1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/nospec.h> 196 #include <linux/sizes.h> 197 #include <linux/uuid.h> 198 199 #include "gem/i915_gem_context.h" 200 #include "gem/i915_gem_internal.h" 201 #include "gt/intel_engine_pm.h" 202 #include "gt/intel_engine_regs.h" 203 #include "gt/intel_engine_user.h" 204 #include "gt/intel_execlists_submission.h" 205 #include "gt/intel_gpu_commands.h" 206 #include "gt/intel_gt.h" 207 #include "gt/intel_gt_clock_utils.h" 208 #include "gt/intel_gt_mcr.h" 209 #include "gt/intel_gt_regs.h" 210 #include "gt/intel_lrc.h" 211 #include "gt/intel_lrc_reg.h" 212 #include "gt/intel_rc6.h" 213 #include "gt/intel_ring.h" 214 #include "gt/uc/intel_guc_slpc.h" 215 216 #include "i915_drv.h" 217 #include "i915_file_private.h" 218 #include "i915_perf.h" 219 #include "i915_perf_oa_regs.h" 220 #include "i915_reg.h" 221 222 /* HW requires this to be a power of two, between 128k and 16M, though driver 223 * is currently generally designed assuming the largest 16M size is used such 224 * that the overflow cases are unlikely in normal operation. 225 */ 226 #define OA_BUFFER_SIZE SZ_16M 227 228 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 229 230 /** 231 * DOC: OA Tail Pointer Race 232 * 233 * There's a HW race condition between OA unit tail pointer register updates and 234 * writes to memory whereby the tail pointer can sometimes get ahead of what's 235 * been written out to the OA buffer so far (in terms of what's visible to the 236 * CPU). 237 * 238 * Although this can be observed explicitly while copying reports to userspace 239 * by checking for a zeroed report-id field in tail reports, we want to account 240 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 241 * redundant read() attempts. 242 * 243 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 244 * in the OA buffer, starting from the tail reported by the HW until we find a 245 * report with its first 2 dwords not 0 meaning its previous report is 246 * completely in memory and ready to be read. Those dwords are also set to 0 247 * once read and the whole buffer is cleared upon OA buffer initialization. The 248 * first dword is the reason for this report while the second is the timestamp, 249 * making the chances of having those 2 fields at 0 fairly unlikely. A more 250 * detailed explanation is available in oa_buffer_check_unlocked(). 251 * 252 * Most of the implementation details for this workaround are in 253 * oa_buffer_check_unlocked() and _append_oa_reports() 254 * 255 * Note for posterity: previously the driver used to define an effective tail 256 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 257 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 258 * This was flawed considering that the OA unit may also automatically generate 259 * non-periodic reports (such as on context switch) or the OA unit may be 260 * enabled without any periodic sampling. 261 */ 262 #define OA_TAIL_MARGIN_NSEC 100000ULL 263 #define INVALID_TAIL_PTR 0xffffffff 264 265 /* The default frequency for checking whether the OA unit has written new 266 * reports to the circular OA buffer... 267 */ 268 #define DEFAULT_POLL_FREQUENCY_HZ 200 269 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 270 271 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 272 static u32 i915_perf_stream_paranoid = true; 273 274 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 275 * of the 64bit timestamp bits to trigger reports from) but there's currently 276 * no known use case for sampling as infrequently as once per 47 thousand years. 277 * 278 * Since the timestamps included in OA reports are only 32bits it seems 279 * reasonable to limit the OA exponent where it's still possible to account for 280 * overflow in OA report timestamps. 281 */ 282 #define OA_EXPONENT_MAX 31 283 284 #define INVALID_CTX_ID 0xffffffff 285 286 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 287 #define OAREPORT_REASON_MASK 0x3f 288 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 289 #define OAREPORT_REASON_SHIFT 19 290 #define OAREPORT_REASON_TIMER (1<<0) 291 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 292 #define OAREPORT_REASON_CLK_RATIO (1<<5) 293 294 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) 295 296 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 297 * 298 * The highest sampling frequency we can theoretically program the OA unit 299 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 300 * 301 * Initialized just before we register the sysctl parameter. 302 */ 303 static int oa_sample_rate_hard_limit; 304 305 /* Theoretically we can program the OA unit to sample every 160ns but don't 306 * allow that by default unless root... 307 * 308 * The default threshold of 100000Hz is based on perf's similar 309 * kernel.perf_event_max_sample_rate sysctl parameter. 310 */ 311 static u32 i915_oa_max_sample_rate = 100000; 312 313 /* XXX: beware if future OA HW adds new report formats that the current 314 * code assumes all reports have a power-of-two size and ~(size - 1) can 315 * be used as a mask to align the OA tail pointer. 316 */ 317 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = { 318 [I915_OA_FORMAT_A13] = { 0, 64 }, 319 [I915_OA_FORMAT_A29] = { 1, 128 }, 320 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 321 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 322 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 323 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 324 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 325 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 326 [I915_OA_FORMAT_A12] = { 0, 64 }, 327 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 328 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 329 [I915_OAR_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 330 [I915_OA_FORMAT_A24u40_A14u32_B8_C8] = { 5, 256 }, 331 [I915_OAM_FORMAT_MPEC8u64_B8_C8] = { 1, 192, TYPE_OAM, HDR_64_BIT }, 332 [I915_OAM_FORMAT_MPEC8u32_B8_C8] = { 2, 128, TYPE_OAM, HDR_64_BIT }, 333 }; 334 335 static const u32 mtl_oa_base[] = { 336 [PERF_GROUP_OAM_SAMEDIA_0] = 0x393000, 337 }; 338 339 #define SAMPLE_OA_REPORT (1<<0) 340 341 /** 342 * struct perf_open_properties - for validated properties given to open a stream 343 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 344 * @single_context: Whether a single or all gpu contexts should be monitored 345 * @hold_preemption: Whether the preemption is disabled for the filtered 346 * context 347 * @ctx_handle: A gem ctx handle for use with @single_context 348 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 349 * @oa_format: An OA unit HW report format 350 * @oa_periodic: Whether to enable periodic OA unit sampling 351 * @oa_period_exponent: The OA unit sampling period is derived from this 352 * @engine: The engine (typically rcs0) being monitored by the OA unit 353 * @has_sseu: Whether @sseu was specified by userspace 354 * @sseu: internal SSEU configuration computed either from the userspace 355 * specified configuration in the opening parameters or a default value 356 * (see get_default_sseu_config()) 357 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 358 * data availability 359 * 360 * As read_properties_unlocked() enumerates and validates the properties given 361 * to open a stream of metrics the configuration is built up in the structure 362 * which starts out zero initialized. 363 */ 364 struct perf_open_properties { 365 u32 sample_flags; 366 367 u64 single_context:1; 368 u64 hold_preemption:1; 369 u64 ctx_handle; 370 371 /* OA sampling state */ 372 int metrics_set; 373 int oa_format; 374 bool oa_periodic; 375 int oa_period_exponent; 376 377 struct intel_engine_cs *engine; 378 379 bool has_sseu; 380 struct intel_sseu sseu; 381 382 u64 poll_oa_period; 383 }; 384 385 struct i915_oa_config_bo { 386 struct llist_node node; 387 388 struct i915_oa_config *oa_config; 389 struct i915_vma *vma; 390 }; 391 392 static struct ctl_table_header *sysctl_header; 393 394 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 395 396 void i915_oa_config_release(struct kref *ref) 397 { 398 struct i915_oa_config *oa_config = 399 container_of(ref, typeof(*oa_config), ref); 400 401 kfree(oa_config->flex_regs); 402 kfree(oa_config->b_counter_regs); 403 kfree(oa_config->mux_regs); 404 405 kfree_rcu(oa_config, rcu); 406 } 407 408 struct i915_oa_config * 409 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 410 { 411 struct i915_oa_config *oa_config; 412 413 rcu_read_lock(); 414 oa_config = idr_find(&perf->metrics_idr, metrics_set); 415 if (oa_config) 416 oa_config = i915_oa_config_get(oa_config); 417 rcu_read_unlock(); 418 419 return oa_config; 420 } 421 422 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 423 { 424 i915_oa_config_put(oa_bo->oa_config); 425 i915_vma_put(oa_bo->vma); 426 kfree(oa_bo); 427 } 428 429 static inline const 430 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream) 431 { 432 return &stream->engine->oa_group->regs; 433 } 434 435 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 436 { 437 struct intel_uncore *uncore = stream->uncore; 438 439 return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) & 440 GEN12_OAG_OATAILPTR_MASK; 441 } 442 443 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 444 { 445 struct intel_uncore *uncore = stream->uncore; 446 447 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 448 } 449 450 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 451 { 452 struct intel_uncore *uncore = stream->uncore; 453 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 454 455 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 456 } 457 458 #define oa_report_header_64bit(__s) \ 459 ((__s)->oa_buffer.format->header == HDR_64_BIT) 460 461 static u64 oa_report_id(struct i915_perf_stream *stream, void *report) 462 { 463 return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report; 464 } 465 466 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report) 467 { 468 return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) & 469 (GRAPHICS_VER(stream->perf->i915) == 12 ? 470 OAREPORT_REASON_MASK_EXTENDED : 471 OAREPORT_REASON_MASK); 472 } 473 474 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report) 475 { 476 if (oa_report_header_64bit(stream)) 477 *(u64 *)report = 0; 478 else 479 *report = 0; 480 } 481 482 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report) 483 { 484 return !(oa_report_id(stream, report) & 485 stream->perf->gen8_valid_ctx_bit) && 486 GRAPHICS_VER(stream->perf->i915) <= 11; 487 } 488 489 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report) 490 { 491 return oa_report_header_64bit(stream) ? 492 *((u64 *)report + 1) : 493 *((u32 *)report + 1); 494 } 495 496 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report) 497 { 498 if (oa_report_header_64bit(stream)) 499 *(u64 *)&report[2] = 0; 500 else 501 report[1] = 0; 502 } 503 504 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report) 505 { 506 u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2]; 507 508 return ctx_id & stream->specific_ctx_id_mask; 509 } 510 511 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report) 512 { 513 if (oa_report_header_64bit(stream)) 514 report[4] = INVALID_CTX_ID; 515 else 516 report[2] = INVALID_CTX_ID; 517 } 518 519 /** 520 * oa_buffer_check_unlocked - check for data and update tail ptr state 521 * @stream: i915 stream instance 522 * 523 * This is either called via fops (for blocking reads in user ctx) or the poll 524 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 525 * if there is data available for userspace to read. 526 * 527 * This function is central to providing a workaround for the OA unit tail 528 * pointer having a race with respect to what data is visible to the CPU. 529 * It is responsible for reading tail pointers from the hardware and giving 530 * the pointers time to 'age' before they are made available for reading. 531 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 532 * 533 * Besides returning true when there is data available to read() this function 534 * also updates the tail in the oa_buffer object. 535 * 536 * Note: It's safe to read OA config state here unlocked, assuming that this is 537 * only called while the stream is enabled, while the global OA configuration 538 * can't be modified. 539 * 540 * Returns: %true if the OA buffer contains data, else %false 541 */ 542 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 543 { 544 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 545 int report_size = stream->oa_buffer.format->size; 546 u32 head, tail, read_tail; 547 unsigned long flags; 548 bool pollin; 549 u32 hw_tail; 550 u32 partial_report_size; 551 552 /* We have to consider the (unlikely) possibility that read() errors 553 * could result in an OA buffer reset which might reset the head and 554 * tail state. 555 */ 556 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 557 558 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 559 560 /* The tail pointer increases in 64 byte increments, not in report_size 561 * steps. Also the report size may not be a power of 2. Compute 562 * potentially partially landed report in the OA buffer 563 */ 564 partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail); 565 partial_report_size %= report_size; 566 567 /* Subtract partial amount off the tail */ 568 hw_tail = OA_TAKEN(hw_tail, partial_report_size); 569 570 /* NB: The head we observe here might effectively be a little 571 * out of date. If a read() is in progress, the head could be 572 * anywhere between this head and stream->oa_buffer.tail. 573 */ 574 head = stream->oa_buffer.head - gtt_offset; 575 read_tail = stream->oa_buffer.tail - gtt_offset; 576 577 tail = hw_tail; 578 579 /* Walk the stream backward until we find a report with report 580 * id and timestmap not at 0. Since the circular buffer pointers 581 * progress by increments of 64 bytes and that reports can be up 582 * to 256 bytes long, we can't tell whether a report has fully 583 * landed in memory before the report id and timestamp of the 584 * following report have effectively landed. 585 * 586 * This is assuming that the writes of the OA unit land in 587 * memory in the order they were written to. 588 * If not : (╯°□°)╯︵ ┻━┻ 589 */ 590 while (OA_TAKEN(tail, read_tail) >= report_size) { 591 void *report = stream->oa_buffer.vaddr + tail; 592 593 if (oa_report_id(stream, report) || 594 oa_timestamp(stream, report)) 595 break; 596 597 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 598 } 599 600 if (OA_TAKEN(hw_tail, tail) > report_size && 601 __ratelimit(&stream->perf->tail_pointer_race)) 602 drm_notice(&stream->uncore->i915->drm, 603 "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n", 604 head, tail, hw_tail); 605 606 stream->oa_buffer.tail = gtt_offset + tail; 607 608 pollin = OA_TAKEN(stream->oa_buffer.tail, 609 stream->oa_buffer.head) >= report_size; 610 611 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 612 613 return pollin; 614 } 615 616 /** 617 * append_oa_status - Appends a status record to a userspace read() buffer. 618 * @stream: An i915-perf stream opened for OA metrics 619 * @buf: destination buffer given by userspace 620 * @count: the number of bytes userspace wants to read 621 * @offset: (inout): the current position for writing into @buf 622 * @type: The kind of status to report to userspace 623 * 624 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 625 * into the userspace read() buffer. 626 * 627 * The @buf @offset will only be updated on success. 628 * 629 * Returns: 0 on success, negative error code on failure. 630 */ 631 static int append_oa_status(struct i915_perf_stream *stream, 632 char __user *buf, 633 size_t count, 634 size_t *offset, 635 enum drm_i915_perf_record_type type) 636 { 637 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 638 639 if ((count - *offset) < header.size) 640 return -ENOSPC; 641 642 if (copy_to_user(buf + *offset, &header, sizeof(header))) 643 return -EFAULT; 644 645 (*offset) += header.size; 646 647 return 0; 648 } 649 650 /** 651 * append_oa_sample - Copies single OA report into userspace read() buffer. 652 * @stream: An i915-perf stream opened for OA metrics 653 * @buf: destination buffer given by userspace 654 * @count: the number of bytes userspace wants to read 655 * @offset: (inout): the current position for writing into @buf 656 * @report: A single OA report to (optionally) include as part of the sample 657 * 658 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 659 * properties when opening a stream, tracked as `stream->sample_flags`. This 660 * function copies the requested components of a single sample to the given 661 * read() @buf. 662 * 663 * The @buf @offset will only be updated on success. 664 * 665 * Returns: 0 on success, negative error code on failure. 666 */ 667 static int append_oa_sample(struct i915_perf_stream *stream, 668 char __user *buf, 669 size_t count, 670 size_t *offset, 671 const u8 *report) 672 { 673 int report_size = stream->oa_buffer.format->size; 674 struct drm_i915_perf_record_header header; 675 int report_size_partial; 676 u8 *oa_buf_end; 677 678 header.type = DRM_I915_PERF_RECORD_SAMPLE; 679 header.pad = 0; 680 header.size = stream->sample_size; 681 682 if ((count - *offset) < header.size) 683 return -ENOSPC; 684 685 buf += *offset; 686 if (copy_to_user(buf, &header, sizeof(header))) 687 return -EFAULT; 688 buf += sizeof(header); 689 690 oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE; 691 report_size_partial = oa_buf_end - report; 692 693 if (report_size_partial < report_size) { 694 if (copy_to_user(buf, report, report_size_partial)) 695 return -EFAULT; 696 buf += report_size_partial; 697 698 if (copy_to_user(buf, stream->oa_buffer.vaddr, 699 report_size - report_size_partial)) 700 return -EFAULT; 701 } else if (copy_to_user(buf, report, report_size)) { 702 return -EFAULT; 703 } 704 705 (*offset) += header.size; 706 707 return 0; 708 } 709 710 /** 711 * gen8_append_oa_reports - Copies all buffered OA reports into 712 * userspace read() buffer. 713 * @stream: An i915-perf stream opened for OA metrics 714 * @buf: destination buffer given by userspace 715 * @count: the number of bytes userspace wants to read 716 * @offset: (inout): the current position for writing into @buf 717 * 718 * Notably any error condition resulting in a short read (-%ENOSPC or 719 * -%EFAULT) will be returned even though one or more records may 720 * have been successfully copied. In this case it's up to the caller 721 * to decide if the error should be squashed before returning to 722 * userspace. 723 * 724 * Note: reports are consumed from the head, and appended to the 725 * tail, so the tail chases the head?... If you think that's mad 726 * and back-to-front you're not alone, but this follows the 727 * Gen PRM naming convention. 728 * 729 * Returns: 0 on success, negative error code on failure. 730 */ 731 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 732 char __user *buf, 733 size_t count, 734 size_t *offset) 735 { 736 struct intel_uncore *uncore = stream->uncore; 737 int report_size = stream->oa_buffer.format->size; 738 u8 *oa_buf_base = stream->oa_buffer.vaddr; 739 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 740 u32 mask = (OA_BUFFER_SIZE - 1); 741 size_t start_offset = *offset; 742 unsigned long flags; 743 u32 head, tail; 744 int ret = 0; 745 746 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 747 return -EIO; 748 749 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 750 751 head = stream->oa_buffer.head; 752 tail = stream->oa_buffer.tail; 753 754 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 755 756 /* 757 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 758 * while indexing relative to oa_buf_base. 759 */ 760 head -= gtt_offset; 761 tail -= gtt_offset; 762 763 /* 764 * An out of bounds or misaligned head or tail pointer implies a driver 765 * bug since we validate + align the tail pointers we read from the 766 * hardware and we are in full control of the head pointer which should 767 * only be incremented by multiples of the report size. 768 */ 769 if (drm_WARN_ONCE(&uncore->i915->drm, 770 head > OA_BUFFER_SIZE || 771 tail > OA_BUFFER_SIZE, 772 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 773 head, tail)) 774 return -EIO; 775 776 777 for (/* none */; 778 OA_TAKEN(tail, head); 779 head = (head + report_size) & mask) { 780 u8 *report = oa_buf_base + head; 781 u32 *report32 = (void *)report; 782 u32 ctx_id; 783 u64 reason; 784 785 /* 786 * The reason field includes flags identifying what 787 * triggered this specific report (mostly timer 788 * triggered or e.g. due to a context switch). 