1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gt/intel_engine_pm.h" 200 #include "gt/intel_engine_user.h" 201 #include "gt/intel_gt.h" 202 #include "gt/intel_lrc_reg.h" 203 #include "gt/intel_ring.h" 204 205 #include "i915_drv.h" 206 #include "i915_perf.h" 207 #include "oa/i915_oa_hsw.h" 208 #include "oa/i915_oa_bdw.h" 209 #include "oa/i915_oa_chv.h" 210 #include "oa/i915_oa_sklgt2.h" 211 #include "oa/i915_oa_sklgt3.h" 212 #include "oa/i915_oa_sklgt4.h" 213 #include "oa/i915_oa_bxt.h" 214 #include "oa/i915_oa_kblgt2.h" 215 #include "oa/i915_oa_kblgt3.h" 216 #include "oa/i915_oa_glk.h" 217 #include "oa/i915_oa_cflgt2.h" 218 #include "oa/i915_oa_cflgt3.h" 219 #include "oa/i915_oa_cnl.h" 220 #include "oa/i915_oa_icl.h" 221 #include "oa/i915_oa_tgl.h" 222 223 /* HW requires this to be a power of two, between 128k and 16M, though driver 224 * is currently generally designed assuming the largest 16M size is used such 225 * that the overflow cases are unlikely in normal operation. 226 */ 227 #define OA_BUFFER_SIZE SZ_16M 228 229 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 230 231 /** 232 * DOC: OA Tail Pointer Race 233 * 234 * There's a HW race condition between OA unit tail pointer register updates and 235 * writes to memory whereby the tail pointer can sometimes get ahead of what's 236 * been written out to the OA buffer so far (in terms of what's visible to the 237 * CPU). 238 * 239 * Although this can be observed explicitly while copying reports to userspace 240 * by checking for a zeroed report-id field in tail reports, we want to account 241 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant 242 * read() attempts. 243 * 244 * In effect we define a tail pointer for reading that lags the real tail 245 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough 246 * time for the corresponding reports to become visible to the CPU. 247 * 248 * To manage this we actually track two tail pointers: 249 * 1) An 'aging' tail with an associated timestamp that is tracked until we 250 * can trust the corresponding data is visible to the CPU; at which point 251 * it is considered 'aged'. 252 * 2) An 'aged' tail that can be used for read()ing. 253 * 254 * The two separate pointers let us decouple read()s from tail pointer aging. 255 * 256 * The tail pointers are checked and updated at a limited rate within a hrtimer 257 * callback (the same callback that is used for delivering EPOLLIN events) 258 * 259 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which 260 * indicates that an updated tail pointer is needed. 261 * 262 * Most of the implementation details for this workaround are in 263 * oa_buffer_check_unlocked() and _append_oa_reports() 264 * 265 * Note for posterity: previously the driver used to define an effective tail 266 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 267 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 268 * This was flawed considering that the OA unit may also automatically generate 269 * non-periodic reports (such as on context switch) or the OA unit may be 270 * enabled without any periodic sampling. 271 */ 272 #define OA_TAIL_MARGIN_NSEC 100000ULL 273 #define INVALID_TAIL_PTR 0xffffffff 274 275 /* frequency for checking whether the OA unit has written new reports to the 276 * circular OA buffer... 277 */ 278 #define POLL_FREQUENCY 200 279 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY) 280 281 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 282 static u32 i915_perf_stream_paranoid = true; 283 284 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 285 * of the 64bit timestamp bits to trigger reports from) but there's currently 286 * no known use case for sampling as infrequently as once per 47 thousand years. 287 * 288 * Since the timestamps included in OA reports are only 32bits it seems 289 * reasonable to limit the OA exponent where it's still possible to account for 290 * overflow in OA report timestamps. 291 */ 292 #define OA_EXPONENT_MAX 31 293 294 #define INVALID_CTX_ID 0xffffffff 295 296 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 297 #define OAREPORT_REASON_MASK 0x3f 298 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 299 #define OAREPORT_REASON_SHIFT 19 300 #define OAREPORT_REASON_TIMER (1<<0) 301 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 302 #define OAREPORT_REASON_CLK_RATIO (1<<5) 303 304 305 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 306 * 307 * The highest sampling frequency we can theoretically program the OA unit 308 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 309 * 310 * Initialized just before we register the sysctl parameter. 311 */ 312 static int oa_sample_rate_hard_limit; 313 314 /* Theoretically we can program the OA unit to sample every 160ns but don't 315 * allow that by default unless root... 316 * 317 * The default threshold of 100000Hz is based on perf's similar 318 * kernel.perf_event_max_sample_rate sysctl parameter. 319 */ 320 static u32 i915_oa_max_sample_rate = 100000; 321 322 /* XXX: beware if future OA HW adds new report formats that the current 323 * code assumes all reports have a power-of-two size and ~(size - 1) can 324 * be used as a mask to align the OA tail pointer. 