xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision c4c3c32d)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/nospec.h>
196 #include <linux/sizes.h>
197 #include <linux/uuid.h>
198 
199 #include "gem/i915_gem_context.h"
200 #include "gem/i915_gem_internal.h"
201 #include "gt/intel_engine_pm.h"
202 #include "gt/intel_engine_regs.h"
203 #include "gt/intel_engine_user.h"
204 #include "gt/intel_execlists_submission.h"
205 #include "gt/intel_gpu_commands.h"
206 #include "gt/intel_gt.h"
207 #include "gt/intel_gt_clock_utils.h"
208 #include "gt/intel_gt_mcr.h"
209 #include "gt/intel_gt_regs.h"
210 #include "gt/intel_lrc.h"
211 #include "gt/intel_lrc_reg.h"
212 #include "gt/intel_rc6.h"
213 #include "gt/intel_ring.h"
214 #include "gt/uc/intel_guc_slpc.h"
215 
216 #include "i915_drv.h"
217 #include "i915_file_private.h"
218 #include "i915_perf.h"
219 #include "i915_perf_oa_regs.h"
220 #include "i915_reg.h"
221 
222 /* HW requires this to be a power of two, between 128k and 16M, though driver
223  * is currently generally designed assuming the largest 16M size is used such
224  * that the overflow cases are unlikely in normal operation.
225  */
226 #define OA_BUFFER_SIZE		SZ_16M
227 
228 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
229 
230 /**
231  * DOC: OA Tail Pointer Race
232  *
233  * There's a HW race condition between OA unit tail pointer register updates and
234  * writes to memory whereby the tail pointer can sometimes get ahead of what's
235  * been written out to the OA buffer so far (in terms of what's visible to the
236  * CPU).
237  *
238  * Although this can be observed explicitly while copying reports to userspace
239  * by checking for a zeroed report-id field in tail reports, we want to account
240  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
241  * redundant read() attempts.
242  *
243  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
244  * in the OA buffer, starting from the tail reported by the HW until we find a
245  * report with its first 2 dwords not 0 meaning its previous report is
246  * completely in memory and ready to be read. Those dwords are also set to 0
247  * once read and the whole buffer is cleared upon OA buffer initialization. The
248  * first dword is the reason for this report while the second is the timestamp,
249  * making the chances of having those 2 fields at 0 fairly unlikely. A more
250  * detailed explanation is available in oa_buffer_check_unlocked().
251  *
252  * Most of the implementation details for this workaround are in
253  * oa_buffer_check_unlocked() and _append_oa_reports()
254  *
255  * Note for posterity: previously the driver used to define an effective tail
256  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
257  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
258  * This was flawed considering that the OA unit may also automatically generate
259  * non-periodic reports (such as on context switch) or the OA unit may be
260  * enabled without any periodic sampling.
261  */
262 #define OA_TAIL_MARGIN_NSEC	100000ULL
263 #define INVALID_TAIL_PTR	0xffffffff
264 
265 /* The default frequency for checking whether the OA unit has written new
266  * reports to the circular OA buffer...
267  */
268 #define DEFAULT_POLL_FREQUENCY_HZ 200
269 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
270 
271 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
272 static u32 i915_perf_stream_paranoid = true;
273 
274 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
275  * of the 64bit timestamp bits to trigger reports from) but there's currently
276  * no known use case for sampling as infrequently as once per 47 thousand years.
277  *
278  * Since the timestamps included in OA reports are only 32bits it seems
279  * reasonable to limit the OA exponent where it's still possible to account for
280  * overflow in OA report timestamps.
281  */
282 #define OA_EXPONENT_MAX 31
283 
284 #define INVALID_CTX_ID 0xffffffff
285 
286 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
287 #define OAREPORT_REASON_MASK           0x3f
288 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
289 #define OAREPORT_REASON_SHIFT          19
290 #define OAREPORT_REASON_TIMER          (1<<0)
291 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
292 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
293 
294 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
295 
296 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
297  *
298  * The highest sampling frequency we can theoretically program the OA unit
299  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
300  *
301  * Initialized just before we register the sysctl parameter.
302  */
303 static int oa_sample_rate_hard_limit;
304 
305 /* Theoretically we can program the OA unit to sample every 160ns but don't
306  * allow that by default unless root...
307  *
308  * The default threshold of 100000Hz is based on perf's similar
309  * kernel.perf_event_max_sample_rate sysctl parameter.
310  */
311 static u32 i915_oa_max_sample_rate = 100000;
312 
313 /* XXX: beware if future OA HW adds new report formats that the current
314  * code assumes all reports have a power-of-two size and ~(size - 1) can
315  * be used as a mask to align the OA tail pointer.
316  */
317 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
318 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
319 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
320 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
321 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
322 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
323 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
324 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
325 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
326 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
327 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
328 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
329 	[I915_OAR_FORMAT_A32u40_A4u32_B8_C8]    = { 5, 256 },
330 	[I915_OA_FORMAT_A24u40_A14u32_B8_C8]    = { 5, 256 },
331 	[I915_OAM_FORMAT_MPEC8u64_B8_C8]	= { 1, 192, TYPE_OAM, HDR_64_BIT },
332 	[I915_OAM_FORMAT_MPEC8u32_B8_C8]	= { 2, 128, TYPE_OAM, HDR_64_BIT },
333 };
334 
335 static const u32 mtl_oa_base[] = {
336 	[PERF_GROUP_OAM_SAMEDIA_0] = 0x393000,
337 };
338 
339 #define SAMPLE_OA_REPORT      (1<<0)
340 
341 /**
342  * struct perf_open_properties - for validated properties given to open a stream
343  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
344  * @single_context: Whether a single or all gpu contexts should be monitored
345  * @hold_preemption: Whether the preemption is disabled for the filtered
346  *                   context
347  * @ctx_handle: A gem ctx handle for use with @single_context
348  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
349  * @oa_format: An OA unit HW report format
350  * @oa_periodic: Whether to enable periodic OA unit sampling
351  * @oa_period_exponent: The OA unit sampling period is derived from this
352  * @engine: The engine (typically rcs0) being monitored by the OA unit
353  * @has_sseu: Whether @sseu was specified by userspace
354  * @sseu: internal SSEU configuration computed either from the userspace
355  *        specified configuration in the opening parameters or a default value
356  *        (see get_default_sseu_config())
357  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
358  * data availability
359  *
360  * As read_properties_unlocked() enumerates and validates the properties given
361  * to open a stream of metrics the configuration is built up in the structure
362  * which starts out zero initialized.
363  */
364 struct perf_open_properties {
365 	u32 sample_flags;
366 
367 	u64 single_context:1;
368 	u64 hold_preemption:1;
369 	u64 ctx_handle;
370 
371 	/* OA sampling state */
372 	int metrics_set;
373 	int oa_format;
374 	bool oa_periodic;
375 	int oa_period_exponent;
376 
377 	struct intel_engine_cs *engine;
378 
379 	bool has_sseu;
380 	struct intel_sseu sseu;
381 
382 	u64 poll_oa_period;
383 };
384 
385 struct i915_oa_config_bo {
386 	struct llist_node node;
387 
388 	struct i915_oa_config *oa_config;
389 	struct i915_vma *vma;
390 };
391 
392 static struct ctl_table_header *sysctl_header;
393 
394 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
395 
396 void i915_oa_config_release(struct kref *ref)
397 {
398 	struct i915_oa_config *oa_config =
399 		container_of(ref, typeof(*oa_config), ref);
400 
401 	kfree(oa_config->flex_regs);
402 	kfree(oa_config->b_counter_regs);
403 	kfree(oa_config->mux_regs);
404 
405 	kfree_rcu(oa_config, rcu);
406 }
407 
408 struct i915_oa_config *
409 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
410 {
411 	struct i915_oa_config *oa_config;
412 
413 	rcu_read_lock();
414 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
415 	if (oa_config)
416 		oa_config = i915_oa_config_get(oa_config);
417 	rcu_read_unlock();
418 
419 	return oa_config;
420 }
421 
422 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
423 {
424 	i915_oa_config_put(oa_bo->oa_config);
425 	i915_vma_put(oa_bo->vma);
426 	kfree(oa_bo);
427 }
428 
429 static inline const
430 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream)
431 {
432 	return &stream->engine->oa_group->regs;
433 }
434 
435 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
436 {
437 	struct intel_uncore *uncore = stream->uncore;
438 
439 	return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) &
440 	       GEN12_OAG_OATAILPTR_MASK;
441 }
442 
443 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
444 {
445 	struct intel_uncore *uncore = stream->uncore;
446 
447 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
448 }
449 
450 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
451 {
452 	struct intel_uncore *uncore = stream->uncore;
453 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
454 
455 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
456 }
457 
458 #define oa_report_header_64bit(__s) \
459 	((__s)->oa_buffer.format->header == HDR_64_BIT)
460 
461 static u64 oa_report_id(struct i915_perf_stream *stream, void *report)
462 {
463 	return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report;
464 }
465 
466 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report)
467 {
468 	return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) &
469 	       (GRAPHICS_VER(stream->perf->i915) == 12 ?
470 		OAREPORT_REASON_MASK_EXTENDED :
471 		OAREPORT_REASON_MASK);
472 }
473 
474 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report)
475 {
476 	if (oa_report_header_64bit(stream))
477 		*(u64 *)report = 0;
478 	else
479 		*report = 0;
480 }
481 
482 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report)
483 {
484 	return !(oa_report_id(stream, report) &
485 	       stream->perf->gen8_valid_ctx_bit) &&
486 	       GRAPHICS_VER(stream->perf->i915) <= 11;
487 }
488 
489 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report)
490 {
491 	return oa_report_header_64bit(stream) ?
492 		*((u64 *)report + 1) :
493 		*((u32 *)report + 1);
494 }
495 
496 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report)
497 {
498 	if (oa_report_header_64bit(stream))
499 		*(u64 *)&report[2] = 0;
500 	else
501 		report[1] = 0;
502 }
503 
504 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report)
505 {
506 	u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2];
507 
508 	return ctx_id & stream->specific_ctx_id_mask;
509 }
510 
511 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report)
512 {
513 	if (oa_report_header_64bit(stream))
514 		report[4] = INVALID_CTX_ID;
515 	else
516 		report[2] = INVALID_CTX_ID;
517 }
518 
519 /**
520  * oa_buffer_check_unlocked - check for data and update tail ptr state
521  * @stream: i915 stream instance
522  *
523  * This is either called via fops (for blocking reads in user ctx) or the poll
524  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
525  * if there is data available for userspace to read.
526  *
527  * This function is central to providing a workaround for the OA unit tail
528  * pointer having a race with respect to what data is visible to the CPU.
529  * It is responsible for reading tail pointers from the hardware and giving
530  * the pointers time to 'age' before they are made available for reading.
531  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
532  *
533  * Besides returning true when there is data available to read() this function
534  * also updates the tail in the oa_buffer object.
535  *
536  * Note: It's safe to read OA config state here unlocked, assuming that this is
537  * only called while the stream is enabled, while the global OA configuration
538  * can't be modified.
539  *
540  * Returns: %true if the OA buffer contains data, else %false
541  */
542 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
543 {
544 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
545 	int report_size = stream->oa_buffer.format->size;
546 	u32 head, tail, read_tail;
547 	unsigned long flags;
548 	bool pollin;
549 	u32 hw_tail;
550 	u32 partial_report_size;
551 
552 	/* We have to consider the (unlikely) possibility that read() errors
553 	 * could result in an OA buffer reset which might reset the head and
554 	 * tail state.
555 	 */
556 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
557 
558 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
559 
560 	/* The tail pointer increases in 64 byte increments, not in report_size
561 	 * steps. Also the report size may not be a power of 2. Compute
562 	 * potentially partially landed report in the OA buffer
563 	 */
564 	partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail);
565 	partial_report_size %= report_size;
566 
567 	/* Subtract partial amount off the tail */
568 	hw_tail = OA_TAKEN(hw_tail, partial_report_size);
569 
570 	/* NB: The head we observe here might effectively be a little
571 	 * out of date. If a read() is in progress, the head could be
572 	 * anywhere between this head and stream->oa_buffer.tail.
573 	 */
574 	head = stream->oa_buffer.head - gtt_offset;
575 	read_tail = stream->oa_buffer.tail - gtt_offset;
576 
577 	tail = hw_tail;
578 
579 	/* Walk the stream backward until we find a report with report
580 	 * id and timestmap not at 0. Since the circular buffer pointers
581 	 * progress by increments of 64 bytes and that reports can be up
582 	 * to 256 bytes long, we can't tell whether a report has fully
583 	 * landed in memory before the report id and timestamp of the
584 	 * following report have effectively landed.
585 	 *
586 	 * This is assuming that the writes of the OA unit land in
587 	 * memory in the order they were written to.
588 	 * If not : (╯°□°)╯︵ ┻━┻
589 	 */
590 	while (OA_TAKEN(tail, read_tail) >= report_size) {
591 		void *report = stream->oa_buffer.vaddr + tail;
592 
593 		if (oa_report_id(stream, report) ||
594 		    oa_timestamp(stream, report))
595 			break;
596 
597 		tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
598 	}
599 
600 	if (OA_TAKEN(hw_tail, tail) > report_size &&
601 	    __ratelimit(&stream->perf->tail_pointer_race))
602 		drm_notice(&stream->uncore->i915->drm,
603 			   "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n",
604 		 head, tail, hw_tail);
605 
606 	stream->oa_buffer.tail = gtt_offset + tail;
607 
608 	pollin = OA_TAKEN(stream->oa_buffer.tail,
609 			  stream->oa_buffer.head) >= report_size;
610 
611 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
612 
613 	return pollin;
614 }
615 
616 /**
617  * append_oa_status - Appends a status record to a userspace read() buffer.
618  * @stream: An i915-perf stream opened for OA metrics
619  * @buf: destination buffer given by userspace
620  * @count: the number of bytes userspace wants to read
621  * @offset: (inout): the current position for writing into @buf
622  * @type: The kind of status to report to userspace
623  *
624  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
625  * into the userspace read() buffer.
626  *
627  * The @buf @offset will only be updated on success.
628  *
629  * Returns: 0 on success, negative error code on failure.
630  */
631 static int append_oa_status(struct i915_perf_stream *stream,
632 			    char __user *buf,
633 			    size_t count,
634 			    size_t *offset,
635 			    enum drm_i915_perf_record_type type)
636 {
637 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
638 
639 	if ((count - *offset) < header.size)
640 		return -ENOSPC;
641 
642 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
643 		return -EFAULT;
644 
645 	(*offset) += header.size;
646 
647 	return 0;
648 }
649 
650 /**
651  * append_oa_sample - Copies single OA report into userspace read() buffer.
652  * @stream: An i915-perf stream opened for OA metrics
653  * @buf: destination buffer given by userspace
654  * @count: the number of bytes userspace wants to read
655  * @offset: (inout): the current position for writing into @buf
656  * @report: A single OA report to (optionally) include as part of the sample
657  *
658  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
659  * properties when opening a stream, tracked as `stream->sample_flags`. This
660  * function copies the requested components of a single sample to the given
661  * read() @buf.
662  *
663  * The @buf @offset will only be updated on success.
664  *
665  * Returns: 0 on success, negative error code on failure.
666  */
667 static int append_oa_sample(struct i915_perf_stream *stream,
668 			    char __user *buf,
669 			    size_t count,
670 			    size_t *offset,
671 			    const u8 *report)
672 {
673 	int report_size = stream->oa_buffer.format->size;
674 	struct drm_i915_perf_record_header header;
675 	int report_size_partial;
676 	u8 *oa_buf_end;
677 
678 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
679 	header.pad = 0;
680 	header.size = stream->sample_size;
681 
682 	if ((count - *offset) < header.size)
683 		return -ENOSPC;
684 
685 	buf += *offset;
686 	if (copy_to_user(buf, &header, sizeof(header)))
687 		return -EFAULT;
688 	buf += sizeof(header);
689 
690 	oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE;
691 	report_size_partial = oa_buf_end - report;
692 
693 	if (report_size_partial < report_size) {
694 		if (copy_to_user(buf, report, report_size_partial))
695 			return -EFAULT;
696 		buf += report_size_partial;
697 
698 		if (copy_to_user(buf, stream->oa_buffer.vaddr,
699 				 report_size - report_size_partial))
700 			return -EFAULT;
701 	} else if (copy_to_user(buf, report, report_size)) {
702 		return -EFAULT;
703 	}
704 
705 	(*offset) += header.size;
706 
707 	return 0;
708 }
709 
710 /**
711  * gen8_append_oa_reports - Copies all buffered OA reports into
712  *			    userspace read() buffer.
713  * @stream: An i915-perf stream opened for OA metrics
714  * @buf: destination buffer given by userspace
715  * @count: the number of bytes userspace wants to read
716  * @offset: (inout): the current position for writing into @buf
717  *
718  * Notably any error condition resulting in a short read (-%ENOSPC or
719  * -%EFAULT) will be returned even though one or more records may
720  * have been successfully copied. In this case it's up to the caller
721  * to decide if the error should be squashed before returning to
722  * userspace.
723  *
724  * Note: reports are consumed from the head, and appended to the
725  * tail, so the tail chases the head?... If you think that's mad
726  * and back-to-front you're not alone, but this follows the
727  * Gen PRM naming convention.
728  *
729  * Returns: 0 on success, negative error code on failure.
730  */
731 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
732 				  char __user *buf,
733 				  size_t count,
734 				  size_t *offset)
735 {
736 	struct intel_uncore *uncore = stream->uncore;
737 	int report_size = stream->oa_buffer.format->size;
738 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
739 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
740 	u32 mask = (OA_BUFFER_SIZE - 1);
741 	size_t start_offset = *offset;
742 	unsigned long flags;
743 	u32 head, tail;
744 	int ret = 0;
745 
746 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
747 		return -EIO;
748 
749 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
750 
751 	head = stream->oa_buffer.head;
752 	tail = stream->oa_buffer.tail;
753 
754 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
755 
756 	/*
757 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
758 	 * while indexing relative to oa_buf_base.
759 	 */
760 	head -= gtt_offset;
761 	tail -= gtt_offset;
762 
763 	/*
764 	 * An out of bounds or misaligned head or tail pointer implies a driver
765 	 * bug since we validate + align the tail pointers we read from the
766 	 * hardware and we are in full control of the head pointer which should
767 	 * only be incremented by multiples of the report size.
768 	 */
769 	if (drm_WARN_ONCE(&uncore->i915->drm,
770 			  head > OA_BUFFER_SIZE ||
771 			  tail > OA_BUFFER_SIZE,
772 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
773 			  head, tail))
774 		return -EIO;
775 
776 
777 	for (/* none */;
778 	     OA_TAKEN(tail, head);
779 	     head = (head + report_size) & mask) {
780 		u8 *report = oa_buf_base + head;
781 		u32 *report32 = (void *)report;
782 		u32 ctx_id;
783 		u64 reason;
784 
785 		/*
786 		 * The reason field includes flags identifying what
787 		 * triggered this specific report (mostly timer
788 		 * triggered or e.g. due to a context switch).
789 		 *
790 		 * In MMIO triggered reports, some platforms do not set the
791 		 * reason bit in this field and it is valid to have a reason
792 		 * field of zero.
793 		 */
794 		reason = oa_report_reason(stream, report);
795 		ctx_id = oa_context_id(stream, report32);
796 
797 		/*
798 		 * Squash whatever is in the CTX_ID field if it's marked as
799 		 * invalid to be sure we avoid false-positive, single-context
800 		 * filtering below...
801 		 *
802 		 * Note: that we don't clear the valid_ctx_bit so userspace can
803 		 * understand that the ID has been squashed by the kernel.
804 		 */
805 		if (oa_report_ctx_invalid(stream, report)) {
806 			ctx_id = INVALID_CTX_ID;
807 			oa_context_id_squash(stream, report32);
808 		}
809 
810 		/*
811 		 * NB: For Gen 8 the OA unit no longer supports clock gating
812 		 * off for a specific context and the kernel can't securely
813 		 * stop the counters from updating as system-wide / global
814 		 * values.
815 		 *
816 		 * Automatic reports now include a context ID so reports can be
817 		 * filtered on the cpu but it's not worth trying to
818 		 * automatically subtract/hide counter progress for other
819 		 * contexts while filtering since we can't stop userspace
820 		 * issuing MI_REPORT_PERF_COUNT commands which would still
821 		 * provide a side-band view of the real values.
822 		 *
823 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
824 		 * to normalize counters for a single filtered context then it
825 		 * needs be forwarded bookend context-switch reports so that it
826 		 * can track switches in between MI_REPORT_PERF_COUNT commands
827 		 * and can itself subtract/ignore the progress of counters
828 		 * associated with other contexts. Note that the hardware
829 		 * automatically triggers reports when switching to a new
830 		 * context which are tagged with the ID of the newly active
831 		 * context. To avoid the complexity (and likely fragility) of
832 		 * reading ahead while parsing reports to try and minimize
833 		 * forwarding redundant context switch reports (i.e. between
834 		 * other, unrelated contexts) we simply elect to forward them
835 		 * all.
836 		 *
837 		 * We don't rely solely on the reason field to identify context
838 		 * switches since it's not-uncommon for periodic samples to
839 		 * identify a switch before any 'context switch' report.