789 * 790 * In MMIO triggered reports, some platforms do not set the 791 * reason bit in this field and it is valid to have a reason 792 * field of zero. 793 */ 794 reason = oa_report_reason(stream, report); 795 ctx_id = oa_context_id(stream, report32); 796 797 /* 798 * Squash whatever is in the CTX_ID field if it's marked as 799 * invalid to be sure we avoid false-positive, single-context 800 * filtering below... 801 * 802 * Note: that we don't clear the valid_ctx_bit so userspace can 803 * understand that the ID has been squashed by the kernel. 804 */ 805 if (oa_report_ctx_invalid(stream, report)) { 806 ctx_id = INVALID_CTX_ID; 807 oa_context_id_squash(stream, report32); 808 } 809 810 /* 811 * NB: For Gen 8 the OA unit no longer supports clock gating 812 * off for a specific context and the kernel can't securely 813 * stop the counters from updating as system-wide / global 814 * values. 815 * 816 * Automatic reports now include a context ID so reports can be 817 * filtered on the cpu but it's not worth trying to 818 * automatically subtract/hide counter progress for other 819 * contexts while filtering since we can't stop userspace 820 * issuing MI_REPORT_PERF_COUNT commands which would still 821 * provide a side-band view of the real values. 822 * 823 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 824 * to normalize counters for a single filtered context then it 825 * needs be forwarded bookend context-switch reports so that it 826 * can track switches in between MI_REPORT_PERF_COUNT commands 827 * and can itself subtract/ignore the progress of counters 828 * associated with other contexts. Note that the hardware 829 * automatically triggers reports when switching to a new 830 * context which are tagged with the ID of the newly active 831 * context. To avoid the complexity (and likely fragility) of 832 * reading ahead while parsing reports to try and minimize 833 * forwarding redundant context switch reports (i.e. between 834 * other, unrelated contexts) we simply elect to forward them 835 * all. 836 * 837 * We don't rely solely on the reason field to identify context 838 * switches since it's not-uncommon for periodic samples to 839 * identify a switch before any 'context switch' report. 840 */ 841 if (!stream->ctx || 842 stream->specific_ctx_id == ctx_id || 843 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 844 reason & OAREPORT_REASON_CTX_SWITCH) { 845 846 /* 847 * While filtering for a single context we avoid 848 * leaking the IDs of other contexts. 849 */ 850 if (stream->ctx && 851 stream->specific_ctx_id != ctx_id) { 852 oa_context_id_squash(stream, report32); 853 } 854 855 ret = append_oa_sample(stream, buf, count, offset, 856 report); 857 if (ret) 858 break; 859 860 stream->oa_buffer.last_ctx_id = ctx_id; 861 } 862 863 if (is_power_of_2(report_size)) { 864 /* 865 * Clear out the report id and timestamp as a means 866 * to detect unlanded reports. 867 */ 868 oa_report_id_clear(stream, report32); 869 oa_timestamp_clear(stream, report32); 870 } else { 871 u8 *oa_buf_end = stream->oa_buffer.vaddr + 872 OA_BUFFER_SIZE; 873 u32 part = oa_buf_end - (u8 *)report32; 874 875 /* Zero out the entire report */ 876 if (report_size <= part) { 877 memset(report32, 0, report_size); 878 } else { 879 memset(report32, 0, part); 880 memset(oa_buf_base, 0, report_size - part); 881 } 882 } 883 } 884 885 if (start_offset != *offset) { 886 i915_reg_t oaheadptr; 887 888 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ? 889 __oa_regs(stream)->oa_head_ptr : 890 GEN8_OAHEADPTR; 891 892 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 893 894 /* 895 * We removed the gtt_offset for the copy loop above, indexing 896 * relative to oa_buf_base so put back here... 897 */ 898 head += gtt_offset; 899 intel_uncore_write(uncore, oaheadptr, 900 head & GEN12_OAG_OAHEADPTR_MASK); 901 stream->oa_buffer.head = head; 902 903 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 904 } 905 906 return ret; 907 } 908 909 /** 910 * gen8_oa_read - copy status records then buffered OA reports 911 * @stream: An i915-perf stream opened for OA metrics 912 * @buf: destination buffer given by userspace 913 * @count: the number of bytes userspace wants to read 914 * @offset: (inout): the current position for writing into @buf 915 * 916 * Checks OA unit status registers and if necessary appends corresponding 917 * status records for userspace (such as for a buffer full condition) and then 918 * initiate appending any buffered OA reports. 919 * 920 * Updates @offset according to the number of bytes successfully copied into 921 * the userspace buffer. 922 * 923 * NB: some data may be successfully copied to the userspace buffer 924 * even if an error is returned, and this is reflected in the 925 * updated @offset. 926 * 927 * Returns: zero on success or a negative error code 928 */ 929 static int gen8_oa_read(struct i915_perf_stream *stream, 930 char __user *buf, 931 size_t count, 932 size_t *offset) 933 { 934 struct intel_uncore *uncore = stream->uncore; 935 u32 oastatus; 936 i915_reg_t oastatus_reg; 937 int ret; 938 939 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 940 return -EIO; 941 942 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ? 943 __oa_regs(stream)->oa_status : 944 GEN8_OASTATUS; 945 946 oastatus = intel_uncore_read(uncore, oastatus_reg); 947 948 /* 949 * We treat OABUFFER_OVERFLOW as a significant error: 950 * 951 * Although theoretically we could handle this more gracefully 952 * sometimes, some Gens don't correctly suppress certain 953 * automatically triggered reports in this condition and so we 954 * have to assume that old reports are now being trampled 955 * over. 956 * 957 * Considering how we don't currently give userspace control 958 * over the OA buffer size and always configure a large 16MB 959 * buffer, then a buffer overflow does anyway likely indicate 960 * that something has gone quite badly wrong. 961 */ 962 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 963 ret = append_oa_status(stream, buf, count, offset, 964 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 965 if (ret) 966 return ret; 967 968 drm_dbg(&stream->perf->i915->drm, 969 "OA buffer overflow (exponent = %d): force restart\n", 970 stream->period_exponent); 971 972 stream->perf->ops.oa_disable(stream); 973 stream->perf->ops.oa_enable(stream); 974 975 /* 976 * Note: .oa_enable() is expected to re-init the oabuffer and 977 * reset GEN8_OASTATUS for us 978 */ 979 oastatus = intel_uncore_read(uncore, oastatus_reg); 980 } 981 982 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 983 ret = append_oa_status(stream, buf, count, offset, 984 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 985 if (ret) 986 return ret; 987 988 intel_uncore_rmw(uncore, oastatus_reg, 989 GEN8_OASTATUS_COUNTER_OVERFLOW | 990 GEN8_OASTATUS_REPORT_LOST, 991 IS_GRAPHICS_VER(uncore->i915, 8, 11) ? 992 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 993 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 994 } 995 996 return gen8_append_oa_reports(stream, buf, count, offset); 997 } 998 999 /** 1000 * gen7_append_oa_reports - Copies all buffered OA reports into 1001 * userspace read() buffer. 1002 * @stream: An i915-perf stream opened for OA metrics 1003 * @buf: destination buffer given by userspace 1004 * @count: the number of bytes userspace wants to read 1005 * @offset: (inout): the current position for writing into @buf 1006 * 1007 * Notably any error condition resulting in a short read (-%ENOSPC or 1008 * -%EFAULT) will be returned even though one or more records may 1009 * have been successfully copied. In this case it's up to the caller 1010 * to decide if the error should be squashed before returning to 1011 * userspace. 1012 * 1013 * Note: reports are consumed from the head, and appended to the 1014 * tail, so the tail chases the head?... If you think that's mad 1015 * and back-to-front you're not alone, but this follows the 1016 * Gen PRM naming convention. 1017 * 1018 * Returns: 0 on success, negative error code on failure. 1019 */ 1020 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 1021 char __user *buf, 1022 size_t count, 1023 size_t *offset) 1024 { 1025 struct intel_uncore *uncore = stream->uncore; 1026 int report_size = stream->oa_buffer.format->size; 1027 u8 *oa_buf_base = stream->oa_buffer.vaddr; 1028 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1029 u32 mask = (OA_BUFFER_SIZE - 1); 1030 size_t start_offset = *offset; 1031 unsigned long flags; 1032 u32 head, tail; 1033 int ret = 0; 1034 1035 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 1036 return -EIO; 1037 1038 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1039 1040 head = stream->oa_buffer.head; 1041 tail = stream->oa_buffer.tail; 1042 1043 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1044 1045 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 1046 * while indexing relative to oa_buf_base. 1047 */ 1048 head -= gtt_offset; 1049 tail -= gtt_offset; 1050 1051 /* An out of bounds or misaligned head or tail pointer implies a driver 1052 * bug since we validate + align the tail pointers we read from the 1053 * hardware and we are in full control of the head pointer which should 1054 * only be incremented by multiples of the report size (notably also 1055 * all a power of two). 1056 */ 1057 if (drm_WARN_ONCE(&uncore->i915->drm, 1058 head > OA_BUFFER_SIZE || head % report_size || 1059 tail > OA_BUFFER_SIZE || tail % report_size, 1060 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 1061 head, tail)) 1062 return -EIO; 1063 1064 1065 for (/* none */; 1066 OA_TAKEN(tail, head); 1067 head = (head + report_size) & mask) { 1068 u8 *report = oa_buf_base + head; 1069 u32 *report32 = (void *)report; 1070 1071 /* All the report sizes factor neatly into the buffer 1072 * size so we never expect to see a report split 1073 * between the beginning and end of the buffer. 1074 * 1075 * Given the initial alignment check a misalignment 1076 * here would imply a driver bug that would result 1077 * in an overrun. 1078 */ 1079 if (drm_WARN_ON(&uncore->i915->drm, 1080 (OA_BUFFER_SIZE - head) < report_size)) { 1081 drm_err(&uncore->i915->drm, 1082 "Spurious OA head ptr: non-integral report offset\n"); 1083 break; 1084 } 1085 1086 /* The report-ID field for periodic samples includes 1087 * some undocumented flags related to what triggered 1088 * the report and is never expected to be zero so we 1089 * can check that the report isn't invalid before 1090 * copying it to userspace... 1091 */ 1092 if (report32[0] == 0) { 1093 if (__ratelimit(&stream->perf->spurious_report_rs)) 1094 drm_notice(&uncore->i915->drm, 1095 "Skipping spurious, invalid OA report\n"); 1096 continue; 1097 } 1098 1099 ret = append_oa_sample(stream, buf, count, offset, report); 1100 if (ret) 1101 break; 1102 1103 /* Clear out the first 2 dwords as a mean to detect unlanded 1104 * reports. 1105 */ 1106 report32[0] = 0; 1107 report32[1] = 0; 1108 } 1109 1110 if (start_offset != *offset) { 1111 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1112 1113 /* We removed the gtt_offset for the copy loop above, indexing 1114 * relative to oa_buf_base so put back here... 1115 */ 1116 head += gtt_offset; 1117 1118 intel_uncore_write(uncore, GEN7_OASTATUS2, 1119 (head & GEN7_OASTATUS2_HEAD_MASK) | 1120 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1121 stream->oa_buffer.head = head; 1122 1123 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1124 } 1125 1126 return ret; 1127 } 1128 1129 /** 1130 * gen7_oa_read - copy status records then buffered OA reports 1131 * @stream: An i915-perf stream opened for OA metrics 1132 * @buf: destination buffer given by userspace 1133 * @count: the number of bytes userspace wants to read 1134 * @offset: (inout): the current position for writing into @buf 1135 * 1136 * Checks Gen 7 specific OA unit status registers and if necessary appends 1137 * corresponding status records for userspace (such as for a buffer full 1138 * condition) and then initiate appending any buffered OA reports. 1139 * 1140 * Updates @offset according to the number of bytes successfully copied into 1141 * the userspace buffer. 1142 * 1143 * Returns: zero on success or a negative error code 1144 */ 1145 static int gen7_oa_read(struct i915_perf_stream *stream, 1146 char __user *buf, 1147 size_t count, 1148 size_t *offset) 1149 { 1150 struct intel_uncore *uncore = stream->uncore; 1151 u32 oastatus1; 1152 int ret; 1153 1154 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1155 return -EIO; 1156 1157 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1158 1159 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1160 * bits while the OA unit is enabled (while the tail pointer 1161 * may be updated asynchronously) so we ignore status bits 1162 * that have already been reported to userspace. 1163 */ 1164 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1165 1166 /* We treat OABUFFER_OVERFLOW as a significant error: 1167 * 1168 * - The status can be interpreted to mean that the buffer is 1169 * currently full (with a higher precedence than OA_TAKEN() 1170 * which will start to report a near-empty buffer after an 1171 * overflow) but it's awkward that we can't clear the status 1172 * on Haswell, so without a reset we won't be able to catch 1173 * the state again. 1174 * 1175 * - Since it also implies the HW has started overwriting old 1176 * reports it may also affect our sanity checks for invalid 1177 * reports when copying to userspace that assume new reports 1178 * are being written to cleared memory. 1179 * 1180 * - In the future we may want to introduce a flight recorder 1181 * mode where the driver will automatically maintain a safe 1182 * guard band between head/tail, avoiding this overflow 1183 * condition, but we avoid the added driver complexity for 1184 * now. 1185 */ 1186 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1187 ret = append_oa_status(stream, buf, count, offset, 1188 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1189 if (ret) 1190 return ret; 1191 1192 drm_dbg(&stream->perf->i915->drm, 1193 "OA buffer overflow (exponent = %d): force restart\n", 1194 stream->period_exponent); 1195 1196 stream->perf->ops.oa_disable(stream); 1197 stream->perf->ops.oa_enable(stream); 1198 1199 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1200 } 1201 1202 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1203 ret = append_oa_status(stream, buf, count, offset, 1204 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1205 if (ret) 1206 return ret; 1207 stream->perf->gen7_latched_oastatus1 |= 1208 GEN7_OASTATUS1_REPORT_LOST; 1209 } 1210 1211 return gen7_append_oa_reports(stream, buf, count, offset); 1212 } 1213 1214 /** 1215 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1216 * @stream: An i915-perf stream opened for OA metrics 1217 * 1218 * Called when userspace tries to read() from a blocking stream FD opened 1219 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1220 * OA buffer and wakes us. 1221 * 1222 * Note: it's acceptable to have this return with some false positives 1223 * since any subsequent read handling will return -EAGAIN if there isn't 1224 * really data ready for userspace yet. 1225 * 1226 * Returns: zero on success or a negative error code 1227 */ 1228 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1229 { 1230 /* We would wait indefinitely if periodic sampling is not enabled */ 1231 if (!stream->periodic) 1232 return -EIO; 1233 1234 return wait_event_interruptible(stream->poll_wq, 1235 oa_buffer_check_unlocked(stream)); 1236 } 1237 1238 /** 1239 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1240 * @stream: An i915-perf stream opened for OA metrics 1241 * @file: An i915 perf stream file 1242 * @wait: poll() state table 1243 * 1244 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1245 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1246 * when it sees data ready to read in the circular OA buffer. 1247 */ 1248 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1249 struct file *file, 1250 poll_table *wait) 1251 { 1252 poll_wait(file, &stream->poll_wq, wait); 1253 } 1254 1255 /** 1256 * i915_oa_read - just calls through to &i915_oa_ops->read 1257 * @stream: An i915-perf stream opened for OA metrics 1258 * @buf: destination buffer given by userspace 1259 * @count: the number of bytes userspace wants to read 1260 * @offset: (inout): the current position for writing into @buf 1261 * 1262 * Updates @offset according to the number of bytes successfully copied into 1263 * the userspace buffer. 1264 * 1265 * Returns: zero on success or a negative error code 1266 */ 1267 static int i915_oa_read(struct i915_perf_stream *stream, 1268 char __user *buf, 1269 size_t count, 1270 size_t *offset) 1271 { 1272 return stream->perf->ops.read(stream, buf, count, offset); 1273 } 1274 1275 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1276 { 1277 struct i915_gem_engines_iter it; 1278 struct i915_gem_context *ctx = stream->ctx; 1279 struct intel_context *ce; 1280 struct i915_gem_ww_ctx ww; 1281 int err = -ENODEV; 1282 1283 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1284 if (ce->engine != stream->engine) /* first match! */ 1285 continue; 1286 1287 err = 0; 1288 break; 1289 } 1290 i915_gem_context_unlock_engines(ctx); 1291 1292 if (err) 1293 return ERR_PTR(err); 1294 1295 i915_gem_ww_ctx_init(&ww, true); 1296 retry: 1297 /* 1298 * As the ID is the gtt offset of the context's vma we 1299 * pin the vma to ensure the ID remains fixed. 1300 */ 1301 err = intel_context_pin_ww(ce, &ww); 1302 if (err == -EDEADLK) { 1303 err = i915_gem_ww_ctx_backoff(&ww); 1304 if (!err) 1305 goto retry; 1306 } 1307 i915_gem_ww_ctx_fini(&ww); 1308 1309 if (err) 1310 return ERR_PTR(err); 1311 1312 stream->pinned_ctx = ce; 1313 return stream->pinned_ctx; 1314 } 1315 1316 static int 1317 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset) 1318 { 1319 u32 *cs, cmd; 1320 1321 cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; 1322 if (GRAPHICS_VER(rq->i915) >= 8) 1323 cmd++; 1324 1325 cs = intel_ring_begin(rq, 4); 1326 if (IS_ERR(cs)) 1327 return PTR_ERR(cs); 1328 1329 *cs++ = cmd; 1330 *cs++ = i915_mmio_reg_offset(reg); 1331 *cs++ = ggtt_offset; 1332 *cs++ = 0; 1333 1334 intel_ring_advance(rq, cs); 1335 1336 return 0; 1337 } 1338 1339 static int 1340 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset) 1341 { 1342 struct i915_request *rq; 1343 int err; 1344 1345 rq = i915_request_create(ce); 1346 if (IS_ERR(rq)) 1347 return PTR_ERR(rq); 1348 1349 i915_request_get(rq); 1350 1351 err = __store_reg_to_mem(rq, reg, ggtt_offset); 1352 1353 i915_request_add(rq); 1354 if (!err && i915_request_wait(rq, 0, HZ / 2) < 0) 1355 err = -ETIME; 1356 1357 i915_request_put(rq); 1358 1359 return err; 1360 } 1361 1362 static int 1363 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id) 1364 { 1365 struct i915_vma *scratch; 1366 u32 *val; 1367 int err; 1368 1369 scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4); 1370 if (IS_ERR(scratch)) 1371 return PTR_ERR(scratch); 1372 1373 err = i915_vma_sync(scratch); 1374 if (err) 1375 goto err_scratch; 1376 1377 err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base), 1378 i915_ggtt_offset(scratch)); 1379 if (err) 1380 goto err_scratch; 1381 1382 val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB); 1383 if (IS_ERR(val)) { 1384 err = PTR_ERR(val); 1385 goto err_scratch; 1386 } 1387 1388 *ctx_id = *val; 1389 i915_gem_object_unpin_map(scratch->obj); 1390 1391 err_scratch: 1392 i915_vma_unpin_and_release(&scratch, 0); 1393 return err; 1394 } 1395 1396 /* 1397 * For execlist mode of submission, pick an unused context id 1398 * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts 1399 * XXX_MAX_CONTEXT_HW_ID is used by idle context 1400 * 1401 * For GuC mode of submission read context id from the upper dword of the 1402 * EXECLIST_STATUS register. Note that we read this value only once and expect 1403 * that the value stays fixed for the entire OA use case. There are cases where 1404 * GuC KMD implementation may deregister a context to reuse it's context id, but 1405 * we prevent that from happening to the OA context by pinning it. 1406 */ 1407 static int gen12_get_render_context_id(struct i915_perf_stream *stream) 1408 { 1409 u32 ctx_id, mask; 1410 int ret; 1411 1412 if (intel_engine_uses_guc(stream->engine)) { 1413 ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id); 1414 if (ret) 1415 return ret; 1416 1417 mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) << 1418 (GEN12_GUC_SW_CTX_ID_SHIFT - 32); 1419 } else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) { 1420 ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) << 1421 (XEHP_SW_CTX_ID_SHIFT - 32); 1422 1423 mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) << 1424 (XEHP_SW_CTX_ID_SHIFT - 32); 1425 } else { 1426 ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << 1427 (GEN11_SW_CTX_ID_SHIFT - 32); 1428 1429 mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << 1430 (GEN11_SW_CTX_ID_SHIFT - 32); 1431 } 1432 stream->specific_ctx_id = ctx_id & mask; 1433 stream->specific_ctx_id_mask = mask; 1434 1435 return 0; 1436 } 1437 1438 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end) 1439 { 1440 u32 idx = *offset; 1441 u32 len = min(MI_LRI_LEN(state[idx]) + idx, end); 1442 bool found = false; 1443 1444 idx++; 1445 for (; idx < len; idx += 2) { 1446 if (state[idx] == reg) { 1447 found = true; 1448 break; 1449 } 1450 } 1451 1452 *offset = idx; 1453 return found; 1454 } 1455 1456 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg) 1457 { 1458 u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4; 1459 u32 *state = ce->lrc_reg_state; 1460 1461 if (drm_WARN_ON(&ce->engine->i915->drm, !state)) 1462 return U32_MAX; 1463 1464 for (offset = 0; offset < len; ) { 1465 if (IS_MI_LRI_CMD(state[offset])) { 1466 /* 1467 * We expect reg-value pairs in MI_LRI command, so 1468 * MI_LRI_LEN() should be even, if not, issue a warning. 