1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gem/i915_gem_internal.h" 200 #include "gt/intel_engine_pm.h" 201 #include "gt/intel_engine_regs.h" 202 #include "gt/intel_engine_user.h" 203 #include "gt/intel_execlists_submission.h" 204 #include "gt/intel_gpu_commands.h" 205 #include "gt/intel_gt.h" 206 #include "gt/intel_gt_clock_utils.h" 207 #include "gt/intel_gt_mcr.h" 208 #include "gt/intel_gt_regs.h" 209 #include "gt/intel_lrc.h" 210 #include "gt/intel_lrc_reg.h" 211 #include "gt/intel_ring.h" 212 #include "gt/uc/intel_guc_slpc.h" 213 214 #include "i915_drv.h" 215 #include "i915_file_private.h" 216 #include "i915_perf.h" 217 #include "i915_perf_oa_regs.h" 218 #include "i915_reg.h" 219 220 /* HW requires this to be a power of two, between 128k and 16M, though driver 221 * is currently generally designed assuming the largest 16M size is used such 222 * that the overflow cases are unlikely in normal operation. 223 */ 224 #define OA_BUFFER_SIZE SZ_16M 225 226 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 227 228 /** 229 * DOC: OA Tail Pointer Race 230 * 231 * There's a HW race condition between OA unit tail pointer register updates and 232 * writes to memory whereby the tail pointer can sometimes get ahead of what's 233 * been written out to the OA buffer so far (in terms of what's visible to the 234 * CPU). 235 * 236 * Although this can be observed explicitly while copying reports to userspace 237 * by checking for a zeroed report-id field in tail reports, we want to account 238 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 239 * redundant read() attempts. 240 * 241 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 242 * in the OA buffer, starting from the tail reported by the HW until we find a 243 * report with its first 2 dwords not 0 meaning its previous report is 244 * completely in memory and ready to be read. Those dwords are also set to 0 245 * once read and the whole buffer is cleared upon OA buffer initialization. The 246 * first dword is the reason for this report while the second is the timestamp, 247 * making the chances of having those 2 fields at 0 fairly unlikely. A more 248 * detailed explanation is available in oa_buffer_check_unlocked(). 249 * 250 * Most of the implementation details for this workaround are in 251 * oa_buffer_check_unlocked() and _append_oa_reports() 252 * 253 * Note for posterity: previously the driver used to define an effective tail 254 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 255 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 256 * This was flawed considering that the OA unit may also automatically generate 257 * non-periodic reports (such as on context switch) or the OA unit may be 258 * enabled without any periodic sampling. 259 */ 260 #define OA_TAIL_MARGIN_NSEC 100000ULL 261 #define INVALID_TAIL_PTR 0xffffffff 262 263 /* The default frequency for checking whether the OA unit has written new 264 * reports to the circular OA buffer... 265 */ 266 #define DEFAULT_POLL_FREQUENCY_HZ 200 267 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 268 269 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 270 static u32 i915_perf_stream_paranoid = true; 271 272 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 273 * of the 64bit timestamp bits to trigger reports from) but there's currently 274 * no known use case for sampling as infrequently as once per 47 thousand years. 275 * 276 * Since the timestamps included in OA reports are only 32bits it seems 277 * reasonable to limit the OA exponent where it's still possible to account for 278 * overflow in OA report timestamps. 279 */ 280 #define OA_EXPONENT_MAX 31 281 282 #define INVALID_CTX_ID 0xffffffff 283 284 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 285 #define OAREPORT_REASON_MASK 0x3f 286 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 287 #define OAREPORT_REASON_SHIFT 19 288 #define OAREPORT_REASON_TIMER (1<<0) 289 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 290 #define OAREPORT_REASON_CLK_RATIO (1<<5) 291 292 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) 293 294 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 295 * 296 * The highest sampling frequency we can theoretically program the OA unit 297 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 298 * 299 * Initialized just before we register the sysctl parameter. 300 */ 301 static int oa_sample_rate_hard_limit; 302 303 /* Theoretically we can program the OA unit to sample every 160ns but don't 304 * allow that by default unless root... 305 * 306 * The default threshold of 100000Hz is based on perf's similar 307 * kernel.perf_event_max_sample_rate sysctl parameter. 308 */ 309 static u32 i915_oa_max_sample_rate = 100000; 310 311 /* XXX: beware if future OA HW adds new report formats that the current 312 * code assumes all reports have a power-of-two size and ~(size - 1) can 313 * be used as a mask to align the OA tail pointer. 314 */ 315 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = { 316 [I915_OA_FORMAT_A13] = { 0, 64 }, 317 [I915_OA_FORMAT_A29] = { 1, 128 }, 318 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 319 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 320 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 321 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 322 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 323 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 324 [I915_OA_FORMAT_A12] = { 0, 64 }, 325 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 326 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 327 [I915_OAR_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 328 [I915_OA_FORMAT_A24u40_A14u32_B8_C8] = { 5, 256 }, 329 }; 330 331 #define SAMPLE_OA_REPORT (1<<0) 332 333 /** 334 * struct perf_open_properties - for validated properties given to open a stream 335 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 336 * @single_context: Whether a single or all gpu contexts should be monitored 337 * @hold_preemption: Whether the preemption is disabled for the filtered 338 * context 339 * @ctx_handle: A gem ctx handle for use with @single_context 340 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 341 * @oa_format: An OA unit HW report format 342 * @oa_periodic: Whether to enable periodic OA unit sampling 343 * @oa_period_exponent: The OA unit sampling period is derived from this 344 * @engine: The engine (typically rcs0) being monitored by the OA unit 345 * @has_sseu: Whether @sseu was specified by userspace 346 * @sseu: internal SSEU configuration computed either from the userspace 347 * specified configuration in the opening parameters or a default value 348 * (see get_default_sseu_config()) 349 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 350 * data availability 351 * 352 * As read_properties_unlocked() enumerates and validates the properties given 353 * to open a stream of metrics the configuration is built up in the structure 354 * which starts out zero initialized. 355 */ 356 struct perf_open_properties { 357 u32 sample_flags; 358 359 u64 single_context:1; 360 u64 hold_preemption:1; 361 u64 ctx_handle; 362 363 /* OA sampling state */ 364 int metrics_set; 365 int oa_format; 366 bool oa_periodic; 367 int oa_period_exponent; 368 369 struct intel_engine_cs *engine; 370 371 bool has_sseu; 372 struct intel_sseu sseu; 373 374 u64 poll_oa_period; 375 }; 376 377 struct i915_oa_config_bo { 378 struct llist_node node; 379 380 struct i915_oa_config *oa_config; 381 struct i915_vma *vma; 382 }; 383 384 static struct ctl_table_header *sysctl_header; 385 386 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 387 388 void i915_oa_config_release(struct kref *ref) 389 { 390 struct i915_oa_config *oa_config = 391 container_of(ref, typeof(*oa_config), ref); 392 393 kfree(oa_config->flex_regs); 394 kfree(oa_config->b_counter_regs); 395 kfree(oa_config->mux_regs); 396 397 kfree_rcu(oa_config, rcu); 398 } 399 400 struct i915_oa_config * 401 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 402 { 403 struct i915_oa_config *oa_config; 404 405 rcu_read_lock(); 406 oa_config = idr_find(&perf->metrics_idr, metrics_set); 407 if (oa_config) 408 oa_config = i915_oa_config_get(oa_config); 409 rcu_read_unlock(); 410 411 return oa_config; 412 } 413 414 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 415 { 416 i915_oa_config_put(oa_bo->oa_config); 417 i915_vma_put(oa_bo->vma); 418 kfree(oa_bo); 419 } 420 421 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 422 { 423 struct intel_uncore *uncore = stream->uncore; 424 425 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 426 GEN12_OAG_OATAILPTR_MASK; 427 } 428 429 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 430 { 431 struct intel_uncore *uncore = stream->uncore; 432 433 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 434 } 435 436 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 437 { 438 struct intel_uncore *uncore = stream->uncore; 439 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 440 441 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 442 } 443 444 /** 445 * oa_buffer_check_unlocked - check for data and update tail ptr state 446 * @stream: i915 stream instance 447 * 448 * This is either called via fops (for blocking reads in user ctx) or the poll 449 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 450 * if there is data available for userspace to read. 451 * 452 * This function is central to providing a workaround for the OA unit tail 453 * pointer having a race with respect to what data is visible to the CPU. 454 * It is responsible for reading tail pointers from the hardware and giving 455 * the pointers time to 'age' before they are made available for reading. 456 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 457 * 458 * Besides returning true when there is data available to read() this function 459 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer 460 * object. 461 * 462 * Note: It's safe to read OA config state here unlocked, assuming that this is 463 * only called while the stream is enabled, while the global OA configuration 464 * can't be modified. 465 * 466 * Returns: %true if the OA buffer contains data, else %false 467 */ 468 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 469 { 470 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 471 int report_size = stream->oa_buffer.format->size; 472 unsigned long flags; 473 bool pollin; 474 u32 hw_tail; 475 u64 now; 476 477 /* We have to consider the (unlikely) possibility that read() errors 478 * could result in an OA buffer reset which might reset the head and 479 * tail state. 480 */ 481 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 482 483 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 484 485 /* The tail pointer increases in 64 byte increments, 486 * not in report_size steps... 487 */ 488 hw_tail &= ~(report_size - 1); 489 490 now = ktime_get_mono_fast_ns(); 491 492 if (hw_tail == stream->oa_buffer.aging_tail && 493 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) { 494 /* If the HW tail hasn't move since the last check and the HW 495 * tail has been aging for long enough, declare it the new 496 * tail. 497 */ 498 stream->oa_buffer.tail = stream->oa_buffer.aging_tail; 499 } else { 500 u32 head, tail, aged_tail; 501 502 /* NB: The head we observe here might effectively be a little 503 * out of date. If a read() is in progress, the head could be 504 * anywhere between this head and stream->oa_buffer.tail. 505 */ 506 head = stream->oa_buffer.head - gtt_offset; 507 aged_tail = stream->oa_buffer.tail - gtt_offset; 508 509 hw_tail -= gtt_offset; 510 tail = hw_tail; 511 512 /* Walk the stream backward until we find a report with dword 0 513 * & 1 not at 0. Since the circular buffer pointers progress by 514 * increments of 64 bytes and that reports can be up to 256 515 * bytes long, we can't tell whether a report has fully landed 516 * in memory before the first 2 dwords of the following report 517 * have effectively landed. 518 * 519 * This is assuming that the writes of the OA unit land in 520 * memory in the order they were written to. 521 * If not : (╯°□°)╯︵ ┻━┻ 522 */ 523 while (OA_TAKEN(tail, aged_tail) >= report_size) { 524 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail); 525 526 if (report32[0] != 0 || report32[1] != 0) 527 break; 528 529 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 530 } 531 532 if (OA_TAKEN(hw_tail, tail) > report_size && 533 __ratelimit(&stream->perf->tail_pointer_race)) 534 drm_notice(&stream->uncore->i915->drm, 535 "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n", 536 head, tail, hw_tail); 537 538 stream->oa_buffer.tail = gtt_offset + tail; 539 stream->oa_buffer.aging_tail = gtt_offset + hw_tail; 540 stream->oa_buffer.aging_timestamp = now; 541 } 542 543 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset, 544 stream->oa_buffer.head - gtt_offset) >= report_size; 545 546 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 547 548 return pollin; 549 } 550 551 /** 552 * append_oa_status - Appends a status record to a userspace read() buffer. 553 * @stream: An i915-perf stream opened for OA metrics 554 * @buf: destination buffer given by userspace 555 * @count: the number of bytes userspace wants to read 556 * @offset: (inout): the current position for writing into @buf 557 * @type: The kind of status to report to userspace 558 * 559 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 560 * into the userspace read() buffer. 561 * 562 * The @buf @offset will only be updated on success. 563 * 564 * Returns: 0 on success, negative error code on failure. 565 */ 566 static int append_oa_status(struct i915_perf_stream *stream, 567 char __user *buf, 568 size_t count, 569 size_t *offset, 570 enum drm_i915_perf_record_type type) 571 { 572 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 573 574 if ((count - *offset) < header.size) 575 return -ENOSPC; 576 577 if (copy_to_user(buf + *offset, &header, sizeof(header))) 578 return -EFAULT; 579 580 (*offset) += header.size; 581 582 return 0; 583 } 584 585 /** 586 * append_oa_sample - Copies single OA report into userspace read() buffer. 587 * @stream: An i915-perf stream opened for OA metrics 588 * @buf: destination buffer given by userspace 589 * @count: the number of bytes userspace wants to read 590 * @offset: (inout): the current position for writing into @buf 591 * @report: A single OA report to (optionally) include as part of the sample 592 * 593 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 594 * properties when opening a stream, tracked as `stream->sample_flags`. This 595 * function copies the requested components of a single sample to the given 596 * read() @buf. 597 * 598 * The @buf @offset will only be updated on success. 599 * 600 * Returns: 0 on success, negative error code on failure. 601 */ 602 static int append_oa_sample(struct i915_perf_stream *stream, 603 char __user *buf, 604 size_t count, 605 size_t *offset, 606 const u8 *report) 607 { 608 int report_size = stream->oa_buffer.format->size; 609 struct drm_i915_perf_record_header header; 610 611 header.type = DRM_I915_PERF_RECORD_SAMPLE; 612 header.pad = 0; 613 header.size = stream->sample_size; 614 615 if ((count - *offset) < header.size) 616 return -ENOSPC; 617 618 buf += *offset; 619 if (copy_to_user(buf, &header, sizeof(header))) 620 return -EFAULT; 621 buf += sizeof(header); 622 623 if (copy_to_user(buf, report, report_size)) 624 return -EFAULT; 625 626 (*offset) += header.size; 627 628 return 0; 629 } 630 631 /** 632 * gen8_append_oa_reports - Copies all buffered OA reports into 633 * userspace read() buffer. 634 * @stream: An i915-perf stream opened for OA metrics 635 * @buf: destination buffer given by userspace 636 * @count: the number of bytes userspace wants to read 637 * @offset: (inout): the current position for writing into @buf 638 * 639 * Notably any error condition resulting in a short read (-%ENOSPC or 640 * -%EFAULT) will be returned even though one or more records may 641 * have been successfully copied. In this case it's up to the caller 642 * to decide if the error should be squashed before returning to 643 * userspace. 644 * 645 * Note: reports are consumed from the head, and appended to the 646 * tail, so the tail chases the head?... If you think that's mad 647 * and back-to-front you're not alone, but this follows the 648 * Gen PRM naming convention. 649 * 650 * Returns: 0 on success, negative error code on failure. 651 */ 652 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 653 char __user *buf, 654 size_t count, 655 size_t *offset) 656 { 657 struct intel_uncore *uncore = stream->uncore; 658 int report_size = stream->oa_buffer.format->size; 659 u8 *oa_buf_base = stream->oa_buffer.vaddr; 660 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 661 u32 mask = (OA_BUFFER_SIZE - 1); 662 size_t start_offset = *offset; 663 unsigned long flags; 664 u32 head, tail; 665 int ret = 0; 666 667 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 668 return -EIO; 669 670 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 671 672 head = stream->oa_buffer.head; 673 tail = stream->oa_buffer.tail; 674 675 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 676 677 /* 678 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 679 * while indexing relative to oa_buf_base. 680 */ 681 head -= gtt_offset; 682 tail -= gtt_offset; 683 684 /* 685 * An out of bounds or misaligned head or tail pointer implies a driver 686 * bug since we validate + align the tail pointers we read from the 687 * hardware and we are in full control of the head pointer which should 688 * only be incremented by multiples of the report size (notably also 689 * all a power of two). 690 */ 691 if (drm_WARN_ONCE(&uncore->i915->drm, 692 head > OA_BUFFER_SIZE || head % report_size || 693 tail > OA_BUFFER_SIZE || tail % report_size, 694 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 695 head, tail)) 696 return -EIO; 697 698 699 for (/* none */; 700 OA_TAKEN(tail, head); 701 head = (head + report_size) & mask) { 702 u8 *report = oa_buf_base + head; 703 u32 *report32 = (void *)report; 704 u32 ctx_id; 705 u32 reason; 706 707 /* 708 * All the report sizes factor neatly into the buffer 709 * size so we never expect to see a report split 710 * between the beginning and end of the buffer. 711 * 712 * Given the initial alignment check a misalignment 713 * here would imply a driver bug that would result 714 * in an overrun. 715 */ 716 if (drm_WARN_ON(&uncore->i915->drm, 717 (OA_BUFFER_SIZE - head) < report_size)) { 718 drm_err(&uncore->i915->drm, 719 "Spurious OA head ptr: non-integral report offset\n"); 720 break; 721 } 722 723 /* 724 * The reason field includes flags identifying what 725 * triggered this specific report (mostly timer 726 * triggered or e.g. due to a context switch). 727 * 728 * This field is never expected to be zero so we can 729 * check that the report isn't invalid before copying 730 * it to userspace... 