325 */ 326 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 327 [I915_OA_FORMAT_A13] = { 0, 64 }, 328 [I915_OA_FORMAT_A29] = { 1, 128 }, 329 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 330 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 331 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 332 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 333 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 334 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 335 }; 336 337 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { 338 [I915_OA_FORMAT_A12] = { 0, 64 }, 339 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 340 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 341 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 342 }; 343 344 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = { 345 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 346 }; 347 348 #define SAMPLE_OA_REPORT (1<<0) 349 350 /** 351 * struct perf_open_properties - for validated properties given to open a stream 352 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 353 * @single_context: Whether a single or all gpu contexts should be monitored 354 * @hold_preemption: Whether the preemption is disabled for the filtered 355 * context 356 * @ctx_handle: A gem ctx handle for use with @single_context 357 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 358 * @oa_format: An OA unit HW report format 359 * @oa_periodic: Whether to enable periodic OA unit sampling 360 * @oa_period_exponent: The OA unit sampling period is derived from this 361 * @engine: The engine (typically rcs0) being monitored by the OA unit 362 * 363 * As read_properties_unlocked() enumerates and validates the properties given 364 * to open a stream of metrics the configuration is built up in the structure 365 * which starts out zero initialized. 366 */ 367 struct perf_open_properties { 368 u32 sample_flags; 369 370 u64 single_context:1; 371 u64 hold_preemption:1; 372 u64 ctx_handle; 373 374 /* OA sampling state */ 375 int metrics_set; 376 int oa_format; 377 bool oa_periodic; 378 int oa_period_exponent; 379 380 struct intel_engine_cs *engine; 381 }; 382 383 struct i915_oa_config_bo { 384 struct llist_node node; 385 386 struct i915_oa_config *oa_config; 387 struct i915_vma *vma; 388 }; 389 390 static struct ctl_table_header *sysctl_header; 391 392 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 393 394 void i915_oa_config_release(struct kref *ref) 395 { 396 struct i915_oa_config *oa_config = 397 container_of(ref, typeof(*oa_config), ref); 398 399 kfree(oa_config->flex_regs); 400 kfree(oa_config->b_counter_regs); 401 kfree(oa_config->mux_regs); 402 403 kfree_rcu(oa_config, rcu); 404 } 405 406 struct i915_oa_config * 407 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 408 { 409 struct i915_oa_config *oa_config; 410 411 rcu_read_lock(); 412 if (metrics_set == 1) 413 oa_config = &perf->test_config; 414 else 415 oa_config = idr_find(&perf->metrics_idr, metrics_set); 416 if (oa_config) 417 oa_config = i915_oa_config_get(oa_config); 418 rcu_read_unlock(); 419 420 return oa_config; 421 } 422 423 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 424 { 425 i915_oa_config_put(oa_bo->oa_config); 426 i915_vma_put(oa_bo->vma); 427 kfree(oa_bo); 428 } 429 430 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 431 { 432 struct intel_uncore *uncore = stream->uncore; 433 434 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 435 GEN12_OAG_OATAILPTR_MASK; 436 } 437 438 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 439 { 440 struct intel_uncore *uncore = stream->uncore; 441 442 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 443 } 444 445 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 446 { 447 struct intel_uncore *uncore = stream->uncore; 448 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 449 450 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 451 } 452 453 /** 454 * oa_buffer_check_unlocked - check for data and update tail ptr state 455 * @stream: i915 stream instance 456 * 457 * This is either called via fops (for blocking reads in user ctx) or the poll 458 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 459 * if there is data available for userspace to read. 460 * 461 * This function is central to providing a workaround for the OA unit tail 462 * pointer having a race with respect to what data is visible to the CPU. 463 * It is responsible for reading tail pointers from the hardware and giving 464 * the pointers time to 'age' before they are made available for reading. 465 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 466 * 467 * Besides returning true when there is data available to read() this function 468 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp 469 * and .aged_tail_idx state used for reading. 470 * 471 * Note: It's safe to read OA config state here unlocked, assuming that this is 472 * only called while the stream is enabled, while the global OA configuration 473 * can't be modified. 474 * 475 * Returns: %true if the OA buffer contains data, else %false 476 */ 477 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 478 { 479 int report_size = stream->oa_buffer.format_size; 480 unsigned long flags; 481 unsigned int aged_idx; 482 u32 head, hw_tail, aged_tail, aging_tail; 483 u64 now; 484 485 /* We have to consider the (unlikely) possibility that read() errors 486 * could result in an OA buffer reset which might reset the head, 487 * tails[] and aged_tail state. 488 */ 489 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 490 491 /* NB: The head we observe here might effectively be a little out of 492 * date (between head and tails[aged_idx].offset if there is currently 493 * a read() in progress. 494 */ 495 head = stream->oa_buffer.head; 496 497 aged_idx = stream->oa_buffer.aged_tail_idx; 498 aged_tail = stream->oa_buffer.tails[aged_idx].offset; 499 aging_tail = stream->oa_buffer.tails[!aged_idx].offset; 500 501 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 502 503 /* The tail pointer increases in 64 byte increments, 504 * not in report_size steps... 505 */ 506 hw_tail &= ~(report_size - 1); 507 508 now = ktime_get_mono_fast_ns(); 509 510 /* Update the aged tail 511 * 512 * Flip the tail pointer available for read()s once the aging tail is 513 * old enough to trust that the corresponding data will be visible to 514 * the CPU... 515 * 516 * Do this before updating the aging pointer in case we may be able to 517 * immediately start aging a new pointer too (if new data has become 518 * available) without needing to wait for a later hrtimer callback. 