1469 */ 1470 drm_WARN_ON(&ce->engine->i915->drm, 1471 MI_LRI_LEN(state[offset]) & 0x1); 1472 1473 if (oa_find_reg_in_lri(state, reg, &offset, len)) 1474 break; 1475 } else { 1476 offset++; 1477 } 1478 } 1479 1480 return offset < len ? offset : U32_MAX; 1481 } 1482 1483 static int set_oa_ctx_ctrl_offset(struct intel_context *ce) 1484 { 1485 i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base); 1486 struct i915_perf *perf = &ce->engine->i915->perf; 1487 u32 offset = perf->ctx_oactxctrl_offset; 1488 1489 /* Do this only once. Failure is stored as offset of U32_MAX */ 1490 if (offset) 1491 goto exit; 1492 1493 offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg)); 1494 perf->ctx_oactxctrl_offset = offset; 1495 1496 drm_dbg(&ce->engine->i915->drm, 1497 "%s oa ctx control at 0x%08x dword offset\n", 1498 ce->engine->name, offset); 1499 1500 exit: 1501 return offset && offset != U32_MAX ? 0 : -ENODEV; 1502 } 1503 1504 static bool engine_supports_mi_query(struct intel_engine_cs *engine) 1505 { 1506 return engine->class == RENDER_CLASS; 1507 } 1508 1509 /** 1510 * oa_get_render_ctx_id - determine and hold ctx hw id 1511 * @stream: An i915-perf stream opened for OA metrics 1512 * 1513 * Determine the render context hw id, and ensure it remains fixed for the 1514 * lifetime of the stream. This ensures that we don't have to worry about 1515 * updating the context ID in OACONTROL on the fly. 1516 * 1517 * Returns: zero on success or a negative error code 1518 */ 1519 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1520 { 1521 struct intel_context *ce; 1522 int ret = 0; 1523 1524 ce = oa_pin_context(stream); 1525 if (IS_ERR(ce)) 1526 return PTR_ERR(ce); 1527 1528 if (engine_supports_mi_query(stream->engine) && 1529 HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) { 1530 /* 1531 * We are enabling perf query here. If we don't find the context 1532 * offset here, just return an error. 1533 */ 1534 ret = set_oa_ctx_ctrl_offset(ce); 1535 if (ret) { 1536 intel_context_unpin(ce); 1537 drm_err(&stream->perf->i915->drm, 1538 "Enabling perf query failed for %s\n", 1539 stream->engine->name); 1540 return ret; 1541 } 1542 } 1543 1544 switch (GRAPHICS_VER(ce->engine->i915)) { 1545 case 7: { 1546 /* 1547 * On Haswell we don't do any post processing of the reports 1548 * and don't need to use the mask. 1549 */ 1550 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1551 stream->specific_ctx_id_mask = 0; 1552 break; 1553 } 1554 1555 case 8: 1556 case 9: 1557 if (intel_engine_uses_guc(ce->engine)) { 1558 /* 1559 * When using GuC, the context descriptor we write in 1560 * i915 is read by GuC and rewritten before it's 1561 * actually written into the hardware. The LRCA is 1562 * what is put into the context id field of the 1563 * context descriptor by GuC. Because it's aligned to 1564 * a page, the lower 12bits are always at 0 and 1565 * dropped by GuC. They won't be part of the context 1566 * ID in the OA reports, so squash those lower bits. 1567 */ 1568 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1569 1570 /* 1571 * GuC uses the top bit to signal proxy submission, so 1572 * ignore that bit. 1573 */ 1574 stream->specific_ctx_id_mask = 1575 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1576 } else { 1577 stream->specific_ctx_id_mask = 1578 (1U << GEN8_CTX_ID_WIDTH) - 1; 1579 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1580 } 1581 break; 1582 1583 case 11: 1584 case 12: 1585 ret = gen12_get_render_context_id(stream); 1586 break; 1587 1588 default: 1589 MISSING_CASE(GRAPHICS_VER(ce->engine->i915)); 1590 } 1591 1592 ce->tag = stream->specific_ctx_id; 1593 1594 drm_dbg(&stream->perf->i915->drm, 1595 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1596 stream->specific_ctx_id, 1597 stream->specific_ctx_id_mask); 1598 1599 return ret; 1600 } 1601 1602 /** 1603 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1604 * @stream: An i915-perf stream opened for OA metrics 1605 * 1606 * In case anything needed doing to ensure the context HW ID would remain valid 1607 * for the lifetime of the stream, then that can be undone here. 1608 */ 1609 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1610 { 1611 struct intel_context *ce; 1612 1613 ce = fetch_and_zero(&stream->pinned_ctx); 1614 if (ce) { 1615 ce->tag = 0; /* recomputed on next submission after parking */ 1616 intel_context_unpin(ce); 1617 } 1618 1619 stream->specific_ctx_id = INVALID_CTX_ID; 1620 stream->specific_ctx_id_mask = 0; 1621 } 1622 1623 static void 1624 free_oa_buffer(struct i915_perf_stream *stream) 1625 { 1626 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1627 I915_VMA_RELEASE_MAP); 1628 1629 stream->oa_buffer.vaddr = NULL; 1630 } 1631 1632 static void 1633 free_oa_configs(struct i915_perf_stream *stream) 1634 { 1635 struct i915_oa_config_bo *oa_bo, *tmp; 1636 1637 i915_oa_config_put(stream->oa_config); 1638 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1639 free_oa_config_bo(oa_bo); 1640 } 1641 1642 static void 1643 free_noa_wait(struct i915_perf_stream *stream) 1644 { 1645 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1646 } 1647 1648 static bool engine_supports_oa(const struct intel_engine_cs *engine) 1649 { 1650 return engine->oa_group; 1651 } 1652 1653 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type) 1654 { 1655 return engine->oa_group && engine->oa_group->type == type; 1656 } 1657 1658 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1659 { 1660 struct i915_perf *perf = stream->perf; 1661 struct intel_gt *gt = stream->engine->gt; 1662 struct i915_perf_group *g = stream->engine->oa_group; 1663 1664 if (WARN_ON(stream != g->exclusive_stream)) 1665 return; 1666 1667 /* 1668 * Unset exclusive_stream first, it will be checked while disabling 1669 * the metric set on gen8+. 1670 * 1671 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1672 */ 1673 WRITE_ONCE(g->exclusive_stream, NULL); 1674 perf->ops.disable_metric_set(stream); 1675 1676 free_oa_buffer(stream); 1677 1678 /* 1679 * Wa_16011777198:dg2: Unset the override of GUCRC mode to enable rc6. 1680 */ 1681 if (stream->override_gucrc) 1682 drm_WARN_ON(>->i915->drm, 1683 intel_guc_slpc_unset_gucrc_mode(>->uc.guc.slpc)); 1684 1685 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1686 intel_engine_pm_put(stream->engine); 1687 1688 if (stream->ctx) 1689 oa_put_render_ctx_id(stream); 1690 1691 free_oa_configs(stream); 1692 free_noa_wait(stream); 1693 1694 if (perf->spurious_report_rs.missed) { 1695 drm_notice(>->i915->drm, 1696 "%d spurious OA report notices suppressed due to ratelimiting\n", 1697 perf->spurious_report_rs.missed); 1698 } 1699 } 1700 1701 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1702 { 1703 struct intel_uncore *uncore = stream->uncore; 1704 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1705 unsigned long flags; 1706 1707 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1708 1709 /* Pre-DevBDW: OABUFFER must be set with counters off, 1710 * before OASTATUS1, but after OASTATUS2 1711 */ 1712 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1713 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1714 stream->oa_buffer.head = gtt_offset; 1715 1716 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1717 1718 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1719 gtt_offset | OABUFFER_SIZE_16M); 1720 1721 /* Mark that we need updated tail pointers to read from... */ 1722 stream->oa_buffer.tail = gtt_offset; 1723 1724 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1725 1726 /* On Haswell we have to track which OASTATUS1 flags we've 1727 * already seen since they can't be cleared while periodic 1728 * sampling is enabled. 1729 */ 1730 stream->perf->gen7_latched_oastatus1 = 0; 1731 1732 /* NB: although the OA buffer will initially be allocated 1733 * zeroed via shmfs (and so this memset is redundant when 1734 * first allocating), we may re-init the OA buffer, either 1735 * when re-enabling a stream or in error/reset paths. 1736 * 1737 * The reason we clear the buffer for each re-init is for the 1738 * sanity check in gen7_append_oa_reports() that looks at the 1739 * report-id field to make sure it's non-zero which relies on 1740 * the assumption that new reports are being written to zeroed 1741 * memory... 1742 */ 1743 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1744 } 1745 1746 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1747 { 1748 struct intel_uncore *uncore = stream->uncore; 1749 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1750 unsigned long flags; 1751 1752 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1753 1754 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1755 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1756 stream->oa_buffer.head = gtt_offset; 1757 1758 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1759 1760 /* 1761 * PRM says: 1762 * 1763 * "This MMIO must be set before the OATAILPTR 1764 * register and after the OAHEADPTR register. This is 1765 * to enable proper functionality of the overflow 1766 * bit." 1767 */ 1768 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1769 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1770 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1771 1772 /* Mark that we need updated tail pointers to read from... */ 1773 stream->oa_buffer.tail = gtt_offset; 1774 1775 /* 1776 * Reset state used to recognise context switches, affecting which 1777 * reports we will forward to userspace while filtering for a single 1778 * context. 1779 */ 1780 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1781 1782 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1783 1784 /* 1785 * NB: although the OA buffer will initially be allocated 1786 * zeroed via shmfs (and so this memset is redundant when 1787 * first allocating), we may re-init the OA buffer, either 1788 * when re-enabling a stream or in error/reset paths. 1789 * 1790 * The reason we clear the buffer for each re-init is for the 1791 * sanity check in gen8_append_oa_reports() that looks at the 1792 * reason field to make sure it's non-zero which relies on 1793 * the assumption that new reports are being written to zeroed 1794 * memory... 1795 */ 1796 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1797 } 1798 1799 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1800 { 1801 struct intel_uncore *uncore = stream->uncore; 1802 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1803 unsigned long flags; 1804 1805 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1806 1807 intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0); 1808 intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr, 1809 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1810 stream->oa_buffer.head = gtt_offset; 1811 1812 /* 1813 * PRM says: 1814 * 1815 * "This MMIO must be set before the OATAILPTR 1816 * register and after the OAHEADPTR register. This is 1817 * to enable proper functionality of the overflow 1818 * bit." 1819 */ 1820 intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset | 1821 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1822 intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr, 1823 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1824 1825 /* Mark that we need updated tail pointers to read from... */ 1826 stream->oa_buffer.tail = gtt_offset; 1827 1828 /* 1829 * Reset state used to recognise context switches, affecting which 1830 * reports we will forward to userspace while filtering for a single 1831 * context. 1832 */ 1833 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1834 1835 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1836 1837 /* 1838 * NB: although the OA buffer will initially be allocated 1839 * zeroed via shmfs (and so this memset is redundant when 1840 * first allocating), we may re-init the OA buffer, either 1841 * when re-enabling a stream or in error/reset paths. 1842 * 1843 * The reason we clear the buffer for each re-init is for the 1844 * sanity check in gen8_append_oa_reports() that looks at the 1845 * reason field to make sure it's non-zero which relies on 1846 * the assumption that new reports are being written to zeroed 1847 * memory... 1848 */ 1849 memset(stream->oa_buffer.vaddr, 0, 1850 stream->oa_buffer.vma->size); 1851 } 1852 1853 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1854 { 1855 struct drm_i915_private *i915 = stream->perf->i915; 1856 struct intel_gt *gt = stream->engine->gt; 1857 struct drm_i915_gem_object *bo; 1858 struct i915_vma *vma; 1859 int ret; 1860 1861 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1862 return -ENODEV; 1863 1864 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1865 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1866 1867 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1868 if (IS_ERR(bo)) { 1869 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1870 return PTR_ERR(bo); 1871 } 1872 1873 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1874 1875 /* PreHSW required 512K alignment, HSW requires 16M */ 1876 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1877 if (IS_ERR(vma)) { 1878 ret = PTR_ERR(vma); 1879 goto err_unref; 1880 } 1881 1882 /* 1883 * PreHSW required 512K alignment. 1884 * HSW and onwards, align to requested size of OA buffer. 1885 */ 1886 ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH); 1887 if (ret) { 1888 drm_err(>->i915->drm, "Failed to pin OA buffer %d\n", ret); 1889 goto err_unref; 1890 } 1891 1892 stream->oa_buffer.vma = vma; 1893 1894 stream->oa_buffer.vaddr = 1895 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB); 1896 if (IS_ERR(stream->oa_buffer.vaddr)) { 1897 ret = PTR_ERR(stream->oa_buffer.vaddr); 1898 goto err_unpin; 1899 } 1900 1901 return 0; 1902 1903 err_unpin: 1904 __i915_vma_unpin(vma); 1905 1906 err_unref: 1907 i915_gem_object_put(bo); 1908 1909 stream->oa_buffer.vaddr = NULL; 1910 stream->oa_buffer.vma = NULL; 1911 1912 return ret; 1913 } 1914 1915 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1916 bool save, i915_reg_t reg, u32 offset, 1917 u32 dword_count) 1918 { 1919 u32 cmd; 1920 u32 d; 1921 1922 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1923 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1924 if (GRAPHICS_VER(stream->perf->i915) >= 8) 1925 cmd++; 1926 1927 for (d = 0; d < dword_count; d++) { 1928 *cs++ = cmd; 1929 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1930 *cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d; 1931 *cs++ = 0; 1932 } 1933 1934 return cs; 1935 } 1936 1937 static int alloc_noa_wait(struct i915_perf_stream *stream) 1938 { 1939 struct drm_i915_private *i915 = stream->perf->i915; 1940 struct intel_gt *gt = stream->engine->gt; 1941 struct drm_i915_gem_object *bo; 1942 struct i915_vma *vma; 1943 const u64 delay_ticks = 0xffffffffffffffff - 1944 intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915), 1945 atomic64_read(&stream->perf->noa_programming_delay)); 1946 const u32 base = stream->engine->mmio_base; 1947 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1948 u32 *batch, *ts0, *cs, *jump; 1949 struct i915_gem_ww_ctx ww; 1950 int ret, i; 1951 enum { 1952 START_TS, 1953 NOW_TS, 1954 DELTA_TS, 1955 JUMP_PREDICATE, 1956 DELTA_TARGET, 1957 N_CS_GPR 1958 }; 1959 i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ? 1960 MI_PREDICATE_RESULT_2_ENGINE(base) : 1961 MI_PREDICATE_RESULT_1(RENDER_RING_BASE); 1962 1963 /* 1964 * gt->scratch was being used to save/restore the GPR registers, but on 1965 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region 1966 * causes an engine hang. Instead allocate an additional page here to 1967 * save/restore GPR registers 1968 */ 1969 bo = i915_gem_object_create_internal(i915, 8192); 1970 if (IS_ERR(bo)) { 1971 drm_err(&i915->drm, 1972 "Failed to allocate NOA wait batchbuffer\n"); 1973 return PTR_ERR(bo); 1974 } 1975 1976 i915_gem_ww_ctx_init(&ww, true); 1977 retry: 1978 ret = i915_gem_object_lock(bo, &ww); 1979 if (ret) 1980 goto out_ww; 1981 1982 /* 1983 * We pin in GGTT because we jump into this buffer now because 1984 * multiple OA config BOs will have a jump to this address and it 1985 * needs to be fixed during the lifetime of the i915/perf stream. 1986 */ 1987 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1988 if (IS_ERR(vma)) { 1989 ret = PTR_ERR(vma); 1990 goto out_ww; 1991 } 1992 1993 ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 1994 if (ret) 1995 goto out_ww; 1996 1997 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1998 if (IS_ERR(batch)) { 1999 ret = PTR_ERR(batch); 2000 goto err_unpin; 2001 } 2002 2003 stream->noa_wait = vma; 2004 2005 #define GPR_SAVE_OFFSET 4096 2006 #define PREDICATE_SAVE_OFFSET 4160 2007 2008 /* Save registers. */ 2009 for (i = 0; i < N_CS_GPR; i++) 2010 cs = save_restore_register( 2011 stream, cs, true /* save */, CS_GPR(i), 2012 GPR_SAVE_OFFSET + 8 * i, 2); 2013 cs = save_restore_register( 2014 stream, cs, true /* save */, mi_predicate_result, 2015 PREDICATE_SAVE_OFFSET, 1); 2016 2017 /* First timestamp snapshot location. */ 2018 ts0 = cs; 2019 2020 /* 2021 * Initial snapshot of the timestamp register to implement the wait. 2022 * We work with 32b values, so clear out the top 32b bits of the 2023 * register because the ALU works 64bits. 2024 */ 2025 *cs++ = MI_LOAD_REGISTER_IMM(1); 2026 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 2027 *cs++ = 0; 2028 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2029 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 2030 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 2031 2032 /* 2033 * This is the location we're going to jump back into until the 2034 * required amount of time has passed. 2035 */ 2036 jump = cs; 2037 2038 /* 2039 * Take another snapshot of the timestamp register. Take care to clear 2040 * up the top 32bits of CS_GPR(1) as we're using it for other 2041 * operations below. 2042 */ 2043 *cs++ = MI_LOAD_REGISTER_IMM(1); 2044 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 2045 *cs++ = 0; 2046 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2047 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 2048 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 2049 2050 /* 2051 * Do a diff between the 2 timestamps and store the result back into 2052 * CS_GPR(1). 