1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gt/intel_engine_pm.h" 200 #include "gt/intel_engine_user.h" 201 #include "gt/intel_execlists_submission.h" 202 #include "gt/intel_gpu_commands.h" 203 #include "gt/intel_gt.h" 204 #include "gt/intel_gt_clock_utils.h" 205 #include "gt/intel_lrc.h" 206 #include "gt/intel_ring.h" 207 208 #include "i915_drv.h" 209 #include "i915_perf.h" 210 211 /* HW requires this to be a power of two, between 128k and 16M, though driver 212 * is currently generally designed assuming the largest 16M size is used such 213 * that the overflow cases are unlikely in normal operation. 214 */ 215 #define OA_BUFFER_SIZE SZ_16M 216 217 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 218 219 /** 220 * DOC: OA Tail Pointer Race 221 * 222 * There's a HW race condition between OA unit tail pointer register updates and 223 * writes to memory whereby the tail pointer can sometimes get ahead of what's 224 * been written out to the OA buffer so far (in terms of what's visible to the 225 * CPU). 226 * 227 * Although this can be observed explicitly while copying reports to userspace 228 * by checking for a zeroed report-id field in tail reports, we want to account 229 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 230 * redundant read() attempts. 231 * 232 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 233 * in the OA buffer, starting from the tail reported by the HW until we find a 234 * report with its first 2 dwords not 0 meaning its previous report is 235 * completely in memory and ready to be read. Those dwords are also set to 0 236 * once read and the whole buffer is cleared upon OA buffer initialization. The 237 * first dword is the reason for this report while the second is the timestamp, 238 * making the chances of having those 2 fields at 0 fairly unlikely. A more 239 * detailed explanation is available in oa_buffer_check_unlocked(). 240 * 241 * Most of the implementation details for this workaround are in 242 * oa_buffer_check_unlocked() and _append_oa_reports() 243 * 244 * Note for posterity: previously the driver used to define an effective tail 245 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 246 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 247 * This was flawed considering that the OA unit may also automatically generate 248 * non-periodic reports (such as on context switch) or the OA unit may be 249 * enabled without any periodic sampling. 250 */ 251 #define OA_TAIL_MARGIN_NSEC 100000ULL 252 #define INVALID_TAIL_PTR 0xffffffff 253 254 /* The default frequency for checking whether the OA unit has written new 255 * reports to the circular OA buffer... 256 */ 257 #define DEFAULT_POLL_FREQUENCY_HZ 200 258 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 259 260 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 261 static u32 i915_perf_stream_paranoid = true; 262 263 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 264 * of the 64bit timestamp bits to trigger reports from) but there's currently 265 * no known use case for sampling as infrequently as once per 47 thousand years. 266 * 267 * Since the timestamps included in OA reports are only 32bits it seems 268 * reasonable to limit the OA exponent where it's still possible to account for 269 * overflow in OA report timestamps. 270 */ 271 #define OA_EXPONENT_MAX 31 272 273 #define INVALID_CTX_ID 0xffffffff 274 275 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 276 #define OAREPORT_REASON_MASK 0x3f 277 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 278 #define OAREPORT_REASON_SHIFT 19 279 #define OAREPORT_REASON_TIMER (1<<0) 280 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 281 #define OAREPORT_REASON_CLK_RATIO (1<<5) 282 283 284 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 285 * 286 * The highest sampling frequency we can theoretically program the OA unit 287 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 288 * 289 * Initialized just before we register the sysctl parameter. 290 */ 291 static int oa_sample_rate_hard_limit; 292 293 /* Theoretically we can program the OA unit to sample every 160ns but don't 294 * allow that by default unless root... 295 * 296 * The default threshold of 100000Hz is based on perf's similar 297 * kernel.perf_event_max_sample_rate sysctl parameter. 298 */ 299 static u32 i915_oa_max_sample_rate = 100000; 300 301 /* XXX: beware if future OA HW adds new report formats that the current 302 * code assumes all reports have a power-of-two size and ~(size - 1) can 303 * be used as a mask to align the OA tail pointer. 304 */ 305 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 306 [I915_OA_FORMAT_A13] = { 0, 64 }, 307 [I915_OA_FORMAT_A29] = { 1, 128 }, 308 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 309 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 310 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 311 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 312 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 313 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 314 }; 315 316 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { 317 [I915_OA_FORMAT_A12] = { 0, 64 }, 318 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 319 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 320 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 321 }; 322 323 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = { 324 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 325 }; 326 327 #define SAMPLE_OA_REPORT (1<<0) 328 329 /** 330 * struct perf_open_properties - for validated properties given to open a stream 331 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 332 * @single_context: Whether a single or all gpu contexts should be monitored 333 * @hold_preemption: Whether the preemption is disabled for the filtered 334 * context 335 * @ctx_handle: A gem ctx handle for use with @single_context 336 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 337 * @oa_format: An OA unit HW report format 338 * @oa_periodic: Whether to enable periodic OA unit sampling 339 * @oa_period_exponent: The OA unit sampling period is derived from this 340 * @engine: The engine (typically rcs0) being monitored by the OA unit 341 * @has_sseu: Whether @sseu was specified by userspace 342 * @sseu: internal SSEU configuration computed either from the userspace 343 * specified configuration in the opening parameters or a default value 344 * (see get_default_sseu_config()) 345 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 346 * data availability 347 * 348 * As read_properties_unlocked() enumerates and validates the properties given 349 * to open a stream of metrics the configuration is built up in the structure 350 * which starts out zero initialized. 351 */ 352 struct perf_open_properties { 353 u32 sample_flags; 354 355 u64 single_context:1; 356 u64 hold_preemption:1; 357 u64 ctx_handle; 358 359 /* OA sampling state */ 360 int metrics_set; 361 int oa_format; 362 bool oa_periodic; 363 int oa_period_exponent; 364 365 struct intel_engine_cs *engine; 366 367 bool has_sseu; 368 struct intel_sseu sseu; 369 370 u64 poll_oa_period; 371 }; 372 373 struct i915_oa_config_bo { 374 struct llist_node node; 375 376 struct i915_oa_config *oa_config; 377 struct i915_vma *vma; 378 }; 379 380 static struct ctl_table_header *sysctl_header; 381 382 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 383 384 void i915_oa_config_release(struct kref *ref) 385 { 386 struct i915_oa_config *oa_config = 387 container_of(ref, typeof(*oa_config), ref); 388 389 kfree(oa_config->flex_regs); 390 kfree(oa_config->b_counter_regs); 391 kfree(oa_config->mux_regs); 392 393 kfree_rcu(oa_config, rcu); 394 } 395 396 struct i915_oa_config * 397 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 398 { 399 struct i915_oa_config *oa_config; 400 401 rcu_read_lock(); 402 oa_config = idr_find(&perf->metrics_idr, metrics_set); 403 if (oa_config) 404 oa_config = i915_oa_config_get(oa_config); 405 rcu_read_unlock(); 406 407 return oa_config; 408 } 409 410 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 411 { 412 i915_oa_config_put(oa_bo->oa_config); 413 i915_vma_put(oa_bo->vma); 414 kfree(oa_bo); 415 } 416 417 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 418 { 419 struct intel_uncore *uncore = stream->uncore; 420 421 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 422 GEN12_OAG_OATAILPTR_MASK; 423 } 424 425 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 426 { 427 struct intel_uncore *uncore = stream->uncore; 428 429 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 430 } 431 432 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 433 { 434 struct intel_uncore *uncore = stream->uncore; 435 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 436 437 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 438 } 439 440 /** 441 * oa_buffer_check_unlocked - check for data and update tail ptr state 442 * @stream: i915 stream instance 443 * 444 * This is either called via fops (for blocking reads in user ctx) or the poll 445 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 446 * if there is data available for userspace to read. 447 * 448 * This function is central to providing a workaround for the OA unit tail 449 * pointer having a race with respect to what data is visible to the CPU. 450 * It is responsible for reading tail pointers from the hardware and giving 451 * the pointers time to 'age' before they are made available for reading. 452 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 453 * 454 * Besides returning true when there is data available to read() this function 455 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer 456 * object. 457 * 458 * Note: It's safe to read OA config state here unlocked, assuming that this is 459 * only called while the stream is enabled, while the global OA configuration 460 * can't be modified. 461 * 462 * Returns: %true if the OA buffer contains data, else %false 463 */ 464 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 465 { 466 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 467 int report_size = stream->oa_buffer.format_size; 468 unsigned long flags; 469 bool pollin; 470 u32 hw_tail; 471 u64 now; 472 473 /* We have to consider the (unlikely) possibility that read() errors 474 * could result in an OA buffer reset which might reset the head and 475 * tail state. 476 */ 477 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 478 479 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 480 481 /* The tail pointer increases in 64 byte increments, 482 * not in report_size steps... 483 */ 484 hw_tail &= ~(report_size - 1); 485 486 now = ktime_get_mono_fast_ns(); 487 488 if (hw_tail == stream->oa_buffer.aging_tail && 489 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) { 490 /* If the HW tail hasn't move since the last check and the HW 491 * tail has been aging for long enough, declare it the new 492 * tail. 493 */ 494 stream->oa_buffer.tail = stream->oa_buffer.aging_tail; 495 } else { 496 u32 head, tail, aged_tail; 497 498 /* NB: The head we observe here might effectively be a little 499 * out of date. If a read() is in progress, the head could be 500 * anywhere between this head and stream->oa_buffer.tail. 501 */ 502 head = stream->oa_buffer.head - gtt_offset; 503 aged_tail = stream->oa_buffer.tail - gtt_offset; 504 505 hw_tail -= gtt_offset; 506 tail = hw_tail; 507 508 /* Walk the stream backward until we find a report with dword 0 509 * & 1 not at 0. Since the circular buffer pointers progress by 510 * increments of 64 bytes and that reports can be up to 256 511 * bytes long, we can't tell whether a report has fully landed 512 * in memory before the first 2 dwords of the following report 513 * have effectively landed. 514 * 515 * This is assuming that the writes of the OA unit land in 516 * memory in the order they were written to. 517 * If not : (╯°□°)╯︵ ┻━┻ 518 */ 519 while (OA_TAKEN(tail, aged_tail) >= report_size) { 520 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail); 521 522 if (report32[0] != 0 || report32[1] != 0) 523 break; 524 525 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 526 } 527 528 if (OA_TAKEN(hw_tail, tail) > report_size && 529 __ratelimit(&stream->perf->tail_pointer_race)) 530 DRM_NOTE("unlanded report(s) head=0x%x " 531 "tail=0x%x hw_tail=0x%x\n", 532 head, tail, hw_tail); 533 534 stream->oa_buffer.tail = gtt_offset + tail; 535 stream->oa_buffer.aging_tail = gtt_offset + hw_tail; 536 stream->oa_buffer.aging_timestamp = now; 537 } 538 539 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset, 540 stream->oa_buffer.head - gtt_offset) >= report_size; 541 542 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 543 544 return pollin; 545 } 546 547 /** 548 * append_oa_status - Appends a status record to a userspace read() buffer. 549 * @stream: An i915-perf stream opened for OA metrics 550 * @buf: destination buffer given by userspace 551 * @count: the number of bytes userspace wants to read 552 * @offset: (inout): the current position for writing into @buf 553 * @type: The kind of status to report to userspace 554 * 555 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 556 * into the userspace read() buffer. 557 * 558 * The @buf @offset will only be updated on success. 559 * 560 * Returns: 0 on success, negative error code on failure. 561 */ 562 static int append_oa_status(struct i915_perf_stream *stream, 563 char __user *buf, 564 size_t count, 565 size_t *offset, 566 enum drm_i915_perf_record_type type) 567 { 568 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 569 570 if ((count - *offset) < header.size) 571 return -ENOSPC; 572 573 if (copy_to_user(buf + *offset, &header, sizeof(header))) 574 return -EFAULT; 575 576 (*offset) += header.size; 577 578 return 0; 579 } 580 581 /** 582 * append_oa_sample - Copies single OA report into userspace read() buffer. 583 * @stream: An i915-perf stream opened for OA metrics 584 * @buf: destination buffer given by userspace 585 * @count: the number of bytes userspace wants to read 586 * @offset: (inout): the current position for writing into @buf 587 * @report: A single OA report to (optionally) include as part of the sample 588 * 589 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 590 * properties when opening a stream, tracked as `stream->sample_flags`. This 591 * function copies the requested components of a single sample to the given 592 * read() @buf. 593 * 594 * The @buf @offset will only be updated on success. 595 * 596 * Returns: 0 on success, negative error code on failure. 597 */ 598 static int append_oa_sample(struct i915_perf_stream *stream, 599 char __user *buf, 600 size_t count, 601 size_t *offset, 602 const u8 *report) 603 { 604 int report_size = stream->oa_buffer.format_size; 605 struct drm_i915_perf_record_header header; 606 u32 sample_flags = stream->sample_flags; 607 608 header.type = DRM_I915_PERF_RECORD_SAMPLE; 609 header.pad = 0; 610 header.size = stream->sample_size; 611 612 if ((count - *offset) < header.size) 613 return -ENOSPC; 614 615 buf += *offset; 616 if (copy_to_user(buf, &header, sizeof(header))) 617 return -EFAULT; 618 buf += sizeof(header); 619 620 if (sample_flags & SAMPLE_OA_REPORT) { 621 if (copy_to_user(buf, report, report_size)) 622 return -EFAULT; 623 } 624 625 (*offset) += header.size; 626 627 return 0; 628 } 629 630 /** 631 * gen8_append_oa_reports - Copies all buffered OA reports into 632 * userspace read() buffer. 633 * @stream: An i915-perf stream opened for OA metrics 634 * @buf: destination buffer given by userspace 635 * @count: the number of bytes userspace wants to read 636 * @offset: (inout): the current position for writing into @buf 637 * 638 * Notably any error condition resulting in a short read (-%ENOSPC or 639 * -%EFAULT) will be returned even though one or more records may 640 * have been successfully copied. In this case it's up to the caller 641 * to decide if the error should be squashed before returning to 642 * userspace. 643 * 644 * Note: reports are consumed from the head, and appended to the 645 * tail, so the tail chases the head?... If you think that's mad 646 * and back-to-front you're not alone, but this follows the 647 * Gen PRM naming convention. 648 * 649 * Returns: 0 on success, negative error code on failure. 650 */ 651 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 652 char __user *buf, 653 size_t count, 654 size_t *offset) 655 { 656 struct intel_uncore *uncore = stream->uncore; 657 int report_size = stream->oa_buffer.format_size; 658 u8 *oa_buf_base = stream->oa_buffer.vaddr; 659 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 660 u32 mask = (OA_BUFFER_SIZE - 1); 661 size_t start_offset = *offset; 662 unsigned long flags; 663 u32 head, tail; 664 u32 taken; 665 int ret = 0; 666 667 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 668 return -EIO; 669 670 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 671 672 head = stream->oa_buffer.head; 673 tail = stream->oa_buffer.tail; 674 675 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 676 677 /* 678 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 679 * while indexing relative to oa_buf_base. 680 */ 681 head -= gtt_offset; 682 tail -= gtt_offset; 683 684 /* 685 * An out of bounds or misaligned head or tail pointer implies a driver 686 * bug since we validate + align the tail pointers we read from the 687 * hardware and we are in full control of the head pointer which should 688 * only be incremented by multiples of the report size (notably also 689 * all a power of two). 