731 */ 732 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 733 (GRAPHICS_VER(stream->perf->i915) == 12 ? 734 OAREPORT_REASON_MASK_EXTENDED : 735 OAREPORT_REASON_MASK)); 736 737 ctx_id = report32[2] & stream->specific_ctx_id_mask; 738 739 /* 740 * Squash whatever is in the CTX_ID field if it's marked as 741 * invalid to be sure we avoid false-positive, single-context 742 * filtering below... 743 * 744 * Note: that we don't clear the valid_ctx_bit so userspace can 745 * understand that the ID has been squashed by the kernel. 746 */ 747 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 748 GRAPHICS_VER(stream->perf->i915) <= 11) 749 ctx_id = report32[2] = INVALID_CTX_ID; 750 751 /* 752 * NB: For Gen 8 the OA unit no longer supports clock gating 753 * off for a specific context and the kernel can't securely 754 * stop the counters from updating as system-wide / global 755 * values. 756 * 757 * Automatic reports now include a context ID so reports can be 758 * filtered on the cpu but it's not worth trying to 759 * automatically subtract/hide counter progress for other 760 * contexts while filtering since we can't stop userspace 761 * issuing MI_REPORT_PERF_COUNT commands which would still 762 * provide a side-band view of the real values. 763 * 764 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 765 * to normalize counters for a single filtered context then it 766 * needs be forwarded bookend context-switch reports so that it 767 * can track switches in between MI_REPORT_PERF_COUNT commands 768 * and can itself subtract/ignore the progress of counters 769 * associated with other contexts. Note that the hardware 770 * automatically triggers reports when switching to a new 771 * context which are tagged with the ID of the newly active 772 * context. To avoid the complexity (and likely fragility) of 773 * reading ahead while parsing reports to try and minimize 774 * forwarding redundant context switch reports (i.e. between 775 * other, unrelated contexts) we simply elect to forward them 776 * all. 777 * 778 * We don't rely solely on the reason field to identify context 779 * switches since it's not-uncommon for periodic samples to 780 * identify a switch before any 'context switch' report. 781 */ 782 if (!stream->ctx || 783 stream->specific_ctx_id == ctx_id || 784 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 785 reason & OAREPORT_REASON_CTX_SWITCH) { 786 787 /* 788 * While filtering for a single context we avoid 789 * leaking the IDs of other contexts. 790 */ 791 if (stream->ctx && 792 stream->specific_ctx_id != ctx_id) { 793 report32[2] = INVALID_CTX_ID; 794 } 795 796 ret = append_oa_sample(stream, buf, count, offset, 797 report); 798 if (ret) 799 break; 800 801 stream->oa_buffer.last_ctx_id = ctx_id; 802 } 803 804 /* 805 * Clear out the first 2 dword as a mean to detect unlanded 806 * reports. 807 */ 808 report32[0] = 0; 809 report32[1] = 0; 810 } 811 812 if (start_offset != *offset) { 813 i915_reg_t oaheadptr; 814 815 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ? 816 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 817 818 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 819 820 /* 821 * We removed the gtt_offset for the copy loop above, indexing 822 * relative to oa_buf_base so put back here... 823 */ 824 head += gtt_offset; 825 intel_uncore_write(uncore, oaheadptr, 826 head & GEN12_OAG_OAHEADPTR_MASK); 827 stream->oa_buffer.head = head; 828 829 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 830 } 831 832 return ret; 833 } 834 835 /** 836 * gen8_oa_read - copy status records then buffered OA reports 837 * @stream: An i915-perf stream opened for OA metrics 838 * @buf: destination buffer given by userspace 839 * @count: the number of bytes userspace wants to read 840 * @offset: (inout): the current position for writing into @buf 841 * 842 * Checks OA unit status registers and if necessary appends corresponding 843 * status records for userspace (such as for a buffer full condition) and then 844 * initiate appending any buffered OA reports. 845 * 846 * Updates @offset according to the number of bytes successfully copied into 847 * the userspace buffer. 848 * 849 * NB: some data may be successfully copied to the userspace buffer 850 * even if an error is returned, and this is reflected in the 851 * updated @offset. 852 * 853 * Returns: zero on success or a negative error code 854 */ 855 static int gen8_oa_read(struct i915_perf_stream *stream, 856 char __user *buf, 857 size_t count, 858 size_t *offset) 859 { 860 struct intel_uncore *uncore = stream->uncore; 861 u32 oastatus; 862 i915_reg_t oastatus_reg; 863 int ret; 864 865 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 866 return -EIO; 867 868 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ? 869 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 870 871 oastatus = intel_uncore_read(uncore, oastatus_reg); 872 873 /* 874 * We treat OABUFFER_OVERFLOW as a significant error: 875 * 876 * Although theoretically we could handle this more gracefully 877 * sometimes, some Gens don't correctly suppress certain 878 * automatically triggered reports in this condition and so we 879 * have to assume that old reports are now being trampled 880 * over. 881 * 882 * Considering how we don't currently give userspace control 883 * over the OA buffer size and always configure a large 16MB 884 * buffer, then a buffer overflow does anyway likely indicate 885 * that something has gone quite badly wrong. 886 */ 887 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 888 ret = append_oa_status(stream, buf, count, offset, 889 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 890 if (ret) 891 return ret; 892 893 drm_dbg(&stream->perf->i915->drm, 894 "OA buffer overflow (exponent = %d): force restart\n", 895 stream->period_exponent); 896 897 stream->perf->ops.oa_disable(stream); 898 stream->perf->ops.oa_enable(stream); 899 900 /* 901 * Note: .oa_enable() is expected to re-init the oabuffer and 902 * reset GEN8_OASTATUS for us 903 */ 904 oastatus = intel_uncore_read(uncore, oastatus_reg); 905 } 906 907 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 908 ret = append_oa_status(stream, buf, count, offset, 909 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 910 if (ret) 911 return ret; 912 913 intel_uncore_rmw(uncore, oastatus_reg, 914 GEN8_OASTATUS_COUNTER_OVERFLOW | 915 GEN8_OASTATUS_REPORT_LOST, 916 IS_GRAPHICS_VER(uncore->i915, 8, 11) ? 917 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 918 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 919 } 920 921 return gen8_append_oa_reports(stream, buf, count, offset); 922 } 923 924 /** 925 * gen7_append_oa_reports - Copies all buffered OA reports into 926 * userspace read() buffer. 927 * @stream: An i915-perf stream opened for OA metrics 928 * @buf: destination buffer given by userspace 929 * @count: the number of bytes userspace wants to read 930 * @offset: (inout): the current position for writing into @buf 931 * 932 * Notably any error condition resulting in a short read (-%ENOSPC or 933 * -%EFAULT) will be returned even though one or more records may 934 * have been successfully copied. In this case it's up to the caller 935 * to decide if the error should be squashed before returning to 936 * userspace. 937 * 938 * Note: reports are consumed from the head, and appended to the 939 * tail, so the tail chases the head?... If you think that's mad 940 * and back-to-front you're not alone, but this follows the 941 * Gen PRM naming convention. 942 * 943 * Returns: 0 on success, negative error code on failure. 944 */ 945 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 946 char __user *buf, 947 size_t count, 948 size_t *offset) 949 { 950 struct intel_uncore *uncore = stream->uncore; 951 int report_size = stream->oa_buffer.format->size; 952 u8 *oa_buf_base = stream->oa_buffer.vaddr; 953 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 954 u32 mask = (OA_BUFFER_SIZE - 1); 955 size_t start_offset = *offset; 956 unsigned long flags; 957 u32 head, tail; 958 int ret = 0; 959 960 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 961 return -EIO; 962 963 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 964 965 head = stream->oa_buffer.head; 966 tail = stream->oa_buffer.tail; 967 968 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 969 970 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 971 * while indexing relative to oa_buf_base. 972 */ 973 head -= gtt_offset; 974 tail -= gtt_offset; 975 976 /* An out of bounds or misaligned head or tail pointer implies a driver 977 * bug since we validate + align the tail pointers we read from the 978 * hardware and we are in full control of the head pointer which should 979 * only be incremented by multiples of the report size (notably also 980 * all a power of two). 981 */ 982 if (drm_WARN_ONCE(&uncore->i915->drm, 983 head > OA_BUFFER_SIZE || head % report_size || 984 tail > OA_BUFFER_SIZE || tail % report_size, 985 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 986 head, tail)) 987 return -EIO; 988 989 990 for (/* none */; 991 OA_TAKEN(tail, head); 992 head = (head + report_size) & mask) { 993 u8 *report = oa_buf_base + head; 994 u32 *report32 = (void *)report; 995 996 /* All the report sizes factor neatly into the buffer 997 * size so we never expect to see a report split 998 * between the beginning and end of the buffer. 999 * 1000 * Given the initial alignment check a misalignment 1001 * here would imply a driver bug that would result 1002 * in an overrun. 1003 */ 1004 if (drm_WARN_ON(&uncore->i915->drm, 1005 (OA_BUFFER_SIZE - head) < report_size)) { 1006 drm_err(&uncore->i915->drm, 1007 "Spurious OA head ptr: non-integral report offset\n"); 1008 break; 1009 } 1010 1011 /* The report-ID field for periodic samples includes 1012 * some undocumented flags related to what triggered 1013 * the report and is never expected to be zero so we 1014 * can check that the report isn't invalid before 1015 * copying it to userspace... 1016 */ 1017 if (report32[0] == 0) { 1018 if (__ratelimit(&stream->perf->spurious_report_rs)) 1019 drm_notice(&uncore->i915->drm, 1020 "Skipping spurious, invalid OA report\n"); 1021 continue; 1022 } 1023 1024 ret = append_oa_sample(stream, buf, count, offset, report); 1025 if (ret) 1026 break; 1027 1028 /* Clear out the first 2 dwords as a mean to detect unlanded 1029 * reports. 1030 */ 1031 report32[0] = 0; 1032 report32[1] = 0; 1033 } 1034 1035 if (start_offset != *offset) { 1036 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1037 1038 /* We removed the gtt_offset for the copy loop above, indexing 1039 * relative to oa_buf_base so put back here... 1040 */ 1041 head += gtt_offset; 1042 1043 intel_uncore_write(uncore, GEN7_OASTATUS2, 1044 (head & GEN7_OASTATUS2_HEAD_MASK) | 1045 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1046 stream->oa_buffer.head = head; 1047 1048 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1049 } 1050 1051 return ret; 1052 } 1053 1054 /** 1055 * gen7_oa_read - copy status records then buffered OA reports 1056 * @stream: An i915-perf stream opened for OA metrics 1057 * @buf: destination buffer given by userspace 1058 * @count: the number of bytes userspace wants to read 1059 * @offset: (inout): the current position for writing into @buf 1060 * 1061 * Checks Gen 7 specific OA unit status registers and if necessary appends 1062 * corresponding status records for userspace (such as for a buffer full 1063 * condition) and then initiate appending any buffered OA reports. 1064 * 1065 * Updates @offset according to the number of bytes successfully copied into 1066 * the userspace buffer. 1067 * 1068 * Returns: zero on success or a negative error code 1069 */ 1070 static int gen7_oa_read(struct i915_perf_stream *stream, 1071 char __user *buf, 1072 size_t count, 1073 size_t *offset) 1074 { 1075 struct intel_uncore *uncore = stream->uncore; 1076 u32 oastatus1; 1077 int ret; 1078 1079 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1080 return -EIO; 1081 1082 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1083 1084 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1085 * bits while the OA unit is enabled (while the tail pointer 1086 * may be updated asynchronously) so we ignore status bits 1087 * that have already been reported to userspace. 1088 */ 1089 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1090 1091 /* We treat OABUFFER_OVERFLOW as a significant error: 1092 * 1093 * - The status can be interpreted to mean that the buffer is 1094 * currently full (with a higher precedence than OA_TAKEN() 1095 * which will start to report a near-empty buffer after an 1096 * overflow) but it's awkward that we can't clear the status 1097 * on Haswell, so without a reset we won't be able to catch 1098 * the state again. 1099 * 1100 * - Since it also implies the HW has started overwriting old 1101 * reports it may also affect our sanity checks for invalid 1102 * reports when copying to userspace that assume new reports 1103 * are being written to cleared memory. 1104 * 1105 * - In the future we may want to introduce a flight recorder 1106 * mode where the driver will automatically maintain a safe 1107 * guard band between head/tail, avoiding this overflow 1108 * condition, but we avoid the added driver complexity for 1109 * now. 1110 */ 1111 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1112 ret = append_oa_status(stream, buf, count, offset, 1113 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1114 if (ret) 1115 return ret; 1116 1117 drm_dbg(&stream->perf->i915->drm, 1118 "OA buffer overflow (exponent = %d): force restart\n", 1119 stream->period_exponent); 1120 1121 stream->perf->ops.oa_disable(stream); 1122 stream->perf->ops.oa_enable(stream); 1123 1124 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1125 } 1126 1127 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1128 ret = append_oa_status(stream, buf, count, offset, 1129 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1130 if (ret) 1131 return ret; 1132 stream->perf->gen7_latched_oastatus1 |= 1133 GEN7_OASTATUS1_REPORT_LOST; 1134 } 1135 1136 return gen7_append_oa_reports(stream, buf, count, offset); 1137 } 1138 1139 /** 1140 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1141 * @stream: An i915-perf stream opened for OA metrics 1142 * 1143 * Called when userspace tries to read() from a blocking stream FD opened 1144 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1145 * OA buffer and wakes us. 1146 * 1147 * Note: it's acceptable to have this return with some false positives 1148 * since any subsequent read handling will return -EAGAIN if there isn't 1149 * really data ready for userspace yet. 1150 * 1151 * Returns: zero on success or a negative error code 1152 */ 1153 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1154 { 1155 /* We would wait indefinitely if periodic sampling is not enabled */ 1156 if (!stream->periodic) 1157 return -EIO; 1158 1159 return wait_event_interruptible(stream->poll_wq, 1160 oa_buffer_check_unlocked(stream)); 1161 } 1162 1163 /** 1164 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1165 * @stream: An i915-perf stream opened for OA metrics 1166 * @file: An i915 perf stream file 1167 * @wait: poll() state table 1168 * 1169 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1170 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1171 * when it sees data ready to read in the circular OA buffer. 1172 */ 1173 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1174 struct file *file, 1175 poll_table *wait) 1176 { 1177 poll_wait(file, &stream->poll_wq, wait); 1178 } 1179 1180 /** 1181 * i915_oa_read - just calls through to &i915_oa_ops->read 1182 * @stream: An i915-perf stream opened for OA metrics 1183 * @buf: destination buffer given by userspace 1184 * @count: the number of bytes userspace wants to read 1185 * @offset: (inout): the current position for writing into @buf 1186 * 1187 * Updates @offset according to the number of bytes successfully copied into 1188 * the userspace buffer. 1189 * 1190 * Returns: zero on success or a negative error code 1191 */ 1192 static int i915_oa_read(struct i915_perf_stream *stream, 1193 char __user *buf, 1194 size_t count, 1195 size_t *offset) 1196 { 1197 return stream->perf->ops.read(stream, buf, count, offset); 1198 } 1199 1200 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1201 { 1202 struct i915_gem_engines_iter it; 1203 struct i915_gem_context *ctx = stream->ctx; 1204 struct intel_context *ce; 1205 struct i915_gem_ww_ctx ww; 1206 int err = -ENODEV; 1207 1208 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1209 if (ce->engine != stream->engine) /* first match! */ 1210 continue; 1211 1212 err = 0; 1213 break; 1214 } 1215 i915_gem_context_unlock_engines(ctx); 1216 1217 if (err) 1218 return ERR_PTR(err); 1219 1220 i915_gem_ww_ctx_init(&ww, true); 1221 retry: 1222 /* 1223 * As the ID is the gtt offset of the context's vma we 1224 * pin the vma to ensure the ID remains fixed. 