840 		 */
841 		if (!stream->ctx ||
842 		    stream->specific_ctx_id == ctx_id ||
843 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
844 		    reason & OAREPORT_REASON_CTX_SWITCH) {
845 
846 			/*
847 			 * While filtering for a single context we avoid
848 			 * leaking the IDs of other contexts.
849 			 */
850 			if (stream->ctx &&
851 			    stream->specific_ctx_id != ctx_id) {
852 				oa_context_id_squash(stream, report32);
853 			}
854 
855 			ret = append_oa_sample(stream, buf, count, offset,
856 					       report);
857 			if (ret)
858 				break;
859 
860 			stream->oa_buffer.last_ctx_id = ctx_id;
861 		}
862 
863 		if (is_power_of_2(report_size)) {
864 			/*
865 			 * Clear out the report id and timestamp as a means
866 			 * to detect unlanded reports.
867 			 */
868 			oa_report_id_clear(stream, report32);
869 			oa_timestamp_clear(stream, report32);
870 		} else {
871 			u8 *oa_buf_end = stream->oa_buffer.vaddr +
872 					 OA_BUFFER_SIZE;
873 			u32 part = oa_buf_end - (u8 *)report32;
874 
875 			/* Zero out the entire report */
876 			if (report_size <= part) {
877 				memset(report32, 0, report_size);
878 			} else {
879 				memset(report32, 0, part);
880 				memset(oa_buf_base, 0, report_size - part);
881 			}
882 		}
883 	}
884 
885 	if (start_offset != *offset) {
886 		i915_reg_t oaheadptr;
887 
888 		oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
889 			    __oa_regs(stream)->oa_head_ptr :
890 			    GEN8_OAHEADPTR;
891 
892 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
893 
894 		/*
895 		 * We removed the gtt_offset for the copy loop above, indexing
896 		 * relative to oa_buf_base so put back here...
897 		 */
898 		head += gtt_offset;
899 		intel_uncore_write(uncore, oaheadptr,
900 				   head & GEN12_OAG_OAHEADPTR_MASK);
901 		stream->oa_buffer.head = head;
902 
903 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
904 	}
905 
906 	return ret;
907 }
908 
909 /**
910  * gen8_oa_read - copy status records then buffered OA reports
911  * @stream: An i915-perf stream opened for OA metrics
912  * @buf: destination buffer given by userspace
913  * @count: the number of bytes userspace wants to read
914  * @offset: (inout): the current position for writing into @buf
915  *
916  * Checks OA unit status registers and if necessary appends corresponding
917  * status records for userspace (such as for a buffer full condition) and then
918  * initiate appending any buffered OA reports.
919  *
920  * Updates @offset according to the number of bytes successfully copied into
921  * the userspace buffer.
922  *
923  * NB: some data may be successfully copied to the userspace buffer
924  * even if an error is returned, and this is reflected in the
925  * updated @offset.
926  *
927  * Returns: zero on success or a negative error code
928  */
929 static int gen8_oa_read(struct i915_perf_stream *stream,
930 			char __user *buf,
931 			size_t count,
932 			size_t *offset)
933 {
934 	struct intel_uncore *uncore = stream->uncore;
935 	u32 oastatus;
936 	i915_reg_t oastatus_reg;
937 	int ret;
938 
939 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
940 		return -EIO;
941 
942 	oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
943 		       __oa_regs(stream)->oa_status :
944 		       GEN8_OASTATUS;
945 
946 	oastatus = intel_uncore_read(uncore, oastatus_reg);
947 
948 	/*
949 	 * We treat OABUFFER_OVERFLOW as a significant error:
950 	 *
951 	 * Although theoretically we could handle this more gracefully
952 	 * sometimes, some Gens don't correctly suppress certain
953 	 * automatically triggered reports in this condition and so we
954 	 * have to assume that old reports are now being trampled
955 	 * over.
956 	 *
957 	 * Considering how we don't currently give userspace control
958 	 * over the OA buffer size and always configure a large 16MB
959 	 * buffer, then a buffer overflow does anyway likely indicate
960 	 * that something has gone quite badly wrong.
961 	 */
962 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
963 		ret = append_oa_status(stream, buf, count, offset,
964 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
965 		if (ret)
966 			return ret;
967 
968 		drm_dbg(&stream->perf->i915->drm,
969 			"OA buffer overflow (exponent = %d): force restart\n",
970 			stream->period_exponent);
971 
972 		stream->perf->ops.oa_disable(stream);
973 		stream->perf->ops.oa_enable(stream);
974 
975 		/*
976 		 * Note: .oa_enable() is expected to re-init the oabuffer and
977 		 * reset GEN8_OASTATUS for us
978 		 */
979 		oastatus = intel_uncore_read(uncore, oastatus_reg);
980 	}
981 
982 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
983 		ret = append_oa_status(stream, buf, count, offset,
984 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
985 		if (ret)
986 			return ret;
987 
988 		intel_uncore_rmw(uncore, oastatus_reg,
989 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
990 				 GEN8_OASTATUS_REPORT_LOST,
991 				 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
992 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
993 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
994 	}
995 
996 	return gen8_append_oa_reports(stream, buf, count, offset);
997 }
998 
999 /**
1000  * gen7_append_oa_reports - Copies all buffered OA reports into
1001  *			    userspace read() buffer.
1002  * @stream: An i915-perf stream opened for OA metrics
1003  * @buf: destination buffer given by userspace
1004  * @count: the number of bytes userspace wants to read
1005  * @offset: (inout): the current position for writing into @buf
1006  *
1007  * Notably any error condition resulting in a short read (-%ENOSPC or
1008  * -%EFAULT) will be returned even though one or more records may
1009  * have been successfully copied. In this case it's up to the caller
1010  * to decide if the error should be squashed before returning to
1011  * userspace.
1012  *
1013  * Note: reports are consumed from the head, and appended to the
1014  * tail, so the tail chases the head?... If you think that's mad
1015  * and back-to-front you're not alone, but this follows the
1016  * Gen PRM naming convention.
1017  *
1018  * Returns: 0 on success, negative error code on failure.
1019  */
1020 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
1021 				  char __user *buf,
1022 				  size_t count,
1023 				  size_t *offset)
1024 {
1025 	struct intel_uncore *uncore = stream->uncore;
1026 	int report_size = stream->oa_buffer.format->size;
1027 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
1028 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1029 	u32 mask = (OA_BUFFER_SIZE - 1);
1030 	size_t start_offset = *offset;
1031 	unsigned long flags;
1032 	u32 head, tail;
1033 	int ret = 0;
1034 
1035 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
1036 		return -EIO;
1037 
1038 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1039 
1040 	head = stream->oa_buffer.head;
1041 	tail = stream->oa_buffer.tail;
1042 
1043 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1044 
1045 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
1046 	 * while indexing relative to oa_buf_base.
1047 	 */
1048 	head -= gtt_offset;
1049 	tail -= gtt_offset;
1050 
1051 	/* An out of bounds or misaligned head or tail pointer implies a driver
1052 	 * bug since we validate + align the tail pointers we read from the
1053 	 * hardware and we are in full control of the head pointer which should
1054 	 * only be incremented by multiples of the report size (notably also
1055 	 * all a power of two).
1056 	 */
1057 	if (drm_WARN_ONCE(&uncore->i915->drm,
1058 			  head > OA_BUFFER_SIZE || head % report_size ||
1059 			  tail > OA_BUFFER_SIZE || tail % report_size,
1060 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1061 			  head, tail))
1062 		return -EIO;
1063 
1064 
1065 	for (/* none */;
1066 	     OA_TAKEN(tail, head);
1067 	     head = (head + report_size) & mask) {
1068 		u8 *report = oa_buf_base + head;
1069 		u32 *report32 = (void *)report;
1070 
1071 		/* All the report sizes factor neatly into the buffer
1072 		 * size so we never expect to see a report split
1073 		 * between the beginning and end of the buffer.
1074 		 *
1075 		 * Given the initial alignment check a misalignment
1076 		 * here would imply a driver bug that would result
1077 		 * in an overrun.
1078 		 */
1079 		if (drm_WARN_ON(&uncore->i915->drm,
1080 				(OA_BUFFER_SIZE - head) < report_size)) {
1081 			drm_err(&uncore->i915->drm,
1082 				"Spurious OA head ptr: non-integral report offset\n");
1083 			break;
1084 		}
1085 
1086 		/* The report-ID field for periodic samples includes
1087 		 * some undocumented flags related to what triggered
1088 		 * the report and is never expected to be zero so we
1089 		 * can check that the report isn't invalid before
1090 		 * copying it to userspace...
1091 		 */
1092 		if (report32[0] == 0) {
1093 			if (__ratelimit(&stream->perf->spurious_report_rs))
1094 				drm_notice(&uncore->i915->drm,
1095 					   "Skipping spurious, invalid OA report\n");
1096 			continue;
1097 		}
1098 
1099 		ret = append_oa_sample(stream, buf, count, offset, report);
1100 		if (ret)
1101 			break;
1102 
1103 		/* Clear out the first 2 dwords as a mean to detect unlanded
1104 		 * reports.
1105 		 */
1106 		report32[0] = 0;
1107 		report32[1] = 0;
1108 	}
1109 
1110 	if (start_offset != *offset) {
1111 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1112 
1113 		/* We removed the gtt_offset for the copy loop above, indexing
1114 		 * relative to oa_buf_base so put back here...
1115 		 */
1116 		head += gtt_offset;
1117 
1118 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1119 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1120 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1121 		stream->oa_buffer.head = head;
1122 
1123 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1124 	}
1125 
1126 	return ret;
1127 }
1128 
1129 /**
1130  * gen7_oa_read - copy status records then buffered OA reports
1131  * @stream: An i915-perf stream opened for OA metrics
1132  * @buf: destination buffer given by userspace
1133  * @count: the number of bytes userspace wants to read
1134  * @offset: (inout): the current position for writing into @buf
1135  *
1136  * Checks Gen 7 specific OA unit status registers and if necessary appends
1137  * corresponding status records for userspace (such as for a buffer full
1138  * condition) and then initiate appending any buffered OA reports.
1139  *
1140  * Updates @offset according to the number of bytes successfully copied into
1141  * the userspace buffer.
1142  *
1143  * Returns: zero on success or a negative error code
1144  */
1145 static int gen7_oa_read(struct i915_perf_stream *stream,
1146 			char __user *buf,
1147 			size_t count,
1148 			size_t *offset)
1149 {
1150 	struct intel_uncore *uncore = stream->uncore;
1151 	u32 oastatus1;
1152 	int ret;
1153 
1154 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1155 		return -EIO;
1156 
1157 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1158 
1159 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1160 	 * bits while the OA unit is enabled (while the tail pointer
1161 	 * may be updated asynchronously) so we ignore status bits
1162 	 * that have already been reported to userspace.
1163 	 */
1164 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1165 
1166 	/* We treat OABUFFER_OVERFLOW as a significant error:
1167 	 *
1168 	 * - The status can be interpreted to mean that the buffer is
1169 	 *   currently full (with a higher precedence than OA_TAKEN()
1170 	 *   which will start to report a near-empty buffer after an
1171 	 *   overflow) but it's awkward that we can't clear the status
1172 	 *   on Haswell, so without a reset we won't be able to catch
1173 	 *   the state again.
1174 	 *
1175 	 * - Since it also implies the HW has started overwriting old
1176 	 *   reports it may also affect our sanity checks for invalid
1177 	 *   reports when copying to userspace that assume new reports
1178 	 *   are being written to cleared memory.
1179 	 *
1180 	 * - In the future we may want to introduce a flight recorder
1181 	 *   mode where the driver will automatically maintain a safe
1182 	 *   guard band between head/tail, avoiding this overflow
1183 	 *   condition, but we avoid the added driver complexity for
1184 	 *   now.
1185 	 */
1186 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1187 		ret = append_oa_status(stream, buf, count, offset,
1188 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1189 		if (ret)
1190 			return ret;
1191 
1192 		drm_dbg(&stream->perf->i915->drm,
1193 			"OA buffer overflow (exponent = %d): force restart\n",
1194 			stream->period_exponent);
1195 
1196 		stream->perf->ops.oa_disable(stream);
1197 		stream->perf->ops.oa_enable(stream);
1198 
1199 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1200 	}
1201 
1202 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1203 		ret = append_oa_status(stream, buf, count, offset,
1204 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1205 		if (ret)
1206 			return ret;
1207 		stream->perf->gen7_latched_oastatus1 |=
1208 			GEN7_OASTATUS1_REPORT_LOST;
1209 	}
1210 
1211 	return gen7_append_oa_reports(stream, buf, count, offset);
1212 }
1213 
1214 /**
1215  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1216  * @stream: An i915-perf stream opened for OA metrics
1217  *
1218  * Called when userspace tries to read() from a blocking stream FD opened
1219  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1220  * OA buffer and wakes us.
1221  *
1222  * Note: it's acceptable to have this return with some false positives
1223  * since any subsequent read handling will return -EAGAIN if there isn't
1224  * really data ready for userspace yet.
1225  *
1226  * Returns: zero on success or a negative error code
1227  */
1228 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1229 {
1230 	/* We would wait indefinitely if periodic sampling is not enabled */
1231 	if (!stream->periodic)
1232 		return -EIO;
1233 
1234 	return wait_event_interruptible(stream->poll_wq,
1235 					oa_buffer_check_unlocked(stream));
1236 }
1237 
1238 /**
1239  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1240  * @stream: An i915-perf stream opened for OA metrics
1241  * @file: An i915 perf stream file
1242  * @wait: poll() state table
1243  *
1244  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1245  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1246  * when it sees data ready to read in the circular OA buffer.
1247  */
1248 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1249 			      struct file *file,
1250 			      poll_table *wait)
1251 {
1252 	poll_wait(file, &stream->poll_wq, wait);
1253 }
1254 
1255 /**
1256  * i915_oa_read - just calls through to &i915_oa_ops->read
1257  * @stream: An i915-perf stream opened for OA metrics
1258  * @buf: destination buffer given by userspace
1259  * @count: the number of bytes userspace wants to read
1260  * @offset: (inout): the current position for writing into @buf
1261  *
1262  * Updates @offset according to the number of bytes successfully copied into
1263  * the userspace buffer.
1264  *
1265  * Returns: zero on success or a negative error code
1266  */
1267 static int i915_oa_read(struct i915_perf_stream *stream,
1268 			char __user *buf,
1269 			size_t count,
1270 			size_t *offset)
1271 {
1272 	return stream->perf->ops.read(stream, buf, count, offset);
1273 }
1274 
1275 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1276 {
1277 	struct i915_gem_engines_iter it;
1278 	struct i915_gem_context *ctx = stream->ctx;
1279 	struct intel_context *ce;
1280 	struct i915_gem_ww_ctx ww;
1281 	int err = -ENODEV;
1282 
1283 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1284 		if (ce->engine != stream->engine) /* first match! */
1285 			continue;
1286 
1287 		err = 0;
1288 		break;
1289 	}
1290 	i915_gem_context_unlock_engines(ctx);
1291 
1292 	if (err)
1293 		return ERR_PTR(err);
1294 
1295 	i915_gem_ww_ctx_init(&ww, true);
1296 retry:
1297 	/*
1298 	 * As the ID is the gtt offset of the context's vma we
1299 	 * pin the vma to ensure the ID remains fixed.
1300 	 */
1301 	err = intel_context_pin_ww(ce, &ww);
1302 	if (err == -EDEADLK) {
1303 		err = i915_gem_ww_ctx_backoff(&ww);
1304 		if (!err)
1305 			goto retry;
1306 	}
1307 	i915_gem_ww_ctx_fini(&ww);
1308 
1309 	if (err)
1310 		return ERR_PTR(err);
1311 
1312 	stream->pinned_ctx = ce;
1313 	return stream->pinned_ctx;
1314 }
1315 
1316 static int
1317 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset)
1318 {
1319 	u32 *cs, cmd;
1320 
1321 	cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1322 	if (GRAPHICS_VER(rq->engine->i915) >= 8)
1323 		cmd++;
1324 
1325 	cs = intel_ring_begin(rq, 4);
1326 	if (IS_ERR(cs))
1327 		return PTR_ERR(cs);
1328 
1329 	*cs++ = cmd;
1330 	*cs++ = i915_mmio_reg_offset(reg);
1331 	*cs++ = ggtt_offset;
1332 	*cs++ = 0;
1333 
1334 	intel_ring_advance(rq, cs);
1335 
1336 	return 0;
1337 }
1338 
1339 static int
1340 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset)
1341 {
1342 	struct i915_request *rq;
1343 	int err;
1344 
1345 	rq = i915_request_create(ce);
1346 	if (IS_ERR(rq))
1347 		return PTR_ERR(rq);
1348 
1349 	i915_request_get(rq);
1350 
1351 	err = __store_reg_to_mem(rq, reg, ggtt_offset);
1352 
1353 	i915_request_add(rq);
1354 	if (!err && i915_request_wait(rq, 0, HZ / 2) < 0)
1355 		err = -ETIME;
1356 
1357 	i915_request_put(rq);
1358 
1359 	return err;
1360 }
1361 
1362 static int
1363 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id)
1364 {
1365 	struct i915_vma *scratch;
1366 	u32 *val;
1367 	int err;
1368 
1369 	scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4);
1370 	if (IS_ERR(scratch))
1371 		return PTR_ERR(scratch);
1372 
1373 	err = i915_vma_sync(scratch);
1374 	if (err)
1375 		goto err_scratch;
1376 
1377 	err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base),
1378 			 i915_ggtt_offset(scratch));
1379 	if (err)
1380 		goto err_scratch;
1381 
1382 	val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB);
1383 	if (IS_ERR(val)) {
1384 		err = PTR_ERR(val);
1385 		goto err_scratch;
1386 	}
1387 
1388 	*ctx_id = *val;
1389 	i915_gem_object_unpin_map(scratch->obj);
1390 
1391 err_scratch:
1392 	i915_vma_unpin_and_release(&scratch, 0);
1393 	return err;
1394 }
1395 
1396 /*
1397  * For execlist mode of submission, pick an unused context id
1398  * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts
1399  * XXX_MAX_CONTEXT_HW_ID is used by idle context
1400  *
1401  * For GuC mode of submission read context id from the upper dword of the
1402  * EXECLIST_STATUS register. Note that we read this value only once and expect
1403  * that the value stays fixed for the entire OA use case. There are cases where
1404  * GuC KMD implementation may deregister a context to reuse it's context id, but
1405  * we prevent that from happening to the OA context by pinning it.
1406  */
1407 static int gen12_get_render_context_id(struct i915_perf_stream *stream)
1408 {
1409 	u32 ctx_id, mask;
1410 	int ret;
1411 
1412 	if (intel_engine_uses_guc(stream->engine)) {
1413 		ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id);
1414 		if (ret)
1415 			return ret;
1416 
1417 		mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) <<
1418 			(GEN12_GUC_SW_CTX_ID_SHIFT - 32);
1419 	} else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) {
1420 		ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) <<
1421 			(XEHP_SW_CTX_ID_SHIFT - 32);
1422 
1423 		mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1424 			(XEHP_SW_CTX_ID_SHIFT - 32);
1425 	} else {
1426 		ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) <<
1427 			 (GEN11_SW_CTX_ID_SHIFT - 32);
1428 
1429 		mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) <<
1430 			(GEN11_SW_CTX_ID_SHIFT - 32);
1431 	}
1432 	stream->specific_ctx_id = ctx_id & mask;
1433 	stream->specific_ctx_id_mask = mask;
1434 
1435 	return 0;
1436 }
1437 
1438 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end)
1439 {
1440 	u32 idx = *offset;
1441 	u32 len = min(MI_LRI_LEN(state[idx]) + idx, end);
1442 	bool found = false;
1443 
1444 	idx++;
1445 	for (; idx < len; idx += 2) {
1446 		if (state[idx] == reg) {
1447 			found = true;
1448 			break;
1449 		}
1450 	}
1451 
1452 	*offset = idx;
1453 	return found;
1454 }
1455 
1456 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg)
1457 {
1458 	u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4;
1459 	u32 *state = ce->lrc_reg_state;
1460 
1461 	if (drm_WARN_ON(&ce->engine->i915->drm, !state))
1462 		return U32_MAX;
1463 
1464 	for (offset = 0; offset < len; ) {
1465 		if (IS_MI_LRI_CMD(state[offset])) {
1466 			/*
1467 			 * We expect reg-value pairs in MI_LRI command, so
1468 			 * MI_LRI_LEN() should be even, if not, issue a warning.
1469 			 */
1470 			drm_WARN_ON(&ce->engine->i915->drm,
1471 				    MI_LRI_LEN(state[offset]) & 0x1);
1472 
1473 			if (oa_find_reg_in_lri(state, reg, &offset, len))
1474 				break;
1475 		} else {
1476 			offset++;
1477 		}
1478 	}
1479 
1480 	return offset < len ? offset : U32_MAX;
1481 }
1482 
1483 static int set_oa_ctx_ctrl_offset(struct intel_context *ce)
1484 {
1485 	i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base);
1486 	struct i915_perf *perf = &ce->engine->i915->perf;
1487 	u32 offset = perf->ctx_oactxctrl_offset;
1488 
1489 	/* Do this only once. Failure is stored as offset of U32_MAX */
1490 	if (offset)
1491 		goto exit;
1492 
1493 	offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg));
1494 	perf->ctx_oactxctrl_offset = offset;
1495 
1496 	drm_dbg(&ce->engine->i915->drm,
1497 		"%s oa ctx control at 0x%08x dword offset\n",
1498 		ce->engine->name, offset);
1499 
1500 exit:
1501 	return offset && offset != U32_MAX ? 0 : -ENODEV;
1502 }
1503 
1504 static bool engine_supports_mi_query(struct intel_engine_cs *engine)
1505 {
1506 	return engine->class == RENDER_CLASS;
1507 }
1508 
1509 /**
1510  * oa_get_render_ctx_id - determine and hold ctx hw id
1511  * @stream: An i915-perf stream opened for OA metrics
1512  *
1513  * Determine the render context hw id, and ensure it remains fixed for the
1514  * lifetime of the stream. This ensures that we don't have to worry about
1515  * updating the context ID in OACONTROL on the fly.