690 */ 691 if (drm_WARN_ONCE(&uncore->i915->drm, 692 head > OA_BUFFER_SIZE || head % report_size || 693 tail > OA_BUFFER_SIZE || tail % report_size, 694 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 695 head, tail)) 696 return -EIO; 697 698 699 for (/* none */; 700 (taken = OA_TAKEN(tail, head)); 701 head = (head + report_size) & mask) { 702 u8 *report = oa_buf_base + head; 703 u32 *report32 = (void *)report; 704 u32 ctx_id; 705 u32 reason; 706 707 /* 708 * All the report sizes factor neatly into the buffer 709 * size so we never expect to see a report split 710 * between the beginning and end of the buffer. 711 * 712 * Given the initial alignment check a misalignment 713 * here would imply a driver bug that would result 714 * in an overrun. 715 */ 716 if (drm_WARN_ON(&uncore->i915->drm, 717 (OA_BUFFER_SIZE - head) < report_size)) { 718 drm_err(&uncore->i915->drm, 719 "Spurious OA head ptr: non-integral report offset\n"); 720 break; 721 } 722 723 /* 724 * The reason field includes flags identifying what 725 * triggered this specific report (mostly timer 726 * triggered or e.g. due to a context switch). 727 * 728 * This field is never expected to be zero so we can 729 * check that the report isn't invalid before copying 730 * it to userspace... 731 */ 732 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 733 (IS_GEN(stream->perf->i915, 12) ? 734 OAREPORT_REASON_MASK_EXTENDED : 735 OAREPORT_REASON_MASK)); 736 if (reason == 0) { 737 if (__ratelimit(&stream->perf->spurious_report_rs)) 738 DRM_NOTE("Skipping spurious, invalid OA report\n"); 739 continue; 740 } 741 742 ctx_id = report32[2] & stream->specific_ctx_id_mask; 743 744 /* 745 * Squash whatever is in the CTX_ID field if it's marked as 746 * invalid to be sure we avoid false-positive, single-context 747 * filtering below... 748 * 749 * Note: that we don't clear the valid_ctx_bit so userspace can 750 * understand that the ID has been squashed by the kernel. 751 */ 752 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 753 INTEL_GEN(stream->perf->i915) <= 11) 754 ctx_id = report32[2] = INVALID_CTX_ID; 755 756 /* 757 * NB: For Gen 8 the OA unit no longer supports clock gating 758 * off for a specific context and the kernel can't securely 759 * stop the counters from updating as system-wide / global 760 * values. 761 * 762 * Automatic reports now include a context ID so reports can be 763 * filtered on the cpu but it's not worth trying to 764 * automatically subtract/hide counter progress for other 765 * contexts while filtering since we can't stop userspace 766 * issuing MI_REPORT_PERF_COUNT commands which would still 767 * provide a side-band view of the real values. 768 * 769 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 770 * to normalize counters for a single filtered context then it 771 * needs be forwarded bookend context-switch reports so that it 772 * can track switches in between MI_REPORT_PERF_COUNT commands 773 * and can itself subtract/ignore the progress of counters 774 * associated with other contexts. Note that the hardware 775 * automatically triggers reports when switching to a new 776 * context which are tagged with the ID of the newly active 777 * context. To avoid the complexity (and likely fragility) of 778 * reading ahead while parsing reports to try and minimize 779 * forwarding redundant context switch reports (i.e. between 780 * other, unrelated contexts) we simply elect to forward them 781 * all. 782 * 783 * We don't rely solely on the reason field to identify context 784 * switches since it's not-uncommon for periodic samples to 785 * identify a switch before any 'context switch' report. 786 */ 787 if (!stream->perf->exclusive_stream->ctx || 788 stream->specific_ctx_id == ctx_id || 789 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 790 reason & OAREPORT_REASON_CTX_SWITCH) { 791 792 /* 793 * While filtering for a single context we avoid 794 * leaking the IDs of other contexts. 795 */ 796 if (stream->perf->exclusive_stream->ctx && 797 stream->specific_ctx_id != ctx_id) { 798 report32[2] = INVALID_CTX_ID; 799 } 800 801 ret = append_oa_sample(stream, buf, count, offset, 802 report); 803 if (ret) 804 break; 805 806 stream->oa_buffer.last_ctx_id = ctx_id; 807 } 808 809 /* 810 * Clear out the first 2 dword as a mean to detect unlanded 811 * reports. 812 */ 813 report32[0] = 0; 814 report32[1] = 0; 815 } 816 817 if (start_offset != *offset) { 818 i915_reg_t oaheadptr; 819 820 oaheadptr = IS_GEN(stream->perf->i915, 12) ? 821 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 822 823 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 824 825 /* 826 * We removed the gtt_offset for the copy loop above, indexing 827 * relative to oa_buf_base so put back here... 828 */ 829 head += gtt_offset; 830 intel_uncore_write(uncore, oaheadptr, 831 head & GEN12_OAG_OAHEADPTR_MASK); 832 stream->oa_buffer.head = head; 833 834 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 835 } 836 837 return ret; 838 } 839 840 /** 841 * gen8_oa_read - copy status records then buffered OA reports 842 * @stream: An i915-perf stream opened for OA metrics 843 * @buf: destination buffer given by userspace 844 * @count: the number of bytes userspace wants to read 845 * @offset: (inout): the current position for writing into @buf 846 * 847 * Checks OA unit status registers and if necessary appends corresponding 848 * status records for userspace (such as for a buffer full condition) and then 849 * initiate appending any buffered OA reports. 850 * 851 * Updates @offset according to the number of bytes successfully copied into 852 * the userspace buffer. 853 * 854 * NB: some data may be successfully copied to the userspace buffer 855 * even if an error is returned, and this is reflected in the 856 * updated @offset. 857 * 858 * Returns: zero on success or a negative error code 859 */ 860 static int gen8_oa_read(struct i915_perf_stream *stream, 861 char __user *buf, 862 size_t count, 863 size_t *offset) 864 { 865 struct intel_uncore *uncore = stream->uncore; 866 u32 oastatus; 867 i915_reg_t oastatus_reg; 868 int ret; 869 870 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 871 return -EIO; 872 873 oastatus_reg = IS_GEN(stream->perf->i915, 12) ? 874 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 875 876 oastatus = intel_uncore_read(uncore, oastatus_reg); 877 878 /* 879 * We treat OABUFFER_OVERFLOW as a significant error: 880 * 881 * Although theoretically we could handle this more gracefully 882 * sometimes, some Gens don't correctly suppress certain 883 * automatically triggered reports in this condition and so we 884 * have to assume that old reports are now being trampled 885 * over. 886 * 887 * Considering how we don't currently give userspace control 888 * over the OA buffer size and always configure a large 16MB 889 * buffer, then a buffer overflow does anyway likely indicate 890 * that something has gone quite badly wrong. 891 */ 892 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 893 ret = append_oa_status(stream, buf, count, offset, 894 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 895 if (ret) 896 return ret; 897 898 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 899 stream->period_exponent); 900 901 stream->perf->ops.oa_disable(stream); 902 stream->perf->ops.oa_enable(stream); 903 904 /* 905 * Note: .oa_enable() is expected to re-init the oabuffer and 906 * reset GEN8_OASTATUS for us 907 */ 908 oastatus = intel_uncore_read(uncore, oastatus_reg); 909 } 910 911 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 912 ret = append_oa_status(stream, buf, count, offset, 913 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 914 if (ret) 915 return ret; 916 917 intel_uncore_rmw(uncore, oastatus_reg, 918 GEN8_OASTATUS_COUNTER_OVERFLOW | 919 GEN8_OASTATUS_REPORT_LOST, 920 IS_GEN_RANGE(uncore->i915, 8, 11) ? 921 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 922 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 923 } 924 925 return gen8_append_oa_reports(stream, buf, count, offset); 926 } 927 928 /** 929 * gen7_append_oa_reports - Copies all buffered OA reports into 930 * userspace read() buffer. 931 * @stream: An i915-perf stream opened for OA metrics 932 * @buf: destination buffer given by userspace 933 * @count: the number of bytes userspace wants to read 934 * @offset: (inout): the current position for writing into @buf 935 * 936 * Notably any error condition resulting in a short read (-%ENOSPC or 937 * -%EFAULT) will be returned even though one or more records may 938 * have been successfully copied. In this case it's up to the caller 939 * to decide if the error should be squashed before returning to 940 * userspace. 941 * 942 * Note: reports are consumed from the head, and appended to the 943 * tail, so the tail chases the head?... If you think that's mad 944 * and back-to-front you're not alone, but this follows the 945 * Gen PRM naming convention. 946 * 947 * Returns: 0 on success, negative error code on failure. 948 */ 949 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 950 char __user *buf, 951 size_t count, 952 size_t *offset) 953 { 954 struct intel_uncore *uncore = stream->uncore; 955 int report_size = stream->oa_buffer.format_size; 956 u8 *oa_buf_base = stream->oa_buffer.vaddr; 957 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 958 u32 mask = (OA_BUFFER_SIZE - 1); 959 size_t start_offset = *offset; 960 unsigned long flags; 961 u32 head, tail; 962 u32 taken; 963 int ret = 0; 964 965 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 966 return -EIO; 967 968 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 969 970 head = stream->oa_buffer.head; 971 tail = stream->oa_buffer.tail; 972 973 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 974 975 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 976 * while indexing relative to oa_buf_base. 977 */ 978 head -= gtt_offset; 979 tail -= gtt_offset; 980 981 /* An out of bounds or misaligned head or tail pointer implies a driver 982 * bug since we validate + align the tail pointers we read from the 983 * hardware and we are in full control of the head pointer which should 984 * only be incremented by multiples of the report size (notably also 985 * all a power of two). 986 */ 987 if (drm_WARN_ONCE(&uncore->i915->drm, 988 head > OA_BUFFER_SIZE || head % report_size || 989 tail > OA_BUFFER_SIZE || tail % report_size, 990 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 991 head, tail)) 992 return -EIO; 993 994 995 for (/* none */; 996 (taken = OA_TAKEN(tail, head)); 997 head = (head + report_size) & mask) { 998 u8 *report = oa_buf_base + head; 999 u32 *report32 = (void *)report; 1000 1001 /* All the report sizes factor neatly into the buffer 1002 * size so we never expect to see a report split 1003 * between the beginning and end of the buffer. 1004 * 1005 * Given the initial alignment check a misalignment 1006 * here would imply a driver bug that would result 1007 * in an overrun. 1008 */ 1009 if (drm_WARN_ON(&uncore->i915->drm, 1010 (OA_BUFFER_SIZE - head) < report_size)) { 1011 drm_err(&uncore->i915->drm, 1012 "Spurious OA head ptr: non-integral report offset\n"); 1013 break; 1014 } 1015 1016 /* The report-ID field for periodic samples includes 1017 * some undocumented flags related to what triggered 1018 * the report and is never expected to be zero so we 1019 * can check that the report isn't invalid before 1020 * copying it to userspace... 1021 */ 1022 if (report32[0] == 0) { 1023 if (__ratelimit(&stream->perf->spurious_report_rs)) 1024 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1025 continue; 1026 } 1027 1028 ret = append_oa_sample(stream, buf, count, offset, report); 1029 if (ret) 1030 break; 1031 1032 /* Clear out the first 2 dwords as a mean to detect unlanded 1033 * reports. 1034 */ 1035 report32[0] = 0; 1036 report32[1] = 0; 1037 } 1038 1039 if (start_offset != *offset) { 1040 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1041 1042 /* We removed the gtt_offset for the copy loop above, indexing 1043 * relative to oa_buf_base so put back here... 1044 */ 1045 head += gtt_offset; 1046 1047 intel_uncore_write(uncore, GEN7_OASTATUS2, 1048 (head & GEN7_OASTATUS2_HEAD_MASK) | 1049 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1050 stream->oa_buffer.head = head; 1051 1052 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1053 } 1054 1055 return ret; 1056 } 1057 1058 /** 1059 * gen7_oa_read - copy status records then buffered OA reports 1060 * @stream: An i915-perf stream opened for OA metrics 1061 * @buf: destination buffer given by userspace 1062 * @count: the number of bytes userspace wants to read 1063 * @offset: (inout): the current position for writing into @buf 1064 * 1065 * Checks Gen 7 specific OA unit status registers and if necessary appends 1066 * corresponding status records for userspace (such as for a buffer full 1067 * condition) and then initiate appending any buffered OA reports. 1068 * 1069 * Updates @offset according to the number of bytes successfully copied into 1070 * the userspace buffer. 1071 * 1072 * Returns: zero on success or a negative error code 1073 */ 1074 static int gen7_oa_read(struct i915_perf_stream *stream, 1075 char __user *buf, 1076 size_t count, 1077 size_t *offset) 1078 { 1079 struct intel_uncore *uncore = stream->uncore; 1080 u32 oastatus1; 1081 int ret; 1082 1083 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1084 return -EIO; 1085 1086 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1087 1088 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1089 * bits while the OA unit is enabled (while the tail pointer 1090 * may be updated asynchronously) so we ignore status bits 1091 * that have already been reported to userspace. 1092 */ 1093 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1094 1095 /* We treat OABUFFER_OVERFLOW as a significant error: 1096 * 1097 * - The status can be interpreted to mean that the buffer is 1098 * currently full (with a higher precedence than OA_TAKEN() 1099 * which will start to report a near-empty buffer after an 1100 * overflow) but it's awkward that we can't clear the status 1101 * on Haswell, so without a reset we won't be able to catch 1102 * the state again. 1103 * 1104 * - Since it also implies the HW has started overwriting old 1105 * reports it may also affect our sanity checks for invalid 1106 * reports when copying to userspace that assume new reports 1107 * are being written to cleared memory. 1108 * 1109 * - In the future we may want to introduce a flight recorder 1110 * mode where the driver will automatically maintain a safe 1111 * guard band between head/tail, avoiding this overflow 1112 * condition, but we avoid the added driver complexity for 1113 * now. 1114 */ 1115 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1116 ret = append_oa_status(stream, buf, count, offset, 1117 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1118 if (ret) 1119 return ret; 1120 1121 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1122 stream->period_exponent); 1123 1124 stream->perf->ops.oa_disable(stream); 1125 stream->perf->ops.oa_enable(stream); 1126 1127 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1128 } 1129 1130 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1131 ret = append_oa_status(stream, buf, count, offset, 1132 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1133 if (ret) 1134 return ret; 1135 stream->perf->gen7_latched_oastatus1 |= 1136 GEN7_OASTATUS1_REPORT_LOST; 1137 } 1138 1139 return gen7_append_oa_reports(stream, buf, count, offset); 1140 } 1141 1142 /** 1143 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1144 * @stream: An i915-perf stream opened for OA metrics 1145 * 1146 * Called when userspace tries to read() from a blocking stream FD opened 1147 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1148 * OA buffer and wakes us. 1149 * 1150 * Note: it's acceptable to have this return with some false positives 1151 * since any subsequent read handling will return -EAGAIN if there isn't 1152 * really data ready for userspace yet. 1153 * 1154 * Returns: zero on success or a negative error code 1155 */ 1156 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1157 { 1158 /* We would wait indefinitely if periodic sampling is not enabled */ 1159 if (!stream->periodic) 1160 return -EIO; 1161 1162 return wait_event_interruptible(stream->poll_wq, 1163 oa_buffer_check_unlocked(stream)); 1164 } 1165 1166 /** 1167 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1168 * @stream: An i915-perf stream opened for OA metrics 1169 * @file: An i915 perf stream file 1170 * @wait: poll() state table 1171 * 1172 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1173 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1174 * when it sees data ready to read in the circular OA buffer. 