1225 */ 1226 err = intel_context_pin_ww(ce, &ww); 1227 if (err == -EDEADLK) { 1228 err = i915_gem_ww_ctx_backoff(&ww); 1229 if (!err) 1230 goto retry; 1231 } 1232 i915_gem_ww_ctx_fini(&ww); 1233 1234 if (err) 1235 return ERR_PTR(err); 1236 1237 stream->pinned_ctx = ce; 1238 return stream->pinned_ctx; 1239 } 1240 1241 static int 1242 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset) 1243 { 1244 u32 *cs, cmd; 1245 1246 cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; 1247 if (GRAPHICS_VER(rq->engine->i915) >= 8) 1248 cmd++; 1249 1250 cs = intel_ring_begin(rq, 4); 1251 if (IS_ERR(cs)) 1252 return PTR_ERR(cs); 1253 1254 *cs++ = cmd; 1255 *cs++ = i915_mmio_reg_offset(reg); 1256 *cs++ = ggtt_offset; 1257 *cs++ = 0; 1258 1259 intel_ring_advance(rq, cs); 1260 1261 return 0; 1262 } 1263 1264 static int 1265 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset) 1266 { 1267 struct i915_request *rq; 1268 int err; 1269 1270 rq = i915_request_create(ce); 1271 if (IS_ERR(rq)) 1272 return PTR_ERR(rq); 1273 1274 i915_request_get(rq); 1275 1276 err = __store_reg_to_mem(rq, reg, ggtt_offset); 1277 1278 i915_request_add(rq); 1279 if (!err && i915_request_wait(rq, 0, HZ / 2) < 0) 1280 err = -ETIME; 1281 1282 i915_request_put(rq); 1283 1284 return err; 1285 } 1286 1287 static int 1288 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id) 1289 { 1290 struct i915_vma *scratch; 1291 u32 *val; 1292 int err; 1293 1294 scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4); 1295 if (IS_ERR(scratch)) 1296 return PTR_ERR(scratch); 1297 1298 err = i915_vma_sync(scratch); 1299 if (err) 1300 goto err_scratch; 1301 1302 err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base), 1303 i915_ggtt_offset(scratch)); 1304 if (err) 1305 goto err_scratch; 1306 1307 val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB); 1308 if (IS_ERR(val)) { 1309 err = PTR_ERR(val); 1310 goto err_scratch; 1311 } 1312 1313 *ctx_id = *val; 1314 i915_gem_object_unpin_map(scratch->obj); 1315 1316 err_scratch: 1317 i915_vma_unpin_and_release(&scratch, 0); 1318 return err; 1319 } 1320 1321 /* 1322 * For execlist mode of submission, pick an unused context id 1323 * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts 1324 * XXX_MAX_CONTEXT_HW_ID is used by idle context 1325 * 1326 * For GuC mode of submission read context id from the upper dword of the 1327 * EXECLIST_STATUS register. Note that we read this value only once and expect 1328 * that the value stays fixed for the entire OA use case. There are cases where 1329 * GuC KMD implementation may deregister a context to reuse it's context id, but 1330 * we prevent that from happening to the OA context by pinning it. 1331 */ 1332 static int gen12_get_render_context_id(struct i915_perf_stream *stream) 1333 { 1334 u32 ctx_id, mask; 1335 int ret; 1336 1337 if (intel_engine_uses_guc(stream->engine)) { 1338 ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id); 1339 if (ret) 1340 return ret; 1341 1342 mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) << 1343 (GEN12_GUC_SW_CTX_ID_SHIFT - 32); 1344 } else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) { 1345 ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) << 1346 (XEHP_SW_CTX_ID_SHIFT - 32); 1347 1348 mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) << 1349 (XEHP_SW_CTX_ID_SHIFT - 32); 1350 } else { 1351 ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << 1352 (GEN11_SW_CTX_ID_SHIFT - 32); 1353 1354 mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << 1355 (GEN11_SW_CTX_ID_SHIFT - 32); 1356 } 1357 stream->specific_ctx_id = ctx_id & mask; 1358 stream->specific_ctx_id_mask = mask; 1359 1360 return 0; 1361 } 1362 1363 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end) 1364 { 1365 u32 idx = *offset; 1366 u32 len = min(MI_LRI_LEN(state[idx]) + idx, end); 1367 bool found = false; 1368 1369 idx++; 1370 for (; idx < len; idx += 2) { 1371 if (state[idx] == reg) { 1372 found = true; 1373 break; 1374 } 1375 } 1376 1377 *offset = idx; 1378 return found; 1379 } 1380 1381 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg) 1382 { 1383 u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4; 1384 u32 *state = ce->lrc_reg_state; 1385 1386 for (offset = 0; offset < len; ) { 1387 if (IS_MI_LRI_CMD(state[offset])) { 1388 /* 1389 * We expect reg-value pairs in MI_LRI command, so 1390 * MI_LRI_LEN() should be even, if not, issue a warning. 1391 */ 1392 drm_WARN_ON(&ce->engine->i915->drm, 1393 MI_LRI_LEN(state[offset]) & 0x1); 1394 1395 if (oa_find_reg_in_lri(state, reg, &offset, len)) 1396 break; 1397 } else { 1398 offset++; 1399 } 1400 } 1401 1402 return offset < len ? offset : U32_MAX; 1403 } 1404 1405 static int set_oa_ctx_ctrl_offset(struct intel_context *ce) 1406 { 1407 i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base); 1408 struct i915_perf *perf = &ce->engine->i915->perf; 1409 u32 offset = perf->ctx_oactxctrl_offset; 1410 1411 /* Do this only once. Failure is stored as offset of U32_MAX */ 1412 if (offset) 1413 goto exit; 1414 1415 offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg)); 1416 perf->ctx_oactxctrl_offset = offset; 1417 1418 drm_dbg(&ce->engine->i915->drm, 1419 "%s oa ctx control at 0x%08x dword offset\n", 1420 ce->engine->name, offset); 1421 1422 exit: 1423 return offset && offset != U32_MAX ? 0 : -ENODEV; 1424 } 1425 1426 static bool engine_supports_mi_query(struct intel_engine_cs *engine) 1427 { 1428 return engine->class == RENDER_CLASS; 1429 } 1430 1431 /** 1432 * oa_get_render_ctx_id - determine and hold ctx hw id 1433 * @stream: An i915-perf stream opened for OA metrics 1434 * 1435 * Determine the render context hw id, and ensure it remains fixed for the 1436 * lifetime of the stream. This ensures that we don't have to worry about 1437 * updating the context ID in OACONTROL on the fly. 1438 * 1439 * Returns: zero on success or a negative error code 1440 */ 1441 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1442 { 1443 struct intel_context *ce; 1444 int ret = 0; 1445 1446 ce = oa_pin_context(stream); 1447 if (IS_ERR(ce)) 1448 return PTR_ERR(ce); 1449 1450 if (engine_supports_mi_query(stream->engine)) { 1451 /* 1452 * We are enabling perf query here. If we don't find the context 1453 * offset here, just return an error. 1454 */ 1455 ret = set_oa_ctx_ctrl_offset(ce); 1456 if (ret) { 1457 intel_context_unpin(ce); 1458 drm_err(&stream->perf->i915->drm, 1459 "Enabling perf query failed for %s\n", 1460 stream->engine->name); 1461 return ret; 1462 } 1463 } 1464 1465 switch (GRAPHICS_VER(ce->engine->i915)) { 1466 case 7: { 1467 /* 1468 * On Haswell we don't do any post processing of the reports 1469 * and don't need to use the mask. 1470 */ 1471 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1472 stream->specific_ctx_id_mask = 0; 1473 break; 1474 } 1475 1476 case 8: 1477 case 9: 1478 if (intel_engine_uses_guc(ce->engine)) { 1479 /* 1480 * When using GuC, the context descriptor we write in 1481 * i915 is read by GuC and rewritten before it's 1482 * actually written into the hardware. The LRCA is 1483 * what is put into the context id field of the 1484 * context descriptor by GuC. Because it's aligned to 1485 * a page, the lower 12bits are always at 0 and 1486 * dropped by GuC. They won't be part of the context 1487 * ID in the OA reports, so squash those lower bits. 1488 */ 1489 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1490 1491 /* 1492 * GuC uses the top bit to signal proxy submission, so 1493 * ignore that bit. 1494 */ 1495 stream->specific_ctx_id_mask = 1496 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1497 } else { 1498 stream->specific_ctx_id_mask = 1499 (1U << GEN8_CTX_ID_WIDTH) - 1; 1500 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1501 } 1502 break; 1503 1504 case 11: 1505 case 12: 1506 ret = gen12_get_render_context_id(stream); 1507 break; 1508 1509 default: 1510 MISSING_CASE(GRAPHICS_VER(ce->engine->i915)); 1511 } 1512 1513 ce->tag = stream->specific_ctx_id; 1514 1515 drm_dbg(&stream->perf->i915->drm, 1516 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1517 stream->specific_ctx_id, 1518 stream->specific_ctx_id_mask); 1519 1520 return ret; 1521 } 1522 1523 /** 1524 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1525 * @stream: An i915-perf stream opened for OA metrics 1526 * 1527 * In case anything needed doing to ensure the context HW ID would remain valid 1528 * for the lifetime of the stream, then that can be undone here. 1529 */ 1530 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1531 { 1532 struct intel_context *ce; 1533 1534 ce = fetch_and_zero(&stream->pinned_ctx); 1535 if (ce) { 1536 ce->tag = 0; /* recomputed on next submission after parking */ 1537 intel_context_unpin(ce); 1538 } 1539 1540 stream->specific_ctx_id = INVALID_CTX_ID; 1541 stream->specific_ctx_id_mask = 0; 1542 } 1543 1544 static void 1545 free_oa_buffer(struct i915_perf_stream *stream) 1546 { 1547 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1548 I915_VMA_RELEASE_MAP); 1549 1550 stream->oa_buffer.vaddr = NULL; 1551 } 1552 1553 static void 1554 free_oa_configs(struct i915_perf_stream *stream) 1555 { 1556 struct i915_oa_config_bo *oa_bo, *tmp; 1557 1558 i915_oa_config_put(stream->oa_config); 1559 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1560 free_oa_config_bo(oa_bo); 1561 } 1562 1563 static void 1564 free_noa_wait(struct i915_perf_stream *stream) 1565 { 1566 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1567 } 1568 1569 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1570 { 1571 struct i915_perf *perf = stream->perf; 1572 struct intel_gt *gt = stream->engine->gt; 1573 1574 if (WARN_ON(stream != gt->perf.exclusive_stream)) 1575 return; 1576 1577 /* 1578 * Unset exclusive_stream first, it will be checked while disabling 1579 * the metric set on gen8+. 1580 * 1581 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1582 */ 1583 WRITE_ONCE(gt->perf.exclusive_stream, NULL); 1584 perf->ops.disable_metric_set(stream); 1585 1586 free_oa_buffer(stream); 1587 1588 /* 1589 * Wa_16011777198:dg2: Unset the override of GUCRC mode to enable rc6. 1590 */ 1591 if (intel_uc_uses_guc_rc(>->uc) && 1592 (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || 1593 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))) 1594 drm_WARN_ON(>->i915->drm, 1595 intel_guc_slpc_unset_gucrc_mode(>->uc.guc.slpc)); 1596 1597 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1598 intel_engine_pm_put(stream->engine); 1599 1600 if (stream->ctx) 1601 oa_put_render_ctx_id(stream); 1602 1603 free_oa_configs(stream); 1604 free_noa_wait(stream); 1605 1606 if (perf->spurious_report_rs.missed) { 1607 drm_notice(>->i915->drm, 1608 "%d spurious OA report notices suppressed due to ratelimiting\n", 1609 perf->spurious_report_rs.missed); 1610 } 1611 } 1612 1613 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1614 { 1615 struct intel_uncore *uncore = stream->uncore; 1616 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1617 unsigned long flags; 1618 1619 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1620 1621 /* Pre-DevBDW: OABUFFER must be set with counters off, 1622 * before OASTATUS1, but after OASTATUS2 1623 */ 1624 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1625 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1626 stream->oa_buffer.head = gtt_offset; 1627 1628 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1629 1630 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1631 gtt_offset | OABUFFER_SIZE_16M); 1632 1633 /* Mark that we need updated tail pointers to read from... */ 1634 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1635 stream->oa_buffer.tail = gtt_offset; 1636 1637 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1638 1639 /* On Haswell we have to track which OASTATUS1 flags we've 1640 * already seen since they can't be cleared while periodic 1641 * sampling is enabled. 1642 */ 1643 stream->perf->gen7_latched_oastatus1 = 0; 1644 1645 /* NB: although the OA buffer will initially be allocated 1646 * zeroed via shmfs (and so this memset is redundant when 1647 * first allocating), we may re-init the OA buffer, either 1648 * when re-enabling a stream or in error/reset paths. 1649 * 1650 * The reason we clear the buffer for each re-init is for the 1651 * sanity check in gen7_append_oa_reports() that looks at the 1652 * report-id field to make sure it's non-zero which relies on 1653 * the assumption that new reports are being written to zeroed 1654 * memory... 1655 */ 1656 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1657 } 1658 1659 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1660 { 1661 struct intel_uncore *uncore = stream->uncore; 1662 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1663 unsigned long flags; 1664 1665 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1666 1667 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1668 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1669 stream->oa_buffer.head = gtt_offset; 1670 1671 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1672 1673 /* 1674 * PRM says: 1675 * 1676 * "This MMIO must be set before the OATAILPTR 1677 * register and after the OAHEADPTR register. This is 1678 * to enable proper functionality of the overflow 1679 * bit." 1680 */ 1681 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1682 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1683 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1684 1685 /* Mark that we need updated tail pointers to read from... */ 1686 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1687 stream->oa_buffer.tail = gtt_offset; 1688 1689 /* 1690 * Reset state used to recognise context switches, affecting which 1691 * reports we will forward to userspace while filtering for a single 1692 * context. 1693 */ 1694 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1695 1696 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1697 1698 /* 1699 * NB: although the OA buffer will initially be allocated 1700 * zeroed via shmfs (and so this memset is redundant when 1701 * first allocating), we may re-init the OA buffer, either 1702 * when re-enabling a stream or in error/reset paths. 1703 * 1704 * The reason we clear the buffer for each re-init is for the 1705 * sanity check in gen8_append_oa_reports() that looks at the 1706 * reason field to make sure it's non-zero which relies on 1707 * the assumption that new reports are being written to zeroed 1708 * memory... 1709 */ 1710 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1711 } 1712 1713 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1714 { 1715 struct intel_uncore *uncore = stream->uncore; 1716 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1717 unsigned long flags; 1718 1719 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1720 1721 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1722 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1723 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1724 stream->oa_buffer.head = gtt_offset; 1725 1726 /* 1727 * PRM says: 1728 * 1729 * "This MMIO must be set before the OATAILPTR 1730 * register and after the OAHEADPTR register. This is 1731 * to enable proper functionality of the overflow 1732 * bit." 1733 */ 1734 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1735 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1736 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1737 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1738 1739 /* Mark that we need updated tail pointers to read from... */ 1740 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1741 stream->oa_buffer.tail = gtt_offset; 1742 1743 /* 1744 * Reset state used to recognise context switches, affecting which 1745 * reports we will forward to userspace while filtering for a single 1746 * context. 1747 */ 1748 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1749 1750 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1751 1752 /* 1753 * NB: although the OA buffer will initially be allocated 1754 * zeroed via shmfs (and so this memset is redundant when 1755 * first allocating), we may re-init the OA buffer, either 1756 * when re-enabling a stream or in error/reset paths. 1757 * 1758 * The reason we clear the buffer for each re-init is for the 1759 * sanity check in gen8_append_oa_reports() that looks at the 1760 * reason field to make sure it's non-zero which relies on 1761 * the assumption that new reports are being written to zeroed 1762 * memory... 1763 */ 1764 memset(stream->oa_buffer.vaddr, 0, 1765 stream->oa_buffer.vma->size); 1766 } 1767 1768 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1769 { 1770 struct drm_i915_private *i915 = stream->perf->i915; 1771 struct intel_gt *gt = stream->engine->gt; 1772 struct drm_i915_gem_object *bo; 1773 struct i915_vma *vma; 1774 int ret; 1775 1776 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1777 return -ENODEV; 1778 1779 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1780 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1781 1782 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1783 if (IS_ERR(bo)) { 1784 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1785 return PTR_ERR(bo); 1786 } 1787 1788 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1789 1790 /* PreHSW required 512K alignment, HSW requires 16M */ 1791 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1792 if (IS_ERR(vma)) { 1793 ret = PTR_ERR(vma); 1794 goto err_unref; 1795 } 1796 1797 /* 1798 * PreHSW required 512K alignment. 1799 * HSW and onwards, align to requested size of OA buffer. 1800 */ 1801 ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH); 1802 if (ret) { 1803 drm_err(>->i915->drm, "Failed to pin OA buffer %d\n", ret); 1804 goto err_unref; 1805 } 1806 1807 stream->oa_buffer.vma = vma; 1808 1809 stream->oa_buffer.vaddr = 1810 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB); 1811 if (IS_ERR(stream->oa_buffer.vaddr)) { 1812 ret = PTR_ERR(stream->oa_buffer.vaddr); 1813 goto err_unpin; 1814 } 1815 1816 return 0; 1817 1818 err_unpin: 1819 __i915_vma_unpin(vma); 1820 1821 err_unref: 1822 i915_gem_object_put(bo); 1823 1824 stream->oa_buffer.vaddr = NULL; 1825 stream->oa_buffer.vma = NULL; 1826 1827 return ret; 1828 } 1829 1830 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1831 bool save, i915_reg_t reg, u32 offset, 1832 u32 dword_count) 1833 { 1834 u32 cmd; 1835 u32 d; 1836 1837 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1838 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1839 if (GRAPHICS_VER(stream->perf->i915) >= 8) 1840 cmd++; 1841 1842 for (d = 0; d < dword_count; d++) { 1843 *cs++ = cmd; 1844 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1845 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1846 offset) + 4 * d; 1847 *cs++ = 0; 1848 } 1849 1850 return cs; 1851 } 1852 1853 static int alloc_noa_wait(struct i915_perf_stream *stream) 1854 { 1855 struct drm_i915_private *i915 = stream->perf->i915; 1856 struct intel_gt *gt = stream->engine->gt; 1857 struct drm_i915_gem_object *bo; 1858 struct i915_vma *vma; 1859 const u64 delay_ticks = 0xffffffffffffffff - 1860 intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915), 1861 atomic64_read(&stream->perf->noa_programming_delay)); 1862 const u32 base = stream->engine->mmio_base; 1863 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1864 u32 *batch, *ts0, *cs, *jump; 1865 struct i915_gem_ww_ctx ww; 1866 int ret, i; 1867 enum { 1868 START_TS, 1869 NOW_TS, 1870 DELTA_TS, 1871 JUMP_PREDICATE, 1872 DELTA_TARGET, 1873 N_CS_GPR 1874 }; 1875 i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ? 1876 MI_PREDICATE_RESULT_2_ENGINE(base) : 1877 MI_PREDICATE_RESULT_1(RENDER_RING_BASE); 1878 1879 bo = i915_gem_object_create_internal(i915, 4096); 1880 if (IS_ERR(bo)) { 1881 drm_err(&i915->drm, 1882 "Failed to allocate NOA wait batchbuffer\n"); 1883 return PTR_ERR(bo); 1884 } 1885 1886 i915_gem_ww_ctx_init(&ww, true); 1887 retry: 1888 ret = i915_gem_object_lock(bo, &ww); 1889 if (ret) 1890 goto out_ww; 1891 1892 /* 1893 * We pin in GGTT because we jump into this buffer now because 1894 * multiple OA config BOs will have a jump to this address and it 1895 * needs to be fixed during the lifetime of the i915/perf stream. 