1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 197 #include "i915_drv.h" 198 #include "i915_oa_hsw.h" 199 200 /* HW requires this to be a power of two, between 128k and 16M, though driver 201 * is currently generally designed assuming the largest 16M size is used such 202 * that the overflow cases are unlikely in normal operation. 203 */ 204 #define OA_BUFFER_SIZE SZ_16M 205 206 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 207 208 /* There's a HW race condition between OA unit tail pointer register updates and 209 * writes to memory whereby the tail pointer can sometimes get ahead of what's 210 * been written out to the OA buffer so far. 211 * 212 * Although this can be observed explicitly by checking for a zeroed report-id 213 * field in tail reports, it seems preferable to account for this earlier e.g. 214 * as part of the _oa_buffer_is_empty checks to minimize -EAGAIN polling cycles 215 * in this situation. 216 * 217 * To give time for the most recent reports to land before they may be copied to 218 * userspace, the driver operates as if the tail pointer effectively lags behind 219 * the HW tail pointer by 'tail_margin' bytes. The margin in bytes is calculated 220 * based on this constant in nanoseconds, the current OA sampling exponent 221 * and current report size. 222 * 223 * There is also a fallback check while reading to simply skip over reports with 224 * a zeroed report-id. 225 */ 226 #define OA_TAIL_MARGIN_NSEC 100000ULL 227 228 /* frequency for checking whether the OA unit has written new reports to the 229 * circular OA buffer... 230 */ 231 #define POLL_FREQUENCY 200 232 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY) 233 234 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 235 static int zero; 236 static int one = 1; 237 static u32 i915_perf_stream_paranoid = true; 238 239 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 240 * of the 64bit timestamp bits to trigger reports from) but there's currently 241 * no known use case for sampling as infrequently as once per 47 thousand years. 242 * 243 * Since the timestamps included in OA reports are only 32bits it seems 244 * reasonable to limit the OA exponent where it's still possible to account for 245 * overflow in OA report timestamps. 246 */ 247 #define OA_EXPONENT_MAX 31 248 249 #define INVALID_CTX_ID 0xffffffff 250 251 252 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 253 * 254 * 160ns is the smallest sampling period we can theoretically program the OA 255 * unit with on Haswell, corresponding to 6.25MHz. 256 */ 257 static int oa_sample_rate_hard_limit = 6250000; 258 259 /* Theoretically we can program the OA unit to sample every 160ns but don't 260 * allow that by default unless root... 261 * 262 * The default threshold of 100000Hz is based on perf's similar 263 * kernel.perf_event_max_sample_rate sysctl parameter. 264 */ 265 static u32 i915_oa_max_sample_rate = 100000; 266 267 /* XXX: beware if future OA HW adds new report formats that the current 268 * code assumes all reports have a power-of-two size and ~(size - 1) can 269 * be used as a mask to align the OA tail pointer. 270 */ 271 static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 272 [I915_OA_FORMAT_A13] = { 0, 64 }, 273 [I915_OA_FORMAT_A29] = { 1, 128 }, 274 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 275 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 276 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 277 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 278 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 279 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 280 }; 281 282 #define SAMPLE_OA_REPORT (1<<0) 283 284 /** 285 * struct perf_open_properties - for validated properties given to open a stream 286 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 287 * @single_context: Whether a single or all gpu contexts should be monitored 288 * @ctx_handle: A gem ctx handle for use with @single_context 289 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 290 * @oa_format: An OA unit HW report format 291 * @oa_periodic: Whether to enable periodic OA unit sampling 292 * @oa_period_exponent: The OA unit sampling period is derived from this 293 * 294 * As read_properties_unlocked() enumerates and validates the properties given 295 * to open a stream of metrics the configuration is built up in the structure 296 * which starts out zero initialized. 297 */ 298 struct perf_open_properties { 299 u32 sample_flags; 300 301 u64 single_context:1; 302 u64 ctx_handle; 303 304 /* OA sampling state */ 305 int metrics_set; 306 int oa_format; 307 bool oa_periodic; 308 int oa_period_exponent; 309 }; 310 311 /* NB: This is either called via fops or the poll check hrtimer (atomic ctx) 312 * 313 * It's safe to read OA config state here unlocked, assuming that this is only 314 * called while the stream is enabled, while the global OA configuration can't 315 * be modified. 316 * 317 * Note: we don't lock around the head/tail reads even though there's the slim 318 * possibility of read() fop errors forcing a re-init of the OA buffer 319 * pointers. A race here could result in a false positive !empty status which 320 * is acceptable. 321 */ 322 static bool gen7_oa_buffer_is_empty_fop_unlocked(struct drm_i915_private *dev_priv) 323 { 324 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 325 u32 oastatus2 = I915_READ(GEN7_OASTATUS2); 326 u32 oastatus1 = I915_READ(GEN7_OASTATUS1); 327 u32 head = oastatus2 & GEN7_OASTATUS2_HEAD_MASK; 328 u32 tail = oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 329 330 return OA_TAKEN(tail, head) < 331 dev_priv->perf.oa.tail_margin + report_size; 332 } 333 334 /** 335 * append_oa_status - Appends a status record to a userspace read() buffer. 336 * @stream: An i915-perf stream opened for OA metrics 337 * @buf: destination buffer given by userspace 338 * @count: the number of bytes userspace wants to read 339 * @offset: (inout): the current position for writing into @buf 340 * @type: The kind of status to report to userspace 341 * 342 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 343 * into the userspace read() buffer. 344 * 345 * The @buf @offset will only be updated on success. 346 * 347 * Returns: 0 on success, negative error code on failure. 348 */ 349 static int append_oa_status(struct i915_perf_stream *stream, 350 char __user *buf, 351 size_t count, 352 size_t *offset, 353 enum drm_i915_perf_record_type type) 354 { 355 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 356 357 if ((count - *offset) < header.size) 358 return -ENOSPC; 359 360 if (copy_to_user(buf + *offset, &header, sizeof(header))) 361 return -EFAULT; 362 363 (*offset) += header.size; 364 365 return 0; 366 } 367 368 /** 369 * append_oa_sample - Copies single OA report into userspace read() buffer. 370 * @stream: An i915-perf stream opened for OA metrics 371 * @buf: destination buffer given by userspace 372 * @count: the number of bytes userspace wants to read 373 * @offset: (inout): the current position for writing into @buf 374 * @report: A single OA report to (optionally) include as part of the sample 375 * 376 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 377 * properties when opening a stream, tracked as `stream->sample_flags`. This 378 * function copies the requested components of a single sample to the given 379 * read() @buf. 380 * 381 * The @buf @offset will only be updated on success. 382 * 383 * Returns: 0 on success, negative error code on failure. 