1175 */ 1176 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1177 struct file *file, 1178 poll_table *wait) 1179 { 1180 poll_wait(file, &stream->poll_wq, wait); 1181 } 1182 1183 /** 1184 * i915_oa_read - just calls through to &i915_oa_ops->read 1185 * @stream: An i915-perf stream opened for OA metrics 1186 * @buf: destination buffer given by userspace 1187 * @count: the number of bytes userspace wants to read 1188 * @offset: (inout): the current position for writing into @buf 1189 * 1190 * Updates @offset according to the number of bytes successfully copied into 1191 * the userspace buffer. 1192 * 1193 * Returns: zero on success or a negative error code 1194 */ 1195 static int i915_oa_read(struct i915_perf_stream *stream, 1196 char __user *buf, 1197 size_t count, 1198 size_t *offset) 1199 { 1200 return stream->perf->ops.read(stream, buf, count, offset); 1201 } 1202 1203 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1204 { 1205 struct i915_gem_engines_iter it; 1206 struct i915_gem_context *ctx = stream->ctx; 1207 struct intel_context *ce; 1208 struct i915_gem_ww_ctx ww; 1209 int err = -ENODEV; 1210 1211 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1212 if (ce->engine != stream->engine) /* first match! */ 1213 continue; 1214 1215 err = 0; 1216 break; 1217 } 1218 i915_gem_context_unlock_engines(ctx); 1219 1220 if (err) 1221 return ERR_PTR(err); 1222 1223 i915_gem_ww_ctx_init(&ww, true); 1224 retry: 1225 /* 1226 * As the ID is the gtt offset of the context's vma we 1227 * pin the vma to ensure the ID remains fixed. 1228 */ 1229 err = intel_context_pin_ww(ce, &ww); 1230 if (err == -EDEADLK) { 1231 err = i915_gem_ww_ctx_backoff(&ww); 1232 if (!err) 1233 goto retry; 1234 } 1235 i915_gem_ww_ctx_fini(&ww); 1236 1237 if (err) 1238 return ERR_PTR(err); 1239 1240 stream->pinned_ctx = ce; 1241 return stream->pinned_ctx; 1242 } 1243 1244 /** 1245 * oa_get_render_ctx_id - determine and hold ctx hw id 1246 * @stream: An i915-perf stream opened for OA metrics 1247 * 1248 * Determine the render context hw id, and ensure it remains fixed for the 1249 * lifetime of the stream. This ensures that we don't have to worry about 1250 * updating the context ID in OACONTROL on the fly. 1251 * 1252 * Returns: zero on success or a negative error code 1253 */ 1254 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1255 { 1256 struct intel_context *ce; 1257 1258 ce = oa_pin_context(stream); 1259 if (IS_ERR(ce)) 1260 return PTR_ERR(ce); 1261 1262 switch (INTEL_GEN(ce->engine->i915)) { 1263 case 7: { 1264 /* 1265 * On Haswell we don't do any post processing of the reports 1266 * and don't need to use the mask. 1267 */ 1268 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1269 stream->specific_ctx_id_mask = 0; 1270 break; 1271 } 1272 1273 case 8: 1274 case 9: 1275 case 10: 1276 if (intel_engine_in_execlists_submission_mode(ce->engine)) { 1277 stream->specific_ctx_id_mask = 1278 (1U << GEN8_CTX_ID_WIDTH) - 1; 1279 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1280 } else { 1281 /* 1282 * When using GuC, the context descriptor we write in 1283 * i915 is read by GuC and rewritten before it's 1284 * actually written into the hardware. The LRCA is 1285 * what is put into the context id field of the 1286 * context descriptor by GuC. Because it's aligned to 1287 * a page, the lower 12bits are always at 0 and 1288 * dropped by GuC. They won't be part of the context 1289 * ID in the OA reports, so squash those lower bits. 1290 */ 1291 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1292 1293 /* 1294 * GuC uses the top bit to signal proxy submission, so 1295 * ignore that bit. 1296 */ 1297 stream->specific_ctx_id_mask = 1298 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1299 } 1300 break; 1301 1302 case 11: 1303 case 12: { 1304 stream->specific_ctx_id_mask = 1305 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1306 /* 1307 * Pick an unused context id 1308 * 0 - BITS_PER_LONG are used by other contexts 1309 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context 1310 */ 1311 stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1312 break; 1313 } 1314 1315 default: 1316 MISSING_CASE(INTEL_GEN(ce->engine->i915)); 1317 } 1318 1319 ce->tag = stream->specific_ctx_id; 1320 1321 drm_dbg(&stream->perf->i915->drm, 1322 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1323 stream->specific_ctx_id, 1324 stream->specific_ctx_id_mask); 1325 1326 return 0; 1327 } 1328 1329 /** 1330 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1331 * @stream: An i915-perf stream opened for OA metrics 1332 * 1333 * In case anything needed doing to ensure the context HW ID would remain valid 1334 * for the lifetime of the stream, then that can be undone here. 1335 */ 1336 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1337 { 1338 struct intel_context *ce; 1339 1340 ce = fetch_and_zero(&stream->pinned_ctx); 1341 if (ce) { 1342 ce->tag = 0; /* recomputed on next submission after parking */ 1343 intel_context_unpin(ce); 1344 } 1345 1346 stream->specific_ctx_id = INVALID_CTX_ID; 1347 stream->specific_ctx_id_mask = 0; 1348 } 1349 1350 static void 1351 free_oa_buffer(struct i915_perf_stream *stream) 1352 { 1353 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1354 I915_VMA_RELEASE_MAP); 1355 1356 stream->oa_buffer.vaddr = NULL; 1357 } 1358 1359 static void 1360 free_oa_configs(struct i915_perf_stream *stream) 1361 { 1362 struct i915_oa_config_bo *oa_bo, *tmp; 1363 1364 i915_oa_config_put(stream->oa_config); 1365 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1366 free_oa_config_bo(oa_bo); 1367 } 1368 1369 static void 1370 free_noa_wait(struct i915_perf_stream *stream) 1371 { 1372 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1373 } 1374 1375 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1376 { 1377 struct i915_perf *perf = stream->perf; 1378 1379 BUG_ON(stream != perf->exclusive_stream); 1380 1381 /* 1382 * Unset exclusive_stream first, it will be checked while disabling 1383 * the metric set on gen8+. 1384 * 1385 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1386 */ 1387 WRITE_ONCE(perf->exclusive_stream, NULL); 1388 perf->ops.disable_metric_set(stream); 1389 1390 free_oa_buffer(stream); 1391 1392 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1393 intel_engine_pm_put(stream->engine); 1394 1395 if (stream->ctx) 1396 oa_put_render_ctx_id(stream); 1397 1398 free_oa_configs(stream); 1399 free_noa_wait(stream); 1400 1401 if (perf->spurious_report_rs.missed) { 1402 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1403 perf->spurious_report_rs.missed); 1404 } 1405 } 1406 1407 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1408 { 1409 struct intel_uncore *uncore = stream->uncore; 1410 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1411 unsigned long flags; 1412 1413 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1414 1415 /* Pre-DevBDW: OABUFFER must be set with counters off, 1416 * before OASTATUS1, but after OASTATUS2 1417 */ 1418 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1419 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1420 stream->oa_buffer.head = gtt_offset; 1421 1422 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1423 1424 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1425 gtt_offset | OABUFFER_SIZE_16M); 1426 1427 /* Mark that we need updated tail pointers to read from... */ 1428 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1429 stream->oa_buffer.tail = gtt_offset; 1430 1431 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1432 1433 /* On Haswell we have to track which OASTATUS1 flags we've 1434 * already seen since they can't be cleared while periodic 1435 * sampling is enabled. 1436 */ 1437 stream->perf->gen7_latched_oastatus1 = 0; 1438 1439 /* NB: although the OA buffer will initially be allocated 1440 * zeroed via shmfs (and so this memset is redundant when 1441 * first allocating), we may re-init the OA buffer, either 1442 * when re-enabling a stream or in error/reset paths. 1443 * 1444 * The reason we clear the buffer for each re-init is for the 1445 * sanity check in gen7_append_oa_reports() that looks at the 1446 * report-id field to make sure it's non-zero which relies on 1447 * the assumption that new reports are being written to zeroed 1448 * memory... 1449 */ 1450 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1451 } 1452 1453 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1454 { 1455 struct intel_uncore *uncore = stream->uncore; 1456 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1457 unsigned long flags; 1458 1459 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1460 1461 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1462 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1463 stream->oa_buffer.head = gtt_offset; 1464 1465 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1466 1467 /* 1468 * PRM says: 1469 * 1470 * "This MMIO must be set before the OATAILPTR 1471 * register and after the OAHEADPTR register. This is 1472 * to enable proper functionality of the overflow 1473 * bit." 1474 */ 1475 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1476 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1477 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1478 1479 /* Mark that we need updated tail pointers to read from... */ 1480 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1481 stream->oa_buffer.tail = gtt_offset; 1482 1483 /* 1484 * Reset state used to recognise context switches, affecting which 1485 * reports we will forward to userspace while filtering for a single 1486 * context. 1487 */ 1488 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1489 1490 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1491 1492 /* 1493 * NB: although the OA buffer will initially be allocated 1494 * zeroed via shmfs (and so this memset is redundant when 1495 * first allocating), we may re-init the OA buffer, either 1496 * when re-enabling a stream or in error/reset paths. 1497 * 1498 * The reason we clear the buffer for each re-init is for the 1499 * sanity check in gen8_append_oa_reports() that looks at the 1500 * reason field to make sure it's non-zero which relies on 1501 * the assumption that new reports are being written to zeroed 1502 * memory... 1503 */ 1504 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1505 } 1506 1507 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1508 { 1509 struct intel_uncore *uncore = stream->uncore; 1510 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1511 unsigned long flags; 1512 1513 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1514 1515 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1516 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1517 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1518 stream->oa_buffer.head = gtt_offset; 1519 1520 /* 1521 * PRM says: 1522 * 1523 * "This MMIO must be set before the OATAILPTR 1524 * register and after the OAHEADPTR register. This is 1525 * to enable proper functionality of the overflow 1526 * bit." 1527 */ 1528 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1529 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1530 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1531 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1532 1533 /* Mark that we need updated tail pointers to read from... */ 1534 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1535 stream->oa_buffer.tail = gtt_offset; 1536 1537 /* 1538 * Reset state used to recognise context switches, affecting which 1539 * reports we will forward to userspace while filtering for a single 1540 * context. 1541 */ 1542 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1543 1544 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1545 1546 /* 1547 * NB: although the OA buffer will initially be allocated 1548 * zeroed via shmfs (and so this memset is redundant when 1549 * first allocating), we may re-init the OA buffer, either 1550 * when re-enabling a stream or in error/reset paths. 1551 * 1552 * The reason we clear the buffer for each re-init is for the 1553 * sanity check in gen8_append_oa_reports() that looks at the 1554 * reason field to make sure it's non-zero which relies on 1555 * the assumption that new reports are being written to zeroed 1556 * memory... 1557 */ 1558 memset(stream->oa_buffer.vaddr, 0, 1559 stream->oa_buffer.vma->size); 1560 } 1561 1562 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1563 { 1564 struct drm_i915_private *i915 = stream->perf->i915; 1565 struct drm_i915_gem_object *bo; 1566 struct i915_vma *vma; 1567 int ret; 1568 1569 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1570 return -ENODEV; 1571 1572 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1573 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1574 1575 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1576 if (IS_ERR(bo)) { 1577 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1578 return PTR_ERR(bo); 1579 } 1580 1581 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1582 1583 /* PreHSW required 512K alignment, HSW requires 16M */ 1584 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1585 if (IS_ERR(vma)) { 1586 ret = PTR_ERR(vma); 1587 goto err_unref; 1588 } 1589 stream->oa_buffer.vma = vma; 1590 1591 stream->oa_buffer.vaddr = 1592 i915_gem_object_pin_map(bo, I915_MAP_WB); 1593 if (IS_ERR(stream->oa_buffer.vaddr)) { 1594 ret = PTR_ERR(stream->oa_buffer.vaddr); 1595 goto err_unpin; 1596 } 1597 1598 return 0; 1599 1600 err_unpin: 1601 __i915_vma_unpin(vma); 1602 1603 err_unref: 1604 i915_gem_object_put(bo); 1605 1606 stream->oa_buffer.vaddr = NULL; 1607 stream->oa_buffer.vma = NULL; 1608 1609 return ret; 1610 } 1611 1612 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1613 bool save, i915_reg_t reg, u32 offset, 1614 u32 dword_count) 1615 { 1616 u32 cmd; 1617 u32 d; 1618 1619 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1620 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1621 if (INTEL_GEN(stream->perf->i915) >= 8) 1622 cmd++; 1623 1624 for (d = 0; d < dword_count; d++) { 1625 *cs++ = cmd; 1626 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1627 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1628 offset) + 4 * d; 1629 *cs++ = 0; 1630 } 1631 1632 return cs; 1633 } 1634 1635 static int alloc_noa_wait(struct i915_perf_stream *stream) 1636 { 1637 struct drm_i915_private *i915 = stream->perf->i915; 1638 struct drm_i915_gem_object *bo; 1639 struct i915_vma *vma; 1640 const u64 delay_ticks = 0xffffffffffffffff - 1641 intel_gt_ns_to_clock_interval(stream->perf->i915->ggtt.vm.gt, 1642 atomic64_read(&stream->perf->noa_programming_delay)); 1643 const u32 base = stream->engine->mmio_base; 1644 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1645 u32 *batch, *ts0, *cs, *jump; 1646 int ret, i; 1647 enum { 1648 START_TS, 1649 NOW_TS, 1650 DELTA_TS, 1651 JUMP_PREDICATE, 1652 DELTA_TARGET, 1653 N_CS_GPR 1654 }; 1655 1656 bo = i915_gem_object_create_internal(i915, 4096); 1657 if (IS_ERR(bo)) { 1658 drm_err(&i915->drm, 1659 "Failed to allocate NOA wait batchbuffer\n"); 1660 return PTR_ERR(bo); 1661 } 1662 1663 /* 1664 * We pin in GGTT because we jump into this buffer now because 1665 * multiple OA config BOs will have a jump to this address and it 1666 * needs to be fixed during the lifetime of the i915/perf stream. 1667 */ 1668 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH); 1669 if (IS_ERR(vma)) { 1670 ret = PTR_ERR(vma); 1671 goto err_unref; 1672 } 1673 1674 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1675 if (IS_ERR(batch)) { 1676 ret = PTR_ERR(batch); 1677 goto err_unpin; 1678 } 1679 1680 /* Save registers. */ 1681 for (i = 0; i < N_CS_GPR; i++) 1682 cs = save_restore_register( 1683 stream, cs, true /* save */, CS_GPR(i), 1684 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1685 cs = save_restore_register( 1686 stream, cs, true /* save */, MI_PREDICATE_RESULT_1, 1687 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1688 1689 /* First timestamp snapshot location. */ 1690 ts0 = cs; 1691 1692 /* 1693 * Initial snapshot of the timestamp register to implement the wait. 1694 * We work with 32b values, so clear out the top 32b bits of the 1695 * register because the ALU works 64bits. 1696 */ 1697 *cs++ = MI_LOAD_REGISTER_IMM(1); 1698 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1699 *cs++ = 0; 1700 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1701 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1702 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1703 1704 /* 1705 * This is the location we're going to jump back into until the 1706 * required amount of time has passed. 1707 */ 1708 jump = cs; 1709 1710 /* 1711 * Take another snapshot of the timestamp register. Take care to clear 1712 * up the top 32bits of CS_GPR(1) as we're using it for other 1713 * operations below. 