1896 */ 1897 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1898 if (IS_ERR(vma)) { 1899 ret = PTR_ERR(vma); 1900 goto out_ww; 1901 } 1902 1903 ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 1904 if (ret) 1905 goto out_ww; 1906 1907 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1908 if (IS_ERR(batch)) { 1909 ret = PTR_ERR(batch); 1910 goto err_unpin; 1911 } 1912 1913 /* Save registers. */ 1914 for (i = 0; i < N_CS_GPR; i++) 1915 cs = save_restore_register( 1916 stream, cs, true /* save */, CS_GPR(i), 1917 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1918 cs = save_restore_register( 1919 stream, cs, true /* save */, mi_predicate_result, 1920 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1921 1922 /* First timestamp snapshot location. */ 1923 ts0 = cs; 1924 1925 /* 1926 * Initial snapshot of the timestamp register to implement the wait. 1927 * We work with 32b values, so clear out the top 32b bits of the 1928 * register because the ALU works 64bits. 1929 */ 1930 *cs++ = MI_LOAD_REGISTER_IMM(1); 1931 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1932 *cs++ = 0; 1933 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1934 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1935 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1936 1937 /* 1938 * This is the location we're going to jump back into until the 1939 * required amount of time has passed. 1940 */ 1941 jump = cs; 1942 1943 /* 1944 * Take another snapshot of the timestamp register. Take care to clear 1945 * up the top 32bits of CS_GPR(1) as we're using it for other 1946 * operations below. 1947 */ 1948 *cs++ = MI_LOAD_REGISTER_IMM(1); 1949 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1950 *cs++ = 0; 1951 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1952 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1953 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1954 1955 /* 1956 * Do a diff between the 2 timestamps and store the result back into 1957 * CS_GPR(1). 1958 */ 1959 *cs++ = MI_MATH(5); 1960 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1961 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1962 *cs++ = MI_MATH_SUB; 1963 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1964 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1965 1966 /* 1967 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1968 * timestamp have rolled over the 32bits) into the predicate register 1969 * to be used for the predicated jump. 1970 */ 1971 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1972 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1973 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 1974 1975 if (HAS_MI_SET_PREDICATE(i915)) 1976 *cs++ = MI_SET_PREDICATE | 1; 1977 1978 /* Restart from the beginning if we had timestamps roll over. */ 1979 *cs++ = (GRAPHICS_VER(i915) < 8 ? 1980 MI_BATCH_BUFFER_START : 1981 MI_BATCH_BUFFER_START_GEN8) | 1982 MI_BATCH_PREDICATE; 1983 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1984 *cs++ = 0; 1985 1986 if (HAS_MI_SET_PREDICATE(i915)) 1987 *cs++ = MI_SET_PREDICATE; 1988 1989 /* 1990 * Now add the diff between to previous timestamps and add it to : 1991 * (((1 * << 64) - 1) - delay_ns) 1992 * 1993 * When the Carry Flag contains 1 this means the elapsed time is 1994 * longer than the expected delay, and we can exit the wait loop. 1995 */ 1996 *cs++ = MI_LOAD_REGISTER_IMM(2); 1997 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1998 *cs++ = lower_32_bits(delay_ticks); 1999 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 2000 *cs++ = upper_32_bits(delay_ticks); 2001 2002 *cs++ = MI_MATH(4); 2003 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 2004 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 2005 *cs++ = MI_MATH_ADD; 2006 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 2007 2008 *cs++ = MI_ARB_CHECK; 2009 2010 /* 2011 * Transfer the result into the predicate register to be used for the 2012 * predicated jump. 2013 */ 2014 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2015 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 2016 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 2017 2018 if (HAS_MI_SET_PREDICATE(i915)) 2019 *cs++ = MI_SET_PREDICATE | 1; 2020 2021 /* Predicate the jump. */ 2022 *cs++ = (GRAPHICS_VER(i915) < 8 ? 2023 MI_BATCH_BUFFER_START : 2024 MI_BATCH_BUFFER_START_GEN8) | 2025 MI_BATCH_PREDICATE; 2026 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 2027 *cs++ = 0; 2028 2029 if (HAS_MI_SET_PREDICATE(i915)) 2030 *cs++ = MI_SET_PREDICATE; 2031 2032 /* Restore registers. */ 2033 for (i = 0; i < N_CS_GPR; i++) 2034 cs = save_restore_register( 2035 stream, cs, false /* restore */, CS_GPR(i), 2036 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 2037 cs = save_restore_register( 2038 stream, cs, false /* restore */, mi_predicate_result, 2039 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 2040 2041 /* And return to the ring. */ 2042 *cs++ = MI_BATCH_BUFFER_END; 2043 2044 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 2045 2046 i915_gem_object_flush_map(bo); 2047 __i915_gem_object_release_map(bo); 2048 2049 stream->noa_wait = vma; 2050 goto out_ww; 2051 2052 err_unpin: 2053 i915_vma_unpin_and_release(&vma, 0); 2054 out_ww: 2055 if (ret == -EDEADLK) { 2056 ret = i915_gem_ww_ctx_backoff(&ww); 2057 if (!ret) 2058 goto retry; 2059 } 2060 i915_gem_ww_ctx_fini(&ww); 2061 if (ret) 2062 i915_gem_object_put(bo); 2063 return ret; 2064 } 2065 2066 static u32 *write_cs_mi_lri(u32 *cs, 2067 const struct i915_oa_reg *reg_data, 2068 u32 n_regs) 2069 { 2070 u32 i; 2071 2072 for (i = 0; i < n_regs; i++) { 2073 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 2074 u32 n_lri = min_t(u32, 2075 n_regs - i, 2076 MI_LOAD_REGISTER_IMM_MAX_REGS); 2077 2078 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 2079 } 2080 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 2081 *cs++ = reg_data[i].value; 2082 } 2083 2084 return cs; 2085 } 2086 2087 static int num_lri_dwords(int num_regs) 2088 { 2089 int count = 0; 2090 2091 if (num_regs > 0) { 2092 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 2093 count += num_regs * 2; 2094 } 2095 2096 return count; 2097 } 2098 2099 static struct i915_oa_config_bo * 2100 alloc_oa_config_buffer(struct i915_perf_stream *stream, 2101 struct i915_oa_config *oa_config) 2102 { 2103 struct drm_i915_gem_object *obj; 2104 struct i915_oa_config_bo *oa_bo; 2105 struct i915_gem_ww_ctx ww; 2106 size_t config_length = 0; 2107 u32 *cs; 2108 int err; 2109 2110 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 2111 if (!oa_bo) 2112 return ERR_PTR(-ENOMEM); 2113 2114 config_length += num_lri_dwords(oa_config->mux_regs_len); 2115 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 2116 config_length += num_lri_dwords(oa_config->flex_regs_len); 2117 config_length += 3; /* MI_BATCH_BUFFER_START */ 2118 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 2119 2120 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 2121 if (IS_ERR(obj)) { 2122 err = PTR_ERR(obj); 2123 goto err_free; 2124 } 2125 2126 i915_gem_ww_ctx_init(&ww, true); 2127 retry: 2128 err = i915_gem_object_lock(obj, &ww); 2129 if (err) 2130 goto out_ww; 2131 2132 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 2133 if (IS_ERR(cs)) { 2134 err = PTR_ERR(cs); 2135 goto out_ww; 2136 } 2137 2138 cs = write_cs_mi_lri(cs, 2139 oa_config->mux_regs, 2140 oa_config->mux_regs_len); 2141 cs = write_cs_mi_lri(cs, 2142 oa_config->b_counter_regs, 2143 oa_config->b_counter_regs_len); 2144 cs = write_cs_mi_lri(cs, 2145 oa_config->flex_regs, 2146 oa_config->flex_regs_len); 2147 2148 /* Jump into the active wait. */ 2149 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ? 2150 MI_BATCH_BUFFER_START : 2151 MI_BATCH_BUFFER_START_GEN8); 2152 *cs++ = i915_ggtt_offset(stream->noa_wait); 2153 *cs++ = 0; 2154 2155 i915_gem_object_flush_map(obj); 2156 __i915_gem_object_release_map(obj); 2157 2158 oa_bo->vma = i915_vma_instance(obj, 2159 &stream->engine->gt->ggtt->vm, 2160 NULL); 2161 if (IS_ERR(oa_bo->vma)) { 2162 err = PTR_ERR(oa_bo->vma); 2163 goto out_ww; 2164 } 2165 2166 oa_bo->oa_config = i915_oa_config_get(oa_config); 2167 llist_add(&oa_bo->node, &stream->oa_config_bos); 2168 2169 out_ww: 2170 if (err == -EDEADLK) { 2171 err = i915_gem_ww_ctx_backoff(&ww); 2172 if (!err) 2173 goto retry; 2174 } 2175 i915_gem_ww_ctx_fini(&ww); 2176 2177 if (err) 2178 i915_gem_object_put(obj); 2179 err_free: 2180 if (err) { 2181 kfree(oa_bo); 2182 return ERR_PTR(err); 2183 } 2184 return oa_bo; 2185 } 2186 2187 static struct i915_vma * 2188 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 2189 { 2190 struct i915_oa_config_bo *oa_bo; 2191 2192 /* 2193 * Look for the buffer in the already allocated BOs attached 2194 * to the stream. 2195 */ 2196 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 2197 if (oa_bo->oa_config == oa_config && 2198 memcmp(oa_bo->oa_config->uuid, 2199 oa_config->uuid, 2200 sizeof(oa_config->uuid)) == 0) 2201 goto out; 2202 } 2203 2204 oa_bo = alloc_oa_config_buffer(stream, oa_config); 2205 if (IS_ERR(oa_bo)) 2206 return ERR_CAST(oa_bo); 2207 2208 out: 2209 return i915_vma_get(oa_bo->vma); 2210 } 2211 2212 static int 2213 emit_oa_config(struct i915_perf_stream *stream, 2214 struct i915_oa_config *oa_config, 2215 struct intel_context *ce, 2216 struct i915_active *active) 2217 { 2218 struct i915_request *rq; 2219 struct i915_vma *vma; 2220 struct i915_gem_ww_ctx ww; 2221 int err; 2222 2223 vma = get_oa_vma(stream, oa_config); 2224 if (IS_ERR(vma)) 2225 return PTR_ERR(vma); 2226 2227 i915_gem_ww_ctx_init(&ww, true); 2228 retry: 2229 err = i915_gem_object_lock(vma->obj, &ww); 2230 if (err) 2231 goto err; 2232 2233 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 2234 if (err) 2235 goto err; 2236 2237 intel_engine_pm_get(ce->engine); 2238 rq = i915_request_create(ce); 2239 intel_engine_pm_put(ce->engine); 2240 if (IS_ERR(rq)) { 2241 err = PTR_ERR(rq); 2242 goto err_vma_unpin; 2243 } 2244 2245 if (!IS_ERR_OR_NULL(active)) { 2246 /* After all individual context modifications */ 2247 err = i915_request_await_active(rq, active, 2248 I915_ACTIVE_AWAIT_ACTIVE); 2249 if (err) 2250 goto err_add_request; 2251 2252 err = i915_active_add_request(active, rq); 2253 if (err) 2254 goto err_add_request; 2255 } 2256 2257 err = i915_vma_move_to_active(vma, rq, 0); 2258 if (err) 2259 goto err_add_request; 2260 2261 err = rq->engine->emit_bb_start(rq, 2262 vma->node.start, 0, 2263 I915_DISPATCH_SECURE); 2264 if (err) 2265 goto err_add_request; 2266 2267 err_add_request: 2268 i915_request_add(rq); 2269 err_vma_unpin: 2270 i915_vma_unpin(vma); 2271 err: 2272 if (err == -EDEADLK) { 2273 err = i915_gem_ww_ctx_backoff(&ww); 2274 if (!err) 2275 goto retry; 2276 } 2277 2278 i915_gem_ww_ctx_fini(&ww); 2279 i915_vma_put(vma); 2280 return err; 2281 } 2282 2283 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2284 { 2285 return stream->pinned_ctx ?: stream->engine->kernel_context; 2286 } 2287 2288 static int 2289 hsw_enable_metric_set(struct i915_perf_stream *stream, 2290 struct i915_active *active) 2291 { 2292 struct intel_uncore *uncore = stream->uncore; 2293 2294 /* 2295 * PRM: 2296 * 2297 * OA unit is using “crclk” for its functionality. When trunk 2298 * level clock gating takes place, OA clock would be gated, 2299 * unable to count the events from non-render clock domain. 2300 * Render clock gating must be disabled when OA is enabled to 2301 * count the events from non-render domain. Unit level clock 2302 * gating for RCS should also be disabled. 2303 */ 2304 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2305 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2306 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2307 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2308 2309 return emit_oa_config(stream, 2310 stream->oa_config, oa_context(stream), 2311 active); 2312 } 2313 2314 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2315 { 2316 struct intel_uncore *uncore = stream->uncore; 2317 2318 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2319 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2320 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2321 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2322 2323 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2324 } 2325 2326 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2327 i915_reg_t reg) 2328 { 2329 u32 mmio = i915_mmio_reg_offset(reg); 2330 int i; 2331 2332 /* 2333 * This arbitrary default will select the 'EU FPU0 Pipeline 2334 * Active' event. In the future it's anticipated that there 2335 * will be an explicit 'No Event' we can select, but not yet... 2336 */ 2337 if (!oa_config) 2338 return 0; 2339 2340 for (i = 0; i < oa_config->flex_regs_len; i++) { 2341 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2342 return oa_config->flex_regs[i].value; 2343 } 2344 2345 return 0; 2346 } 2347 /* 2348 * NB: It must always remain pointer safe to run this even if the OA unit 2349 * has been disabled. 2350 * 2351 * It's fine to put out-of-date values into these per-context registers 2352 * in the case that the OA unit has been disabled. 2353 */ 2354 static void 2355 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2356 const struct i915_perf_stream *stream) 2357 { 2358 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2359 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2360 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2361 static const i915_reg_t flex_regs[] = { 2362 EU_PERF_CNTL0, 2363 EU_PERF_CNTL1, 2364 EU_PERF_CNTL2, 2365 EU_PERF_CNTL3, 2366 EU_PERF_CNTL4, 2367 EU_PERF_CNTL5, 2368 EU_PERF_CNTL6, 2369 }; 2370 u32 *reg_state = ce->lrc_reg_state; 2371 int i; 2372 2373 reg_state[ctx_oactxctrl + 1] = 2374 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2375 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2376 GEN8_OA_COUNTER_RESUME; 2377 2378 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2379 reg_state[ctx_flexeu0 + i * 2 + 1] = 2380 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2381 } 2382 2383 struct flex { 2384 i915_reg_t reg; 2385 u32 offset; 2386 u32 value; 2387 }; 2388 2389 static int 2390 gen8_store_flex(struct i915_request *rq, 2391 struct intel_context *ce, 2392 const struct flex *flex, unsigned int count) 2393 { 2394 u32 offset; 2395 u32 *cs; 2396 2397 cs = intel_ring_begin(rq, 4 * count); 2398 if (IS_ERR(cs)) 2399 return PTR_ERR(cs); 2400 2401 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2402 do { 2403 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2404 *cs++ = offset + flex->offset * sizeof(u32); 2405 *cs++ = 0; 2406 *cs++ = flex->value; 2407 } while (flex++, --count); 2408 2409 intel_ring_advance(rq, cs); 2410 2411 return 0; 2412 } 2413 2414 static int 2415 gen8_load_flex(struct i915_request *rq, 2416 struct intel_context *ce, 2417 const struct flex *flex, unsigned int count) 2418 { 2419 u32 *cs; 2420 2421 GEM_BUG_ON(!count || count > 63); 2422 2423 cs = intel_ring_begin(rq, 2 * count + 2); 2424 if (IS_ERR(cs)) 2425 return PTR_ERR(cs); 2426 2427 *cs++ = MI_LOAD_REGISTER_IMM(count); 2428 do { 2429 *cs++ = i915_mmio_reg_offset(flex->reg); 2430 *cs++ = flex->value; 2431 } while (flex++, --count); 2432 *cs++ = MI_NOOP; 2433 2434 intel_ring_advance(rq, cs); 2435 2436 return 0; 2437 } 2438 2439 static int gen8_modify_context(struct intel_context *ce, 2440 const struct flex *flex, unsigned int count) 2441 { 2442 struct i915_request *rq; 2443 int err; 2444 2445 rq = intel_engine_create_kernel_request(ce->engine); 2446 if (IS_ERR(rq)) 2447 return PTR_ERR(rq); 2448 2449 /* Serialise with the remote context */ 2450 err = intel_context_prepare_remote_request(ce, rq); 2451 if (err == 0) 2452 err = gen8_store_flex(rq, ce, flex, count); 2453 2454 i915_request_add(rq); 2455 return err; 2456 } 2457 2458 static int 2459 gen8_modify_self(struct intel_context *ce, 2460 const struct flex *flex, unsigned int count, 2461 struct i915_active *active) 2462 { 2463 struct i915_request *rq; 2464 int err; 2465 2466 intel_engine_pm_get(ce->engine); 2467 rq = i915_request_create(ce); 2468 intel_engine_pm_put(ce->engine); 2469 if (IS_ERR(rq)) 2470 return PTR_ERR(rq); 2471 2472 if (!IS_ERR_OR_NULL(active)) { 2473 err = i915_active_add_request(active, rq); 2474 if (err) 2475 goto err_add_request; 2476 } 2477 2478 err = gen8_load_flex(rq, ce, flex, count); 2479 if (err) 2480 goto err_add_request; 2481 2482 err_add_request: 2483 i915_request_add(rq); 2484 return err; 2485 } 2486 2487 static int gen8_configure_context(struct i915_gem_context *ctx, 2488 struct flex *flex, unsigned int count) 2489 { 2490 struct i915_gem_engines_iter it; 2491 struct intel_context *ce; 2492 int err = 0; 2493 2494 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2495 GEM_BUG_ON(ce == ce->engine->kernel_context); 2496 2497 if (ce->engine->class != RENDER_CLASS) 2498 continue; 2499 2500 /* Otherwise OA settings will be set upon first use */ 2501 if (!intel_context_pin_if_active(ce)) 2502 continue; 2503 2504 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2505 err = gen8_modify_context(ce, flex, count); 2506 2507 intel_context_unpin(ce); 2508 if (err) 2509 break; 2510 } 2511 i915_gem_context_unlock_engines(ctx); 2512 2513 return err; 2514 } 2515 2516 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2517 struct i915_active *active) 2518 { 2519 int err; 2520 struct intel_context *ce = stream->pinned_ctx; 2521 u32 format = stream->oa_buffer.format->format; 2522 u32 offset = stream->perf->ctx_oactxctrl_offset; 2523 struct flex regs_context[] = { 2524 { 2525 GEN8_OACTXCONTROL, 2526 offset + 1, 2527 active ? GEN8_OA_COUNTER_RESUME : 0, 2528 }, 2529 }; 2530 /* Offsets in regs_lri are not used since this configuration is only 2531 * applied using LRI. Initialize the correct offsets for posterity. 2532 */ 2533 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2534 struct flex regs_lri[] = { 2535 { 2536 GEN12_OAR_OACONTROL, 2537 GEN12_OAR_OACONTROL_OFFSET + 1, 2538 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2539 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2540 }, 2541 { 2542 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2543 CTX_CONTEXT_CONTROL, 2544 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2545 active ? 2546 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2547 0) 2548 }, 2549 }; 2550 2551 /* Modify the context image of pinned context with regs_context */ 2552 err = intel_context_lock_pinned(ce); 2553 if (err) 2554 return err; 2555 2556 err = gen8_modify_context(ce, regs_context, 2557 ARRAY_SIZE(regs_context)); 2558 intel_context_unlock_pinned(ce); 2559 if (err) 2560 return err; 2561 2562 /* Apply regs_lri using LRI with pinned context */ 2563 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2564 } 2565 2566 /* 2567 * Manages updating the per-context aspects of the OA stream 2568 * configuration across all contexts. 2569 * 2570 * The awkward consideration here is that OACTXCONTROL controls the 2571 * exponent for periodic sampling which is primarily used for system 2572 * wide profiling where we'd like a consistent sampling period even in 2573 * the face of context switches. 2574 * 2575 * Our approach of updating the register state context (as opposed to 2576 * say using a workaround batch buffer) ensures that the hardware 2577 * won't automatically reload an out-of-date timer exponent even 2578 * transiently before a WA BB could be parsed. 2579 * 2580 * This function needs to: 2581 * - Ensure the currently running context's per-context OA state is 2582 * updated 2583 * - Ensure that all existing contexts will have the correct per-context 2584 * OA state if they are scheduled for use. 2585 * - Ensure any new contexts will be initialized with the correct 2586 * per-context OA state. 