384 */ 385 static int append_oa_sample(struct i915_perf_stream *stream, 386 char __user *buf, 387 size_t count, 388 size_t *offset, 389 const u8 *report) 390 { 391 struct drm_i915_private *dev_priv = stream->dev_priv; 392 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 393 struct drm_i915_perf_record_header header; 394 u32 sample_flags = stream->sample_flags; 395 396 header.type = DRM_I915_PERF_RECORD_SAMPLE; 397 header.pad = 0; 398 header.size = stream->sample_size; 399 400 if ((count - *offset) < header.size) 401 return -ENOSPC; 402 403 buf += *offset; 404 if (copy_to_user(buf, &header, sizeof(header))) 405 return -EFAULT; 406 buf += sizeof(header); 407 408 if (sample_flags & SAMPLE_OA_REPORT) { 409 if (copy_to_user(buf, report, report_size)) 410 return -EFAULT; 411 } 412 413 (*offset) += header.size; 414 415 return 0; 416 } 417 418 /** 419 * Copies all buffered OA reports into userspace read() buffer. 420 * @stream: An i915-perf stream opened for OA metrics 421 * @buf: destination buffer given by userspace 422 * @count: the number of bytes userspace wants to read 423 * @offset: (inout): the current position for writing into @buf 424 * @head_ptr: (inout): the current oa buffer cpu read position 425 * @tail: the current oa buffer gpu write position 426 * 427 * Notably any error condition resulting in a short read (-%ENOSPC or 428 * -%EFAULT) will be returned even though one or more records may 429 * have been successfully copied. In this case it's up to the caller 430 * to decide if the error should be squashed before returning to 431 * userspace. 432 * 433 * Note: reports are consumed from the head, and appended to the 434 * tail, so the head chases the tail?... If you think that's mad 435 * and back-to-front you're not alone, but this follows the 436 * Gen PRM naming convention. 437 * 438 * Returns: 0 on success, negative error code on failure. 439 */ 440 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 441 char __user *buf, 442 size_t count, 443 size_t *offset, 444 u32 *head_ptr, 445 u32 tail) 446 { 447 struct drm_i915_private *dev_priv = stream->dev_priv; 448 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 449 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr; 450 int tail_margin = dev_priv->perf.oa.tail_margin; 451 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 452 u32 mask = (OA_BUFFER_SIZE - 1); 453 u32 head; 454 u32 taken; 455 int ret = 0; 456 457 if (WARN_ON(!stream->enabled)) 458 return -EIO; 459 460 head = *head_ptr - gtt_offset; 461 tail -= gtt_offset; 462 463 /* The OA unit is expected to wrap the tail pointer according to the OA 464 * buffer size and since we should never write a misaligned head 465 * pointer we don't expect to read one back either... 466 */ 467 if (tail > OA_BUFFER_SIZE || head > OA_BUFFER_SIZE || 468 head % report_size) { 469 DRM_ERROR("Inconsistent OA buffer pointer (head = %u, tail = %u): force restart\n", 470 head, tail); 471 dev_priv->perf.oa.ops.oa_disable(dev_priv); 472 dev_priv->perf.oa.ops.oa_enable(dev_priv); 473 *head_ptr = I915_READ(GEN7_OASTATUS2) & 474 GEN7_OASTATUS2_HEAD_MASK; 475 return -EIO; 476 } 477 478 479 /* The tail pointer increases in 64 byte increments, not in report_size 480 * steps... 481 */ 482 tail &= ~(report_size - 1); 483 484 /* Move the tail pointer back by the current tail_margin to account for 485 * the possibility that the latest reports may not have really landed 486 * in memory yet... 487 */ 488 489 if (OA_TAKEN(tail, head) < report_size + tail_margin) 490 return -EAGAIN; 491 492 tail -= tail_margin; 493 tail &= mask; 494 495 for (/* none */; 496 (taken = OA_TAKEN(tail, head)); 497 head = (head + report_size) & mask) { 498 u8 *report = oa_buf_base + head; 499 u32 *report32 = (void *)report; 500 501 /* All the report sizes factor neatly into the buffer 502 * size so we never expect to see a report split 503 * between the beginning and end of the buffer. 504 * 505 * Given the initial alignment check a misalignment 506 * here would imply a driver bug that would result 507 * in an overrun. 508 */ 509 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 510 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 511 break; 512 } 513 514 /* The report-ID field for periodic samples includes 515 * some undocumented flags related to what triggered 516 * the report and is never expected to be zero so we 517 * can check that the report isn't invalid before 518 * copying it to userspace... 519 */ 520 if (report32[0] == 0) { 521 DRM_NOTE("Skipping spurious, invalid OA report\n"); 522 continue; 523 } 524 525 ret = append_oa_sample(stream, buf, count, offset, report); 526 if (ret) 527 break; 528 529 /* The above report-id field sanity check is based on 530 * the assumption that the OA buffer is initially 531 * zeroed and we reset the field after copying so the 532 * check is still meaningful once old reports start 533 * being overwritten. 534 */ 535 report32[0] = 0; 536 } 537 538 *head_ptr = gtt_offset + head; 539 540 return ret; 541 } 542 543 /** 544 * gen7_oa_read - copy status records then buffered OA reports 545 * @stream: An i915-perf stream opened for OA metrics 546 * @buf: destination buffer given by userspace 547 * @count: the number of bytes userspace wants to read 548 * @offset: (inout): the current position for writing into @buf 549 * 550 * Checks Gen 7 specific OA unit status registers and if necessary appends 551 * corresponding status records for userspace (such as for a buffer full 552 * condition) and then initiate appending any buffered OA reports. 553 * 554 * Updates @offset according to the number of bytes successfully copied into 555 * the userspace buffer. 556 * 557 * Returns: zero on success or a negative error code 558 */ 559 static int gen7_oa_read(struct i915_perf_stream *stream, 560 char __user *buf, 561 size_t count, 562 size_t *offset) 563 { 564 struct drm_i915_private *dev_priv = stream->dev_priv; 565 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 566 u32 oastatus2; 567 u32 oastatus1; 568 u32 head; 569 u32 tail; 570 int ret; 571 572 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr)) 573 return -EIO; 574 575 oastatus2 = I915_READ(GEN7_OASTATUS2); 576 oastatus1 = I915_READ(GEN7_OASTATUS1); 577 578 head = oastatus2 & GEN7_OASTATUS2_HEAD_MASK; 579 tail = oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 580 581 /* XXX: On Haswell we don't have a safe way to clear oastatus1 582 * bits while the OA unit is enabled (while the tail pointer 583 * may be updated asynchronously) so we ignore status bits 584 * that have already been reported to userspace. 585 */ 586 oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1; 587 588 /* We treat OABUFFER_OVERFLOW as a significant error: 589 * 590 * - The status can be interpreted to mean that the buffer is 591 * currently full (with a higher precedence than OA_TAKEN() 592 * which will start to report a near-empty buffer after an 593 * overflow) but it's awkward that we can't clear the status 594 * on Haswell, so without a reset we won't be able to catch 595 * the state again. 596 * 597 * - Since it also implies the HW has started overwriting old 598 * reports it may also affect our sanity checks for invalid 599 * reports when copying to userspace that assume new reports 600 * are being written to cleared memory. 601 * 602 * - In the future we may want to introduce a flight recorder 603 * mode where the driver will automatically maintain a safe 604 * guard band between head/tail, avoiding this overflow 605 * condition, but we avoid the added driver complexity for 606 * now. 607 */ 608 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 609 ret = append_oa_status(stream, buf, count, offset, 610 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 611 if (ret) 612 return ret; 613 614 DRM_DEBUG("OA buffer overflow: force restart\n"); 615 616 dev_priv->perf.oa.ops.oa_disable(dev_priv); 617 dev_priv->perf.oa.ops.oa_enable(dev_priv); 618 619 oastatus2 = I915_READ(GEN7_OASTATUS2); 620 oastatus1 = I915_READ(GEN7_OASTATUS1); 621 622 head = oastatus2 & GEN7_OASTATUS2_HEAD_MASK; 623 tail = oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 624 } 625 626 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 627 ret = append_oa_status(stream, buf, count, offset, 628 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 629 if (ret) 630 return ret; 631 dev_priv->perf.oa.gen7_latched_oastatus1 |= 632 GEN7_OASTATUS1_REPORT_LOST; 633 } 634 635 ret = gen7_append_oa_reports(stream, buf, count, offset, 636 &head, tail); 637 638 /* All the report sizes are a power of two and the 639 * head should always be incremented by some multiple 640 * of the report size. 641 * 642 * A warning here, but notably if we later read back a 643 * misaligned pointer we will treat that as a bug since 644 * it could lead to a buffer overrun. 