt = props->engine->gt;
3275 	g = props->engine->oa_group;
3276 
3277 	/*
3278 	 * If the sysfs metrics/ directory wasn't registered for some
3279 	 * reason then don't let userspace try their luck with config
3280 	 * IDs
3281 	 */
3282 	if (!perf->metrics_kobj) {
3283 		drm_dbg(&stream->perf->i915->drm,
3284 			"OA metrics weren't advertised via sysfs\n");
3285 		return -EINVAL;
3286 	}
3287 
3288 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
3289 	    (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
3290 		drm_dbg(&stream->perf->i915->drm,
3291 			"Only OA report sampling supported\n");
3292 		return -EINVAL;
3293 	}
3294 
3295 	if (!perf->ops.enable_metric_set) {
3296 		drm_dbg(&stream->perf->i915->drm,
3297 			"OA unit not supported\n");
3298 		return -ENODEV;
3299 	}
3300 
3301 	/*
3302 	 * To avoid the complexity of having to accurately filter
3303 	 * counter reports and marshal to the appropriate client
3304 	 * we currently only allow exclusive access
3305 	 */
3306 	if (g->exclusive_stream) {
3307 		drm_dbg(&stream->perf->i915->drm,
3308 			"OA unit already in use\n");
3309 		return -EBUSY;
3310 	}
3311 
3312 	if (!props->oa_format) {
3313 		drm_dbg(&stream->perf->i915->drm,
3314 			"OA report format not specified\n");
3315 		return -EINVAL;
3316 	}
3317 
3318 	stream->engine = props->engine;
3319 	stream->uncore = stream->engine->gt->uncore;
3320 
3321 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
3322 
3323 	stream->oa_buffer.format = &perf->oa_formats[props->oa_format];
3324 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0))
3325 		return -EINVAL;
3326 
3327 	stream->sample_flags = props->sample_flags;
3328 	stream->sample_size += stream->oa_buffer.format->size;
3329 
3330 	stream->hold_preemption = props->hold_preemption;
3331 
3332 	stream->periodic = props->oa_periodic;
3333 	if (stream->periodic)
3334 		stream->period_exponent = props->oa_period_exponent;
3335 
3336 	if (stream->ctx) {
3337 		ret = oa_get_render_ctx_id(stream);
3338 		if (ret) {
3339 			drm_dbg(&stream->perf->i915->drm,
3340 				"Invalid context id to filter with\n");
3341 			return ret;
3342 		}
3343 	}
3344 
3345 	ret = alloc_noa_wait(stream);
3346 	if (ret) {
3347 		drm_dbg(&stream->perf->i915->drm,
3348 			"Unable to allocate NOA wait batch buffer\n");
3349 		goto err_noa_wait_alloc;
3350 	}
3351 
3352 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
3353 	if (!stream->oa_config) {
3354 		drm_dbg(&stream->perf->i915->drm,
3355 			"Invalid OA config id=%i\n", props->metrics_set);
3356 		ret = -EINVAL;
3357 		goto err_config;
3358 	}
3359 
3360 	/* PRM - observability performance counters:
3361 	 *
3362 	 *   OACONTROL, performance counter enable, note:
3363 	 *
3364 	 *   "When this bit is set, in order to have coherent counts,
3365 	 *   RC6 power state and trunk clock gating must be disabled.
3366 	 *   This can be achieved by programming MMIO registers as
3367 	 *   0xA094=0 and 0xA090[31]=1"
3368 	 *
3369 	 *   In our case we are expecting that taking pm + FORCEWAKE
3370 	 *   references will effectively disable RC6.
3371 	 */
3372 	intel_engine_pm_get(stream->engine);
3373 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
3374 
3375 	/*
3376 	 * Wa_16011777198:dg2: GuC resets render as part of the Wa. This causes
3377 	 * OA to lose the configuration state. Prevent this by overriding GUCRC
3378 	 * mode.
3379 	 */
3380 	if (intel_uc_uses_guc_rc(&gt->uc) &&
3381 	    (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
3382 	     IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))) {
3383 		ret = intel_guc_slpc_override_gucrc_mode(&gt->uc.guc.slpc,
3384 							 SLPC_GUCRC_MODE_GUCRC_NO_RC6);
3385 		if (ret) {
3386 			drm_dbg(&stream->perf->i915->drm,
3387 				"Unable to override gucrc mode\n");
3388 			goto err_gucrc;
3389 		}
3390 
3391 		stream->override_gucrc = true;
3392 	}
3393 
3394 	ret = alloc_oa_buffer(stream);
3395 	if (ret)
3396 		goto err_oa_buf_alloc;
3397 
3398 	stream->ops = &i915_oa_stream_ops;
3399 
3400 	stream->engine->gt->perf.sseu = props->sseu;
3401 	WRITE_ONCE(g->exclusive_stream, stream);
3402 
3403 	ret = i915_perf_stream_enable_sync(stream);
3404 	if (ret) {
3405 		drm_dbg(&stream->perf->i915->drm,
3406 			"Unable to enable metric set\n");
3407 		goto err_enable;
3408 	}
3409 
3410 	drm_dbg(&stream->perf->i915->drm,
3411 		"opening stream oa config uuid=%s\n",
3412 		  stream->oa_config->uuid);
3413 
3414 	hrtimer_init(&stream->poll_check_timer,
3415 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3416 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
3417 	init_waitqueue_head(&stream->poll_wq);
3418 	spin_lock_init(&stream->oa_buffer.ptr_lock);
3419 	mutex_init(&stream->lock);
3420 
3421 	return 0;
3422 
3423 err_enable:
3424 	WRITE_ONCE(g->exclusive_stream, NULL);
3425 	perf->ops.disable_metric_set(stream);
3426 
3427 	free_oa_buffer(stream);
3428 
3429 err_oa_buf_alloc:
3430 	if (stream->override_gucrc)
3431 		intel_guc_slpc_unset_gucrc_mode(&gt->uc.guc.slpc);
3432 
3433 err_gucrc:
3434 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3435 	intel_engine_pm_put(stream->engine);
3436 
3437 	free_oa_configs(stream);
3438 
3439 err_config:
3440 	free_noa_wait(stream);
3441 
3442 err_noa_wait_alloc:
3443 	if (stream->ctx)
3444 		oa_put_render_ctx_id(stream);
3445 
3446 	return ret;
3447 }
3448 
3449 void i915_oa_init_reg_state(const struct intel_context *ce,
3450 			    const struct intel_engine_cs *engine)
3451 {
3452 	struct i915_perf_stream *stream;
3453 
3454 	if (engine->class != RENDER_CLASS)
3455 		return;
3456 
3457 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3458 	stream = READ_ONCE(engine->oa_group->exclusive_stream);
3459 	if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3460 		gen8_update_reg_state_unlocked(ce, stream);
3461 }
3462 
3463 /**
3464  * i915_perf_read - handles read() FOP for i915 perf stream FDs
3465  * @file: An i915 perf stream file
3466  * @buf: destination buffer given by userspace
3467  * @count: the number of bytes userspace wants to read
3468  * @ppos: (inout) file seek position (unused)
3469  *
3470  * The entry point for handling a read() on a stream file descriptor from
3471  * userspace. Most of the work is left to the i915_perf_read_locked() and
3472  * &i915_perf_stream_ops->read but to save having stream implementations (of
3473  * which we might have multiple later) we handle blocking read here.
3474  *
3475  * We can also consistently treat trying to read from a disabled stream
3476  * as an IO error so implementations can assume the stream is enabled
3477  * while reading.
3478  *
3479  * Returns: The number of bytes copied or a negative error code on failure.
3480  */
3481 static ssize_t i915_perf_read(struct file *file,
3482 			      char __user *buf,
3483 			      size_t count,
3484 			      loff_t *ppos)
3485 {
3486 	struct i915_perf_stream *stream = file->private_data;
3487 	size_t offset = 0;
3488 	int ret;
3489 
3490 	/* To ensure it's handled consistently we simply treat all reads of a
3491 	 * disabled stream as an error. In particular it might otherwise lead
3492 	 * to a deadlock for blocking file descriptors...
3493 	 */
3494 	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3495 		return -EIO;
3496 
3497 	if (!(file->f_flags & O_NONBLOCK)) {
3498 		/* There's the small chance of false positives from
3499 		 * stream->ops->wait_unlocked.
3500 		 *
3501 		 * E.g. with single context filtering since we only wait until
3502 		 * oabuffer has >= 1 report we don't immediately know whether
3503 		 * any reports really belong to the current context
3504 		 */
3505 		do {
3506 			ret = stream->ops->wait_unlocked(stream);
3507 			if (ret)
3508 				return ret;
3509 
3510 			mutex_lock(&stream->lock);
3511 			ret = stream->ops->read(stream, buf, count, &offset);
3512 			mutex_unlock(&stream->lock);
3513 		} while (!offset && !ret);
3514 	} else {
3515 		mutex_lock(&stream->lock);
3516 		ret = stream->ops->read(stream, buf, count, &offset);
3517 		mutex_unlock(&stream->lock);
3518 	}
3519 
3520 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3521 	 * events where we might actually report EAGAIN on read() if there's
3522 	 * not really any data available. In this situation though we don't
3523 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3524 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3525 	 * effectively ensures we back off until the next hrtimer callback
3526 	 * before reporting another EPOLLIN event.