519 */ 520 if (aging_tail != INVALID_TAIL_PTR && 521 ((now - stream->oa_buffer.aging_timestamp) > 522 OA_TAIL_MARGIN_NSEC)) { 523 524 aged_idx ^= 1; 525 stream->oa_buffer.aged_tail_idx = aged_idx; 526 527 aged_tail = aging_tail; 528 529 /* Mark that we need a new pointer to start aging... */ 530 stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR; 531 aging_tail = INVALID_TAIL_PTR; 532 } 533 534 /* Update the aging tail 535 * 536 * We throttle aging tail updates until we have a new tail that 537 * represents >= one report more data than is already available for 538 * reading. This ensures there will be enough data for a successful 539 * read once this new pointer has aged and ensures we will give the new 540 * pointer time to age. 541 */ 542 if (aging_tail == INVALID_TAIL_PTR && 543 (aged_tail == INVALID_TAIL_PTR || 544 OA_TAKEN(hw_tail, aged_tail) >= report_size)) { 545 struct i915_vma *vma = stream->oa_buffer.vma; 546 u32 gtt_offset = i915_ggtt_offset(vma); 547 548 /* Be paranoid and do a bounds check on the pointer read back 549 * from hardware, just in case some spurious hardware condition 550 * could put the tail out of bounds... 551 */ 552 if (hw_tail >= gtt_offset && 553 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) { 554 stream->oa_buffer.tails[!aged_idx].offset = 555 aging_tail = hw_tail; 556 stream->oa_buffer.aging_timestamp = now; 557 } else { 558 drm_err(&stream->perf->i915->drm, 559 "Ignoring spurious out of range OA buffer tail pointer = %x\n", 560 hw_tail); 561 } 562 } 563 564 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 565 566 return aged_tail == INVALID_TAIL_PTR ? 567 false : OA_TAKEN(aged_tail, head) >= report_size; 568 } 569 570 /** 571 * append_oa_status - Appends a status record to a userspace read() buffer. 572 * @stream: An i915-perf stream opened for OA metrics 573 * @buf: destination buffer given by userspace 574 * @count: the number of bytes userspace wants to read 575 * @offset: (inout): the current position for writing into @buf 576 * @type: The kind of status to report to userspace 577 * 578 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 579 * into the userspace read() buffer. 580 * 581 * The @buf @offset will only be updated on success. 582 * 583 * Returns: 0 on success, negative error code on failure. 584 */ 585 static int append_oa_status(struct i915_perf_stream *stream, 586 char __user *buf, 587 size_t count, 588 size_t *offset, 589 enum drm_i915_perf_record_type type) 590 { 591 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 592 593 if ((count - *offset) < header.size) 594 return -ENOSPC; 595 596 if (copy_to_user(buf + *offset, &header, sizeof(header))) 597 return -EFAULT; 598 599 (*offset) += header.size; 600 601 return 0; 602 } 603 604 /** 605 * append_oa_sample - Copies single OA report into userspace read() buffer. 606 * @stream: An i915-perf stream opened for OA metrics 607 * @buf: destination buffer given by userspace 608 * @count: the number of bytes userspace wants to read 609 * @offset: (inout): the current position for writing into @buf 610 * @report: A single OA report to (optionally) include as part of the sample 611 * 612 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 613 * properties when opening a stream, tracked as `stream->sample_flags`. This 614 * function copies the requested components of a single sample to the given 615 * read() @buf. 616 * 617 * The @buf @offset will only be updated on success. 618 * 619 * Returns: 0 on success, negative error code on failure. 620 */ 621 static int append_oa_sample(struct i915_perf_stream *stream, 622 char __user *buf, 623 size_t count, 624 size_t *offset, 625 const u8 *report) 626 { 627 int report_size = stream->oa_buffer.format_size; 628 struct drm_i915_perf_record_header header; 629 u32 sample_flags = stream->sample_flags; 630 631 header.type = DRM_I915_PERF_RECORD_SAMPLE; 632 header.pad = 0; 633 header.size = stream->sample_size; 634 635 if ((count - *offset) < header.size) 636 return -ENOSPC; 637 638 buf += *offset; 639 if (copy_to_user(buf, &header, sizeof(header))) 640 return -EFAULT; 641 buf += sizeof(header); 642 643 if (sample_flags & SAMPLE_OA_REPORT) { 644 if (copy_to_user(buf, report, report_size)) 645 return -EFAULT; 646 } 647 648 (*offset) += header.size; 649 650 return 0; 651 } 652 653 /** 654 * Copies all buffered OA reports into userspace read() buffer. 655 * @stream: An i915-perf stream opened for OA metrics 656 * @buf: destination buffer given by userspace 657 * @count: the number of bytes userspace wants to read 658 * @offset: (inout): the current position for writing into @buf 659 * 660 * Notably any error condition resulting in a short read (-%ENOSPC or 661 * -%EFAULT) will be returned even though one or more records may 662 * have been successfully copied. In this case it's up to the caller 663 * to decide if the error should be squashed before returning to 664 * userspace. 665 * 666 * Note: reports are consumed from the head, and appended to the 667 * tail, so the tail chases the head?... If you think that's mad 668 * and back-to-front you're not alone, but this follows the 669 * Gen PRM naming convention. 670 * 671 * Returns: 0 on success, negative error code on failure. 