645 */ 646 WARN_ONCE(head & (report_size - 1), 647 "i915: Writing misaligned OA head pointer"); 648 649 /* Note: we update the head pointer here even if an error 650 * was returned since the error may represent a short read 651 * where some some reports were successfully copied. 652 */ 653 I915_WRITE(GEN7_OASTATUS2, 654 ((head & GEN7_OASTATUS2_HEAD_MASK) | 655 OA_MEM_SELECT_GGTT)); 656 657 return ret; 658 } 659 660 /** 661 * i915_oa_wait_unlocked - handles blocking IO until OA data available 662 * @stream: An i915-perf stream opened for OA metrics 663 * 664 * Called when userspace tries to read() from a blocking stream FD opened 665 * for OA metrics. It waits until the hrtimer callback finds a non-empty 666 * OA buffer and wakes us. 667 * 668 * Note: it's acceptable to have this return with some false positives 669 * since any subsequent read handling will return -EAGAIN if there isn't 670 * really data ready for userspace yet. 671 * 672 * Returns: zero on success or a negative error code 673 */ 674 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 675 { 676 struct drm_i915_private *dev_priv = stream->dev_priv; 677 678 /* We would wait indefinitely if periodic sampling is not enabled */ 679 if (!dev_priv->perf.oa.periodic) 680 return -EIO; 681 682 /* Note: the oa_buffer_is_empty() condition is ok to run unlocked as it 683 * just performs mmio reads of the OA buffer head + tail pointers and 684 * it's assumed we're handling some operation that implies the stream 685 * can't be destroyed until completion (such as a read()) that ensures 686 * the device + OA buffer can't disappear 687 */ 688 return wait_event_interruptible(dev_priv->perf.oa.poll_wq, 689 !dev_priv->perf.oa.ops.oa_buffer_is_empty(dev_priv)); 690 } 691 692 /** 693 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 694 * @stream: An i915-perf stream opened for OA metrics 695 * @file: An i915 perf stream file 696 * @wait: poll() state table 697 * 698 * For handling userspace polling on an i915 perf stream opened for OA metrics, 699 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 700 * when it sees data ready to read in the circular OA buffer. 701 */ 702 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 703 struct file *file, 704 poll_table *wait) 705 { 706 struct drm_i915_private *dev_priv = stream->dev_priv; 707 708 poll_wait(file, &dev_priv->perf.oa.poll_wq, wait); 709 } 710 711 /** 712 * i915_oa_read - just calls through to &i915_oa_ops->read 713 * @stream: An i915-perf stream opened for OA metrics 714 * @buf: destination buffer given by userspace 715 * @count: the number of bytes userspace wants to read 716 * @offset: (inout): the current position for writing into @buf 717 * 718 * Updates @offset according to the number of bytes successfully copied into 719 * the userspace buffer. 720 * 721 * Returns: zero on success or a negative error code 722 */ 723 static int i915_oa_read(struct i915_perf_stream *stream, 724 char __user *buf, 725 size_t count, 726 size_t *offset) 727 { 728 struct drm_i915_private *dev_priv = stream->dev_priv; 729 730 return dev_priv->perf.oa.ops.read(stream, buf, count, offset); 731 } 732 733 /** 734 * oa_get_render_ctx_id - determine and hold ctx hw id 735 * @stream: An i915-perf stream opened for OA metrics 736 * 737 * Determine the render context hw id, and ensure it remains fixed for the 738 * lifetime of the stream. This ensures that we don't have to worry about 739 * updating the context ID in OACONTROL on the fly. 740 * 741 * Returns: zero on success or a negative error code 742 */ 743 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 744 { 745 struct drm_i915_private *dev_priv = stream->dev_priv; 746 struct intel_engine_cs *engine = dev_priv->engine[RCS]; 747 int ret; 748 749 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 750 if (ret) 751 return ret; 752 753 /* As the ID is the gtt offset of the context's vma we pin 754 * the vma to ensure the ID remains fixed. 755 * 756 * NB: implied RCS engine... 757 */ 758 ret = engine->context_pin(engine, stream->ctx); 759 if (ret) 760 goto unlock; 761 762 /* Explicitly track the ID (instead of calling i915_ggtt_offset() 763 * on the fly) considering the difference with gen8+ and 764 * execlists 765 */ 766 dev_priv->perf.oa.specific_ctx_id = 767 i915_ggtt_offset(stream->ctx->engine[engine->id].state); 768 769 unlock: 770 mutex_unlock(&dev_priv->drm.struct_mutex); 771 772 return ret; 773 } 774 775 /** 776 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 777 * @stream: An i915-perf stream opened for OA metrics 778 * 779 * In case anything needed doing to ensure the context HW ID would remain valid 780 * for the lifetime of the stream, then that can be undone here. 781 */ 782 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 783 { 784 struct drm_i915_private *dev_priv = stream->dev_priv; 785 struct intel_engine_cs *engine = dev_priv->engine[RCS]; 786 787 mutex_lock(&dev_priv->drm.struct_mutex); 788 789 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID; 790 engine->context_unpin(engine, stream->ctx); 791 792 mutex_unlock(&dev_priv->drm.struct_mutex); 793 } 794 795 static void 796 free_oa_buffer(struct drm_i915_private *i915) 797 { 798 mutex_lock(&i915->drm.struct_mutex); 799 800 i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj); 801 i915_vma_unpin(i915->perf.oa.oa_buffer.vma); 802 i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj); 803 804 i915->perf.oa.oa_buffer.vma = NULL; 805 i915->perf.oa.oa_buffer.vaddr = NULL; 806 807 mutex_unlock(&i915->drm.struct_mutex); 808 } 809 810 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 811 { 812 struct drm_i915_private *dev_priv = stream->dev_priv; 813 814 BUG_ON(stream != dev_priv->perf.oa.exclusive_stream); 815 816 dev_priv->perf.oa.ops.disable_metric_set(dev_priv); 817 818 free_oa_buffer(dev_priv); 819 820 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 821 intel_runtime_pm_put(dev_priv); 822 823 if (stream->ctx) 824 oa_put_render_ctx_id(stream); 825 826 dev_priv->perf.oa.exclusive_stream = NULL; 827 } 828 829 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv) 830 { 831 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 832 833 /* Pre-DevBDW: OABUFFER must be set with counters off, 834 * before OASTATUS1, but after OASTATUS2 835 */ 836 I915_WRITE(GEN7_OASTATUS2, gtt_offset | OA_MEM_SELECT_GGTT); /* head */ 837 I915_WRITE(GEN7_OABUFFER, gtt_offset); 838 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */ 839 840 /* On Haswell we have to track which OASTATUS1 flags we've 841 * already seen since they can't be cleared while periodic 842 * sampling is enabled. 843 */ 844 dev_priv->perf.oa.gen7_latched_oastatus1 = 0; 845 846 /* NB: although the OA buffer will initially be allocated 847 * zeroed via shmfs (and so this memset is redundant when 848 * first allocating), we may re-init the OA buffer, either 849 * when re-enabling a stream or in error/reset paths. 850 * 851 * The reason we clear the buffer for each re-init is for the 852 * sanity check in gen7_append_oa_reports() that looks at the 853 * report-id field to make sure it's non-zero which relies on 854 * the assumption that new reports are being written to zeroed 855 * memory... 856 */ 857 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 858 859 /* Maybe make ->pollin per-stream state if we support multiple 860 * concurrent streams in the future. 