1516  *
1517  * Returns: zero on success or a negative error code
1518  */
1519 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1520 {
1521 	struct intel_context *ce;
1522 	int ret = 0;
1523 
1524 	ce = oa_pin_context(stream);
1525 	if (IS_ERR(ce))
1526 		return PTR_ERR(ce);
1527 
1528 	if (engine_supports_mi_query(stream->engine) &&
1529 	    HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) {
1530 		/*
1531 		 * We are enabling perf query here. If we don't find the context
1532 		 * offset here, just return an error.
1533 		 */
1534 		ret = set_oa_ctx_ctrl_offset(ce);
1535 		if (ret) {
1536 			intel_context_unpin(ce);
1537 			drm_err(&stream->perf->i915->drm,
1538 				"Enabling perf query failed for %s\n",
1539 				stream->engine->name);
1540 			return ret;
1541 		}
1542 	}
1543 
1544 	switch (GRAPHICS_VER(ce->engine->i915)) {
1545 	case 7: {
1546 		/*
1547 		 * On Haswell we don't do any post processing of the reports
1548 		 * and don't need to use the mask.
1549 		 */
1550 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1551 		stream->specific_ctx_id_mask = 0;
1552 		break;
1553 	}
1554 
1555 	case 8:
1556 	case 9:
1557 		if (intel_engine_uses_guc(ce->engine)) {
1558 			/*
1559 			 * When using GuC, the context descriptor we write in
1560 			 * i915 is read by GuC and rewritten before it's
1561 			 * actually written into the hardware. The LRCA is
1562 			 * what is put into the context id field of the
1563 			 * context descriptor by GuC. Because it's aligned to
1564 			 * a page, the lower 12bits are always at 0 and
1565 			 * dropped by GuC. They won't be part of the context
1566 			 * ID in the OA reports, so squash those lower bits.
1567 			 */
1568 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1569 
1570 			/*
1571 			 * GuC uses the top bit to signal proxy submission, so
1572 			 * ignore that bit.
1573 			 */
1574 			stream->specific_ctx_id_mask =
1575 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1576 		} else {
1577 			stream->specific_ctx_id_mask =
1578 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1579 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1580 		}
1581 		break;
1582 
1583 	case 11:
1584 	case 12:
1585 		ret = gen12_get_render_context_id(stream);
1586 		break;
1587 
1588 	default:
1589 		MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1590 	}
1591 
1592 	ce->tag = stream->specific_ctx_id;
1593 
1594 	drm_dbg(&stream->perf->i915->drm,
1595 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1596 		stream->specific_ctx_id,
1597 		stream->specific_ctx_id_mask);
1598 
1599 	return ret;
1600 }
1601 
1602 /**
1603  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1604  * @stream: An i915-perf stream opened for OA metrics
1605  *
1606  * In case anything needed doing to ensure the context HW ID would remain valid
1607  * for the lifetime of the stream, then that can be undone here.
1608  */
1609 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1610 {
1611 	struct intel_context *ce;
1612 
1613 	ce = fetch_and_zero(&stream->pinned_ctx);
1614 	if (ce) {
1615 		ce->tag = 0; /* recomputed on next submission after parking */
1616 		intel_context_unpin(ce);
1617 	}
1618 
1619 	stream->specific_ctx_id = INVALID_CTX_ID;
1620 	stream->specific_ctx_id_mask = 0;
1621 }
1622 
1623 static void
1624 free_oa_buffer(struct i915_perf_stream *stream)
1625 {
1626 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1627 				   I915_VMA_RELEASE_MAP);
1628 
1629 	stream->oa_buffer.vaddr = NULL;
1630 }
1631 
1632 static void
1633 free_oa_configs(struct i915_perf_stream *stream)
1634 {
1635 	struct i915_oa_config_bo *oa_bo, *tmp;
1636 
1637 	i915_oa_config_put(stream->oa_config);
1638 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1639 		free_oa_config_bo(oa_bo);
1640 }
1641 
1642 static void
1643 free_noa_wait(struct i915_perf_stream *stream)
1644 {
1645 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1646 }
1647 
1648 static bool engine_supports_oa(const struct intel_engine_cs *engine)
1649 {
1650 	return engine->oa_group;
1651 }
1652 
1653 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type)
1654 {
1655 	return engine->oa_group && engine->oa_group->type == type;
1656 }
1657 
1658 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1659 {
1660 	struct i915_perf *perf = stream->perf;
1661 	struct intel_gt *gt = stream->engine->gt;
1662 	struct i915_perf_group *g = stream->engine->oa_group;
1663 
1664 	if (WARN_ON(stream != g->exclusive_stream))
1665 		return;
1666 
1667 	/*
1668 	 * Unset exclusive_stream first, it will be checked while disabling
1669 	 * the metric set on gen8+.
1670 	 *
1671 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1672 	 */
1673 	WRITE_ONCE(g->exclusive_stream, NULL);
1674 	perf->ops.disable_metric_set(stream);
1675 
1676 	free_oa_buffer(stream);
1677 
1678 	/*
1679 	 * Wa_16011777198:dg2: Unset the override of GUCRC mode to enable rc6.
1680 	 */
1681 	if (stream->override_gucrc)
1682 		drm_WARN_ON(&gt->i915->drm,
1683 			    intel_guc_slpc_unset_gucrc_mode(&gt->uc.guc.slpc));
1684 
1685 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1686 	intel_engine_pm_put(stream->engine);
1687 
1688 	if (stream->ctx)
1689 		oa_put_render_ctx_id(stream);
1690 
1691 	free_oa_configs(stream);
1692 	free_noa_wait(stream);
1693 
1694 	if (perf->spurious_report_rs.missed) {
1695 		drm_notice(&gt->i915->drm,
1696 			   "%d spurious OA report notices suppressed due to ratelimiting\n",
1697 			   perf->spurious_report_rs.missed);
1698 	}
1699 }
1700 
1701 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1702 {
1703 	struct intel_uncore *uncore = stream->uncore;
1704 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1705 	unsigned long flags;
1706 
1707 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1708 
1709 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1710 	 * before OASTATUS1, but after OASTATUS2
1711 	 */
1712 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1713 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1714 	stream->oa_buffer.head = gtt_offset;
1715 
1716 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1717 
1718 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1719 			   gtt_offset | OABUFFER_SIZE_16M);
1720 
1721 	/* Mark that we need updated tail pointers to read from... */
1722 	stream->oa_buffer.tail = gtt_offset;
1723 
1724 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1725 
1726 	/* On Haswell we have to track which OASTATUS1 flags we've
1727 	 * already seen since they can't be cleared while periodic
1728 	 * sampling is enabled.
1729 	 */
1730 	stream->perf->gen7_latched_oastatus1 = 0;
1731 
1732 	/* NB: although the OA buffer will initially be allocated
1733 	 * zeroed via shmfs (and so this memset is redundant when
1734 	 * first allocating), we may re-init the OA buffer, either
1735 	 * when re-enabling a stream or in error/reset paths.
1736 	 *
1737 	 * The reason we clear the buffer for each re-init is for the
1738 	 * sanity check in gen7_append_oa_reports() that looks at the
1739 	 * report-id field to make sure it's non-zero which relies on
1740 	 * the assumption that new reports are being written to zeroed
1741 	 * memory...
1742 	 */
1743 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1744 }
1745 
1746 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1747 {
1748 	struct intel_uncore *uncore = stream->uncore;
1749 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1750 	unsigned long flags;
1751 
1752 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1753 
1754 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1755 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1756 	stream->oa_buffer.head = gtt_offset;
1757 
1758 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1759 
1760 	/*
1761 	 * PRM says:
1762 	 *
1763 	 *  "This MMIO must be set before the OATAILPTR
1764 	 *  register and after the OAHEADPTR register. This is
1765 	 *  to enable proper functionality of the overflow
1766 	 *  bit."
1767 	 */
1768 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1769 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1770 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1771 
1772 	/* Mark that we need updated tail pointers to read from... */
1773 	stream->oa_buffer.tail = gtt_offset;
1774 
1775 	/*
1776 	 * Reset state used to recognise context switches, affecting which
1777 	 * reports we will forward to userspace while filtering for a single
1778 	 * context.
1779 	 */
1780 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1781 
1782 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1783 
1784 	/*
1785 	 * NB: although the OA buffer will initially be allocated
1786 	 * zeroed via shmfs (and so this memset is redundant when
1787 	 * first allocating), we may re-init the OA buffer, either
1788 	 * when re-enabling a stream or in error/reset paths.
1789 	 *
1790 	 * The reason we clear the buffer for each re-init is for the
1791 	 * sanity check in gen8_append_oa_reports() that looks at the
1792 	 * reason field to make sure it's non-zero which relies on
1793 	 * the assumption that new reports are being written to zeroed
1794 	 * memory...
1795 	 */
1796 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1797 }
1798 
1799 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1800 {
1801 	struct intel_uncore *uncore = stream->uncore;
1802 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1803 	unsigned long flags;
1804 
1805 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1806 
1807 	intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0);
1808 	intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr,
1809 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1810 	stream->oa_buffer.head = gtt_offset;
1811 
1812 	/*
1813 	 * PRM says:
1814 	 *
1815 	 *  "This MMIO must be set before the OATAILPTR
1816 	 *  register and after the OAHEADPTR register. This is
1817 	 *  to enable proper functionality of the overflow
1818 	 *  bit."
1819 	 */
1820 	intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset |
1821 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1822 	intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr,
1823 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1824 
1825 	/* Mark that we need updated tail pointers to read from... */
1826 	stream->oa_buffer.tail = gtt_offset;
1827 
1828 	/*
1829 	 * Reset state used to recognise context switches, affecting which
1830 	 * reports we will forward to userspace while filtering for a single
1831 	 * context.
1832 	 */
1833 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1834 
1835 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1836 
1837 	/*
1838 	 * NB: although the OA buffer will initially be allocated
1839 	 * zeroed via shmfs (and so this memset is redundant when
1840 	 * first allocating), we may re-init the OA buffer, either
1841 	 * when re-enabling a stream or in error/reset paths.
1842 	 *
1843 	 * The reason we clear the buffer for each re-init is for the
1844 	 * sanity check in gen8_append_oa_reports() that looks at the
1845 	 * reason field to make sure it's non-zero which relies on
1846 	 * the assumption that new reports are being written to zeroed
1847 	 * memory...
1848 	 */
1849 	memset(stream->oa_buffer.vaddr, 0,
1850 	       stream->oa_buffer.vma->size);
1851 }
1852 
1853 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1854 {
1855 	struct drm_i915_private *i915 = stream->perf->i915;
1856 	struct intel_gt *gt = stream->engine->gt;
1857 	struct drm_i915_gem_object *bo;
1858 	struct i915_vma *vma;
1859 	int ret;
1860 
1861 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1862 		return -ENODEV;
1863 
1864 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1865 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1866 
1867 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1868 	if (IS_ERR(bo)) {
1869 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1870 		return PTR_ERR(bo);
1871 	}
1872 
1873 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1874 
1875 	/* PreHSW required 512K alignment, HSW requires 16M */
1876 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1877 	if (IS_ERR(vma)) {
1878 		ret = PTR_ERR(vma);
1879 		goto err_unref;
1880 	}
1881 
1882 	/*
1883 	 * PreHSW required 512K alignment.
1884 	 * HSW and onwards, align to requested size of OA buffer.
1885 	 */
1886 	ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH);
1887 	if (ret) {
1888 		drm_err(&gt->i915->drm, "Failed to pin OA buffer %d\n", ret);
1889 		goto err_unref;
1890 	}
1891 
1892 	stream->oa_buffer.vma = vma;
1893 
1894 	stream->oa_buffer.vaddr =
1895 		i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1896 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1897 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1898 		goto err_unpin;
1899 	}
1900 
1901 	return 0;
1902 
1903 err_unpin:
1904 	__i915_vma_unpin(vma);
1905 
1906 err_unref:
1907 	i915_gem_object_put(bo);
1908 
1909 	stream->oa_buffer.vaddr = NULL;
1910 	stream->oa_buffer.vma = NULL;
1911 
1912 	return ret;
1913 }
1914 
1915 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1916 				  bool save, i915_reg_t reg, u32 offset,
1917 				  u32 dword_count)
1918 {
1919 	u32 cmd;
1920 	u32 d;
1921 
1922 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1923 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1924 	if (GRAPHICS_VER(stream->perf->i915) >= 8)
1925 		cmd++;
1926 
1927 	for (d = 0; d < dword_count; d++) {
1928 		*cs++ = cmd;
1929 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1930 		*cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d;
1931 		*cs++ = 0;
1932 	}
1933 
1934 	return cs;
1935 }
1936 
1937 static int alloc_noa_wait(struct i915_perf_stream *stream)
1938 {
1939 	struct drm_i915_private *i915 = stream->perf->i915;
1940 	struct intel_gt *gt = stream->engine->gt;
1941 	struct drm_i915_gem_object *bo;
1942 	struct i915_vma *vma;
1943 	const u64 delay_ticks = 0xffffffffffffffff -
1944 		intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1945 		atomic64_read(&stream->perf->noa_programming_delay));
1946 	const u32 base = stream->engine->mmio_base;
1947 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1948 	u32 *batch, *ts0, *cs, *jump;
1949 	struct i915_gem_ww_ctx ww;
1950 	int ret, i;
1951 	enum {
1952 		START_TS,
1953 		NOW_TS,
1954 		DELTA_TS,
1955 		JUMP_PREDICATE,
1956 		DELTA_TARGET,
1957 		N_CS_GPR
1958 	};
1959 	i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ?
1960 					  MI_PREDICATE_RESULT_2_ENGINE(base) :
1961 					  MI_PREDICATE_RESULT_1(RENDER_RING_BASE);
1962 
1963 	/*
1964 	 * gt->scratch was being used to save/restore the GPR registers, but on
1965 	 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region
1966 	 * causes an engine hang. Instead allocate an additional page here to
1967 	 * save/restore GPR registers
1968 	 */
1969 	bo = i915_gem_object_create_internal(i915, 8192);
1970 	if (IS_ERR(bo)) {
1971 		drm_err(&i915->drm,
1972 			"Failed to allocate NOA wait batchbuffer\n");
1973 		return PTR_ERR(bo);
1974 	}
1975 
1976 	i915_gem_ww_ctx_init(&ww, true);
1977 retry:
1978 	ret = i915_gem_object_lock(bo, &ww);
1979 	if (ret)
1980 		goto out_ww;
1981 
1982 	/*
1983 	 * We pin in GGTT because we jump into this buffer now because
1984 	 * multiple OA config BOs will have a jump to this address and it
1985 	 * needs to be fixed during the lifetime of the i915/perf stream.
1986 	 */
1987 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1988 	if (IS_ERR(vma)) {
1989 		ret = PTR_ERR(vma);
1990 		goto out_ww;
1991 	}
1992 
1993 	ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1994 	if (ret)
1995 		goto out_ww;
1996 
1997 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1998 	if (IS_ERR(batch)) {
1999 		ret = PTR_ERR(batch);
2000 		goto err_unpin;
2001 	}
2002 
2003 	stream->noa_wait = vma;
2004 
2005 #define GPR_SAVE_OFFSET 4096
2006 #define PREDICATE_SAVE_OFFSET 4160
2007 
2008 	/* Save registers. */
2009 	for (i = 0; i < N_CS_GPR; i++)
2010 		cs = save_restore_register(
2011 			stream, cs, true /* save */, CS_GPR(i),
2012 			GPR_SAVE_OFFSET + 8 * i, 2);
2013 	cs = save_restore_register(
2014 		stream, cs, true /* save */, mi_predicate_result,
2015 		PREDICATE_SAVE_OFFSET, 1);
2016 
2017 	/* First timestamp snapshot location. */
2018 	ts0 = cs;
2019 
2020 	/*
2021 	 * Initial snapshot of the timestamp register to implement the wait.
2022 	 * We work with 32b values, so clear out the top 32b bits of the
2023 	 * register because the ALU works 64bits.
2024 	 */
2025 	*cs++ = MI_LOAD_REGISTER_IMM(1);
2026 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
2027 	*cs++ = 0;
2028 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2029 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2030 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
2031 
2032 	/*
2033 	 * This is the location we're going to jump back into until the
2034 	 * required amount of time has passed.
2035 	 */
2036 	jump = cs;
2037 
2038 	/*
2039 	 * Take another snapshot of the timestamp register. Take care to clear
2040 	 * up the top 32bits of CS_GPR(1) as we're using it for other
2041 	 * operations below.
2042 	 */
2043 	*cs++ = MI_LOAD_REGISTER_IMM(1);
2044 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
2045 	*cs++ = 0;
2046 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2047 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2048 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
2049 
2050 	/*
2051 	 * Do a diff between the 2 timestamps and store the result back into
2052 	 * CS_GPR(1).
2053 	 */
2054 	*cs++ = MI_MATH(5);
2055 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
2056 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
2057 	*cs++ = MI_MATH_SUB;
2058 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
2059 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2060 
2061 	/*
2062 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
2063 	 * timestamp have rolled over the 32bits) into the predicate register
2064 	 * to be used for the predicated jump.
2065 	 */
2066 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2067 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2068 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2069 
2070 	if (HAS_MI_SET_PREDICATE(i915))
2071 		*cs++ = MI_SET_PREDICATE | 1;
2072 
2073 	/* Restart from the beginning if we had timestamps roll over. */
2074 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2075 		 MI_BATCH_BUFFER_START :
2076 		 MI_BATCH_BUFFER_START_GEN8) |
2077 		MI_BATCH_PREDICATE;
2078 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
2079 	*cs++ = 0;
2080 
2081 	if (HAS_MI_SET_PREDICATE(i915))
2082 		*cs++ = MI_SET_PREDICATE;
2083 
2084 	/*
2085 	 * Now add the diff between to previous timestamps and add it to :
2086 	 *      (((1 * << 64) - 1) - delay_ns)
2087 	 *
2088 	 * When the Carry Flag contains 1 this means the elapsed time is
2089 	 * longer than the expected delay, and we can exit the wait loop.
2090 	 */
2091 	*cs++ = MI_LOAD_REGISTER_IMM(2);
2092 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
2093 	*cs++ = lower_32_bits(delay_ticks);
2094 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
2095 	*cs++ = upper_32_bits(delay_ticks);
2096 
2097 	*cs++ = MI_MATH(4);
2098 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
2099 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
2100 	*cs++ = MI_MATH_ADD;
2101 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2102 
2103 	*cs++ = MI_ARB_CHECK;
2104 
2105 	/*
2106 	 * Transfer the result into the predicate register to be used for the
2107 	 * predicated jump.