1714 */ 1715 *cs++ = MI_LOAD_REGISTER_IMM(1); 1716 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1717 *cs++ = 0; 1718 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1719 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1720 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1721 1722 /* 1723 * Do a diff between the 2 timestamps and store the result back into 1724 * CS_GPR(1). 1725 */ 1726 *cs++ = MI_MATH(5); 1727 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1728 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1729 *cs++ = MI_MATH_SUB; 1730 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1731 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1732 1733 /* 1734 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1735 * timestamp have rolled over the 32bits) into the predicate register 1736 * to be used for the predicated jump. 1737 */ 1738 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1739 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1740 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1741 1742 /* Restart from the beginning if we had timestamps roll over. */ 1743 *cs++ = (INTEL_GEN(i915) < 8 ? 1744 MI_BATCH_BUFFER_START : 1745 MI_BATCH_BUFFER_START_GEN8) | 1746 MI_BATCH_PREDICATE; 1747 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1748 *cs++ = 0; 1749 1750 /* 1751 * Now add the diff between to previous timestamps and add it to : 1752 * (((1 * << 64) - 1) - delay_ns) 1753 * 1754 * When the Carry Flag contains 1 this means the elapsed time is 1755 * longer than the expected delay, and we can exit the wait loop. 1756 */ 1757 *cs++ = MI_LOAD_REGISTER_IMM(2); 1758 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1759 *cs++ = lower_32_bits(delay_ticks); 1760 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 1761 *cs++ = upper_32_bits(delay_ticks); 1762 1763 *cs++ = MI_MATH(4); 1764 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 1765 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 1766 *cs++ = MI_MATH_ADD; 1767 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1768 1769 *cs++ = MI_ARB_CHECK; 1770 1771 /* 1772 * Transfer the result into the predicate register to be used for the 1773 * predicated jump. 1774 */ 1775 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1776 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1777 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1778 1779 /* Predicate the jump. */ 1780 *cs++ = (INTEL_GEN(i915) < 8 ? 1781 MI_BATCH_BUFFER_START : 1782 MI_BATCH_BUFFER_START_GEN8) | 1783 MI_BATCH_PREDICATE; 1784 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 1785 *cs++ = 0; 1786 1787 /* Restore registers. */ 1788 for (i = 0; i < N_CS_GPR; i++) 1789 cs = save_restore_register( 1790 stream, cs, false /* restore */, CS_GPR(i), 1791 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1792 cs = save_restore_register( 1793 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1, 1794 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1795 1796 /* And return to the ring. */ 1797 *cs++ = MI_BATCH_BUFFER_END; 1798 1799 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 1800 1801 i915_gem_object_flush_map(bo); 1802 __i915_gem_object_release_map(bo); 1803 1804 stream->noa_wait = vma; 1805 return 0; 1806 1807 err_unpin: 1808 i915_vma_unpin_and_release(&vma, 0); 1809 err_unref: 1810 i915_gem_object_put(bo); 1811 return ret; 1812 } 1813 1814 static u32 *write_cs_mi_lri(u32 *cs, 1815 const struct i915_oa_reg *reg_data, 1816 u32 n_regs) 1817 { 1818 u32 i; 1819 1820 for (i = 0; i < n_regs; i++) { 1821 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 1822 u32 n_lri = min_t(u32, 1823 n_regs - i, 1824 MI_LOAD_REGISTER_IMM_MAX_REGS); 1825 1826 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 1827 } 1828 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 1829 *cs++ = reg_data[i].value; 1830 } 1831 1832 return cs; 1833 } 1834 1835 static int num_lri_dwords(int num_regs) 1836 { 1837 int count = 0; 1838 1839 if (num_regs > 0) { 1840 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 1841 count += num_regs * 2; 1842 } 1843 1844 return count; 1845 } 1846 1847 static struct i915_oa_config_bo * 1848 alloc_oa_config_buffer(struct i915_perf_stream *stream, 1849 struct i915_oa_config *oa_config) 1850 { 1851 struct drm_i915_gem_object *obj; 1852 struct i915_oa_config_bo *oa_bo; 1853 size_t config_length = 0; 1854 u32 *cs; 1855 int err; 1856 1857 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 1858 if (!oa_bo) 1859 return ERR_PTR(-ENOMEM); 1860 1861 config_length += num_lri_dwords(oa_config->mux_regs_len); 1862 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 1863 config_length += num_lri_dwords(oa_config->flex_regs_len); 1864 config_length += 3; /* MI_BATCH_BUFFER_START */ 1865 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 1866 1867 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 1868 if (IS_ERR(obj)) { 1869 err = PTR_ERR(obj); 1870 goto err_free; 1871 } 1872 1873 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 1874 if (IS_ERR(cs)) { 1875 err = PTR_ERR(cs); 1876 goto err_oa_bo; 1877 } 1878 1879 cs = write_cs_mi_lri(cs, 1880 oa_config->mux_regs, 1881 oa_config->mux_regs_len); 1882 cs = write_cs_mi_lri(cs, 1883 oa_config->b_counter_regs, 1884 oa_config->b_counter_regs_len); 1885 cs = write_cs_mi_lri(cs, 1886 oa_config->flex_regs, 1887 oa_config->flex_regs_len); 1888 1889 /* Jump into the active wait. */ 1890 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ? 1891 MI_BATCH_BUFFER_START : 1892 MI_BATCH_BUFFER_START_GEN8); 1893 *cs++ = i915_ggtt_offset(stream->noa_wait); 1894 *cs++ = 0; 1895 1896 i915_gem_object_flush_map(obj); 1897 __i915_gem_object_release_map(obj); 1898 1899 oa_bo->vma = i915_vma_instance(obj, 1900 &stream->engine->gt->ggtt->vm, 1901 NULL); 1902 if (IS_ERR(oa_bo->vma)) { 1903 err = PTR_ERR(oa_bo->vma); 1904 goto err_oa_bo; 1905 } 1906 1907 oa_bo->oa_config = i915_oa_config_get(oa_config); 1908 llist_add(&oa_bo->node, &stream->oa_config_bos); 1909 1910 return oa_bo; 1911 1912 err_oa_bo: 1913 i915_gem_object_put(obj); 1914 err_free: 1915 kfree(oa_bo); 1916 return ERR_PTR(err); 1917 } 1918 1919 static struct i915_vma * 1920 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 1921 { 1922 struct i915_oa_config_bo *oa_bo; 1923 1924 /* 1925 * Look for the buffer in the already allocated BOs attached 1926 * to the stream. 1927 */ 1928 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 1929 if (oa_bo->oa_config == oa_config && 1930 memcmp(oa_bo->oa_config->uuid, 1931 oa_config->uuid, 1932 sizeof(oa_config->uuid)) == 0) 1933 goto out; 1934 } 1935 1936 oa_bo = alloc_oa_config_buffer(stream, oa_config); 1937 if (IS_ERR(oa_bo)) 1938 return ERR_CAST(oa_bo); 1939 1940 out: 1941 return i915_vma_get(oa_bo->vma); 1942 } 1943 1944 static int 1945 emit_oa_config(struct i915_perf_stream *stream, 1946 struct i915_oa_config *oa_config, 1947 struct intel_context *ce, 1948 struct i915_active *active) 1949 { 1950 struct i915_request *rq; 1951 struct i915_vma *vma; 1952 struct i915_gem_ww_ctx ww; 1953 int err; 1954 1955 vma = get_oa_vma(stream, oa_config); 1956 if (IS_ERR(vma)) 1957 return PTR_ERR(vma); 1958 1959 i915_gem_ww_ctx_init(&ww, true); 1960 retry: 1961 err = i915_gem_object_lock(vma->obj, &ww); 1962 if (err) 1963 goto err; 1964 1965 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 1966 if (err) 1967 goto err; 1968 1969 intel_engine_pm_get(ce->engine); 1970 rq = i915_request_create(ce); 1971 intel_engine_pm_put(ce->engine); 1972 if (IS_ERR(rq)) { 1973 err = PTR_ERR(rq); 1974 goto err_vma_unpin; 1975 } 1976 1977 if (!IS_ERR_OR_NULL(active)) { 1978 /* After all individual context modifications */ 1979 err = i915_request_await_active(rq, active, 1980 I915_ACTIVE_AWAIT_ACTIVE); 1981 if (err) 1982 goto err_add_request; 1983 1984 err = i915_active_add_request(active, rq); 1985 if (err) 1986 goto err_add_request; 1987 } 1988 1989 err = i915_request_await_object(rq, vma->obj, 0); 1990 if (!err) 1991 err = i915_vma_move_to_active(vma, rq, 0); 1992 if (err) 1993 goto err_add_request; 1994 1995 err = rq->engine->emit_bb_start(rq, 1996 vma->node.start, 0, 1997 I915_DISPATCH_SECURE); 1998 if (err) 1999 goto err_add_request; 2000 2001 err_add_request: 2002 i915_request_add(rq); 2003 err_vma_unpin: 2004 i915_vma_unpin(vma); 2005 err: 2006 if (err == -EDEADLK) { 2007 err = i915_gem_ww_ctx_backoff(&ww); 2008 if (!err) 2009 goto retry; 2010 } 2011 2012 i915_gem_ww_ctx_fini(&ww); 2013 i915_vma_put(vma); 2014 return err; 2015 } 2016 2017 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2018 { 2019 return stream->pinned_ctx ?: stream->engine->kernel_context; 2020 } 2021 2022 static int 2023 hsw_enable_metric_set(struct i915_perf_stream *stream, 2024 struct i915_active *active) 2025 { 2026 struct intel_uncore *uncore = stream->uncore; 2027 2028 /* 2029 * PRM: 2030 * 2031 * OA unit is using “crclk” for its functionality. When trunk 2032 * level clock gating takes place, OA clock would be gated, 2033 * unable to count the events from non-render clock domain. 2034 * Render clock gating must be disabled when OA is enabled to 2035 * count the events from non-render domain. Unit level clock 2036 * gating for RCS should also be disabled. 2037 */ 2038 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2039 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2040 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2041 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2042 2043 return emit_oa_config(stream, 2044 stream->oa_config, oa_context(stream), 2045 active); 2046 } 2047 2048 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2049 { 2050 struct intel_uncore *uncore = stream->uncore; 2051 2052 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2053 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2054 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2055 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2056 2057 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2058 } 2059 2060 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2061 i915_reg_t reg) 2062 { 2063 u32 mmio = i915_mmio_reg_offset(reg); 2064 int i; 2065 2066 /* 2067 * This arbitrary default will select the 'EU FPU0 Pipeline 2068 * Active' event. In the future it's anticipated that there 2069 * will be an explicit 'No Event' we can select, but not yet... 2070 */ 2071 if (!oa_config) 2072 return 0; 2073 2074 for (i = 0; i < oa_config->flex_regs_len; i++) { 2075 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2076 return oa_config->flex_regs[i].value; 2077 } 2078 2079 return 0; 2080 } 2081 /* 2082 * NB: It must always remain pointer safe to run this even if the OA unit 2083 * has been disabled. 2084 * 2085 * It's fine to put out-of-date values into these per-context registers 2086 * in the case that the OA unit has been disabled. 2087 */ 2088 static void 2089 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2090 const struct i915_perf_stream *stream) 2091 { 2092 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2093 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2094 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2095 i915_reg_t flex_regs[] = { 2096 EU_PERF_CNTL0, 2097 EU_PERF_CNTL1, 2098 EU_PERF_CNTL2, 2099 EU_PERF_CNTL3, 2100 EU_PERF_CNTL4, 2101 EU_PERF_CNTL5, 2102 EU_PERF_CNTL6, 2103 }; 2104 u32 *reg_state = ce->lrc_reg_state; 2105 int i; 2106 2107 reg_state[ctx_oactxctrl + 1] = 2108 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2109 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2110 GEN8_OA_COUNTER_RESUME; 2111 2112 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2113 reg_state[ctx_flexeu0 + i * 2 + 1] = 2114 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2115 } 2116 2117 struct flex { 2118 i915_reg_t reg; 2119 u32 offset; 2120 u32 value; 2121 }; 2122 2123 static int 2124 gen8_store_flex(struct i915_request *rq, 2125 struct intel_context *ce, 2126 const struct flex *flex, unsigned int count) 2127 { 2128 u32 offset; 2129 u32 *cs; 2130 2131 cs = intel_ring_begin(rq, 4 * count); 2132 if (IS_ERR(cs)) 2133 return PTR_ERR(cs); 2134 2135 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2136 do { 2137 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2138 *cs++ = offset + flex->offset * sizeof(u32); 2139 *cs++ = 0; 2140 *cs++ = flex->value; 2141 } while (flex++, --count); 2142 2143 intel_ring_advance(rq, cs); 2144 2145 return 0; 2146 } 2147 2148 static int 2149 gen8_load_flex(struct i915_request *rq, 2150 struct intel_context *ce, 2151 const struct flex *flex, unsigned int count) 2152 { 2153 u32 *cs; 2154 2155 GEM_BUG_ON(!count || count > 63); 2156 2157 cs = intel_ring_begin(rq, 2 * count + 2); 2158 if (IS_ERR(cs)) 2159 return PTR_ERR(cs); 2160 2161 *cs++ = MI_LOAD_REGISTER_IMM(count); 2162 do { 2163 *cs++ = i915_mmio_reg_offset(flex->reg); 2164 *cs++ = flex->value; 2165 } while (flex++, --count); 2166 *cs++ = MI_NOOP; 2167 2168 intel_ring_advance(rq, cs); 2169 2170 return 0; 2171 } 2172 2173 static int gen8_modify_context(struct intel_context *ce, 2174 const struct flex *flex, unsigned int count) 2175 { 2176 struct i915_request *rq; 2177 int err; 2178 2179 rq = intel_engine_create_kernel_request(ce->engine); 2180 if (IS_ERR(rq)) 2181 return PTR_ERR(rq); 2182 2183 /* Serialise with the remote context */ 2184 err = intel_context_prepare_remote_request(ce, rq); 2185 if (err == 0) 2186 err = gen8_store_flex(rq, ce, flex, count); 2187 2188 i915_request_add(rq); 2189 return err; 2190 } 2191 2192 static int 2193 gen8_modify_self(struct intel_context *ce, 2194 const struct flex *flex, unsigned int count, 2195 struct i915_active *active) 2196 { 2197 struct i915_request *rq; 2198 int err; 2199 2200 intel_engine_pm_get(ce->engine); 2201 rq = i915_request_create(ce); 2202 intel_engine_pm_put(ce->engine); 2203 if (IS_ERR(rq)) 2204 return PTR_ERR(rq); 2205 2206 if (!IS_ERR_OR_NULL(active)) { 2207 err = i915_active_add_request(active, rq); 2208 if (err) 2209 goto err_add_request; 2210 } 2211 2212 err = gen8_load_flex(rq, ce, flex, count); 2213 if (err) 2214 goto err_add_request; 2215 2216 err_add_request: 2217 i915_request_add(rq); 2218 return err; 2219 } 2220 2221 static int gen8_configure_context(struct i915_gem_context *ctx, 2222 struct flex *flex, unsigned int count) 2223 { 2224 struct i915_gem_engines_iter it; 2225 struct intel_context *ce; 2226 int err = 0; 2227 2228 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2229 GEM_BUG_ON(ce == ce->engine->kernel_context); 2230 2231 if (ce->engine->class != RENDER_CLASS) 2232 continue; 2233 2234 /* Otherwise OA settings will be set upon first use */ 2235 if (!intel_context_pin_if_active(ce)) 2236 continue; 2237 2238 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2239 err = gen8_modify_context(ce, flex, count); 2240 2241 intel_context_unpin(ce); 2242 if (err) 2243 break; 2244 } 2245 i915_gem_context_unlock_engines(ctx); 2246 2247 return err; 2248 } 2249 2250 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2251 struct i915_active *active) 2252 { 2253 int err; 2254 struct intel_context *ce = stream->pinned_ctx; 2255 u32 format = stream->oa_buffer.format; 2256 struct flex regs_context[] = { 2257 { 2258 GEN8_OACTXCONTROL, 2259 stream->perf->ctx_oactxctrl_offset + 1, 2260 active ? GEN8_OA_COUNTER_RESUME : 0, 2261 }, 2262 }; 2263 /* Offsets in regs_lri are not used since this configuration is only 2264 * applied using LRI. Initialize the correct offsets for posterity. 2265 */ 2266 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2267 struct flex regs_lri[] = { 2268 { 2269 GEN12_OAR_OACONTROL, 2270 GEN12_OAR_OACONTROL_OFFSET + 1, 2271 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2272 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2273 }, 2274 { 2275 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2276 CTX_CONTEXT_CONTROL, 2277 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2278 active ? 2279 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2280 0) 2281 }, 2282 }; 2283 2284 /* Modify the context image of pinned context with regs_context*/ 2285 err = intel_context_lock_pinned(ce); 2286 if (err) 2287 return err; 2288 2289 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context)); 2290 intel_context_unlock_pinned(ce); 2291 if (err) 2292 return err; 2293 2294 /* Apply regs_lri using LRI with pinned context */ 2295 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2296 } 2297 2298 /* 2299 * Manages updating the per-context aspects of the OA stream 2300 * configuration across all contexts. 2301 * 2302 * The awkward consideration here is that OACTXCONTROL controls the 2303 * exponent for periodic sampling which is primarily used for system 2304 * wide profiling where we'd like a consistent sampling period even in 2305 * the face of context switches. 2306 * 2307 * Our approach of updating the register state context (as opposed to 2308 * say using a workaround batch buffer) ensures that the hardware 2309 * won't automatically reload an out-of-date timer exponent even 2310 * transiently before a WA BB could be parsed. 