3527 	 * The exception to this is if ops->read() returned -ENOSPC which means
3528 	 * that more OA data is available than could fit in the user provided
3529 	 * buffer. In this case we want the next poll() call to not block.
3530 	 */
3531 	if (ret != -ENOSPC)
3532 		stream->pollin = false;
3533 
3534 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3535 	return offset ?: (ret ?: -EAGAIN);
3536 }
3537 
3538 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3539 {
3540 	struct i915_perf_stream *stream =
3541 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3542 
3543 	if (oa_buffer_check_unlocked(stream)) {
3544 		stream->pollin = true;
3545 		wake_up(&stream->poll_wq);
3546 	}
3547 
3548 	hrtimer_forward_now(hrtimer,
3549 			    ns_to_ktime(stream->poll_oa_period));
3550 
3551 	return HRTIMER_RESTART;
3552 }
3553 
3554 /**
3555  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3556  * @stream: An i915 perf stream
3557  * @file: An i915 perf stream file
3558  * @wait: poll() state table
3559  *
3560  * For handling userspace polling on an i915 perf stream, this calls through to
3561  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3562  * will be woken for new stream data.
3563  *
3564  * Returns: any poll events that are ready without sleeping
3565  */
3566 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3567 				      struct file *file,
3568 				      poll_table *wait)
3569 {
3570 	__poll_t events = 0;
3571 
3572 	stream->ops->poll_wait(stream, file, wait);
3573 
3574 	/* Note: we don't explicitly check whether there's something to read
3575 	 * here since this path may be very hot depending on what else
3576 	 * userspace is polling, or on the timeout in use. We rely solely on
3577 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3578 	 * samples to read.
3579 	 */
3580 	if (stream->pollin)
3581 		events |= EPOLLIN;
3582 
3583 	return events;
3584 }
3585 
3586 /**
3587  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3588  * @file: An i915 perf stream file
3589  * @wait: poll() state table
3590  *
3591  * For handling userspace polling on an i915 perf stream, this ensures
3592  * poll_wait() gets called with a wait queue that will be woken for new stream
3593  * data.
3594  *
3595  * Note: Implementation deferred to i915_perf_poll_locked()
3596  *
3597  * Returns: any poll events that are ready without sleeping
3598  */
3599 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3600 {
3601 	struct i915_perf_stream *stream = file->private_data;
3602 	__poll_t ret;
3603 
3604 	mutex_lock(&stream->lock);
3605 	ret = i915_perf_poll_locked(stream, file, wait);
3606 	mutex_unlock(&stream->lock);
3607 
3608 	return ret;
3609 }
3610 
3611 /**
3612  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3613  * @stream: A disabled i915 perf stream
3614  *
3615  * [Re]enables the associated capture of data for this stream.
3616  *
3617  * If a stream was previously enabled then there's currently no intention
3618  * to provide userspace any guarantee about the preservation of previously
3619  * buffered data.
3620  */
3621 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3622 {
3623 	if (stream->enabled)
3624 		return;
3625 
3626 	/* Allow stream->ops->enable() to refer to this */
3627 	stream->enabled = true;
3628 
3629 	if (stream->ops->enable)
3630 		stream->ops->enable(stream);
3631 
3632 	if (stream->hold_preemption)
3633 		intel_context_set_nopreempt(stream->pinned_ctx);
3634 }
3635 
3636 /**
3637  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3638  * @stream: An enabled i915 perf stream
3639  *
3640  * Disables the associated capture of data for this stream.
3641  *
3642  * The intention is that disabling an re-enabling a stream will ideally be
3643  * cheaper than destroying and re-opening a stream with the same configuration,
3644  * though there are no formal guarantees about what state or buffered data
3645  * must be retained between disabling and re-enabling a stream.
3646  *
3647  * Note: while a stream is disabled it's considered an error for userspace
3648  * to attempt to read from the stream (-EIO).
3649  */
3650 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3651 {
3652 	if (!stream->enabled)
3653 		return;
3654 
3655 	/* Allow stream->ops->disable() to refer to this */
3656 	stream->enabled = false;
3657 
3658 	if (stream->hold_preemption)
3659 		intel_context_clear_nopreempt(stream->pinned_ctx);
3660 
3661 	if (stream->ops->disable)
3662 		stream->ops->disable(stream);
3663 }
3664 
3665 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3666 				    unsigned long metrics_set)
3667 {
3668 	struct i915_oa_config *config;
3669 	long ret = stream->oa_config->id;
3670 
3671 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3672 	if (!config)
3673 		return -EINVAL;
3674 
3675 	if (config != stream->oa_config) {
3676 		int err;
3677 
3678 		/*
3679 		 * If OA is bound to a specific context, emit the
3680 		 * reconfiguration inline from that context. The update
3681 		 * will then be ordered with respect to submission on that
3682 		 * context.
3683 		 *
3684 		 * When set globally, we use a low priority kernel context,
3685 		 * so it will effectively take effect when idle.
3686 		 */
3687 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3688 		if (!err)
3689 			config = xchg(&stream->oa_config, config);
3690 		else
3691 			ret = err;
3692 	}
3693 
3694 	i915_oa_config_put(config);
3695 
3696 	return ret;
3697 }
3698 
3699 /**
3700  * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3701  * @stream: An i915 perf stream
3702  * @cmd: the ioctl request
3703  * @arg: the ioctl data
3704  *
3705  * Returns: zero on success or a negative error code. Returns -EINVAL for
3706  * an unknown ioctl request.
3707  */
3708 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3709 				   unsigned int cmd,
3710 				   unsigned long arg)
3711 {
3712 	switch (cmd) {
3713 	case I915_PERF_IOCTL_ENABLE:
3714 		i915_perf_enable_locked(stream);
3715 		return 0;
3716 	case I915_PERF_IOCTL_DISABLE:
3717 		i915_perf_disable_locked(stream);
3718 		return 0;
3719 	case I915_PERF_IOCTL_CONFIG:
3720 		return i915_perf_config_locked(stream, arg);
3721 	}
3722 
3723 	return -EINVAL;
3724 }
3725 
3726 /**
3727  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3728  * @file: An i915 perf stream file
3729  * @cmd: the ioctl request
3730  * @arg: the ioctl data
3731  *
3732  * Implementation deferred to i915_perf_ioctl_locked().
3733  *
3734  * Returns: zero on success or a negative error code. Returns -EINVAL for
3735  * an unknown ioctl request.
3736  */
3737 static long i915_perf_ioctl(struct file *file,
3738 			    unsigned int cmd,
3739 			    unsigned long arg)
3740 {
3741 	struct i915_perf_stream *stream = file->private_data;
3742 	long ret;
3743 
3744 	mutex_lock(&stream->lock);
3745 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3746 	mutex_unlock(&stream->lock);
3747 
3748 	return ret;
3749 }
3750 
3751 /**
3752  * i915_perf_destroy_locked - destroy an i915 perf stream
3753  * @stream: An i915 perf stream
3754  *
3755  * Frees all resources associated with the given i915 perf @stream, disabling
3756  * any associated data capture in the process.
3757  *
3758  * Note: The &gt->perf.lock mutex has been taken to serialize
3759  * with any non-file-operation driver hooks.
3760  */
3761 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3762 {
3763 	if (stream->enabled)
3764 		i915_perf_disable_locked(stream);
3765 
3766 	if (stream->ops->destroy)
3767 		stream->ops->destroy(stream);
3768 
3769 	if (stream->ctx)
3770 		i915_gem_context_put(stream->ctx);
3771 
3772 	kfree(stream);
3773 }
3774 
3775 /**
3776  * i915_perf_release - handles userspace close() of a stream file
3777  * @inode: anonymous inode associated with file
3778  * @file: An i915 perf stream file
3779  *
3780  * Cleans up any resources associated with an open i915 perf stream file.
3781  *
3782  * NB: close() can't really fail from the userspace point of view.
3783  *
3784  * Returns: zero on success or a negative error code.
3785  */
3786 static int i915_perf_release(struct inode *inode, struct file *file)
3787 {
3788 	struct i915_perf_stream *stream = file->private_data;
3789 	struct i915_perf *perf = stream->perf;
3790 	struct intel_gt *gt = stream->engine->gt;
3791 
3792 	/*
3793 	 * Within this call, we know that the fd is being closed and we have no
3794 	 * other user of stream->lock. Use the perf lock to destroy the stream
3795 	 * here.
3796 	 */
3797 	mutex_lock(&gt->perf.lock);
3798 	i915_perf_destroy_locked(stream);
3799 	mutex_unlock(&gt->perf.lock);
3800 
3801 	/* Release the reference the perf stream kept on the driver. */
3802 	drm_dev_put(&perf->i915->drm);
3803 
3804 	return 0;
3805 }
3806 
3807 
3808 static const struct file_operations fops = {
3809 	.owner		= THIS_MODULE,
3810 	.llseek		= no_llseek,
3811 	.release	= i915_perf_release,
3812 	.poll		= i915_perf_poll,
3813 	.read		= i915_perf_read,
3814 	.unlocked_ioctl	= i915_perf_ioctl,
3815 	/* Our ioctl have no arguments, so it's safe to use the same function
3816 	 * to handle 32bits compatibility.