2108 	 */
2109 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2110 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2111 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2112 
2113 	if (HAS_MI_SET_PREDICATE(i915))
2114 		*cs++ = MI_SET_PREDICATE | 1;
2115 
2116 	/* Predicate the jump.  */
2117 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2118 		 MI_BATCH_BUFFER_START :
2119 		 MI_BATCH_BUFFER_START_GEN8) |
2120 		MI_BATCH_PREDICATE;
2121 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
2122 	*cs++ = 0;
2123 
2124 	if (HAS_MI_SET_PREDICATE(i915))
2125 		*cs++ = MI_SET_PREDICATE;
2126 
2127 	/* Restore registers. */
2128 	for (i = 0; i < N_CS_GPR; i++)
2129 		cs = save_restore_register(
2130 			stream, cs, false /* restore */, CS_GPR(i),
2131 			GPR_SAVE_OFFSET + 8 * i, 2);
2132 	cs = save_restore_register(
2133 		stream, cs, false /* restore */, mi_predicate_result,
2134 		PREDICATE_SAVE_OFFSET, 1);
2135 
2136 	/* And return to the ring. */
2137 	*cs++ = MI_BATCH_BUFFER_END;
2138 
2139 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
2140 
2141 	i915_gem_object_flush_map(bo);
2142 	__i915_gem_object_release_map(bo);
2143 
2144 	goto out_ww;
2145 
2146 err_unpin:
2147 	i915_vma_unpin_and_release(&vma, 0);
2148 out_ww:
2149 	if (ret == -EDEADLK) {
2150 		ret = i915_gem_ww_ctx_backoff(&ww);
2151 		if (!ret)
2152 			goto retry;
2153 	}
2154 	i915_gem_ww_ctx_fini(&ww);
2155 	if (ret)
2156 		i915_gem_object_put(bo);
2157 	return ret;
2158 }
2159 
2160 static u32 *write_cs_mi_lri(u32 *cs,
2161 			    const struct i915_oa_reg *reg_data,
2162 			    u32 n_regs)
2163 {
2164 	u32 i;
2165 
2166 	for (i = 0; i < n_regs; i++) {
2167 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
2168 			u32 n_lri = min_t(u32,
2169 					  n_regs - i,
2170 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
2171 
2172 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
2173 		}
2174 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
2175 		*cs++ = reg_data[i].value;
2176 	}
2177 
2178 	return cs;
2179 }
2180 
2181 static int num_lri_dwords(int num_regs)
2182 {
2183 	int count = 0;
2184 
2185 	if (num_regs > 0) {
2186 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
2187 		count += num_regs * 2;
2188 	}
2189 
2190 	return count;
2191 }
2192 
2193 static struct i915_oa_config_bo *
2194 alloc_oa_config_buffer(struct i915_perf_stream *stream,
2195 		       struct i915_oa_config *oa_config)
2196 {
2197 	struct drm_i915_gem_object *obj;
2198 	struct i915_oa_config_bo *oa_bo;
2199 	struct i915_gem_ww_ctx ww;
2200 	size_t config_length = 0;
2201 	u32 *cs;
2202 	int err;
2203 
2204 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
2205 	if (!oa_bo)
2206 		return ERR_PTR(-ENOMEM);
2207 
2208 	config_length += num_lri_dwords(oa_config->mux_regs_len);
2209 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
2210 	config_length += num_lri_dwords(oa_config->flex_regs_len);
2211 	config_length += 3; /* MI_BATCH_BUFFER_START */
2212 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
2213 
2214 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
2215 	if (IS_ERR(obj)) {
2216 		err = PTR_ERR(obj);
2217 		goto err_free;
2218 	}
2219 
2220 	i915_gem_ww_ctx_init(&ww, true);
2221 retry:
2222 	err = i915_gem_object_lock(obj, &ww);
2223 	if (err)
2224 		goto out_ww;
2225 
2226 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
2227 	if (IS_ERR(cs)) {
2228 		err = PTR_ERR(cs);
2229 		goto out_ww;
2230 	}
2231 
2232 	cs = write_cs_mi_lri(cs,
2233 			     oa_config->mux_regs,
2234 			     oa_config->mux_regs_len);
2235 	cs = write_cs_mi_lri(cs,
2236 			     oa_config->b_counter_regs,
2237 			     oa_config->b_counter_regs_len);
2238 	cs = write_cs_mi_lri(cs,
2239 			     oa_config->flex_regs,
2240 			     oa_config->flex_regs_len);
2241 
2242 	/* Jump into the active wait. */
2243 	*cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
2244 		 MI_BATCH_BUFFER_START :
2245 		 MI_BATCH_BUFFER_START_GEN8);
2246 	*cs++ = i915_ggtt_offset(stream->noa_wait);
2247 	*cs++ = 0;
2248 
2249 	i915_gem_object_flush_map(obj);
2250 	__i915_gem_object_release_map(obj);
2251 
2252 	oa_bo->vma = i915_vma_instance(obj,
2253 				       &stream->engine->gt->ggtt->vm,
2254 				       NULL);
2255 	if (IS_ERR(oa_bo->vma)) {
2256 		err = PTR_ERR(oa_bo->vma);
2257 		goto out_ww;
2258 	}
2259 
2260 	oa_bo->oa_config = i915_oa_config_get(oa_config);
2261 	llist_add(&oa_bo->node, &stream->oa_config_bos);
2262 
2263 out_ww:
2264 	if (err == -EDEADLK) {
2265 		err = i915_gem_ww_ctx_backoff(&ww);
2266 		if (!err)
2267 			goto retry;
2268 	}
2269 	i915_gem_ww_ctx_fini(&ww);
2270 
2271 	if (err)
2272 		i915_gem_object_put(obj);
2273 err_free:
2274 	if (err) {
2275 		kfree(oa_bo);
2276 		return ERR_PTR(err);
2277 	}
2278 	return oa_bo;
2279 }
2280 
2281 static struct i915_vma *
2282 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
2283 {
2284 	struct i915_oa_config_bo *oa_bo;
2285 
2286 	/*
2287 	 * Look for the buffer in the already allocated BOs attached
2288 	 * to the stream.
2289 	 */
2290 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
2291 		if (oa_bo->oa_config == oa_config &&
2292 		    memcmp(oa_bo->oa_config->uuid,
2293 			   oa_config->uuid,
2294 			   sizeof(oa_config->uuid)) == 0)
2295 			goto out;
2296 	}
2297 
2298 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
2299 	if (IS_ERR(oa_bo))
2300 		return ERR_CAST(oa_bo);
2301 
2302 out:
2303 	return i915_vma_get(oa_bo->vma);
2304 }
2305 
2306 static int
2307 emit_oa_config(struct i915_perf_stream *stream,
2308 	       struct i915_oa_config *oa_config,
2309 	       struct intel_context *ce,
2310 	       struct i915_active *active)
2311 {
2312 	struct i915_request *rq;
2313 	struct i915_vma *vma;
2314 	struct i915_gem_ww_ctx ww;
2315 	int err;
2316 
2317 	vma = get_oa_vma(stream, oa_config);
2318 	if (IS_ERR(vma))
2319 		return PTR_ERR(vma);
2320 
2321 	i915_gem_ww_ctx_init(&ww, true);
2322 retry:
2323 	err = i915_gem_object_lock(vma->obj, &ww);
2324 	if (err)
2325 		goto err;
2326 
2327 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
2328 	if (err)
2329 		goto err;
2330 
2331 	intel_engine_pm_get(ce->engine);
2332 	rq = i915_request_create(ce);
2333 	intel_engine_pm_put(ce->engine);
2334 	if (IS_ERR(rq)) {
2335 		err = PTR_ERR(rq);
2336 		goto err_vma_unpin;
2337 	}
2338 
2339 	if (!IS_ERR_OR_NULL(active)) {
2340 		/* After all individual context modifications */
2341 		err = i915_request_await_active(rq, active,
2342 						I915_ACTIVE_AWAIT_ACTIVE);
2343 		if (err)
2344 			goto err_add_request;
2345 
2346 		err = i915_active_add_request(active, rq);
2347 		if (err)
2348 			goto err_add_request;
2349 	}
2350 
2351 	err = i915_vma_move_to_active(vma, rq, 0);
2352 	if (err)
2353 		goto err_add_request;
2354 
2355 	err = rq->engine->emit_bb_start(rq,
2356 					i915_vma_offset(vma), 0,
2357 					I915_DISPATCH_SECURE);
2358 	if (err)
2359 		goto err_add_request;
2360 
2361 err_add_request:
2362 	i915_request_add(rq);
2363 err_vma_unpin:
2364 	i915_vma_unpin(vma);
2365 err:
2366 	if (err == -EDEADLK) {
2367 		err = i915_gem_ww_ctx_backoff(&ww);
2368 		if (!err)
2369 			goto retry;
2370 	}
2371 
2372 	i915_gem_ww_ctx_fini(&ww);
2373 	i915_vma_put(vma);
2374 	return err;
2375 }
2376 
2377 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2378 {
2379 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2380 }
2381 
2382 static int
2383 hsw_enable_metric_set(struct i915_perf_stream *stream,
2384 		      struct i915_active *active)
2385 {
2386 	struct intel_uncore *uncore = stream->uncore;
2387 
2388 	/*
2389 	 * PRM:
2390 	 *
2391 	 * OA unit is using “crclk” for its functionality. When trunk
2392 	 * level clock gating takes place, OA clock would be gated,
2393 	 * unable to count the events from non-render clock domain.
2394 	 * Render clock gating must be disabled when OA is enabled to
2395 	 * count the events from non-render domain. Unit level clock
2396 	 * gating for RCS should also be disabled.
2397 	 */
2398 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2399 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2400 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2401 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2402 
2403 	return emit_oa_config(stream,
2404 			      stream->oa_config, oa_context(stream),
2405 			      active);
2406 }
2407 
2408 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2409 {
2410 	struct intel_uncore *uncore = stream->uncore;
2411 
2412 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2413 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2414 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2415 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2416 
2417 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2418 }
2419 
2420 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2421 			      i915_reg_t reg)
2422 {
2423 	u32 mmio = i915_mmio_reg_offset(reg);
2424 	int i;
2425 
2426 	/*
2427 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2428 	 * Active' event. In the future it's anticipated that there
2429 	 * will be an explicit 'No Event' we can select, but not yet...
2430 	 */
2431 	if (!oa_config)
2432 		return 0;
2433 
2434 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2435 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2436 			return oa_config->flex_regs[i].value;
2437 	}
2438 
2439 	return 0;
2440 }
2441 /*
2442  * NB: It must always remain pointer safe to run this even if the OA unit
2443  * has been disabled.
2444  *
2445  * It's fine to put out-of-date values into these per-context registers
2446  * in the case that the OA unit has been disabled.
2447  */
2448 static void
2449 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2450 			       const struct i915_perf_stream *stream)
2451 {
2452 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2453 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2454 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2455 	static const i915_reg_t flex_regs[] = {
2456 		EU_PERF_CNTL0,
2457 		EU_PERF_CNTL1,
2458 		EU_PERF_CNTL2,
2459 		EU_PERF_CNTL3,
2460 		EU_PERF_CNTL4,
2461 		EU_PERF_CNTL5,
2462 		EU_PERF_CNTL6,
2463 	};
2464 	u32 *reg_state = ce->lrc_reg_state;
2465 	int i;
2466 
2467 	reg_state[ctx_oactxctrl + 1] =
2468 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2469 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2470 		GEN8_OA_COUNTER_RESUME;
2471 
2472 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2473 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2474 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2475 }
2476 
2477 struct flex {
2478 	i915_reg_t reg;
2479 	u32 offset;
2480 	u32 value;
2481 };
2482 
2483 static int
2484 gen8_store_flex(struct i915_request *rq,
2485 		struct intel_context *ce,
2486 		const struct flex *flex, unsigned int count)
2487 {
2488 	u32 offset;
2489 	u32 *cs;
2490 
2491 	cs = intel_ring_begin(rq, 4 * count);
2492 	if (IS_ERR(cs))
2493 		return PTR_ERR(cs);
2494 
2495 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2496 	do {
2497 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2498 		*cs++ = offset + flex->offset * sizeof(u32);
2499 		*cs++ = 0;
2500 		*cs++ = flex->value;
2501 	} while (flex++, --count);
2502 
2503 	intel_ring_advance(rq, cs);
2504 
2505 	return 0;
2506 }
2507 
2508 static int
2509 gen8_load_flex(struct i915_request *rq,
2510 	       struct intel_context *ce,
2511 	       const struct flex *flex, unsigned int count)
2512 {
2513 	u32 *cs;
2514 
2515 	GEM_BUG_ON(!count || count > 63);
2516 
2517 	cs = intel_ring_begin(rq, 2 * count + 2);
2518 	if (IS_ERR(cs))
2519 		return PTR_ERR(cs);
2520 
2521 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2522 	do {
2523 		*cs++ = i915_mmio_reg_offset(flex->reg);
2524 		*cs++ = flex->value;
2525 	} while (flex++, --count);
2526 	*cs++ = MI_NOOP;
2527 
2528 	intel_ring_advance(rq, cs);
2529 
2530 	return 0;
2531 }
2532 
2533 static int gen8_modify_context(struct intel_context *ce,
2534 			       const struct flex *flex, unsigned int count)
2535 {
2536 	struct i915_request *rq;
2537 	int err;
2538 
2539 	rq = intel_engine_create_kernel_request(ce->engine);
2540 	if (IS_ERR(rq))
2541 		return PTR_ERR(rq);
2542 
2543 	/* Serialise with the remote context */
2544 	err = intel_context_prepare_remote_request(ce, rq);
2545 	if (err == 0)
2546 		err = gen8_store_flex(rq, ce, flex, count);
2547 
2548 	i915_request_add(rq);
2549 	return err;
2550 }
2551 
2552 static int
2553 gen8_modify_self(struct intel_context *ce,
2554 		 const struct flex *flex, unsigned int count,
2555 		 struct i915_active *active)
2556 {
2557 	struct i915_request *rq;
2558 	int err;
2559 
2560 	intel_engine_pm_get(ce->engine);
2561 	rq = i915_request_create(ce);
2562 	intel_engine_pm_put(ce->engine);
2563 	if (IS_ERR(rq))
2564 		return PTR_ERR(rq);
2565 
2566 	if (!IS_ERR_OR_NULL(active)) {
2567 		err = i915_active_add_request(active, rq);
2568 		if (err)
2569 			goto err_add_request;
2570 	}
2571 
2572 	err = gen8_load_flex(rq, ce, flex, count);
2573 	if (err)
2574 		goto err_add_request;
2575 
2576 err_add_request:
2577 	i915_request_add(rq);
2578 	return err;
2579 }
2580 
2581 static int gen8_configure_context(struct i915_perf_stream *stream,
2582 				  struct i915_gem_context *ctx,
2583 				  struct flex *flex, unsigned int count)
2584 {
2585 	struct i915_gem_engines_iter it;
2586 	struct intel_context *ce;
2587 	int err = 0;
2588 
2589 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2590 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2591 
2592 		if (ce->engine->class != RENDER_CLASS)
2593 			continue;
2594 
2595 		/* Otherwise OA settings will be set upon first use */
2596 		if (!intel_context_pin_if_active(ce))
2597 			continue;
2598 
2599 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2600 		err = gen8_modify_context(ce, flex, count);
2601 
2602 		intel_context_unpin(ce);
2603 		if (err)
2604 			break;
2605 	}
2606 	i915_gem_context_unlock_engines(ctx);
2607 
2608 	return err;
2609 }
2610 
2611 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2612 				       struct i915_active *active)
2613 {
2614 	int err;
2615 	struct intel_context *ce = stream->pinned_ctx;
2616 	u32 format = stream->oa_buffer.format->format;
2617 	u32 offset = stream->perf->ctx_oactxctrl_offset;
2618 	struct flex regs_context[] = {
2619 		{
2620 			GEN8_OACTXCONTROL,
2621 			offset + 1,
2622 			active ? GEN8_OA_COUNTER_RESUME : 0,
2623 		},
2624 	};
2625 	/* Offsets in regs_lri are not used since this configuration is only
2626 	 * applied using LRI. Initialize the correct offsets for posterity.
2627 	 */
2628 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2629 	struct flex regs_lri[] = {
2630 		{
2631 			GEN12_OAR_OACONTROL,
2632 			GEN12_OAR_OACONTROL_OFFSET + 1,
2633 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2634 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2635 		},
2636 		{
2637 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2638 			CTX_CONTEXT_CONTROL,
2639 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2640 				      active ?
2641 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2642 				      0)
2643 		},
2644 	};
2645 
2646 	/* Modify the context image of pinned context with regs_context */
2647 	err = intel_context_lock_pinned(ce);
2648 	if (err)
2649 		return err;
2650 
2651 	err = gen8_modify_context(ce, regs_context,
2652 				  ARRAY_SIZE(regs_context));
2653 	intel_context_unlock_pinned(ce);
2654 	if (err)
2655 		return err;
2656 
2657 	/* Apply regs_lri using LRI with pinned context */
2658 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2659 }
2660 
2661 /*
2662  * Manages updating the per-context aspects of the OA stream
2663  * configuration across all contexts.
2664  *
2665  * The awkward consideration here is that OACTXCONTROL controls the
2666  * exponent for periodic sampling which is primarily used for system
2667  * wide profiling where we'd like a consistent sampling period even in
2668  * the face of context switches.
2669  *
2670  * Our approach of updating the register state context (as opposed to
2671  * say using a workaround batch buffer) ensures that the hardware
2672  * won't automatically reload an out-of-date timer exponent even
2673  * transiently before a WA BB could be parsed.
2674  *
2675  * This function needs to:
2676  * - Ensure the currently running context's per-context OA state is
2677  *   updated
2678  * - Ensure that all existing contexts will have the correct per-context
2679  *   OA state if they are scheduled for use.
2680  * - Ensure any new contexts will be initialized with the correct
2681  *   per-context OA state.
2682  *
2683  * Note: it's only the RCS/Render context that has any OA state.
2684  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2685  */
2686 static int
2687 oa_configure_all_contexts(struct i915_perf_stream *stream,
2688 			  struct flex *regs,
2689 			  size_t num_regs,
2690 			  struct i915_active *active)
2691 {
2692 	struct drm_i915_private *i915 = stream->perf->i915;
2693 	struct intel_engine_cs *engine;
2694 	struct intel_gt *gt = stream->engine->gt;
2695 	struct i915_gem_context *ctx, *cn;
2696 	int err;
2697 
2698 	lockdep_assert_held(&gt->perf.lock);
2699 
2700 	/*
2701 	 * The OA register config is setup through the context image. This image
2702 	 * might be written to by the GPU on context switch (in particular on
2703 	 * lite-restore). This means we can't safely update a context's image,
2704 	 * if this context is scheduled/submitted to run on the GPU.
2705 	 *
2706 	 * We could emit the OA register config through the batch buffer but
2707 	 * this might leave small interval of time where the OA unit is
2708 	 * configured at an invalid sampling period.
2709 	 *
2710 	 * Note that since we emit all requests from a single ring, there
2711 	 * is still an implicit global barrier here that may cause a high
2712 	 * priority context to wait for an otherwise independent low priority
2713 	 * context. Contexts idle at the time of reconfiguration are not
2714 	 * trapped behind the barrier.
2715 	 */
2716 	spin_lock(&i915->gem.contexts.lock);
2717 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2718 		if (!kref_get_unless_zero(&ctx->ref))
2719 			continue;
2720 
2721 		spin_unlock(&i915->gem.contexts.lock);
2722 
2723 		err = gen8_configure_context(stream, ctx, regs, num_regs);
2724 		if (err) {
2725 			i915_gem_context_put(ctx);
2726 			return err;
2727 		}
2728 
2729 		spin_lock(&i915->gem.contexts.lock);
2730 		list_safe_reset_next(ctx, cn, link);
2731 		i915_gem_context_put(ctx);
2732 	}
2733 	spin_unlock(&i915->gem.contexts.lock);
2734 
2735 	/*
2736 	 * After updating all other contexts, we need to modify ourselves.
2737 	 * If we don't modify the kernel_context, we do not get events while
2738 	 * idle.
2739 	 */
2740 	for_each_uabi_engine(engine, i915) {
2741 		struct intel_context *ce = engine->kernel_context;
2742 
2743 		if (engine->class != RENDER_CLASS)
2744 			continue;
2745 
2746 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2747 
2748 		err = gen8_modify_self(ce, regs, num_regs, active);
2749 		if (err)
2750 			return err;
2751 	}
2752 
2753 	return 0;
2754 }
2755 
2756 static int
2757 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2758 			     const struct i915_oa_config *oa_config,
2759 			     struct i915_active *active)
2760 {
2761 	struct flex regs[] = {
2762 		{
2763 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2764 			CTX_R_PWR_CLK_STATE,
2765 		},
2766 	};
2767 
2768 	if (stream->engine->class != RENDER_CLASS)
2769 		return 0;
2770 
2771 	return oa_configure_all_contexts(stream,
2772 					 regs, ARRAY_SIZE(regs),
2773 					 active);
2774 }
2775 
2776 static int
2777 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2778 			   const struct i915_oa_config *oa_config,
2779 			   struct i915_active *active)
2780 {
2781 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2782 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2783 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2784 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2785 	struct flex regs[] = {
2786 		{
2787 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2788 			CTX_R_PWR_CLK_STATE,
2789 		},
2790 		{
2791 			GEN8_OACTXCONTROL,
2792 			ctx_oactxctrl + 1,
2793 		},
2794 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2795 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2796 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2797 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2798 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2799 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2800 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2801 	};
2802 #undef ctx_flexeuN
2803 	int i;
2804 
2805 	regs[1].value =
2806 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2807 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2808 		GEN8_OA_COUNTER_RESUME;
2809 
2810 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2811 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2812 
2813 	return oa_configure_all_contexts(stream,
2814 					 regs, ARRAY_SIZE(regs),
2815 					 active);
2816 }
2817 
2818 static int
2819 gen8_enable_metric_set(struct i915_perf_stream *stream,
2820 		       struct i915_active *active)
2821 {
2822 	struct intel_uncore *uncore = stream->uncore;
2823 	struct i915_oa_config *oa_config = stream->oa_config;
2824 	int ret;
2825 
2826 	/*
2827 	 * We disable slice/unslice clock ratio change reports on SKL since
2828 	 * they are too noisy. The HW generates a lot of redundant reports
2829 	 * where the ratio hasn't really changed causing a lot of redundant
2830 	 * work to processes and increasing the chances we'll hit buffer
2831 	 * overruns.
2832 	 *
2833 	 * Although we don't currently use the 'disable overrun' OABUFFER
2834 	 * feature it's worth noting that clock ratio reports have to be
2835 	 * disabled before considering to use that feature since the HW doesn't
2836 	 * correctly block these reports.
2837 	 *
2838 	 * Currently none of the high-level metrics we have depend on knowing
2839 	 * this ratio to normalize.
2840 	 *
2841 	 * Note: This register is not power context saved and restored, but
2842 	 * that's OK considering that we disable RC6 while the OA unit is
2843 	 * enabled.
2844 	 *
2845 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2846 	 * be read back from automatically triggered reports, as part of the
2847 	 * RPT_ID field.