2311 * 2312 * This function needs to: 2313 * - Ensure the currently running context's per-context OA state is 2314 * updated 2315 * - Ensure that all existing contexts will have the correct per-context 2316 * OA state if they are scheduled for use. 2317 * - Ensure any new contexts will be initialized with the correct 2318 * per-context OA state. 2319 * 2320 * Note: it's only the RCS/Render context that has any OA state. 2321 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2322 */ 2323 static int 2324 oa_configure_all_contexts(struct i915_perf_stream *stream, 2325 struct flex *regs, 2326 size_t num_regs, 2327 struct i915_active *active) 2328 { 2329 struct drm_i915_private *i915 = stream->perf->i915; 2330 struct intel_engine_cs *engine; 2331 struct i915_gem_context *ctx, *cn; 2332 int err; 2333 2334 lockdep_assert_held(&stream->perf->lock); 2335 2336 /* 2337 * The OA register config is setup through the context image. This image 2338 * might be written to by the GPU on context switch (in particular on 2339 * lite-restore). This means we can't safely update a context's image, 2340 * if this context is scheduled/submitted to run on the GPU. 2341 * 2342 * We could emit the OA register config through the batch buffer but 2343 * this might leave small interval of time where the OA unit is 2344 * configured at an invalid sampling period. 2345 * 2346 * Note that since we emit all requests from a single ring, there 2347 * is still an implicit global barrier here that may cause a high 2348 * priority context to wait for an otherwise independent low priority 2349 * context. Contexts idle at the time of reconfiguration are not 2350 * trapped behind the barrier. 2351 */ 2352 spin_lock(&i915->gem.contexts.lock); 2353 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2354 if (!kref_get_unless_zero(&ctx->ref)) 2355 continue; 2356 2357 spin_unlock(&i915->gem.contexts.lock); 2358 2359 err = gen8_configure_context(ctx, regs, num_regs); 2360 if (err) { 2361 i915_gem_context_put(ctx); 2362 return err; 2363 } 2364 2365 spin_lock(&i915->gem.contexts.lock); 2366 list_safe_reset_next(ctx, cn, link); 2367 i915_gem_context_put(ctx); 2368 } 2369 spin_unlock(&i915->gem.contexts.lock); 2370 2371 /* 2372 * After updating all other contexts, we need to modify ourselves. 2373 * If we don't modify the kernel_context, we do not get events while 2374 * idle. 2375 */ 2376 for_each_uabi_engine(engine, i915) { 2377 struct intel_context *ce = engine->kernel_context; 2378 2379 if (engine->class != RENDER_CLASS) 2380 continue; 2381 2382 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2383 2384 err = gen8_modify_self(ce, regs, num_regs, active); 2385 if (err) 2386 return err; 2387 } 2388 2389 return 0; 2390 } 2391 2392 static int 2393 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2394 const struct i915_oa_config *oa_config, 2395 struct i915_active *active) 2396 { 2397 struct flex regs[] = { 2398 { 2399 GEN8_R_PWR_CLK_STATE, 2400 CTX_R_PWR_CLK_STATE, 2401 }, 2402 }; 2403 2404 return oa_configure_all_contexts(stream, 2405 regs, ARRAY_SIZE(regs), 2406 active); 2407 } 2408 2409 static int 2410 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2411 const struct i915_oa_config *oa_config, 2412 struct i915_active *active) 2413 { 2414 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2415 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2416 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2417 struct flex regs[] = { 2418 { 2419 GEN8_R_PWR_CLK_STATE, 2420 CTX_R_PWR_CLK_STATE, 2421 }, 2422 { 2423 GEN8_OACTXCONTROL, 2424 stream->perf->ctx_oactxctrl_offset + 1, 2425 }, 2426 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2427 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2428 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2429 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2430 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2431 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2432 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2433 }; 2434 #undef ctx_flexeuN 2435 int i; 2436 2437 regs[1].value = 2438 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2439 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2440 GEN8_OA_COUNTER_RESUME; 2441 2442 for (i = 2; i < ARRAY_SIZE(regs); i++) 2443 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2444 2445 return oa_configure_all_contexts(stream, 2446 regs, ARRAY_SIZE(regs), 2447 active); 2448 } 2449 2450 static int 2451 gen8_enable_metric_set(struct i915_perf_stream *stream, 2452 struct i915_active *active) 2453 { 2454 struct intel_uncore *uncore = stream->uncore; 2455 struct i915_oa_config *oa_config = stream->oa_config; 2456 int ret; 2457 2458 /* 2459 * We disable slice/unslice clock ratio change reports on SKL since 2460 * they are too noisy. The HW generates a lot of redundant reports 2461 * where the ratio hasn't really changed causing a lot of redundant 2462 * work to processes and increasing the chances we'll hit buffer 2463 * overruns. 2464 * 2465 * Although we don't currently use the 'disable overrun' OABUFFER 2466 * feature it's worth noting that clock ratio reports have to be 2467 * disabled before considering to use that feature since the HW doesn't 2468 * correctly block these reports. 2469 * 2470 * Currently none of the high-level metrics we have depend on knowing 2471 * this ratio to normalize. 2472 * 2473 * Note: This register is not power context saved and restored, but 2474 * that's OK considering that we disable RC6 while the OA unit is 2475 * enabled. 2476 * 2477 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2478 * be read back from automatically triggered reports, as part of the 2479 * RPT_ID field. 2480 */ 2481 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) { 2482 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2483 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2484 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2485 } 2486 2487 /* 2488 * Update all contexts prior writing the mux configurations as we need 2489 * to make sure all slices/subslices are ON before writing to NOA 2490 * registers. 2491 */ 2492 ret = lrc_configure_all_contexts(stream, oa_config, active); 2493 if (ret) 2494 return ret; 2495 2496 return emit_oa_config(stream, 2497 stream->oa_config, oa_context(stream), 2498 active); 2499 } 2500 2501 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2502 { 2503 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2504 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2505 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2506 } 2507 2508 static int 2509 gen12_enable_metric_set(struct i915_perf_stream *stream, 2510 struct i915_active *active) 2511 { 2512 struct intel_uncore *uncore = stream->uncore; 2513 struct i915_oa_config *oa_config = stream->oa_config; 2514 bool periodic = stream->periodic; 2515 u32 period_exponent = stream->period_exponent; 2516 int ret; 2517 2518 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2519 /* Disable clk ratio reports, like previous Gens. */ 2520 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2521 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2522 /* 2523 * If the user didn't require OA reports, instruct 2524 * the hardware not to emit ctx switch reports. 2525 */ 2526 oag_report_ctx_switches(stream)); 2527 2528 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2529 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2530 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2531 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2532 : 0); 2533 2534 /* 2535 * Update all contexts prior writing the mux configurations as we need 2536 * to make sure all slices/subslices are ON before writing to NOA 2537 * registers. 2538 */ 2539 ret = gen12_configure_all_contexts(stream, oa_config, active); 2540 if (ret) 2541 return ret; 2542 2543 /* 2544 * For Gen12, performance counters are context 2545 * saved/restored. Only enable it for the context that 2546 * requested this. 2547 */ 2548 if (stream->ctx) { 2549 ret = gen12_configure_oar_context(stream, active); 2550 if (ret) 2551 return ret; 2552 } 2553 2554 return emit_oa_config(stream, 2555 stream->oa_config, oa_context(stream), 2556 active); 2557 } 2558 2559 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2560 { 2561 struct intel_uncore *uncore = stream->uncore; 2562 2563 /* Reset all contexts' slices/subslices configurations. */ 2564 lrc_configure_all_contexts(stream, NULL, NULL); 2565 2566 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2567 } 2568 2569 static void gen10_disable_metric_set(struct i915_perf_stream *stream) 2570 { 2571 struct intel_uncore *uncore = stream->uncore; 2572 2573 /* Reset all contexts' slices/subslices configurations. */ 2574 lrc_configure_all_contexts(stream, NULL, NULL); 2575 2576 /* Make sure we disable noa to save power. */ 2577 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2578 } 2579 2580 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2581 { 2582 struct intel_uncore *uncore = stream->uncore; 2583 2584 /* Reset all contexts' slices/subslices configurations. */ 2585 gen12_configure_all_contexts(stream, NULL, NULL); 2586 2587 /* disable the context save/restore or OAR counters */ 2588 if (stream->ctx) 2589 gen12_configure_oar_context(stream, NULL); 2590 2591 /* Make sure we disable noa to save power. */ 2592 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2593 } 2594 2595 static void gen7_oa_enable(struct i915_perf_stream *stream) 2596 { 2597 struct intel_uncore *uncore = stream->uncore; 2598 struct i915_gem_context *ctx = stream->ctx; 2599 u32 ctx_id = stream->specific_ctx_id; 2600 bool periodic = stream->periodic; 2601 u32 period_exponent = stream->period_exponent; 2602 u32 report_format = stream->oa_buffer.format; 2603 2604 /* 2605 * Reset buf pointers so we don't forward reports from before now. 2606 * 2607 * Think carefully if considering trying to avoid this, since it 2608 * also ensures status flags and the buffer itself are cleared 2609 * in error paths, and we have checks for invalid reports based 2610 * on the assumption that certain fields are written to zeroed 2611 * memory which this helps maintains. 2612 */ 2613 gen7_init_oa_buffer(stream); 2614 2615 intel_uncore_write(uncore, GEN7_OACONTROL, 2616 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2617 (period_exponent << 2618 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2619 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2620 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2621 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2622 GEN7_OACONTROL_ENABLE); 2623 } 2624 2625 static void gen8_oa_enable(struct i915_perf_stream *stream) 2626 { 2627 struct intel_uncore *uncore = stream->uncore; 2628 u32 report_format = stream->oa_buffer.format; 2629 2630 /* 2631 * Reset buf pointers so we don't forward reports from before now. 2632 * 2633 * Think carefully if considering trying to avoid this, since it 2634 * also ensures status flags and the buffer itself are cleared 2635 * in error paths, and we have checks for invalid reports based 2636 * on the assumption that certain fields are written to zeroed 2637 * memory which this helps maintains. 2638 */ 2639 gen8_init_oa_buffer(stream); 2640 2641 /* 2642 * Note: we don't rely on the hardware to perform single context 2643 * filtering and instead filter on the cpu based on the context-id 2644 * field of reports 2645 */ 2646 intel_uncore_write(uncore, GEN8_OACONTROL, 2647 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2648 GEN8_OA_COUNTER_ENABLE); 2649 } 2650 2651 static void gen12_oa_enable(struct i915_perf_stream *stream) 2652 { 2653 struct intel_uncore *uncore = stream->uncore; 2654 u32 report_format = stream->oa_buffer.format; 2655 2656 /* 2657 * If we don't want OA reports from the OA buffer, then we don't even 2658 * need to program the OAG unit. 2659 */ 2660 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2661 return; 2662 2663 gen12_init_oa_buffer(stream); 2664 2665 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2666 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2667 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2668 } 2669 2670 /** 2671 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2672 * @stream: An i915 perf stream opened for OA metrics 2673 * 2674 * [Re]enables hardware periodic sampling according to the period configured 2675 * when opening the stream. This also starts a hrtimer that will periodically 2676 * check for data in the circular OA buffer for notifying userspace (e.g. 2677 * during a read() or poll()). 2678 */ 2679 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2680 { 2681 stream->pollin = false; 2682 2683 stream->perf->ops.oa_enable(stream); 2684 2685 if (stream->periodic) 2686 hrtimer_start(&stream->poll_check_timer, 2687 ns_to_ktime(stream->poll_oa_period), 2688 HRTIMER_MODE_REL_PINNED); 2689 } 2690 2691 static void gen7_oa_disable(struct i915_perf_stream *stream) 2692 { 2693 struct intel_uncore *uncore = stream->uncore; 2694 2695 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2696 if (intel_wait_for_register(uncore, 2697 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2698 50)) 2699 drm_err(&stream->perf->i915->drm, 2700 "wait for OA to be disabled timed out\n"); 2701 } 2702 2703 static void gen8_oa_disable(struct i915_perf_stream *stream) 2704 { 2705 struct intel_uncore *uncore = stream->uncore; 2706 2707 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2708 if (intel_wait_for_register(uncore, 2709 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2710 50)) 2711 drm_err(&stream->perf->i915->drm, 2712 "wait for OA to be disabled timed out\n"); 2713 } 2714 2715 static void gen12_oa_disable(struct i915_perf_stream *stream) 2716 { 2717 struct intel_uncore *uncore = stream->uncore; 2718 2719 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 2720 if (intel_wait_for_register(uncore, 2721 GEN12_OAG_OACONTROL, 2722 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 2723 50)) 2724 drm_err(&stream->perf->i915->drm, 2725 "wait for OA to be disabled timed out\n"); 2726 2727 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 2728 if (intel_wait_for_register(uncore, 2729 GEN12_OA_TLB_INV_CR, 2730 1, 0, 2731 50)) 2732 drm_err(&stream->perf->i915->drm, 2733 "wait for OA tlb invalidate timed out\n"); 2734 } 2735 2736 /** 2737 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2738 * @stream: An i915 perf stream opened for OA metrics 2739 * 2740 * Stops the OA unit from periodically writing counter reports into the 2741 * circular OA buffer. This also stops the hrtimer that periodically checks for 2742 * data in the circular OA buffer, for notifying userspace. 2743 */ 2744 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2745 { 2746 stream->perf->ops.oa_disable(stream); 2747 2748 if (stream->periodic) 2749 hrtimer_cancel(&stream->poll_check_timer); 2750 } 2751 2752 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2753 .destroy = i915_oa_stream_destroy, 2754 .enable = i915_oa_stream_enable, 2755 .disable = i915_oa_stream_disable, 2756 .wait_unlocked = i915_oa_wait_unlocked, 2757 .poll_wait = i915_oa_poll_wait, 2758 .read = i915_oa_read, 2759 }; 2760 2761 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 2762 { 2763 struct i915_active *active; 2764 int err; 2765 2766 active = i915_active_create(); 2767 if (!active) 2768 return -ENOMEM; 2769 2770 err = stream->perf->ops.enable_metric_set(stream, active); 2771 if (err == 0) 2772 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 2773 2774 i915_active_put(active); 2775 return err; 2776 } 2777 2778 static void 2779 get_default_sseu_config(struct intel_sseu *out_sseu, 2780 struct intel_engine_cs *engine) 2781 { 2782 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 2783 2784 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 2785 2786 if (IS_GEN(engine->i915, 11)) { 2787 /* 2788 * We only need subslice count so it doesn't matter which ones 2789 * we select - just turn off low bits in the amount of half of 2790 * all available subslices per slice. 2791 */ 2792 out_sseu->subslice_mask = 2793 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 2794 out_sseu->slice_mask = 0x1; 2795 } 2796 } 2797 2798 static int 2799 get_sseu_config(struct intel_sseu *out_sseu, 2800 struct intel_engine_cs *engine, 2801 const struct drm_i915_gem_context_param_sseu *drm_sseu) 2802 { 2803 if (drm_sseu->engine.engine_class != engine->uabi_class || 2804 drm_sseu->engine.engine_instance != engine->uabi_instance) 2805 return -EINVAL; 2806 2807 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 2808 } 2809 2810 /** 2811 * i915_oa_stream_init - validate combined props for OA stream and init 2812 * @stream: An i915 perf stream 2813 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2814 * @props: The property state that configures stream (individually validated) 2815 * 2816 * While read_properties_unlocked() validates properties in isolation it 2817 * doesn't ensure that the combination necessarily makes sense. 