861 */ 862 dev_priv->perf.oa.pollin = false; 863 } 864 865 static int alloc_oa_buffer(struct drm_i915_private *dev_priv) 866 { 867 struct drm_i915_gem_object *bo; 868 struct i915_vma *vma; 869 int ret; 870 871 if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma)) 872 return -ENODEV; 873 874 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 875 if (ret) 876 return ret; 877 878 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 879 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 880 881 bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE); 882 if (IS_ERR(bo)) { 883 DRM_ERROR("Failed to allocate OA buffer\n"); 884 ret = PTR_ERR(bo); 885 goto unlock; 886 } 887 888 ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC); 889 if (ret) 890 goto err_unref; 891 892 /* PreHSW required 512K alignment, HSW requires 16M */ 893 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 894 if (IS_ERR(vma)) { 895 ret = PTR_ERR(vma); 896 goto err_unref; 897 } 898 dev_priv->perf.oa.oa_buffer.vma = vma; 899 900 dev_priv->perf.oa.oa_buffer.vaddr = 901 i915_gem_object_pin_map(bo, I915_MAP_WB); 902 if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) { 903 ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr); 904 goto err_unpin; 905 } 906 907 dev_priv->perf.oa.ops.init_oa_buffer(dev_priv); 908 909 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n", 910 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma), 911 dev_priv->perf.oa.oa_buffer.vaddr); 912 913 goto unlock; 914 915 err_unpin: 916 __i915_vma_unpin(vma); 917 918 err_unref: 919 i915_gem_object_put(bo); 920 921 dev_priv->perf.oa.oa_buffer.vaddr = NULL; 922 dev_priv->perf.oa.oa_buffer.vma = NULL; 923 924 unlock: 925 mutex_unlock(&dev_priv->drm.struct_mutex); 926 return ret; 927 } 928 929 static void config_oa_regs(struct drm_i915_private *dev_priv, 930 const struct i915_oa_reg *regs, 931 int n_regs) 932 { 933 int i; 934 935 for (i = 0; i < n_regs; i++) { 936 const struct i915_oa_reg *reg = regs + i; 937 938 I915_WRITE(reg->addr, reg->value); 939 } 940 } 941 942 static int hsw_enable_metric_set(struct drm_i915_private *dev_priv) 943 { 944 int ret = i915_oa_select_metric_set_hsw(dev_priv); 945 946 if (ret) 947 return ret; 948 949 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) | 950 GT_NOA_ENABLE)); 951 952 /* PRM: 953 * 954 * OA unit is using “crclk” for its functionality. When trunk 955 * level clock gating takes place, OA clock would be gated, 956 * unable to count the events from non-render clock domain. 957 * Render clock gating must be disabled when OA is enabled to 958 * count the events from non-render domain. Unit level clock 959 * gating for RCS should also be disabled. 960 */ 961 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) & 962 ~GEN7_DOP_CLOCK_GATE_ENABLE)); 963 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) | 964 GEN6_CSUNIT_CLOCK_GATE_DISABLE)); 965 966 config_oa_regs(dev_priv, dev_priv->perf.oa.mux_regs, 967 dev_priv->perf.oa.mux_regs_len); 968 969 /* It apparently takes a fairly long time for a new MUX 970 * configuration to be be applied after these register writes. 971 * This delay duration was derived empirically based on the 972 * render_basic config but hopefully it covers the maximum 973 * configuration latency. 974 * 975 * As a fallback, the checks in _append_oa_reports() to skip 976 * invalid OA reports do also seem to work to discard reports 977 * generated before this config has completed - albeit not 978 * silently. 979 * 980 * Unfortunately this is essentially a magic number, since we 981 * don't currently know of a reliable mechanism for predicting 982 * how long the MUX config will take to apply and besides 983 * seeing invalid reports we don't know of a reliable way to 984 * explicitly check that the MUX config has landed. 985 * 986 * It's even possible we've miss characterized the underlying 987 * problem - it just seems like the simplest explanation why 988 * a delay at this location would mitigate any invalid reports. 989 */ 990 usleep_range(15000, 20000); 991 992 config_oa_regs(dev_priv, dev_priv->perf.oa.b_counter_regs, 993 dev_priv->perf.oa.b_counter_regs_len); 994 995 return 0; 996 } 997 998 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv) 999 { 1000 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) & 1001 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE)); 1002 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) | 1003 GEN7_DOP_CLOCK_GATE_ENABLE)); 1004 1005 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) & 1006 ~GT_NOA_ENABLE)); 1007 } 1008 1009 static void gen7_update_oacontrol_locked(struct drm_i915_private *dev_priv) 1010 { 1011 lockdep_assert_held(&dev_priv->perf.hook_lock); 1012 1013 if (dev_priv->perf.oa.exclusive_stream->enabled) { 1014 struct i915_gem_context *ctx = 1015 dev_priv->perf.oa.exclusive_stream->ctx; 1016 u32 ctx_id = dev_priv->perf.oa.specific_ctx_id; 1017 1018 bool periodic = dev_priv->perf.oa.periodic; 1019 u32 period_exponent = dev_priv->perf.oa.period_exponent; 1020 u32 report_format = dev_priv->perf.oa.oa_buffer.format; 1021 1022 I915_WRITE(GEN7_OACONTROL, 1023 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 1024 (period_exponent << 1025 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 1026 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 1027 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 1028 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 1029 GEN7_OACONTROL_ENABLE); 1030 } else 1031 I915_WRITE(GEN7_OACONTROL, 0); 1032 } 1033 1034 static void gen7_oa_enable(struct drm_i915_private *dev_priv) 1035 { 1036 unsigned long flags; 1037 1038 /* Reset buf pointers so we don't forward reports from before now. 1039 * 1040 * Think carefully if considering trying to avoid this, since it 1041 * also ensures status flags and the buffer itself are cleared 1042 * in error paths, and we have checks for invalid reports based 1043 * on the assumption that certain fields are written to zeroed 1044 * memory which this helps maintains. 1045 */ 1046 gen7_init_oa_buffer(dev_priv); 1047 1048 spin_lock_irqsave(&dev_priv->perf.hook_lock, flags); 1049 gen7_update_oacontrol_locked(dev_priv); 1050 spin_unlock_irqrestore(&dev_priv->perf.hook_lock, flags); 1051 } 1052 1053 /** 1054 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 1055 * @stream: An i915 perf stream opened for OA metrics 1056 * 1057 * [Re]enables hardware periodic sampling according to the period configured 1058 * when opening the stream. This also starts a hrtimer that will periodically 1059 * check for data in the circular OA buffer for notifying userspace (e.g. 1060 * during a read() or poll()). 1061 */ 1062 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 1063 { 1064 struct drm_i915_private *dev_priv = stream->dev_priv; 1065 1066 dev_priv->perf.oa.ops.oa_enable(dev_priv); 1067 1068 if (dev_priv->perf.oa.periodic) 1069 hrtimer_start(&dev_priv->perf.oa.poll_check_timer, 1070 ns_to_ktime(POLL_PERIOD), 1071 HRTIMER_MODE_REL_PINNED); 1072 } 1073 1074 static void gen7_oa_disable(struct drm_i915_private *dev_priv) 1075 { 1076 I915_WRITE(GEN7_OACONTROL, 0); 1077 } 1078 1079 /** 1080 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 1081 * @stream: An i915 perf stream opened for OA metrics 1082 * 1083 * Stops the OA unit from periodically writing counter reports into the 1084 * circular OA buffer. This also stops the hrtimer that periodically checks for 1085 * data in the circular OA buffer, for notifying userspace. 