2848 	 */
2849 	if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2850 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2851 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2852 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2853 	}
2854 
2855 	/*
2856 	 * Update all contexts prior writing the mux configurations as we need
2857 	 * to make sure all slices/subslices are ON before writing to NOA
2858 	 * registers.
2859 	 */
2860 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2861 	if (ret)
2862 		return ret;
2863 
2864 	return emit_oa_config(stream,
2865 			      stream->oa_config, oa_context(stream),
2866 			      active);
2867 }
2868 
2869 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2870 {
2871 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2872 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2873 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2874 }
2875 
2876 static int
2877 gen12_enable_metric_set(struct i915_perf_stream *stream,
2878 			struct i915_active *active)
2879 {
2880 	struct drm_i915_private *i915 = stream->perf->i915;
2881 	struct intel_uncore *uncore = stream->uncore;
2882 	struct i915_oa_config *oa_config = stream->oa_config;
2883 	bool periodic = stream->periodic;
2884 	u32 period_exponent = stream->period_exponent;
2885 	u32 sqcnt1;
2886 	int ret;
2887 
2888 	/*
2889 	 * Wa_1508761755:xehpsdv, dg2
2890 	 * EU NOA signals behave incorrectly if EU clock gating is enabled.
2891 	 * Disable thread stall DOP gating and EU DOP gating.
2892 	 */
2893 	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2894 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2895 					     _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
2896 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2897 				   _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING));
2898 	}
2899 
2900 	intel_uncore_write(uncore, __oa_regs(stream)->oa_debug,
2901 			   /* Disable clk ratio reports, like previous Gens. */
2902 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2903 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2904 			   /*
2905 			    * If the user didn't require OA reports, instruct
2906 			    * the hardware not to emit ctx switch reports.
2907 			    */
2908 			   oag_report_ctx_switches(stream));
2909 
2910 	intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ?
2911 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2912 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2913 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2914 			    : 0);
2915 
2916 	/*
2917 	 * Initialize Super Queue Internal Cnt Register
2918 	 * Set PMON Enable in order to collect valid metrics.
2919 	 * Enable byets per clock reporting in OA for XEHPSDV onward.
2920 	 */
2921 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2922 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2923 
2924 	intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1);
2925 
2926 	/*
2927 	 * Update all contexts prior writing the mux configurations as we need
2928 	 * to make sure all slices/subslices are ON before writing to NOA
2929 	 * registers.
2930 	 */
2931 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2932 	if (ret)
2933 		return ret;
2934 
2935 	/*
2936 	 * For Gen12, performance counters are context
2937 	 * saved/restored. Only enable it for the context that
2938 	 * requested this.
2939 	 */
2940 	if (stream->ctx) {
2941 		ret = gen12_configure_oar_context(stream, active);
2942 		if (ret)
2943 			return ret;
2944 	}
2945 
2946 	return emit_oa_config(stream,
2947 			      stream->oa_config, oa_context(stream),
2948 			      active);
2949 }
2950 
2951 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2952 {
2953 	struct intel_uncore *uncore = stream->uncore;
2954 
2955 	/* Reset all contexts' slices/subslices configurations. */
2956 	lrc_configure_all_contexts(stream, NULL, NULL);
2957 
2958 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2959 }
2960 
2961 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2962 {
2963 	struct intel_uncore *uncore = stream->uncore;
2964 
2965 	/* Reset all contexts' slices/subslices configurations. */
2966 	lrc_configure_all_contexts(stream, NULL, NULL);
2967 
2968 	/* Make sure we disable noa to save power. */
2969 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2970 }
2971 
2972 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2973 {
2974 	struct intel_uncore *uncore = stream->uncore;
2975 	struct drm_i915_private *i915 = stream->perf->i915;
2976 	u32 sqcnt1;
2977 
2978 	/*
2979 	 * Wa_1508761755:xehpsdv, dg2
2980 	 * Enable thread stall DOP gating and EU DOP gating.
2981 	 */
2982 	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2983 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2984 					     _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE));
2985 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2986 				   _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING));
2987 	}
2988 
2989 	/* Reset all contexts' slices/subslices configurations. */
2990 	gen12_configure_all_contexts(stream, NULL, NULL);
2991 
2992 	/* disable the context save/restore or OAR counters */
2993 	if (stream->ctx)
2994 		gen12_configure_oar_context(stream, NULL);
2995 
2996 	/* Make sure we disable noa to save power. */
2997 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2998 
2999 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
3000 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
3001 
3002 	/* Reset PMON Enable to save power. */
3003 	intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0);
3004 }
3005 
3006 static void gen7_oa_enable(struct i915_perf_stream *stream)
3007 {
3008 	struct intel_uncore *uncore = stream->uncore;
3009 	struct i915_gem_context *ctx = stream->ctx;
3010 	u32 ctx_id = stream->specific_ctx_id;
3011 	bool periodic = stream->periodic;
3012 	u32 period_exponent = stream->period_exponent;
3013 	u32 report_format = stream->oa_buffer.format->format;
3014 
3015 	/*
3016 	 * Reset buf pointers so we don't forward reports from before now.
3017 	 *
3018 	 * Think carefully if considering trying to avoid this, since it
3019 	 * also ensures status flags and the buffer itself are cleared
3020 	 * in error paths, and we have checks for invalid reports based
3021 	 * on the assumption that certain fields are written to zeroed
3022 	 * memory which this helps maintains.
3023 	 */
3024 	gen7_init_oa_buffer(stream);
3025 
3026 	intel_uncore_write(uncore, GEN7_OACONTROL,
3027 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
3028 			   (period_exponent <<
3029 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
3030 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
3031 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
3032 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
3033 			   GEN7_OACONTROL_ENABLE);
3034 }
3035 
3036 static void gen8_oa_enable(struct i915_perf_stream *stream)
3037 {
3038 	struct intel_uncore *uncore = stream->uncore;
3039 	u32 report_format = stream->oa_buffer.format->format;
3040 
3041 	/*
3042 	 * Reset buf pointers so we don't forward reports from before now.
3043 	 *
3044 	 * Think carefully if considering trying to avoid this, since it
3045 	 * also ensures status flags and the buffer itself are cleared
3046 	 * in error paths, and we have checks for invalid reports based
3047 	 * on the assumption that certain fields are written to zeroed
3048 	 * memory which this helps maintains.
3049 	 */
3050 	gen8_init_oa_buffer(stream);
3051 
3052 	/*
3053 	 * Note: we don't rely on the hardware to perform single context
3054 	 * filtering and instead filter on the cpu based on the context-id
3055 	 * field of reports
3056 	 */
3057 	intel_uncore_write(uncore, GEN8_OACONTROL,
3058 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
3059 			   GEN8_OA_COUNTER_ENABLE);
3060 }
3061 
3062 static void gen12_oa_enable(struct i915_perf_stream *stream)
3063 {
3064 	const struct i915_perf_regs *regs;
3065 	u32 val;
3066 
3067 	/*
3068 	 * If we don't want OA reports from the OA buffer, then we don't even
3069 	 * need to program the OAG unit.
3070 	 */
3071 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
3072 		return;
3073 
3074 	gen12_init_oa_buffer(stream);
3075 
3076 	regs = __oa_regs(stream);
3077 	val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) |
3078 	      GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE;
3079 
3080 	intel_uncore_write(stream->uncore, regs->oa_ctrl, val);
3081 }
3082 
3083 /**
3084  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
3085  * @stream: An i915 perf stream opened for OA metrics
3086  *
3087  * [Re]enables hardware periodic sampling according to the period configured
3088  * when opening the stream. This also starts a hrtimer that will periodically
3089  * check for data in the circular OA buffer for notifying userspace (e.g.
3090  * during a read() or poll()).
3091  */
3092 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
3093 {
3094 	stream->pollin = false;
3095 
3096 	stream->perf->ops.oa_enable(stream);
3097 
3098 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3099 		hrtimer_start(&stream->poll_check_timer,
3100 			      ns_to_ktime(stream->poll_oa_period),
3101 			      HRTIMER_MODE_REL_PINNED);
3102 }
3103 
3104 static void gen7_oa_disable(struct i915_perf_stream *stream)
3105 {
3106 	struct intel_uncore *uncore = stream->uncore;
3107 
3108 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
3109 	if (intel_wait_for_register(uncore,
3110 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
3111 				    50))
3112 		drm_err(&stream->perf->i915->drm,
3113 			"wait for OA to be disabled timed out\n");
3114 }
3115 
3116 static void gen8_oa_disable(struct i915_perf_stream *stream)
3117 {
3118 	struct intel_uncore *uncore = stream->uncore;
3119 
3120 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
3121 	if (intel_wait_for_register(uncore,
3122 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
3123 				    50))
3124 		drm_err(&stream->perf->i915->drm,
3125 			"wait for OA to be disabled timed out\n");
3126 }
3127 
3128 static void gen12_oa_disable(struct i915_perf_stream *stream)
3129 {
3130 	struct intel_uncore *uncore = stream->uncore;
3131 
3132 	intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0);
3133 	if (intel_wait_for_register(uncore,
3134 				    __oa_regs(stream)->oa_ctrl,
3135 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
3136 				    50))
3137 		drm_err(&stream->perf->i915->drm,
3138 			"wait for OA to be disabled timed out\n");
3139 
3140 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
3141 	if (intel_wait_for_register(uncore,
3142 				    GEN12_OA_TLB_INV_CR,
3143 				    1, 0,
3144 				    50))
3145 		drm_err(&stream->perf->i915->drm,
3146 			"wait for OA tlb invalidate timed out\n");
3147 }
3148 
3149 /**
3150  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
3151  * @stream: An i915 perf stream opened for OA metrics
3152  *
3153  * Stops the OA unit from periodically writing counter reports into the
3154  * circular OA buffer. This also stops the hrtimer that periodically checks for
3155  * data in the circular OA buffer, for notifying userspace.
3156  */
3157 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
3158 {
3159 	stream->perf->ops.oa_disable(stream);
3160 
3161 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3162 		hrtimer_cancel(&stream->poll_check_timer);
3163 }
3164 
3165 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
3166 	.destroy = i915_oa_stream_destroy,
3167 	.enable = i915_oa_stream_enable,
3168 	.disable = i915_oa_stream_disable,
3169 	.wait_unlocked = i915_oa_wait_unlocked,
3170 	.poll_wait = i915_oa_poll_wait,
3171 	.read = i915_oa_read,
3172 };
3173 
3174 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
3175 {
3176 	struct i915_active *active;
3177 	int err;
3178 
3179 	active = i915_active_create();
3180 	if (!active)
3181 		return -ENOMEM;
3182 
3183 	err = stream->perf->ops.enable_metric_set(stream, active);
3184 	if (err == 0)
3185 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
3186 
3187 	i915_active_put(active);
3188 	return err;
3189 }
3190 
3191 static void
3192 get_default_sseu_config(struct intel_sseu *out_sseu,
3193 			struct intel_engine_cs *engine)
3194 {
3195 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
3196 
3197 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
3198 
3199 	if (GRAPHICS_VER(engine->i915) == 11) {
3200 		/*
3201 		 * We only need subslice count so it doesn't matter which ones
3202 		 * we select - just turn off low bits in the amount of half of
3203 		 * all available subslices per slice.
3204 		 */
3205 		out_sseu->subslice_mask =
3206 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
3207 		out_sseu->slice_mask = 0x1;
3208 	}
3209 }
3210 
3211 static int
3212 get_sseu_config(struct intel_sseu *out_sseu,
3213 		struct intel_engine_cs *engine,
3214 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
3215 {
3216 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
3217 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
3218 		return -EINVAL;
3219 
3220 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
3221 }
3222 
3223 /*
3224  * OA timestamp frequency = CS timestamp frequency in most platforms. On some
3225  * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such
3226  * cases, return the adjusted CS timestamp frequency to the user.
3227  */
3228 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915)
3229 {
3230 	/*
3231 	 * Wa_18013179988:dg2
3232 	 * Wa_14015846243:mtl
3233 	 */
3234 	if (IS_DG2(i915) || IS_METEORLAKE(i915)) {
3235 		intel_wakeref_t wakeref;
3236 		u32 reg, shift;
3237 
3238 		with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref)
3239 			reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0);
3240 
3241 		shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK,
3242 				      reg);
3243 
3244 		return to_gt(i915)->clock_frequency << (3 - shift);
3245 	}
3246 
3247 	return to_gt(i915)->clock_frequency;
3248 }
3249 
3250 /**
3251  * i915_oa_stream_init - validate combined props for OA stream and init
3252  * @stream: An i915 perf stream
3253  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
3254  * @props: The property state that configures stream (individually validated)
3255  *
3256  * While read_properties_unlocked() validates properties in isolation it
3257  * doesn't ensure that the combination necessarily makes sense.
3258  *
3259  * At this point it has been determined that userspace wants a stream of
3260  * OA metrics, but still we need to further validate the combined
3261  * properties are OK.
3262  *
3263  * If the configuration makes sense then we can allocate memory for
3264  * a circular OA buffer and apply the requested metric set configuration.
3265  *
3266  * Returns: zero on success or a negative error code.
3267  */
3268 static int i915_oa_stream_init(struct i915_perf_stream *stream,
3269 			       struct drm_i915_perf_open_param *param,
3270 			       struct perf_open_properties *props)
3271 {
3272 	struct drm_i915_private *i915 = stream->perf->i915;
3273 	struct i915_perf *perf = stream->perf;
3274 	struct i915_perf_group *g;
3275 	struct intel_gt *gt;
3276 	int ret;
3277 
3278 	if (!props->engine) {
3279 		drm_dbg(&stream->perf->i915->drm,
3280 			"OA engine not specified\n");
3281 		return -EINVAL;
3282 	}
3283 	gt = props->engine->gt;
3284 	g = props->engine->oa_group;
3285 
3286 	/*
3287 	 * If the sysfs metrics/ directory wasn't registered for some
3288 	 * reason then don't let userspace try their luck with config
3289 	 * IDs
3290 	 */
3291 	if (!perf->metrics_kobj) {
3292 		drm_dbg(&stream->perf->i915->drm,
3293 			"OA metrics weren't advertised via sysfs\n");
3294 		return -EINVAL;
3295 	}
3296 
3297 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
3298 	    (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
3299 		drm_dbg(&stream->perf->i915->drm,
3300 			"Only OA report sampling supported\n");
3301 		return -EINVAL;
3302 	}
3303 
3304 	if (!perf->ops.enable_metric_set) {
3305 		drm_dbg(&stream->perf->i915->drm,
3306 			"OA unit not supported\n");
3307 		return -ENODEV;
3308 	}
3309 
3310 	/*
3311 	 * To avoid the complexity of having to accurately filter
3312 	 * counter reports and marshal to the appropriate client
3313 	 * we currently only allow exclusive access
3314 	 */
3315 	if (g->exclusive_stream) {
3316 		drm_dbg(&stream->perf->i915->drm,
3317 			"OA unit already in use\n");
3318 		return -EBUSY;
3319 	}
3320 
3321 	if (!props->oa_format) {
3322 		drm_dbg(&stream->perf->i915->drm,
3323 			"OA report format not specified\n");
3324 		return -EINVAL;
3325 	}
3326 
3327 	stream->engine = props->engine;
3328 	stream->uncore = stream->engine->gt->uncore;
3329 
3330 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
3331 
3332 	stream->oa_buffer.format = &perf->oa_formats[props->oa_format];
3333 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0))
3334 		return -EINVAL;
3335 
3336 	stream->sample_flags = props->sample_flags;
3337 	stream->sample_size += stream->oa_buffer.format->size;
3338 
3339 	stream->hold_preemption = props->hold_preemption;
3340 
3341 	stream->periodic = props->oa_periodic;
3342 	if (stream->periodic)
3343 		stream->period_exponent = props->oa_period_exponent;
3344 
3345 	if (stream->ctx) {
3346 		ret = oa_get_render_ctx_id(stream);
3347 		if (ret) {
3348 			drm_dbg(&stream->perf->i915->drm,
3349 				"Invalid context id to filter with\n");
3350 			return ret;
3351 		}
3352 	}
3353 
3354 	ret = alloc_noa_wait(stream);
3355 	if (ret) {
3356 		drm_dbg(&stream->perf->i915->drm,
3357 			"Unable to allocate NOA wait batch buffer\n");
3358 		goto err_noa_wait_alloc;
3359 	}
3360 
3361 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
3362 	if (!stream->oa_config) {
3363 		drm_dbg(&stream->perf->i915->drm,
3364 			"Invalid OA config id=%i\n", props->metrics_set);
3365 		ret = -EINVAL;
3366 		goto err_config;
3367 	}
3368 
3369 	/* PRM - observability performance counters:
3370 	 *
3371 	 *   OACONTROL, performance counter enable, note:
3372 	 *
3373 	 *   "When this bit is set, in order to have coherent counts,
3374 	 *   RC6 power state and trunk clock gating must be disabled.
3375 	 *   This can be achieved by programming MMIO registers as
3376 	 *   0xA094=0 and 0xA090[31]=1"
3377 	 *
3378 	 *   In our case we are expecting that taking pm + FORCEWAKE
3379 	 *   references will effectively disable RC6.
3380 	 */
3381 	intel_engine_pm_get(stream->engine);
3382 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
3383 
3384 	/*
3385 	 * Wa_16011777198:dg2: GuC resets render as part of the Wa. This causes
3386 	 * OA to lose the configuration state. Prevent this by overriding GUCRC
3387 	 * mode.
3388 	 */
3389 	if (intel_uc_uses_guc_rc(&gt->uc) &&
3390 	    (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
3391 	     IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))) {
3392 		ret = intel_guc_slpc_override_gucrc_mode(&gt->uc.guc.slpc,
3393 							 SLPC_GUCRC_MODE_GUCRC_NO_RC6);
3394 		if (ret) {
3395 			drm_dbg(&stream->perf->i915->drm,
3396 				"Unable to override gucrc mode\n");
3397 			goto err_gucrc;
3398 		}
3399 
3400 		stream->override_gucrc = true;
3401 	}
3402 
3403 	ret = alloc_oa_buffer(stream);
3404 	if (ret)
3405 		goto err_oa_buf_alloc;
3406 
3407 	stream->ops = &i915_oa_stream_ops;
3408 
3409 	stream->engine->gt->perf.sseu = props->sseu;
3410 	WRITE_ONCE(g->exclusive_stream, stream);
3411 
3412 	ret = i915_perf_stream_enable_sync(stream);
3413 	if (ret) {
3414 		drm_dbg(&stream->perf->i915->drm,
3415 			"Unable to enable metric set\n");
3416 		goto err_enable;
3417 	}
3418 
3419 	drm_dbg(&stream->perf->i915->drm,
3420 		"opening stream oa config uuid=%s\n",
3421 		  stream->oa_config->uuid);
3422 
3423 	hrtimer_init(&stream->poll_check_timer,
3424 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3425 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
3426 	init_waitqueue_head(&stream->poll_wq);
3427 	spin_lock_init(&stream->oa_buffer.ptr_lock);
3428 	mutex_init(&stream->lock);
3429 
3430 	return 0;
3431 
3432 err_enable:
3433 	WRITE_ONCE(g->exclusive_stream, NULL);
3434 	perf->ops.disable_metric_set(stream);
3435 
3436 	free_oa_buffer(stream);
3437 
3438 err_oa_buf_alloc:
3439 	if (stream->override_gucrc)
3440 		intel_guc_slpc_unset_gucrc_mode(&gt->uc.guc.slpc);
3441 
3442 err_gucrc:
3443 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3444 	intel_engine_pm_put(stream->engine);
3445 
3446 	free_oa_configs(stream);
3447 
3448 err_config:
3449 	free_noa_wait(stream);
3450 
3451 err_noa_wait_alloc:
3452 	if (stream->ctx)
3453 		oa_put_render_ctx_id(stream);
3454 
3455 	return ret;
3456 }
3457 
3458 void i915_oa_init_reg_state(const struct intel_context *ce,
3459 			    const struct intel_engine_cs *engine)
3460 {
3461 	struct i915_perf_stream *stream;
3462 
3463 	if (engine->class != RENDER_CLASS)
3464 		return;
3465 
3466 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3467 	stream = READ_ONCE(engine->oa_group->exclusive_stream);
3468 	if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3469 		gen8_update_reg_state_unlocked(ce, stream);
3470 }
3471 
3472 /**
3473  * i915_perf_read - handles read() FOP for i915 perf stream FDs
3474  * @file: An i915 perf stream file
3475  * @buf: destination buffer given by userspace
3476  * @count: the number of bytes userspace wants to read
3477  * @ppos: (inout) file seek position (unused)
3478  *
3479  * The entry point for handling a read() on a stream file descriptor from
3480  * userspace. Most of the work is left to the i915_perf_read_locked() and
3481  * &i915_perf_stream_ops->read but to save having stream implementations (of
3482  * which we might have multiple later) we handle blocking read here.
3483  *
3484  * We can also consistently treat trying to read from a disabled stream
3485  * as an IO error so implementations can assume the stream is enabled
3486  * while reading.
3487  *
3488  * Returns: The number of bytes copied or a negative error code on failure.
3489  */
3490 static ssize_t i915_perf_read(struct file *file,
3491 			      char __user *buf,
3492 			      size_t count,
3493 			      loff_t *ppos)
3494 {
3495 	struct i915_perf_stream *stream = file->private_data;
3496 	size_t offset = 0;
3497 	int ret;
3498 
3499 	/* To ensure it's handled consistently we simply treat all reads of a
3500 	 * disabled stream as an error. In particular it might otherwise lead
3501 	 * to a deadlock for blocking file descriptors...