2818 * 2819 * At this point it has been determined that userspace wants a stream of 2820 * OA metrics, but still we need to further validate the combined 2821 * properties are OK. 2822 * 2823 * If the configuration makes sense then we can allocate memory for 2824 * a circular OA buffer and apply the requested metric set configuration. 2825 * 2826 * Returns: zero on success or a negative error code. 2827 */ 2828 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2829 struct drm_i915_perf_open_param *param, 2830 struct perf_open_properties *props) 2831 { 2832 struct drm_i915_private *i915 = stream->perf->i915; 2833 struct i915_perf *perf = stream->perf; 2834 int format_size; 2835 int ret; 2836 2837 if (!props->engine) { 2838 DRM_DEBUG("OA engine not specified\n"); 2839 return -EINVAL; 2840 } 2841 2842 /* 2843 * If the sysfs metrics/ directory wasn't registered for some 2844 * reason then don't let userspace try their luck with config 2845 * IDs 2846 */ 2847 if (!perf->metrics_kobj) { 2848 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2849 return -EINVAL; 2850 } 2851 2852 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 2853 (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) { 2854 DRM_DEBUG("Only OA report sampling supported\n"); 2855 return -EINVAL; 2856 } 2857 2858 if (!perf->ops.enable_metric_set) { 2859 DRM_DEBUG("OA unit not supported\n"); 2860 return -ENODEV; 2861 } 2862 2863 /* 2864 * To avoid the complexity of having to accurately filter 2865 * counter reports and marshal to the appropriate client 2866 * we currently only allow exclusive access 2867 */ 2868 if (perf->exclusive_stream) { 2869 DRM_DEBUG("OA unit already in use\n"); 2870 return -EBUSY; 2871 } 2872 2873 if (!props->oa_format) { 2874 DRM_DEBUG("OA report format not specified\n"); 2875 return -EINVAL; 2876 } 2877 2878 stream->engine = props->engine; 2879 stream->uncore = stream->engine->gt->uncore; 2880 2881 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2882 2883 format_size = perf->oa_formats[props->oa_format].size; 2884 2885 stream->sample_flags = props->sample_flags; 2886 stream->sample_size += format_size; 2887 2888 stream->oa_buffer.format_size = format_size; 2889 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0)) 2890 return -EINVAL; 2891 2892 stream->hold_preemption = props->hold_preemption; 2893 2894 stream->oa_buffer.format = 2895 perf->oa_formats[props->oa_format].format; 2896 2897 stream->periodic = props->oa_periodic; 2898 if (stream->periodic) 2899 stream->period_exponent = props->oa_period_exponent; 2900 2901 if (stream->ctx) { 2902 ret = oa_get_render_ctx_id(stream); 2903 if (ret) { 2904 DRM_DEBUG("Invalid context id to filter with\n"); 2905 return ret; 2906 } 2907 } 2908 2909 ret = alloc_noa_wait(stream); 2910 if (ret) { 2911 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n"); 2912 goto err_noa_wait_alloc; 2913 } 2914 2915 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 2916 if (!stream->oa_config) { 2917 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2918 ret = -EINVAL; 2919 goto err_config; 2920 } 2921 2922 /* PRM - observability performance counters: 2923 * 2924 * OACONTROL, performance counter enable, note: 2925 * 2926 * "When this bit is set, in order to have coherent counts, 2927 * RC6 power state and trunk clock gating must be disabled. 2928 * This can be achieved by programming MMIO registers as 2929 * 0xA094=0 and 0xA090[31]=1" 2930 * 2931 * In our case we are expecting that taking pm + FORCEWAKE 2932 * references will effectively disable RC6. 2933 */ 2934 intel_engine_pm_get(stream->engine); 2935 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 2936 2937 ret = alloc_oa_buffer(stream); 2938 if (ret) 2939 goto err_oa_buf_alloc; 2940 2941 stream->ops = &i915_oa_stream_ops; 2942 2943 perf->sseu = props->sseu; 2944 WRITE_ONCE(perf->exclusive_stream, stream); 2945 2946 ret = i915_perf_stream_enable_sync(stream); 2947 if (ret) { 2948 DRM_DEBUG("Unable to enable metric set\n"); 2949 goto err_enable; 2950 } 2951 2952 DRM_DEBUG("opening stream oa config uuid=%s\n", 2953 stream->oa_config->uuid); 2954 2955 hrtimer_init(&stream->poll_check_timer, 2956 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2957 stream->poll_check_timer.function = oa_poll_check_timer_cb; 2958 init_waitqueue_head(&stream->poll_wq); 2959 spin_lock_init(&stream->oa_buffer.ptr_lock); 2960 2961 return 0; 2962 2963 err_enable: 2964 WRITE_ONCE(perf->exclusive_stream, NULL); 2965 perf->ops.disable_metric_set(stream); 2966 2967 free_oa_buffer(stream); 2968 2969 err_oa_buf_alloc: 2970 free_oa_configs(stream); 2971 2972 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 2973 intel_engine_pm_put(stream->engine); 2974 2975 err_config: 2976 free_noa_wait(stream); 2977 2978 err_noa_wait_alloc: 2979 if (stream->ctx) 2980 oa_put_render_ctx_id(stream); 2981 2982 return ret; 2983 } 2984 2985 void i915_oa_init_reg_state(const struct intel_context *ce, 2986 const struct intel_engine_cs *engine) 2987 { 2988 struct i915_perf_stream *stream; 2989 2990 if (engine->class != RENDER_CLASS) 2991 return; 2992 2993 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 2994 stream = READ_ONCE(engine->i915->perf.exclusive_stream); 2995 if (stream && INTEL_GEN(stream->perf->i915) < 12) 2996 gen8_update_reg_state_unlocked(ce, stream); 2997 } 2998 2999 /** 3000 * i915_perf_read - handles read() FOP for i915 perf stream FDs 3001 * @file: An i915 perf stream file 3002 * @buf: destination buffer given by userspace 3003 * @count: the number of bytes userspace wants to read 3004 * @ppos: (inout) file seek position (unused) 3005 * 3006 * The entry point for handling a read() on a stream file descriptor from 3007 * userspace. Most of the work is left to the i915_perf_read_locked() and 3008 * &i915_perf_stream_ops->read but to save having stream implementations (of 3009 * which we might have multiple later) we handle blocking read here. 3010 * 3011 * We can also consistently treat trying to read from a disabled stream 3012 * as an IO error so implementations can assume the stream is enabled 3013 * while reading. 3014 * 3015 * Returns: The number of bytes copied or a negative error code on failure. 3016 */ 3017 static ssize_t i915_perf_read(struct file *file, 3018 char __user *buf, 3019 size_t count, 3020 loff_t *ppos) 3021 { 3022 struct i915_perf_stream *stream = file->private_data; 3023 struct i915_perf *perf = stream->perf; 3024 size_t offset = 0; 3025 int ret; 3026 3027 /* To ensure it's handled consistently we simply treat all reads of a 3028 * disabled stream as an error. In particular it might otherwise lead 3029 * to a deadlock for blocking file descriptors... 3030 */ 3031 if (!stream->enabled) 3032 return -EIO; 3033 3034 if (!(file->f_flags & O_NONBLOCK)) { 3035 /* There's the small chance of false positives from 3036 * stream->ops->wait_unlocked. 3037 * 3038 * E.g. with single context filtering since we only wait until 3039 * oabuffer has >= 1 report we don't immediately know whether 3040 * any reports really belong to the current context 3041 */ 3042 do { 3043 ret = stream->ops->wait_unlocked(stream); 3044 if (ret) 3045 return ret; 3046 3047 mutex_lock(&perf->lock); 3048 ret = stream->ops->read(stream, buf, count, &offset); 3049 mutex_unlock(&perf->lock); 3050 } while (!offset && !ret); 3051 } else { 3052 mutex_lock(&perf->lock); 3053 ret = stream->ops->read(stream, buf, count, &offset); 3054 mutex_unlock(&perf->lock); 3055 } 3056 3057 /* We allow the poll checking to sometimes report false positive EPOLLIN 3058 * events where we might actually report EAGAIN on read() if there's 3059 * not really any data available. In this situation though we don't 3060 * want to enter a busy loop between poll() reporting a EPOLLIN event 3061 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3062 * effectively ensures we back off until the next hrtimer callback 3063 * before reporting another EPOLLIN event. 3064 * The exception to this is if ops->read() returned -ENOSPC which means 3065 * that more OA data is available than could fit in the user provided 3066 * buffer. In this case we want the next poll() call to not block. 3067 */ 3068 if (ret != -ENOSPC) 3069 stream->pollin = false; 3070 3071 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3072 return offset ?: (ret ?: -EAGAIN); 3073 } 3074 3075 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3076 { 3077 struct i915_perf_stream *stream = 3078 container_of(hrtimer, typeof(*stream), poll_check_timer); 3079 3080 if (oa_buffer_check_unlocked(stream)) { 3081 stream->pollin = true; 3082 wake_up(&stream->poll_wq); 3083 } 3084 3085 hrtimer_forward_now(hrtimer, 3086 ns_to_ktime(stream->poll_oa_period)); 3087 3088 return HRTIMER_RESTART; 3089 } 3090 3091 /** 3092 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3093 * @stream: An i915 perf stream 3094 * @file: An i915 perf stream file 3095 * @wait: poll() state table 3096 * 3097 * For handling userspace polling on an i915 perf stream, this calls through to 3098 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3099 * will be woken for new stream data. 3100 * 3101 * Note: The &perf->lock mutex has been taken to serialize 3102 * with any non-file-operation driver hooks. 3103 * 3104 * Returns: any poll events that are ready without sleeping 3105 */ 3106 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3107 struct file *file, 3108 poll_table *wait) 3109 { 3110 __poll_t events = 0; 3111 3112 stream->ops->poll_wait(stream, file, wait); 3113 3114 /* Note: we don't explicitly check whether there's something to read 3115 * here since this path may be very hot depending on what else 3116 * userspace is polling, or on the timeout in use. We rely solely on 3117 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3118 * samples to read. 3119 */ 3120 if (stream->pollin) 3121 events |= EPOLLIN; 3122 3123 return events; 3124 } 3125 3126 /** 3127 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3128 * @file: An i915 perf stream file 3129 * @wait: poll() state table 3130 * 3131 * For handling userspace polling on an i915 perf stream, this ensures 3132 * poll_wait() gets called with a wait queue that will be woken for new stream 3133 * data. 3134 * 3135 * Note: Implementation deferred to i915_perf_poll_locked() 3136 * 3137 * Returns: any poll events that are ready without sleeping 3138 */ 3139 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3140 { 3141 struct i915_perf_stream *stream = file->private_data; 3142 struct i915_perf *perf = stream->perf; 3143 __poll_t ret; 3144 3145 mutex_lock(&perf->lock); 3146 ret = i915_perf_poll_locked(stream, file, wait); 3147 mutex_unlock(&perf->lock); 3148 3149 return ret; 3150 } 3151 3152 /** 3153 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3154 * @stream: A disabled i915 perf stream 3155 * 3156 * [Re]enables the associated capture of data for this stream. 3157 * 3158 * If a stream was previously enabled then there's currently no intention 3159 * to provide userspace any guarantee about the preservation of previously 3160 * buffered data. 3161 */ 3162 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3163 { 3164 if (stream->enabled) 3165 return; 3166 3167 /* Allow stream->ops->enable() to refer to this */ 3168 stream->enabled = true; 3169 3170 if (stream->ops->enable) 3171 stream->ops->enable(stream); 3172 3173 if (stream->hold_preemption) 3174 intel_context_set_nopreempt(stream->pinned_ctx); 3175 } 3176 3177 /** 3178 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3179 * @stream: An enabled i915 perf stream 3180 * 3181 * Disables the associated capture of data for this stream. 3182 * 3183 * The intention is that disabling an re-enabling a stream will ideally be 3184 * cheaper than destroying and re-opening a stream with the same configuration, 3185 * though there are no formal guarantees about what state or buffered data 3186 * must be retained between disabling and re-enabling a stream. 3187 * 3188 * Note: while a stream is disabled it's considered an error for userspace 3189 * to attempt to read from the stream (-EIO). 3190 */ 3191 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3192 { 3193 if (!stream->enabled) 3194 return; 3195 3196 /* Allow stream->ops->disable() to refer to this */ 3197 stream->enabled = false; 3198 3199 if (stream->hold_preemption) 3200 intel_context_clear_nopreempt(stream->pinned_ctx); 3201 3202 if (stream->ops->disable) 3203 stream->ops->disable(stream); 3204 } 3205 3206 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3207 unsigned long metrics_set) 3208 { 3209 struct i915_oa_config *config; 3210 long ret = stream->oa_config->id; 3211 3212 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3213 if (!config) 3214 return -EINVAL; 3215 3216 if (config != stream->oa_config) { 3217 int err; 3218 3219 /* 3220 * If OA is bound to a specific context, emit the 3221 * reconfiguration inline from that context. The update 3222 * will then be ordered with respect to submission on that 3223 * context. 3224 * 3225 * When set globally, we use a low priority kernel context, 3226 * so it will effectively take effect when idle. 3227 */ 3228 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3229 if (!err) 3230 config = xchg(&stream->oa_config, config); 3231 else 3232 ret = err; 3233 } 3234 3235 i915_oa_config_put(config); 3236 3237 return ret; 3238 } 3239 3240 /** 3241 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3242 * @stream: An i915 perf stream 3243 * @cmd: the ioctl request 3244 * @arg: the ioctl data 3245 * 3246 * Note: The &perf->lock mutex has been taken to serialize 3247 * with any non-file-operation driver hooks. 3248 * 3249 * Returns: zero on success or a negative error code. Returns -EINVAL for 3250 * an unknown ioctl request. 3251 */ 3252 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3253 unsigned int cmd, 3254 unsigned long arg) 3255 { 3256 switch (cmd) { 3257 case I915_PERF_IOCTL_ENABLE: 3258 i915_perf_enable_locked(stream); 3259 return 0; 3260 case I915_PERF_IOCTL_DISABLE: 3261 i915_perf_disable_locked(stream); 3262 return 0; 3263 case I915_PERF_IOCTL_CONFIG: 3264 return i915_perf_config_locked(stream, arg); 3265 } 3266 3267 return -EINVAL; 3268 } 3269 3270 /** 3271 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3272 * @file: An i915 perf stream file 3273 * @cmd: the ioctl request 3274 * @arg: the ioctl data 3275 * 3276 * Implementation deferred to i915_perf_ioctl_locked(). 3277 * 3278 * Returns: zero on success or a negative error code. Returns -EINVAL for 3279 * an unknown ioctl request. 3280 */ 3281 static long i915_perf_ioctl(struct file *file, 3282 unsigned int cmd, 3283 unsigned long arg) 3284 { 3285 struct i915_perf_stream *stream = file->private_data; 3286 struct i915_perf *perf = stream->perf; 3287 long ret; 3288 3289 mutex_lock(&perf->lock); 3290 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3291 mutex_unlock(&perf->lock); 3292 3293 return ret; 3294 } 3295 3296 /** 3297 * i915_perf_destroy_locked - destroy an i915 perf stream 3298 * @stream: An i915 perf stream 3299 * 3300 * Frees all resources associated with the given i915 perf @stream, disabling 3301 * any associated data capture in the process. 3302 * 3303 * Note: The &perf->lock mutex has been taken to serialize 3304 * with any non-file-operation driver hooks. 3305 */ 3306 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3307 { 3308 if (stream->enabled) 3309 i915_perf_disable_locked(stream); 3310 3311 if (stream->ops->destroy) 3312 stream->ops->destroy(stream); 3313 3314 if (stream->ctx) 3315 i915_gem_context_put(stream->ctx); 3316 3317 kfree(stream); 3318 } 3319 3320 /** 3321 * i915_perf_release - handles userspace close() of a stream file 3322 * @inode: anonymous inode associated with file 3323 * @file: An i915 perf stream file 3324 * 3325 * Cleans up any resources associated with an open i915 perf stream file. 3326 * 3327 * NB: close() can't really fail from the userspace point of view. 3328 * 3329 * Returns: zero on success or a negative error code. 3330 */ 3331 static int i915_perf_release(struct inode *inode, struct file *file) 3332 { 3333 struct i915_perf_stream *stream = file->private_data; 3334 struct i915_perf *perf = stream->perf; 3335 3336 mutex_lock(&perf->lock); 3337 i915_perf_destroy_locked(stream); 3338 mutex_unlock(&perf->lock); 3339 3340 /* Release the reference the perf stream kept on the driver. */ 3341 drm_dev_put(&perf->i915->drm); 3342 3343 return 0; 3344 } 3345 3346 3347 static const struct file_operations fops = { 3348 .owner = THIS_MODULE, 3349 .llseek = no_llseek, 3350 .release = i915_perf_release, 3351 .poll = i915_perf_poll, 3352 .read = i915_perf_read, 3353 .unlocked_ioctl = i915_perf_ioctl, 3354 /* Our ioctl have no arguments, so it's safe to use the same function 3355 * to handle 32bits compatibility. 3356 */ 3357 .compat_ioctl = i915_perf_ioctl, 3358 }; 3359 3360 3361 /** 3362 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3363 * @perf: i915 perf instance 3364 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3365 * @props: individually validated u64 property value pairs 3366 * @file: drm file 3367 * 3368 * See i915_perf_ioctl_open() for interface details. 