672 */ 673 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 674 char __user *buf, 675 size_t count, 676 size_t *offset) 677 { 678 struct intel_uncore *uncore = stream->uncore; 679 int report_size = stream->oa_buffer.format_size; 680 u8 *oa_buf_base = stream->oa_buffer.vaddr; 681 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 682 u32 mask = (OA_BUFFER_SIZE - 1); 683 size_t start_offset = *offset; 684 unsigned long flags; 685 unsigned int aged_tail_idx; 686 u32 head, tail; 687 u32 taken; 688 int ret = 0; 689 690 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 691 return -EIO; 692 693 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 694 695 head = stream->oa_buffer.head; 696 aged_tail_idx = stream->oa_buffer.aged_tail_idx; 697 tail = stream->oa_buffer.tails[aged_tail_idx].offset; 698 699 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 700 701 /* 702 * An invalid tail pointer here means we're still waiting for the poll 703 * hrtimer callback to give us a pointer 704 */ 705 if (tail == INVALID_TAIL_PTR) 706 return -EAGAIN; 707 708 /* 709 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 710 * while indexing relative to oa_buf_base. 711 */ 712 head -= gtt_offset; 713 tail -= gtt_offset; 714 715 /* 716 * An out of bounds or misaligned head or tail pointer implies a driver 717 * bug since we validate + align the tail pointers we read from the 718 * hardware and we are in full control of the head pointer which should 719 * only be incremented by multiples of the report size (notably also 720 * all a power of two). 721 */ 722 if (drm_WARN_ONCE(&uncore->i915->drm, 723 head > OA_BUFFER_SIZE || head % report_size || 724 tail > OA_BUFFER_SIZE || tail % report_size, 725 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 726 head, tail)) 727 return -EIO; 728 729 730 for (/* none */; 731 (taken = OA_TAKEN(tail, head)); 732 head = (head + report_size) & mask) { 733 u8 *report = oa_buf_base + head; 734 u32 *report32 = (void *)report; 735 u32 ctx_id; 736 u32 reason; 737 738 /* 739 * All the report sizes factor neatly into the buffer 740 * size so we never expect to see a report split 741 * between the beginning and end of the buffer. 742 * 743 * Given the initial alignment check a misalignment 744 * here would imply a driver bug that would result 745 * in an overrun. 746 */ 747 if (drm_WARN_ON(&uncore->i915->drm, 748 (OA_BUFFER_SIZE - head) < report_size)) { 749 drm_err(&uncore->i915->drm, 750 "Spurious OA head ptr: non-integral report offset\n"); 751 break; 752 } 753 754 /* 755 * The reason field includes flags identifying what 756 * triggered this specific report (mostly timer 757 * triggered or e.g. due to a context switch). 758 * 759 * This field is never expected to be zero so we can 760 * check that the report isn't invalid before copying 761 * it to userspace... 762 */ 763 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 764 (IS_GEN(stream->perf->i915, 12) ? 765 OAREPORT_REASON_MASK_EXTENDED : 766 OAREPORT_REASON_MASK)); 767 if (reason == 0) { 768 if (__ratelimit(&stream->perf->spurious_report_rs)) 769 DRM_NOTE("Skipping spurious, invalid OA report\n"); 770 continue; 771 } 772 773 ctx_id = report32[2] & stream->specific_ctx_id_mask; 774 775 /* 776 * Squash whatever is in the CTX_ID field if it's marked as 777 * invalid to be sure we avoid false-positive, single-context 778 * filtering below... 779 * 780 * Note: that we don't clear the valid_ctx_bit so userspace can 781 * understand that the ID has been squashed by the kernel. 782 */ 783 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 784 INTEL_GEN(stream->perf->i915) <= 11) 785 ctx_id = report32[2] = INVALID_CTX_ID; 786 787 /* 788 * NB: For Gen 8 the OA unit no longer supports clock gating 789 * off for a specific context and the kernel can't securely 790 * stop the counters from updating as system-wide / global 791 * values. 792 * 793 * Automatic reports now include a context ID so reports can be 794 * filtered on the cpu but it's not worth trying to 795 * automatically subtract/hide counter progress for other 796 * contexts while filtering since we can't stop userspace 797 * issuing MI_REPORT_PERF_COUNT commands which would still 798 * provide a side-band view of the real values. 799 * 800 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 801 * to normalize counters for a single filtered context then it 802 * needs be forwarded bookend context-switch reports so that it 803 * can track switches in between MI_REPORT_PERF_COUNT commands 804 * and can itself subtract/ignore the progress of counters 805 * associated with other contexts. Note that the hardware 806 * automatically triggers reports when switching to a new 807 * context which are tagged with the ID of the newly active 808 * context. To avoid the complexity (and likely fragility) of 809 * reading ahead while parsing reports to try and minimize 810 * forwarding redundant context switch reports (i.e. between 811 * other, unrelated contexts) we simply elect to forward them 812 * all. 813 * 814 * We don't rely solely on the reason field to identify context 815 * switches since it's not-uncommon for periodic samples to 816 * identify a switch before any 'context switch' report. 817 */ 818 if (!stream->perf->exclusive_stream->ctx || 819 stream->specific_ctx_id == ctx_id || 820 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 821 reason & OAREPORT_REASON_CTX_SWITCH) { 822 823 /* 824 * While filtering for a single context we avoid 825 * leaking the IDs of other contexts. 826 */ 827 if (stream->perf->exclusive_stream->ctx && 828 stream->specific_ctx_id != ctx_id) { 829 report32[2] = INVALID_CTX_ID; 830 } 831 832 ret = append_oa_sample(stream, buf, count, offset, 833 report); 834 if (ret) 835 break; 836 837 stream->oa_buffer.last_ctx_id = ctx_id; 838 } 839 840 /* 841 * The above reason field sanity check is based on 842 * the assumption that the OA buffer is initially 843 * zeroed and we reset the field after copying so the 844 * check is still meaningful once old reports start 845 * being overwritten. 846 */ 847 report32[0] = 0; 848 } 849 850 if (start_offset != *offset) { 851 i915_reg_t oaheadptr; 852 853 oaheadptr = IS_GEN(stream->perf->i915, 12) ? 