3502 	 */
3503 	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3504 		return -EIO;
3505 
3506 	if (!(file->f_flags & O_NONBLOCK)) {
3507 		/* There's the small chance of false positives from
3508 		 * stream->ops->wait_unlocked.
3509 		 *
3510 		 * E.g. with single context filtering since we only wait until
3511 		 * oabuffer has >= 1 report we don't immediately know whether
3512 		 * any reports really belong to the current context
3513 		 */
3514 		do {
3515 			ret = stream->ops->wait_unlocked(stream);
3516 			if (ret)
3517 				return ret;
3518 
3519 			mutex_lock(&stream->lock);
3520 			ret = stream->ops->read(stream, buf, count, &offset);
3521 			mutex_unlock(&stream->lock);
3522 		} while (!offset && !ret);
3523 	} else {
3524 		mutex_lock(&stream->lock);
3525 		ret = stream->ops->read(stream, buf, count, &offset);
3526 		mutex_unlock(&stream->lock);
3527 	}
3528 
3529 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3530 	 * events where we might actually report EAGAIN on read() if there's
3531 	 * not really any data available. In this situation though we don't
3532 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3533 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3534 	 * effectively ensures we back off until the next hrtimer callback
3535 	 * before reporting another EPOLLIN event.
3536 	 * The exception to this is if ops->read() returned -ENOSPC which means
3537 	 * that more OA data is available than could fit in the user provided
3538 	 * buffer. In this case we want the next poll() call to not block.
3539 	 */
3540 	if (ret != -ENOSPC)
3541 		stream->pollin = false;
3542 
3543 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3544 	return offset ?: (ret ?: -EAGAIN);
3545 }
3546 
3547 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3548 {
3549 	struct i915_perf_stream *stream =
3550 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3551 
3552 	if (oa_buffer_check_unlocked(stream)) {
3553 		stream->pollin = true;
3554 		wake_up(&stream->poll_wq);
3555 	}
3556 
3557 	hrtimer_forward_now(hrtimer,
3558 			    ns_to_ktime(stream->poll_oa_period));
3559 
3560 	return HRTIMER_RESTART;
3561 }
3562 
3563 /**
3564  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3565  * @stream: An i915 perf stream
3566  * @file: An i915 perf stream file
3567  * @wait: poll() state table
3568  *
3569  * For handling userspace polling on an i915 perf stream, this calls through to
3570  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3571  * will be woken for new stream data.
3572  *
3573  * Returns: any poll events that are ready without sleeping
3574  */
3575 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3576 				      struct file *file,
3577 				      poll_table *wait)
3578 {
3579 	__poll_t events = 0;
3580 
3581 	stream->ops->poll_wait(stream, file, wait);
3582 
3583 	/* Note: we don't explicitly check whether there's something to read
3584 	 * here since this path may be very hot depending on what else
3585 	 * userspace is polling, or on the timeout in use. We rely solely on
3586 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3587 	 * samples to read.
3588 	 */
3589 	if (stream->pollin)
3590 		events |= EPOLLIN;
3591 
3592 	return events;
3593 }
3594 
3595 /**
3596  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3597  * @file: An i915 perf stream file
3598  * @wait: poll() state table
3599  *
3600  * For handling userspace polling on an i915 perf stream, this ensures
3601  * poll_wait() gets called with a wait queue that will be woken for new stream
3602  * data.
3603  *
3604  * Note: Implementation deferred to i915_perf_poll_locked()
3605  *
3606  * Returns: any poll events that are ready without sleeping
3607  */
3608 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3609 {
3610 	struct i915_perf_stream *stream = file->private_data;
3611 	__poll_t ret;
3612 
3613 	mutex_lock(&stream->lock);
3614 	ret = i915_perf_poll_locked(stream, file, wait);
3615 	mutex_unlock(&stream->lock);
3616 
3617 	return ret;
3618 }
3619 
3620 /**
3621  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3622  * @stream: A disabled i915 perf stream
3623  *
3624  * [Re]enables the associated capture of data for this stream.
3625  *
3626  * If a stream was previously enabled then there's currently no intention
3627  * to provide userspace any guarantee about the preservation of previously
3628  * buffered data.
3629  */
3630 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3631 {
3632 	if (stream->enabled)
3633 		return;
3634 
3635 	/* Allow stream->ops->enable() to refer to this */
3636 	stream->enabled = true;
3637 
3638 	if (stream->ops->enable)
3639 		stream->ops->enable(stream);
3640 
3641 	if (stream->hold_preemption)
3642 		intel_context_set_nopreempt(stream->pinned_ctx);
3643 }
3644 
3645 /**
3646  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3647  * @stream: An enabled i915 perf stream
3648  *
3649  * Disables the associated capture of data for this stream.
3650  *
3651  * The intention is that disabling an re-enabling a stream will ideally be
3652  * cheaper than destroying and re-opening a stream with the same configuration,
3653  * though there are no formal guarantees about what state or buffered data
3654  * must be retained between disabling and re-enabling a stream.
3655  *
3656  * Note: while a stream is disabled it's considered an error for userspace
3657  * to attempt to read from the stream (-EIO).
3658  */
3659 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3660 {
3661 	if (!stream->enabled)
3662 		return;
3663 
3664 	/* Allow stream->ops->disable() to refer to this */
3665 	stream->enabled = false;
3666 
3667 	if (stream->hold_preemption)
3668 		intel_context_clear_nopreempt(stream->pinned_ctx);
3669 
3670 	if (stream->ops->disable)
3671 		stream->ops->disable(stream);
3672 }
3673 
3674 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3675 				    unsigned long metrics_set)
3676 {
3677 	struct i915_oa_config *config;
3678 	long ret = stream->oa_config->id;
3679 
3680 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3681 	if (!config)
3682 		return -EINVAL;
3683 
3684 	if (config != stream->oa_config) {
3685 		int err;
3686 
3687 		/*
3688 		 * If OA is bound to a specific context, emit the
3689 		 * reconfiguration inline from that context. The update
3690 		 * will then be ordered with respect to submission on that
3691 		 * context.
3692 		 *
3693 		 * When set globally, we use a low priority kernel context,
3694 		 * so it will effectively take effect when idle.
3695 		 */
3696 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3697 		if (!err)
3698 			config = xchg(&stream->oa_config, config);
3699 		else
3700 			ret = err;
3701 	}
3702 
3703 	i915_oa_config_put(config);
3704 
3705 	return ret;
3706 }
3707 
3708 /**
3709  * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3710  * @stream: An i915 perf stream
3711  * @cmd: the ioctl request
3712  * @arg: the ioctl data
3713  *
3714  * Returns: zero on success or a negative error code. Returns -EINVAL for
3715  * an unknown ioctl request.
3716  */
3717 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3718 				   unsigned int cmd,
3719 				   unsigned long arg)
3720 {
3721 	switch (cmd) {
3722 	case I915_PERF_IOCTL_ENABLE:
3723 		i915_perf_enable_locked(stream);
3724 		return 0;
3725 	case I915_PERF_IOCTL_DISABLE:
3726 		i915_perf_disable_locked(stream);
3727 		return 0;
3728 	case I915_PERF_IOCTL_CONFIG:
3729 		return i915_perf_config_locked(stream, arg);
3730 	}
3731 
3732 	return -EINVAL;
3733 }
3734 
3735 /**
3736  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3737  * @file: An i915 perf stream file
3738  * @cmd: the ioctl request
3739  * @arg: the ioctl data
3740  *
3741  * Implementation deferred to i915_perf_ioctl_locked().
3742  *
3743  * Returns: zero on success or a negative error code. Returns -EINVAL for
3744  * an unknown ioctl request.
3745  */
3746 static long i915_perf_ioctl(struct file *file,
3747 			    unsigned int cmd,
3748 			    unsigned long arg)
3749 {
3750 	struct i915_perf_stream *stream = file->private_data;
3751 	long ret;
3752 
3753 	mutex_lock(&stream->lock);
3754 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3755 	mutex_unlock(&stream->lock);
3756 
3757 	return ret;
3758 }
3759 
3760 /**
3761  * i915_perf_destroy_locked - destroy an i915 perf stream
3762  * @stream: An i915 perf stream
3763  *
3764  * Frees all resources associated with the given i915 perf @stream, disabling
3765  * any associated data capture in the process.
3766  *
3767  * Note: The &gt->perf.lock mutex has been taken to serialize
3768  * with any non-file-operation driver hooks.
3769  */
3770 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3771 {
3772 	if (stream->enabled)
3773 		i915_perf_disable_locked(stream);
3774 
3775 	if (stream->ops->destroy)
3776 		stream->ops->destroy(stream);
3777 
3778 	if (stream->ctx)
3779 		i915_gem_context_put(stream->ctx);
3780 
3781 	kfree(stream);
3782 }
3783 
3784 /**
3785  * i915_perf_release - handles userspace close() of a stream file
3786  * @inode: anonymous inode associated with file
3787  * @file: An i915 perf stream file
3788  *
3789  * Cleans up any resources associated with an open i915 perf stream file.
3790  *
3791  * NB: close() can't really fail from the userspace point of view.
3792  *
3793  * Returns: zero on success or a negative error code.
3794  */
3795 static int i915_perf_release(struct inode *inode, struct file *file)
3796 {
3797 	struct i915_perf_stream *stream = file->private_data;
3798 	struct i915_perf *perf = stream->perf;
3799 	struct intel_gt *gt = stream->engine->gt;
3800 
3801 	/*
3802 	 * Within this call, we know that the fd is being closed and we have no
3803 	 * other user of stream->lock. Use the perf lock to destroy the stream
3804 	 * here.
3805 	 */
3806 	mutex_lock(&gt->perf.lock);
3807 	i915_perf_destroy_locked(stream);
3808 	mutex_unlock(&gt->perf.lock);
3809 
3810 	/* Release the reference the perf stream kept on the driver. */
3811 	drm_dev_put(&perf->i915->drm);
3812 
3813 	return 0;
3814 }
3815 
3816 
3817 static const struct file_operations fops = {
3818 	.owner		= THIS_MODULE,
3819 	.llseek		= no_llseek,
3820 	.release	= i915_perf_release,
3821 	.poll		= i915_perf_poll,
3822 	.read		= i915_perf_read,
3823 	.unlocked_ioctl	= i915_perf_ioctl,
3824 	/* Our ioctl have no arguments, so it's safe to use the same function
3825 	 * to handle 32bits compatibility.
3826 	 */
3827 	.compat_ioctl   = i915_perf_ioctl,
3828 };
3829 
3830 
3831 /**
3832  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3833  * @perf: i915 perf instance
3834  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3835  * @props: individually validated u64 property value pairs
3836  * @file: drm file
3837  *
3838  * See i915_perf_ioctl_open() for interface details.
3839  *
3840  * Implements further stream config validation and stream initialization on
3841  * behalf of i915_perf_open_ioctl() with the &gt->perf.lock mutex
3842  * taken to serialize with any non-file-operation driver hooks.
3843  *
3844  * Note: at this point the @props have only been validated in isolation and
3845  * it's still necessary to validate that the combination of properties makes
3846  * sense.
3847  *
3848  * In the case where userspace is interested in OA unit metrics then further
3849  * config validation and stream initialization details will be handled by
3850  * i915_oa_stream_init(). The code here should only validate config state that
3851  * will be relevant to all stream types / backends.
3852  *
3853  * Returns: zero on success or a negative error code.
3854  */
3855 static int
3856 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3857 			    struct drm_i915_perf_open_param *param,
3858 			    struct perf_open_properties *props,
3859 			    struct drm_file *file)
3860 {
3861 	struct i915_gem_context *specific_ctx = NULL;
3862 	struct i915_perf_stream *stream = NULL;
3863 	unsigned long f_flags = 0;
3864 	bool privileged_op = true;
3865 	int stream_fd;
3866 	int ret;
3867 
3868 	if (props->single_context) {
3869 		u32 ctx_handle = props->ctx_handle;
3870 		struct drm_i915_file_private *file_priv = file->driver_priv;
3871 
3872 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3873 		if (IS_ERR(specific_ctx)) {
3874 			drm_dbg(&perf->i915->drm,
3875 				"Failed to look up context with ID %u for opening perf stream\n",
3876 				  ctx_handle);
3877 			ret = PTR_ERR(specific_ctx);
3878 			goto err;
3879 		}
3880 	}
3881 
3882 	/*
3883 	 * On Haswell the OA unit supports clock gating off for a specific
3884 	 * context and in this mode there's no visibility of metrics for the
3885 	 * rest of the system, which we consider acceptable for a
3886 	 * non-privileged client.
3887 	 *
3888 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3889 	 * specific context and the kernel can't securely stop the counters
3890 	 * from updating as system-wide / global values. Even though we can
3891 	 * filter reports based on the included context ID we can't block
3892 	 * clients from seeing the raw / global counter values via
3893 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3894 	 * enable the OA unit by default.
3895 	 *
3896 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3897 	 * per context basis. So we can relax requirements there if the user
3898 	 * doesn't request global stream access (i.e. query based sampling
3899 	 * using MI_RECORD_PERF_COUNT.
3900 	 */
3901 	if (IS_HASWELL(perf->i915) && specific_ctx)
3902 		privileged_op = false;
3903 	else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3904 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3905 		privileged_op = false;
3906 
3907 	if (props->hold_preemption) {
3908 		if (!props->single_context) {
3909 			drm_dbg(&perf->i915->drm,
3910 				"preemption disable with no context\n");
3911 			ret = -EINVAL;
3912 			goto err;
3913 		}
3914 		privileged_op = true;
3915 	}
3916 
3917 	/*
3918 	 * Asking for SSEU configuration is a priviliged operation.
3919 	 */
3920 	if (props->has_sseu)
3921 		privileged_op = true;
3922 	else
3923 		get_default_sseu_config(&props->sseu, props->engine);
3924 
3925 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3926 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3927 	 * to determine if it's ok to access system wide OA counters
3928 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3929 	 */
3930 	if (privileged_op &&
3931 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3932 		drm_dbg(&perf->i915->drm,
3933 			"Insufficient privileges to open i915 perf stream\n");
3934 		ret = -EACCES;
3935 		goto err_ctx;
3936 	}
3937 
3938 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3939 	if (!stream) {
3940 		ret = -ENOMEM;
3941 		goto err_ctx;
3942 	}
3943 
3944 	stream->perf = perf;
3945 	stream->ctx = specific_ctx;
3946 	stream->poll_oa_period = props->poll_oa_period;
3947 
3948 	ret = i915_oa_stream_init(stream, param, props);
3949 	if (ret)
3950 		goto err_alloc;
3951 
3952 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3953 	 * to have _stream_init check the combination of sample flags more
3954 	 * thoroughly, but still this is the expected result at this point.
3955 	 */
3956 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3957 		ret = -ENODEV;
3958 		goto err_flags;
3959 	}
3960 
3961 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3962 		f_flags |= O_CLOEXEC;
3963 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3964 		f_flags |= O_NONBLOCK;
3965 
3966 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3967 	if (stream_fd < 0) {
3968 		ret = stream_fd;
3969 		goto err_flags;
3970 	}
3971 
3972 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3973 		i915_perf_enable_locked(stream);
3974 
3975 	/* Take a reference on the driver that will be kept with stream_fd
3976 	 * until its release.
3977 	 */
3978 	drm_dev_get(&perf->i915->drm);
3979 
3980 	return stream_fd;
3981 
3982 err_flags:
3983 	if (stream->ops->destroy)
3984 		stream->ops->destroy(stream);
3985 err_alloc:
3986 	kfree(stream);
3987 err_ctx:
3988 	if (specific_ctx)
3989 		i915_gem_context_put(specific_ctx);
3990 err:
3991 	return ret;
3992 }
3993 
3994 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3995 {
3996 	u64 nom = (2ULL << exponent) * NSEC_PER_SEC;
3997 	u32 den = i915_perf_oa_timestamp_frequency(perf->i915);
3998 
3999 	return div_u64(nom + den - 1, den);
4000 }
4001 
4002 static __always_inline bool
4003 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
4004 {
4005 	return test_bit(format, perf->format_mask);
4006 }
4007 
4008 static __always_inline void
4009 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
4010 {
4011 	__set_bit(format, perf->format_mask);
4012 }
4013 
4014 /**
4015  * read_properties_unlocked - validate + copy userspace stream open properties
4016  * @perf: i915 perf instance
4017  * @uprops: The array of u64 key value pairs given by userspace
4018  * @n_props: The number of key value pairs expected in @uprops
4019  * @props: The stream configuration built up while validating properties
4020  *
4021  * Note this function only validates properties in isolation it doesn't
4022  * validate that the combination of properties makes sense or that all
4023  * properties necessary for a particular kind of stream have been set.
4024  *
4025  * Note that there currently aren't any ordering requirements for properties so
4026  * we shouldn't validate or assume anything about ordering here. This doesn't
4027  * rule out defining new properties with ordering requirements in the future.
4028  */
4029 static int read_properties_unlocked(struct i915_perf *perf,
4030 				    u64 __user *uprops,
4031 				    u32 n_props,
4032 				    struct perf_open_properties *props)
4033 {
4034 	struct drm_i915_gem_context_param_sseu user_sseu;
4035 	const struct i915_oa_format *f;
4036 	u64 __user *uprop = uprops;
4037 	bool config_instance = false;
4038 	bool config_class = false;
4039 	bool config_sseu = false;
4040 	u8 class, instance;
4041 	u32 i;
4042 	int ret;
4043 
4044 	memset(props, 0, sizeof(struct perf_open_properties));
4045 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
4046 
4047 	/* Considering that ID = 0 is reserved and assuming that we don't
4048 	 * (currently) expect any configurations to ever specify duplicate
4049 	 * values for a particular property ID then the last _PROP_MAX value is
4050 	 * one greater than the maximum number of properties we expect to get
4051 	 * from userspace.
4052 	 */
4053 	if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) {
4054 		drm_dbg(&perf->i915->drm,
4055 			"Invalid number of i915 perf properties given\n");
4056 		return -EINVAL;
4057 	}
4058 
4059 	/* Defaults when class:instance is not passed */
4060 	class = I915_ENGINE_CLASS_RENDER;
4061 	instance = 0;
4062 
4063 	for (i = 0; i < n_props; i++) {
4064 		u64 oa_period, oa_freq_hz;
4065 		u64 id, value;
4066 
4067 		ret = get_user(id, uprop);
4068 		if (ret)
4069 			return ret;
4070 
4071 		ret = get_user(value, uprop + 1);
4072 		if (ret)
4073 			return ret;
4074 
4075 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
4076 			drm_dbg(&perf->i915->drm,
4077 				"Unknown i915 perf property ID\n");
4078 			return -EINVAL;
4079 		}
4080 
4081 		switch ((enum drm_i915_perf_property_id)id) {
4082 		case DRM_I915_PERF_PROP_CTX_HANDLE:
4083 			props->single_context = 1;
4084 			props->ctx_handle = value;
4085 			break;
4086 		case DRM_I915_PERF_PROP_SAMPLE_OA:
4087 			if (value)
4088 				props->sample_flags |= SAMPLE_OA_REPORT;
4089 			break;
4090 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
4091 			if (value == 0) {
4092 				drm_dbg(&perf->i915->drm,
4093 					"Unknown OA metric set ID\n");
4094 				return -EINVAL;
4095 			}
4096 			props->metrics_set = value;
4097 			break;
4098 		case DRM_I915_PERF_PROP_OA_FORMAT:
4099 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
4100 				drm_dbg(&perf->i915->drm,
4101 					"Out-of-range OA report format %llu\n",
4102 					  value);
4103 				return -EINVAL;
4104 			}
4105 			if (!oa_format_valid(perf, value)) {
4106 				drm_dbg(&perf->i915->drm,
4107 					"Unsupported OA report format %llu\n",
4108 					  value);
4109 				return -EINVAL;
4110 			}
4111 			props->oa_format = value;
4112 			break;
4113 		case DRM_I915_PERF_PROP_OA_EXPONENT:
4114 			if (value > OA_EXPONENT_MAX) {
4115 				drm_dbg(&perf->i915->drm,
4116 					"OA timer exponent too high (> %u)\n",
4117 					 OA_EXPONENT_MAX);
4118 				return -EINVAL;
4119 			}
4120 
4121 			/* Theoretically we can program the OA unit to sample
4122 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
4123 			 * for BXT. We don't allow such high sampling
4124 			 * frequencies by default unless root.
4125 			 */
4126 
4127 			BUILD_BUG_ON(sizeof(oa_period) != 8);
4128 			oa_period = oa_exponent_to_ns(perf, value);
4129 
4130 			/* This check is primarily to ensure that oa_period <=
4131 			 * UINT32_MAX (before passing to do_div which only
4132 			 * accepts a u32 denominator), but we can also skip
4133 			 * checking anything < 1Hz which implicitly can't be
4134 			 * limited via an integer oa_max_sample_rate.