3369 * 3370 * Implements further stream config validation and stream initialization on 3371 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex 3372 * taken to serialize with any non-file-operation driver hooks. 3373 * 3374 * Note: at this point the @props have only been validated in isolation and 3375 * it's still necessary to validate that the combination of properties makes 3376 * sense. 3377 * 3378 * In the case where userspace is interested in OA unit metrics then further 3379 * config validation and stream initialization details will be handled by 3380 * i915_oa_stream_init(). The code here should only validate config state that 3381 * will be relevant to all stream types / backends. 3382 * 3383 * Returns: zero on success or a negative error code. 3384 */ 3385 static int 3386 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3387 struct drm_i915_perf_open_param *param, 3388 struct perf_open_properties *props, 3389 struct drm_file *file) 3390 { 3391 struct i915_gem_context *specific_ctx = NULL; 3392 struct i915_perf_stream *stream = NULL; 3393 unsigned long f_flags = 0; 3394 bool privileged_op = true; 3395 int stream_fd; 3396 int ret; 3397 3398 if (props->single_context) { 3399 u32 ctx_handle = props->ctx_handle; 3400 struct drm_i915_file_private *file_priv = file->driver_priv; 3401 3402 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3403 if (!specific_ctx) { 3404 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 3405 ctx_handle); 3406 ret = -ENOENT; 3407 goto err; 3408 } 3409 } 3410 3411 /* 3412 * On Haswell the OA unit supports clock gating off for a specific 3413 * context and in this mode there's no visibility of metrics for the 3414 * rest of the system, which we consider acceptable for a 3415 * non-privileged client. 3416 * 3417 * For Gen8->11 the OA unit no longer supports clock gating off for a 3418 * specific context and the kernel can't securely stop the counters 3419 * from updating as system-wide / global values. Even though we can 3420 * filter reports based on the included context ID we can't block 3421 * clients from seeing the raw / global counter values via 3422 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3423 * enable the OA unit by default. 3424 * 3425 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3426 * per context basis. So we can relax requirements there if the user 3427 * doesn't request global stream access (i.e. query based sampling 3428 * using MI_RECORD_PERF_COUNT. 3429 */ 3430 if (IS_HASWELL(perf->i915) && specific_ctx) 3431 privileged_op = false; 3432 else if (IS_GEN(perf->i915, 12) && specific_ctx && 3433 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3434 privileged_op = false; 3435 3436 if (props->hold_preemption) { 3437 if (!props->single_context) { 3438 DRM_DEBUG("preemption disable with no context\n"); 3439 ret = -EINVAL; 3440 goto err; 3441 } 3442 privileged_op = true; 3443 } 3444 3445 /* 3446 * Asking for SSEU configuration is a priviliged operation. 3447 */ 3448 if (props->has_sseu) 3449 privileged_op = true; 3450 else 3451 get_default_sseu_config(&props->sseu, props->engine); 3452 3453 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3454 * we check a dev.i915.perf_stream_paranoid sysctl option 3455 * to determine if it's ok to access system wide OA counters 3456 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3457 */ 3458 if (privileged_op && 3459 i915_perf_stream_paranoid && !perfmon_capable()) { 3460 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n"); 3461 ret = -EACCES; 3462 goto err_ctx; 3463 } 3464 3465 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3466 if (!stream) { 3467 ret = -ENOMEM; 3468 goto err_ctx; 3469 } 3470 3471 stream->perf = perf; 3472 stream->ctx = specific_ctx; 3473 stream->poll_oa_period = props->poll_oa_period; 3474 3475 ret = i915_oa_stream_init(stream, param, props); 3476 if (ret) 3477 goto err_alloc; 3478 3479 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3480 * to have _stream_init check the combination of sample flags more 3481 * thoroughly, but still this is the expected result at this point. 3482 */ 3483 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3484 ret = -ENODEV; 3485 goto err_flags; 3486 } 3487 3488 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3489 f_flags |= O_CLOEXEC; 3490 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3491 f_flags |= O_NONBLOCK; 3492 3493 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3494 if (stream_fd < 0) { 3495 ret = stream_fd; 3496 goto err_flags; 3497 } 3498 3499 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3500 i915_perf_enable_locked(stream); 3501 3502 /* Take a reference on the driver that will be kept with stream_fd 3503 * until its release. 3504 */ 3505 drm_dev_get(&perf->i915->drm); 3506 3507 return stream_fd; 3508 3509 err_flags: 3510 if (stream->ops->destroy) 3511 stream->ops->destroy(stream); 3512 err_alloc: 3513 kfree(stream); 3514 err_ctx: 3515 if (specific_ctx) 3516 i915_gem_context_put(specific_ctx); 3517 err: 3518 return ret; 3519 } 3520 3521 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3522 { 3523 return intel_gt_clock_interval_to_ns(perf->i915->ggtt.vm.gt, 3524 2ULL << exponent); 3525 } 3526 3527 /** 3528 * read_properties_unlocked - validate + copy userspace stream open properties 3529 * @perf: i915 perf instance 3530 * @uprops: The array of u64 key value pairs given by userspace 3531 * @n_props: The number of key value pairs expected in @uprops 3532 * @props: The stream configuration built up while validating properties 3533 * 3534 * Note this function only validates properties in isolation it doesn't 3535 * validate that the combination of properties makes sense or that all 3536 * properties necessary for a particular kind of stream have been set. 3537 * 3538 * Note that there currently aren't any ordering requirements for properties so 3539 * we shouldn't validate or assume anything about ordering here. This doesn't 3540 * rule out defining new properties with ordering requirements in the future. 3541 */ 3542 static int read_properties_unlocked(struct i915_perf *perf, 3543 u64 __user *uprops, 3544 u32 n_props, 3545 struct perf_open_properties *props) 3546 { 3547 u64 __user *uprop = uprops; 3548 u32 i; 3549 int ret; 3550 3551 memset(props, 0, sizeof(struct perf_open_properties)); 3552 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 3553 3554 if (!n_props) { 3555 DRM_DEBUG("No i915 perf properties given\n"); 3556 return -EINVAL; 3557 } 3558 3559 /* At the moment we only support using i915-perf on the RCS. */ 3560 props->engine = intel_engine_lookup_user(perf->i915, 3561 I915_ENGINE_CLASS_RENDER, 3562 0); 3563 if (!props->engine) { 3564 DRM_DEBUG("No RENDER-capable engines\n"); 3565 return -EINVAL; 3566 } 3567 3568 /* Considering that ID = 0 is reserved and assuming that we don't 3569 * (currently) expect any configurations to ever specify duplicate 3570 * values for a particular property ID then the last _PROP_MAX value is 3571 * one greater than the maximum number of properties we expect to get 3572 * from userspace. 3573 */ 3574 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3575 DRM_DEBUG("More i915 perf properties specified than exist\n"); 3576 return -EINVAL; 3577 } 3578 3579 for (i = 0; i < n_props; i++) { 3580 u64 oa_period, oa_freq_hz; 3581 u64 id, value; 3582 3583 ret = get_user(id, uprop); 3584 if (ret) 3585 return ret; 3586 3587 ret = get_user(value, uprop + 1); 3588 if (ret) 3589 return ret; 3590 3591 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3592 DRM_DEBUG("Unknown i915 perf property ID\n"); 3593 return -EINVAL; 3594 } 3595 3596 switch ((enum drm_i915_perf_property_id)id) { 3597 case DRM_I915_PERF_PROP_CTX_HANDLE: 3598 props->single_context = 1; 3599 props->ctx_handle = value; 3600 break; 3601 case DRM_I915_PERF_PROP_SAMPLE_OA: 3602 if (value) 3603 props->sample_flags |= SAMPLE_OA_REPORT; 3604 break; 3605 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3606 if (value == 0) { 3607 DRM_DEBUG("Unknown OA metric set ID\n"); 3608 return -EINVAL; 3609 } 3610 props->metrics_set = value; 3611 break; 3612 case DRM_I915_PERF_PROP_OA_FORMAT: 3613 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3614 DRM_DEBUG("Out-of-range OA report format %llu\n", 3615 value); 3616 return -EINVAL; 3617 } 3618 if (!perf->oa_formats[value].size) { 3619 DRM_DEBUG("Unsupported OA report format %llu\n", 3620 value); 3621 return -EINVAL; 3622 } 3623 props->oa_format = value; 3624 break; 3625 case DRM_I915_PERF_PROP_OA_EXPONENT: 3626 if (value > OA_EXPONENT_MAX) { 3627 DRM_DEBUG("OA timer exponent too high (> %u)\n", 3628 OA_EXPONENT_MAX); 3629 return -EINVAL; 3630 } 3631 3632 /* Theoretically we can program the OA unit to sample 3633 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 3634 * for BXT. We don't allow such high sampling 3635 * frequencies by default unless root. 3636 */ 3637 3638 BUILD_BUG_ON(sizeof(oa_period) != 8); 3639 oa_period = oa_exponent_to_ns(perf, value); 3640 3641 /* This check is primarily to ensure that oa_period <= 3642 * UINT32_MAX (before passing to do_div which only 3643 * accepts a u32 denominator), but we can also skip 3644 * checking anything < 1Hz which implicitly can't be 3645 * limited via an integer oa_max_sample_rate. 3646 */ 3647 if (oa_period <= NSEC_PER_SEC) { 3648 u64 tmp = NSEC_PER_SEC; 3649 do_div(tmp, oa_period); 3650 oa_freq_hz = tmp; 3651 } else 3652 oa_freq_hz = 0; 3653 3654 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 3655 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 3656 i915_oa_max_sample_rate); 3657 return -EACCES; 3658 } 3659 3660 props->oa_periodic = true; 3661 props->oa_period_exponent = value; 3662 break; 3663 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 3664 props->hold_preemption = !!value; 3665 break; 3666 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 3667 struct drm_i915_gem_context_param_sseu user_sseu; 3668 3669 if (copy_from_user(&user_sseu, 3670 u64_to_user_ptr(value), 3671 sizeof(user_sseu))) { 3672 DRM_DEBUG("Unable to copy global sseu parameter\n"); 3673 return -EFAULT; 3674 } 3675 3676 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 3677 if (ret) { 3678 DRM_DEBUG("Invalid SSEU configuration\n"); 3679 return ret; 3680 } 3681 props->has_sseu = true; 3682 break; 3683 } 3684 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 3685 if (value < 100000 /* 100us */) { 3686 DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n", 3687 value); 3688 return -EINVAL; 3689 } 3690 props->poll_oa_period = value; 3691 break; 3692 case DRM_I915_PERF_PROP_MAX: 3693 MISSING_CASE(id); 3694 return -EINVAL; 3695 } 3696 3697 uprop += 2; 3698 } 3699 3700 return 0; 3701 } 3702 3703 /** 3704 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 3705 * @dev: drm device 3706 * @data: ioctl data copied from userspace (unvalidated) 3707 * @file: drm file 3708 * 3709 * Validates the stream open parameters given by userspace including flags 3710 * and an array of u64 key, value pair properties. 3711 * 3712 * Very little is assumed up front about the nature of the stream being 3713 * opened (for instance we don't assume it's for periodic OA unit metrics). An 3714 * i915-perf stream is expected to be a suitable interface for other forms of 3715 * buffered data written by the GPU besides periodic OA metrics. 3716 * 3717 * Note we copy the properties from userspace outside of the i915 perf 3718 * mutex to avoid an awkward lockdep with mmap_lock. 3719 * 3720 * Most of the implementation details are handled by 3721 * i915_perf_open_ioctl_locked() after taking the &perf->lock 3722 * mutex for serializing with any non-file-operation driver hooks. 3723 * 3724 * Return: A newly opened i915 Perf stream file descriptor or negative 3725 * error code on failure. 3726 */ 3727 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3728 struct drm_file *file) 3729 { 3730 struct i915_perf *perf = &to_i915(dev)->perf; 3731 struct drm_i915_perf_open_param *param = data; 3732 struct perf_open_properties props; 3733 u32 known_open_flags; 3734 int ret; 3735 3736 if (!perf->i915) { 3737 DRM_DEBUG("i915 perf interface not available for this system\n"); 3738 return -ENOTSUPP; 3739 } 3740 3741 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3742 I915_PERF_FLAG_FD_NONBLOCK | 3743 I915_PERF_FLAG_DISABLED; 3744 if (param->flags & ~known_open_flags) { 3745 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 3746 return -EINVAL; 3747 } 3748 3749 ret = read_properties_unlocked(perf, 3750 u64_to_user_ptr(param->properties_ptr), 3751 param->num_properties, 3752 &props); 3753 if (ret) 3754 return ret; 3755 3756 mutex_lock(&perf->lock); 3757 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 3758 mutex_unlock(&perf->lock); 3759 3760 return ret; 3761 } 3762 3763 /** 3764 * i915_perf_register - exposes i915-perf to userspace 3765 * @i915: i915 device instance 3766 * 3767 * In particular OA metric sets are advertised under a sysfs metrics/ 3768 * directory allowing userspace to enumerate valid IDs that can be 3769 * used to open an i915-perf stream. 3770 */ 3771 void i915_perf_register(struct drm_i915_private *i915) 3772 { 3773 struct i915_perf *perf = &i915->perf; 3774 3775 if (!perf->i915) 3776 return; 3777 3778 /* To be sure we're synchronized with an attempted 3779 * i915_perf_open_ioctl(); considering that we register after 3780 * being exposed to userspace. 3781 */ 3782 mutex_lock(&perf->lock); 3783 3784 perf->metrics_kobj = 3785 kobject_create_and_add("metrics", 3786 &i915->drm.primary->kdev->kobj); 3787 3788 mutex_unlock(&perf->lock); 3789 } 3790 3791 /** 3792 * i915_perf_unregister - hide i915-perf from userspace 3793 * @i915: i915 device instance 3794 * 3795 * i915-perf state cleanup is split up into an 'unregister' and 3796 * 'deinit' phase where the interface is first hidden from 3797 * userspace by i915_perf_unregister() before cleaning up 3798 * remaining state in i915_perf_fini(). 3799 */ 3800 void i915_perf_unregister(struct drm_i915_private *i915) 3801 { 3802 struct i915_perf *perf = &i915->perf; 3803 3804 if (!perf->metrics_kobj) 3805 return; 3806 3807 kobject_put(perf->metrics_kobj); 3808 perf->metrics_kobj = NULL; 3809 } 3810 3811 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 3812 { 3813 static const i915_reg_t flex_eu_regs[] = { 3814 EU_PERF_CNTL0, 3815 EU_PERF_CNTL1, 3816 EU_PERF_CNTL2, 3817 EU_PERF_CNTL3, 3818 EU_PERF_CNTL4, 3819 EU_PERF_CNTL5, 3820 EU_PERF_CNTL6, 3821 }; 3822 int i; 3823 3824 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3825 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3826 return true; 3827 } 3828 return false; 3829 } 3830 3831 #define ADDR_IN_RANGE(addr, start, end) \ 3832 ((addr) >= (start) && \ 3833 (addr) <= (end)) 3834 3835 #define REG_IN_RANGE(addr, start, end) \ 3836 ((addr) >= i915_mmio_reg_offset(start) && \ 3837 (addr) <= i915_mmio_reg_offset(end)) 3838 3839 #define REG_EQUAL(addr, mmio) \ 3840 ((addr) == i915_mmio_reg_offset(mmio)) 3841 3842 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3843 { 3844 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) || 3845 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) || 3846 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1); 3847 } 3848 3849 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3850 { 3851 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) || 3852 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) || 3853 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) || 3854 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI); 3855 } 3856 3857 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3858 { 3859 return gen7_is_valid_mux_addr(perf, addr) || 3860 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3861 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8)); 3862 } 3863 3864 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3865 { 3866 return gen8_is_valid_mux_addr(perf, addr) || 3867 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3868 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI); 3869 } 3870 3871 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3872 { 3873 return gen7_is_valid_mux_addr(perf, addr) || 3874 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) || 3875 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) || 3876 REG_EQUAL(addr, HSW_MBVID2_MISR0); 3877 } 3878 3879 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3880 { 3881 return gen7_is_valid_mux_addr(perf, addr) || 3882 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4); 3883 } 3884 3885 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3886 { 3887 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) || 3888 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) || 3889 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) || 3890 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) || 3891 REG_EQUAL(addr, GEN12_OAA_DBG_REG) || 3892 REG_EQUAL(addr, GEN12_OAG_OA_PESS) || 3893 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF); 3894 } 3895 3896 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3897 { 3898 return REG_EQUAL(addr, NOA_WRITE) || 3899 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3900 REG_EQUAL(addr, GDT_CHICKEN_BITS) || 3901 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3902 REG_EQUAL(addr, RPM_CONFIG0) || 3903 REG_EQUAL(addr, RPM_CONFIG1) || 3904 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8)); 3905 } 3906 3907 static u32 mask_reg_value(u32 reg, u32 val) 3908 { 3909 /* HALF_SLICE_CHICKEN2 is programmed with a the 3910 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3911 * programmed by userspace doesn't change this. 3912 */ 3913 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 3914 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3915 3916 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3917 * indicated by its name and a bunch of selection fields used by OA 3918 * configs. 