854 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 855 856 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 857 858 /* 859 * We removed the gtt_offset for the copy loop above, indexing 860 * relative to oa_buf_base so put back here... 861 */ 862 head += gtt_offset; 863 intel_uncore_write(uncore, oaheadptr, 864 head & GEN12_OAG_OAHEADPTR_MASK); 865 stream->oa_buffer.head = head; 866 867 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 868 } 869 870 return ret; 871 } 872 873 /** 874 * gen8_oa_read - copy status records then buffered OA reports 875 * @stream: An i915-perf stream opened for OA metrics 876 * @buf: destination buffer given by userspace 877 * @count: the number of bytes userspace wants to read 878 * @offset: (inout): the current position for writing into @buf 879 * 880 * Checks OA unit status registers and if necessary appends corresponding 881 * status records for userspace (such as for a buffer full condition) and then 882 * initiate appending any buffered OA reports. 883 * 884 * Updates @offset according to the number of bytes successfully copied into 885 * the userspace buffer. 886 * 887 * NB: some data may be successfully copied to the userspace buffer 888 * even if an error is returned, and this is reflected in the 889 * updated @offset. 890 * 891 * Returns: zero on success or a negative error code 892 */ 893 static int gen8_oa_read(struct i915_perf_stream *stream, 894 char __user *buf, 895 size_t count, 896 size_t *offset) 897 { 898 struct intel_uncore *uncore = stream->uncore; 899 u32 oastatus; 900 i915_reg_t oastatus_reg; 901 int ret; 902 903 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 904 return -EIO; 905 906 oastatus_reg = IS_GEN(stream->perf->i915, 12) ? 907 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 908 909 oastatus = intel_uncore_read(uncore, oastatus_reg); 910 911 /* 912 * We treat OABUFFER_OVERFLOW as a significant error: 913 * 914 * Although theoretically we could handle this more gracefully 915 * sometimes, some Gens don't correctly suppress certain 916 * automatically triggered reports in this condition and so we 917 * have to assume that old reports are now being trampled 918 * over. 919 * 920 * Considering how we don't currently give userspace control 921 * over the OA buffer size and always configure a large 16MB 922 * buffer, then a buffer overflow does anyway likely indicate 923 * that something has gone quite badly wrong. 924 */ 925 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 926 ret = append_oa_status(stream, buf, count, offset, 927 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 928 if (ret) 929 return ret; 930 931 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 932 stream->period_exponent); 933 934 stream->perf->ops.oa_disable(stream); 935 stream->perf->ops.oa_enable(stream); 936 937 /* 938 * Note: .oa_enable() is expected to re-init the oabuffer and 939 * reset GEN8_OASTATUS for us 940 */ 941 oastatus = intel_uncore_read(uncore, oastatus_reg); 942 } 943 944 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 945 ret = append_oa_status(stream, buf, count, offset, 946 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 947 if (ret) 948 return ret; 949 intel_uncore_write(uncore, oastatus_reg, 950 oastatus & ~GEN8_OASTATUS_REPORT_LOST); 951 } 952 953 return gen8_append_oa_reports(stream, buf, count, offset); 954 } 955 956 /** 957 * Copies all buffered OA reports into userspace read() buffer. 958 * @stream: An i915-perf stream opened for OA metrics 959 * @buf: destination buffer given by userspace 960 * @count: the number of bytes userspace wants to read 961 * @offset: (inout): the current position for writing into @buf 962 * 963 * Notably any error condition resulting in a short read (-%ENOSPC or 964 * -%EFAULT) will be returned even though one or more records may 965 * have been successfully copied. In this case it's up to the caller 966 * to decide if the error should be squashed before returning to 967 * userspace. 968 * 969 * Note: reports are consumed from the head, and appended to the 970 * tail, so the tail chases the head?... If you think that's mad 971 * and back-to-front you're not alone, but this follows the 972 * Gen PRM naming convention. 973 * 974 * Returns: 0 on success, negative error code on failure. 975 */ 976 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 977 char __user *buf, 978 size_t count, 979 size_t *offset) 980 { 981 struct intel_uncore *uncore = stream->uncore; 982 int report_size = stream->oa_buffer.format_size; 983 u8 *oa_buf_base = stream->oa_buffer.vaddr; 984 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 985 u32 mask = (OA_BUFFER_SIZE - 1); 986 size_t start_offset = *offset; 987 unsigned long flags; 988 unsigned int aged_tail_idx; 989 u32 head, tail; 990 u32 taken; 991 int ret = 0; 992 993 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 994 return -EIO; 995 996 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 997 998 head = stream->oa_buffer.head; 999 aged_tail_idx = stream->oa_buffer.aged_tail_idx; 1000 tail = stream->oa_buffer.tails[aged_tail_idx].offset; 1001 1002 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1003 1004 /* An invalid tail pointer here means we're still waiting for the poll 1005 * hrtimer callback to give us a pointer 1006 */ 1007 if (tail == INVALID_TAIL_PTR) 1008 return -EAGAIN; 1009 1010 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 1011 * while indexing relative to oa_buf_base. 1012 */ 1013 head -= gtt_offset; 1014 tail -= gtt_offset; 1015 1016 /* An out of bounds or misaligned head or tail pointer implies a driver 1017 * bug since we validate + align the tail pointers we read from the 1018 * hardware and we are in full control of the head pointer which should 1019 * only be incremented by multiples of the report size (notably also 1020 * all a power of two). 1021 */ 1022 if (drm_WARN_ONCE(&uncore->i915->drm, 1023 head > OA_BUFFER_SIZE || head % report_size || 1024 tail > OA_BUFFER_SIZE || tail % report_size, 1025 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 1026 head, tail)) 1027 return -EIO; 1028 1029 1030 for (/* none */; 1031 (taken = OA_TAKEN(tail, head)); 1032 head = (head + report_size) & mask) { 1033 u8 *report = oa_buf_base + head; 1034 u32 *report32 = (void *)report; 1035 1036 /* All the report sizes factor neatly into the buffer 1037 * size so we never expect to see a report split 1038 * between the beginning and end of the buffer. 