3817 	 */
3818 	.compat_ioctl   = i915_perf_ioctl,
3819 };
3820 
3821 
3822 /**
3823  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3824  * @perf: i915 perf instance
3825  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3826  * @props: individually validated u64 property value pairs
3827  * @file: drm file
3828  *
3829  * See i915_perf_ioctl_open() for interface details.
3830  *
3831  * Implements further stream config validation and stream initialization on
3832  * behalf of i915_perf_open_ioctl() with the &gt->perf.lock mutex
3833  * taken to serialize with any non-file-operation driver hooks.
3834  *
3835  * Note: at this point the @props have only been validated in isolation and
3836  * it's still necessary to validate that the combination of properties makes
3837  * sense.
3838  *
3839  * In the case where userspace is interested in OA unit metrics then further
3840  * config validation and stream initialization details will be handled by
3841  * i915_oa_stream_init(). The code here should only validate config state that
3842  * will be relevant to all stream types / backends.
3843  *
3844  * Returns: zero on success or a negative error code.
3845  */
3846 static int
3847 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3848 			    struct drm_i915_perf_open_param *param,
3849 			    struct perf_open_properties *props,
3850 			    struct drm_file *file)
3851 {
3852 	struct i915_gem_context *specific_ctx = NULL;
3853 	struct i915_perf_stream *stream = NULL;
3854 	unsigned long f_flags = 0;
3855 	bool privileged_op = true;
3856 	int stream_fd;
3857 	int ret;
3858 
3859 	if (props->single_context) {
3860 		u32 ctx_handle = props->ctx_handle;
3861 		struct drm_i915_file_private *file_priv = file->driver_priv;
3862 
3863 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3864 		if (IS_ERR(specific_ctx)) {
3865 			drm_dbg(&perf->i915->drm,
3866 				"Failed to look up context with ID %u for opening perf stream\n",
3867 				  ctx_handle);
3868 			ret = PTR_ERR(specific_ctx);
3869 			goto err;
3870 		}
3871 	}
3872 
3873 	/*
3874 	 * On Haswell the OA unit supports clock gating off for a specific
3875 	 * context and in this mode there's no visibility of metrics for the
3876 	 * rest of the system, which we consider acceptable for a
3877 	 * non-privileged client.
3878 	 *
3879 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3880 	 * specific context and the kernel can't securely stop the counters
3881 	 * from updating as system-wide / global values. Even though we can
3882 	 * filter reports based on the included context ID we can't block
3883 	 * clients from seeing the raw / global counter values via
3884 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3885 	 * enable the OA unit by default.
3886 	 *
3887 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3888 	 * per context basis. So we can relax requirements there if the user
3889 	 * doesn't request global stream access (i.e. query based sampling
3890 	 * using MI_RECORD_PERF_COUNT.
3891 	 */
3892 	if (IS_HASWELL(perf->i915) && specific_ctx)
3893 		privileged_op = false;
3894 	else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3895 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3896 		privileged_op = false;
3897 
3898 	if (props->hold_preemption) {
3899 		if (!props->single_context) {
3900 			drm_dbg(&perf->i915->drm,
3901 				"preemption disable with no context\n");
3902 			ret = -EINVAL;
3903 			goto err;
3904 		}
3905 		privileged_op = true;
3906 	}
3907 
3908 	/*
3909 	 * Asking for SSEU configuration is a priviliged operation.
3910 	 */
3911 	if (props->has_sseu)
3912 		privileged_op = true;
3913 	else
3914 		get_default_sseu_config(&props->sseu, props->engine);
3915 
3916 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3917 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3918 	 * to determine if it's ok to access system wide OA counters
3919 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3920 	 */
3921 	if (privileged_op &&
3922 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3923 		drm_dbg(&perf->i915->drm,
3924 			"Insufficient privileges to open i915 perf stream\n");
3925 		ret = -EACCES;
3926 		goto err_ctx;
3927 	}
3928 
3929 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3930 	if (!stream) {
3931 		ret = -ENOMEM;
3932 		goto err_ctx;
3933 	}
3934 
3935 	stream->perf = perf;
3936 	stream->ctx = specific_ctx;
3937 	stream->poll_oa_period = props->poll_oa_period;
3938 
3939 	ret = i915_oa_stream_init(stream, param, props);
3940 	if (ret)
3941 		goto err_alloc;
3942 
3943 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3944 	 * to have _stream_init check the combination of sample flags more
3945 	 * thoroughly, but still this is the expected result at this point.
3946 	 */
3947 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3948 		ret = -ENODEV;
3949 		goto err_flags;
3950 	}
3951 
3952 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3953 		f_flags |= O_CLOEXEC;
3954 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3955 		f_flags |= O_NONBLOCK;
3956 
3957 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3958 	if (stream_fd < 0) {
3959 		ret = stream_fd;
3960 		goto err_flags;
3961 	}
3962 
3963 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3964 		i915_perf_enable_locked(stream);
3965 
3966 	/* Take a reference on the driver that will be kept with stream_fd
3967 	 * until its release.
3968 	 */
3969 	drm_dev_get(&perf->i915->drm);
3970 
3971 	return stream_fd;
3972 
3973 err_flags:
3974 	if (stream->ops->destroy)
3975 		stream->ops->destroy(stream);
3976 err_alloc:
3977 	kfree(stream);
3978 err_ctx:
3979 	if (specific_ctx)
3980 		i915_gem_context_put(specific_ctx);
3981 err:
3982 	return ret;
3983 }
3984 
3985 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3986 {
3987 	u64 nom = (2ULL << exponent) * NSEC_PER_SEC;
3988 	u32 den = i915_perf_oa_timestamp_frequency(perf->i915);
3989 
3990 	return div_u64(nom + den - 1, den);
3991 }
3992 
3993 static __always_inline bool
3994 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
3995 {
3996 	return test_bit(format, perf->format_mask);
3997 }
3998 
3999 static __always_inline void
4000 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
4001 {
4002 	__set_bit(format, perf->format_mask);
4003 }
4004 
4005 /**
4006  * read_properties_unlocked - validate + copy userspace stream open properties
4007  * @perf: i915 perf instance
4008  * @uprops: The array of u64 key value pairs given by userspace
4009  * @n_props: The number of key value pairs expected in @uprops
4010  * @props: The stream configuration built up while validating properties
4011  *
4012  * Note this function only validates properties in isolation it doesn't
4013  * validate that the combination of properties makes sense or that all
4014  * properties necessary for a particular kind of stream have been set.
4015  *
4016  * Note that there currently aren't any ordering requirements for properties so
4017  * we shouldn't validate or assume anything about ordering here. This doesn't
4018  * rule out defining new properties with ordering requirements in the future.
4019  */
4020 static int read_properties_unlocked(struct i915_perf *perf,
4021 				    u64 __user *uprops,
4022 				    u32 n_props,
4023 				    struct perf_open_properties *props)
4024 {
4025 	struct drm_i915_gem_context_param_sseu user_sseu;
4026 	const struct i915_oa_format *f;
4027 	u64 __user *uprop = uprops;
4028 	bool config_instance = false;
4029 	bool config_class = false;
4030 	bool config_sseu = false;
4031 	u8 class, instance;
4032 	u32 i;
4033 	int ret;
4034 
4035 	memset(props, 0, sizeof(struct perf_open_properties));
4036 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
4037 
4038 	/* Considering that ID = 0 is reserved and assuming that we don't
4039 	 * (currently) expect any configurations to ever specify duplicate
4040 	 * values for a particular property ID then the last _PROP_MAX value is
4041 	 * one greater than the maximum number of properties we expect to get
4042 	 * from userspace.