3919 */ 3920 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 3921 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3922 3923 return val; 3924 } 3925 3926 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 3927 bool (*is_valid)(struct i915_perf *perf, u32 addr), 3928 u32 __user *regs, 3929 u32 n_regs) 3930 { 3931 struct i915_oa_reg *oa_regs; 3932 int err; 3933 u32 i; 3934 3935 if (!n_regs) 3936 return NULL; 3937 3938 /* No is_valid function means we're not allowing any register to be programmed. */ 3939 GEM_BUG_ON(!is_valid); 3940 if (!is_valid) 3941 return ERR_PTR(-EINVAL); 3942 3943 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3944 if (!oa_regs) 3945 return ERR_PTR(-ENOMEM); 3946 3947 for (i = 0; i < n_regs; i++) { 3948 u32 addr, value; 3949 3950 err = get_user(addr, regs); 3951 if (err) 3952 goto addr_err; 3953 3954 if (!is_valid(perf, addr)) { 3955 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3956 err = -EINVAL; 3957 goto addr_err; 3958 } 3959 3960 err = get_user(value, regs + 1); 3961 if (err) 3962 goto addr_err; 3963 3964 oa_regs[i].addr = _MMIO(addr); 3965 oa_regs[i].value = mask_reg_value(addr, value); 3966 3967 regs += 2; 3968 } 3969 3970 return oa_regs; 3971 3972 addr_err: 3973 kfree(oa_regs); 3974 return ERR_PTR(err); 3975 } 3976 3977 static ssize_t show_dynamic_id(struct device *dev, 3978 struct device_attribute *attr, 3979 char *buf) 3980 { 3981 struct i915_oa_config *oa_config = 3982 container_of(attr, typeof(*oa_config), sysfs_metric_id); 3983 3984 return sprintf(buf, "%d\n", oa_config->id); 3985 } 3986 3987 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 3988 struct i915_oa_config *oa_config) 3989 { 3990 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 3991 oa_config->sysfs_metric_id.attr.name = "id"; 3992 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 3993 oa_config->sysfs_metric_id.show = show_dynamic_id; 3994 oa_config->sysfs_metric_id.store = NULL; 3995 3996 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 3997 oa_config->attrs[1] = NULL; 3998 3999 oa_config->sysfs_metric.name = oa_config->uuid; 4000 oa_config->sysfs_metric.attrs = oa_config->attrs; 4001 4002 return sysfs_create_group(perf->metrics_kobj, 4003 &oa_config->sysfs_metric); 4004 } 4005 4006 /** 4007 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4008 * @dev: drm device 4009 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4010 * userspace (unvalidated) 4011 * @file: drm file 4012 * 4013 * Validates the submitted OA register to be saved into a new OA config that 4014 * can then be used for programming the OA unit and its NOA network. 4015 * 4016 * Returns: A new allocated config number to be used with the perf open ioctl 4017 * or a negative error code on failure. 4018 */ 4019 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4020 struct drm_file *file) 4021 { 4022 struct i915_perf *perf = &to_i915(dev)->perf; 4023 struct drm_i915_perf_oa_config *args = data; 4024 struct i915_oa_config *oa_config, *tmp; 4025 struct i915_oa_reg *regs; 4026 int err, id; 4027 4028 if (!perf->i915) { 4029 DRM_DEBUG("i915 perf interface not available for this system\n"); 4030 return -ENOTSUPP; 4031 } 4032 4033 if (!perf->metrics_kobj) { 4034 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 4035 return -EINVAL; 4036 } 4037 4038 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4039 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 4040 return -EACCES; 4041 } 4042 4043 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4044 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4045 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4046 DRM_DEBUG("No OA registers given\n"); 4047 return -EINVAL; 4048 } 4049 4050 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4051 if (!oa_config) { 4052 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 4053 return -ENOMEM; 4054 } 4055 4056 oa_config->perf = perf; 4057 kref_init(&oa_config->ref); 4058 4059 if (!uuid_is_valid(args->uuid)) { 4060 DRM_DEBUG("Invalid uuid format for OA config\n"); 4061 err = -EINVAL; 4062 goto reg_err; 4063 } 4064 4065 /* Last character in oa_config->uuid will be 0 because oa_config is 4066 * kzalloc. 4067 */ 4068 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4069 4070 oa_config->mux_regs_len = args->n_mux_regs; 4071 regs = alloc_oa_regs(perf, 4072 perf->ops.is_valid_mux_reg, 4073 u64_to_user_ptr(args->mux_regs_ptr), 4074 args->n_mux_regs); 4075 4076 if (IS_ERR(regs)) { 4077 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 4078 err = PTR_ERR(regs); 4079 goto reg_err; 4080 } 4081 oa_config->mux_regs = regs; 4082 4083 oa_config->b_counter_regs_len = args->n_boolean_regs; 4084 regs = alloc_oa_regs(perf, 4085 perf->ops.is_valid_b_counter_reg, 4086 u64_to_user_ptr(args->boolean_regs_ptr), 4087 args->n_boolean_regs); 4088 4089 if (IS_ERR(regs)) { 4090 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 4091 err = PTR_ERR(regs); 4092 goto reg_err; 4093 } 4094 oa_config->b_counter_regs = regs; 4095 4096 if (INTEL_GEN(perf->i915) < 8) { 4097 if (args->n_flex_regs != 0) { 4098 err = -EINVAL; 4099 goto reg_err; 4100 } 4101 } else { 4102 oa_config->flex_regs_len = args->n_flex_regs; 4103 regs = alloc_oa_regs(perf, 4104 perf->ops.is_valid_flex_reg, 4105 u64_to_user_ptr(args->flex_regs_ptr), 4106 args->n_flex_regs); 4107 4108 if (IS_ERR(regs)) { 4109 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 4110 err = PTR_ERR(regs); 4111 goto reg_err; 4112 } 4113 oa_config->flex_regs = regs; 4114 } 4115 4116 err = mutex_lock_interruptible(&perf->metrics_lock); 4117 if (err) 4118 goto reg_err; 4119 4120 /* We shouldn't have too many configs, so this iteration shouldn't be 4121 * too costly. 4122 */ 4123 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4124 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4125 DRM_DEBUG("OA config already exists with this uuid\n"); 4126 err = -EADDRINUSE; 4127 goto sysfs_err; 4128 } 4129 } 4130 4131 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4132 if (err) { 4133 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4134 goto sysfs_err; 4135 } 4136 4137 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4138 oa_config->id = idr_alloc(&perf->metrics_idr, 4139 oa_config, 2, 4140 0, GFP_KERNEL); 4141 if (oa_config->id < 0) { 4142 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4143 err = oa_config->id; 4144 goto sysfs_err; 4145 } 4146 4147 mutex_unlock(&perf->metrics_lock); 4148 4149 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4150 4151 return oa_config->id; 4152 4153 sysfs_err: 4154 mutex_unlock(&perf->metrics_lock); 4155 reg_err: 4156 i915_oa_config_put(oa_config); 4157 DRM_DEBUG("Failed to add new OA config\n"); 4158 return err; 4159 } 4160 4161 /** 4162 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4163 * @dev: drm device 4164 * @data: ioctl data (pointer to u64 integer) copied from userspace 4165 * @file: drm file 4166 * 4167 * Configs can be removed while being used, the will stop appearing in sysfs 4168 * and their content will be freed when the stream using the config is closed. 4169 * 4170 * Returns: 0 on success or a negative error code on failure. 4171 */ 4172 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4173 struct drm_file *file) 4174 { 4175 struct i915_perf *perf = &to_i915(dev)->perf; 4176 u64 *arg = data; 4177 struct i915_oa_config *oa_config; 4178 int ret; 4179 4180 if (!perf->i915) { 4181 DRM_DEBUG("i915 perf interface not available for this system\n"); 4182 return -ENOTSUPP; 4183 } 4184 4185 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4186 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 4187 return -EACCES; 4188 } 4189 4190 ret = mutex_lock_interruptible(&perf->metrics_lock); 4191 if (ret) 4192 return ret; 4193 4194 oa_config = idr_find(&perf->metrics_idr, *arg); 4195 if (!oa_config) { 4196 DRM_DEBUG("Failed to remove unknown OA config\n"); 4197 ret = -ENOENT; 4198 goto err_unlock; 4199 } 4200 4201 GEM_BUG_ON(*arg != oa_config->id); 4202 4203 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4204 4205 idr_remove(&perf->metrics_idr, *arg); 4206 4207 mutex_unlock(&perf->metrics_lock); 4208 4209 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4210 4211 i915_oa_config_put(oa_config); 4212 4213 return 0; 4214 4215 err_unlock: 4216 mutex_unlock(&perf->metrics_lock); 4217 return ret; 4218 } 4219 4220 static struct ctl_table oa_table[] = { 4221 { 4222 .procname = "perf_stream_paranoid", 4223 .data = &i915_perf_stream_paranoid, 4224 .maxlen = sizeof(i915_perf_stream_paranoid), 4225 .mode = 0644, 4226 .proc_handler = proc_dointvec_minmax, 4227 .extra1 = SYSCTL_ZERO, 4228 .extra2 = SYSCTL_ONE, 4229 }, 4230 { 4231 .procname = "oa_max_sample_rate", 4232 .data = &i915_oa_max_sample_rate, 4233 .maxlen = sizeof(i915_oa_max_sample_rate), 4234 .mode = 0644, 4235 .proc_handler = proc_dointvec_minmax, 4236 .extra1 = SYSCTL_ZERO, 4237 .extra2 = &oa_sample_rate_hard_limit, 4238 }, 4239 {} 4240 }; 4241 4242 static struct ctl_table i915_root[] = { 4243 { 4244 .procname = "i915", 4245 .maxlen = 0, 4246 .mode = 0555, 4247 .child = oa_table, 4248 }, 4249 {} 4250 }; 4251 4252 static struct ctl_table dev_root[] = { 4253 { 4254 .procname = "dev", 4255 .maxlen = 0, 4256 .mode = 0555, 4257 .child = i915_root, 4258 }, 4259 {} 4260 }; 4261 4262 /** 4263 * i915_perf_init - initialize i915-perf state on module bind 4264 * @i915: i915 device instance 4265 * 4266 * Initializes i915-perf state without exposing anything to userspace. 4267 * 4268 * Note: i915-perf initialization is split into an 'init' and 'register' 4269 * phase with the i915_perf_register() exposing state to userspace. 4270 */ 4271 void i915_perf_init(struct drm_i915_private *i915) 4272 { 4273 struct i915_perf *perf = &i915->perf; 4274 4275 /* XXX const struct i915_perf_ops! */ 4276 4277 if (IS_HASWELL(i915)) { 4278 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4279 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4280 perf->ops.is_valid_flex_reg = NULL; 4281 perf->ops.enable_metric_set = hsw_enable_metric_set; 4282 perf->ops.disable_metric_set = hsw_disable_metric_set; 4283 perf->ops.oa_enable = gen7_oa_enable; 4284 perf->ops.oa_disable = gen7_oa_disable; 4285 perf->ops.read = gen7_oa_read; 4286 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4287 4288 perf->oa_formats = hsw_oa_formats; 4289 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4290 /* Note: that although we could theoretically also support the 4291 * legacy ringbuffer mode on BDW (and earlier iterations of 4292 * this driver, before upstreaming did this) it didn't seem 4293 * worth the complexity to maintain now that BDW+ enable 4294 * execlist mode by default. 4295 */ 4296 perf->ops.read = gen8_oa_read; 4297 4298 if (IS_GEN_RANGE(i915, 8, 9)) { 4299 perf->oa_formats = gen8_plus_oa_formats; 4300 4301 perf->ops.is_valid_b_counter_reg = 4302 gen7_is_valid_b_counter_addr; 4303 perf->ops.is_valid_mux_reg = 4304 gen8_is_valid_mux_addr; 4305 perf->ops.is_valid_flex_reg = 4306 gen8_is_valid_flex_addr; 4307 4308 if (IS_CHERRYVIEW(i915)) { 4309 perf->ops.is_valid_mux_reg = 4310 chv_is_valid_mux_addr; 4311 } 4312 4313 perf->ops.oa_enable = gen8_oa_enable; 4314 perf->ops.oa_disable = gen8_oa_disable; 4315 perf->ops.enable_metric_set = gen8_enable_metric_set; 4316 perf->ops.disable_metric_set = gen8_disable_metric_set; 4317 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4318 4319 if (IS_GEN(i915, 8)) { 4320 perf->ctx_oactxctrl_offset = 0x120; 4321 perf->ctx_flexeu0_offset = 0x2ce; 4322 4323 perf->gen8_valid_ctx_bit = BIT(25); 4324 } else { 4325 perf->ctx_oactxctrl_offset = 0x128; 4326 perf->ctx_flexeu0_offset = 0x3de; 4327 4328 perf->gen8_valid_ctx_bit = BIT(16); 4329 } 4330 } else if (IS_GEN_RANGE(i915, 10, 11)) { 4331 perf->oa_formats = gen8_plus_oa_formats; 4332 4333 perf->ops.is_valid_b_counter_reg = 4334 gen7_is_valid_b_counter_addr; 4335 perf->ops.is_valid_mux_reg = 4336 gen10_is_valid_mux_addr; 4337 perf->ops.is_valid_flex_reg = 4338 gen8_is_valid_flex_addr; 4339 4340 perf->ops.oa_enable = gen8_oa_enable; 4341 perf->ops.oa_disable = gen8_oa_disable; 4342 perf->ops.enable_metric_set = gen8_enable_metric_set; 4343 perf->ops.disable_metric_set = gen10_disable_metric_set; 4344 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4345 4346 if (IS_GEN(i915, 10)) { 4347 perf->ctx_oactxctrl_offset = 0x128; 4348 perf->ctx_flexeu0_offset = 0x3de; 4349 } else { 4350 perf->ctx_oactxctrl_offset = 0x124; 4351 perf->ctx_flexeu0_offset = 0x78e; 4352 } 4353 perf->gen8_valid_ctx_bit = BIT(16); 4354 } else if (IS_GEN(i915, 12)) { 4355 perf->oa_formats = gen12_oa_formats; 4356 4357 perf->ops.is_valid_b_counter_reg = 4358 gen12_is_valid_b_counter_addr; 4359 perf->ops.is_valid_mux_reg = 4360 gen12_is_valid_mux_addr; 4361 perf->ops.is_valid_flex_reg = 4362 gen8_is_valid_flex_addr; 4363 4364 perf->ops.oa_enable = gen12_oa_enable; 4365 perf->ops.oa_disable = gen12_oa_disable; 4366 perf->ops.enable_metric_set = gen12_enable_metric_set; 4367 perf->ops.disable_metric_set = gen12_disable_metric_set; 4368 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4369 4370 perf->ctx_flexeu0_offset = 0; 4371 perf->ctx_oactxctrl_offset = 0x144; 4372 } 4373 } 4374 4375 if (perf->ops.enable_metric_set) { 4376 mutex_init(&perf->lock); 4377 4378 /* Choose a representative limit */ 4379 oa_sample_rate_hard_limit = i915->gt.clock_frequency / 2; 4380 4381 mutex_init(&perf->metrics_lock); 4382 idr_init_base(&perf->metrics_idr, 1); 4383 4384 /* We set up some ratelimit state to potentially throttle any 4385 * _NOTES about spurious, invalid OA reports which we don't 4386 * forward to userspace. 4387 * 4388 * We print a _NOTE about any throttling when closing the 4389 * stream instead of waiting until driver _fini which no one 4390 * would ever see. 4391 * 4392 * Using the same limiting factors as printk_ratelimit() 4393 */ 4394 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4395 /* Since we use a DRM_NOTE for spurious reports it would be 4396 * inconsistent to let __ratelimit() automatically print a 4397 * warning for throttling. 4398 */ 4399 ratelimit_set_flags(&perf->spurious_report_rs, 4400 RATELIMIT_MSG_ON_RELEASE); 4401 4402 ratelimit_state_init(&perf->tail_pointer_race, 4403 5 * HZ, 10); 4404 ratelimit_set_flags(&perf->tail_pointer_race, 4405 RATELIMIT_MSG_ON_RELEASE); 4406 4407 atomic64_set(&perf->noa_programming_delay, 4408 500 * 1000 /* 500us */); 4409 4410 perf->i915 = i915; 4411 } 4412 } 4413 4414 static int destroy_config(int id, void *p, void *data) 4415 { 4416 i915_oa_config_put(p); 4417 return 0; 4418 } 4419 4420 void i915_perf_sysctl_register(void) 4421 { 4422 sysctl_header = register_sysctl_table(dev_root); 4423 } 4424 4425 void i915_perf_sysctl_unregister(void) 4426 { 4427 unregister_sysctl_table(sysctl_header); 4428 } 4429 4430 /** 4431 * i915_perf_fini - Counter part to i915_perf_init() 4432 * @i915: i915 device instance 4433 */ 4434 void i915_perf_fini(struct drm_i915_private *i915) 4435 { 4436 struct i915_perf *perf = &i915->perf; 4437 4438 if (!perf->i915) 4439 return; 4440 4441 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4442 idr_destroy(&perf->metrics_idr); 4443 4444 memset(&perf->ops, 0, sizeof(perf->ops)); 4445 perf->i915 = NULL; 4446 } 4447 4448 /** 4449 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4450 * 4451 * This version number is used by userspace to detect available features. 4452 */ 4453 int i915_perf_ioctl_version(void) 4454 { 4455 /* 4456 * 1: Initial version 4457 * I915_PERF_IOCTL_ENABLE 4458 * I915_PERF_IOCTL_DISABLE 4459 * 4460 * 2: Added runtime modification of OA config. 4461 * I915_PERF_IOCTL_CONFIG 4462 * 4463 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4464 * preemption on a particular context so that performance data is 4465 * accessible from a delta of MI_RPC reports without looking at the 4466 * OA buffer. 4467 * 4468 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 4469 * be run for the duration of the performance recording based on 4470 * their SSEU configuration. 4471 * 4472 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 4473 * interval for the hrtimer used to check for OA data. 4474 */ 4475 return 5; 4476 } 4477 4478 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4479 #include "selftests/i915_perf.c" 4480 #endif 4481