1039 * 1040 * Given the initial alignment check a misalignment 1041 * here would imply a driver bug that would result 1042 * in an overrun. 1043 */ 1044 if (drm_WARN_ON(&uncore->i915->drm, 1045 (OA_BUFFER_SIZE - head) < report_size)) { 1046 drm_err(&uncore->i915->drm, 1047 "Spurious OA head ptr: non-integral report offset\n"); 1048 break; 1049 } 1050 1051 /* The report-ID field for periodic samples includes 1052 * some undocumented flags related to what triggered 1053 * the report and is never expected to be zero so we 1054 * can check that the report isn't invalid before 1055 * copying it to userspace... 1056 */ 1057 if (report32[0] == 0) { 1058 if (__ratelimit(&stream->perf->spurious_report_rs)) 1059 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1060 continue; 1061 } 1062 1063 ret = append_oa_sample(stream, buf, count, offset, report); 1064 if (ret) 1065 break; 1066 1067 /* The above report-id field sanity check is based on 1068 * the assumption that the OA buffer is initially 1069 * zeroed and we reset the field after copying so the 1070 * check is still meaningful once old reports start 1071 * being overwritten. 1072 */ 1073 report32[0] = 0; 1074 } 1075 1076 if (start_offset != *offset) { 1077 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1078 1079 /* We removed the gtt_offset for the copy loop above, indexing 1080 * relative to oa_buf_base so put back here... 1081 */ 1082 head += gtt_offset; 1083 1084 intel_uncore_write(uncore, GEN7_OASTATUS2, 1085 (head & GEN7_OASTATUS2_HEAD_MASK) | 1086 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1087 stream->oa_buffer.head = head; 1088 1089 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1090 } 1091 1092 return ret; 1093 } 1094 1095 /** 1096 * gen7_oa_read - copy status records then buffered OA reports 1097 * @stream: An i915-perf stream opened for OA metrics 1098 * @buf: destination buffer given by userspace 1099 * @count: the number of bytes userspace wants to read 1100 * @offset: (inout): the current position for writing into @buf 1101 * 1102 * Checks Gen 7 specific OA unit status registers and if necessary appends 1103 * corresponding status records for userspace (such as for a buffer full 1104 * condition) and then initiate appending any buffered OA reports. 1105 * 1106 * Updates @offset according to the number of bytes successfully copied into 1107 * the userspace buffer. 1108 * 1109 * Returns: zero on success or a negative error code 1110 */ 1111 static int gen7_oa_read(struct i915_perf_stream *stream, 1112 char __user *buf, 1113 size_t count, 1114 size_t *offset) 1115 { 1116 struct intel_uncore *uncore = stream->uncore; 1117 u32 oastatus1; 1118 int ret; 1119 1120 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1121 return -EIO; 1122 1123 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1124 1125 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1126 * bits while the OA unit is enabled (while the tail pointer 1127 * may be updated asynchronously) so we ignore status bits 1128 * that have already been reported to userspace. 1129 */ 1130 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1131 1132 /* We treat OABUFFER_OVERFLOW as a significant error: 1133 * 1134 * - The status can be interpreted to mean that the buffer is 1135 * currently full (with a higher precedence than OA_TAKEN() 1136 * which will start to report a near-empty buffer after an 1137 * overflow) but it's awkward that we can't clear the status 1138 * on Haswell, so without a reset we won't be able to catch 1139 * the state again. 1140 * 1141 * - Since it also implies the HW has started overwriting old 1142 * reports it may also affect our sanity checks for invalid 1143 * reports when copying to userspace that assume new reports 1144 * are being written to cleared memory. 1145 * 1146 * - In the future we may want to introduce a flight recorder 1147 * mode where the driver will automatically maintain a safe 1148 * guard band between head/tail, avoiding this overflow 1149 * condition, but we avoid the added driver complexity for 1150 * now. 1151 */ 1152 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1153 ret = append_oa_status(stream, buf, count, offset, 1154 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1155 if (ret) 1156 return ret; 1157 1158 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1159 stream->period_exponent); 1160 1161 stream->perf->ops.oa_disable(stream); 1162 stream->perf->ops.oa_enable(stream); 1163 1164 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1165 } 1166 1167 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1168 ret = append_oa_status(stream, buf, count, offset, 1169 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1170 if (ret) 1171 return ret; 1172 stream->perf->gen7_latched_oastatus1 |= 1173 GEN7_OASTATUS1_REPORT_LOST; 1174 } 1175 1176 return gen7_append_oa_reports(stream, buf, count, offset); 1177 } 1178 1179 /** 1180 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1181 * @stream: An i915-perf stream opened for OA metrics 1182 * 1183 * Called when userspace tries to read() from a blocking stream FD opened 1184 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1185 * OA buffer and wakes us. 1186 * 1187 * Note: it's acceptable to have this return with some false positives 1188 * since any subsequent read handling will return -EAGAIN if there isn't 1189 * really data ready for userspace yet. 1190 * 1191 * Returns: zero on success or a negative error code 1192 */ 1193 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1194 { 1195 /* We would wait indefinitely if periodic sampling is not enabled */ 1196 if (!stream->periodic) 1197 return -EIO; 1198 1199 return wait_event_interruptible(stream->poll_wq, 1200 oa_buffer_check_unlocked(stream)); 1201 } 1202 1203 /** 1204 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1205 * @stream: An i915-perf stream opened for OA metrics 1206 * @file: An i915 perf stream file 1207 * @wait: poll() state table 1208 * 1209 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1210 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1211 * when it sees data ready to read in the circular OA buffer. 