1086 */ 1087 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 1088 { 1089 struct drm_i915_private *dev_priv = stream->dev_priv; 1090 1091 dev_priv->perf.oa.ops.oa_disable(dev_priv); 1092 1093 if (dev_priv->perf.oa.periodic) 1094 hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer); 1095 } 1096 1097 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent) 1098 { 1099 return div_u64(1000000000ULL * (2ULL << exponent), 1100 dev_priv->perf.oa.timestamp_frequency); 1101 } 1102 1103 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 1104 .destroy = i915_oa_stream_destroy, 1105 .enable = i915_oa_stream_enable, 1106 .disable = i915_oa_stream_disable, 1107 .wait_unlocked = i915_oa_wait_unlocked, 1108 .poll_wait = i915_oa_poll_wait, 1109 .read = i915_oa_read, 1110 }; 1111 1112 /** 1113 * i915_oa_stream_init - validate combined props for OA stream and init 1114 * @stream: An i915 perf stream 1115 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 1116 * @props: The property state that configures stream (individually validated) 1117 * 1118 * While read_properties_unlocked() validates properties in isolation it 1119 * doesn't ensure that the combination necessarily makes sense. 1120 * 1121 * At this point it has been determined that userspace wants a stream of 1122 * OA metrics, but still we need to further validate the combined 1123 * properties are OK. 1124 * 1125 * If the configuration makes sense then we can allocate memory for 1126 * a circular OA buffer and apply the requested metric set configuration. 1127 * 1128 * Returns: zero on success or a negative error code. 1129 */ 1130 static int i915_oa_stream_init(struct i915_perf_stream *stream, 1131 struct drm_i915_perf_open_param *param, 1132 struct perf_open_properties *props) 1133 { 1134 struct drm_i915_private *dev_priv = stream->dev_priv; 1135 int format_size; 1136 int ret; 1137 1138 /* If the sysfs metrics/ directory wasn't registered for some 1139 * reason then don't let userspace try their luck with config 1140 * IDs 1141 */ 1142 if (!dev_priv->perf.metrics_kobj) { 1143 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 1144 return -EINVAL; 1145 } 1146 1147 if (!(props->sample_flags & SAMPLE_OA_REPORT)) { 1148 DRM_DEBUG("Only OA report sampling supported\n"); 1149 return -EINVAL; 1150 } 1151 1152 if (!dev_priv->perf.oa.ops.init_oa_buffer) { 1153 DRM_DEBUG("OA unit not supported\n"); 1154 return -ENODEV; 1155 } 1156 1157 /* To avoid the complexity of having to accurately filter 1158 * counter reports and marshal to the appropriate client 1159 * we currently only allow exclusive access 1160 */ 1161 if (dev_priv->perf.oa.exclusive_stream) { 1162 DRM_DEBUG("OA unit already in use\n"); 1163 return -EBUSY; 1164 } 1165 1166 if (!props->metrics_set) { 1167 DRM_DEBUG("OA metric set not specified\n"); 1168 return -EINVAL; 1169 } 1170 1171 if (!props->oa_format) { 1172 DRM_DEBUG("OA report format not specified\n"); 1173 return -EINVAL; 1174 } 1175 1176 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 1177 1178 format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size; 1179 1180 stream->sample_flags |= SAMPLE_OA_REPORT; 1181 stream->sample_size += format_size; 1182 1183 dev_priv->perf.oa.oa_buffer.format_size = format_size; 1184 if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0)) 1185 return -EINVAL; 1186 1187 dev_priv->perf.oa.oa_buffer.format = 1188 dev_priv->perf.oa.oa_formats[props->oa_format].format; 1189 1190 dev_priv->perf.oa.metrics_set = props->metrics_set; 1191 1192 dev_priv->perf.oa.periodic = props->oa_periodic; 1193 if (dev_priv->perf.oa.periodic) { 1194 u32 tail; 1195 1196 dev_priv->perf.oa.period_exponent = props->oa_period_exponent; 1197 1198 /* See comment for OA_TAIL_MARGIN_NSEC for details 1199 * about this tail_margin... 1200 */ 1201 tail = div64_u64(OA_TAIL_MARGIN_NSEC, 1202 oa_exponent_to_ns(dev_priv, 1203 props->oa_period_exponent)); 1204 dev_priv->perf.oa.tail_margin = (tail + 1) * format_size; 1205 } 1206 1207 if (stream->ctx) { 1208 ret = oa_get_render_ctx_id(stream); 1209 if (ret) 1210 return ret; 1211 } 1212 1213 ret = alloc_oa_buffer(dev_priv); 1214 if (ret) 1215 goto err_oa_buf_alloc; 1216 1217 /* PRM - observability performance counters: 1218 * 1219 * OACONTROL, performance counter enable, note: 1220 * 1221 * "When this bit is set, in order to have coherent counts, 1222 * RC6 power state and trunk clock gating must be disabled. 1223 * This can be achieved by programming MMIO registers as 1224 * 0xA094=0 and 0xA090[31]=1" 1225 * 1226 * In our case we are expecting that taking pm + FORCEWAKE 1227 * references will effectively disable RC6. 1228 */ 1229 intel_runtime_pm_get(dev_priv); 1230 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 1231 1232 ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv); 1233 if (ret) 1234 goto err_enable; 1235 1236 stream->ops = &i915_oa_stream_ops; 1237 1238 dev_priv->perf.oa.exclusive_stream = stream; 1239 1240 return 0; 1241 1242 err_enable: 1243 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 1244 intel_runtime_pm_put(dev_priv); 1245 free_oa_buffer(dev_priv); 1246 1247 err_oa_buf_alloc: 1248 if (stream->ctx) 1249 oa_put_render_ctx_id(stream); 1250 1251 return ret; 1252 } 1253 1254 /** 1255 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation 1256 * @stream: An i915 perf stream 1257 * @file: An i915 perf stream file 1258 * @buf: destination buffer given by userspace 1259 * @count: the number of bytes userspace wants to read 1260 * @ppos: (inout) file seek position (unused) 1261 * 1262 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to 1263 * ensure that if we've successfully copied any data then reporting that takes 1264 * precedence over any internal error status, so the data isn't lost. 1265 * 1266 * For example ret will be -ENOSPC whenever there is more buffered data than 1267 * can be copied to userspace, but that's only interesting if we weren't able 1268 * to copy some data because it implies the userspace buffer is too small to 1269 * receive a single record (and we never split records). 1270 * 1271 * Another case with ret == -EFAULT is more of a grey area since it would seem 1272 * like bad form for userspace to ask us to overrun its buffer, but the user 1273 * knows best: 1274 * 1275 * http://yarchive.net/comp/linux/partial_reads_writes.html 1276 * 1277 * Returns: The number of bytes copied or a negative error code on failure. 1278 */ 1279 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream, 1280 struct file *file, 1281 char __user *buf, 1282 size_t count, 1283 loff_t *ppos) 1284 { 1285 /* Note we keep the offset (aka bytes read) separate from any 1286 * error status so that the final check for whether we return 1287 * the bytes read with a higher precedence than any error (see 1288 * comment below) doesn't need to be handled/duplicated in 1289 * stream->ops->read() implementations. 1290 */ 1291 size_t offset = 0; 1292 int ret = stream->ops->read(stream, buf, count, &offset); 1293 1294 return offset ?: (ret ?: -EAGAIN); 1295 } 1296 1297 /** 1298 * i915_perf_read - handles read() FOP for i915 perf stream FDs 1299 * @file: An i915 perf stream file 1300 * @buf: destination buffer given by userspace 1301 * @count: the number of bytes userspace wants to read 1302 * @ppos: (inout) file seek position (unused) 1303 * 1304 * The entry point for handling a read() on a stream file descriptor from 1305 * userspace. Most of the work is left to the i915_perf_read_locked() and 1306 * &i915_perf_stream_ops->read but to save having stream implementations (of 1307 * which we might have multiple later) we handle blocking read here. 1308 * 1309 * We can also consistently treat trying to read from a disabled stream 1310 * as an IO error so implementations can assume the stream is enabled 1311 * while reading. 1312 * 1313 * Returns: The number of bytes copied or a negative error code on failure. 1314 */ 1315 static ssize_t i915_perf_read(struct file *file, 1316 char __user *buf, 1317 size_t count, 1318 loff_t *ppos) 1319 { 1320 struct i915_perf_stream *stream = file->private_data; 1321 struct drm_i915_private *dev_priv = stream->dev_priv; 1322 ssize_t ret; 1323 1324 /* To ensure it's handled consistently we simply treat all reads of a 1325 * disabled stream as an error. In particular it might otherwise lead 1326 * to a deadlock for blocking file descriptors... 1327 */ 1328 if (!stream->enabled) 1329 return -EIO; 1330 1331 if (!(file->f_flags & O_NONBLOCK)) { 1332 /* There's the small chance of false positives from 1333 * stream->ops->wait_unlocked. 