2053 */ 2054 *cs++ = MI_MATH(5); 2055 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 2056 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 2057 *cs++ = MI_MATH_SUB; 2058 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 2059 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 2060 2061 /* 2062 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 2063 * timestamp have rolled over the 32bits) into the predicate register 2064 * to be used for the predicated jump. 2065 */ 2066 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2067 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 2068 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 2069 2070 if (HAS_MI_SET_PREDICATE(i915)) 2071 *cs++ = MI_SET_PREDICATE | 1; 2072 2073 /* Restart from the beginning if we had timestamps roll over. */ 2074 *cs++ = (GRAPHICS_VER(i915) < 8 ? 2075 MI_BATCH_BUFFER_START : 2076 MI_BATCH_BUFFER_START_GEN8) | 2077 MI_BATCH_PREDICATE; 2078 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 2079 *cs++ = 0; 2080 2081 if (HAS_MI_SET_PREDICATE(i915)) 2082 *cs++ = MI_SET_PREDICATE; 2083 2084 /* 2085 * Now add the diff between to previous timestamps and add it to : 2086 * (((1 * << 64) - 1) - delay_ns) 2087 * 2088 * When the Carry Flag contains 1 this means the elapsed time is 2089 * longer than the expected delay, and we can exit the wait loop. 2090 */ 2091 *cs++ = MI_LOAD_REGISTER_IMM(2); 2092 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 2093 *cs++ = lower_32_bits(delay_ticks); 2094 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 2095 *cs++ = upper_32_bits(delay_ticks); 2096 2097 *cs++ = MI_MATH(4); 2098 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 2099 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 2100 *cs++ = MI_MATH_ADD; 2101 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 2102 2103 *cs++ = MI_ARB_CHECK; 2104 2105 /* 2106 * Transfer the result into the predicate register to be used for the 2107 * predicated jump. 2108 */ 2109 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2110 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 2111 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 2112 2113 if (HAS_MI_SET_PREDICATE(i915)) 2114 *cs++ = MI_SET_PREDICATE | 1; 2115 2116 /* Predicate the jump. */ 2117 *cs++ = (GRAPHICS_VER(i915) < 8 ? 2118 MI_BATCH_BUFFER_START : 2119 MI_BATCH_BUFFER_START_GEN8) | 2120 MI_BATCH_PREDICATE; 2121 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 2122 *cs++ = 0; 2123 2124 if (HAS_MI_SET_PREDICATE(i915)) 2125 *cs++ = MI_SET_PREDICATE; 2126 2127 /* Restore registers. */ 2128 for (i = 0; i < N_CS_GPR; i++) 2129 cs = save_restore_register( 2130 stream, cs, false /* restore */, CS_GPR(i), 2131 GPR_SAVE_OFFSET + 8 * i, 2); 2132 cs = save_restore_register( 2133 stream, cs, false /* restore */, mi_predicate_result, 2134 PREDICATE_SAVE_OFFSET, 1); 2135 2136 /* And return to the ring. */ 2137 *cs++ = MI_BATCH_BUFFER_END; 2138 2139 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 2140 2141 i915_gem_object_flush_map(bo); 2142 __i915_gem_object_release_map(bo); 2143 2144 goto out_ww; 2145 2146 err_unpin: 2147 i915_vma_unpin_and_release(&vma, 0); 2148 out_ww: 2149 if (ret == -EDEADLK) { 2150 ret = i915_gem_ww_ctx_backoff(&ww); 2151 if (!ret) 2152 goto retry; 2153 } 2154 i915_gem_ww_ctx_fini(&ww); 2155 if (ret) 2156 i915_gem_object_put(bo); 2157 return ret; 2158 } 2159 2160 static u32 *write_cs_mi_lri(u32 *cs, 2161 const struct i915_oa_reg *reg_data, 2162 u32 n_regs) 2163 { 2164 u32 i; 2165 2166 for (i = 0; i < n_regs; i++) { 2167 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 2168 u32 n_lri = min_t(u32, 2169 n_regs - i, 2170 MI_LOAD_REGISTER_IMM_MAX_REGS); 2171 2172 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 2173 } 2174 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 2175 *cs++ = reg_data[i].value; 2176 } 2177 2178 return cs; 2179 } 2180 2181 static int num_lri_dwords(int num_regs) 2182 { 2183 int count = 0; 2184 2185 if (num_regs > 0) { 2186 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 2187 count += num_regs * 2; 2188 } 2189 2190 return count; 2191 } 2192 2193 static struct i915_oa_config_bo * 2194 alloc_oa_config_buffer(struct i915_perf_stream *stream, 2195 struct i915_oa_config *oa_config) 2196 { 2197 struct drm_i915_gem_object *obj; 2198 struct i915_oa_config_bo *oa_bo; 2199 struct i915_gem_ww_ctx ww; 2200 size_t config_length = 0; 2201 u32 *cs; 2202 int err; 2203 2204 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 2205 if (!oa_bo) 2206 return ERR_PTR(-ENOMEM); 2207 2208 config_length += num_lri_dwords(oa_config->mux_regs_len); 2209 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 2210 config_length += num_lri_dwords(oa_config->flex_regs_len); 2211 config_length += 3; /* MI_BATCH_BUFFER_START */ 2212 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 2213 2214 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 2215 if (IS_ERR(obj)) { 2216 err = PTR_ERR(obj); 2217 goto err_free; 2218 } 2219 2220 i915_gem_ww_ctx_init(&ww, true); 2221 retry: 2222 err = i915_gem_object_lock(obj, &ww); 2223 if (err) 2224 goto out_ww; 2225 2226 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 2227 if (IS_ERR(cs)) { 2228 err = PTR_ERR(cs); 2229 goto out_ww; 2230 } 2231 2232 cs = write_cs_mi_lri(cs, 2233 oa_config->mux_regs, 2234 oa_config->mux_regs_len); 2235 cs = write_cs_mi_lri(cs, 2236 oa_config->b_counter_regs, 2237 oa_config->b_counter_regs_len); 2238 cs = write_cs_mi_lri(cs, 2239 oa_config->flex_regs, 2240 oa_config->flex_regs_len); 2241 2242 /* Jump into the active wait. */ 2243 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ? 2244 MI_BATCH_BUFFER_START : 2245 MI_BATCH_BUFFER_START_GEN8); 2246 *cs++ = i915_ggtt_offset(stream->noa_wait); 2247 *cs++ = 0; 2248 2249 i915_gem_object_flush_map(obj); 2250 __i915_gem_object_release_map(obj); 2251 2252 oa_bo->vma = i915_vma_instance(obj, 2253 &stream->engine->gt->ggtt->vm, 2254 NULL); 2255 if (IS_ERR(oa_bo->vma)) { 2256 err = PTR_ERR(oa_bo->vma); 2257 goto out_ww; 2258 } 2259 2260 oa_bo->oa_config = i915_oa_config_get(oa_config); 2261 llist_add(&oa_bo->node, &stream->oa_config_bos); 2262 2263 out_ww: 2264 if (err == -EDEADLK) { 2265 err = i915_gem_ww_ctx_backoff(&ww); 2266 if (!err) 2267 goto retry; 2268 } 2269 i915_gem_ww_ctx_fini(&ww); 2270 2271 if (err) 2272 i915_gem_object_put(obj); 2273 err_free: 2274 if (err) { 2275 kfree(oa_bo); 2276 return ERR_PTR(err); 2277 } 2278 return oa_bo; 2279 } 2280 2281 static struct i915_vma * 2282 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 2283 { 2284 struct i915_oa_config_bo *oa_bo; 2285 2286 /* 2287 * Look for the buffer in the already allocated BOs attached 2288 * to the stream. 2289 */ 2290 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 2291 if (oa_bo->oa_config == oa_config && 2292 memcmp(oa_bo->oa_config->uuid, 2293 oa_config->uuid, 2294 sizeof(oa_config->uuid)) == 0) 2295 goto out; 2296 } 2297 2298 oa_bo = alloc_oa_config_buffer(stream, oa_config); 2299 if (IS_ERR(oa_bo)) 2300 return ERR_CAST(oa_bo); 2301 2302 out: 2303 return i915_vma_get(oa_bo->vma); 2304 } 2305 2306 static int 2307 emit_oa_config(struct i915_perf_stream *stream, 2308 struct i915_oa_config *oa_config, 2309 struct intel_context *ce, 2310 struct i915_active *active) 2311 { 2312 struct i915_request *rq; 2313 struct i915_vma *vma; 2314 struct i915_gem_ww_ctx ww; 2315 int err; 2316 2317 vma = get_oa_vma(stream, oa_config); 2318 if (IS_ERR(vma)) 2319 return PTR_ERR(vma); 2320 2321 i915_gem_ww_ctx_init(&ww, true); 2322 retry: 2323 err = i915_gem_object_lock(vma->obj, &ww); 2324 if (err) 2325 goto err; 2326 2327 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 2328 if (err) 2329 goto err; 2330 2331 intel_engine_pm_get(ce->engine); 2332 rq = i915_request_create(ce); 2333 intel_engine_pm_put(ce->engine); 2334 if (IS_ERR(rq)) { 2335 err = PTR_ERR(rq); 2336 goto err_vma_unpin; 2337 } 2338 2339 if (!IS_ERR_OR_NULL(active)) { 2340 /* After all individual context modifications */ 2341 err = i915_request_await_active(rq, active, 2342 I915_ACTIVE_AWAIT_ACTIVE); 2343 if (err) 2344 goto err_add_request; 2345 2346 err = i915_active_add_request(active, rq); 2347 if (err) 2348 goto err_add_request; 2349 } 2350 2351 err = i915_vma_move_to_active(vma, rq, 0); 2352 if (err) 2353 goto err_add_request; 2354 2355 err = rq->engine->emit_bb_start(rq, 2356 i915_vma_offset(vma), 0, 2357 I915_DISPATCH_SECURE); 2358 if (err) 2359 goto err_add_request; 2360 2361 err_add_request: 2362 i915_request_add(rq); 2363 err_vma_unpin: 2364 i915_vma_unpin(vma); 2365 err: 2366 if (err == -EDEADLK) { 2367 err = i915_gem_ww_ctx_backoff(&ww); 2368 if (!err) 2369 goto retry; 2370 } 2371 2372 i915_gem_ww_ctx_fini(&ww); 2373 i915_vma_put(vma); 2374 return err; 2375 } 2376 2377 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2378 { 2379 return stream->pinned_ctx ?: stream->engine->kernel_context; 2380 } 2381 2382 static int 2383 hsw_enable_metric_set(struct i915_perf_stream *stream, 2384 struct i915_active *active) 2385 { 2386 struct intel_uncore *uncore = stream->uncore; 2387 2388 /* 2389 * PRM: 2390 * 2391 * OA unit is using “crclk” for its functionality. When trunk 2392 * level clock gating takes place, OA clock would be gated, 2393 * unable to count the events from non-render clock domain. 2394 * Render clock gating must be disabled when OA is enabled to 2395 * count the events from non-render domain. Unit level clock 2396 * gating for RCS should also be disabled. 2397 */ 2398 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2399 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2400 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2401 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2402 2403 return emit_oa_config(stream, 2404 stream->oa_config, oa_context(stream), 2405 active); 2406 } 2407 2408 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2409 { 2410 struct intel_uncore *uncore = stream->uncore; 2411 2412 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2413 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2414 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2415 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2416 2417 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2418 } 2419 2420 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2421 i915_reg_t reg) 2422 { 2423 u32 mmio = i915_mmio_reg_offset(reg); 2424 int i; 2425 2426 /* 2427 * This arbitrary default will select the 'EU FPU0 Pipeline 2428 * Active' event. In the future it's anticipated that there 2429 * will be an explicit 'No Event' we can select, but not yet... 2430 */ 2431 if (!oa_config) 2432 return 0; 2433 2434 for (i = 0; i < oa_config->flex_regs_len; i++) { 2435 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2436 return oa_config->flex_regs[i].value; 2437 } 2438 2439 return 0; 2440 } 2441 /* 2442 * NB: It must always remain pointer safe to run this even if the OA unit 2443 * has been disabled. 2444 * 2445 * It's fine to put out-of-date values into these per-context registers 2446 * in the case that the OA unit has been disabled. 2447 */ 2448 static void 2449 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2450 const struct i915_perf_stream *stream) 2451 { 2452 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2453 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2454 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2455 static const i915_reg_t flex_regs[] = { 2456 EU_PERF_CNTL0, 2457 EU_PERF_CNTL1, 2458 EU_PERF_CNTL2, 2459 EU_PERF_CNTL3, 2460 EU_PERF_CNTL4, 2461 EU_PERF_CNTL5, 2462 EU_PERF_CNTL6, 2463 }; 2464 u32 *reg_state = ce->lrc_reg_state; 2465 int i; 2466 2467 reg_state[ctx_oactxctrl + 1] = 2468 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2469 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2470 GEN8_OA_COUNTER_RESUME; 2471 2472 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2473 reg_state[ctx_flexeu0 + i * 2 + 1] = 2474 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2475 } 2476 2477 struct flex { 2478 i915_reg_t reg; 2479 u32 offset; 2480 u32 value; 2481 }; 2482 2483 static int 2484 gen8_store_flex(struct i915_request *rq, 2485 struct intel_context *ce, 2486 const struct flex *flex, unsigned int count) 2487 { 2488 u32 offset; 2489 u32 *cs; 2490 2491 cs = intel_ring_begin(rq, 4 * count); 2492 if (IS_ERR(cs)) 2493 return PTR_ERR(cs); 2494 2495 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2496 do { 2497 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2498 *cs++ = offset + flex->offset * sizeof(u32); 2499 *cs++ = 0; 2500 *cs++ = flex->value; 2501 } while (flex++, --count); 2502 2503 intel_ring_advance(rq, cs); 2504 2505 return 0; 2506 } 2507 2508 static int 2509 gen8_load_flex(struct i915_request *rq, 2510 struct intel_context *ce, 2511 const struct flex *flex, unsigned int count) 2512 { 2513 u32 *cs; 2514 2515 GEM_BUG_ON(!count || count > 63); 2516 2517 cs = intel_ring_begin(rq, 2 * count + 2); 2518 if (IS_ERR(cs)) 2519 return PTR_ERR(cs); 2520 2521 *cs++ = MI_LOAD_REGISTER_IMM(count); 2522 do { 2523 *cs++ = i915_mmio_reg_offset(flex->reg); 2524 *cs++ = flex->value; 2525 } while (flex++, --count); 2526 *cs++ = MI_NOOP; 2527 2528 intel_ring_advance(rq, cs); 2529 2530 return 0; 2531 } 2532 2533 static int gen8_modify_context(struct intel_context *ce, 2534 const struct flex *flex, unsigned int count) 2535 { 2536 struct i915_request *rq; 2537 int err; 2538 2539 rq = intel_engine_create_kernel_request(ce->engine); 2540 if (IS_ERR(rq)) 2541 return PTR_ERR(rq); 2542 2543 /* Serialise with the remote context */ 2544 err = intel_context_prepare_remote_request(ce, rq); 2545 if (err == 0) 2546 err = gen8_store_flex(rq, ce, flex, count); 2547 2548 i915_request_add(rq); 2549 return err; 2550 } 2551 2552 static int 2553 gen8_modify_self(struct intel_context *ce, 2554 const struct flex *flex, unsigned int count, 2555 struct i915_active *active) 2556 { 2557 struct i915_request *rq; 2558 int err; 2559 2560 intel_engine_pm_get(ce->engine); 2561 rq = i915_request_create(ce); 2562 intel_engine_pm_put(ce->engine); 2563 if (IS_ERR(rq)) 2564 return PTR_ERR(rq); 2565 2566 if (!IS_ERR_OR_NULL(active)) { 2567 err = i915_active_add_request(active, rq); 2568 if (err) 2569 goto err_add_request; 2570 } 2571 2572 err = gen8_load_flex(rq, ce, flex, count); 2573 if (err) 2574 goto err_add_request; 2575 2576 err_add_request: 2577 i915_request_add(rq); 2578 return err; 2579 } 2580 2581 static int gen8_configure_context(struct i915_perf_stream *stream, 2582 struct i915_gem_context *ctx, 2583 struct flex *flex, unsigned int count) 2584 { 2585 struct i915_gem_engines_iter it; 2586 struct intel_context *ce; 2587 int err = 0; 2588 2589 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2590 GEM_BUG_ON(ce == ce->engine->kernel_context); 2591 2592 if (ce->engine->class != RENDER_CLASS) 2593 continue; 2594 2595 /* Otherwise OA settings will be set upon first use */ 2596 if (!intel_context_pin_if_active(ce)) 2597 continue; 2598 2599 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2600 err = gen8_modify_context(ce, flex, count); 2601 2602 intel_context_unpin(ce); 2603 if (err) 2604 break; 2605 } 2606 i915_gem_context_unlock_engines(ctx); 2607 2608 return err; 2609 } 2610 2611 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2612 struct i915_active *active) 2613 { 2614 int err; 2615 struct intel_context *ce = stream->pinned_ctx; 2616 u32 format = stream->oa_buffer.format->format; 2617 u32 offset = stream->perf->ctx_oactxctrl_offset; 2618 struct flex regs_context[] = { 2619 { 2620 GEN8_OACTXCONTROL, 2621 offset + 1, 2622 active ? GEN8_OA_COUNTER_RESUME : 0, 2623 }, 2624 }; 2625 /* Offsets in regs_lri are not used since this configuration is only 2626 * applied using LRI. Initialize the correct offsets for posterity. 2627 */ 2628 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2629 struct flex regs_lri[] = { 2630 { 2631 GEN12_OAR_OACONTROL, 2632 GEN12_OAR_OACONTROL_OFFSET + 1, 2633 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2634 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2635 }, 2636 { 2637 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2638 CTX_CONTEXT_CONTROL, 2639 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2640 active ? 2641 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2642 0) 2643 }, 2644 }; 2645 2646 /* Modify the context image of pinned context with regs_context */ 2647 err = intel_context_lock_pinned(ce); 2648 if (err) 2649 return err; 2650 2651 err = gen8_modify_context(ce, regs_context, 2652 ARRAY_SIZE(regs_context)); 2653 intel_context_unlock_pinned(ce); 2654 if (err) 2655 return err; 2656 2657 /* Apply regs_lri using LRI with pinned context */ 2658 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2659 } 2660 2661 /* 2662 * Manages updating the per-context aspects of the OA stream 2663 * configuration across all contexts. 2664 * 2665 * The awkward consideration here is that OACTXCONTROL controls the 2666 * exponent for periodic sampling which is primarily used for system 2667 * wide profiling where we'd like a consistent sampling period even in 2668 * the face of context switches. 2669 * 2670 * Our approach of updating the register state context (as opposed to 2671 * say using a workaround batch buffer) ensures that the hardware 2672 * won't automatically reload an out-of-date timer exponent even 2673 * transiently before a WA BB could be parsed. 2674 * 2675 * This function needs to: 2676 * - Ensure the currently running context's per-context OA state is 2677 * updated 2678 * - Ensure that all existing contexts will have the correct per-context 2679 * OA state if they are scheduled for use. 2680 * - Ensure any new contexts will be initialized with the correct 2681 * per-context OA state. 2682 * 2683 * Note: it's only the RCS/Render context that has any OA state. 2684 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2685 */ 2686 static int 2687 oa_configure_all_contexts(struct i915_perf_stream *stream, 2688 struct flex *regs, 2689 size_t num_regs, 2690 struct i915_active *active) 2691 { 2692 struct drm_i915_private *i915 = stream->perf->i915; 2693 struct intel_engine_cs *engine; 2694 struct intel_gt *gt = stream->engine->gt; 2695 struct i915_gem_context *ctx, *cn; 2696 int err; 2697 2698 lockdep_assert_held(>->perf.lock); 2699 2700 /* 2701 * The OA register config is setup through the context image. This image 2702 * might be written to by the GPU on context switch (in particular on 2703 * lite-restore). This means we can't safely update a context's image, 2704 * if this context is scheduled/submitted to run on the GPU. 2705 * 2706 * We could emit the OA register config through the batch buffer but 2707 * this might leave small interval of time where the OA unit is 2708 * configured at an invalid sampling period. 2709 * 2710 * Note that since we emit all requests from a single ring, there 2711 * is still an implicit global barrier here that may cause a high 2712 * priority context to wait for an otherwise independent low priority 2713 * context. Contexts idle at the time of reconfiguration are not 2714 * trapped behind the barrier. 2715 */ 2716 spin_lock(&i915->gem.contexts.lock); 2717 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2718 if (!kref_get_unless_zero(&ctx->ref)) 2719 continue; 2720 2721 spin_unlock(&i915->gem.contexts.lock); 2722 2723 err = gen8_configure_context(stream, ctx, regs, num_regs); 2724 if (err) { 2725 i915_gem_context_put(ctx); 2726 return err; 2727 } 2728 2729 spin_lock(&i915->gem.contexts.lock); 2730 list_safe_reset_next(ctx, cn, link); 2731 i915_gem_context_put(ctx); 2732 } 2733 spin_unlock(&i915->gem.contexts.lock); 2734 2735 /* 2736 * After updating all other contexts, we need to modify ourselves. 