2587 * 2588 * Note: it's only the RCS/Render context that has any OA state. 2589 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2590 */ 2591 static int 2592 oa_configure_all_contexts(struct i915_perf_stream *stream, 2593 struct flex *regs, 2594 size_t num_regs, 2595 struct i915_active *active) 2596 { 2597 struct drm_i915_private *i915 = stream->perf->i915; 2598 struct intel_engine_cs *engine; 2599 struct intel_gt *gt = stream->engine->gt; 2600 struct i915_gem_context *ctx, *cn; 2601 int err; 2602 2603 lockdep_assert_held(>->perf.lock); 2604 2605 /* 2606 * The OA register config is setup through the context image. This image 2607 * might be written to by the GPU on context switch (in particular on 2608 * lite-restore). This means we can't safely update a context's image, 2609 * if this context is scheduled/submitted to run on the GPU. 2610 * 2611 * We could emit the OA register config through the batch buffer but 2612 * this might leave small interval of time where the OA unit is 2613 * configured at an invalid sampling period. 2614 * 2615 * Note that since we emit all requests from a single ring, there 2616 * is still an implicit global barrier here that may cause a high 2617 * priority context to wait for an otherwise independent low priority 2618 * context. Contexts idle at the time of reconfiguration are not 2619 * trapped behind the barrier. 2620 */ 2621 spin_lock(&i915->gem.contexts.lock); 2622 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2623 if (!kref_get_unless_zero(&ctx->ref)) 2624 continue; 2625 2626 spin_unlock(&i915->gem.contexts.lock); 2627 2628 err = gen8_configure_context(ctx, regs, num_regs); 2629 if (err) { 2630 i915_gem_context_put(ctx); 2631 return err; 2632 } 2633 2634 spin_lock(&i915->gem.contexts.lock); 2635 list_safe_reset_next(ctx, cn, link); 2636 i915_gem_context_put(ctx); 2637 } 2638 spin_unlock(&i915->gem.contexts.lock); 2639 2640 /* 2641 * After updating all other contexts, we need to modify ourselves. 2642 * If we don't modify the kernel_context, we do not get events while 2643 * idle. 2644 */ 2645 for_each_uabi_engine(engine, i915) { 2646 struct intel_context *ce = engine->kernel_context; 2647 2648 if (engine->class != RENDER_CLASS) 2649 continue; 2650 2651 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2652 2653 err = gen8_modify_self(ce, regs, num_regs, active); 2654 if (err) 2655 return err; 2656 } 2657 2658 return 0; 2659 } 2660 2661 static int 2662 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2663 const struct i915_oa_config *oa_config, 2664 struct i915_active *active) 2665 { 2666 struct flex regs[] = { 2667 { 2668 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2669 CTX_R_PWR_CLK_STATE, 2670 }, 2671 }; 2672 2673 return oa_configure_all_contexts(stream, 2674 regs, ARRAY_SIZE(regs), 2675 active); 2676 } 2677 2678 static int 2679 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2680 const struct i915_oa_config *oa_config, 2681 struct i915_active *active) 2682 { 2683 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2684 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2685 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2686 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2687 struct flex regs[] = { 2688 { 2689 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2690 CTX_R_PWR_CLK_STATE, 2691 }, 2692 { 2693 GEN8_OACTXCONTROL, 2694 ctx_oactxctrl + 1, 2695 }, 2696 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2697 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2698 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2699 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2700 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2701 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2702 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2703 }; 2704 #undef ctx_flexeuN 2705 int i; 2706 2707 regs[1].value = 2708 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2709 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2710 GEN8_OA_COUNTER_RESUME; 2711 2712 for (i = 2; i < ARRAY_SIZE(regs); i++) 2713 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2714 2715 return oa_configure_all_contexts(stream, 2716 regs, ARRAY_SIZE(regs), 2717 active); 2718 } 2719 2720 static int 2721 gen8_enable_metric_set(struct i915_perf_stream *stream, 2722 struct i915_active *active) 2723 { 2724 struct intel_uncore *uncore = stream->uncore; 2725 struct i915_oa_config *oa_config = stream->oa_config; 2726 int ret; 2727 2728 /* 2729 * We disable slice/unslice clock ratio change reports on SKL since 2730 * they are too noisy. The HW generates a lot of redundant reports 2731 * where the ratio hasn't really changed causing a lot of redundant 2732 * work to processes and increasing the chances we'll hit buffer 2733 * overruns. 2734 * 2735 * Although we don't currently use the 'disable overrun' OABUFFER 2736 * feature it's worth noting that clock ratio reports have to be 2737 * disabled before considering to use that feature since the HW doesn't 2738 * correctly block these reports. 2739 * 2740 * Currently none of the high-level metrics we have depend on knowing 2741 * this ratio to normalize. 2742 * 2743 * Note: This register is not power context saved and restored, but 2744 * that's OK considering that we disable RC6 while the OA unit is 2745 * enabled. 2746 * 2747 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2748 * be read back from automatically triggered reports, as part of the 2749 * RPT_ID field. 2750 */ 2751 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) { 2752 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2753 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2754 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2755 } 2756 2757 /* 2758 * Update all contexts prior writing the mux configurations as we need 2759 * to make sure all slices/subslices are ON before writing to NOA 2760 * registers. 2761 */ 2762 ret = lrc_configure_all_contexts(stream, oa_config, active); 2763 if (ret) 2764 return ret; 2765 2766 return emit_oa_config(stream, 2767 stream->oa_config, oa_context(stream), 2768 active); 2769 } 2770 2771 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2772 { 2773 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2774 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2775 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2776 } 2777 2778 static int 2779 gen12_enable_metric_set(struct i915_perf_stream *stream, 2780 struct i915_active *active) 2781 { 2782 struct drm_i915_private *i915 = stream->perf->i915; 2783 struct intel_uncore *uncore = stream->uncore; 2784 struct i915_oa_config *oa_config = stream->oa_config; 2785 bool periodic = stream->periodic; 2786 u32 period_exponent = stream->period_exponent; 2787 u32 sqcnt1; 2788 int ret; 2789 2790 /* 2791 * Wa_1508761755:xehpsdv, dg2 2792 * EU NOA signals behave incorrectly if EU clock gating is enabled. 2793 * Disable thread stall DOP gating and EU DOP gating. 2794 */ 2795 if (IS_XEHPSDV(i915) || IS_DG2(i915)) { 2796 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2797 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE)); 2798 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2799 _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING)); 2800 } 2801 2802 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2803 /* Disable clk ratio reports, like previous Gens. */ 2804 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2805 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2806 /* 2807 * If the user didn't require OA reports, instruct 2808 * the hardware not to emit ctx switch reports. 2809 */ 2810 oag_report_ctx_switches(stream)); 2811 2812 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2813 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2814 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2815 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2816 : 0); 2817 2818 /* 2819 * Initialize Super Queue Internal Cnt Register 2820 * Set PMON Enable in order to collect valid metrics. 2821 * Enable byets per clock reporting in OA for XEHPSDV onward. 2822 */ 2823 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 2824 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 2825 2826 intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1); 2827 2828 /* 2829 * Update all contexts prior writing the mux configurations as we need 2830 * to make sure all slices/subslices are ON before writing to NOA 2831 * registers. 2832 */ 2833 ret = gen12_configure_all_contexts(stream, oa_config, active); 2834 if (ret) 2835 return ret; 2836 2837 /* 2838 * For Gen12, performance counters are context 2839 * saved/restored. Only enable it for the context that 2840 * requested this. 2841 */ 2842 if (stream->ctx) { 2843 ret = gen12_configure_oar_context(stream, active); 2844 if (ret) 2845 return ret; 2846 } 2847 2848 return emit_oa_config(stream, 2849 stream->oa_config, oa_context(stream), 2850 active); 2851 } 2852 2853 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2854 { 2855 struct intel_uncore *uncore = stream->uncore; 2856 2857 /* Reset all contexts' slices/subslices configurations. */ 2858 lrc_configure_all_contexts(stream, NULL, NULL); 2859 2860 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2861 } 2862 2863 static void gen11_disable_metric_set(struct i915_perf_stream *stream) 2864 { 2865 struct intel_uncore *uncore = stream->uncore; 2866 2867 /* Reset all contexts' slices/subslices configurations. */ 2868 lrc_configure_all_contexts(stream, NULL, NULL); 2869 2870 /* Make sure we disable noa to save power. */ 2871 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2872 } 2873 2874 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2875 { 2876 struct intel_uncore *uncore = stream->uncore; 2877 struct drm_i915_private *i915 = stream->perf->i915; 2878 u32 sqcnt1; 2879 2880 /* 2881 * Wa_1508761755:xehpsdv, dg2 2882 * Enable thread stall DOP gating and EU DOP gating. 2883 */ 2884 if (IS_XEHPSDV(i915) || IS_DG2(i915)) { 2885 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2886 _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE)); 2887 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2888 _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING)); 2889 } 2890 2891 /* Reset all contexts' slices/subslices configurations. */ 2892 gen12_configure_all_contexts(stream, NULL, NULL); 2893 2894 /* disable the context save/restore or OAR counters */ 2895 if (stream->ctx) 2896 gen12_configure_oar_context(stream, NULL); 2897 2898 /* Make sure we disable noa to save power. */ 2899 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2900 2901 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 2902 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 2903 2904 /* Reset PMON Enable to save power. */ 2905 intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0); 2906 } 2907 2908 static void gen7_oa_enable(struct i915_perf_stream *stream) 2909 { 2910 struct intel_uncore *uncore = stream->uncore; 2911 struct i915_gem_context *ctx = stream->ctx; 2912 u32 ctx_id = stream->specific_ctx_id; 2913 bool periodic = stream->periodic; 2914 u32 period_exponent = stream->period_exponent; 2915 u32 report_format = stream->oa_buffer.format->format; 2916 2917 /* 2918 * Reset buf pointers so we don't forward reports from before now. 2919 * 2920 * Think carefully if considering trying to avoid this, since it 2921 * also ensures status flags and the buffer itself are cleared 2922 * in error paths, and we have checks for invalid reports based 2923 * on the assumption that certain fields are written to zeroed 2924 * memory which this helps maintains. 2925 */ 2926 gen7_init_oa_buffer(stream); 2927 2928 intel_uncore_write(uncore, GEN7_OACONTROL, 2929 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2930 (period_exponent << 2931 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2932 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2933 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2934 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2935 GEN7_OACONTROL_ENABLE); 2936 } 2937 2938 static void gen8_oa_enable(struct i915_perf_stream *stream) 2939 { 2940 struct intel_uncore *uncore = stream->uncore; 2941 u32 report_format = stream->oa_buffer.format->format; 2942 2943 /* 2944 * Reset buf pointers so we don't forward reports from before now. 2945 * 2946 * Think carefully if considering trying to avoid this, since it 2947 * also ensures status flags and the buffer itself are cleared 2948 * in error paths, and we have checks for invalid reports based 2949 * on the assumption that certain fields are written to zeroed 2950 * memory which this helps maintains. 2951 */ 2952 gen8_init_oa_buffer(stream); 2953 2954 /* 2955 * Note: we don't rely on the hardware to perform single context 2956 * filtering and instead filter on the cpu based on the context-id 2957 * field of reports 2958 */ 2959 intel_uncore_write(uncore, GEN8_OACONTROL, 2960 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2961 GEN8_OA_COUNTER_ENABLE); 2962 } 2963 2964 static void gen12_oa_enable(struct i915_perf_stream *stream) 2965 { 2966 struct intel_uncore *uncore = stream->uncore; 2967 u32 report_format = stream->oa_buffer.format->format; 2968 2969 /* 2970 * If we don't want OA reports from the OA buffer, then we don't even 2971 * need to program the OAG unit. 2972 */ 2973 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2974 return; 2975 2976 gen12_init_oa_buffer(stream); 2977 2978 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2979 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2980 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2981 } 2982 2983 /** 2984 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2985 * @stream: An i915 perf stream opened for OA metrics 2986 * 2987 * [Re]enables hardware periodic sampling according to the period configured 2988 * when opening the stream. This also starts a hrtimer that will periodically 2989 * check for data in the circular OA buffer for notifying userspace (e.g. 2990 * during a read() or poll()). 2991 */ 2992 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2993 { 2994 stream->pollin = false; 2995 2996 stream->perf->ops.oa_enable(stream); 2997 2998 if (stream->sample_flags & SAMPLE_OA_REPORT) 2999 hrtimer_start(&stream->poll_check_timer, 3000 ns_to_ktime(stream->poll_oa_period), 3001 HRTIMER_MODE_REL_PINNED); 3002 } 3003 3004 static void gen7_oa_disable(struct i915_perf_stream *stream) 3005 { 3006 struct intel_uncore *uncore = stream->uncore; 3007 3008 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 3009 if (intel_wait_for_register(uncore, 3010 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 3011 50)) 3012 drm_err(&stream->perf->i915->drm, 3013 "wait for OA to be disabled timed out\n"); 3014 } 3015 3016 static void gen8_oa_disable(struct i915_perf_stream *stream) 3017 { 3018 struct intel_uncore *uncore = stream->uncore; 3019 3020 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 3021 if (intel_wait_for_register(uncore, 3022 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 3023 50)) 3024 drm_err(&stream->perf->i915->drm, 3025 "wait for OA to be disabled timed out\n"); 3026 } 3027 3028 static void gen12_oa_disable(struct i915_perf_stream *stream) 3029 { 3030 struct intel_uncore *uncore = stream->uncore; 3031 3032 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 3033 if (intel_wait_for_register(uncore, 3034 GEN12_OAG_OACONTROL, 3035 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 3036 50)) 3037 drm_err(&stream->perf->i915->drm, 3038 "wait for OA to be disabled timed out\n"); 3039 3040 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 3041 if (intel_wait_for_register(uncore, 3042 GEN12_OA_TLB_INV_CR, 3043 1, 0, 3044 50)) 3045 drm_err(&stream->perf->i915->drm, 3046 "wait for OA tlb invalidate timed out\n"); 3047 } 3048 3049 /** 3050 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 3051 * @stream: An i915 perf stream opened for OA metrics 3052 * 3053 * Stops the OA unit from periodically writing counter reports into the 3054 * circular OA buffer. This also stops the hrtimer that periodically checks for 3055 * data in the circular OA buffer, for notifying userspace. 3056 */ 3057 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 3058 { 3059 stream->perf->ops.oa_disable(stream); 3060 3061 if (stream->sample_flags & SAMPLE_OA_REPORT) 3062 hrtimer_cancel(&stream->poll_check_timer); 3063 } 3064 3065 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 3066 .destroy = i915_oa_stream_destroy, 3067 .enable = i915_oa_stream_enable, 3068 .disable = i915_oa_stream_disable, 3069 .wait_unlocked = i915_oa_wait_unlocked, 3070 .poll_wait = i915_oa_poll_wait, 3071 .read = i915_oa_read, 3072 }; 3073 3074 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 3075 { 3076 struct i915_active *active; 3077 int err; 3078 3079 active = i915_active_create(); 3080 if (!active) 3081 return -ENOMEM; 3082 3083 err = stream->perf->ops.enable_metric_set(stream, active); 3084 if (err == 0) 3085 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 3086 3087 i915_active_put(active); 3088 return err; 3089 } 3090 3091 static void 3092 get_default_sseu_config(struct intel_sseu *out_sseu, 3093 struct intel_engine_cs *engine) 3094 { 3095 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 3096 3097 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 3098 3099 if (GRAPHICS_VER(engine->i915) == 11) { 3100 /* 3101 * We only need subslice count so it doesn't matter which ones 3102 * we select - just turn off low bits in the amount of half of 3103 * all available subslices per slice. 3104 */ 3105 out_sseu->subslice_mask = 3106 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 3107 out_sseu->slice_mask = 0x1; 3108 } 3109 } 3110 3111 static int 3112 get_sseu_config(struct intel_sseu *out_sseu, 3113 struct intel_engine_cs *engine, 3114 const struct drm_i915_gem_context_param_sseu *drm_sseu) 3115 { 3116 if (drm_sseu->engine.engine_class != engine->uabi_class || 3117 drm_sseu->engine.engine_instance != engine->uabi_instance) 3118 return -EINVAL; 3119 3120 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 3121 } 3122 3123 /* 3124 * OA timestamp frequency = CS timestamp frequency in most platforms. On some 3125 * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such 3126 * cases, return the adjusted CS timestamp frequency to the user. 3127 */ 3128 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915) 3129 { 3130 /* Wa_18013179988:dg2 */ 3131 if (IS_DG2(i915)) { 3132 intel_wakeref_t wakeref; 3133 u32 reg, shift; 3134 3135 with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref) 3136 reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0); 3137 3138 shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK, 3139 reg); 3140 3141 return to_gt(i915)->clock_frequency << (3 - shift); 3142 } 3143 3144 return to_gt(i915)->clock_frequency; 3145 } 3146 3147 /** 3148 * i915_oa_stream_init - validate combined props for OA stream and init 3149 * @stream: An i915 perf stream 3150 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 3151 * @props: The property state that configures stream (individually validated) 3152 * 3153 * While read_properties_unlocked() validates properties in isolation it 3154 * doesn't ensure that the combination necessarily makes sense. 