4043 	 */
4044 	if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) {
4045 		drm_dbg(&perf->i915->drm,
4046 			"Invalid number of i915 perf properties given\n");
4047 		return -EINVAL;
4048 	}
4049 
4050 	/* Defaults when class:instance is not passed */
4051 	class = I915_ENGINE_CLASS_RENDER;
4052 	instance = 0;
4053 
4054 	for (i = 0; i < n_props; i++) {
4055 		u64 oa_period, oa_freq_hz;
4056 		u64 id, value;
4057 
4058 		ret = get_user(id, uprop);
4059 		if (ret)
4060 			return ret;
4061 
4062 		ret = get_user(value, uprop + 1);
4063 		if (ret)
4064 			return ret;
4065 
4066 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
4067 			drm_dbg(&perf->i915->drm,
4068 				"Unknown i915 perf property ID\n");
4069 			return -EINVAL;
4070 		}
4071 
4072 		switch ((enum drm_i915_perf_property_id)id) {
4073 		case DRM_I915_PERF_PROP_CTX_HANDLE:
4074 			props->single_context = 1;
4075 			props->ctx_handle = value;
4076 			break;
4077 		case DRM_I915_PERF_PROP_SAMPLE_OA:
4078 			if (value)
4079 				props->sample_flags |= SAMPLE_OA_REPORT;
4080 			break;
4081 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
4082 			if (value == 0) {
4083 				drm_dbg(&perf->i915->drm,
4084 					"Unknown OA metric set ID\n");
4085 				return -EINVAL;
4086 			}
4087 			props->metrics_set = value;
4088 			break;
4089 		case DRM_I915_PERF_PROP_OA_FORMAT:
4090 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
4091 				drm_dbg(&perf->i915->drm,
4092 					"Out-of-range OA report format %llu\n",
4093 					  value);
4094 				return -EINVAL;
4095 			}
4096 			if (!oa_format_valid(perf, value)) {
4097 				drm_dbg(&perf->i915->drm,
4098 					"Unsupported OA report format %llu\n",
4099 					  value);
4100 				return -EINVAL;
4101 			}
4102 			props->oa_format = value;
4103 			break;
4104 		case DRM_I915_PERF_PROP_OA_EXPONENT:
4105 			if (value > OA_EXPONENT_MAX) {
4106 				drm_dbg(&perf->i915->drm,
4107 					"OA timer exponent too high (> %u)\n",
4108 					 OA_EXPONENT_MAX);
4109 				return -EINVAL;
4110 			}
4111 
4112 			/* Theoretically we can program the OA unit to sample
4113 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
4114 			 * for BXT. We don't allow such high sampling
4115 			 * frequencies by default unless root.
4116 			 */
4117 
4118 			BUILD_BUG_ON(sizeof(oa_period) != 8);
4119 			oa_period = oa_exponent_to_ns(perf, value);
4120 
4121 			/* This check is primarily to ensure that oa_period <=
4122 			 * UINT32_MAX (before passing to do_div which only
4123 			 * accepts a u32 denominator), but we can also skip
4124 			 * checking anything < 1Hz which implicitly can't be
4125 			 * limited via an integer oa_max_sample_rate.
4126 			 */
4127 			if (oa_period <= NSEC_PER_SEC) {
4128 				u64 tmp = NSEC_PER_SEC;
4129 				do_div(tmp, oa_period);
4130 				oa_freq_hz = tmp;
4131 			} else
4132 				oa_freq_hz = 0;
4133 
4134 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
4135 				drm_dbg(&perf->i915->drm,
4136 					"OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
4137 					  i915_oa_max_sample_rate);
4138 				return -EACCES;
4139 			}
4140 
4141 			props->oa_periodic = true;
4142 			props->oa_period_exponent = value;
4143 			break;
4144 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
4145 			props->hold_preemption = !!value;
4146 			break;
4147 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
4148 			if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) {
4149 				drm_dbg(&perf->i915->drm,
4150 					"SSEU config not supported on gfx %x\n",
4151 					GRAPHICS_VER_FULL(perf->i915));
4152 				return -ENODEV;
4153 			}
4154 
4155 			if (copy_from_user(&user_sseu,
4156 					   u64_to_user_ptr(value),
4157 					   sizeof(user_sseu))) {
4158 				drm_dbg(&perf->i915->drm,
4159 					"Unable to copy global sseu parameter\n");
4160 				return -EFAULT;
4161 			}
4162 			config_sseu = true;
4163 			break;
4164 		}
4165 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
4166 			if (value < 100000 /* 100us */) {
4167 				drm_dbg(&perf->i915->drm,
4168 					"OA availability timer too small (%lluns < 100us)\n",
4169 					  value);
4170 				return -EINVAL;
4171 			}
4172 			props->poll_oa_period = value;
4173 			break;
4174 		case DRM_I915_PERF_PROP_OA_ENGINE_CLASS:
4175 			class = (u8)value;
4176 			config_class = true;
4177 			break;
4178 		case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE:
4179 			instance = (u8)value;
4180 			config_instance = true;
4181 			break;
4182 		default:
4183 			MISSING_CASE(id);
4184 			return -EINVAL;
4185 		}
4186 
4187 		uprop += 2;
4188 	}
4189 
4190 	if ((config_class && !config_instance) ||
4191 	    (config_instance && !config_class)) {
4192 		drm_dbg(&perf->i915->drm,
4193 			"OA engine-class and engine-instance parameters must be passed together\n");
4194 		return -EINVAL;
4195 	}
4196 
4197 	props->engine = intel_engine_lookup_user(perf->i915, class, instance);
4198 	if (!props->engine) {
4199 		drm_dbg(&perf->i915->drm,
4200 			"OA engine class and instance invalid %d:%d\n",
4201 			class, instance);
4202 		return -EINVAL;
4203 	}
4204 
4205 	if (!engine_supports_oa(props->engine)) {
4206 		drm_dbg(&perf->i915->drm,
4207 			"Engine not supported by OA %d:%d\n",
4208 			class, instance);
4209 		return -EINVAL;
4210 	}
4211 
4212 	/*
4213 	 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
4214 	 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM
4215 	 * does not work as expected.
4216 	 */
4217 	if (IS_MTL_MEDIA_STEP(props->engine->i915, STEP_A0, STEP_C0) &&
4218 	    props->engine->oa_group->type == TYPE_OAM &&
4219 	    intel_check_bios_c6_setup(&props->engine->gt->rc6)) {
4220 		drm_dbg(&perf->i915->drm,
4221 			"OAM requires media C6 to be disabled in BIOS\n");
4222 		return -EINVAL;
4223 	}
4224 
4225 	i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX);
4226 	f = &perf->oa_formats[i];
4227 	if (!engine_supports_oa_format(props->engine, f->type)) {
4228 		drm_dbg(&perf->i915->drm,
4229 			"Invalid OA format %d for class %d\n",
4230 			f->type, props->engine->class);
4231 		return -EINVAL;
4232 	}
4233 
4234 	if (config_sseu) {
4235 		ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
4236 		if (ret) {
4237 			drm_dbg(&perf->i915->drm,
4238 				"Invalid SSEU configuration\n");
4239 			return ret;
4240 		}
4241 		props->has_sseu = true;
4242 	}
4243 
4244 	return 0;
4245 }
4246 
4247 /**
4248  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
4249  * @dev: drm device
4250  * @data: ioctl data copied from userspace (unvalidated)
4251  * @file: drm file
4252  *
4253  * Validates the stream open parameters given by userspace including flags
4254  * and an array of u64 key, value pair properties.
4255  *
4256  * Very little is assumed up front about the nature of the stream being
4257  * opened (for instance we don't assume it's for periodic OA unit metrics). An
4258  * i915-perf stream is expected to be a suitable interface for other forms of
4259  * buffered data written by the GPU besides periodic OA metrics.
4260  *
4261  * Note we copy the properties from userspace outside of the i915 perf
4262  * mutex to avoid an awkward lockdep with mmap_lock.
4263  *
4264  * Most of the implementation details are handled by
4265  * i915_perf_open_ioctl_locked() after taking the &gt->perf.lock
4266  * mutex for serializing with any non-file-operation driver hooks.
4267  *
4268  * Return: A newly opened i915 Perf stream file descriptor or negative
4269  * error code on failure.
4270  */
4271 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
4272 			 struct drm_file *file)
4273 {
4274 	struct i915_perf *perf = &to_i915(dev)->perf;
4275 	struct drm_i915_perf_open_param *param = data;
4276 	struct intel_gt *gt;
4277 	struct perf_open_properties props;
4278 	u32 known_open_flags;
4279 	int ret;
4280 
4281 	if (!perf->i915) {
4282 		drm_dbg(&perf->i915->drm,
4283 			"i915 perf interface not available for this system\n");
4284 		return -ENOTSUPP;
4285 	}
4286 
4287 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
4288 			   I915_PERF_FLAG_FD_NONBLOCK |
4289 			   I915_PERF_FLAG_DISABLED;
4290 	if (param->flags & ~known_open_flags) {
4291 		drm_dbg(&perf->i915->drm,
4292 			"Unknown drm_i915_perf_open_param flag\n");
4293 		return -EINVAL;
4294 	}
4295 
4296 	ret = read_properties_unlocked(perf,
4297 				       u64_to_user_ptr(param->properties_ptr),
4298 				       param->num_properties,
4299 				       &props);
4300 	if (ret)
4301 		return ret;
4302 
4303 	gt = props.engine->gt;
4304 
4305 	mutex_lock(&gt->perf.lock);
4306 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
4307 	mutex_unlock(&gt->perf.lock);
4308 
4309 	return ret;
4310 }
4311 
4312 /**
4313  * i915_perf_register - exposes i915-perf to userspace
4314  * @i915: i915 device instance
4315  *
4316  * In particular OA metric sets are advertised under a sysfs metrics/
4317  * directory allowing userspace to enumerate valid IDs that can be
4318  * used to open an i915-perf stream.
4319  */
4320 void i915_perf_register(struct drm_i915_private *i915)
4321 {
4322 	struct i915_perf *perf = &i915->perf;
4323 	struct intel_gt *gt = to_gt(i915);
4324 
4325 	if (!perf->i915)
4326 		return;
4327 
4328 	/* To be sure we're synchronized with an attempted
4329 	 * i915_perf_open_ioctl(); considering that we register after
4330 	 * being exposed to userspace.