1212 */ 1213 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1214 struct file *file, 1215 poll_table *wait) 1216 { 1217 poll_wait(file, &stream->poll_wq, wait); 1218 } 1219 1220 /** 1221 * i915_oa_read - just calls through to &i915_oa_ops->read 1222 * @stream: An i915-perf stream opened for OA metrics 1223 * @buf: destination buffer given by userspace 1224 * @count: the number of bytes userspace wants to read 1225 * @offset: (inout): the current position for writing into @buf 1226 * 1227 * Updates @offset according to the number of bytes successfully copied into 1228 * the userspace buffer. 1229 * 1230 * Returns: zero on success or a negative error code 1231 */ 1232 static int i915_oa_read(struct i915_perf_stream *stream, 1233 char __user *buf, 1234 size_t count, 1235 size_t *offset) 1236 { 1237 return stream->perf->ops.read(stream, buf, count, offset); 1238 } 1239 1240 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1241 { 1242 struct i915_gem_engines_iter it; 1243 struct i915_gem_context *ctx = stream->ctx; 1244 struct intel_context *ce; 1245 int err; 1246 1247 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1248 if (ce->engine != stream->engine) /* first match! */ 1249 continue; 1250 1251 /* 1252 * As the ID is the gtt offset of the context's vma we 1253 * pin the vma to ensure the ID remains fixed. 1254 */ 1255 err = intel_context_pin(ce); 1256 if (err == 0) { 1257 stream->pinned_ctx = ce; 1258 break; 1259 } 1260 } 1261 i915_gem_context_unlock_engines(ctx); 1262 1263 return stream->pinned_ctx; 1264 } 1265 1266 /** 1267 * oa_get_render_ctx_id - determine and hold ctx hw id 1268 * @stream: An i915-perf stream opened for OA metrics 1269 * 1270 * Determine the render context hw id, and ensure it remains fixed for the 1271 * lifetime of the stream. This ensures that we don't have to worry about 1272 * updating the context ID in OACONTROL on the fly. 1273 * 1274 * Returns: zero on success or a negative error code 1275 */ 1276 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1277 { 1278 struct intel_context *ce; 1279 1280 ce = oa_pin_context(stream); 1281 if (IS_ERR(ce)) 1282 return PTR_ERR(ce); 1283 1284 switch (INTEL_GEN(ce->engine->i915)) { 1285 case 7: { 1286 /* 1287 * On Haswell we don't do any post processing of the reports 1288 * and don't need to use the mask. 1289 */ 1290 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1291 stream->specific_ctx_id_mask = 0; 1292 break; 1293 } 1294 1295 case 8: 1296 case 9: 1297 case 10: 1298 if (intel_engine_in_execlists_submission_mode(ce->engine)) { 1299 stream->specific_ctx_id_mask = 1300 (1U << GEN8_CTX_ID_WIDTH) - 1; 1301 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1302 } else { 1303 /* 1304 * When using GuC, the context descriptor we write in 1305 * i915 is read by GuC and rewritten before it's 1306 * actually written into the hardware. The LRCA is 1307 * what is put into the context id field of the 1308 * context descriptor by GuC. Because it's aligned to 1309 * a page, the lower 12bits are always at 0 and 1310 * dropped by GuC. They won't be part of the context 1311 * ID in the OA reports, so squash those lower bits. 1312 */ 1313 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1314 1315 /* 1316 * GuC uses the top bit to signal proxy submission, so 1317 * ignore that bit. 1318 */ 1319 stream->specific_ctx_id_mask = 1320 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1321 } 1322 break; 1323 1324 case 11: 1325 case 12: { 1326 stream->specific_ctx_id_mask = 1327 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1328 /* 1329 * Pick an unused context id 1330 * 0 - BITS_PER_LONG are used by other contexts 1331 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context 1332 */ 1333 stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1334 break; 1335 } 1336 1337 default: 1338 MISSING_CASE(INTEL_GEN(ce->engine->i915)); 1339 } 1340 1341 ce->tag = stream->specific_ctx_id; 1342 1343 drm_dbg(&stream->perf->i915->drm, 1344 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1345 stream->specific_ctx_id, 1346 stream->specific_ctx_id_mask); 1347 1348 return 0; 1349 } 1350 1351 /** 1352 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1353 * @stream: An i915-perf stream opened for OA metrics 1354 * 1355 * In case anything needed doing to ensure the context HW ID would remain valid 1356 * for the lifetime of the stream, then that can be undone here. 1357 */ 1358 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1359 { 1360 struct intel_context *ce; 1361 1362 ce = fetch_and_zero(&stream->pinned_ctx); 1363 if (ce) { 1364 ce->tag = 0; /* recomputed on next submission after parking */ 1365 intel_context_unpin(ce); 1366 } 1367 1368 stream->specific_ctx_id = INVALID_CTX_ID; 1369 stream->specific_ctx_id_mask = 0; 1370 } 1371 1372 static void 1373 free_oa_buffer(struct i915_perf_stream *stream) 1374 { 1375 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1376 I915_VMA_RELEASE_MAP); 1377 1378 stream->oa_buffer.vaddr = NULL; 1379 } 1380 1381 static void 1382 free_oa_configs(struct i915_perf_stream *stream) 1383 { 1384 struct i915_oa_config_bo *oa_bo, *tmp; 1385 1386 i915_oa_config_put(stream->oa_config); 1387 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1388 free_oa_config_bo(oa_bo); 1389 } 1390 1391 static void 1392 free_noa_wait(struct i915_perf_stream *stream) 1393 { 1394 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1395 } 1396 1397 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1398 { 1399 struct i915_perf *perf = stream->perf; 1400 1401 BUG_ON(stream != perf->exclusive_stream); 1402 1403 /* 1404 * Unset exclusive_stream first, it will be checked while disabling 1405 * the metric set on gen8+. 