1334 * 1335 * E.g. with single context filtering since we only wait until 1336 * oabuffer has >= 1 report we don't immediately know whether 1337 * any reports really belong to the current context 1338 */ 1339 do { 1340 ret = stream->ops->wait_unlocked(stream); 1341 if (ret) 1342 return ret; 1343 1344 mutex_lock(&dev_priv->perf.lock); 1345 ret = i915_perf_read_locked(stream, file, 1346 buf, count, ppos); 1347 mutex_unlock(&dev_priv->perf.lock); 1348 } while (ret == -EAGAIN); 1349 } else { 1350 mutex_lock(&dev_priv->perf.lock); 1351 ret = i915_perf_read_locked(stream, file, buf, count, ppos); 1352 mutex_unlock(&dev_priv->perf.lock); 1353 } 1354 1355 if (ret >= 0) { 1356 /* Maybe make ->pollin per-stream state if we support multiple 1357 * concurrent streams in the future. 1358 */ 1359 dev_priv->perf.oa.pollin = false; 1360 } 1361 1362 return ret; 1363 } 1364 1365 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 1366 { 1367 struct drm_i915_private *dev_priv = 1368 container_of(hrtimer, typeof(*dev_priv), 1369 perf.oa.poll_check_timer); 1370 1371 if (!dev_priv->perf.oa.ops.oa_buffer_is_empty(dev_priv)) { 1372 dev_priv->perf.oa.pollin = true; 1373 wake_up(&dev_priv->perf.oa.poll_wq); 1374 } 1375 1376 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD)); 1377 1378 return HRTIMER_RESTART; 1379 } 1380 1381 /** 1382 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 1383 * @dev_priv: i915 device instance 1384 * @stream: An i915 perf stream 1385 * @file: An i915 perf stream file 1386 * @wait: poll() state table 1387 * 1388 * For handling userspace polling on an i915 perf stream, this calls through to 1389 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 1390 * will be woken for new stream data. 1391 * 1392 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 1393 * with any non-file-operation driver hooks. 1394 * 1395 * Returns: any poll events that are ready without sleeping 1396 */ 1397 static unsigned int i915_perf_poll_locked(struct drm_i915_private *dev_priv, 1398 struct i915_perf_stream *stream, 1399 struct file *file, 1400 poll_table *wait) 1401 { 1402 unsigned int events = 0; 1403 1404 stream->ops->poll_wait(stream, file, wait); 1405 1406 /* Note: we don't explicitly check whether there's something to read 1407 * here since this path may be very hot depending on what else 1408 * userspace is polling, or on the timeout in use. We rely solely on 1409 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 1410 * samples to read. 1411 */ 1412 if (dev_priv->perf.oa.pollin) 1413 events |= POLLIN; 1414 1415 return events; 1416 } 1417 1418 /** 1419 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 1420 * @file: An i915 perf stream file 1421 * @wait: poll() state table 1422 * 1423 * For handling userspace polling on an i915 perf stream, this ensures 1424 * poll_wait() gets called with a wait queue that will be woken for new stream 1425 * data. 1426 * 1427 * Note: Implementation deferred to i915_perf_poll_locked() 1428 * 1429 * Returns: any poll events that are ready without sleeping 1430 */ 1431 static unsigned int i915_perf_poll(struct file *file, poll_table *wait) 1432 { 1433 struct i915_perf_stream *stream = file->private_data; 1434 struct drm_i915_private *dev_priv = stream->dev_priv; 1435 int ret; 1436 1437 mutex_lock(&dev_priv->perf.lock); 1438 ret = i915_perf_poll_locked(dev_priv, stream, file, wait); 1439 mutex_unlock(&dev_priv->perf.lock); 1440 1441 return ret; 1442 } 1443 1444 /** 1445 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 1446 * @stream: A disabled i915 perf stream 1447 * 1448 * [Re]enables the associated capture of data for this stream. 1449 * 1450 * If a stream was previously enabled then there's currently no intention 1451 * to provide userspace any guarantee about the preservation of previously 1452 * buffered data. 1453 */ 1454 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 1455 { 1456 if (stream->enabled) 1457 return; 1458 1459 /* Allow stream->ops->enable() to refer to this */ 1460 stream->enabled = true; 1461 1462 if (stream->ops->enable) 1463 stream->ops->enable(stream); 1464 } 1465 1466 /** 1467 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 1468 * @stream: An enabled i915 perf stream 1469 * 1470 * Disables the associated capture of data for this stream. 1471 * 1472 * The intention is that disabling an re-enabling a stream will ideally be 1473 * cheaper than destroying and re-opening a stream with the same configuration, 1474 * though there are no formal guarantees about what state or buffered data 1475 * must be retained between disabling and re-enabling a stream. 1476 * 1477 * Note: while a stream is disabled it's considered an error for userspace 1478 * to attempt to read from the stream (-EIO). 1479 */ 1480 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 1481 { 1482 if (!stream->enabled) 1483 return; 1484 1485 /* Allow stream->ops->disable() to refer to this */ 1486 stream->enabled = false; 1487 1488 if (stream->ops->disable) 1489 stream->ops->disable(stream); 1490 } 1491 1492 /** 1493 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 1494 * @stream: An i915 perf stream 1495 * @cmd: the ioctl request 1496 * @arg: the ioctl data 1497 * 1498 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 1499 * with any non-file-operation driver hooks. 1500 * 1501 * Returns: zero on success or a negative error code. Returns -EINVAL for 1502 * an unknown ioctl request. 1503 */ 1504 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 1505 unsigned int cmd, 1506 unsigned long arg) 1507 { 1508 switch (cmd) { 1509 case I915_PERF_IOCTL_ENABLE: 1510 i915_perf_enable_locked(stream); 1511 return 0; 1512 case I915_PERF_IOCTL_DISABLE: 1513 i915_perf_disable_locked(stream); 1514 return 0; 1515 } 1516 1517 return -EINVAL; 1518 } 1519 1520 /** 1521 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 1522 * @file: An i915 perf stream file 1523 * @cmd: the ioctl request 1524 * @arg: the ioctl data 1525 * 1526 * Implementation deferred to i915_perf_ioctl_locked(). 1527 * 1528 * Returns: zero on success or a negative error code. Returns -EINVAL for 1529 * an unknown ioctl request. 1530 */ 1531 static long i915_perf_ioctl(struct file *file, 1532 unsigned int cmd, 1533 unsigned long arg) 1534 { 1535 struct i915_perf_stream *stream = file->private_data; 1536 struct drm_i915_private *dev_priv = stream->dev_priv; 1537 long ret; 1538 1539 mutex_lock(&dev_priv->perf.lock); 1540 ret = i915_perf_ioctl_locked(stream, cmd, arg); 1541 mutex_unlock(&dev_priv->perf.lock); 1542 1543 return ret; 1544 } 1545 1546 /** 1547 * i915_perf_destroy_locked - destroy an i915 perf stream 1548 * @stream: An i915 perf stream 1549 * 1550 * Frees all resources associated with the given i915 perf @stream, disabling 1551 * any associated data capture in the process. 1552 * 1553 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 1554 * with any non-file-operation driver hooks. 