4331 	 */
4332 	mutex_lock(&gt->perf.lock);
4333 
4334 	perf->metrics_kobj =
4335 		kobject_create_and_add("metrics",
4336 				       &i915->drm.primary->kdev->kobj);
4337 
4338 	mutex_unlock(&gt->perf.lock);
4339 }
4340 
4341 /**
4342  * i915_perf_unregister - hide i915-perf from userspace
4343  * @i915: i915 device instance
4344  *
4345  * i915-perf state cleanup is split up into an 'unregister' and
4346  * 'deinit' phase where the interface is first hidden from
4347  * userspace by i915_perf_unregister() before cleaning up
4348  * remaining state in i915_perf_fini().
4349  */
4350 void i915_perf_unregister(struct drm_i915_private *i915)
4351 {
4352 	struct i915_perf *perf = &i915->perf;
4353 
4354 	if (!perf->metrics_kobj)
4355 		return;
4356 
4357 	kobject_put(perf->metrics_kobj);
4358 	perf->metrics_kobj = NULL;
4359 }
4360 
4361 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
4362 {
4363 	static const i915_reg_t flex_eu_regs[] = {
4364 		EU_PERF_CNTL0,
4365 		EU_PERF_CNTL1,
4366 		EU_PERF_CNTL2,
4367 		EU_PERF_CNTL3,
4368 		EU_PERF_CNTL4,
4369 		EU_PERF_CNTL5,
4370 		EU_PERF_CNTL6,
4371 	};
4372 	int i;
4373 
4374 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
4375 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
4376 			return true;
4377 	}
4378 	return false;
4379 }
4380 
4381 static bool reg_in_range_table(u32 addr, const struct i915_range *table)
4382 {
4383 	while (table->start || table->end) {
4384 		if (addr >= table->start && addr <= table->end)
4385 			return true;
4386 
4387 		table++;
4388 	}
4389 
4390 	return false;
4391 }
4392 
4393 #define REG_EQUAL(addr, mmio) \
4394 	((addr) == i915_mmio_reg_offset(mmio))
4395 
4396 static const struct i915_range gen7_oa_b_counters[] = {
4397 	{ .start = 0x2710, .end = 0x272c },	/* OASTARTTRIG[1-8] */
4398 	{ .start = 0x2740, .end = 0x275c },	/* OAREPORTTRIG[1-8] */
4399 	{ .start = 0x2770, .end = 0x27ac },	/* OACEC[0-7][0-1] */
4400 	{}
4401 };
4402 
4403 static const struct i915_range gen12_oa_b_counters[] = {
4404 	{ .start = 0x2b2c, .end = 0x2b2c },	/* GEN12_OAG_OA_PESS */
4405 	{ .start = 0xd900, .end = 0xd91c },	/* GEN12_OAG_OASTARTTRIG[1-8] */
4406 	{ .start = 0xd920, .end = 0xd93c },	/* GEN12_OAG_OAREPORTTRIG1[1-8] */
4407 	{ .start = 0xd940, .end = 0xd97c },	/* GEN12_OAG_CEC[0-7][0-1] */
4408 	{ .start = 0xdc00, .end = 0xdc3c },	/* GEN12_OAG_SCEC[0-7][0-1] */
4409 	{ .start = 0xdc40, .end = 0xdc40 },	/* GEN12_OAG_SPCTR_CNF */
4410 	{ .start = 0xdc44, .end = 0xdc44 },	/* GEN12_OAA_DBG_REG */
4411 	{}
4412 };
4413 
4414 static const struct i915_range mtl_oam_b_counters[] = {
4415 	{ .start = 0x393000, .end = 0x39301c },	/* GEN12_OAM_STARTTRIG1[1-8] */
4416 	{ .start = 0x393020, .end = 0x39303c },	/* GEN12_OAM_REPORTTRIG1[1-8] */
4417 	{ .start = 0x393040, .end = 0x39307c },	/* GEN12_OAM_CEC[0-7][0-1] */
4418 	{ .start = 0x393200, .end = 0x39323C },	/* MPES[0-7] */
4419 	{}
4420 };
4421 
4422 static const struct i915_range xehp_oa_b_counters[] = {
4423 	{ .start = 0xdc48, .end = 0xdc48 },	/* OAA_ENABLE_REG */
4424 	{ .start = 0xdd00, .end = 0xdd48 },	/* OAG_LCE0_0 - OAA_LENABLE_REG */
4425 };
4426 
4427 static const struct i915_range gen7_oa_mux_regs[] = {
4428 	{ .start = 0x91b8, .end = 0x91cc },	/* OA_PERFCNT[1-2], OA_PERFMATRIX */
4429 	{ .start = 0x9800, .end = 0x9888 },	/* MICRO_BP0_0 - NOA_WRITE */
4430 	{ .start = 0xe180, .end = 0xe180 },	/* HALF_SLICE_CHICKEN2 */
4431 	{}
4432 };
4433 
4434 static const struct i915_range hsw_oa_mux_regs[] = {
4435 	{ .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
4436 	{ .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
4437 	{ .start = 0x25100, .end = 0x2ff90 },
4438 	{}
4439 };
4440 
4441 static const struct i915_range chv_oa_mux_regs[] = {
4442 	{ .start = 0x182300, .end = 0x1823a4 },
4443 	{}
4444 };
4445 
4446 static const struct i915_range gen8_oa_mux_regs[] = {
4447 	{ .start = 0x0d00, .end = 0x0d2c },	/* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
4448 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4449 	{}
4450 };
4451 
4452 static const struct i915_range gen11_oa_mux_regs[] = {
4453 	{ .start = 0x91c8, .end = 0x91dc },	/* OA_PERFCNT[3-4] */
4454 	{}
4455 };
4456 
4457 static const struct i915_range gen12_oa_mux_regs[] = {
4458 	{ .start = 0x0d00, .end = 0x0d04 },     /* RPM_CONFIG[0-1] */
4459 	{ .start = 0x0d0c, .end = 0x0d2c },     /* NOA_CONFIG[0-8] */
4460 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4461 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4462 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4463 	{}
4464 };
4465 
4466 /*
4467  * Ref: 14010536224:
4468  * 0x20cc is repurposed on MTL, so use a separate array for MTL.
4469  */
4470 static const struct i915_range mtl_oa_mux_regs[] = {
4471 	{ .start = 0x0d00, .end = 0x0d04 },	/* RPM_CONFIG[0-1] */
4472 	{ .start = 0x0d0c, .end = 0x0d2c },	/* NOA_CONFIG[0-8] */
4473 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4474 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4475 	{ .start = 0x38d100, .end = 0x38d114},	/* VISACTL */
4476 	{}
4477 };
4478 
4479 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4480 {
4481 	return reg_in_range_table(addr, gen7_oa_b_counters);
4482 }
4483 
4484 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4485 {
4486 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4487 		reg_in_range_table(addr, gen8_oa_mux_regs);
4488 }
4489 
4490 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4491 {
4492 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4493 		reg_in_range_table(addr, gen8_oa_mux_regs) ||
4494 		reg_in_range_table(addr, gen11_oa_mux_regs);
4495 }
4496 
4497 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4498 {
4499 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4500 		reg_in_range_table(addr, hsw_oa_mux_regs);
4501 }
4502 
4503 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4504 {
4505 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4506 		reg_in_range_table(addr, chv_oa_mux_regs);
4507 }
4508 
4509 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4510 {
4511 	return reg_in_range_table(addr, gen12_oa_b_counters);
4512 }
4513 
4514 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr)
4515 {
4516 	if (HAS_OAM(perf->i915) &&
4517 	    GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4518 		return reg_in_range_table(addr, mtl_oam_b_counters);
4519 
4520 	return false;
4521 }
4522 
4523 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4524 {
4525 	return reg_in_range_table(addr, xehp_oa_b_counters) ||
4526 		reg_in_range_table(addr, gen12_oa_b_counters) ||
4527 		mtl_is_valid_oam_b_counter_addr(perf, addr);
4528 }
4529 
4530 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4531 {
4532 	if (IS_METEORLAKE(perf->i915))
4533 		return reg_in_range_table(addr, mtl_oa_mux_regs);
4534 	else
4535 		return reg_in_range_table(addr, gen12_oa_mux_regs);
4536 }
4537 
4538 static u32 mask_reg_value(u32 reg, u32 val)
4539 {
4540 	/* HALF_SLICE_CHICKEN2 is programmed with a the
4541 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4542 	 * programmed by userspace doesn't change this.
4543 	 */
4544 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4545 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4546 
4547 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
4548 	 * indicated by its name and a bunch of selection fields used by OA
4549 	 * configs.