3155 * 3156 * At this point it has been determined that userspace wants a stream of 3157 * OA metrics, but still we need to further validate the combined 3158 * properties are OK. 3159 * 3160 * If the configuration makes sense then we can allocate memory for 3161 * a circular OA buffer and apply the requested metric set configuration. 3162 * 3163 * Returns: zero on success or a negative error code. 3164 */ 3165 static int i915_oa_stream_init(struct i915_perf_stream *stream, 3166 struct drm_i915_perf_open_param *param, 3167 struct perf_open_properties *props) 3168 { 3169 struct drm_i915_private *i915 = stream->perf->i915; 3170 struct i915_perf *perf = stream->perf; 3171 struct intel_gt *gt; 3172 int ret; 3173 3174 if (!props->engine) { 3175 drm_dbg(&stream->perf->i915->drm, 3176 "OA engine not specified\n"); 3177 return -EINVAL; 3178 } 3179 gt = props->engine->gt; 3180 3181 /* 3182 * If the sysfs metrics/ directory wasn't registered for some 3183 * reason then don't let userspace try their luck with config 3184 * IDs 3185 */ 3186 if (!perf->metrics_kobj) { 3187 drm_dbg(&stream->perf->i915->drm, 3188 "OA metrics weren't advertised via sysfs\n"); 3189 return -EINVAL; 3190 } 3191 3192 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 3193 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) { 3194 drm_dbg(&stream->perf->i915->drm, 3195 "Only OA report sampling supported\n"); 3196 return -EINVAL; 3197 } 3198 3199 if (!perf->ops.enable_metric_set) { 3200 drm_dbg(&stream->perf->i915->drm, 3201 "OA unit not supported\n"); 3202 return -ENODEV; 3203 } 3204 3205 /* 3206 * To avoid the complexity of having to accurately filter 3207 * counter reports and marshal to the appropriate client 3208 * we currently only allow exclusive access 3209 */ 3210 if (gt->perf.exclusive_stream) { 3211 drm_dbg(&stream->perf->i915->drm, 3212 "OA unit already in use\n"); 3213 return -EBUSY; 3214 } 3215 3216 if (!props->oa_format) { 3217 drm_dbg(&stream->perf->i915->drm, 3218 "OA report format not specified\n"); 3219 return -EINVAL; 3220 } 3221 3222 stream->engine = props->engine; 3223 stream->uncore = stream->engine->gt->uncore; 3224 3225 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 3226 3227 stream->oa_buffer.format = &perf->oa_formats[props->oa_format]; 3228 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0)) 3229 return -EINVAL; 3230 3231 stream->sample_flags = props->sample_flags; 3232 stream->sample_size += stream->oa_buffer.format->size; 3233 3234 stream->hold_preemption = props->hold_preemption; 3235 3236 stream->periodic = props->oa_periodic; 3237 if (stream->periodic) 3238 stream->period_exponent = props->oa_period_exponent; 3239 3240 if (stream->ctx) { 3241 ret = oa_get_render_ctx_id(stream); 3242 if (ret) { 3243 drm_dbg(&stream->perf->i915->drm, 3244 "Invalid context id to filter with\n"); 3245 return ret; 3246 } 3247 } 3248 3249 ret = alloc_noa_wait(stream); 3250 if (ret) { 3251 drm_dbg(&stream->perf->i915->drm, 3252 "Unable to allocate NOA wait batch buffer\n"); 3253 goto err_noa_wait_alloc; 3254 } 3255 3256 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 3257 if (!stream->oa_config) { 3258 drm_dbg(&stream->perf->i915->drm, 3259 "Invalid OA config id=%i\n", props->metrics_set); 3260 ret = -EINVAL; 3261 goto err_config; 3262 } 3263 3264 /* PRM - observability performance counters: 3265 * 3266 * OACONTROL, performance counter enable, note: 3267 * 3268 * "When this bit is set, in order to have coherent counts, 3269 * RC6 power state and trunk clock gating must be disabled. 3270 * This can be achieved by programming MMIO registers as 3271 * 0xA094=0 and 0xA090[31]=1" 3272 * 3273 * In our case we are expecting that taking pm + FORCEWAKE 3274 * references will effectively disable RC6. 3275 */ 3276 intel_engine_pm_get(stream->engine); 3277 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 3278 3279 /* 3280 * Wa_16011777198:dg2: GuC resets render as part of the Wa. This causes 3281 * OA to lose the configuration state. Prevent this by overriding GUCRC 3282 * mode. 3283 */ 3284 if (intel_uc_uses_guc_rc(>->uc) && 3285 (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || 3286 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))) { 3287 ret = intel_guc_slpc_override_gucrc_mode(>->uc.guc.slpc, 3288 SLPC_GUCRC_MODE_GUCRC_NO_RC6); 3289 if (ret) { 3290 drm_dbg(&stream->perf->i915->drm, 3291 "Unable to override gucrc mode\n"); 3292 goto err_config; 3293 } 3294 } 3295 3296 ret = alloc_oa_buffer(stream); 3297 if (ret) 3298 goto err_oa_buf_alloc; 3299 3300 stream->ops = &i915_oa_stream_ops; 3301 3302 stream->engine->gt->perf.sseu = props->sseu; 3303 WRITE_ONCE(gt->perf.exclusive_stream, stream); 3304 3305 ret = i915_perf_stream_enable_sync(stream); 3306 if (ret) { 3307 drm_dbg(&stream->perf->i915->drm, 3308 "Unable to enable metric set\n"); 3309 goto err_enable; 3310 } 3311 3312 drm_dbg(&stream->perf->i915->drm, 3313 "opening stream oa config uuid=%s\n", 3314 stream->oa_config->uuid); 3315 3316 hrtimer_init(&stream->poll_check_timer, 3317 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3318 stream->poll_check_timer.function = oa_poll_check_timer_cb; 3319 init_waitqueue_head(&stream->poll_wq); 3320 spin_lock_init(&stream->oa_buffer.ptr_lock); 3321 mutex_init(&stream->lock); 3322 3323 return 0; 3324 3325 err_enable: 3326 WRITE_ONCE(gt->perf.exclusive_stream, NULL); 3327 perf->ops.disable_metric_set(stream); 3328 3329 free_oa_buffer(stream); 3330 3331 err_oa_buf_alloc: 3332 free_oa_configs(stream); 3333 3334 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 3335 intel_engine_pm_put(stream->engine); 3336 3337 err_config: 3338 free_noa_wait(stream); 3339 3340 err_noa_wait_alloc: 3341 if (stream->ctx) 3342 oa_put_render_ctx_id(stream); 3343 3344 return ret; 3345 } 3346 3347 void i915_oa_init_reg_state(const struct intel_context *ce, 3348 const struct intel_engine_cs *engine) 3349 { 3350 struct i915_perf_stream *stream; 3351 3352 if (engine->class != RENDER_CLASS) 3353 return; 3354 3355 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 3356 stream = READ_ONCE(engine->gt->perf.exclusive_stream); 3357 if (stream && GRAPHICS_VER(stream->perf->i915) < 12) 3358 gen8_update_reg_state_unlocked(ce, stream); 3359 } 3360 3361 /** 3362 * i915_perf_read - handles read() FOP for i915 perf stream FDs 3363 * @file: An i915 perf stream file 3364 * @buf: destination buffer given by userspace 3365 * @count: the number of bytes userspace wants to read 3366 * @ppos: (inout) file seek position (unused) 3367 * 3368 * The entry point for handling a read() on a stream file descriptor from 3369 * userspace. Most of the work is left to the i915_perf_read_locked() and 3370 * &i915_perf_stream_ops->read but to save having stream implementations (of 3371 * which we might have multiple later) we handle blocking read here. 3372 * 3373 * We can also consistently treat trying to read from a disabled stream 3374 * as an IO error so implementations can assume the stream is enabled 3375 * while reading. 3376 * 3377 * Returns: The number of bytes copied or a negative error code on failure. 3378 */ 3379 static ssize_t i915_perf_read(struct file *file, 3380 char __user *buf, 3381 size_t count, 3382 loff_t *ppos) 3383 { 3384 struct i915_perf_stream *stream = file->private_data; 3385 size_t offset = 0; 3386 int ret; 3387 3388 /* To ensure it's handled consistently we simply treat all reads of a 3389 * disabled stream as an error. In particular it might otherwise lead 3390 * to a deadlock for blocking file descriptors... 3391 */ 3392 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT)) 3393 return -EIO; 3394 3395 if (!(file->f_flags & O_NONBLOCK)) { 3396 /* There's the small chance of false positives from 3397 * stream->ops->wait_unlocked. 3398 * 3399 * E.g. with single context filtering since we only wait until 3400 * oabuffer has >= 1 report we don't immediately know whether 3401 * any reports really belong to the current context 3402 */ 3403 do { 3404 ret = stream->ops->wait_unlocked(stream); 3405 if (ret) 3406 return ret; 3407 3408 mutex_lock(&stream->lock); 3409 ret = stream->ops->read(stream, buf, count, &offset); 3410 mutex_unlock(&stream->lock); 3411 } while (!offset && !ret); 3412 } else { 3413 mutex_lock(&stream->lock); 3414 ret = stream->ops->read(stream, buf, count, &offset); 3415 mutex_unlock(&stream->lock); 3416 } 3417 3418 /* We allow the poll checking to sometimes report false positive EPOLLIN 3419 * events where we might actually report EAGAIN on read() if there's 3420 * not really any data available. In this situation though we don't 3421 * want to enter a busy loop between poll() reporting a EPOLLIN event 3422 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3423 * effectively ensures we back off until the next hrtimer callback 3424 * before reporting another EPOLLIN event. 3425 * The exception to this is if ops->read() returned -ENOSPC which means 3426 * that more OA data is available than could fit in the user provided 3427 * buffer. In this case we want the next poll() call to not block. 3428 */ 3429 if (ret != -ENOSPC) 3430 stream->pollin = false; 3431 3432 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3433 return offset ?: (ret ?: -EAGAIN); 3434 } 3435 3436 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3437 { 3438 struct i915_perf_stream *stream = 3439 container_of(hrtimer, typeof(*stream), poll_check_timer); 3440 3441 if (oa_buffer_check_unlocked(stream)) { 3442 stream->pollin = true; 3443 wake_up(&stream->poll_wq); 3444 } 3445 3446 hrtimer_forward_now(hrtimer, 3447 ns_to_ktime(stream->poll_oa_period)); 3448 3449 return HRTIMER_RESTART; 3450 } 3451 3452 /** 3453 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3454 * @stream: An i915 perf stream 3455 * @file: An i915 perf stream file 3456 * @wait: poll() state table 3457 * 3458 * For handling userspace polling on an i915 perf stream, this calls through to 3459 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3460 * will be woken for new stream data. 3461 * 3462 * Returns: any poll events that are ready without sleeping 3463 */ 3464 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3465 struct file *file, 3466 poll_table *wait) 3467 { 3468 __poll_t events = 0; 3469 3470 stream->ops->poll_wait(stream, file, wait); 3471 3472 /* Note: we don't explicitly check whether there's something to read 3473 * here since this path may be very hot depending on what else 3474 * userspace is polling, or on the timeout in use. We rely solely on 3475 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3476 * samples to read. 3477 */ 3478 if (stream->pollin) 3479 events |= EPOLLIN; 3480 3481 return events; 3482 } 3483 3484 /** 3485 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3486 * @file: An i915 perf stream file 3487 * @wait: poll() state table 3488 * 3489 * For handling userspace polling on an i915 perf stream, this ensures 3490 * poll_wait() gets called with a wait queue that will be woken for new stream 3491 * data. 3492 * 3493 * Note: Implementation deferred to i915_perf_poll_locked() 3494 * 3495 * Returns: any poll events that are ready without sleeping 3496 */ 3497 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3498 { 3499 struct i915_perf_stream *stream = file->private_data; 3500 __poll_t ret; 3501 3502 mutex_lock(&stream->lock); 3503 ret = i915_perf_poll_locked(stream, file, wait); 3504 mutex_unlock(&stream->lock); 3505 3506 return ret; 3507 } 3508 3509 /** 3510 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3511 * @stream: A disabled i915 perf stream 3512 * 3513 * [Re]enables the associated capture of data for this stream. 3514 * 3515 * If a stream was previously enabled then there's currently no intention 3516 * to provide userspace any guarantee about the preservation of previously 3517 * buffered data. 3518 */ 3519 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3520 { 3521 if (stream->enabled) 3522 return; 3523 3524 /* Allow stream->ops->enable() to refer to this */ 3525 stream->enabled = true; 3526 3527 if (stream->ops->enable) 3528 stream->ops->enable(stream); 3529 3530 if (stream->hold_preemption) 3531 intel_context_set_nopreempt(stream->pinned_ctx); 3532 } 3533 3534 /** 3535 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3536 * @stream: An enabled i915 perf stream 3537 * 3538 * Disables the associated capture of data for this stream. 3539 * 3540 * The intention is that disabling an re-enabling a stream will ideally be 3541 * cheaper than destroying and re-opening a stream with the same configuration, 3542 * though there are no formal guarantees about what state or buffered data 3543 * must be retained between disabling and re-enabling a stream. 3544 * 3545 * Note: while a stream is disabled it's considered an error for userspace 3546 * to attempt to read from the stream (-EIO). 3547 */ 3548 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3549 { 3550 if (!stream->enabled) 3551 return; 3552 3553 /* Allow stream->ops->disable() to refer to this */ 3554 stream->enabled = false; 3555 3556 if (stream->hold_preemption) 3557 intel_context_clear_nopreempt(stream->pinned_ctx); 3558 3559 if (stream->ops->disable) 3560 stream->ops->disable(stream); 3561 } 3562 3563 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3564 unsigned long metrics_set) 3565 { 3566 struct i915_oa_config *config; 3567 long ret = stream->oa_config->id; 3568 3569 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3570 if (!config) 3571 return -EINVAL; 3572 3573 if (config != stream->oa_config) { 3574 int err; 3575 3576 /* 3577 * If OA is bound to a specific context, emit the 3578 * reconfiguration inline from that context. The update 3579 * will then be ordered with respect to submission on that 3580 * context. 3581 * 3582 * When set globally, we use a low priority kernel context, 3583 * so it will effectively take effect when idle. 3584 */ 3585 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3586 if (!err) 3587 config = xchg(&stream->oa_config, config); 3588 else 3589 ret = err; 3590 } 3591 3592 i915_oa_config_put(config); 3593 3594 return ret; 3595 } 3596 3597 /** 3598 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3599 * @stream: An i915 perf stream 3600 * @cmd: the ioctl request 3601 * @arg: the ioctl data 3602 * 3603 * Returns: zero on success or a negative error code. Returns -EINVAL for 3604 * an unknown ioctl request. 3605 */ 3606 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3607 unsigned int cmd, 3608 unsigned long arg) 3609 { 3610 switch (cmd) { 3611 case I915_PERF_IOCTL_ENABLE: 3612 i915_perf_enable_locked(stream); 3613 return 0; 3614 case I915_PERF_IOCTL_DISABLE: 3615 i915_perf_disable_locked(stream); 3616 return 0; 3617 case I915_PERF_IOCTL_CONFIG: 3618 return i915_perf_config_locked(stream, arg); 3619 } 3620 3621 return -EINVAL; 3622 } 3623 3624 /** 3625 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3626 * @file: An i915 perf stream file 3627 * @cmd: the ioctl request 3628 * @arg: the ioctl data 3629 * 3630 * Implementation deferred to i915_perf_ioctl_locked(). 3631 * 3632 * Returns: zero on success or a negative error code. Returns -EINVAL for 3633 * an unknown ioctl request. 3634 */ 3635 static long i915_perf_ioctl(struct file *file, 3636 unsigned int cmd, 3637 unsigned long arg) 3638 { 3639 struct i915_perf_stream *stream = file->private_data; 3640 long ret; 3641 3642 mutex_lock(&stream->lock); 3643 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3644 mutex_unlock(&stream->lock); 3645 3646 return ret; 3647 } 3648 3649 /** 3650 * i915_perf_destroy_locked - destroy an i915 perf stream 3651 * @stream: An i915 perf stream 3652 * 3653 * Frees all resources associated with the given i915 perf @stream, disabling 3654 * any associated data capture in the process. 3655 * 3656 * Note: The >->perf.lock mutex has been taken to serialize 3657 * with any non-file-operation driver hooks. 3658 */ 3659 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3660 { 3661 if (stream->enabled) 3662 i915_perf_disable_locked(stream); 3663 3664 if (stream->ops->destroy) 3665 stream->ops->destroy(stream); 3666 3667 if (stream->ctx) 3668 i915_gem_context_put(stream->ctx); 3669 3670 kfree(stream); 3671 } 3672 3673 /** 3674 * i915_perf_release - handles userspace close() of a stream file 3675 * @inode: anonymous inode associated with file 3676 * @file: An i915 perf stream file 3677 * 3678 * Cleans up any resources associated with an open i915 perf stream file. 3679 * 3680 * NB: close() can't really fail from the userspace point of view. 3681 * 3682 * Returns: zero on success or a negative error code. 3683 */ 3684 static int i915_perf_release(struct inode *inode, struct file *file) 3685 { 3686 struct i915_perf_stream *stream = file->private_data; 3687 struct i915_perf *perf = stream->perf; 3688 struct intel_gt *gt = stream->engine->gt; 3689 3690 /* 3691 * Within this call, we know that the fd is being closed and we have no 3692 * other user of stream->lock. Use the perf lock to destroy the stream 3693 * here. 3694 */ 3695 mutex_lock(>->perf.lock); 3696 i915_perf_destroy_locked(stream); 3697 mutex_unlock(>->perf.lock); 3698 3699 /* Release the reference the perf stream kept on the driver. */ 3700 drm_dev_put(&perf->i915->drm); 3701 3702 return 0; 3703 } 3704 3705 3706 static const struct file_operations fops = { 3707 .owner = THIS_MODULE, 3708 .llseek = no_llseek, 3709 .release = i915_perf_release, 3710 .poll = i915_perf_poll, 3711 .read = i915_perf_read, 3712 .unlocked_ioctl = i915_perf_ioctl, 3713 /* Our ioctl have no arguments, so it's safe to use the same function 3714 * to handle 32bits compatibility. 3715 */ 3716 .compat_ioctl = i915_perf_ioctl, 3717 }; 3718 3719 3720 /** 3721 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3722 * @perf: i915 perf instance 3723 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3724 * @props: individually validated u64 property value pairs 3725 * @file: drm file 3726 * 3727 * See i915_perf_ioctl_open() for interface details. 3728 * 3729 * Implements further stream config validation and stream initialization on 3730 * behalf of i915_perf_open_ioctl() with the >->perf.lock mutex 3731 * taken to serialize with any non-file-operation driver hooks. 3732 * 3733 * Note: at this point the @props have only been validated in isolation and 3734 * it's still necessary to validate that the combination of properties makes 3735 * sense. 3736 * 3737 * In the case where userspace is interested in OA unit metrics then further 3738 * config validation and stream initialization details will be handled by 3739 * i915_oa_stream_init(). The code here should only validate config state that 3740 * will be relevant to all stream types / backends. 