4135 			 */
4136 			if (oa_period <= NSEC_PER_SEC) {
4137 				u64 tmp = NSEC_PER_SEC;
4138 				do_div(tmp, oa_period);
4139 				oa_freq_hz = tmp;
4140 			} else
4141 				oa_freq_hz = 0;
4142 
4143 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
4144 				drm_dbg(&perf->i915->drm,
4145 					"OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
4146 					  i915_oa_max_sample_rate);
4147 				return -EACCES;
4148 			}
4149 
4150 			props->oa_periodic = true;
4151 			props->oa_period_exponent = value;
4152 			break;
4153 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
4154 			props->hold_preemption = !!value;
4155 			break;
4156 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
4157 			if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) {
4158 				drm_dbg(&perf->i915->drm,
4159 					"SSEU config not supported on gfx %x\n",
4160 					GRAPHICS_VER_FULL(perf->i915));
4161 				return -ENODEV;
4162 			}
4163 
4164 			if (copy_from_user(&user_sseu,
4165 					   u64_to_user_ptr(value),
4166 					   sizeof(user_sseu))) {
4167 				drm_dbg(&perf->i915->drm,
4168 					"Unable to copy global sseu parameter\n");
4169 				return -EFAULT;
4170 			}
4171 			config_sseu = true;
4172 			break;
4173 		}
4174 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
4175 			if (value < 100000 /* 100us */) {
4176 				drm_dbg(&perf->i915->drm,
4177 					"OA availability timer too small (%lluns < 100us)\n",
4178 					  value);
4179 				return -EINVAL;
4180 			}
4181 			props->poll_oa_period = value;
4182 			break;
4183 		case DRM_I915_PERF_PROP_OA_ENGINE_CLASS:
4184 			class = (u8)value;
4185 			config_class = true;
4186 			break;
4187 		case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE:
4188 			instance = (u8)value;
4189 			config_instance = true;
4190 			break;
4191 		default:
4192 			MISSING_CASE(id);
4193 			return -EINVAL;
4194 		}
4195 
4196 		uprop += 2;
4197 	}
4198 
4199 	if ((config_class && !config_instance) ||
4200 	    (config_instance && !config_class)) {
4201 		drm_dbg(&perf->i915->drm,
4202 			"OA engine-class and engine-instance parameters must be passed together\n");
4203 		return -EINVAL;
4204 	}
4205 
4206 	props->engine = intel_engine_lookup_user(perf->i915, class, instance);
4207 	if (!props->engine) {
4208 		drm_dbg(&perf->i915->drm,
4209 			"OA engine class and instance invalid %d:%d\n",
4210 			class, instance);
4211 		return -EINVAL;
4212 	}
4213 
4214 	if (!engine_supports_oa(props->engine)) {
4215 		drm_dbg(&perf->i915->drm,
4216 			"Engine not supported by OA %d:%d\n",
4217 			class, instance);
4218 		return -EINVAL;
4219 	}
4220 
4221 	/*
4222 	 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
4223 	 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM
4224 	 * does not work as expected.
4225 	 */
4226 	if (IS_MTL_MEDIA_STEP(props->engine->i915, STEP_A0, STEP_C0) &&
4227 	    props->engine->oa_group->type == TYPE_OAM &&
4228 	    intel_check_bios_c6_setup(&props->engine->gt->rc6)) {
4229 		drm_dbg(&perf->i915->drm,
4230 			"OAM requires media C6 to be disabled in BIOS\n");
4231 		return -EINVAL;
4232 	}
4233 
4234 	i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX);
4235 	f = &perf->oa_formats[i];
4236 	if (!engine_supports_oa_format(props->engine, f->type)) {
4237 		drm_dbg(&perf->i915->drm,
4238 			"Invalid OA format %d for class %d\n",
4239 			f->type, props->engine->class);
4240 		return -EINVAL;
4241 	}
4242 
4243 	if (config_sseu) {
4244 		ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
4245 		if (ret) {
4246 			drm_dbg(&perf->i915->drm,
4247 				"Invalid SSEU configuration\n");
4248 			return ret;
4249 		}
4250 		props->has_sseu = true;
4251 	}
4252 
4253 	return 0;
4254 }
4255 
4256 /**
4257  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
4258  * @dev: drm device
4259  * @data: ioctl data copied from userspace (unvalidated)
4260  * @file: drm file
4261  *
4262  * Validates the stream open parameters given by userspace including flags
4263  * and an array of u64 key, value pair properties.
4264  *
4265  * Very little is assumed up front about the nature of the stream being
4266  * opened (for instance we don't assume it's for periodic OA unit metrics). An
4267  * i915-perf stream is expected to be a suitable interface for other forms of
4268  * buffered data written by the GPU besides periodic OA metrics.
4269  *
4270  * Note we copy the properties from userspace outside of the i915 perf
4271  * mutex to avoid an awkward lockdep with mmap_lock.
4272  *
4273  * Most of the implementation details are handled by
4274  * i915_perf_open_ioctl_locked() after taking the &gt->perf.lock
4275  * mutex for serializing with any non-file-operation driver hooks.
4276  *
4277  * Return: A newly opened i915 Perf stream file descriptor or negative
4278  * error code on failure.
4279  */
4280 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
4281 			 struct drm_file *file)
4282 {
4283 	struct i915_perf *perf = &to_i915(dev)->perf;
4284 	struct drm_i915_perf_open_param *param = data;
4285 	struct intel_gt *gt;
4286 	struct perf_open_properties props;
4287 	u32 known_open_flags;
4288 	int ret;
4289 
4290 	if (!perf->i915) {
4291 		drm_dbg(&perf->i915->drm,
4292 			"i915 perf interface not available for this system\n");
4293 		return -ENOTSUPP;
4294 	}
4295 
4296 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
4297 			   I915_PERF_FLAG_FD_NONBLOCK |
4298 			   I915_PERF_FLAG_DISABLED;
4299 	if (param->flags & ~known_open_flags) {
4300 		drm_dbg(&perf->i915->drm,
4301 			"Unknown drm_i915_perf_open_param flag\n");
4302 		return -EINVAL;
4303 	}
4304 
4305 	ret = read_properties_unlocked(perf,
4306 				       u64_to_user_ptr(param->properties_ptr),
4307 				       param->num_properties,
4308 				       &props);
4309 	if (ret)
4310 		return ret;
4311 
4312 	gt = props.engine->gt;
4313 
4314 	mutex_lock(&gt->perf.lock);
4315 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
4316 	mutex_unlock(&gt->perf.lock);
4317 
4318 	return ret;
4319 }
4320 
4321 /**
4322  * i915_perf_register - exposes i915-perf to userspace
4323  * @i915: i915 device instance
4324  *
4325  * In particular OA metric sets are advertised under a sysfs metrics/
4326  * directory allowing userspace to enumerate valid IDs that can be
4327  * used to open an i915-perf stream.
4328  */
4329 void i915_perf_register(struct drm_i915_private *i915)
4330 {
4331 	struct i915_perf *perf = &i915->perf;
4332 	struct intel_gt *gt = to_gt(i915);
4333 
4334 	if (!perf->i915)
4335 		return;
4336 
4337 	/* To be sure we're synchronized with an attempted
4338 	 * i915_perf_open_ioctl(); considering that we register after
4339 	 * being exposed to userspace.
4340 	 */
4341 	mutex_lock(&gt->perf.lock);
4342 
4343 	perf->metrics_kobj =
4344 		kobject_create_and_add("metrics",
4345 				       &i915->drm.primary->kdev->kobj);
4346 
4347 	mutex_unlock(&gt->perf.lock);
4348 }
4349 
4350 /**
4351  * i915_perf_unregister - hide i915-perf from userspace
4352  * @i915: i915 device instance
4353  *
4354  * i915-perf state cleanup is split up into an 'unregister' and
4355  * 'deinit' phase where the interface is first hidden from
4356  * userspace by i915_perf_unregister() before cleaning up
4357  * remaining state in i915_perf_fini().
4358  */
4359 void i915_perf_unregister(struct drm_i915_private *i915)
4360 {
4361 	struct i915_perf *perf = &i915->perf;
4362 
4363 	if (!perf->metrics_kobj)
4364 		return;
4365 
4366 	kobject_put(perf->metrics_kobj);
4367 	perf->metrics_kobj = NULL;
4368 }
4369 
4370 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
4371 {
4372 	static const i915_reg_t flex_eu_regs[] = {
4373 		EU_PERF_CNTL0,
4374 		EU_PERF_CNTL1,
4375 		EU_PERF_CNTL2,
4376 		EU_PERF_CNTL3,
4377 		EU_PERF_CNTL4,
4378 		EU_PERF_CNTL5,
4379 		EU_PERF_CNTL6,
4380 	};
4381 	int i;
4382 
4383 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
4384 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
4385 			return true;
4386 	}
4387 	return false;
4388 }
4389 
4390 static bool reg_in_range_table(u32 addr, const struct i915_range *table)
4391 {
4392 	while (table->start || table->end) {
4393 		if (addr >= table->start && addr <= table->end)
4394 			return true;
4395 
4396 		table++;
4397 	}
4398 
4399 	return false;
4400 }
4401 
4402 #define REG_EQUAL(addr, mmio) \
4403 	((addr) == i915_mmio_reg_offset(mmio))
4404 
4405 static const struct i915_range gen7_oa_b_counters[] = {
4406 	{ .start = 0x2710, .end = 0x272c },	/* OASTARTTRIG[1-8] */
4407 	{ .start = 0x2740, .end = 0x275c },	/* OAREPORTTRIG[1-8] */
4408 	{ .start = 0x2770, .end = 0x27ac },	/* OACEC[0-7][0-1] */
4409 	{}
4410 };
4411 
4412 static const struct i915_range gen12_oa_b_counters[] = {
4413 	{ .start = 0x2b2c, .end = 0x2b2c },	/* GEN12_OAG_OA_PESS */
4414 	{ .start = 0xd900, .end = 0xd91c },	/* GEN12_OAG_OASTARTTRIG[1-8] */
4415 	{ .start = 0xd920, .end = 0xd93c },	/* GEN12_OAG_OAREPORTTRIG1[1-8] */
4416 	{ .start = 0xd940, .end = 0xd97c },	/* GEN12_OAG_CEC[0-7][0-1] */
4417 	{ .start = 0xdc00, .end = 0xdc3c },	/* GEN12_OAG_SCEC[0-7][0-1] */
4418 	{ .start = 0xdc40, .end = 0xdc40 },	/* GEN12_OAG_SPCTR_CNF */
4419 	{ .start = 0xdc44, .end = 0xdc44 },	/* GEN12_OAA_DBG_REG */
4420 	{}
4421 };
4422 
4423 static const struct i915_range mtl_oam_b_counters[] = {
4424 	{ .start = 0x393000, .end = 0x39301c },	/* GEN12_OAM_STARTTRIG1[1-8] */
4425 	{ .start = 0x393020, .end = 0x39303c },	/* GEN12_OAM_REPORTTRIG1[1-8] */
4426 	{ .start = 0x393040, .end = 0x39307c },	/* GEN12_OAM_CEC[0-7][0-1] */
4427 	{ .start = 0x393200, .end = 0x39323C },	/* MPES[0-7] */
4428 	{}
4429 };
4430 
4431 static const struct i915_range xehp_oa_b_counters[] = {
4432 	{ .start = 0xdc48, .end = 0xdc48 },	/* OAA_ENABLE_REG */
4433 	{ .start = 0xdd00, .end = 0xdd48 },	/* OAG_LCE0_0 - OAA_LENABLE_REG */
4434 	{}
4435 };
4436 
4437 static const struct i915_range gen7_oa_mux_regs[] = {
4438 	{ .start = 0x91b8, .end = 0x91cc },	/* OA_PERFCNT[1-2], OA_PERFMATRIX */
4439 	{ .start = 0x9800, .end = 0x9888 },	/* MICRO_BP0_0 - NOA_WRITE */
4440 	{ .start = 0xe180, .end = 0xe180 },	/* HALF_SLICE_CHICKEN2 */
4441 	{}
4442 };
4443 
4444 static const struct i915_range hsw_oa_mux_regs[] = {
4445 	{ .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
4446 	{ .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
4447 	{ .start = 0x25100, .end = 0x2ff90 },
4448 	{}
4449 };
4450 
4451 static const struct i915_range chv_oa_mux_regs[] = {
4452 	{ .start = 0x182300, .end = 0x1823a4 },
4453 	{}
4454 };
4455 
4456 static const struct i915_range gen8_oa_mux_regs[] = {
4457 	{ .start = 0x0d00, .end = 0x0d2c },	/* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
4458 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4459 	{}
4460 };
4461 
4462 static const struct i915_range gen11_oa_mux_regs[] = {
4463 	{ .start = 0x91c8, .end = 0x91dc },	/* OA_PERFCNT[3-4] */
4464 	{}
4465 };
4466 
4467 static const struct i915_range gen12_oa_mux_regs[] = {
4468 	{ .start = 0x0d00, .end = 0x0d04 },     /* RPM_CONFIG[0-1] */
4469 	{ .start = 0x0d0c, .end = 0x0d2c },     /* NOA_CONFIG[0-8] */
4470 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4471 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4472 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4473 	{}
4474 };
4475 
4476 /*
4477  * Ref: 14010536224:
4478  * 0x20cc is repurposed on MTL, so use a separate array for MTL.
4479  */
4480 static const struct i915_range mtl_oa_mux_regs[] = {
4481 	{ .start = 0x0d00, .end = 0x0d04 },	/* RPM_CONFIG[0-1] */
4482 	{ .start = 0x0d0c, .end = 0x0d2c },	/* NOA_CONFIG[0-8] */
4483 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4484 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4485 	{ .start = 0x38d100, .end = 0x38d114},	/* VISACTL */
4486 	{}
4487 };
4488 
4489 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4490 {
4491 	return reg_in_range_table(addr, gen7_oa_b_counters);
4492 }
4493 
4494 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4495 {
4496 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4497 		reg_in_range_table(addr, gen8_oa_mux_regs);
4498 }
4499 
4500 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4501 {
4502 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4503 		reg_in_range_table(addr, gen8_oa_mux_regs) ||
4504 		reg_in_range_table(addr, gen11_oa_mux_regs);
4505 }
4506 
4507 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4508 {
4509 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4510 		reg_in_range_table(addr, hsw_oa_mux_regs);
4511 }
4512 
4513 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4514 {
4515 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4516 		reg_in_range_table(addr, chv_oa_mux_regs);
4517 }
4518 
4519 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4520 {
4521 	return reg_in_range_table(addr, gen12_oa_b_counters);
4522 }
4523 
4524 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr)
4525 {
4526 	if (HAS_OAM(perf->i915) &&
4527 	    GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4528 		return reg_in_range_table(addr, mtl_oam_b_counters);
4529 
4530 	return false;
4531 }
4532 
4533 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4534 {
4535 	return reg_in_range_table(addr, xehp_oa_b_counters) ||
4536 		reg_in_range_table(addr, gen12_oa_b_counters) ||
4537 		mtl_is_valid_oam_b_counter_addr(perf, addr);
4538 }
4539 
4540 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4541 {
4542 	if (IS_METEORLAKE(perf->i915))
4543 		return reg_in_range_table(addr, mtl_oa_mux_regs);
4544 	else
4545 		return reg_in_range_table(addr, gen12_oa_mux_regs);
4546 }
4547 
4548 static u32 mask_reg_value(u32 reg, u32 val)
4549 {
4550 	/* HALF_SLICE_CHICKEN2 is programmed with a the
4551 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4552 	 * programmed by userspace doesn't change this.
4553 	 */
4554 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4555 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4556 
4557 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
4558 	 * indicated by its name and a bunch of selection fields used by OA
4559 	 * configs.
4560 	 */
4561 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4562 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4563 
4564 	return val;
4565 }
4566 
4567 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4568 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4569 					 u32 __user *regs,
4570 					 u32 n_regs)
4571 {
4572 	struct i915_oa_reg *oa_regs;
4573 	int err;
4574 	u32 i;
4575 
4576 	if (!n_regs)
4577 		return NULL;
4578 
4579 	/* No is_valid function means we're not allowing any register to be programmed. */
4580 	GEM_BUG_ON(!is_valid);
4581 	if (!is_valid)
4582 		return ERR_PTR(-EINVAL);
4583 
4584 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4585 	if (!oa_regs)
4586 		return ERR_PTR(-ENOMEM);
4587 
4588 	for (i = 0; i < n_regs; i++) {
4589 		u32 addr, value;
4590 
4591 		err = get_user(addr, regs);
4592 		if (err)
4593 			goto addr_err;
4594 
4595 		if (!is_valid(perf, addr)) {
4596 			drm_dbg(&perf->i915->drm,
4597 				"Invalid oa_reg address: %X\n", addr);
4598 			err = -EINVAL;
4599 			goto addr_err;
4600 		}
4601 
4602 		err = get_user(value, regs + 1);
4603 		if (err)
4604 			goto addr_err;
4605 
4606 		oa_regs[i].addr = _MMIO(addr);
4607 		oa_regs[i].value = mask_reg_value(addr, value);
4608 
4609 		regs += 2;
4610 	}
4611 
4612 	return oa_regs;
4613 
4614 addr_err:
4615 	kfree(oa_regs);
4616 	return ERR_PTR(err);
4617 }
4618 
4619 static ssize_t show_dynamic_id(struct kobject *kobj,
4620 			       struct kobj_attribute *attr,
4621 			       char *buf)
4622 {
4623 	struct i915_oa_config *oa_config =
4624 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
4625 
4626 	return sprintf(buf, "%d\n", oa_config->id);
4627 }
4628 
4629 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4630 					 struct i915_oa_config *oa_config)
4631 {
4632 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4633 	oa_config->sysfs_metric_id.attr.name = "id";
4634 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4635 	oa_config->sysfs_metric_id.show = show_dynamic_id;
4636 	oa_config->sysfs_metric_id.store = NULL;
4637 
4638 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4639 	oa_config->attrs[1] = NULL;
4640 
4641 	oa_config->sysfs_metric.name = oa_config->uuid;
4642 	oa_config->sysfs_metric.attrs = oa_config->attrs;
4643 
4644 	return sysfs_create_group(perf->metrics_kobj,
4645 				  &oa_config->sysfs_metric);
4646 }
4647 
4648 /**
4649  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4650  * @dev: drm device
4651  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4652  *        userspace (unvalidated)
4653  * @file: drm file
4654  *
4655  * Validates the submitted OA register to be saved into a new OA config that
4656  * can then be used for programming the OA unit and its NOA network.
4657  *
4658  * Returns: A new allocated config number to be used with the perf open ioctl
4659  * or a negative error code on failure.
4660  */
4661 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4662 			       struct drm_file *file)
4663 {
4664 	struct i915_perf *perf = &to_i915(dev)->perf;
4665 	struct drm_i915_perf_oa_config *args = data;
4666 	struct i915_oa_config *oa_config, *tmp;
4667 	struct i915_oa_reg *regs;
4668 	int err, id;
4669 
4670 	if (!perf->i915) {
4671 		drm_dbg(&perf->i915->drm,
4672 			"i915 perf interface not available for this system\n");
4673 		return -ENOTSUPP;
4674 	}
4675 
4676 	if (!perf->metrics_kobj) {
4677 		drm_dbg(&perf->i915->drm,
4678 			"OA metrics weren't advertised via sysfs\n");
4679 		return -EINVAL;
4680 	}
4681 
4682 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4683 		drm_dbg(&perf->i915->drm,
4684 			"Insufficient privileges to add i915 OA config\n");
4685 		return -EACCES;
4686 	}
4687 
4688 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4689 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4690 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4691 		drm_dbg(&perf->i915->drm,
4692 			"No OA registers given\n");
4693 		return -EINVAL;
4694 	}
4695 
4696 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4697 	if (!oa_config) {
4698 		drm_dbg(&perf->i915->drm,
4699 			"Failed to allocate memory for the OA config\n");
4700 		return -ENOMEM;
4701 	}
4702 
4703 	oa_config->perf = perf;
4704 	kref_init(&oa_config->ref);
4705 
4706 	if (!uuid_is_valid(args->uuid)) {
4707 		drm_dbg(&perf->i915->drm,
4708 			"Invalid uuid format for OA config\n");
4709 		err = -EINVAL;
4710 		goto reg_err;
4711 	}
4712 
4713 	/* Last character in oa_config->uuid will be 0 because oa_config is
4714 	 * kzalloc.
4715 	 */
4716 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4717 
4718 	oa_config->mux_regs_len = args->n_mux_regs;
4719 	regs = alloc_oa_regs(perf,
4720 			     perf->ops.is_valid_mux_reg,
4721 			     u64_to_user_ptr(args->mux_regs_ptr),
4722 			     args->n_mux_regs);
4723 
4724 	if (IS_ERR(regs)) {
4725 		drm_dbg(&perf->i915->drm,
4726 			"Failed to create OA config for mux_regs\n");
4727 		err = PTR_ERR(regs);
4728 		goto reg_err;
4729 	}
4730 	oa_config->mux_regs = regs;
4731 
4732 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4733 	regs = alloc_oa_regs(perf,
4734 			     perf->ops.is_valid_b_counter_reg,
4735 			     u64_to_user_ptr(args->boolean_regs_ptr),
4736 			     args->n_boolean_regs);
4737 
4738 	if (IS_ERR(regs)) {
4739 		drm_dbg(&perf->i915->drm,
4740 			"Failed to create OA config for b_counter_regs\n");
4741 		err = PTR_ERR(regs);
4742 		goto reg_err;
4743 	}
4744 	oa_config->b_counter_regs = regs;
4745 
4746 	if (GRAPHICS_VER(perf->i915) < 8) {
4747 		if (args->n_flex_regs != 0) {
4748 			err = -EINVAL;
4749 			goto reg_err;
4750 		}
4751 	} else {
4752 		oa_config->flex_regs_len = args->n_flex_regs;
4753 		regs = alloc_oa_regs(perf,
4754 				     perf->ops.is_valid_flex_reg,
4755 				     u64_to_user_ptr(args->flex_regs_ptr),
4756 				     args->n_flex_regs);
4757 
4758 		if (IS_ERR(regs)) {
4759 			drm_dbg(&perf->i915->drm,
4760 				"Failed to create OA config for flex_regs\n");
4761 			err = PTR_ERR(regs);
4762 			goto reg_err;
4763 		}
4764 		oa_config->flex_regs = regs;
4765 	}
4766 
4767 	err = mutex_lock_interruptible(&perf->metrics_lock);
4768 	if (err)
4769 		goto reg_err;
4770 
4771 	/* We shouldn't have too many configs, so this iteration shouldn't be
4772 	 * too costly.