1555 */ 1556 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 1557 { 1558 if (stream->enabled) 1559 i915_perf_disable_locked(stream); 1560 1561 if (stream->ops->destroy) 1562 stream->ops->destroy(stream); 1563 1564 list_del(&stream->link); 1565 1566 if (stream->ctx) 1567 i915_gem_context_put_unlocked(stream->ctx); 1568 1569 kfree(stream); 1570 } 1571 1572 /** 1573 * i915_perf_release - handles userspace close() of a stream file 1574 * @inode: anonymous inode associated with file 1575 * @file: An i915 perf stream file 1576 * 1577 * Cleans up any resources associated with an open i915 perf stream file. 1578 * 1579 * NB: close() can't really fail from the userspace point of view. 1580 * 1581 * Returns: zero on success or a negative error code. 1582 */ 1583 static int i915_perf_release(struct inode *inode, struct file *file) 1584 { 1585 struct i915_perf_stream *stream = file->private_data; 1586 struct drm_i915_private *dev_priv = stream->dev_priv; 1587 1588 mutex_lock(&dev_priv->perf.lock); 1589 i915_perf_destroy_locked(stream); 1590 mutex_unlock(&dev_priv->perf.lock); 1591 1592 return 0; 1593 } 1594 1595 1596 static const struct file_operations fops = { 1597 .owner = THIS_MODULE, 1598 .llseek = no_llseek, 1599 .release = i915_perf_release, 1600 .poll = i915_perf_poll, 1601 .read = i915_perf_read, 1602 .unlocked_ioctl = i915_perf_ioctl, 1603 }; 1604 1605 1606 static struct i915_gem_context * 1607 lookup_context(struct drm_i915_private *dev_priv, 1608 struct drm_i915_file_private *file_priv, 1609 u32 ctx_user_handle) 1610 { 1611 struct i915_gem_context *ctx; 1612 int ret; 1613 1614 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 1615 if (ret) 1616 return ERR_PTR(ret); 1617 1618 ctx = i915_gem_context_lookup(file_priv, ctx_user_handle); 1619 if (!IS_ERR(ctx)) 1620 i915_gem_context_get(ctx); 1621 1622 mutex_unlock(&dev_priv->drm.struct_mutex); 1623 1624 return ctx; 1625 } 1626 1627 /** 1628 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 1629 * @dev_priv: i915 device instance 1630 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 1631 * @props: individually validated u64 property value pairs 1632 * @file: drm file 1633 * 1634 * See i915_perf_ioctl_open() for interface details. 1635 * 1636 * Implements further stream config validation and stream initialization on 1637 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex 1638 * taken to serialize with any non-file-operation driver hooks. 1639 * 1640 * Note: at this point the @props have only been validated in isolation and 1641 * it's still necessary to validate that the combination of properties makes 1642 * sense. 1643 * 1644 * In the case where userspace is interested in OA unit metrics then further 1645 * config validation and stream initialization details will be handled by 1646 * i915_oa_stream_init(). The code here should only validate config state that 1647 * will be relevant to all stream types / backends. 1648 * 1649 * Returns: zero on success or a negative error code. 1650 */ 1651 static int 1652 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv, 1653 struct drm_i915_perf_open_param *param, 1654 struct perf_open_properties *props, 1655 struct drm_file *file) 1656 { 1657 struct i915_gem_context *specific_ctx = NULL; 1658 struct i915_perf_stream *stream = NULL; 1659 unsigned long f_flags = 0; 1660 int stream_fd; 1661 int ret; 1662 1663 if (props->single_context) { 1664 u32 ctx_handle = props->ctx_handle; 1665 struct drm_i915_file_private *file_priv = file->driver_priv; 1666 1667 specific_ctx = lookup_context(dev_priv, file_priv, ctx_handle); 1668 if (IS_ERR(specific_ctx)) { 1669 ret = PTR_ERR(specific_ctx); 1670 if (ret != -EINTR) 1671 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 1672 ctx_handle); 1673 goto err; 1674 } 1675 } 1676 1677 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 1678 * we check a dev.i915.perf_stream_paranoid sysctl option 1679 * to determine if it's ok to access system wide OA counters 1680 * without CAP_SYS_ADMIN privileges. 1681 */ 1682 if (!specific_ctx && 1683 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 1684 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n"); 1685 ret = -EACCES; 1686 goto err_ctx; 1687 } 1688 1689 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 1690 if (!stream) { 1691 ret = -ENOMEM; 1692 goto err_ctx; 1693 } 1694 1695 stream->dev_priv = dev_priv; 1696 stream->ctx = specific_ctx; 1697 1698 ret = i915_oa_stream_init(stream, param, props); 1699 if (ret) 1700 goto err_alloc; 1701 1702 /* we avoid simply assigning stream->sample_flags = props->sample_flags 1703 * to have _stream_init check the combination of sample flags more 1704 * thoroughly, but still this is the expected result at this point. 1705 */ 1706 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 1707 ret = -ENODEV; 1708 goto err_flags; 1709 } 1710 1711 list_add(&stream->link, &dev_priv->perf.streams); 1712 1713 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 1714 f_flags |= O_CLOEXEC; 1715 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 1716 f_flags |= O_NONBLOCK; 1717 1718 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 1719 if (stream_fd < 0) { 1720 ret = stream_fd; 1721 goto err_open; 1722 } 1723 1724 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 1725 i915_perf_enable_locked(stream); 1726 1727 return stream_fd; 1728 1729 err_open: 1730 list_del(&stream->link); 1731 err_flags: 1732 if (stream->ops->destroy) 1733 stream->ops->destroy(stream); 1734 err_alloc: 1735 kfree(stream); 1736 err_ctx: 1737 if (specific_ctx) 1738 i915_gem_context_put_unlocked(specific_ctx); 1739 err: 1740 return ret; 1741 } 1742 1743 /** 1744 * read_properties_unlocked - validate + copy userspace stream open properties 1745 * @dev_priv: i915 device instance 1746 * @uprops: The array of u64 key value pairs given by userspace 1747 * @n_props: The number of key value pairs expected in @uprops 1748 * @props: The stream configuration built up while validating properties 1749 * 1750 * Note this function only validates properties in isolation it doesn't 1751 * validate that the combination of properties makes sense or that all 1752 * properties necessary for a particular kind of stream have been set. 1753 * 1754 * Note that there currently aren't any ordering requirements for properties so 1755 * we shouldn't validate or assume anything about ordering here. This doesn't 1756 * rule out defining new properties with ordering requirements in the future. 1757 */ 1758 static int read_properties_unlocked(struct drm_i915_private *dev_priv, 1759 u64 __user *uprops, 1760 u32 n_props, 1761 struct perf_open_properties *props) 1762 { 1763 u64 __user *uprop = uprops; 1764 int i; 1765 1766 memset(props, 0, sizeof(struct perf_open_properties)); 1767 1768 if (!n_props) { 1769 DRM_DEBUG("No i915 perf properties given\n"); 1770 return -EINVAL; 1771 } 1772 1773 /* Considering that ID = 0 is reserved and assuming that we don't 1774 * (currently) expect any configurations to ever specify duplicate 1775 * values for a particular property ID then the last _PROP_MAX value is 1776 * one greater than the maximum number of properties we expect to get 1777 * from userspace. 1778 */ 1779 if (n_props >= DRM_I915_PERF_PROP_MAX) { 1780 DRM_DEBUG("More i915 perf properties specified than exist\n"); 1781 return -EINVAL; 1782 } 1783 1784 for (i = 0; i < n_props; i++) { 1785 u64 oa_period, oa_freq_hz; 1786 u64 id, value; 1787 int ret; 1788 1789 ret = get_user(id, uprop); 1790 if (ret) 1791 return ret; 1792 1793 ret = get_user(value, uprop + 1); 1794 if (ret) 1795 return ret; 1796 1797 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 1798 DRM_DEBUG("Unknown i915 perf property ID\n"); 1799 return -EINVAL; 1800 } 1801 1802 switch ((enum drm_i915_perf_property_id)id) { 1803 case DRM_I915_PERF_PROP_CTX_HANDLE: 1804 props->single_context = 1; 1805 props->ctx_handle = value; 1806 break; 1807 case DRM_I915_PERF_PROP_SAMPLE_OA: 1808 props->sample_flags |= SAMPLE_OA_REPORT; 1809 break; 1810 case DRM_I915_PERF_PROP_OA_METRICS_SET: 1811 if (value == 0 || 1812 value > dev_priv->perf.oa.n_builtin_sets) { 1813 DRM_DEBUG("Unknown OA metric set ID\n"); 1814 return -EINVAL; 1815 } 1816 props->metrics_set = value; 1817 break; 1818 case DRM_I915_PERF_PROP_OA_FORMAT: 1819 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 1820 DRM_DEBUG("Invalid OA report format\n"); 1821 return -EINVAL; 1822 } 1823 if (!dev_priv->perf.oa.oa_formats[value].size) { 1824 DRM_DEBUG("Invalid OA report format\n"); 1825 return -EINVAL; 1826 } 1827 props->oa_format = value; 1828 break; 1829 case DRM_I915_PERF_PROP_OA_EXPONENT: 1830 if (value > OA_EXPONENT_MAX) { 1831 DRM_DEBUG("OA timer exponent too high (> %u)\n", 1832 OA_EXPONENT_MAX); 1833 return -EINVAL; 1834 } 1835 1836 /* Theoretically we can program the OA unit to sample 1837 * every 160ns but don't allow that by default unless 1838 * root. 1839 * 1840 * On Haswell the period