2737 * If we don't modify the kernel_context, we do not get events while 2738 * idle. 2739 */ 2740 for_each_uabi_engine(engine, i915) { 2741 struct intel_context *ce = engine->kernel_context; 2742 2743 if (engine->class != RENDER_CLASS) 2744 continue; 2745 2746 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2747 2748 err = gen8_modify_self(ce, regs, num_regs, active); 2749 if (err) 2750 return err; 2751 } 2752 2753 return 0; 2754 } 2755 2756 static int 2757 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2758 const struct i915_oa_config *oa_config, 2759 struct i915_active *active) 2760 { 2761 struct flex regs[] = { 2762 { 2763 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2764 CTX_R_PWR_CLK_STATE, 2765 }, 2766 }; 2767 2768 if (stream->engine->class != RENDER_CLASS) 2769 return 0; 2770 2771 return oa_configure_all_contexts(stream, 2772 regs, ARRAY_SIZE(regs), 2773 active); 2774 } 2775 2776 static int 2777 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2778 const struct i915_oa_config *oa_config, 2779 struct i915_active *active) 2780 { 2781 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2782 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2783 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2784 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2785 struct flex regs[] = { 2786 { 2787 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2788 CTX_R_PWR_CLK_STATE, 2789 }, 2790 { 2791 GEN8_OACTXCONTROL, 2792 ctx_oactxctrl + 1, 2793 }, 2794 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2795 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2796 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2797 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2798 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2799 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2800 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2801 }; 2802 #undef ctx_flexeuN 2803 int i; 2804 2805 regs[1].value = 2806 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2807 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2808 GEN8_OA_COUNTER_RESUME; 2809 2810 for (i = 2; i < ARRAY_SIZE(regs); i++) 2811 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2812 2813 return oa_configure_all_contexts(stream, 2814 regs, ARRAY_SIZE(regs), 2815 active); 2816 } 2817 2818 static int 2819 gen8_enable_metric_set(struct i915_perf_stream *stream, 2820 struct i915_active *active) 2821 { 2822 struct intel_uncore *uncore = stream->uncore; 2823 struct i915_oa_config *oa_config = stream->oa_config; 2824 int ret; 2825 2826 /* 2827 * We disable slice/unslice clock ratio change reports on SKL since 2828 * they are too noisy. The HW generates a lot of redundant reports 2829 * where the ratio hasn't really changed causing a lot of redundant 2830 * work to processes and increasing the chances we'll hit buffer 2831 * overruns. 2832 * 2833 * Although we don't currently use the 'disable overrun' OABUFFER 2834 * feature it's worth noting that clock ratio reports have to be 2835 * disabled before considering to use that feature since the HW doesn't 2836 * correctly block these reports. 2837 * 2838 * Currently none of the high-level metrics we have depend on knowing 2839 * this ratio to normalize. 2840 * 2841 * Note: This register is not power context saved and restored, but 2842 * that's OK considering that we disable RC6 while the OA unit is 2843 * enabled. 2844 * 2845 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2846 * be read back from automatically triggered reports, as part of the 2847 * RPT_ID field. 2848 */ 2849 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) { 2850 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2851 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2852 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2853 } 2854 2855 /* 2856 * Update all contexts prior writing the mux configurations as we need 2857 * to make sure all slices/subslices are ON before writing to NOA 2858 * registers. 2859 */ 2860 ret = lrc_configure_all_contexts(stream, oa_config, active); 2861 if (ret) 2862 return ret; 2863 2864 return emit_oa_config(stream, 2865 stream->oa_config, oa_context(stream), 2866 active); 2867 } 2868 2869 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2870 { 2871 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2872 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2873 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2874 } 2875 2876 static int 2877 gen12_enable_metric_set(struct i915_perf_stream *stream, 2878 struct i915_active *active) 2879 { 2880 struct drm_i915_private *i915 = stream->perf->i915; 2881 struct intel_uncore *uncore = stream->uncore; 2882 struct i915_oa_config *oa_config = stream->oa_config; 2883 bool periodic = stream->periodic; 2884 u32 period_exponent = stream->period_exponent; 2885 u32 sqcnt1; 2886 int ret; 2887 2888 /* 2889 * Wa_1508761755:xehpsdv, dg2 2890 * EU NOA signals behave incorrectly if EU clock gating is enabled. 2891 * Disable thread stall DOP gating and EU DOP gating. 2892 */ 2893 if (IS_XEHPSDV(i915) || IS_DG2(i915)) { 2894 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2895 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE)); 2896 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2897 _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING)); 2898 } 2899 2900 intel_uncore_write(uncore, __oa_regs(stream)->oa_debug, 2901 /* Disable clk ratio reports, like previous Gens. */ 2902 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2903 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2904 /* 2905 * If the user didn't require OA reports, instruct 2906 * the hardware not to emit ctx switch reports. 2907 */ 2908 oag_report_ctx_switches(stream)); 2909 2910 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ? 2911 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2912 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2913 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2914 : 0); 2915 2916 /* 2917 * Initialize Super Queue Internal Cnt Register 2918 * Set PMON Enable in order to collect valid metrics. 2919 * Enable byets per clock reporting in OA for XEHPSDV onward. 2920 */ 2921 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 2922 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 2923 2924 intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1); 2925 2926 /* 2927 * Update all contexts prior writing the mux configurations as we need 2928 * to make sure all slices/subslices are ON before writing to NOA 2929 * registers. 2930 */ 2931 ret = gen12_configure_all_contexts(stream, oa_config, active); 2932 if (ret) 2933 return ret; 2934 2935 /* 2936 * For Gen12, performance counters are context 2937 * saved/restored. Only enable it for the context that 2938 * requested this. 2939 */ 2940 if (stream->ctx) { 2941 ret = gen12_configure_oar_context(stream, active); 2942 if (ret) 2943 return ret; 2944 } 2945 2946 return emit_oa_config(stream, 2947 stream->oa_config, oa_context(stream), 2948 active); 2949 } 2950 2951 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2952 { 2953 struct intel_uncore *uncore = stream->uncore; 2954 2955 /* Reset all contexts' slices/subslices configurations. */ 2956 lrc_configure_all_contexts(stream, NULL, NULL); 2957 2958 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2959 } 2960 2961 static void gen11_disable_metric_set(struct i915_perf_stream *stream) 2962 { 2963 struct intel_uncore *uncore = stream->uncore; 2964 2965 /* Reset all contexts' slices/subslices configurations. */ 2966 lrc_configure_all_contexts(stream, NULL, NULL); 2967 2968 /* Make sure we disable noa to save power. */ 2969 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2970 } 2971 2972 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2973 { 2974 struct intel_uncore *uncore = stream->uncore; 2975 struct drm_i915_private *i915 = stream->perf->i915; 2976 u32 sqcnt1; 2977 2978 /* 2979 * Wa_1508761755:xehpsdv, dg2 2980 * Enable thread stall DOP gating and EU DOP gating. 2981 */ 2982 if (IS_XEHPSDV(i915) || IS_DG2(i915)) { 2983 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2984 _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE)); 2985 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2986 _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING)); 2987 } 2988 2989 /* Reset all contexts' slices/subslices configurations. */ 2990 gen12_configure_all_contexts(stream, NULL, NULL); 2991 2992 /* disable the context save/restore or OAR counters */ 2993 if (stream->ctx) 2994 gen12_configure_oar_context(stream, NULL); 2995 2996 /* Make sure we disable noa to save power. */ 2997 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2998 2999 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 3000 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 3001 3002 /* Reset PMON Enable to save power. */ 3003 intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0); 3004 } 3005 3006 static void gen7_oa_enable(struct i915_perf_stream *stream) 3007 { 3008 struct intel_uncore *uncore = stream->uncore; 3009 struct i915_gem_context *ctx = stream->ctx; 3010 u32 ctx_id = stream->specific_ctx_id; 3011 bool periodic = stream->periodic; 3012 u32 period_exponent = stream->period_exponent; 3013 u32 report_format = stream->oa_buffer.format->format; 3014 3015 /* 3016 * Reset buf pointers so we don't forward reports from before now. 3017 * 3018 * Think carefully if considering trying to avoid this, since it 3019 * also ensures status flags and the buffer itself are cleared 3020 * in error paths, and we have checks for invalid reports based 3021 * on the assumption that certain fields are written to zeroed 3022 * memory which this helps maintains. 3023 */ 3024 gen7_init_oa_buffer(stream); 3025 3026 intel_uncore_write(uncore, GEN7_OACONTROL, 3027 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 3028 (period_exponent << 3029 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 3030 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 3031 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 3032 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 3033 GEN7_OACONTROL_ENABLE); 3034 } 3035 3036 static void gen8_oa_enable(struct i915_perf_stream *stream) 3037 { 3038 struct intel_uncore *uncore = stream->uncore; 3039 u32 report_format = stream->oa_buffer.format->format; 3040 3041 /* 3042 * Reset buf pointers so we don't forward reports from before now. 3043 * 3044 * Think carefully if considering trying to avoid this, since it 3045 * also ensures status flags and the buffer itself are cleared 3046 * in error paths, and we have checks for invalid reports based 3047 * on the assumption that certain fields are written to zeroed 3048 * memory which this helps maintains. 3049 */ 3050 gen8_init_oa_buffer(stream); 3051 3052 /* 3053 * Note: we don't rely on the hardware to perform single context 3054 * filtering and instead filter on the cpu based on the context-id 3055 * field of reports 3056 */ 3057 intel_uncore_write(uncore, GEN8_OACONTROL, 3058 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 3059 GEN8_OA_COUNTER_ENABLE); 3060 } 3061 3062 static void gen12_oa_enable(struct i915_perf_stream *stream) 3063 { 3064 const struct i915_perf_regs *regs; 3065 u32 val; 3066 3067 /* 3068 * If we don't want OA reports from the OA buffer, then we don't even 3069 * need to program the OAG unit. 3070 */ 3071 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 3072 return; 3073 3074 gen12_init_oa_buffer(stream); 3075 3076 regs = __oa_regs(stream); 3077 val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) | 3078 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE; 3079 3080 intel_uncore_write(stream->uncore, regs->oa_ctrl, val); 3081 } 3082 3083 /** 3084 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 3085 * @stream: An i915 perf stream opened for OA metrics 3086 * 3087 * [Re]enables hardware periodic sampling according to the period configured 3088 * when opening the stream. This also starts a hrtimer that will periodically 3089 * check for data in the circular OA buffer for notifying userspace (e.g. 3090 * during a read() or poll()). 3091 */ 3092 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 3093 { 3094 stream->pollin = false; 3095 3096 stream->perf->ops.oa_enable(stream); 3097 3098 if (stream->sample_flags & SAMPLE_OA_REPORT) 3099 hrtimer_start(&stream->poll_check_timer, 3100 ns_to_ktime(stream->poll_oa_period), 3101 HRTIMER_MODE_REL_PINNED); 3102 } 3103 3104 static void gen7_oa_disable(struct i915_perf_stream *stream) 3105 { 3106 struct intel_uncore *uncore = stream->uncore; 3107 3108 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 3109 if (intel_wait_for_register(uncore, 3110 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 3111 50)) 3112 drm_err(&stream->perf->i915->drm, 3113 "wait for OA to be disabled timed out\n"); 3114 } 3115 3116 static void gen8_oa_disable(struct i915_perf_stream *stream) 3117 { 3118 struct intel_uncore *uncore = stream->uncore; 3119 3120 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 3121 if (intel_wait_for_register(uncore, 3122 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 3123 50)) 3124 drm_err(&stream->perf->i915->drm, 3125 "wait for OA to be disabled timed out\n"); 3126 } 3127 3128 static void gen12_oa_disable(struct i915_perf_stream *stream) 3129 { 3130 struct intel_uncore *uncore = stream->uncore; 3131 3132 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0); 3133 if (intel_wait_for_register(uncore, 3134 __oa_regs(stream)->oa_ctrl, 3135 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 3136 50)) 3137 drm_err(&stream->perf->i915->drm, 3138 "wait for OA to be disabled timed out\n"); 3139 3140 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 3141 if (intel_wait_for_register(uncore, 3142 GEN12_OA_TLB_INV_CR, 3143 1, 0, 3144 50)) 3145 drm_err(&stream->perf->i915->drm, 3146 "wait for OA tlb invalidate timed out\n"); 3147 } 3148 3149 /** 3150 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 3151 * @stream: An i915 perf stream opened for OA metrics 3152 * 3153 * Stops the OA unit from periodically writing counter reports into the 3154 * circular OA buffer. This also stops the hrtimer that periodically checks for 3155 * data in the circular OA buffer, for notifying userspace. 3156 */ 3157 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 3158 { 3159 stream->perf->ops.oa_disable(stream); 3160 3161 if (stream->sample_flags & SAMPLE_OA_REPORT) 3162 hrtimer_cancel(&stream->poll_check_timer); 3163 } 3164 3165 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 3166 .destroy = i915_oa_stream_destroy, 3167 .enable = i915_oa_stream_enable, 3168 .disable = i915_oa_stream_disable, 3169 .wait_unlocked = i915_oa_wait_unlocked, 3170 .poll_wait = i915_oa_poll_wait, 3171 .read = i915_oa_read, 3172 }; 3173 3174 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 3175 { 3176 struct i915_active *active; 3177 int err; 3178 3179 active = i915_active_create(); 3180 if (!active) 3181 return -ENOMEM; 3182 3183 err = stream->perf->ops.enable_metric_set(stream, active); 3184 if (err == 0) 3185 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 3186 3187 i915_active_put(active); 3188 return err; 3189 } 3190 3191 static void 3192 get_default_sseu_config(struct intel_sseu *out_sseu, 3193 struct intel_engine_cs *engine) 3194 { 3195 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 3196 3197 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 3198 3199 if (GRAPHICS_VER(engine->i915) == 11) { 3200 /* 3201 * We only need subslice count so it doesn't matter which ones 3202 * we select - just turn off low bits in the amount of half of 3203 * all available subslices per slice. 3204 */ 3205 out_sseu->subslice_mask = 3206 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 3207 out_sseu->slice_mask = 0x1; 3208 } 3209 } 3210 3211 static int 3212 get_sseu_config(struct intel_sseu *out_sseu, 3213 struct intel_engine_cs *engine, 3214 const struct drm_i915_gem_context_param_sseu *drm_sseu) 3215 { 3216 if (drm_sseu->engine.engine_class != engine->uabi_class || 3217 drm_sseu->engine.engine_instance != engine->uabi_instance) 3218 return -EINVAL; 3219 3220 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 3221 } 3222 3223 /* 3224 * OA timestamp frequency = CS timestamp frequency in most platforms. On some 3225 * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such 3226 * cases, return the adjusted CS timestamp frequency to the user. 3227 */ 3228 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915) 3229 { 3230 /* 3231 * Wa_18013179988:dg2 3232 * Wa_14015846243:mtl 3233 */ 3234 if (IS_DG2(i915) || IS_METEORLAKE(i915)) { 3235 intel_wakeref_t wakeref; 3236 u32 reg, shift; 3237 3238 with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref) 3239 reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0); 3240 3241 shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK, 3242 reg); 3243 3244 return to_gt(i915)->clock_frequency << (3 - shift); 3245 } 3246 3247 return to_gt(i915)->clock_frequency; 3248 } 3249 3250 /** 3251 * i915_oa_stream_init - validate combined props for OA stream and init 3252 * @stream: An i915 perf stream 3253 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 3254 * @props: The property state that configures stream (individually validated) 3255 * 3256 * While read_properties_unlocked() validates properties in isolation it 3257 * doesn't ensure that the combination necessarily makes sense. 3258 * 3259 * At this point it has been determined that userspace wants a stream of 3260 * OA metrics, but still we need to further validate the combined 3261 * properties are OK. 3262 * 3263 * If the configuration makes sense then we can allocate memory for 3264 * a circular OA buffer and apply the requested metric set configuration. 3265 * 3266 * Returns: zero on success or a negative error code. 3267 */ 3268 static int i915_oa_stream_init(struct i915_perf_stream *stream, 3269 struct drm_i915_perf_open_param *param, 3270 struct perf_open_properties *props) 3271 { 3272 struct drm_i915_private *i915 = stream->perf->i915; 3273 struct i915_perf *perf = stream->perf; 3274 struct i915_perf_group *g; 3275 struct intel_gt *gt; 3276 int ret; 3277 3278 if (!props->engine) { 3279 drm_dbg(&stream->perf->i915->drm, 3280 "OA engine not specified\n"); 3281 return -EINVAL; 3282 } 3283 gt = props->engine->gt; 3284 g = props->engine->oa_group; 3285 3286 /* 3287 * If the sysfs metrics/ directory wasn't registered for some 3288 * reason then don't let userspace try their luck with config 3289 * IDs 3290 */ 3291 if (!perf->metrics_kobj) { 3292 drm_dbg(&stream->perf->i915->drm, 3293 "OA metrics weren't advertised via sysfs\n"); 3294 return -EINVAL; 3295 } 3296 3297 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 3298 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) { 3299 drm_dbg(&stream->perf->i915->drm, 3300 "Only OA report sampling supported\n"); 3301 return -EINVAL; 3302 } 3303 3304 if (!perf->ops.enable_metric_set) { 3305 drm_dbg(&stream->perf->i915->drm, 3306 "OA unit not supported\n"); 3307 return -ENODEV; 3308 } 3309 3310 /* 3311 * To avoid the complexity of having to accurately filter 3312 * counter reports and marshal to the appropriate client 3313 * we currently only allow exclusive access 3314 */ 3315 if (g->exclusive_stream) { 3316 drm_dbg(&stream->perf->i915->drm, 3317 "OA unit already in use\n"); 3318 return -EBUSY; 3319 } 3320 3321 if (!props->oa_format) { 3322 drm_dbg(&stream->perf->i915->drm, 3323 "OA report format not specified\n"); 3324 return -EINVAL; 3325 } 3326 3327 stream->engine = props->engine; 3328 stream->uncore = stream->engine->gt->uncore; 3329 3330 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 3331 3332 stream->oa_buffer.format = &perf->oa_formats[props->oa_format]; 3333 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0)) 3334 return -EINVAL; 3335 3336 stream->sample_flags = props->sample_flags; 3337 stream->sample_size += stream->oa_buffer.format->size; 3338 3339 stream->hold_preemption = props->hold_preemption; 3340 3341 stream->periodic = props->oa_periodic; 3342 if (stream->periodic) 3343 stream->period_exponent = props->oa_period_exponent; 3344 3345 if (stream->ctx) { 3346 ret = oa_get_render_ctx_id(stream); 3347 if (ret) { 3348 drm_dbg(&stream->perf->i915->drm, 3349 "Invalid context id to filter with\n"); 3350 return ret; 3351 } 3352 } 3353 3354 ret = alloc_noa_wait(stream); 3355 if (ret) { 3356 drm_dbg(&stream->perf->i915->drm, 3357 "Unable to allocate NOA wait batch buffer\n"); 3358 goto err_noa_wait_alloc; 3359 } 3360 3361 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 3362 if (!stream->oa_config) { 3363 drm_dbg(&stream->perf->i915->drm, 3364 "Invalid OA config id=%i\n", props->metrics_set); 3365 ret = -EINVAL; 3366 goto err_config; 3367 } 3368 3369 /* PRM - observability performance counters: 3370 * 3371 * OACONTROL, performance counter enable, note: 3372 * 3373 * "When this bit is set, in order to have coherent counts, 3374 * RC6 power state and trunk clock gating must be disabled. 