4550 	 */
4551 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4552 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4553 
4554 	return val;
4555 }
4556 
4557 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4558 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4559 					 u32 __user *regs,
4560 					 u32 n_regs)
4561 {
4562 	struct i915_oa_reg *oa_regs;
4563 	int err;
4564 	u32 i;
4565 
4566 	if (!n_regs)
4567 		return NULL;
4568 
4569 	/* No is_valid function means we're not allowing any register to be programmed. */
4570 	GEM_BUG_ON(!is_valid);
4571 	if (!is_valid)
4572 		return ERR_PTR(-EINVAL);
4573 
4574 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4575 	if (!oa_regs)
4576 		return ERR_PTR(-ENOMEM);
4577 
4578 	for (i = 0; i < n_regs; i++) {
4579 		u32 addr, value;
4580 
4581 		err = get_user(addr, regs);
4582 		if (err)
4583 			goto addr_err;
4584 
4585 		if (!is_valid(perf, addr)) {
4586 			drm_dbg(&perf->i915->drm,
4587 				"Invalid oa_reg address: %X\n", addr);
4588 			err = -EINVAL;
4589 			goto addr_err;
4590 		}
4591 
4592 		err = get_user(value, regs + 1);
4593 		if (err)
4594 			goto addr_err;
4595 
4596 		oa_regs[i].addr = _MMIO(addr);
4597 		oa_regs[i].value = mask_reg_value(addr, value);
4598 
4599 		regs += 2;
4600 	}
4601 
4602 	return oa_regs;
4603 
4604 addr_err:
4605 	kfree(oa_regs);
4606 	return ERR_PTR(err);
4607 }
4608 
4609 static ssize_t show_dynamic_id(struct kobject *kobj,
4610 			       struct kobj_attribute *attr,
4611 			       char *buf)
4612 {
4613 	struct i915_oa_config *oa_config =
4614 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
4615 
4616 	return sprintf(buf, "%d\n", oa_config->id);
4617 }
4618 
4619 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4620 					 struct i915_oa_config *oa_config)
4621 {
4622 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4623 	oa_config->sysfs_metric_id.attr.name = "id";
4624 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4625 	oa_config->sysfs_metric_id.show = show_dynamic_id;
4626 	oa_config->sysfs_metric_id.store = NULL;
4627 
4628 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4629 	oa_config->attrs[1] = NULL;
4630 
4631 	oa_config->sysfs_metric.name = oa_config->uuid;
4632 	oa_config->sysfs_metric.attrs = oa_config->attrs;
4633 
4634 	return sysfs_create_group(perf->metrics_kobj,
4635 				  &oa_config->sysfs_metric);
4636 }
4637 
4638 /**
4639  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4640  * @dev: drm device
4641  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4642  *        userspace (unvalidated)
4643  * @file: drm file
4644  *
4645  * Validates the submitted OA register to be saved into a new OA config that
4646  * can then be used for programming the OA unit and its NOA network.
4647  *
4648  * Returns: A new allocated config number to be used with the perf open ioctl
4649  * or a negative error code on failure.
4650  */
4651 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4652 			       struct drm_file *file)
4653 {
4654 	struct i915_perf *perf = &to_i915(dev)->perf;
4655 	struct drm_i915_perf_oa_config *args = data;
4656 	struct i915_oa_config *oa_config, *tmp;
4657 	struct i915_oa_reg *regs;
4658 	int err, id;
4659 
4660 	if (!perf->i915) {
4661 		drm_dbg(&perf->i915->drm,
4662 			"i915 perf interface not available for this system\n");
4663 		return -ENOTSUPP;
4664 	}
4665 
4666 	if (!perf->metrics_kobj) {
4667 		drm_dbg(&perf->i915->drm,
4668 			"OA metrics weren't advertised via sysfs\n");
4669 		return -EINVAL;
4670 	}
4671 
4672 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4673 		drm_dbg(&perf->i915->drm,
4674 			"Insufficient privileges to add i915 OA config\n");
4675 		return -EACCES;
4676 	}
4677 
4678 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4679 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4680 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4681 		drm_dbg(&perf->i915->drm,
4682 			"No OA registers given\n");
4683 		return -EINVAL;
4684 	}
4685 
4686 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4687 	if (!oa_config) {
4688 		drm_dbg(&perf->i915->drm,
4689 			"Failed to allocate memory for the OA config\n");
4690 		return -ENOMEM;
4691 	}
4692 
4693 	oa_config->perf = perf;
4694 	kref_init(&oa_config->ref);
4695 
4696 	if (!uuid_is_valid(args->uuid)) {
4697 		drm_dbg(&perf->i915->drm,
4698 			"Invalid uuid format for OA config\n");
4699 		err = -EINVAL;
4700 		goto reg_err;
4701 	}
4702 
4703 	/* Last character in oa_config->uuid will be 0 because oa_config is
4704 	 * kzalloc.
4705 	 */
4706 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4707 
4708 	oa_config->mux_regs_len = args->n_mux_regs;
4709 	regs = alloc_oa_regs(perf,
4710 			     perf->ops.is_valid_mux_reg,
4711 			     u64_to_user_ptr(args->mux_regs_ptr),
4712 			     args->n_mux_regs);
4713 
4714 	if (IS_ERR(regs)) {
4715 		drm_dbg(&perf->i915->drm,
4716 			"Failed to create OA config for mux_regs\n");
4717 		err = PTR_ERR(regs);
4718 		goto reg_err;
4719 	}
4720 	oa_config->mux_regs = regs;
4721 
4722 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4723 	regs = alloc_oa_regs(perf,
4724 			     perf->ops.is_valid_b_counter_reg,
4725 			     u64_to_user_ptr(args->boolean_regs_ptr),
4726 			     args->n_boolean_regs);
4727 
4728 	if (IS_ERR(regs)) {
4729 		drm_dbg(&perf->i915->drm,
4730 			"Failed to create OA config for b_counter_regs\n");
4731 		err = PTR_ERR(regs);
4732 		goto reg_err;
4733 	}
4734 	oa_config->b_counter_regs = regs;
4735 
4736 	if (GRAPHICS_VER(perf->i915) < 8) {
4737 		if (args->n_flex_regs != 0) {
4738 			err = -EINVAL;
4739 			goto reg_err;
4740 		}
4741 	} else {
4742 		oa_config->flex_regs_len = args->n_flex_regs;
4743 		regs = alloc_oa_regs(perf,
4744 				     perf->ops.is_valid_flex_reg,
4745 				     u64_to_user_ptr(args->flex_regs_ptr),
4746 				     args->n_flex_regs);
4747 
4748 		if (IS_ERR(regs)) {
4749 			drm_dbg(&perf->i915->drm,
4750 				"Failed to create OA config for flex_regs\n");
4751 			err = PTR_ERR(regs);
4752 			goto reg_err;
4753 		}
4754 		oa_config->flex_regs = regs;
4755 	}
4756 
4757 	err = mutex_lock_interruptible(&perf->metrics_lock);
4758 	if (err)
4759 		goto reg_err;
4760 
4761 	/* We shouldn't have too many configs, so this iteration shouldn't be
4762 	 * too costly.
4763 	 */
4764 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4765 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4766 			drm_dbg(&perf->i915->drm,
4767 				"OA config already exists with this uuid\n");
4768 			err = -EADDRINUSE;
4769 			goto sysfs_err;
4770 		}
4771 	}
4772 
4773 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4774 	if (err) {
4775 		drm_dbg(&perf->i915->drm,
4776 			"Failed to create sysfs entry for OA config\n");
4777 		goto sysfs_err;
4778 	}
4779 
4780 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4781 	oa_config->id = idr_alloc(&perf->metrics_idr,
4782 				  oa_config, 2,
4783 				  0, GFP_KERNEL);
4784 	if (oa_config->id < 0) {
4785 		drm_dbg(&perf->i915->drm,
4786 			"Failed to create sysfs entry for OA config\n");
4787 		err = oa_config->id;
4788 		goto sysfs_err;
4789 	}
4790 	id = oa_config->id;
4791 
4792 	drm_dbg(&perf->i915->drm,
4793 		"Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4794 	mutex_unlock(&perf->metrics_lock);
4795 
4796 	return id;
4797 
4798 sysfs_err:
4799 	mutex_unlock(&perf->metrics_lock);
4800 reg_err:
4801 	i915_oa_config_put(oa_config);
4802 	drm_dbg(&perf->i915->drm,
4803 		"Failed to add new OA config\n");
4804 	return err;
4805 }
4806 
4807 /**
4808  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4809  * @dev: drm device
4810  * @data: ioctl data (pointer to u64 integer) copied from userspace
4811  * @file: drm file
4812  *
4813  * Configs can be removed while being used, the will stop appearing in sysfs
4814  * and their content will be freed when the stream using the config is closed.
4815  *
4816  * Returns: 0 on success or a negative error code on failure.