3741 * 3742 * Returns: zero on success or a negative error code. 3743 */ 3744 static int 3745 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3746 struct drm_i915_perf_open_param *param, 3747 struct perf_open_properties *props, 3748 struct drm_file *file) 3749 { 3750 struct i915_gem_context *specific_ctx = NULL; 3751 struct i915_perf_stream *stream = NULL; 3752 unsigned long f_flags = 0; 3753 bool privileged_op = true; 3754 int stream_fd; 3755 int ret; 3756 3757 if (props->single_context) { 3758 u32 ctx_handle = props->ctx_handle; 3759 struct drm_i915_file_private *file_priv = file->driver_priv; 3760 3761 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3762 if (IS_ERR(specific_ctx)) { 3763 drm_dbg(&perf->i915->drm, 3764 "Failed to look up context with ID %u for opening perf stream\n", 3765 ctx_handle); 3766 ret = PTR_ERR(specific_ctx); 3767 goto err; 3768 } 3769 } 3770 3771 /* 3772 * On Haswell the OA unit supports clock gating off for a specific 3773 * context and in this mode there's no visibility of metrics for the 3774 * rest of the system, which we consider acceptable for a 3775 * non-privileged client. 3776 * 3777 * For Gen8->11 the OA unit no longer supports clock gating off for a 3778 * specific context and the kernel can't securely stop the counters 3779 * from updating as system-wide / global values. Even though we can 3780 * filter reports based on the included context ID we can't block 3781 * clients from seeing the raw / global counter values via 3782 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3783 * enable the OA unit by default. 3784 * 3785 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3786 * per context basis. So we can relax requirements there if the user 3787 * doesn't request global stream access (i.e. query based sampling 3788 * using MI_RECORD_PERF_COUNT. 3789 */ 3790 if (IS_HASWELL(perf->i915) && specific_ctx) 3791 privileged_op = false; 3792 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx && 3793 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3794 privileged_op = false; 3795 3796 if (props->hold_preemption) { 3797 if (!props->single_context) { 3798 drm_dbg(&perf->i915->drm, 3799 "preemption disable with no context\n"); 3800 ret = -EINVAL; 3801 goto err; 3802 } 3803 privileged_op = true; 3804 } 3805 3806 /* 3807 * Asking for SSEU configuration is a priviliged operation. 3808 */ 3809 if (props->has_sseu) 3810 privileged_op = true; 3811 else 3812 get_default_sseu_config(&props->sseu, props->engine); 3813 3814 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3815 * we check a dev.i915.perf_stream_paranoid sysctl option 3816 * to determine if it's ok to access system wide OA counters 3817 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3818 */ 3819 if (privileged_op && 3820 i915_perf_stream_paranoid && !perfmon_capable()) { 3821 drm_dbg(&perf->i915->drm, 3822 "Insufficient privileges to open i915 perf stream\n"); 3823 ret = -EACCES; 3824 goto err_ctx; 3825 } 3826 3827 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3828 if (!stream) { 3829 ret = -ENOMEM; 3830 goto err_ctx; 3831 } 3832 3833 stream->perf = perf; 3834 stream->ctx = specific_ctx; 3835 stream->poll_oa_period = props->poll_oa_period; 3836 3837 ret = i915_oa_stream_init(stream, param, props); 3838 if (ret) 3839 goto err_alloc; 3840 3841 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3842 * to have _stream_init check the combination of sample flags more 3843 * thoroughly, but still this is the expected result at this point. 3844 */ 3845 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3846 ret = -ENODEV; 3847 goto err_flags; 3848 } 3849 3850 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3851 f_flags |= O_CLOEXEC; 3852 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3853 f_flags |= O_NONBLOCK; 3854 3855 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3856 if (stream_fd < 0) { 3857 ret = stream_fd; 3858 goto err_flags; 3859 } 3860 3861 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3862 i915_perf_enable_locked(stream); 3863 3864 /* Take a reference on the driver that will be kept with stream_fd 3865 * until its release. 3866 */ 3867 drm_dev_get(&perf->i915->drm); 3868 3869 return stream_fd; 3870 3871 err_flags: 3872 if (stream->ops->destroy) 3873 stream->ops->destroy(stream); 3874 err_alloc: 3875 kfree(stream); 3876 err_ctx: 3877 if (specific_ctx) 3878 i915_gem_context_put(specific_ctx); 3879 err: 3880 return ret; 3881 } 3882 3883 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3884 { 3885 u64 nom = (2ULL << exponent) * NSEC_PER_SEC; 3886 u32 den = i915_perf_oa_timestamp_frequency(perf->i915); 3887 3888 return div_u64(nom + den - 1, den); 3889 } 3890 3891 static __always_inline bool 3892 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format) 3893 { 3894 return test_bit(format, perf->format_mask); 3895 } 3896 3897 static __always_inline void 3898 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format) 3899 { 3900 __set_bit(format, perf->format_mask); 3901 } 3902 3903 /** 3904 * read_properties_unlocked - validate + copy userspace stream open properties 3905 * @perf: i915 perf instance 3906 * @uprops: The array of u64 key value pairs given by userspace 3907 * @n_props: The number of key value pairs expected in @uprops 3908 * @props: The stream configuration built up while validating properties 3909 * 3910 * Note this function only validates properties in isolation it doesn't 3911 * validate that the combination of properties makes sense or that all 3912 * properties necessary for a particular kind of stream have been set. 3913 * 3914 * Note that there currently aren't any ordering requirements for properties so 3915 * we shouldn't validate or assume anything about ordering here. This doesn't 3916 * rule out defining new properties with ordering requirements in the future. 3917 */ 3918 static int read_properties_unlocked(struct i915_perf *perf, 3919 u64 __user *uprops, 3920 u32 n_props, 3921 struct perf_open_properties *props) 3922 { 3923 u64 __user *uprop = uprops; 3924 u32 i; 3925 int ret; 3926 3927 memset(props, 0, sizeof(struct perf_open_properties)); 3928 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 3929 3930 if (!n_props) { 3931 drm_dbg(&perf->i915->drm, 3932 "No i915 perf properties given\n"); 3933 return -EINVAL; 3934 } 3935 3936 /* At the moment we only support using i915-perf on the RCS. */ 3937 props->engine = intel_engine_lookup_user(perf->i915, 3938 I915_ENGINE_CLASS_RENDER, 3939 0); 3940 if (!props->engine) { 3941 drm_dbg(&perf->i915->drm, 3942 "No RENDER-capable engines\n"); 3943 return -EINVAL; 3944 } 3945 3946 /* Considering that ID = 0 is reserved and assuming that we don't 3947 * (currently) expect any configurations to ever specify duplicate 3948 * values for a particular property ID then the last _PROP_MAX value is 3949 * one greater than the maximum number of properties we expect to get 3950 * from userspace. 3951 */ 3952 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3953 drm_dbg(&perf->i915->drm, 3954 "More i915 perf properties specified than exist\n"); 3955 return -EINVAL; 3956 } 3957 3958 for (i = 0; i < n_props; i++) { 3959 u64 oa_period, oa_freq_hz; 3960 u64 id, value; 3961 3962 ret = get_user(id, uprop); 3963 if (ret) 3964 return ret; 3965 3966 ret = get_user(value, uprop + 1); 3967 if (ret) 3968 return ret; 3969 3970 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3971 drm_dbg(&perf->i915->drm, 3972 "Unknown i915 perf property ID\n"); 3973 return -EINVAL; 3974 } 3975 3976 switch ((enum drm_i915_perf_property_id)id) { 3977 case DRM_I915_PERF_PROP_CTX_HANDLE: 3978 props->single_context = 1; 3979 props->ctx_handle = value; 3980 break; 3981 case DRM_I915_PERF_PROP_SAMPLE_OA: 3982 if (value) 3983 props->sample_flags |= SAMPLE_OA_REPORT; 3984 break; 3985 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3986 if (value == 0) { 3987 drm_dbg(&perf->i915->drm, 3988 "Unknown OA metric set ID\n"); 3989 return -EINVAL; 3990 } 3991 props->metrics_set = value; 3992 break; 3993 case DRM_I915_PERF_PROP_OA_FORMAT: 3994 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3995 drm_dbg(&perf->i915->drm, 3996 "Out-of-range OA report format %llu\n", 3997 value); 3998 return -EINVAL; 3999 } 4000 if (!oa_format_valid(perf, value)) { 4001 drm_dbg(&perf->i915->drm, 4002 "Unsupported OA report format %llu\n", 4003 value); 4004 return -EINVAL; 4005 } 4006 props->oa_format = value; 4007 break; 4008 case DRM_I915_PERF_PROP_OA_EXPONENT: 4009 if (value > OA_EXPONENT_MAX) { 4010 drm_dbg(&perf->i915->drm, 4011 "OA timer exponent too high (> %u)\n", 4012 OA_EXPONENT_MAX); 4013 return -EINVAL; 4014 } 4015 4016 /* Theoretically we can program the OA unit to sample 4017 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 4018 * for BXT. We don't allow such high sampling 4019 * frequencies by default unless root. 4020 */ 4021 4022 BUILD_BUG_ON(sizeof(oa_period) != 8); 4023 oa_period = oa_exponent_to_ns(perf, value); 4024 4025 /* This check is primarily to ensure that oa_period <= 4026 * UINT32_MAX (before passing to do_div which only 4027 * accepts a u32 denominator), but we can also skip 4028 * checking anything < 1Hz which implicitly can't be 4029 * limited via an integer oa_max_sample_rate. 4030 */ 4031 if (oa_period <= NSEC_PER_SEC) { 4032 u64 tmp = NSEC_PER_SEC; 4033 do_div(tmp, oa_period); 4034 oa_freq_hz = tmp; 4035 } else 4036 oa_freq_hz = 0; 4037 4038 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 4039 drm_dbg(&perf->i915->drm, 4040 "OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 4041 i915_oa_max_sample_rate); 4042 return -EACCES; 4043 } 4044 4045 props->oa_periodic = true; 4046 props->oa_period_exponent = value; 4047 break; 4048 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 4049 props->hold_preemption = !!value; 4050 break; 4051 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 4052 struct drm_i915_gem_context_param_sseu user_sseu; 4053 4054 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) { 4055 drm_dbg(&perf->i915->drm, 4056 "SSEU config not supported on gfx %x\n", 4057 GRAPHICS_VER_FULL(perf->i915)); 4058 return -ENODEV; 4059 } 4060 4061 if (copy_from_user(&user_sseu, 4062 u64_to_user_ptr(value), 4063 sizeof(user_sseu))) { 4064 drm_dbg(&perf->i915->drm, 4065 "Unable to copy global sseu parameter\n"); 4066 return -EFAULT; 4067 } 4068 4069 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 4070 if (ret) { 4071 drm_dbg(&perf->i915->drm, 4072 "Invalid SSEU configuration\n"); 4073 return ret; 4074 } 4075 props->has_sseu = true; 4076 break; 4077 } 4078 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 4079 if (value < 100000 /* 100us */) { 4080 drm_dbg(&perf->i915->drm, 4081 "OA availability timer too small (%lluns < 100us)\n", 4082 value); 4083 return -EINVAL; 4084 } 4085 props->poll_oa_period = value; 4086 break; 4087 case DRM_I915_PERF_PROP_MAX: 4088 MISSING_CASE(id); 4089 return -EINVAL; 4090 } 4091 4092 uprop += 2; 4093 } 4094 4095 return 0; 4096 } 4097 4098 /** 4099 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 4100 * @dev: drm device 4101 * @data: ioctl data copied from userspace (unvalidated) 4102 * @file: drm file 4103 * 4104 * Validates the stream open parameters given by userspace including flags 4105 * and an array of u64 key, value pair properties. 4106 * 4107 * Very little is assumed up front about the nature of the stream being 4108 * opened (for instance we don't assume it's for periodic OA unit metrics). An 4109 * i915-perf stream is expected to be a suitable interface for other forms of 4110 * buffered data written by the GPU besides periodic OA metrics. 4111 * 4112 * Note we copy the properties from userspace outside of the i915 perf 4113 * mutex to avoid an awkward lockdep with mmap_lock. 4114 * 4115 * Most of the implementation details are handled by 4116 * i915_perf_open_ioctl_locked() after taking the >->perf.lock 4117 * mutex for serializing with any non-file-operation driver hooks. 4118 * 4119 * Return: A newly opened i915 Perf stream file descriptor or negative 4120 * error code on failure. 4121 */ 4122 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 4123 struct drm_file *file) 4124 { 4125 struct i915_perf *perf = &to_i915(dev)->perf; 4126 struct drm_i915_perf_open_param *param = data; 4127 struct intel_gt *gt; 4128 struct perf_open_properties props; 4129 u32 known_open_flags; 4130 int ret; 4131 4132 if (!perf->i915) { 4133 drm_dbg(&perf->i915->drm, 4134 "i915 perf interface not available for this system\n"); 4135 return -ENOTSUPP; 4136 } 4137 4138 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 4139 I915_PERF_FLAG_FD_NONBLOCK | 4140 I915_PERF_FLAG_DISABLED; 4141 if (param->flags & ~known_open_flags) { 4142 drm_dbg(&perf->i915->drm, 4143 "Unknown drm_i915_perf_open_param flag\n"); 4144 return -EINVAL; 4145 } 4146 4147 ret = read_properties_unlocked(perf, 4148 u64_to_user_ptr(param->properties_ptr), 4149 param->num_properties, 4150 &props); 4151 if (ret) 4152 return ret; 4153 4154 gt = props.engine->gt; 4155 4156 mutex_lock(>->perf.lock); 4157 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 4158 mutex_unlock(>->perf.lock); 4159 4160 return ret; 4161 } 4162 4163 /** 4164 * i915_perf_register - exposes i915-perf to userspace 4165 * @i915: i915 device instance 4166 * 4167 * In particular OA metric sets are advertised under a sysfs metrics/ 4168 * directory allowing userspace to enumerate valid IDs that can be 4169 * used to open an i915-perf stream. 4170 */ 4171 void i915_perf_register(struct drm_i915_private *i915) 4172 { 4173 struct i915_perf *perf = &i915->perf; 4174 struct intel_gt *gt = to_gt(i915); 4175 4176 if (!perf->i915) 4177 return; 4178 4179 /* To be sure we're synchronized with an attempted 4180 * i915_perf_open_ioctl(); considering that we register after 4181 * being exposed to userspace. 4182 */ 4183 mutex_lock(>->perf.lock); 4184 4185 perf->metrics_kobj = 4186 kobject_create_and_add("metrics", 4187 &i915->drm.primary->kdev->kobj); 4188 4189 mutex_unlock(>->perf.lock); 4190 } 4191 4192 /** 4193 * i915_perf_unregister - hide i915-perf from userspace 4194 * @i915: i915 device instance 4195 * 4196 * i915-perf state cleanup is split up into an 'unregister' and 4197 * 'deinit' phase where the interface is first hidden from 4198 * userspace by i915_perf_unregister() before cleaning up 4199 * remaining state in i915_perf_fini(). 4200 */ 4201 void i915_perf_unregister(struct drm_i915_private *i915) 4202 { 4203 struct i915_perf *perf = &i915->perf; 4204 4205 if (!perf->metrics_kobj) 4206 return; 4207 4208 kobject_put(perf->metrics_kobj); 4209 perf->metrics_kobj = NULL; 4210 } 4211 4212 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 4213 { 4214 static const i915_reg_t flex_eu_regs[] = { 4215 EU_PERF_CNTL0, 4216 EU_PERF_CNTL1, 4217 EU_PERF_CNTL2, 4218 EU_PERF_CNTL3, 4219 EU_PERF_CNTL4, 4220 EU_PERF_CNTL5, 4221 EU_PERF_CNTL6, 4222 }; 4223 int i; 4224 4225 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 4226 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 4227 return true; 4228 } 4229 return false; 4230 } 4231 4232 static bool reg_in_range_table(u32 addr, const struct i915_range *table) 4233 { 4234 while (table->start || table->end) { 4235 if (addr >= table->start && addr <= table->end) 4236 return true; 4237 4238 table++; 4239 } 4240 4241 return false; 4242 } 4243 4244 #define REG_EQUAL(addr, mmio) \ 4245 ((addr) == i915_mmio_reg_offset(mmio)) 4246 4247 static const struct i915_range gen7_oa_b_counters[] = { 4248 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */ 4249 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */ 4250 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */ 4251 {} 4252 }; 4253 4254 static const struct i915_range gen12_oa_b_counters[] = { 4255 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */ 4256 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */ 4257 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */ 4258 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */ 4259 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */ 4260 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */ 4261 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */ 4262 {} 4263 }; 4264 4265 static const struct i915_range xehp_oa_b_counters[] = { 4266 { .start = 0xdc48, .end = 0xdc48 }, /* OAA_ENABLE_REG */ 4267 { .start = 0xdd00, .end = 0xdd48 }, /* OAG_LCE0_0 - OAA_LENABLE_REG */ 4268 }; 4269 4270 static const struct i915_range gen7_oa_mux_regs[] = { 4271 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */ 4272 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */ 4273 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */ 4274 {} 4275 }; 4276 4277 static const struct i915_range hsw_oa_mux_regs[] = { 4278 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */ 4279 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */ 4280 { .start = 0x25100, .end = 0x2ff90 }, 4281 {} 4282 }; 4283 4284 static const struct i915_range chv_oa_mux_regs[] = { 4285 { .start = 0x182300, .end = 0x1823a4 }, 4286 {} 4287 }; 4288 4289 static const struct i915_range gen8_oa_mux_regs[] = { 4290 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */ 4291 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4292 {} 4293 }; 4294 4295 static const struct i915_range gen11_oa_mux_regs[] = { 4296 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */ 4297 {} 4298 }; 4299 4300 static const struct i915_range gen12_oa_mux_regs[] = { 4301 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4302 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4303 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4304 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4305 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4306 {} 4307 }; 4308 4309 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4310 { 4311 return reg_in_range_table(addr, gen7_oa_b_counters); 4312 } 4313 4314 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4315 { 4316 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4317 reg_in_range_table(addr, gen8_oa_mux_regs); 4318 } 4319 4320 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4321 { 4322 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4323 reg_in_range_table(addr, gen8_oa_mux_regs) || 4324 reg_in_range_table(addr, gen11_oa_mux_regs); 4325 } 4326 4327 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4328 { 4329 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4330 reg_in_range_table(addr, hsw_oa_mux_regs); 4331 } 4332 4333 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4334 { 4335 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4336 reg_in_range_table(addr, chv_oa_mux_regs); 4337 } 4338 4339 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4340 { 4341 return reg_in_range_table(addr, gen12_oa_b_counters); 4342 } 4343 4344 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4345 { 4346 return reg_in_range_table(addr, xehp_oa_b_counters) || 4347 reg_in_range_table(addr, gen12_oa_b_counters); 4348 } 4349 4350 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4351 { 4352 return reg_in_range_table(addr, gen12_oa_mux_regs); 4353 } 4354 4355 static u32 mask_reg_value(u32 reg, u32 val) 4356 { 4357 /* HALF_SLICE_CHICKEN2 is programmed with a the 4358 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 4359 * programmed by userspace doesn't change this. 4360 */ 4361 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 4362 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 4363 4364 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 4365 * indicated by its name and a bunch of selection fields used by OA 4366 * configs. 