is derived from the exponent 1841 * as: 1842 * 1843 * period = 80ns * 2^(exponent + 1) 1844 */ 1845 BUILD_BUG_ON(sizeof(oa_period) != 8); 1846 oa_period = 80ull * (2ull << value); 1847 1848 /* This check is primarily to ensure that oa_period <= 1849 * UINT32_MAX (before passing to do_div which only 1850 * accepts a u32 denominator), but we can also skip 1851 * checking anything < 1Hz which implicitly can't be 1852 * limited via an integer oa_max_sample_rate. 1853 */ 1854 if (oa_period <= NSEC_PER_SEC) { 1855 u64 tmp = NSEC_PER_SEC; 1856 do_div(tmp, oa_period); 1857 oa_freq_hz = tmp; 1858 } else 1859 oa_freq_hz = 0; 1860 1861 if (oa_freq_hz > i915_oa_max_sample_rate && 1862 !capable(CAP_SYS_ADMIN)) { 1863 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n", 1864 i915_oa_max_sample_rate); 1865 return -EACCES; 1866 } 1867 1868 props->oa_periodic = true; 1869 props->oa_period_exponent = value; 1870 break; 1871 case DRM_I915_PERF_PROP_MAX: 1872 MISSING_CASE(id); 1873 return -EINVAL; 1874 } 1875 1876 uprop += 2; 1877 } 1878 1879 return 0; 1880 } 1881 1882 /** 1883 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 1884 * @dev: drm device 1885 * @data: ioctl data copied from userspace (unvalidated) 1886 * @file: drm file 1887 * 1888 * Validates the stream open parameters given by userspace including flags 1889 * and an array of u64 key, value pair properties. 1890 * 1891 * Very little is assumed up front about the nature of the stream being 1892 * opened (for instance we don't assume it's for periodic OA unit metrics). An 1893 * i915-perf stream is expected to be a suitable interface for other forms of 1894 * buffered data written by the GPU besides periodic OA metrics. 1895 * 1896 * Note we copy the properties from userspace outside of the i915 perf 1897 * mutex to avoid an awkward lockdep with mmap_sem. 1898 * 1899 * Most of the implementation details are handled by 1900 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock 1901 * mutex for serializing with any non-file-operation driver hooks. 1902 * 1903 * Return: A newly opened i915 Perf stream file descriptor or negative 1904 * error code on failure. 1905 */ 1906 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 1907 struct drm_file *file) 1908 { 1909 struct drm_i915_private *dev_priv = dev->dev_private; 1910 struct drm_i915_perf_open_param *param = data; 1911 struct perf_open_properties props; 1912 u32 known_open_flags; 1913 int ret; 1914 1915 if (!dev_priv->perf.initialized) { 1916 DRM_DEBUG("i915 perf interface not available for this system\n"); 1917 return -ENOTSUPP; 1918 } 1919 1920 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 1921 I915_PERF_FLAG_FD_NONBLOCK | 1922 I915_PERF_FLAG_DISABLED; 1923 if (param->flags & ~known_open_flags) { 1924 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 1925 return -EINVAL; 1926 } 1927 1928 ret = read_properties_unlocked(dev_priv, 1929 u64_to_user_ptr(param->properties_ptr), 1930 param->num_properties, 1931 &props); 1932 if (ret) 1933 return ret; 1934 1935 mutex_lock(&dev_priv->perf.lock); 1936 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file); 1937 mutex_unlock(&dev_priv->perf.lock); 1938 1939 return ret; 1940 } 1941 1942 /** 1943 * i915_perf_register - exposes i915-perf to userspace 1944 * @dev_priv: i915 device instance 1945 * 1946 * In particular OA metric sets are advertised under a sysfs metrics/ 1947 * directory allowing userspace to enumerate valid IDs that can be 1948 * used to open an i915-perf stream. 1949 */ 1950 void i915_perf_register(struct drm_i915_private *dev_priv) 1951 { 1952 if (!IS_HASWELL(dev_priv)) 1953 return; 1954 1955 if (!dev_priv->perf.initialized) 1956 return; 1957 1958 /* To be sure we're synchronized with an attempted 1959 * i915_perf_open_ioctl(); considering that we register after 1960 * being exposed to userspace. 1961 */ 1962 mutex_lock(&dev_priv->perf.lock); 1963 1964 dev_priv->perf.metrics_kobj = 1965 kobject_create_and_add("metrics", 1966 &dev_priv->drm.primary->kdev->kobj); 1967 if (!dev_priv->perf.metrics_kobj) 1968 goto exit; 1969 1970 if (i915_perf_register_sysfs_hsw(dev_priv)) { 1971 kobject_put(dev_priv->perf.metrics_kobj); 1972 dev_priv->perf.metrics_kobj = NULL; 1973 } 1974 1975 exit: 1976 mutex_unlock(&dev_priv->perf.lock); 1977 } 1978 1979 /** 1980 * i915_perf_unregister - hide i915-perf from userspace 1981 * @dev_priv: i915 device instance 1982 * 1983 * i915-perf state cleanup is split up into an 'unregister' and 1984 * 'deinit' phase where the interface is first hidden from 1985 * userspace by i915_perf_unregister() before cleaning up 1986 * remaining state in i915_perf_fini(). 1987 */ 1988 void i915_perf_unregister(struct drm_i915_private *dev_priv) 1989 { 1990 if (!IS_HASWELL(dev_priv)) 1991 return; 1992 1993 if (!dev_priv->perf.metrics_kobj) 1994 return; 1995 1996 i915_perf_unregister_sysfs_hsw(dev_priv); 1997 1998 kobject_put(dev_priv->perf.metrics_kobj); 1999 dev_priv->perf.metrics_kobj = NULL; 2000 } 2001 2002 static struct ctl_table oa_table[] = { 2003 { 2004 .procname = "perf_stream_paranoid", 2005 .data = &i915_perf_stream_paranoid, 2006 .maxlen = sizeof(i915_perf_stream_paranoid), 2007 .mode = 0644, 2008 .proc_handler = proc_dointvec_minmax, 2009 .extra1 = &zero, 2010 .extra2 = &one, 2011 }, 2012 { 2013 .procname = "oa_max_sample_rate", 2014 .data = &i915_oa_max_sample_rate, 2015 .maxlen = sizeof(i915_oa_max_sample_rate), 2016 .mode = 0644, 2017 .proc_handler = proc_dointvec_minmax, 2018 .extra1 = &zero, 2019 .extra2 = &oa_sample_rate_hard_limit, 2020 }, 2021 {} 2022 }; 2023 2024 static struct ctl_table i915_root[] = { 2025 { 2026 .procname = "i915", 2027 .maxlen = 0, 2028 .mode = 0555, 2029 .child = oa_table, 2030 }, 2031 {} 2032 }; 2033 2034 static struct ctl_table dev_root[] = { 2035 { 2036 .procname = "dev", 2037 .maxlen = 0, 2038 .mode = 0555, 2039 .child = i915_root, 2040 }, 2041 {} 2042 }; 2043 2044 /** 2045 * i915_perf_init - initialize i915-perf state on module load 2046 * @dev_priv: i915 device instance 2047 * 2048 * Initializes i915-perf state without exposing anything to userspace. 2049 * 2050 * Note: i915-perf initialization is split into an 'init' and 'register' 2051 * phase with the i915_perf_register() exposing state to userspace. 2052 */ 2053 void i915_perf_init(struct drm_i915_private *dev_priv) 2054 { 2055 if (!IS_HASWELL(dev_priv)) 2056 return; 2057 2058 hrtimer_init(&dev_priv->perf.oa.poll_check_timer, 2059 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2060 dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb; 2061 init_waitqueue_head(&dev_priv->perf.oa.poll_wq); 2062 2063 INIT_LIST_HEAD(&dev_priv->perf.streams); 2064 mutex_init(&dev_priv->perf.lock); 2065 spin_lock_init(&dev_priv->perf.hook_lock); 2066 2067 dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer; 2068 dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set; 2069 dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set; 2070 dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable; 2071 dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable; 2072 dev_priv->perf.oa.ops.read = gen7_oa_read; 2073 dev_priv->perf.oa.ops.oa_buffer_is_empty = 2074 gen7_oa_buffer_is_empty_fop_unlocked; 2075 2076 dev_priv->perf.oa.timestamp_frequency = 12500000; 2077 2078 dev_priv->perf.oa.oa_formats = hsw_oa_formats; 2079 2080 dev_priv->perf.oa.n_builtin_sets = 2081 i915_oa_n_builtin_metric_sets_hsw; 2082 2083 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root); 2084 2085 dev_priv->perf.initialized = true; 2086 } 2087 2088 /** 2089 * i915_perf_fini - Counter part to i915_perf_init() 2090 * @dev_priv: i915 device instance 2091 */ 2092 void i915_perf_fini(struct drm_i915_private *dev_priv) 2093 { 2094 if (!dev_priv->perf.initialized) 2095 return; 2096 2097 unregister_sysctl_table(dev_priv->perf.sysctl_header); 2098 2099 memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops)); 2100 dev_priv->perf.initialized = false; 2101 } 2102