4817  */
4818 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4819 				  struct drm_file *file)
4820 {
4821 	struct i915_perf *perf = &to_i915(dev)->perf;
4822 	u64 *arg = data;
4823 	struct i915_oa_config *oa_config;
4824 	int ret;
4825 
4826 	if (!perf->i915) {
4827 		drm_dbg(&perf->i915->drm,
4828 			"i915 perf interface not available for this system\n");
4829 		return -ENOTSUPP;
4830 	}
4831 
4832 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4833 		drm_dbg(&perf->i915->drm,
4834 			"Insufficient privileges to remove i915 OA config\n");
4835 		return -EACCES;
4836 	}
4837 
4838 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4839 	if (ret)
4840 		return ret;
4841 
4842 	oa_config = idr_find(&perf->metrics_idr, *arg);
4843 	if (!oa_config) {
4844 		drm_dbg(&perf->i915->drm,
4845 			"Failed to remove unknown OA config\n");
4846 		ret = -ENOENT;
4847 		goto err_unlock;
4848 	}
4849 
4850 	GEM_BUG_ON(*arg != oa_config->id);
4851 
4852 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4853 
4854 	idr_remove(&perf->metrics_idr, *arg);
4855 
4856 	mutex_unlock(&perf->metrics_lock);
4857 
4858 	drm_dbg(&perf->i915->drm,
4859 		"Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4860 
4861 	i915_oa_config_put(oa_config);
4862 
4863 	return 0;
4864 
4865 err_unlock:
4866 	mutex_unlock(&perf->metrics_lock);
4867 	return ret;
4868 }
4869 
4870 static struct ctl_table oa_table[] = {
4871 	{
4872 	 .procname = "perf_stream_paranoid",
4873 	 .data = &i915_perf_stream_paranoid,
4874 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4875 	 .mode = 0644,
4876 	 .proc_handler = proc_dointvec_minmax,
4877 	 .extra1 = SYSCTL_ZERO,
4878 	 .extra2 = SYSCTL_ONE,
4879 	 },
4880 	{
4881 	 .procname = "oa_max_sample_rate",
4882 	 .data = &i915_oa_max_sample_rate,
4883 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4884 	 .mode = 0644,
4885 	 .proc_handler = proc_dointvec_minmax,
4886 	 .extra1 = SYSCTL_ZERO,
4887 	 .extra2 = &oa_sample_rate_hard_limit,
4888 	 },
4889 	{}
4890 };
4891 
4892 static u32 num_perf_groups_per_gt(struct intel_gt *gt)
4893 {
4894 	return 1;
4895 }
4896 
4897 static u32 __oam_engine_group(struct intel_engine_cs *engine)
4898 {
4899 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) {
4900 		/*
4901 		 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices
4902 		 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA.
4903 		 */
4904 		drm_WARN_ON(&engine->i915->drm,
4905 			    engine->gt->type != GT_MEDIA);
4906 
4907 		return PERF_GROUP_OAM_SAMEDIA_0;
4908 	}
4909 
4910 	return PERF_GROUP_INVALID;
4911 }
4912 
4913 static u32 __oa_engine_group(struct intel_engine_cs *engine)
4914 {
4915 	switch (engine->class) {
4916 	case RENDER_CLASS:
4917 		return PERF_GROUP_OAG;
4918 
4919 	case VIDEO_DECODE_CLASS:
4920 	case VIDEO_ENHANCEMENT_CLASS:
4921 		return __oam_engine_group(engine);
4922 
4923 	default:
4924 		return PERF_GROUP_INVALID;
4925 	}
4926 }
4927 
4928 static struct i915_perf_regs __oam_regs(u32 base)
4929 {
4930 	return (struct i915_perf_regs) {
4931 		base,
4932 		GEN12_OAM_HEAD_POINTER(base),
4933 		GEN12_OAM_TAIL_POINTER(base),
4934 		GEN12_OAM_BUFFER(base),
4935 		GEN12_OAM_CONTEXT_CONTROL(base),
4936 		GEN12_OAM_CONTROL(base),
4937 		GEN12_OAM_DEBUG(base),
4938 		GEN12_OAM_STATUS(base),
4939 		GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT,
4940 	};
4941 }
4942 
4943 static struct i915_perf_regs __oag_regs(void)
4944 {
4945 	return (struct i915_perf_regs) {
4946 		0,
4947 		GEN12_OAG_OAHEADPTR,
4948 		GEN12_OAG_OATAILPTR,
4949 		GEN12_OAG_OABUFFER,
4950 		GEN12_OAG_OAGLBCTXCTRL,
4951 		GEN12_OAG_OACONTROL,
4952 		GEN12_OAG_OA_DEBUG,
4953 		GEN12_OAG_OASTATUS,
4954 		GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT,
4955 	};
4956 }
4957 
4958 static void oa_init_groups(struct intel_gt *gt)
4959 {
4960 	int i, num_groups = gt->perf.num_perf_groups;
4961 
4962 	for (i = 0; i < num_groups; i++) {
4963 		struct i915_perf_group *g = &gt->perf.group[i];
4964 
4965 		/* Fused off engines can result in a group with num_engines == 0 */
4966 		if (g->num_engines == 0)
4967 			continue;
4968 
4969 		if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) {
4970 			g->regs = __oag_regs();
4971 			g->type = TYPE_OAG;
4972 		} else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
4973 			g->regs = __oam_regs(mtl_oa_base[i]);
4974 			g->type = TYPE_OAM;
4975 		}
4976 	}
4977 }
4978 
4979 static int oa_init_gt(struct intel_gt *gt)
4980 {
4981 	u32 num_groups = num_perf_groups_per_gt(gt);
4982 	struct intel_engine_cs *engine;
4983 	struct i915_perf_group *g;
4984 	intel_engine_mask_t tmp;
4985 
4986 	g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL);
4987 	if (!g)
4988 		return -ENOMEM;
4989 
4990 	for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) {
4991 		u32 index = __oa_engine_group(engine);
4992 
4993 		engine->oa_group = NULL;
4994 		if (index < num_groups) {
4995 			g[index].num_engines++;
4996 			engine->oa_group = &g[index];
4997 		}
4998 	}
4999 
5000 	gt->perf.num_perf_groups = num_groups;
5001 	gt->perf.group = g;
5002 
5003 	oa_init_groups(gt);
5004 
5005 	return 0;
5006 }
5007 
5008 static int oa_init_engine_groups(struct i915_perf *perf)
5009 {
5010 	struct intel_gt *gt;
5011 	int i, ret;
5012 
5013 	for_each_gt(gt, perf->i915, i) {
5014 		ret = oa_init_gt(gt);
5015 		if (ret)
5016 			return ret;
5017 	}
5018 
5019 	return 0;
5020 }
5021 
5022 static void oa_init_supported_formats(struct i915_perf *perf)
5023 {
5024 	struct drm_i915_private *i915 = perf->i915;
5025 	enum intel_platform platform = INTEL_INFO(i915)->platform;
5026 
5027 	switch (platform) {
5028 	case INTEL_HASWELL:
5029 		oa_format_add(perf, I915_OA_FORMAT_A13);
5030 		oa_format_add(perf, I915_OA_FORMAT_A13);
5031 		oa_format_add(perf, I915_OA_FORMAT_A29);
5032 		oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
5033 		oa_format_add(perf, I915_OA_FORMAT_B4_C8);
5034 		oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
5035 		oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
5036 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
5037 		break;
5038 
5039 	case INTEL_BROADWELL:
5040 	case INTEL_CHERRYVIEW:
5041 	case INTEL_SKYLAKE:
5042 	case INTEL_BROXTON:
5043 	case INTEL_KABYLAKE:
5044 	case INTEL_GEMINILAKE:
5045 	case INTEL_COFFEELAKE:
5046 	case INTEL_COMETLAKE:
5047 	case INTEL_ICELAKE:
5048 	case INTEL_ELKHARTLAKE:
5049 	case INTEL_JASPERLAKE:
5050 	case INTEL_TIGERLAKE:
5051 	case INTEL_ROCKETLAKE:
5052 	case INTEL_DG1:
5053 	case INTEL_ALDERLAKE_S:
5054 	case INTEL_ALDERLAKE_P:
5055 		oa_format_add(perf, I915_OA_FORMAT_A12);
5056 		oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
5057 		oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
5058 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
5059 		break;
5060 
5061 	case INTEL_DG2:
5062 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5063 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5064 		break;
5065 
5066 	case INTEL_METEORLAKE:
5067 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5068 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5069 		oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8);
5070 		oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8);
5071 		break;
5072 
5073 	default:
5074 		MISSING_CASE(platform);
5075 	}
5076 }
5077 
5078 static void i915_perf_init_info(struct drm_i915_private *i915)
5079 {
5080 	struct i915_perf *perf = &i915->perf;
5081 
5082 	switch (GRAPHICS_VER(i915)) {
5083 	case 8:
5084 		perf->ctx_oactxctrl_offset = 0x120;
5085 		perf->ctx_flexeu0_offset = 0x2ce;
5086 		perf->gen8_valid_ctx_bit = BIT(25);
5087 		break;
5088 	case 9:
5089 		perf->ctx_oactxctrl_offset = 0x128;
5090 		perf->ctx_flexeu0_offset = 0x3de;
5091 		perf->gen8_valid_ctx_bit = BIT(16);
5092 		break;
5093 	case 11:
5094 		perf->ctx_oactxctrl_offset = 0x124;
5095 		perf->ctx_flexeu0_offset = 0x78e;
5096 		perf->gen8_valid_ctx_bit = BIT(16);
5097 		break;
5098 	case 12:
5099 		/*
5100 		 * Calculate offset at runtime in oa_pin_context for gen12 and
5101 		 * cache the value in perf->ctx_oactxctrl_offset.