3375 * This can be achieved by programming MMIO registers as 3376 * 0xA094=0 and 0xA090[31]=1" 3377 * 3378 * In our case we are expecting that taking pm + FORCEWAKE 3379 * references will effectively disable RC6. 3380 */ 3381 intel_engine_pm_get(stream->engine); 3382 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 3383 3384 /* 3385 * Wa_16011777198:dg2: GuC resets render as part of the Wa. This causes 3386 * OA to lose the configuration state. Prevent this by overriding GUCRC 3387 * mode. 3388 */ 3389 if (intel_uc_uses_guc_rc(>->uc) && 3390 (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || 3391 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))) { 3392 ret = intel_guc_slpc_override_gucrc_mode(>->uc.guc.slpc, 3393 SLPC_GUCRC_MODE_GUCRC_NO_RC6); 3394 if (ret) { 3395 drm_dbg(&stream->perf->i915->drm, 3396 "Unable to override gucrc mode\n"); 3397 goto err_gucrc; 3398 } 3399 3400 stream->override_gucrc = true; 3401 } 3402 3403 ret = alloc_oa_buffer(stream); 3404 if (ret) 3405 goto err_oa_buf_alloc; 3406 3407 stream->ops = &i915_oa_stream_ops; 3408 3409 stream->engine->gt->perf.sseu = props->sseu; 3410 WRITE_ONCE(g->exclusive_stream, stream); 3411 3412 ret = i915_perf_stream_enable_sync(stream); 3413 if (ret) { 3414 drm_dbg(&stream->perf->i915->drm, 3415 "Unable to enable metric set\n"); 3416 goto err_enable; 3417 } 3418 3419 drm_dbg(&stream->perf->i915->drm, 3420 "opening stream oa config uuid=%s\n", 3421 stream->oa_config->uuid); 3422 3423 hrtimer_init(&stream->poll_check_timer, 3424 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3425 stream->poll_check_timer.function = oa_poll_check_timer_cb; 3426 init_waitqueue_head(&stream->poll_wq); 3427 spin_lock_init(&stream->oa_buffer.ptr_lock); 3428 mutex_init(&stream->lock); 3429 3430 return 0; 3431 3432 err_enable: 3433 WRITE_ONCE(g->exclusive_stream, NULL); 3434 perf->ops.disable_metric_set(stream); 3435 3436 free_oa_buffer(stream); 3437 3438 err_oa_buf_alloc: 3439 if (stream->override_gucrc) 3440 intel_guc_slpc_unset_gucrc_mode(>->uc.guc.slpc); 3441 3442 err_gucrc: 3443 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 3444 intel_engine_pm_put(stream->engine); 3445 3446 free_oa_configs(stream); 3447 3448 err_config: 3449 free_noa_wait(stream); 3450 3451 err_noa_wait_alloc: 3452 if (stream->ctx) 3453 oa_put_render_ctx_id(stream); 3454 3455 return ret; 3456 } 3457 3458 void i915_oa_init_reg_state(const struct intel_context *ce, 3459 const struct intel_engine_cs *engine) 3460 { 3461 struct i915_perf_stream *stream; 3462 3463 if (engine->class != RENDER_CLASS) 3464 return; 3465 3466 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 3467 stream = READ_ONCE(engine->oa_group->exclusive_stream); 3468 if (stream && GRAPHICS_VER(stream->perf->i915) < 12) 3469 gen8_update_reg_state_unlocked(ce, stream); 3470 } 3471 3472 /** 3473 * i915_perf_read - handles read() FOP for i915 perf stream FDs 3474 * @file: An i915 perf stream file 3475 * @buf: destination buffer given by userspace 3476 * @count: the number of bytes userspace wants to read 3477 * @ppos: (inout) file seek position (unused) 3478 * 3479 * The entry point for handling a read() on a stream file descriptor from 3480 * userspace. Most of the work is left to the i915_perf_read_locked() and 3481 * &i915_perf_stream_ops->read but to save having stream implementations (of 3482 * which we might have multiple later) we handle blocking read here. 3483 * 3484 * We can also consistently treat trying to read from a disabled stream 3485 * as an IO error so implementations can assume the stream is enabled 3486 * while reading. 3487 * 3488 * Returns: The number of bytes copied or a negative error code on failure. 3489 */ 3490 static ssize_t i915_perf_read(struct file *file, 3491 char __user *buf, 3492 size_t count, 3493 loff_t *ppos) 3494 { 3495 struct i915_perf_stream *stream = file->private_data; 3496 size_t offset = 0; 3497 int ret; 3498 3499 /* To ensure it's handled consistently we simply treat all reads of a 3500 * disabled stream as an error. In particular it might otherwise lead 3501 * to a deadlock for blocking file descriptors... 3502 */ 3503 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT)) 3504 return -EIO; 3505 3506 if (!(file->f_flags & O_NONBLOCK)) { 3507 /* There's the small chance of false positives from 3508 * stream->ops->wait_unlocked. 3509 * 3510 * E.g. with single context filtering since we only wait until 3511 * oabuffer has >= 1 report we don't immediately know whether 3512 * any reports really belong to the current context 3513 */ 3514 do { 3515 ret = stream->ops->wait_unlocked(stream); 3516 if (ret) 3517 return ret; 3518 3519 mutex_lock(&stream->lock); 3520 ret = stream->ops->read(stream, buf, count, &offset); 3521 mutex_unlock(&stream->lock); 3522 } while (!offset && !ret); 3523 } else { 3524 mutex_lock(&stream->lock); 3525 ret = stream->ops->read(stream, buf, count, &offset); 3526 mutex_unlock(&stream->lock); 3527 } 3528 3529 /* We allow the poll checking to sometimes report false positive EPOLLIN 3530 * events where we might actually report EAGAIN on read() if there's 3531 * not really any data available. In this situation though we don't 3532 * want to enter a busy loop between poll() reporting a EPOLLIN event 3533 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3534 * effectively ensures we back off until the next hrtimer callback 3535 * before reporting another EPOLLIN event. 3536 * The exception to this is if ops->read() returned -ENOSPC which means 3537 * that more OA data is available than could fit in the user provided 3538 * buffer. In this case we want the next poll() call to not block. 3539 */ 3540 if (ret != -ENOSPC) 3541 stream->pollin = false; 3542 3543 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3544 return offset ?: (ret ?: -EAGAIN); 3545 } 3546 3547 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3548 { 3549 struct i915_perf_stream *stream = 3550 container_of(hrtimer, typeof(*stream), poll_check_timer); 3551 3552 if (oa_buffer_check_unlocked(stream)) { 3553 stream->pollin = true; 3554 wake_up(&stream->poll_wq); 3555 } 3556 3557 hrtimer_forward_now(hrtimer, 3558 ns_to_ktime(stream->poll_oa_period)); 3559 3560 return HRTIMER_RESTART; 3561 } 3562 3563 /** 3564 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3565 * @stream: An i915 perf stream 3566 * @file: An i915 perf stream file 3567 * @wait: poll() state table 3568 * 3569 * For handling userspace polling on an i915 perf stream, this calls through to 3570 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3571 * will be woken for new stream data. 3572 * 3573 * Returns: any poll events that are ready without sleeping 3574 */ 3575 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3576 struct file *file, 3577 poll_table *wait) 3578 { 3579 __poll_t events = 0; 3580 3581 stream->ops->poll_wait(stream, file, wait); 3582 3583 /* Note: we don't explicitly check whether there's something to read 3584 * here since this path may be very hot depending on what else 3585 * userspace is polling, or on the timeout in use. We rely solely on 3586 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3587 * samples to read. 3588 */ 3589 if (stream->pollin) 3590 events |= EPOLLIN; 3591 3592 return events; 3593 } 3594 3595 /** 3596 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3597 * @file: An i915 perf stream file 3598 * @wait: poll() state table 3599 * 3600 * For handling userspace polling on an i915 perf stream, this ensures 3601 * poll_wait() gets called with a wait queue that will be woken for new stream 3602 * data. 3603 * 3604 * Note: Implementation deferred to i915_perf_poll_locked() 3605 * 3606 * Returns: any poll events that are ready without sleeping 3607 */ 3608 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3609 { 3610 struct i915_perf_stream *stream = file->private_data; 3611 __poll_t ret; 3612 3613 mutex_lock(&stream->lock); 3614 ret = i915_perf_poll_locked(stream, file, wait); 3615 mutex_unlock(&stream->lock); 3616 3617 return ret; 3618 } 3619 3620 /** 3621 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3622 * @stream: A disabled i915 perf stream 3623 * 3624 * [Re]enables the associated capture of data for this stream. 3625 * 3626 * If a stream was previously enabled then there's currently no intention 3627 * to provide userspace any guarantee about the preservation of previously 3628 * buffered data. 3629 */ 3630 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3631 { 3632 if (stream->enabled) 3633 return; 3634 3635 /* Allow stream->ops->enable() to refer to this */ 3636 stream->enabled = true; 3637 3638 if (stream->ops->enable) 3639 stream->ops->enable(stream); 3640 3641 if (stream->hold_preemption) 3642 intel_context_set_nopreempt(stream->pinned_ctx); 3643 } 3644 3645 /** 3646 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3647 * @stream: An enabled i915 perf stream 3648 * 3649 * Disables the associated capture of data for this stream. 3650 * 3651 * The intention is that disabling an re-enabling a stream will ideally be 3652 * cheaper than destroying and re-opening a stream with the same configuration, 3653 * though there are no formal guarantees about what state or buffered data 3654 * must be retained between disabling and re-enabling a stream. 3655 * 3656 * Note: while a stream is disabled it's considered an error for userspace 3657 * to attempt to read from the stream (-EIO). 3658 */ 3659 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3660 { 3661 if (!stream->enabled) 3662 return; 3663 3664 /* Allow stream->ops->disable() to refer to this */ 3665 stream->enabled = false; 3666 3667 if (stream->hold_preemption) 3668 intel_context_clear_nopreempt(stream->pinned_ctx); 3669 3670 if (stream->ops->disable) 3671 stream->ops->disable(stream); 3672 } 3673 3674 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3675 unsigned long metrics_set) 3676 { 3677 struct i915_oa_config *config; 3678 long ret = stream->oa_config->id; 3679 3680 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3681 if (!config) 3682 return -EINVAL; 3683 3684 if (config != stream->oa_config) { 3685 int err; 3686 3687 /* 3688 * If OA is bound to a specific context, emit the 3689 * reconfiguration inline from that context. The update 3690 * will then be ordered with respect to submission on that 3691 * context. 3692 * 3693 * When set globally, we use a low priority kernel context, 3694 * so it will effectively take effect when idle. 3695 */ 3696 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3697 if (!err) 3698 config = xchg(&stream->oa_config, config); 3699 else 3700 ret = err; 3701 } 3702 3703 i915_oa_config_put(config); 3704 3705 return ret; 3706 } 3707 3708 /** 3709 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3710 * @stream: An i915 perf stream 3711 * @cmd: the ioctl request 3712 * @arg: the ioctl data 3713 * 3714 * Returns: zero on success or a negative error code. Returns -EINVAL for 3715 * an unknown ioctl request. 3716 */ 3717 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3718 unsigned int cmd, 3719 unsigned long arg) 3720 { 3721 switch (cmd) { 3722 case I915_PERF_IOCTL_ENABLE: 3723 i915_perf_enable_locked(stream); 3724 return 0; 3725 case I915_PERF_IOCTL_DISABLE: 3726 i915_perf_disable_locked(stream); 3727 return 0; 3728 case I915_PERF_IOCTL_CONFIG: 3729 return i915_perf_config_locked(stream, arg); 3730 } 3731 3732 return -EINVAL; 3733 } 3734 3735 /** 3736 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3737 * @file: An i915 perf stream file 3738 * @cmd: the ioctl request 3739 * @arg: the ioctl data 3740 * 3741 * Implementation deferred to i915_perf_ioctl_locked(). 3742 * 3743 * Returns: zero on success or a negative error code. Returns -EINVAL for 3744 * an unknown ioctl request. 3745 */ 3746 static long i915_perf_ioctl(struct file *file, 3747 unsigned int cmd, 3748 unsigned long arg) 3749 { 3750 struct i915_perf_stream *stream = file->private_data; 3751 long ret; 3752 3753 mutex_lock(&stream->lock); 3754 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3755 mutex_unlock(&stream->lock); 3756 3757 return ret; 3758 } 3759 3760 /** 3761 * i915_perf_destroy_locked - destroy an i915 perf stream 3762 * @stream: An i915 perf stream 3763 * 3764 * Frees all resources associated with the given i915 perf @stream, disabling 3765 * any associated data capture in the process. 3766 * 3767 * Note: The >->perf.lock mutex has been taken to serialize 3768 * with any non-file-operation driver hooks. 3769 */ 3770 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3771 { 3772 if (stream->enabled) 3773 i915_perf_disable_locked(stream); 3774 3775 if (stream->ops->destroy) 3776 stream->ops->destroy(stream); 3777 3778 if (stream->ctx) 3779 i915_gem_context_put(stream->ctx); 3780 3781 kfree(stream); 3782 } 3783 3784 /** 3785 * i915_perf_release - handles userspace close() of a stream file 3786 * @inode: anonymous inode associated with file 3787 * @file: An i915 perf stream file 3788 * 3789 * Cleans up any resources associated with an open i915 perf stream file. 3790 * 3791 * NB: close() can't really fail from the userspace point of view. 3792 * 3793 * Returns: zero on success or a negative error code. 3794 */ 3795 static int i915_perf_release(struct inode *inode, struct file *file) 3796 { 3797 struct i915_perf_stream *stream = file->private_data; 3798 struct i915_perf *perf = stream->perf; 3799 struct intel_gt *gt = stream->engine->gt; 3800 3801 /* 3802 * Within this call, we know that the fd is being closed and we have no 3803 * other user of stream->lock. Use the perf lock to destroy the stream 3804 * here. 3805 */ 3806 mutex_lock(>->perf.lock); 3807 i915_perf_destroy_locked(stream); 3808 mutex_unlock(>->perf.lock); 3809 3810 /* Release the reference the perf stream kept on the driver. */ 3811 drm_dev_put(&perf->i915->drm); 3812 3813 return 0; 3814 } 3815 3816 3817 static const struct file_operations fops = { 3818 .owner = THIS_MODULE, 3819 .llseek = no_llseek, 3820 .release = i915_perf_release, 3821 .poll = i915_perf_poll, 3822 .read = i915_perf_read, 3823 .unlocked_ioctl = i915_perf_ioctl, 3824 /* Our ioctl have no arguments, so it's safe to use the same function 3825 * to handle 32bits compatibility. 3826 */ 3827 .compat_ioctl = i915_perf_ioctl, 3828 }; 3829 3830 3831 /** 3832 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3833 * @perf: i915 perf instance 3834 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3835 * @props: individually validated u64 property value pairs 3836 * @file: drm file 3837 * 3838 * See i915_perf_ioctl_open() for interface details. 3839 * 3840 * Implements further stream config validation and stream initialization on 3841 * behalf of i915_perf_open_ioctl() with the >->perf.lock mutex 3842 * taken to serialize with any non-file-operation driver hooks. 3843 * 3844 * Note: at this point the @props have only been validated in isolation and 3845 * it's still necessary to validate that the combination of properties makes 3846 * sense. 3847 * 3848 * In the case where userspace is interested in OA unit metrics then further 3849 * config validation and stream initialization details will be handled by 3850 * i915_oa_stream_init(). The code here should only validate config state that 3851 * will be relevant to all stream types / backends. 3852 * 3853 * Returns: zero on success or a negative error code. 3854 */ 3855 static int 3856 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3857 struct drm_i915_perf_open_param *param, 3858 struct perf_open_properties *props, 3859 struct drm_file *file) 3860 { 3861 struct i915_gem_context *specific_ctx = NULL; 3862 struct i915_perf_stream *stream = NULL; 3863 unsigned long f_flags = 0; 3864 bool privileged_op = true; 3865 int stream_fd; 3866 int ret; 3867 3868 if (props->single_context) { 3869 u32 ctx_handle = props->ctx_handle; 3870 struct drm_i915_file_private *file_priv = file->driver_priv; 3871 3872 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3873 if (IS_ERR(specific_ctx)) { 3874 drm_dbg(&perf->i915->drm, 3875 "Failed to look up context with ID %u for opening perf stream\n", 3876 ctx_handle); 3877 ret = PTR_ERR(specific_ctx); 3878 goto err; 3879 } 3880 } 3881 3882 /* 3883 * On Haswell the OA unit supports clock gating off for a specific 3884 * context and in this mode there's no visibility of metrics for the 3885 * rest of the system, which we consider acceptable for a 3886 * non-privileged client. 3887 * 3888 * For Gen8->11 the OA unit no longer supports clock gating off for a 3889 * specific context and the kernel can't securely stop the counters 3890 * from updating as system-wide / global values. Even though we can 3891 * filter reports based on the included context ID we can't block 3892 * clients from seeing the raw / global counter values via 3893 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3894 * enable the OA unit by default. 3895 * 3896 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3897 * per context basis. So we can relax requirements there if the user 3898 * doesn't request global stream access (i.e. query based sampling 3899 * using MI_RECORD_PERF_COUNT. 3900 */ 3901 if (IS_HASWELL(perf->i915) && specific_ctx) 3902 privileged_op = false; 3903 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx && 3904 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3905 privileged_op = false; 3906 3907 if (props->hold_preemption) { 3908 if (!props->single_context) { 3909 drm_dbg(&perf->i915->drm, 3910 "preemption disable with no context\n"); 3911 ret = -EINVAL; 3912 goto err; 3913 } 3914 privileged_op = true; 3915 } 3916 3917 /* 3918 * Asking for SSEU configuration is a priviliged operation. 3919 */ 3920 if (props->has_sseu) 3921 privileged_op = true; 3922 else 3923 get_default_sseu_config(&props->sseu, props->engine); 3924 3925 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3926 * we check a dev.i915.perf_stream_paranoid sysctl option 3927 * to determine if it's ok to access system wide OA counters 3928 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3929 */ 3930 if (privileged_op && 3931 i915_perf_stream_paranoid && !perfmon_capable()) { 3932 drm_dbg(&perf->i915->drm, 3933 "Insufficient privileges to open i915 perf stream\n"); 3934 ret = -EACCES; 3935 goto err_ctx; 3936 } 3937 3938 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3939 if (!stream) { 3940 ret = -ENOMEM; 3941 goto err_ctx; 3942 } 3943 3944 stream->perf = perf; 3945 stream->ctx = specific_ctx; 3946 stream->poll_oa_period = props->poll_oa_period; 3947 3948 ret = i915_oa_stream_init(stream, param, props); 3949 if (ret) 3950 goto err_alloc; 3951 3952 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3953 * to have _stream_init check the combination of sample flags more 3954 * thoroughly, but still this is the expected result at this point. 3955 */ 3956 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3957 ret = -ENODEV; 3958 goto err_flags; 3959 } 3960 3961 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3962 f_flags |= O_CLOEXEC; 3963 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3964 f_flags |= O_NONBLOCK; 3965 3966 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3967 if (stream_fd < 0) { 3968 ret = stream_fd; 3969 goto err_flags; 3970 } 3971 3972 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3973 i915_perf_enable_locked(stream); 3974 3975 /* Take a reference on the driver that will be kept with stream_fd 3976 * until its release. 