4773 	 */
4774 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4775 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4776 			drm_dbg(&perf->i915->drm,
4777 				"OA config already exists with this uuid\n");
4778 			err = -EADDRINUSE;
4779 			goto sysfs_err;
4780 		}
4781 	}
4782 
4783 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4784 	if (err) {
4785 		drm_dbg(&perf->i915->drm,
4786 			"Failed to create sysfs entry for OA config\n");
4787 		goto sysfs_err;
4788 	}
4789 
4790 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4791 	oa_config->id = idr_alloc(&perf->metrics_idr,
4792 				  oa_config, 2,
4793 				  0, GFP_KERNEL);
4794 	if (oa_config->id < 0) {
4795 		drm_dbg(&perf->i915->drm,
4796 			"Failed to create sysfs entry for OA config\n");
4797 		err = oa_config->id;
4798 		goto sysfs_err;
4799 	}
4800 	id = oa_config->id;
4801 
4802 	drm_dbg(&perf->i915->drm,
4803 		"Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4804 	mutex_unlock(&perf->metrics_lock);
4805 
4806 	return id;
4807 
4808 sysfs_err:
4809 	mutex_unlock(&perf->metrics_lock);
4810 reg_err:
4811 	i915_oa_config_put(oa_config);
4812 	drm_dbg(&perf->i915->drm,
4813 		"Failed to add new OA config\n");
4814 	return err;
4815 }
4816 
4817 /**
4818  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4819  * @dev: drm device
4820  * @data: ioctl data (pointer to u64 integer) copied from userspace
4821  * @file: drm file
4822  *
4823  * Configs can be removed while being used, the will stop appearing in sysfs
4824  * and their content will be freed when the stream using the config is closed.
4825  *
4826  * Returns: 0 on success or a negative error code on failure.
4827  */
4828 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4829 				  struct drm_file *file)
4830 {
4831 	struct i915_perf *perf = &to_i915(dev)->perf;
4832 	u64 *arg = data;
4833 	struct i915_oa_config *oa_config;
4834 	int ret;
4835 
4836 	if (!perf->i915) {
4837 		drm_dbg(&perf->i915->drm,
4838 			"i915 perf interface not available for this system\n");
4839 		return -ENOTSUPP;
4840 	}
4841 
4842 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4843 		drm_dbg(&perf->i915->drm,
4844 			"Insufficient privileges to remove i915 OA config\n");
4845 		return -EACCES;
4846 	}
4847 
4848 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4849 	if (ret)
4850 		return ret;
4851 
4852 	oa_config = idr_find(&perf->metrics_idr, *arg);
4853 	if (!oa_config) {
4854 		drm_dbg(&perf->i915->drm,
4855 			"Failed to remove unknown OA config\n");
4856 		ret = -ENOENT;
4857 		goto err_unlock;
4858 	}
4859 
4860 	GEM_BUG_ON(*arg != oa_config->id);
4861 
4862 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4863 
4864 	idr_remove(&perf->metrics_idr, *arg);
4865 
4866 	mutex_unlock(&perf->metrics_lock);
4867 
4868 	drm_dbg(&perf->i915->drm,
4869 		"Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4870 
4871 	i915_oa_config_put(oa_config);
4872 
4873 	return 0;
4874 
4875 err_unlock:
4876 	mutex_unlock(&perf->metrics_lock);
4877 	return ret;
4878 }
4879 
4880 static struct ctl_table oa_table[] = {
4881 	{
4882 	 .procname = "perf_stream_paranoid",
4883 	 .data = &i915_perf_stream_paranoid,
4884 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4885 	 .mode = 0644,
4886 	 .proc_handler = proc_dointvec_minmax,
4887 	 .extra1 = SYSCTL_ZERO,
4888 	 .extra2 = SYSCTL_ONE,
4889 	 },
4890 	{
4891 	 .procname = "oa_max_sample_rate",
4892 	 .data = &i915_oa_max_sample_rate,
4893 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4894 	 .mode = 0644,
4895 	 .proc_handler = proc_dointvec_minmax,
4896 	 .extra1 = SYSCTL_ZERO,
4897 	 .extra2 = &oa_sample_rate_hard_limit,
4898 	 },
4899 	{}
4900 };
4901 
4902 static u32 num_perf_groups_per_gt(struct intel_gt *gt)
4903 {
4904 	return 1;
4905 }
4906 
4907 static u32 __oam_engine_group(struct intel_engine_cs *engine)
4908 {
4909 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) {
4910 		/*
4911 		 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices
4912 		 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA.
4913 		 */
4914 		drm_WARN_ON(&engine->i915->drm,
4915 			    engine->gt->type != GT_MEDIA);
4916 
4917 		return PERF_GROUP_OAM_SAMEDIA_0;
4918 	}
4919 
4920 	return PERF_GROUP_INVALID;
4921 }
4922 
4923 static u32 __oa_engine_group(struct intel_engine_cs *engine)
4924 {
4925 	switch (engine->class) {
4926 	case RENDER_CLASS:
4927 		return PERF_GROUP_OAG;
4928 
4929 	case VIDEO_DECODE_CLASS:
4930 	case VIDEO_ENHANCEMENT_CLASS:
4931 		return __oam_engine_group(engine);
4932 
4933 	default:
4934 		return PERF_GROUP_INVALID;
4935 	}
4936 }
4937 
4938 static struct i915_perf_regs __oam_regs(u32 base)
4939 {
4940 	return (struct i915_perf_regs) {
4941 		base,
4942 		GEN12_OAM_HEAD_POINTER(base),
4943 		GEN12_OAM_TAIL_POINTER(base),
4944 		GEN12_OAM_BUFFER(base),
4945 		GEN12_OAM_CONTEXT_CONTROL(base),
4946 		GEN12_OAM_CONTROL(base),
4947 		GEN12_OAM_DEBUG(base),
4948 		GEN12_OAM_STATUS(base),
4949 		GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT,
4950 	};
4951 }
4952 
4953 static struct i915_perf_regs __oag_regs(void)
4954 {
4955 	return (struct i915_perf_regs) {
4956 		0,
4957 		GEN12_OAG_OAHEADPTR,
4958 		GEN12_OAG_OATAILPTR,
4959 		GEN12_OAG_OABUFFER,
4960 		GEN12_OAG_OAGLBCTXCTRL,
4961 		GEN12_OAG_OACONTROL,
4962 		GEN12_OAG_OA_DEBUG,
4963 		GEN12_OAG_OASTATUS,
4964 		GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT,
4965 	};
4966 }
4967 
4968 static void oa_init_groups(struct intel_gt *gt)
4969 {
4970 	int i, num_groups = gt->perf.num_perf_groups;
4971 
4972 	for (i = 0; i < num_groups; i++) {
4973 		struct i915_perf_group *g = &gt->perf.group[i];
4974 
4975 		/* Fused off engines can result in a group with num_engines == 0 */
4976 		if (g->num_engines == 0)
4977 			continue;
4978 
4979 		if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) {
4980 			g->regs = __oag_regs();
4981 			g->type = TYPE_OAG;
4982 		} else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
4983 			g->regs = __oam_regs(mtl_oa_base[i]);
4984 			g->type = TYPE_OAM;
4985 		}
4986 	}
4987 }
4988 
4989 static int oa_init_gt(struct intel_gt *gt)
4990 {
4991 	u32 num_groups = num_perf_groups_per_gt(gt);
4992 	struct intel_engine_cs *engine;
4993 	struct i915_perf_group *g;
4994 	intel_engine_mask_t tmp;
4995 
4996 	g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL);
4997 	if (!g)
4998 		return -ENOMEM;
4999 
5000 	for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) {
5001 		u32 index = __oa_engine_group(engine);
5002 
5003 		engine->oa_group = NULL;
5004 		if (index < num_groups) {
5005 			g[index].num_engines++;
5006 			engine->oa_group = &g[index];
5007 		}
5008 	}
5009 
5010 	gt->perf.num_perf_groups = num_groups;
5011 	gt->perf.group = g;
5012 
5013 	oa_init_groups(gt);
5014 
5015 	return 0;
5016 }
5017 
5018 static int oa_init_engine_groups(struct i915_perf *perf)
5019 {
5020 	struct intel_gt *gt;
5021 	int i, ret;
5022 
5023 	for_each_gt(gt, perf->i915, i) {
5024 		ret = oa_init_gt(gt);
5025 		if (ret)
5026 			return ret;
5027 	}
5028 
5029 	return 0;
5030 }
5031 
5032 static void oa_init_supported_formats(struct i915_perf *perf)
5033 {
5034 	struct drm_i915_private *i915 = perf->i915;
5035 	enum intel_platform platform = INTEL_INFO(i915)->platform;
5036 
5037 	switch (platform) {
5038 	case INTEL_HASWELL:
5039 		oa_format_add(perf, I915_OA_FORMAT_A13);
5040 		oa_format_add(perf, I915_OA_FORMAT_A13);
5041 		oa_format_add(perf, I915_OA_FORMAT_A29);
5042 		oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
5043 		oa_format_add(perf, I915_OA_FORMAT_B4_C8);
5044 		oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
5045 		oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
5046 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
5047 		break;
5048 
5049 	case INTEL_BROADWELL:
5050 	case INTEL_CHERRYVIEW:
5051 	case INTEL_SKYLAKE:
5052 	case INTEL_BROXTON:
5053 	case INTEL_KABYLAKE:
5054 	case INTEL_GEMINILAKE:
5055 	case INTEL_COFFEELAKE:
5056 	case INTEL_COMETLAKE:
5057 	case INTEL_ICELAKE:
5058 	case INTEL_ELKHARTLAKE:
5059 	case INTEL_JASPERLAKE:
5060 	case INTEL_TIGERLAKE:
5061 	case INTEL_ROCKETLAKE:
5062 	case INTEL_DG1:
5063 	case INTEL_ALDERLAKE_S:
5064 	case INTEL_ALDERLAKE_P:
5065 		oa_format_add(perf, I915_OA_FORMAT_A12);
5066 		oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
5067 		oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
5068 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
5069 		break;
5070 
5071 	case INTEL_DG2:
5072 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5073 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5074 		break;
5075 
5076 	case INTEL_METEORLAKE:
5077 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5078 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5079 		oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8);
5080 		oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8);
5081 		break;
5082 
5083 	default:
5084 		MISSING_CASE(platform);
5085 	}
5086 }
5087 
5088 static void i915_perf_init_info(struct drm_i915_private *i915)
5089 {
5090 	struct i915_perf *perf = &i915->perf;
5091 
5092 	switch (GRAPHICS_VER(i915)) {
5093 	case 8:
5094 		perf->ctx_oactxctrl_offset = 0x120;
5095 		perf->ctx_flexeu0_offset = 0x2ce;
5096 		perf->gen8_valid_ctx_bit = BIT(25);
5097 		break;
5098 	case 9:
5099 		perf->ctx_oactxctrl_offset = 0x128;
5100 		perf->ctx_flexeu0_offset = 0x3de;
5101 		perf->gen8_valid_ctx_bit = BIT(16);
5102 		break;
5103 	case 11:
5104 		perf->ctx_oactxctrl_offset = 0x124;
5105 		perf->ctx_flexeu0_offset = 0x78e;
5106 		perf->gen8_valid_ctx_bit = BIT(16);
5107 		break;
5108 	case 12:
5109 		/*
5110 		 * Calculate offset at runtime in oa_pin_context for gen12 and
5111 		 * cache the value in perf->ctx_oactxctrl_offset.
5112 		 */
5113 		break;
5114 	default:
5115 		MISSING_CASE(GRAPHICS_VER(i915));
5116 	}
5117 }
5118 
5119 /**
5120  * i915_perf_init - initialize i915-perf state on module bind
5121  * @i915: i915 device instance
5122  *
5123  * Initializes i915-perf state without exposing anything to userspace.
5124  *
5125  * Note: i915-perf initialization is split into an 'init' and 'register'
5126  * phase with the i915_perf_register() exposing state to userspace.
5127  */
5128 int i915_perf_init(struct drm_i915_private *i915)
5129 {
5130 	struct i915_perf *perf = &i915->perf;
5131 
5132 	perf->oa_formats = oa_formats;
5133 	if (IS_HASWELL(i915)) {
5134 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
5135 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
5136 		perf->ops.is_valid_flex_reg = NULL;
5137 		perf->ops.enable_metric_set = hsw_enable_metric_set;
5138 		perf->ops.disable_metric_set = hsw_disable_metric_set;
5139 		perf->ops.oa_enable = gen7_oa_enable;
5140 		perf->ops.oa_disable = gen7_oa_disable;
5141 		perf->ops.read = gen7_oa_read;
5142 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
5143 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
5144 		/* Note: that although we could theoretically also support the
5145 		 * legacy ringbuffer mode on BDW (and earlier iterations of
5146 		 * this driver, before upstreaming did this) it didn't seem
5147 		 * worth the complexity to maintain now that BDW+ enable
5148 		 * execlist mode by default.
5149 		 */
5150 		perf->ops.read = gen8_oa_read;
5151 		i915_perf_init_info(i915);
5152 
5153 		if (IS_GRAPHICS_VER(i915, 8, 9)) {
5154 			perf->ops.is_valid_b_counter_reg =
5155 				gen7_is_valid_b_counter_addr;
5156 			perf->ops.is_valid_mux_reg =
5157 				gen8_is_valid_mux_addr;
5158 			perf->ops.is_valid_flex_reg =
5159 				gen8_is_valid_flex_addr;
5160 
5161 			if (IS_CHERRYVIEW(i915)) {
5162 				perf->ops.is_valid_mux_reg =
5163 					chv_is_valid_mux_addr;
5164 			}
5165 
5166 			perf->ops.oa_enable = gen8_oa_enable;
5167 			perf->ops.oa_disable = gen8_oa_disable;
5168 			perf->ops.enable_metric_set = gen8_enable_metric_set;
5169 			perf->ops.disable_metric_set = gen8_disable_metric_set;
5170 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5171 		} else if (GRAPHICS_VER(i915) == 11) {
5172 			perf->ops.is_valid_b_counter_reg =
5173 				gen7_is_valid_b_counter_addr;
5174 			perf->ops.is_valid_mux_reg =
5175 				gen11_is_valid_mux_addr;
5176 			perf->ops.is_valid_flex_reg =
5177 				gen8_is_valid_flex_addr;
5178 
5179 			perf->ops.oa_enable = gen8_oa_enable;
5180 			perf->ops.oa_disable = gen8_oa_disable;
5181 			perf->ops.enable_metric_set = gen8_enable_metric_set;
5182 			perf->ops.disable_metric_set = gen11_disable_metric_set;
5183 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5184 		} else if (GRAPHICS_VER(i915) == 12) {
5185 			perf->ops.is_valid_b_counter_reg =
5186 				HAS_OA_SLICE_CONTRIB_LIMITS(i915) ?
5187 				xehp_is_valid_b_counter_addr :
5188 				gen12_is_valid_b_counter_addr;
5189 			perf->ops.is_valid_mux_reg =
5190 				gen12_is_valid_mux_addr;
5191 			perf->ops.is_valid_flex_reg =
5192 				gen8_is_valid_flex_addr;
5193 
5194 			perf->ops.oa_enable = gen12_oa_enable;
5195 			perf->ops.oa_disable = gen12_oa_disable;
5196 			perf->ops.enable_metric_set = gen12_enable_metric_set;
5197 			perf->ops.disable_metric_set = gen12_disable_metric_set;
5198 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
5199 		}
5200 	}
5201 
5202 	if (perf->ops.enable_metric_set) {
5203 		struct intel_gt *gt;
5204 		int i, ret;
5205 
5206 		for_each_gt(gt, i915, i)
5207 			mutex_init(&gt->perf.lock);
5208 
5209 		/* Choose a representative limit */
5210 		oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
5211 
5212 		mutex_init(&perf->metrics_lock);
5213 		idr_init_base(&perf->metrics_idr, 1);
5214 
5215 		/* We set up some ratelimit state to potentially throttle any
5216 		 * _NOTES about spurious, invalid OA reports which we don't
5217 		 * forward to userspace.
5218 		 *
5219 		 * We print a _NOTE about any throttling when closing the
5220 		 * stream instead of waiting until driver _fini which no one
5221 		 * would ever see.
5222 		 *
5223 		 * Using the same limiting factors as printk_ratelimit()
5224 		 */
5225 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
5226 		/* Since we use a DRM_NOTE for spurious reports it would be
5227 		 * inconsistent to let __ratelimit() automatically print a
5228 		 * warning for throttling.
5229 		 */
5230 		ratelimit_set_flags(&perf->spurious_report_rs,
5231 				    RATELIMIT_MSG_ON_RELEASE);
5232 
5233 		ratelimit_state_init(&perf->tail_pointer_race,
5234 				     5 * HZ, 10);
5235 		ratelimit_set_flags(&perf->tail_pointer_race,
5236 				    RATELIMIT_MSG_ON_RELEASE);
5237 
5238 		atomic64_set(&perf->noa_programming_delay,
5239 			     500 * 1000 /* 500us */);
5240 
5241 		perf->i915 = i915;
5242 
5243 		ret = oa_init_engine_groups(perf);
5244 		if (ret) {
5245 			drm_err(&i915->drm,
5246 				"OA initialization failed %d\n", ret);
5247 			return ret;
5248 		}
5249 
5250 		oa_init_supported_formats(perf);
5251 	}
5252 
5253 	return 0;
5254 }
5255 
5256 static int destroy_config(int id, void *p, void *data)
5257 {
5258 	i915_oa_config_put(p);
5259 	return 0;
5260 }
5261 
5262 int i915_perf_sysctl_register(void)
5263 {
5264 	sysctl_header = register_sysctl("dev/i915", oa_table);
5265 	return 0;
5266 }
5267 
5268 void i915_perf_sysctl_unregister(void)
5269 {
5270 	unregister_sysctl_table(sysctl_header);
5271 }
5272 
5273 /**
5274  * i915_perf_fini - Counter part to i915_perf_init()
5275  * @i915: i915 device instance
5276  */
5277 void i915_perf_fini(struct drm_i915_private *i915)
5278 {
5279 	struct i915_perf *perf = &i915->perf;
5280 	struct intel_gt *gt;
5281 	int i;
5282 
5283 	if (!perf->i915)
5284 		return;
5285 
5286 	for_each_gt(gt, perf->i915, i)
5287 		kfree(gt->perf.group);
5288 
5289 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
5290 	idr_destroy(&perf->metrics_idr);
5291 
5292 	memset(&perf->ops, 0, sizeof(perf->ops));
5293 	perf->i915 = NULL;
5294 }
5295 
5296 /**
5297  * i915_perf_ioctl_version - Version of the i915-perf subsystem
5298  * @i915: The i915 device
5299  *
5300  * This version number is used by userspace to detect available features.
5301  */
5302 int i915_perf_ioctl_version(struct drm_i915_private *i915)
5303 {
5304 	/*
5305 	 * 1: Initial version
5306 	 *   I915_PERF_IOCTL_ENABLE
5307 	 *   I915_PERF_IOCTL_DISABLE
5308 	 *
5309 	 * 2: Added runtime modification of OA config.
5310 	 *   I915_PERF_IOCTL_CONFIG
5311 	 *
5312 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
5313 	 *    preemption on a particular context so that performance data is
5314 	 *    accessible from a delta of MI_RPC reports without looking at the
5315 	 *    OA buffer.
5316 	 *
5317 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
5318 	 *    be run for the duration of the performance recording based on
5319 	 *    their SSEU configuration.
5320 	 *
5321 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
5322 	 *    interval for the hrtimer used to check for OA data.
5323 	 *
5324 	 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and
5325 	 *    DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE
5326 	 *
5327 	 * 7: Add support for video decode and enhancement classes.
5328 	 */
5329 
5330 	/*
5331 	 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
5332 	 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6
5333 	 * to indicate that OA media is not supported.
5334 	 */
5335 	if (IS_MTL_MEDIA_STEP(i915, STEP_A0, STEP_C0)) {
5336 		struct intel_gt *gt;
5337 		int i;
5338 
5339 		for_each_gt(gt, i915, i) {
5340 			if (gt->type == GT_MEDIA &&
5341 			    intel_check_bios_c6_setup(&gt->rc6))
5342 				return 6;
5343 		}
5344 	}
5345 
5346 	return 7;
5347 }
5348 
5349 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5350 #include "selftests/i915_perf.c"
5351 #endif
5352