5102 		 */
5103 		break;
5104 	default:
5105 		MISSING_CASE(GRAPHICS_VER(i915));
5106 	}
5107 }
5108 
5109 /**
5110  * i915_perf_init - initialize i915-perf state on module bind
5111  * @i915: i915 device instance
5112  *
5113  * Initializes i915-perf state without exposing anything to userspace.
5114  *
5115  * Note: i915-perf initialization is split into an 'init' and 'register'
5116  * phase with the i915_perf_register() exposing state to userspace.
5117  */
5118 int i915_perf_init(struct drm_i915_private *i915)
5119 {
5120 	struct i915_perf *perf = &i915->perf;
5121 
5122 	perf->oa_formats = oa_formats;
5123 	if (IS_HASWELL(i915)) {
5124 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
5125 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
5126 		perf->ops.is_valid_flex_reg = NULL;
5127 		perf->ops.enable_metric_set = hsw_enable_metric_set;
5128 		perf->ops.disable_metric_set = hsw_disable_metric_set;
5129 		perf->ops.oa_enable = gen7_oa_enable;
5130 		perf->ops.oa_disable = gen7_oa_disable;
5131 		perf->ops.read = gen7_oa_read;
5132 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
5133 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
5134 		/* Note: that although we could theoretically also support the
5135 		 * legacy ringbuffer mode on BDW (and earlier iterations of
5136 		 * this driver, before upstreaming did this) it didn't seem
5137 		 * worth the complexity to maintain now that BDW+ enable
5138 		 * execlist mode by default.
5139 		 */
5140 		perf->ops.read = gen8_oa_read;
5141 		i915_perf_init_info(i915);
5142 
5143 		if (IS_GRAPHICS_VER(i915, 8, 9)) {
5144 			perf->ops.is_valid_b_counter_reg =
5145 				gen7_is_valid_b_counter_addr;
5146 			perf->ops.is_valid_mux_reg =
5147 				gen8_is_valid_mux_addr;
5148 			perf->ops.is_valid_flex_reg =
5149 				gen8_is_valid_flex_addr;
5150 
5151 			if (IS_CHERRYVIEW(i915)) {
5152 				perf->ops.is_valid_mux_reg =
5153 					chv_is_valid_mux_addr;
5154 			}
5155 
5156 			perf->ops.oa_enable = gen8_oa_enable;
5157 			perf->ops.oa_disable = gen8_oa_disable;
5158 			perf->ops.enable_metric_set = gen8_enable_metric_set;
5159 			perf->ops.disable_metric_set = gen8_disable_metric_set;
5160 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5161 		} else if (GRAPHICS_VER(i915) == 11) {
5162 			perf->ops.is_valid_b_counter_reg =
5163 				gen7_is_valid_b_counter_addr;
5164 			perf->ops.is_valid_mux_reg =
5165 				gen11_is_valid_mux_addr;
5166 			perf->ops.is_valid_flex_reg =
5167 				gen8_is_valid_flex_addr;
5168 
5169 			perf->ops.oa_enable = gen8_oa_enable;
5170 			perf->ops.oa_disable = gen8_oa_disable;
5171 			perf->ops.enable_metric_set = gen8_enable_metric_set;
5172 			perf->ops.disable_metric_set = gen11_disable_metric_set;
5173 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5174 		} else if (GRAPHICS_VER(i915) == 12) {
5175 			perf->ops.is_valid_b_counter_reg =
5176 				HAS_OA_SLICE_CONTRIB_LIMITS(i915) ?
5177 				xehp_is_valid_b_counter_addr :
5178 				gen12_is_valid_b_counter_addr;
5179 			perf->ops.is_valid_mux_reg =
5180 				gen12_is_valid_mux_addr;
5181 			perf->ops.is_valid_flex_reg =
5182 				gen8_is_valid_flex_addr;
5183 
5184 			perf->ops.oa_enable = gen12_oa_enable;
5185 			perf->ops.oa_disable = gen12_oa_disable;
5186 			perf->ops.enable_metric_set = gen12_enable_metric_set;
5187 			perf->ops.disable_metric_set = gen12_disable_metric_set;
5188 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
5189 		}
5190 	}
5191 
5192 	if (perf->ops.enable_metric_set) {
5193 		struct intel_gt *gt;
5194 		int i, ret;
5195 
5196 		for_each_gt(gt, i915, i)
5197 			mutex_init(&gt->perf.lock);
5198 
5199 		/* Choose a representative limit */
5200 		oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
5201 
5202 		mutex_init(&perf->metrics_lock);
5203 		idr_init_base(&perf->metrics_idr, 1);
5204 
5205 		/* We set up some ratelimit state to potentially throttle any
5206 		 * _NOTES about spurious, invalid OA reports which we don't
5207 		 * forward to userspace.
5208 		 *
5209 		 * We print a _NOTE about any throttling when closing the
5210 		 * stream instead of waiting until driver _fini which no one
5211 		 * would ever see.
5212 		 *
5213 		 * Using the same limiting factors as printk_ratelimit()
5214 		 */
5215 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
5216 		/* Since we use a DRM_NOTE for spurious reports it would be
5217 		 * inconsistent to let __ratelimit() automatically print a
5218 		 * warning for throttling.
5219 		 */
5220 		ratelimit_set_flags(&perf->spurious_report_rs,
5221 				    RATELIMIT_MSG_ON_RELEASE);
5222 
5223 		ratelimit_state_init(&perf->tail_pointer_race,
5224 				     5 * HZ, 10);
5225 		ratelimit_set_flags(&perf->tail_pointer_race,
5226 				    RATELIMIT_MSG_ON_RELEASE);
5227 
5228 		atomic64_set(&perf->noa_programming_delay,
5229 			     500 * 1000 /* 500us */);
5230 
5231 		perf->i915 = i915;
5232 
5233 		ret = oa_init_engine_groups(perf);
5234 		if (ret) {
5235 			drm_err(&i915->drm,
5236 				"OA initialization failed %d\n", ret);
5237 			return ret;
5238 		}
5239 
5240 		oa_init_supported_formats(perf);
5241 	}
5242 
5243 	return 0;
5244 }
5245 
5246 static int destroy_config(int id, void *p, void *data)
5247 {
5248 	i915_oa_config_put(p);
5249 	return 0;
5250 }
5251 
5252 int i915_perf_sysctl_register(void)
5253 {
5254 	sysctl_header = register_sysctl("dev/i915", oa_table);
5255 	return 0;
5256 }
5257 
5258 void i915_perf_sysctl_unregister(void)
5259 {
5260 	unregister_sysctl_table(sysctl_header);
5261 }
5262 
5263 /**
5264  * i915_perf_fini - Counter part to i915_perf_init()
5265  * @i915: i915 device instance
5266  */
5267 void i915_perf_fini(struct drm_i915_private *i915)
5268 {
5269 	struct i915_perf *perf = &i915->perf;
5270 	struct intel_gt *gt;
5271 	int i;
5272 
5273 	if (!perf->i915)
5274 		return;
5275 
5276 	for_each_gt(gt, perf->i915, i)
5277 		kfree(gt->perf.group);
5278 
5279 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
5280 	idr_destroy(&perf->metrics_idr);
5281 
5282 	memset(&perf->ops, 0, sizeof(perf->ops));
5283 	perf->i915 = NULL;
5284 }
5285 
5286 /**
5287  * i915_perf_ioctl_version - Version of the i915-perf subsystem
5288  * @i915: The i915 device
5289  *
5290  * This version number is used by userspace to detect available features.
5291  */
5292 int i915_perf_ioctl_version(struct drm_i915_private *i915)
5293 {
5294 	/*
5295 	 * 1: Initial version
5296 	 *   I915_PERF_IOCTL_ENABLE
5297 	 *   I915_PERF_IOCTL_DISABLE
5298 	 *
5299 	 * 2: Added runtime modification of OA config.
5300 	 *   I915_PERF_IOCTL_CONFIG
5301 	 *
5302 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
5303 	 *    preemption on a particular context so that performance data is
5304 	 *    accessible from a delta of MI_RPC reports without looking at the
5305 	 *    OA buffer.
5306 	 *
5307 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
5308 	 *    be run for the duration of the performance recording based on
5309 	 *    their SSEU configuration.
5310 	 *
5311 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
5312 	 *    interval for the hrtimer used to check for OA data.
5313 	 *
5314 	 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and
5315 	 *    DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE
5316 	 *
5317 	 * 7: Add support for video decode and enhancement classes.
5318 	 */
5319 
5320 	/*
5321 	 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
5322 	 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6
5323 	 * to indicate that OA media is not supported.
5324 	 */
5325 	if (IS_MTL_MEDIA_STEP(i915, STEP_A0, STEP_C0)) {
5326 		struct intel_gt *gt;
5327 		int i;
5328 
5329 		for_each_gt(gt, i915, i) {
5330 			if (gt->type == GT_MEDIA &&
5331 			    intel_check_bios_c6_setup(&gt->rc6))
5332 				return 6;
5333 		}
5334 	}
5335 
5336 	return 7;
5337 }
5338 
5339 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5340 #include "selftests/i915_perf.c"
5341 #endif
5342