3977 */ 3978 drm_dev_get(&perf->i915->drm); 3979 3980 return stream_fd; 3981 3982 err_flags: 3983 if (stream->ops->destroy) 3984 stream->ops->destroy(stream); 3985 err_alloc: 3986 kfree(stream); 3987 err_ctx: 3988 if (specific_ctx) 3989 i915_gem_context_put(specific_ctx); 3990 err: 3991 return ret; 3992 } 3993 3994 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3995 { 3996 u64 nom = (2ULL << exponent) * NSEC_PER_SEC; 3997 u32 den = i915_perf_oa_timestamp_frequency(perf->i915); 3998 3999 return div_u64(nom + den - 1, den); 4000 } 4001 4002 static __always_inline bool 4003 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format) 4004 { 4005 return test_bit(format, perf->format_mask); 4006 } 4007 4008 static __always_inline void 4009 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format) 4010 { 4011 __set_bit(format, perf->format_mask); 4012 } 4013 4014 /** 4015 * read_properties_unlocked - validate + copy userspace stream open properties 4016 * @perf: i915 perf instance 4017 * @uprops: The array of u64 key value pairs given by userspace 4018 * @n_props: The number of key value pairs expected in @uprops 4019 * @props: The stream configuration built up while validating properties 4020 * 4021 * Note this function only validates properties in isolation it doesn't 4022 * validate that the combination of properties makes sense or that all 4023 * properties necessary for a particular kind of stream have been set. 4024 * 4025 * Note that there currently aren't any ordering requirements for properties so 4026 * we shouldn't validate or assume anything about ordering here. This doesn't 4027 * rule out defining new properties with ordering requirements in the future. 4028 */ 4029 static int read_properties_unlocked(struct i915_perf *perf, 4030 u64 __user *uprops, 4031 u32 n_props, 4032 struct perf_open_properties *props) 4033 { 4034 struct drm_i915_gem_context_param_sseu user_sseu; 4035 const struct i915_oa_format *f; 4036 u64 __user *uprop = uprops; 4037 bool config_instance = false; 4038 bool config_class = false; 4039 bool config_sseu = false; 4040 u8 class, instance; 4041 u32 i; 4042 int ret; 4043 4044 memset(props, 0, sizeof(struct perf_open_properties)); 4045 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 4046 4047 /* Considering that ID = 0 is reserved and assuming that we don't 4048 * (currently) expect any configurations to ever specify duplicate 4049 * values for a particular property ID then the last _PROP_MAX value is 4050 * one greater than the maximum number of properties we expect to get 4051 * from userspace. 4052 */ 4053 if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) { 4054 drm_dbg(&perf->i915->drm, 4055 "Invalid number of i915 perf properties given\n"); 4056 return -EINVAL; 4057 } 4058 4059 /* Defaults when class:instance is not passed */ 4060 class = I915_ENGINE_CLASS_RENDER; 4061 instance = 0; 4062 4063 for (i = 0; i < n_props; i++) { 4064 u64 oa_period, oa_freq_hz; 4065 u64 id, value; 4066 4067 ret = get_user(id, uprop); 4068 if (ret) 4069 return ret; 4070 4071 ret = get_user(value, uprop + 1); 4072 if (ret) 4073 return ret; 4074 4075 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 4076 drm_dbg(&perf->i915->drm, 4077 "Unknown i915 perf property ID\n"); 4078 return -EINVAL; 4079 } 4080 4081 switch ((enum drm_i915_perf_property_id)id) { 4082 case DRM_I915_PERF_PROP_CTX_HANDLE: 4083 props->single_context = 1; 4084 props->ctx_handle = value; 4085 break; 4086 case DRM_I915_PERF_PROP_SAMPLE_OA: 4087 if (value) 4088 props->sample_flags |= SAMPLE_OA_REPORT; 4089 break; 4090 case DRM_I915_PERF_PROP_OA_METRICS_SET: 4091 if (value == 0) { 4092 drm_dbg(&perf->i915->drm, 4093 "Unknown OA metric set ID\n"); 4094 return -EINVAL; 4095 } 4096 props->metrics_set = value; 4097 break; 4098 case DRM_I915_PERF_PROP_OA_FORMAT: 4099 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 4100 drm_dbg(&perf->i915->drm, 4101 "Out-of-range OA report format %llu\n", 4102 value); 4103 return -EINVAL; 4104 } 4105 if (!oa_format_valid(perf, value)) { 4106 drm_dbg(&perf->i915->drm, 4107 "Unsupported OA report format %llu\n", 4108 value); 4109 return -EINVAL; 4110 } 4111 props->oa_format = value; 4112 break; 4113 case DRM_I915_PERF_PROP_OA_EXPONENT: 4114 if (value > OA_EXPONENT_MAX) { 4115 drm_dbg(&perf->i915->drm, 4116 "OA timer exponent too high (> %u)\n", 4117 OA_EXPONENT_MAX); 4118 return -EINVAL; 4119 } 4120 4121 /* Theoretically we can program the OA unit to sample 4122 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 4123 * for BXT. We don't allow such high sampling 4124 * frequencies by default unless root. 4125 */ 4126 4127 BUILD_BUG_ON(sizeof(oa_period) != 8); 4128 oa_period = oa_exponent_to_ns(perf, value); 4129 4130 /* This check is primarily to ensure that oa_period <= 4131 * UINT32_MAX (before passing to do_div which only 4132 * accepts a u32 denominator), but we can also skip 4133 * checking anything < 1Hz which implicitly can't be 4134 * limited via an integer oa_max_sample_rate. 4135 */ 4136 if (oa_period <= NSEC_PER_SEC) { 4137 u64 tmp = NSEC_PER_SEC; 4138 do_div(tmp, oa_period); 4139 oa_freq_hz = tmp; 4140 } else 4141 oa_freq_hz = 0; 4142 4143 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 4144 drm_dbg(&perf->i915->drm, 4145 "OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 4146 i915_oa_max_sample_rate); 4147 return -EACCES; 4148 } 4149 4150 props->oa_periodic = true; 4151 props->oa_period_exponent = value; 4152 break; 4153 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 4154 props->hold_preemption = !!value; 4155 break; 4156 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 4157 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) { 4158 drm_dbg(&perf->i915->drm, 4159 "SSEU config not supported on gfx %x\n", 4160 GRAPHICS_VER_FULL(perf->i915)); 4161 return -ENODEV; 4162 } 4163 4164 if (copy_from_user(&user_sseu, 4165 u64_to_user_ptr(value), 4166 sizeof(user_sseu))) { 4167 drm_dbg(&perf->i915->drm, 4168 "Unable to copy global sseu parameter\n"); 4169 return -EFAULT; 4170 } 4171 config_sseu = true; 4172 break; 4173 } 4174 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 4175 if (value < 100000 /* 100us */) { 4176 drm_dbg(&perf->i915->drm, 4177 "OA availability timer too small (%lluns < 100us)\n", 4178 value); 4179 return -EINVAL; 4180 } 4181 props->poll_oa_period = value; 4182 break; 4183 case DRM_I915_PERF_PROP_OA_ENGINE_CLASS: 4184 class = (u8)value; 4185 config_class = true; 4186 break; 4187 case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE: 4188 instance = (u8)value; 4189 config_instance = true; 4190 break; 4191 default: 4192 MISSING_CASE(id); 4193 return -EINVAL; 4194 } 4195 4196 uprop += 2; 4197 } 4198 4199 if ((config_class && !config_instance) || 4200 (config_instance && !config_class)) { 4201 drm_dbg(&perf->i915->drm, 4202 "OA engine-class and engine-instance parameters must be passed together\n"); 4203 return -EINVAL; 4204 } 4205 4206 props->engine = intel_engine_lookup_user(perf->i915, class, instance); 4207 if (!props->engine) { 4208 drm_dbg(&perf->i915->drm, 4209 "OA engine class and instance invalid %d:%d\n", 4210 class, instance); 4211 return -EINVAL; 4212 } 4213 4214 if (!engine_supports_oa(props->engine)) { 4215 drm_dbg(&perf->i915->drm, 4216 "Engine not supported by OA %d:%d\n", 4217 class, instance); 4218 return -EINVAL; 4219 } 4220 4221 /* 4222 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media 4223 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM 4224 * does not work as expected. 4225 */ 4226 if (IS_MTL_MEDIA_STEP(props->engine->i915, STEP_A0, STEP_C0) && 4227 props->engine->oa_group->type == TYPE_OAM && 4228 intel_check_bios_c6_setup(&props->engine->gt->rc6)) { 4229 drm_dbg(&perf->i915->drm, 4230 "OAM requires media C6 to be disabled in BIOS\n"); 4231 return -EINVAL; 4232 } 4233 4234 i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX); 4235 f = &perf->oa_formats[i]; 4236 if (!engine_supports_oa_format(props->engine, f->type)) { 4237 drm_dbg(&perf->i915->drm, 4238 "Invalid OA format %d for class %d\n", 4239 f->type, props->engine->class); 4240 return -EINVAL; 4241 } 4242 4243 if (config_sseu) { 4244 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 4245 if (ret) { 4246 drm_dbg(&perf->i915->drm, 4247 "Invalid SSEU configuration\n"); 4248 return ret; 4249 } 4250 props->has_sseu = true; 4251 } 4252 4253 return 0; 4254 } 4255 4256 /** 4257 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 4258 * @dev: drm device 4259 * @data: ioctl data copied from userspace (unvalidated) 4260 * @file: drm file 4261 * 4262 * Validates the stream open parameters given by userspace including flags 4263 * and an array of u64 key, value pair properties. 4264 * 4265 * Very little is assumed up front about the nature of the stream being 4266 * opened (for instance we don't assume it's for periodic OA unit metrics). An 4267 * i915-perf stream is expected to be a suitable interface for other forms of 4268 * buffered data written by the GPU besides periodic OA metrics. 4269 * 4270 * Note we copy the properties from userspace outside of the i915 perf 4271 * mutex to avoid an awkward lockdep with mmap_lock. 4272 * 4273 * Most of the implementation details are handled by 4274 * i915_perf_open_ioctl_locked() after taking the >->perf.lock 4275 * mutex for serializing with any non-file-operation driver hooks. 4276 * 4277 * Return: A newly opened i915 Perf stream file descriptor or negative 4278 * error code on failure. 4279 */ 4280 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 4281 struct drm_file *file) 4282 { 4283 struct i915_perf *perf = &to_i915(dev)->perf; 4284 struct drm_i915_perf_open_param *param = data; 4285 struct intel_gt *gt; 4286 struct perf_open_properties props; 4287 u32 known_open_flags; 4288 int ret; 4289 4290 if (!perf->i915) { 4291 drm_dbg(&perf->i915->drm, 4292 "i915 perf interface not available for this system\n"); 4293 return -ENOTSUPP; 4294 } 4295 4296 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 4297 I915_PERF_FLAG_FD_NONBLOCK | 4298 I915_PERF_FLAG_DISABLED; 4299 if (param->flags & ~known_open_flags) { 4300 drm_dbg(&perf->i915->drm, 4301 "Unknown drm_i915_perf_open_param flag\n"); 4302 return -EINVAL; 4303 } 4304 4305 ret = read_properties_unlocked(perf, 4306 u64_to_user_ptr(param->properties_ptr), 4307 param->num_properties, 4308 &props); 4309 if (ret) 4310 return ret; 4311 4312 gt = props.engine->gt; 4313 4314 mutex_lock(>->perf.lock); 4315 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 4316 mutex_unlock(>->perf.lock); 4317 4318 return ret; 4319 } 4320 4321 /** 4322 * i915_perf_register - exposes i915-perf to userspace 4323 * @i915: i915 device instance 4324 * 4325 * In particular OA metric sets are advertised under a sysfs metrics/ 4326 * directory allowing userspace to enumerate valid IDs that can be 4327 * used to open an i915-perf stream. 4328 */ 4329 void i915_perf_register(struct drm_i915_private *i915) 4330 { 4331 struct i915_perf *perf = &i915->perf; 4332 struct intel_gt *gt = to_gt(i915); 4333 4334 if (!perf->i915) 4335 return; 4336 4337 /* To be sure we're synchronized with an attempted 4338 * i915_perf_open_ioctl(); considering that we register after 4339 * being exposed to userspace. 4340 */ 4341 mutex_lock(>->perf.lock); 4342 4343 perf->metrics_kobj = 4344 kobject_create_and_add("metrics", 4345 &i915->drm.primary->kdev->kobj); 4346 4347 mutex_unlock(>->perf.lock); 4348 } 4349 4350 /** 4351 * i915_perf_unregister - hide i915-perf from userspace 4352 * @i915: i915 device instance 4353 * 4354 * i915-perf state cleanup is split up into an 'unregister' and 4355 * 'deinit' phase where the interface is first hidden from 4356 * userspace by i915_perf_unregister() before cleaning up 4357 * remaining state in i915_perf_fini(). 4358 */ 4359 void i915_perf_unregister(struct drm_i915_private *i915) 4360 { 4361 struct i915_perf *perf = &i915->perf; 4362 4363 if (!perf->metrics_kobj) 4364 return; 4365 4366 kobject_put(perf->metrics_kobj); 4367 perf->metrics_kobj = NULL; 4368 } 4369 4370 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 4371 { 4372 static const i915_reg_t flex_eu_regs[] = { 4373 EU_PERF_CNTL0, 4374 EU_PERF_CNTL1, 4375 EU_PERF_CNTL2, 4376 EU_PERF_CNTL3, 4377 EU_PERF_CNTL4, 4378 EU_PERF_CNTL5, 4379 EU_PERF_CNTL6, 4380 }; 4381 int i; 4382 4383 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 4384 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 4385 return true; 4386 } 4387 return false; 4388 } 4389 4390 static bool reg_in_range_table(u32 addr, const struct i915_range *table) 4391 { 4392 while (table->start || table->end) { 4393 if (addr >= table->start && addr <= table->end) 4394 return true; 4395 4396 table++; 4397 } 4398 4399 return false; 4400 } 4401 4402 #define REG_EQUAL(addr, mmio) \ 4403 ((addr) == i915_mmio_reg_offset(mmio)) 4404 4405 static const struct i915_range gen7_oa_b_counters[] = { 4406 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */ 4407 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */ 4408 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */ 4409 {} 4410 }; 4411 4412 static const struct i915_range gen12_oa_b_counters[] = { 4413 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */ 4414 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */ 4415 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */ 4416 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */ 4417 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */ 4418 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */ 4419 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */ 4420 {} 4421 }; 4422 4423 static const struct i915_range mtl_oam_b_counters[] = { 4424 { .start = 0x393000, .end = 0x39301c }, /* GEN12_OAM_STARTTRIG1[1-8] */ 4425 { .start = 0x393020, .end = 0x39303c }, /* GEN12_OAM_REPORTTRIG1[1-8] */ 4426 { .start = 0x393040, .end = 0x39307c }, /* GEN12_OAM_CEC[0-7][0-1] */ 4427 { .start = 0x393200, .end = 0x39323C }, /* MPES[0-7] */ 4428 {} 4429 }; 4430 4431 static const struct i915_range xehp_oa_b_counters[] = { 4432 { .start = 0xdc48, .end = 0xdc48 }, /* OAA_ENABLE_REG */ 4433 { .start = 0xdd00, .end = 0xdd48 }, /* OAG_LCE0_0 - OAA_LENABLE_REG */ 4434 {} 4435 }; 4436 4437 static const struct i915_range gen7_oa_mux_regs[] = { 4438 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */ 4439 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */ 4440 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */ 4441 {} 4442 }; 4443 4444 static const struct i915_range hsw_oa_mux_regs[] = { 4445 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */ 4446 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */ 4447 { .start = 0x25100, .end = 0x2ff90 }, 4448 {} 4449 }; 4450 4451 static const struct i915_range chv_oa_mux_regs[] = { 4452 { .start = 0x182300, .end = 0x1823a4 }, 4453 {} 4454 }; 4455 4456 static const struct i915_range gen8_oa_mux_regs[] = { 4457 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */ 4458 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4459 {} 4460 }; 4461 4462 static const struct i915_range gen11_oa_mux_regs[] = { 4463 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */ 4464 {} 4465 }; 4466 4467 static const struct i915_range gen12_oa_mux_regs[] = { 4468 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4469 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4470 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4471 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4472 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4473 {} 4474 }; 4475 4476 /* 4477 * Ref: 14010536224: 4478 * 0x20cc is repurposed on MTL, so use a separate array for MTL. 4479 */ 4480 static const struct i915_range mtl_oa_mux_regs[] = { 4481 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4482 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4483 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4484 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4485 { .start = 0x38d100, .end = 0x38d114}, /* VISACTL */ 4486 {} 4487 }; 4488 4489 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4490 { 4491 return reg_in_range_table(addr, gen7_oa_b_counters); 4492 } 4493 4494 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4495 { 4496 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4497 reg_in_range_table(addr, gen8_oa_mux_regs); 4498 } 4499 4500 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4501 { 4502 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4503 reg_in_range_table(addr, gen8_oa_mux_regs) || 4504 reg_in_range_table(addr, gen11_oa_mux_regs); 4505 } 4506 4507 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4508 { 4509 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4510 reg_in_range_table(addr, hsw_oa_mux_regs); 4511 } 4512 4513 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4514 { 4515 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4516 reg_in_range_table(addr, chv_oa_mux_regs); 4517 } 4518 4519 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4520 { 4521 return reg_in_range_table(addr, gen12_oa_b_counters); 4522 } 4523 4524 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr) 4525 { 4526 if (HAS_OAM(perf->i915) && 4527 GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70)) 4528 return reg_in_range_table(addr, mtl_oam_b_counters); 4529 4530 return false; 4531 } 4532 4533 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4534 { 4535 return reg_in_range_table(addr, xehp_oa_b_counters) || 4536 reg_in_range_table(addr, gen12_oa_b_counters) || 4537 mtl_is_valid_oam_b_counter_addr(perf, addr); 4538 } 4539 4540 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4541 { 4542 if (IS_METEORLAKE(perf->i915)) 4543 return reg_in_range_table(addr, mtl_oa_mux_regs); 4544 else 4545 return reg_in_range_table(addr, gen12_oa_mux_regs); 4546 } 4547 4548 static u32 mask_reg_value(u32 reg, u32 val) 4549 { 4550 /* HALF_SLICE_CHICKEN2 is programmed with a the 4551 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 4552 * programmed by userspace doesn't change this. 4553 */ 4554 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 4555 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 4556 4557 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 4558 * indicated by its name and a bunch of selection fields used by OA 4559 * configs. 4560 */ 4561 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 4562 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 4563 4564 return val; 4565 } 4566 4567 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 4568 bool (*is_valid)(struct i915_perf *perf, u32 addr), 4569 u32 __user *regs, 4570 u32 n_regs) 4571 { 4572 struct i915_oa_reg *oa_regs; 4573 int err; 4574 u32 i; 4575 4576 if (!n_regs) 4577 return NULL; 4578 4579 /* No is_valid function means we're not allowing any register to be programmed. */ 4580 GEM_BUG_ON(!is_valid); 4581 if (!is_valid) 4582 return ERR_PTR(-EINVAL); 4583 4584 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 4585 if (!oa_regs) 4586 return ERR_PTR(-ENOMEM); 4587 4588 for (i = 0; i < n_regs; i++) { 4589 u32 addr, value; 4590 4591 err = get_user(addr, regs); 4592 if (err) 4593 goto addr_err; 4594 4595 if (!is_valid(perf, addr)) { 4596 drm_dbg(&perf->i915->drm, 4597 "Invalid oa_reg address: %X\n", addr); 4598 err = -EINVAL; 4599 goto addr_err; 4600 } 4601 4602 err = get_user(value, regs + 1); 4603 if (err) 4604 goto addr_err; 4605 4606 oa_regs[i].addr = _MMIO(addr); 4607 oa_regs[i].value = mask_reg_value(addr, value); 4608 4609 regs += 2; 4610 } 4611 4612 return oa_regs; 4613 4614 addr_err: 4615 kfree(oa_regs); 4616 return ERR_PTR(err); 4617 } 4618 4619 static ssize_t show_dynamic_id(struct kobject *kobj, 4620 struct kobj_attribute *attr, 4621 char *buf) 4622 { 4623 struct i915_oa_config *oa_config = 4624 container_of(attr, typeof(*oa_config), sysfs_metric_id); 4625 4626 return sprintf(buf, "%d\n", oa_config->id); 4627 } 4628 4629 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 4630 struct i915_oa_config *oa_config) 4631 { 4632 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 4633 oa_config->sysfs_metric_id.attr.name = "id"; 4634 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 4635 oa_config->sysfs_metric_id.show = show_dynamic_id; 4636 oa_config->sysfs_metric_id.store = NULL; 4637 4638 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 4639 oa_config->attrs[1] = NULL; 4640 4641 oa_config->sysfs_metric.name = oa_config->uuid; 4642 oa_config->sysfs_metric.attrs = oa_config->attrs; 4643 4644 return sysfs_create_group(perf->metrics_kobj, 4645 &oa_config->sysfs_metric); 4646 } 4647 4648 /** 4649 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4650 * @dev: drm device 4651 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4652 * userspace (unvalidated) 4653 * @file: drm file 4654 * 4655 * Validates the submitted OA register to be saved into a new OA config that 4656 * can then be used for programming the OA unit and its NOA network. 