4367 */ 4368 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 4369 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 4370 4371 return val; 4372 } 4373 4374 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 4375 bool (*is_valid)(struct i915_perf *perf, u32 addr), 4376 u32 __user *regs, 4377 u32 n_regs) 4378 { 4379 struct i915_oa_reg *oa_regs; 4380 int err; 4381 u32 i; 4382 4383 if (!n_regs) 4384 return NULL; 4385 4386 /* No is_valid function means we're not allowing any register to be programmed. */ 4387 GEM_BUG_ON(!is_valid); 4388 if (!is_valid) 4389 return ERR_PTR(-EINVAL); 4390 4391 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 4392 if (!oa_regs) 4393 return ERR_PTR(-ENOMEM); 4394 4395 for (i = 0; i < n_regs; i++) { 4396 u32 addr, value; 4397 4398 err = get_user(addr, regs); 4399 if (err) 4400 goto addr_err; 4401 4402 if (!is_valid(perf, addr)) { 4403 drm_dbg(&perf->i915->drm, 4404 "Invalid oa_reg address: %X\n", addr); 4405 err = -EINVAL; 4406 goto addr_err; 4407 } 4408 4409 err = get_user(value, regs + 1); 4410 if (err) 4411 goto addr_err; 4412 4413 oa_regs[i].addr = _MMIO(addr); 4414 oa_regs[i].value = mask_reg_value(addr, value); 4415 4416 regs += 2; 4417 } 4418 4419 return oa_regs; 4420 4421 addr_err: 4422 kfree(oa_regs); 4423 return ERR_PTR(err); 4424 } 4425 4426 static ssize_t show_dynamic_id(struct kobject *kobj, 4427 struct kobj_attribute *attr, 4428 char *buf) 4429 { 4430 struct i915_oa_config *oa_config = 4431 container_of(attr, typeof(*oa_config), sysfs_metric_id); 4432 4433 return sprintf(buf, "%d\n", oa_config->id); 4434 } 4435 4436 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 4437 struct i915_oa_config *oa_config) 4438 { 4439 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 4440 oa_config->sysfs_metric_id.attr.name = "id"; 4441 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 4442 oa_config->sysfs_metric_id.show = show_dynamic_id; 4443 oa_config->sysfs_metric_id.store = NULL; 4444 4445 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 4446 oa_config->attrs[1] = NULL; 4447 4448 oa_config->sysfs_metric.name = oa_config->uuid; 4449 oa_config->sysfs_metric.attrs = oa_config->attrs; 4450 4451 return sysfs_create_group(perf->metrics_kobj, 4452 &oa_config->sysfs_metric); 4453 } 4454 4455 /** 4456 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4457 * @dev: drm device 4458 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4459 * userspace (unvalidated) 4460 * @file: drm file 4461 * 4462 * Validates the submitted OA register to be saved into a new OA config that 4463 * can then be used for programming the OA unit and its NOA network. 4464 * 4465 * Returns: A new allocated config number to be used with the perf open ioctl 4466 * or a negative error code on failure. 4467 */ 4468 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4469 struct drm_file *file) 4470 { 4471 struct i915_perf *perf = &to_i915(dev)->perf; 4472 struct drm_i915_perf_oa_config *args = data; 4473 struct i915_oa_config *oa_config, *tmp; 4474 struct i915_oa_reg *regs; 4475 int err, id; 4476 4477 if (!perf->i915) { 4478 drm_dbg(&perf->i915->drm, 4479 "i915 perf interface not available for this system\n"); 4480 return -ENOTSUPP; 4481 } 4482 4483 if (!perf->metrics_kobj) { 4484 drm_dbg(&perf->i915->drm, 4485 "OA metrics weren't advertised via sysfs\n"); 4486 return -EINVAL; 4487 } 4488 4489 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4490 drm_dbg(&perf->i915->drm, 4491 "Insufficient privileges to add i915 OA config\n"); 4492 return -EACCES; 4493 } 4494 4495 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4496 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4497 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4498 drm_dbg(&perf->i915->drm, 4499 "No OA registers given\n"); 4500 return -EINVAL; 4501 } 4502 4503 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4504 if (!oa_config) { 4505 drm_dbg(&perf->i915->drm, 4506 "Failed to allocate memory for the OA config\n"); 4507 return -ENOMEM; 4508 } 4509 4510 oa_config->perf = perf; 4511 kref_init(&oa_config->ref); 4512 4513 if (!uuid_is_valid(args->uuid)) { 4514 drm_dbg(&perf->i915->drm, 4515 "Invalid uuid format for OA config\n"); 4516 err = -EINVAL; 4517 goto reg_err; 4518 } 4519 4520 /* Last character in oa_config->uuid will be 0 because oa_config is 4521 * kzalloc. 4522 */ 4523 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4524 4525 oa_config->mux_regs_len = args->n_mux_regs; 4526 regs = alloc_oa_regs(perf, 4527 perf->ops.is_valid_mux_reg, 4528 u64_to_user_ptr(args->mux_regs_ptr), 4529 args->n_mux_regs); 4530 4531 if (IS_ERR(regs)) { 4532 drm_dbg(&perf->i915->drm, 4533 "Failed to create OA config for mux_regs\n"); 4534 err = PTR_ERR(regs); 4535 goto reg_err; 4536 } 4537 oa_config->mux_regs = regs; 4538 4539 oa_config->b_counter_regs_len = args->n_boolean_regs; 4540 regs = alloc_oa_regs(perf, 4541 perf->ops.is_valid_b_counter_reg, 4542 u64_to_user_ptr(args->boolean_regs_ptr), 4543 args->n_boolean_regs); 4544 4545 if (IS_ERR(regs)) { 4546 drm_dbg(&perf->i915->drm, 4547 "Failed to create OA config for b_counter_regs\n"); 4548 err = PTR_ERR(regs); 4549 goto reg_err; 4550 } 4551 oa_config->b_counter_regs = regs; 4552 4553 if (GRAPHICS_VER(perf->i915) < 8) { 4554 if (args->n_flex_regs != 0) { 4555 err = -EINVAL; 4556 goto reg_err; 4557 } 4558 } else { 4559 oa_config->flex_regs_len = args->n_flex_regs; 4560 regs = alloc_oa_regs(perf, 4561 perf->ops.is_valid_flex_reg, 4562 u64_to_user_ptr(args->flex_regs_ptr), 4563 args->n_flex_regs); 4564 4565 if (IS_ERR(regs)) { 4566 drm_dbg(&perf->i915->drm, 4567 "Failed to create OA config for flex_regs\n"); 4568 err = PTR_ERR(regs); 4569 goto reg_err; 4570 } 4571 oa_config->flex_regs = regs; 4572 } 4573 4574 err = mutex_lock_interruptible(&perf->metrics_lock); 4575 if (err) 4576 goto reg_err; 4577 4578 /* We shouldn't have too many configs, so this iteration shouldn't be 4579 * too costly. 4580 */ 4581 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4582 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4583 drm_dbg(&perf->i915->drm, 4584 "OA config already exists with this uuid\n"); 4585 err = -EADDRINUSE; 4586 goto sysfs_err; 4587 } 4588 } 4589 4590 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4591 if (err) { 4592 drm_dbg(&perf->i915->drm, 4593 "Failed to create sysfs entry for OA config\n"); 4594 goto sysfs_err; 4595 } 4596 4597 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4598 oa_config->id = idr_alloc(&perf->metrics_idr, 4599 oa_config, 2, 4600 0, GFP_KERNEL); 4601 if (oa_config->id < 0) { 4602 drm_dbg(&perf->i915->drm, 4603 "Failed to create sysfs entry for OA config\n"); 4604 err = oa_config->id; 4605 goto sysfs_err; 4606 } 4607 4608 mutex_unlock(&perf->metrics_lock); 4609 4610 drm_dbg(&perf->i915->drm, 4611 "Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4612 4613 return oa_config->id; 4614 4615 sysfs_err: 4616 mutex_unlock(&perf->metrics_lock); 4617 reg_err: 4618 i915_oa_config_put(oa_config); 4619 drm_dbg(&perf->i915->drm, 4620 "Failed to add new OA config\n"); 4621 return err; 4622 } 4623 4624 /** 4625 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4626 * @dev: drm device 4627 * @data: ioctl data (pointer to u64 integer) copied from userspace 4628 * @file: drm file 4629 * 4630 * Configs can be removed while being used, the will stop appearing in sysfs 4631 * and their content will be freed when the stream using the config is closed. 4632 * 4633 * Returns: 0 on success or a negative error code on failure. 4634 */ 4635 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4636 struct drm_file *file) 4637 { 4638 struct i915_perf *perf = &to_i915(dev)->perf; 4639 u64 *arg = data; 4640 struct i915_oa_config *oa_config; 4641 int ret; 4642 4643 if (!perf->i915) { 4644 drm_dbg(&perf->i915->drm, 4645 "i915 perf interface not available for this system\n"); 4646 return -ENOTSUPP; 4647 } 4648 4649 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4650 drm_dbg(&perf->i915->drm, 4651 "Insufficient privileges to remove i915 OA config\n"); 4652 return -EACCES; 4653 } 4654 4655 ret = mutex_lock_interruptible(&perf->metrics_lock); 4656 if (ret) 4657 return ret; 4658 4659 oa_config = idr_find(&perf->metrics_idr, *arg); 4660 if (!oa_config) { 4661 drm_dbg(&perf->i915->drm, 4662 "Failed to remove unknown OA config\n"); 4663 ret = -ENOENT; 4664 goto err_unlock; 4665 } 4666 4667 GEM_BUG_ON(*arg != oa_config->id); 4668 4669 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4670 4671 idr_remove(&perf->metrics_idr, *arg); 4672 4673 mutex_unlock(&perf->metrics_lock); 4674 4675 drm_dbg(&perf->i915->drm, 4676 "Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4677 4678 i915_oa_config_put(oa_config); 4679 4680 return 0; 4681 4682 err_unlock: 4683 mutex_unlock(&perf->metrics_lock); 4684 return ret; 4685 } 4686 4687 static struct ctl_table oa_table[] = { 4688 { 4689 .procname = "perf_stream_paranoid", 4690 .data = &i915_perf_stream_paranoid, 4691 .maxlen = sizeof(i915_perf_stream_paranoid), 4692 .mode = 0644, 4693 .proc_handler = proc_dointvec_minmax, 4694 .extra1 = SYSCTL_ZERO, 4695 .extra2 = SYSCTL_ONE, 4696 }, 4697 { 4698 .procname = "oa_max_sample_rate", 4699 .data = &i915_oa_max_sample_rate, 4700 .maxlen = sizeof(i915_oa_max_sample_rate), 4701 .mode = 0644, 4702 .proc_handler = proc_dointvec_minmax, 4703 .extra1 = SYSCTL_ZERO, 4704 .extra2 = &oa_sample_rate_hard_limit, 4705 }, 4706 {} 4707 }; 4708 4709 static void oa_init_supported_formats(struct i915_perf *perf) 4710 { 4711 struct drm_i915_private *i915 = perf->i915; 4712 enum intel_platform platform = INTEL_INFO(i915)->platform; 4713 4714 switch (platform) { 4715 case INTEL_HASWELL: 4716 oa_format_add(perf, I915_OA_FORMAT_A13); 4717 oa_format_add(perf, I915_OA_FORMAT_A13); 4718 oa_format_add(perf, I915_OA_FORMAT_A29); 4719 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8); 4720 oa_format_add(perf, I915_OA_FORMAT_B4_C8); 4721 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8); 4722 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16); 4723 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4724 break; 4725 4726 case INTEL_BROADWELL: 4727 case INTEL_CHERRYVIEW: 4728 case INTEL_SKYLAKE: 4729 case INTEL_BROXTON: 4730 case INTEL_KABYLAKE: 4731 case INTEL_GEMINILAKE: 4732 case INTEL_COFFEELAKE: 4733 case INTEL_COMETLAKE: 4734 case INTEL_ICELAKE: 4735 case INTEL_ELKHARTLAKE: 4736 case INTEL_JASPERLAKE: 4737 case INTEL_TIGERLAKE: 4738 case INTEL_ROCKETLAKE: 4739 case INTEL_DG1: 4740 case INTEL_ALDERLAKE_S: 4741 case INTEL_ALDERLAKE_P: 4742 oa_format_add(perf, I915_OA_FORMAT_A12); 4743 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8); 4744 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8); 4745 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 4746 break; 4747 4748 case INTEL_DG2: 4749 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8); 4750 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8); 4751 break; 4752 4753 default: 4754 MISSING_CASE(platform); 4755 } 4756 } 4757 4758 static void i915_perf_init_info(struct drm_i915_private *i915) 4759 { 4760 struct i915_perf *perf = &i915->perf; 4761 4762 switch (GRAPHICS_VER(i915)) { 4763 case 8: 4764 perf->ctx_oactxctrl_offset = 0x120; 4765 perf->ctx_flexeu0_offset = 0x2ce; 4766 perf->gen8_valid_ctx_bit = BIT(25); 4767 break; 4768 case 9: 4769 perf->ctx_oactxctrl_offset = 0x128; 4770 perf->ctx_flexeu0_offset = 0x3de; 4771 perf->gen8_valid_ctx_bit = BIT(16); 4772 break; 4773 case 11: 4774 perf->ctx_oactxctrl_offset = 0x124; 4775 perf->ctx_flexeu0_offset = 0x78e; 4776 perf->gen8_valid_ctx_bit = BIT(16); 4777 break; 4778 case 12: 4779 /* 4780 * Calculate offset at runtime in oa_pin_context for gen12 and 4781 * cache the value in perf->ctx_oactxctrl_offset. 4782 */ 4783 break; 4784 default: 4785 MISSING_CASE(GRAPHICS_VER(i915)); 4786 } 4787 } 4788 4789 /** 4790 * i915_perf_init - initialize i915-perf state on module bind 4791 * @i915: i915 device instance 4792 * 4793 * Initializes i915-perf state without exposing anything to userspace. 4794 * 4795 * Note: i915-perf initialization is split into an 'init' and 'register' 4796 * phase with the i915_perf_register() exposing state to userspace. 4797 */ 4798 void i915_perf_init(struct drm_i915_private *i915) 4799 { 4800 struct i915_perf *perf = &i915->perf; 4801 4802 perf->oa_formats = oa_formats; 4803 if (IS_HASWELL(i915)) { 4804 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4805 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4806 perf->ops.is_valid_flex_reg = NULL; 4807 perf->ops.enable_metric_set = hsw_enable_metric_set; 4808 perf->ops.disable_metric_set = hsw_disable_metric_set; 4809 perf->ops.oa_enable = gen7_oa_enable; 4810 perf->ops.oa_disable = gen7_oa_disable; 4811 perf->ops.read = gen7_oa_read; 4812 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4813 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4814 /* Note: that although we could theoretically also support the 4815 * legacy ringbuffer mode on BDW (and earlier iterations of 4816 * this driver, before upstreaming did this) it didn't seem 4817 * worth the complexity to maintain now that BDW+ enable 4818 * execlist mode by default. 4819 */ 4820 perf->ops.read = gen8_oa_read; 4821 i915_perf_init_info(i915); 4822 4823 if (IS_GRAPHICS_VER(i915, 8, 9)) { 4824 perf->ops.is_valid_b_counter_reg = 4825 gen7_is_valid_b_counter_addr; 4826 perf->ops.is_valid_mux_reg = 4827 gen8_is_valid_mux_addr; 4828 perf->ops.is_valid_flex_reg = 4829 gen8_is_valid_flex_addr; 4830 4831 if (IS_CHERRYVIEW(i915)) { 4832 perf->ops.is_valid_mux_reg = 4833 chv_is_valid_mux_addr; 4834 } 4835 4836 perf->ops.oa_enable = gen8_oa_enable; 4837 perf->ops.oa_disable = gen8_oa_disable; 4838 perf->ops.enable_metric_set = gen8_enable_metric_set; 4839 perf->ops.disable_metric_set = gen8_disable_metric_set; 4840 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4841 } else if (GRAPHICS_VER(i915) == 11) { 4842 perf->ops.is_valid_b_counter_reg = 4843 gen7_is_valid_b_counter_addr; 4844 perf->ops.is_valid_mux_reg = 4845 gen11_is_valid_mux_addr; 4846 perf->ops.is_valid_flex_reg = 4847 gen8_is_valid_flex_addr; 4848 4849 perf->ops.oa_enable = gen8_oa_enable; 4850 perf->ops.oa_disable = gen8_oa_disable; 4851 perf->ops.enable_metric_set = gen8_enable_metric_set; 4852 perf->ops.disable_metric_set = gen11_disable_metric_set; 4853 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4854 } else if (GRAPHICS_VER(i915) == 12) { 4855 perf->ops.is_valid_b_counter_reg = 4856 HAS_OA_SLICE_CONTRIB_LIMITS(i915) ? 4857 xehp_is_valid_b_counter_addr : 4858 gen12_is_valid_b_counter_addr; 4859 perf->ops.is_valid_mux_reg = 4860 gen12_is_valid_mux_addr; 4861 perf->ops.is_valid_flex_reg = 4862 gen8_is_valid_flex_addr; 4863 4864 perf->ops.oa_enable = gen12_oa_enable; 4865 perf->ops.oa_disable = gen12_oa_disable; 4866 perf->ops.enable_metric_set = gen12_enable_metric_set; 4867 perf->ops.disable_metric_set = gen12_disable_metric_set; 4868 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4869 } 4870 } 4871 4872 if (perf->ops.enable_metric_set) { 4873 struct intel_gt *gt; 4874 int i; 4875 4876 for_each_gt(gt, i915, i) 4877 mutex_init(>->perf.lock); 4878 4879 /* Choose a representative limit */ 4880 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2; 4881 4882 mutex_init(&perf->metrics_lock); 4883 idr_init_base(&perf->metrics_idr, 1); 4884 4885 /* We set up some ratelimit state to potentially throttle any 4886 * _NOTES about spurious, invalid OA reports which we don't 4887 * forward to userspace. 4888 * 4889 * We print a _NOTE about any throttling when closing the 4890 * stream instead of waiting until driver _fini which no one 4891 * would ever see. 4892 * 4893 * Using the same limiting factors as printk_ratelimit() 4894 */ 4895 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4896 /* Since we use a DRM_NOTE for spurious reports it would be 4897 * inconsistent to let __ratelimit() automatically print a 4898 * warning for throttling. 4899 */ 4900 ratelimit_set_flags(&perf->spurious_report_rs, 4901 RATELIMIT_MSG_ON_RELEASE); 4902 4903 ratelimit_state_init(&perf->tail_pointer_race, 4904 5 * HZ, 10); 4905 ratelimit_set_flags(&perf->tail_pointer_race, 4906 RATELIMIT_MSG_ON_RELEASE); 4907 4908 atomic64_set(&perf->noa_programming_delay, 4909 500 * 1000 /* 500us */); 4910 4911 perf->i915 = i915; 4912 4913 oa_init_supported_formats(perf); 4914 } 4915 } 4916 4917 static int destroy_config(int id, void *p, void *data) 4918 { 4919 i915_oa_config_put(p); 4920 return 0; 4921 } 4922 4923 int i915_perf_sysctl_register(void) 4924 { 4925 sysctl_header = register_sysctl("dev/i915", oa_table); 4926 return 0; 4927 } 4928 4929 void i915_perf_sysctl_unregister(void) 4930 { 4931 unregister_sysctl_table(sysctl_header); 4932 } 4933 4934 /** 4935 * i915_perf_fini - Counter part to i915_perf_init() 4936 * @i915: i915 device instance 4937 */ 4938 void i915_perf_fini(struct drm_i915_private *i915) 4939 { 4940 struct i915_perf *perf = &i915->perf; 4941 4942 if (!perf->i915) 4943 return; 4944 4945 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4946 idr_destroy(&perf->metrics_idr); 4947 4948 memset(&perf->ops, 0, sizeof(perf->ops)); 4949 perf->i915 = NULL; 4950 } 4951 4952 /** 4953 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4954 * 4955 * This version number is used by userspace to detect available features. 4956 */ 4957 int i915_perf_ioctl_version(void) 4958 { 4959 /* 4960 * 1: Initial version 4961 * I915_PERF_IOCTL_ENABLE 4962 * I915_PERF_IOCTL_DISABLE 4963 * 4964 * 2: Added runtime modification of OA config. 4965 * I915_PERF_IOCTL_CONFIG 4966 * 4967 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4968 * preemption on a particular context so that performance data is 4969 * accessible from a delta of MI_RPC reports without looking at the 4970 * OA buffer. 4971 * 4972 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 4973 * be run for the duration of the performance recording based on 4974 * their SSEU configuration. 4975 * 4976 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 4977 * interval for the hrtimer used to check for OA data. 4978 */ 4979 return 5; 4980 } 4981 4982 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4983 #include "selftests/i915_perf.c" 4984 #endif 4985