4657 * 4658 * Returns: A new allocated config number to be used with the perf open ioctl 4659 * or a negative error code on failure. 4660 */ 4661 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4662 struct drm_file *file) 4663 { 4664 struct i915_perf *perf = &to_i915(dev)->perf; 4665 struct drm_i915_perf_oa_config *args = data; 4666 struct i915_oa_config *oa_config, *tmp; 4667 struct i915_oa_reg *regs; 4668 int err, id; 4669 4670 if (!perf->i915) { 4671 drm_dbg(&perf->i915->drm, 4672 "i915 perf interface not available for this system\n"); 4673 return -ENOTSUPP; 4674 } 4675 4676 if (!perf->metrics_kobj) { 4677 drm_dbg(&perf->i915->drm, 4678 "OA metrics weren't advertised via sysfs\n"); 4679 return -EINVAL; 4680 } 4681 4682 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4683 drm_dbg(&perf->i915->drm, 4684 "Insufficient privileges to add i915 OA config\n"); 4685 return -EACCES; 4686 } 4687 4688 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4689 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4690 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4691 drm_dbg(&perf->i915->drm, 4692 "No OA registers given\n"); 4693 return -EINVAL; 4694 } 4695 4696 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4697 if (!oa_config) { 4698 drm_dbg(&perf->i915->drm, 4699 "Failed to allocate memory for the OA config\n"); 4700 return -ENOMEM; 4701 } 4702 4703 oa_config->perf = perf; 4704 kref_init(&oa_config->ref); 4705 4706 if (!uuid_is_valid(args->uuid)) { 4707 drm_dbg(&perf->i915->drm, 4708 "Invalid uuid format for OA config\n"); 4709 err = -EINVAL; 4710 goto reg_err; 4711 } 4712 4713 /* Last character in oa_config->uuid will be 0 because oa_config is 4714 * kzalloc. 4715 */ 4716 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4717 4718 oa_config->mux_regs_len = args->n_mux_regs; 4719 regs = alloc_oa_regs(perf, 4720 perf->ops.is_valid_mux_reg, 4721 u64_to_user_ptr(args->mux_regs_ptr), 4722 args->n_mux_regs); 4723 4724 if (IS_ERR(regs)) { 4725 drm_dbg(&perf->i915->drm, 4726 "Failed to create OA config for mux_regs\n"); 4727 err = PTR_ERR(regs); 4728 goto reg_err; 4729 } 4730 oa_config->mux_regs = regs; 4731 4732 oa_config->b_counter_regs_len = args->n_boolean_regs; 4733 regs = alloc_oa_regs(perf, 4734 perf->ops.is_valid_b_counter_reg, 4735 u64_to_user_ptr(args->boolean_regs_ptr), 4736 args->n_boolean_regs); 4737 4738 if (IS_ERR(regs)) { 4739 drm_dbg(&perf->i915->drm, 4740 "Failed to create OA config for b_counter_regs\n"); 4741 err = PTR_ERR(regs); 4742 goto reg_err; 4743 } 4744 oa_config->b_counter_regs = regs; 4745 4746 if (GRAPHICS_VER(perf->i915) < 8) { 4747 if (args->n_flex_regs != 0) { 4748 err = -EINVAL; 4749 goto reg_err; 4750 } 4751 } else { 4752 oa_config->flex_regs_len = args->n_flex_regs; 4753 regs = alloc_oa_regs(perf, 4754 perf->ops.is_valid_flex_reg, 4755 u64_to_user_ptr(args->flex_regs_ptr), 4756 args->n_flex_regs); 4757 4758 if (IS_ERR(regs)) { 4759 drm_dbg(&perf->i915->drm, 4760 "Failed to create OA config for flex_regs\n"); 4761 err = PTR_ERR(regs); 4762 goto reg_err; 4763 } 4764 oa_config->flex_regs = regs; 4765 } 4766 4767 err = mutex_lock_interruptible(&perf->metrics_lock); 4768 if (err) 4769 goto reg_err; 4770 4771 /* We shouldn't have too many configs, so this iteration shouldn't be 4772 * too costly. 4773 */ 4774 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4775 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4776 drm_dbg(&perf->i915->drm, 4777 "OA config already exists with this uuid\n"); 4778 err = -EADDRINUSE; 4779 goto sysfs_err; 4780 } 4781 } 4782 4783 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4784 if (err) { 4785 drm_dbg(&perf->i915->drm, 4786 "Failed to create sysfs entry for OA config\n"); 4787 goto sysfs_err; 4788 } 4789 4790 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4791 oa_config->id = idr_alloc(&perf->metrics_idr, 4792 oa_config, 2, 4793 0, GFP_KERNEL); 4794 if (oa_config->id < 0) { 4795 drm_dbg(&perf->i915->drm, 4796 "Failed to create sysfs entry for OA config\n"); 4797 err = oa_config->id; 4798 goto sysfs_err; 4799 } 4800 id = oa_config->id; 4801 4802 drm_dbg(&perf->i915->drm, 4803 "Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4804 mutex_unlock(&perf->metrics_lock); 4805 4806 return id; 4807 4808 sysfs_err: 4809 mutex_unlock(&perf->metrics_lock); 4810 reg_err: 4811 i915_oa_config_put(oa_config); 4812 drm_dbg(&perf->i915->drm, 4813 "Failed to add new OA config\n"); 4814 return err; 4815 } 4816 4817 /** 4818 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4819 * @dev: drm device 4820 * @data: ioctl data (pointer to u64 integer) copied from userspace 4821 * @file: drm file 4822 * 4823 * Configs can be removed while being used, the will stop appearing in sysfs 4824 * and their content will be freed when the stream using the config is closed. 4825 * 4826 * Returns: 0 on success or a negative error code on failure. 4827 */ 4828 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4829 struct drm_file *file) 4830 { 4831 struct i915_perf *perf = &to_i915(dev)->perf; 4832 u64 *arg = data; 4833 struct i915_oa_config *oa_config; 4834 int ret; 4835 4836 if (!perf->i915) { 4837 drm_dbg(&perf->i915->drm, 4838 "i915 perf interface not available for this system\n"); 4839 return -ENOTSUPP; 4840 } 4841 4842 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4843 drm_dbg(&perf->i915->drm, 4844 "Insufficient privileges to remove i915 OA config\n"); 4845 return -EACCES; 4846 } 4847 4848 ret = mutex_lock_interruptible(&perf->metrics_lock); 4849 if (ret) 4850 return ret; 4851 4852 oa_config = idr_find(&perf->metrics_idr, *arg); 4853 if (!oa_config) { 4854 drm_dbg(&perf->i915->drm, 4855 "Failed to remove unknown OA config\n"); 4856 ret = -ENOENT; 4857 goto err_unlock; 4858 } 4859 4860 GEM_BUG_ON(*arg != oa_config->id); 4861 4862 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4863 4864 idr_remove(&perf->metrics_idr, *arg); 4865 4866 mutex_unlock(&perf->metrics_lock); 4867 4868 drm_dbg(&perf->i915->drm, 4869 "Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4870 4871 i915_oa_config_put(oa_config); 4872 4873 return 0; 4874 4875 err_unlock: 4876 mutex_unlock(&perf->metrics_lock); 4877 return ret; 4878 } 4879 4880 static struct ctl_table oa_table[] = { 4881 { 4882 .procname = "perf_stream_paranoid", 4883 .data = &i915_perf_stream_paranoid, 4884 .maxlen = sizeof(i915_perf_stream_paranoid), 4885 .mode = 0644, 4886 .proc_handler = proc_dointvec_minmax, 4887 .extra1 = SYSCTL_ZERO, 4888 .extra2 = SYSCTL_ONE, 4889 }, 4890 { 4891 .procname = "oa_max_sample_rate", 4892 .data = &i915_oa_max_sample_rate, 4893 .maxlen = sizeof(i915_oa_max_sample_rate), 4894 .mode = 0644, 4895 .proc_handler = proc_dointvec_minmax, 4896 .extra1 = SYSCTL_ZERO, 4897 .extra2 = &oa_sample_rate_hard_limit, 4898 }, 4899 {} 4900 }; 4901 4902 static u32 num_perf_groups_per_gt(struct intel_gt *gt) 4903 { 4904 return 1; 4905 } 4906 4907 static u32 __oam_engine_group(struct intel_engine_cs *engine) 4908 { 4909 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) { 4910 /* 4911 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices 4912 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA. 4913 */ 4914 drm_WARN_ON(&engine->i915->drm, 4915 engine->gt->type != GT_MEDIA); 4916 4917 return PERF_GROUP_OAM_SAMEDIA_0; 4918 } 4919 4920 return PERF_GROUP_INVALID; 4921 } 4922 4923 static u32 __oa_engine_group(struct intel_engine_cs *engine) 4924 { 4925 switch (engine->class) { 4926 case RENDER_CLASS: 4927 return PERF_GROUP_OAG; 4928 4929 case VIDEO_DECODE_CLASS: 4930 case VIDEO_ENHANCEMENT_CLASS: 4931 return __oam_engine_group(engine); 4932 4933 default: 4934 return PERF_GROUP_INVALID; 4935 } 4936 } 4937 4938 static struct i915_perf_regs __oam_regs(u32 base) 4939 { 4940 return (struct i915_perf_regs) { 4941 base, 4942 GEN12_OAM_HEAD_POINTER(base), 4943 GEN12_OAM_TAIL_POINTER(base), 4944 GEN12_OAM_BUFFER(base), 4945 GEN12_OAM_CONTEXT_CONTROL(base), 4946 GEN12_OAM_CONTROL(base), 4947 GEN12_OAM_DEBUG(base), 4948 GEN12_OAM_STATUS(base), 4949 GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT, 4950 }; 4951 } 4952 4953 static struct i915_perf_regs __oag_regs(void) 4954 { 4955 return (struct i915_perf_regs) { 4956 0, 4957 GEN12_OAG_OAHEADPTR, 4958 GEN12_OAG_OATAILPTR, 4959 GEN12_OAG_OABUFFER, 4960 GEN12_OAG_OAGLBCTXCTRL, 4961 GEN12_OAG_OACONTROL, 4962 GEN12_OAG_OA_DEBUG, 4963 GEN12_OAG_OASTATUS, 4964 GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT, 4965 }; 4966 } 4967 4968 static void oa_init_groups(struct intel_gt *gt) 4969 { 4970 int i, num_groups = gt->perf.num_perf_groups; 4971 4972 for (i = 0; i < num_groups; i++) { 4973 struct i915_perf_group *g = >->perf.group[i]; 4974 4975 /* Fused off engines can result in a group with num_engines == 0 */ 4976 if (g->num_engines == 0) 4977 continue; 4978 4979 if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) { 4980 g->regs = __oag_regs(); 4981 g->type = TYPE_OAG; 4982 } else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { 4983 g->regs = __oam_regs(mtl_oa_base[i]); 4984 g->type = TYPE_OAM; 4985 } 4986 } 4987 } 4988 4989 static int oa_init_gt(struct intel_gt *gt) 4990 { 4991 u32 num_groups = num_perf_groups_per_gt(gt); 4992 struct intel_engine_cs *engine; 4993 struct i915_perf_group *g; 4994 intel_engine_mask_t tmp; 4995 4996 g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL); 4997 if (!g) 4998 return -ENOMEM; 4999 5000 for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) { 5001 u32 index = __oa_engine_group(engine); 5002 5003 engine->oa_group = NULL; 5004 if (index < num_groups) { 5005 g[index].num_engines++; 5006 engine->oa_group = &g[index]; 5007 } 5008 } 5009 5010 gt->perf.num_perf_groups = num_groups; 5011 gt->perf.group = g; 5012 5013 oa_init_groups(gt); 5014 5015 return 0; 5016 } 5017 5018 static int oa_init_engine_groups(struct i915_perf *perf) 5019 { 5020 struct intel_gt *gt; 5021 int i, ret; 5022 5023 for_each_gt(gt, perf->i915, i) { 5024 ret = oa_init_gt(gt); 5025 if (ret) 5026 return ret; 5027 } 5028 5029 return 0; 5030 } 5031 5032 static void oa_init_supported_formats(struct i915_perf *perf) 5033 { 5034 struct drm_i915_private *i915 = perf->i915; 5035 enum intel_platform platform = INTEL_INFO(i915)->platform; 5036 5037 switch (platform) { 5038 case INTEL_HASWELL: 5039 oa_format_add(perf, I915_OA_FORMAT_A13); 5040 oa_format_add(perf, I915_OA_FORMAT_A13); 5041 oa_format_add(perf, I915_OA_FORMAT_A29); 5042 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8); 5043 oa_format_add(perf, I915_OA_FORMAT_B4_C8); 5044 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8); 5045 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16); 5046 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 5047 break; 5048 5049 case INTEL_BROADWELL: 5050 case INTEL_CHERRYVIEW: 5051 case INTEL_SKYLAKE: 5052 case INTEL_BROXTON: 5053 case INTEL_KABYLAKE: 5054 case INTEL_GEMINILAKE: 5055 case INTEL_COFFEELAKE: 5056 case INTEL_COMETLAKE: 5057 case INTEL_ICELAKE: 5058 case INTEL_ELKHARTLAKE: 5059 case INTEL_JASPERLAKE: 5060 case INTEL_TIGERLAKE: 5061 case INTEL_ROCKETLAKE: 5062 case INTEL_DG1: 5063 case INTEL_ALDERLAKE_S: 5064 case INTEL_ALDERLAKE_P: 5065 oa_format_add(perf, I915_OA_FORMAT_A12); 5066 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8); 5067 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8); 5068 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 5069 break; 5070 5071 case INTEL_DG2: 5072 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8); 5073 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8); 5074 break; 5075 5076 case INTEL_METEORLAKE: 5077 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8); 5078 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8); 5079 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8); 5080 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8); 5081 break; 5082 5083 default: 5084 MISSING_CASE(platform); 5085 } 5086 } 5087 5088 static void i915_perf_init_info(struct drm_i915_private *i915) 5089 { 5090 struct i915_perf *perf = &i915->perf; 5091 5092 switch (GRAPHICS_VER(i915)) { 5093 case 8: 5094 perf->ctx_oactxctrl_offset = 0x120; 5095 perf->ctx_flexeu0_offset = 0x2ce; 5096 perf->gen8_valid_ctx_bit = BIT(25); 5097 break; 5098 case 9: 5099 perf->ctx_oactxctrl_offset = 0x128; 5100 perf->ctx_flexeu0_offset = 0x3de; 5101 perf->gen8_valid_ctx_bit = BIT(16); 5102 break; 5103 case 11: 5104 perf->ctx_oactxctrl_offset = 0x124; 5105 perf->ctx_flexeu0_offset = 0x78e; 5106 perf->gen8_valid_ctx_bit = BIT(16); 5107 break; 5108 case 12: 5109 /* 5110 * Calculate offset at runtime in oa_pin_context for gen12 and 5111 * cache the value in perf->ctx_oactxctrl_offset. 5112 */ 5113 break; 5114 default: 5115 MISSING_CASE(GRAPHICS_VER(i915)); 5116 } 5117 } 5118 5119 /** 5120 * i915_perf_init - initialize i915-perf state on module bind 5121 * @i915: i915 device instance 5122 * 5123 * Initializes i915-perf state without exposing anything to userspace. 5124 * 5125 * Note: i915-perf initialization is split into an 'init' and 'register' 5126 * phase with the i915_perf_register() exposing state to userspace. 5127 */ 5128 int i915_perf_init(struct drm_i915_private *i915) 5129 { 5130 struct i915_perf *perf = &i915->perf; 5131 5132 perf->oa_formats = oa_formats; 5133 if (IS_HASWELL(i915)) { 5134 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 5135 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 5136 perf->ops.is_valid_flex_reg = NULL; 5137 perf->ops.enable_metric_set = hsw_enable_metric_set; 5138 perf->ops.disable_metric_set = hsw_disable_metric_set; 5139 perf->ops.oa_enable = gen7_oa_enable; 5140 perf->ops.oa_disable = gen7_oa_disable; 5141 perf->ops.read = gen7_oa_read; 5142 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 5143 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 5144 /* Note: that although we could theoretically also support the 5145 * legacy ringbuffer mode on BDW (and earlier iterations of 5146 * this driver, before upstreaming did this) it didn't seem 5147 * worth the complexity to maintain now that BDW+ enable 5148 * execlist mode by default. 5149 */ 5150 perf->ops.read = gen8_oa_read; 5151 i915_perf_init_info(i915); 5152 5153 if (IS_GRAPHICS_VER(i915, 8, 9)) { 5154 perf->ops.is_valid_b_counter_reg = 5155 gen7_is_valid_b_counter_addr; 5156 perf->ops.is_valid_mux_reg = 5157 gen8_is_valid_mux_addr; 5158 perf->ops.is_valid_flex_reg = 5159 gen8_is_valid_flex_addr; 5160 5161 if (IS_CHERRYVIEW(i915)) { 5162 perf->ops.is_valid_mux_reg = 5163 chv_is_valid_mux_addr; 5164 } 5165 5166 perf->ops.oa_enable = gen8_oa_enable; 5167 perf->ops.oa_disable = gen8_oa_disable; 5168 perf->ops.enable_metric_set = gen8_enable_metric_set; 5169 perf->ops.disable_metric_set = gen8_disable_metric_set; 5170 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 5171 } else if (GRAPHICS_VER(i915) == 11) { 5172 perf->ops.is_valid_b_counter_reg = 5173 gen7_is_valid_b_counter_addr; 5174 perf->ops.is_valid_mux_reg = 5175 gen11_is_valid_mux_addr; 5176 perf->ops.is_valid_flex_reg = 5177 gen8_is_valid_flex_addr; 5178 5179 perf->ops.oa_enable = gen8_oa_enable; 5180 perf->ops.oa_disable = gen8_oa_disable; 5181 perf->ops.enable_metric_set = gen8_enable_metric_set; 5182 perf->ops.disable_metric_set = gen11_disable_metric_set; 5183 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 5184 } else if (GRAPHICS_VER(i915) == 12) { 5185 perf->ops.is_valid_b_counter_reg = 5186 HAS_OA_SLICE_CONTRIB_LIMITS(i915) ? 5187 xehp_is_valid_b_counter_addr : 5188 gen12_is_valid_b_counter_addr; 5189 perf->ops.is_valid_mux_reg = 5190 gen12_is_valid_mux_addr; 5191 perf->ops.is_valid_flex_reg = 5192 gen8_is_valid_flex_addr; 5193 5194 perf->ops.oa_enable = gen12_oa_enable; 5195 perf->ops.oa_disable = gen12_oa_disable; 5196 perf->ops.enable_metric_set = gen12_enable_metric_set; 5197 perf->ops.disable_metric_set = gen12_disable_metric_set; 5198 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 5199 } 5200 } 5201 5202 if (perf->ops.enable_metric_set) { 5203 struct intel_gt *gt; 5204 int i, ret; 5205 5206 for_each_gt(gt, i915, i) 5207 mutex_init(>->perf.lock); 5208 5209 /* Choose a representative limit */ 5210 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2; 5211 5212 mutex_init(&perf->metrics_lock); 5213 idr_init_base(&perf->metrics_idr, 1); 5214 5215 /* We set up some ratelimit state to potentially throttle any 5216 * _NOTES about spurious, invalid OA reports which we don't 5217 * forward to userspace. 5218 * 5219 * We print a _NOTE about any throttling when closing the 5220 * stream instead of waiting until driver _fini which no one 5221 * would ever see. 5222 * 5223 * Using the same limiting factors as printk_ratelimit() 5224 */ 5225 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 5226 /* Since we use a DRM_NOTE for spurious reports it would be 5227 * inconsistent to let __ratelimit() automatically print a 5228 * warning for throttling. 5229 */ 5230 ratelimit_set_flags(&perf->spurious_report_rs, 5231 RATELIMIT_MSG_ON_RELEASE); 5232 5233 ratelimit_state_init(&perf->tail_pointer_race, 5234 5 * HZ, 10); 5235 ratelimit_set_flags(&perf->tail_pointer_race, 5236 RATELIMIT_MSG_ON_RELEASE); 5237 5238 atomic64_set(&perf->noa_programming_delay, 5239 500 * 1000 /* 500us */); 5240 5241 perf->i915 = i915; 5242 5243 ret = oa_init_engine_groups(perf); 5244 if (ret) { 5245 drm_err(&i915->drm, 5246 "OA initialization failed %d\n", ret); 5247 return ret; 5248 } 5249 5250 oa_init_supported_formats(perf); 5251 } 5252 5253 return 0; 5254 } 5255 5256 static int destroy_config(int id, void *p, void *data) 5257 { 5258 i915_oa_config_put(p); 5259 return 0; 5260 } 5261 5262 int i915_perf_sysctl_register(void) 5263 { 5264 sysctl_header = register_sysctl("dev/i915", oa_table); 5265 return 0; 5266 } 5267 5268 void i915_perf_sysctl_unregister(void) 5269 { 5270 unregister_sysctl_table(sysctl_header); 5271 } 5272 5273 /** 5274 * i915_perf_fini - Counter part to i915_perf_init() 5275 * @i915: i915 device instance 5276 */ 5277 void i915_perf_fini(struct drm_i915_private *i915) 5278 { 5279 struct i915_perf *perf = &i915->perf; 5280 struct intel_gt *gt; 5281 int i; 5282 5283 if (!perf->i915) 5284 return; 5285 5286 for_each_gt(gt, perf->i915, i) 5287 kfree(gt->perf.group); 5288 5289 idr_for_each(&perf->metrics_idr, destroy_config, perf); 5290 idr_destroy(&perf->metrics_idr); 5291 5292 memset(&perf->ops, 0, sizeof(perf->ops)); 5293 perf->i915 = NULL; 5294 } 5295 5296 /** 5297 * i915_perf_ioctl_version - Version of the i915-perf subsystem 5298 * @i915: The i915 device 5299 * 5300 * This version number is used by userspace to detect available features. 5301 */ 5302 int i915_perf_ioctl_version(struct drm_i915_private *i915) 5303 { 5304 /* 5305 * 1: Initial version 5306 * I915_PERF_IOCTL_ENABLE 5307 * I915_PERF_IOCTL_DISABLE 5308 * 5309 * 2: Added runtime modification of OA config. 5310 * I915_PERF_IOCTL_CONFIG 5311 * 5312 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 5313 * preemption on a particular context so that performance data is 5314 * accessible from a delta of MI_RPC reports without looking at the 5315 * OA buffer. 5316 * 5317 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 5318 * be run for the duration of the performance recording based on 5319 * their SSEU configuration. 5320 * 5321 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 5322 * interval for the hrtimer used to check for OA data. 5323 * 5324 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and 5325 * DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE 5326 * 5327 * 7: Add support for video decode and enhancement classes. 5328 */ 5329 5330 /* 5331 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media 5332 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6 5333 * to indicate that OA media is not supported. 5334 */ 5335 if (IS_MTL_MEDIA_STEP(i915, STEP_A0, STEP_C0)) { 5336 struct intel_gt *gt; 5337 int i; 5338 5339 for_each_gt(gt, i915, i) { 5340 if (gt->type == GT_MEDIA && 5341 intel_check_bios_c6_setup(>->rc6)) 5342 return 6; 5343 } 5344 } 5345 5346 return 7; 5347 } 5348 5349 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5350 #include "selftests/i915_perf.c" 5351 #endif 5352