1406 * 1407 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1408 */ 1409 WRITE_ONCE(perf->exclusive_stream, NULL); 1410 perf->ops.disable_metric_set(stream); 1411 1412 free_oa_buffer(stream); 1413 1414 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1415 intel_engine_pm_put(stream->engine); 1416 1417 if (stream->ctx) 1418 oa_put_render_ctx_id(stream); 1419 1420 free_oa_configs(stream); 1421 free_noa_wait(stream); 1422 1423 if (perf->spurious_report_rs.missed) { 1424 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1425 perf->spurious_report_rs.missed); 1426 } 1427 } 1428 1429 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1430 { 1431 struct intel_uncore *uncore = stream->uncore; 1432 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1433 unsigned long flags; 1434 1435 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1436 1437 /* Pre-DevBDW: OABUFFER must be set with counters off, 1438 * before OASTATUS1, but after OASTATUS2 1439 */ 1440 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1441 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1442 stream->oa_buffer.head = gtt_offset; 1443 1444 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1445 1446 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1447 gtt_offset | OABUFFER_SIZE_16M); 1448 1449 /* Mark that we need updated tail pointers to read from... */ 1450 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1451 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1452 1453 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1454 1455 /* On Haswell we have to track which OASTATUS1 flags we've 1456 * already seen since they can't be cleared while periodic 1457 * sampling is enabled. 1458 */ 1459 stream->perf->gen7_latched_oastatus1 = 0; 1460 1461 /* NB: although the OA buffer will initially be allocated 1462 * zeroed via shmfs (and so this memset is redundant when 1463 * first allocating), we may re-init the OA buffer, either 1464 * when re-enabling a stream or in error/reset paths. 1465 * 1466 * The reason we clear the buffer for each re-init is for the 1467 * sanity check in gen7_append_oa_reports() that looks at the 1468 * report-id field to make sure it's non-zero which relies on 1469 * the assumption that new reports are being written to zeroed 1470 * memory... 1471 */ 1472 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1473 1474 stream->pollin = false; 1475 } 1476 1477 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1478 { 1479 struct intel_uncore *uncore = stream->uncore; 1480 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1481 unsigned long flags; 1482 1483 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1484 1485 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1486 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1487 stream->oa_buffer.head = gtt_offset; 1488 1489 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1490 1491 /* 1492 * PRM says: 1493 * 1494 * "This MMIO must be set before the OATAILPTR 1495 * register and after the OAHEADPTR register. This is 1496 * to enable proper functionality of the overflow 1497 * bit." 1498 */ 1499 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1500 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1501 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1502 1503 /* Mark that we need updated tail pointers to read from... */ 1504 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1505 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1506 1507 /* 1508 * Reset state used to recognise context switches, affecting which 1509 * reports we will forward to userspace while filtering for a single 1510 * context. 1511 */ 1512 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1513 1514 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1515 1516 /* 1517 * NB: although the OA buffer will initially be allocated 1518 * zeroed via shmfs (and so this memset is redundant when 1519 * first allocating), we may re-init the OA buffer, either 1520 * when re-enabling a stream or in error/reset paths. 1521 * 1522 * The reason we clear the buffer for each re-init is for the 1523 * sanity check in gen8_append_oa_reports() that looks at the 1524 * reason field to make sure it's non-zero which relies on 1525 * the assumption that new reports are being written to zeroed 1526 * memory... 1527 */ 1528 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1529 1530 stream->pollin = false; 1531 } 1532 1533 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1534 { 1535 struct intel_uncore *uncore = stream->uncore; 1536 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1537 unsigned long flags; 1538 1539 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1540 1541 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1542 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1543 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1544 stream->oa_buffer.head = gtt_offset; 1545 1546 /* 1547 * PRM says: 1548 * 1549 * "This MMIO must be set before the OATAILPTR 1550 * register and after the OAHEADPTR register. This is 1551 * to enable proper functionality of the overflow 1552 * bit." 1553 */ 1554 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1555 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1556 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1557 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1558 1559 /* Mark that we need updated tail pointers to read from... */ 1560 stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1561 stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1562 1563 /* 1564 * Reset state used to recognise context switches, affecting which 1565 * reports we will forward to userspace while filtering for a single 1566 * context. 1567 */ 1568 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1569 1570 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1571 1572 /* 1573 * NB: although the OA buffer will initially be allocated 1574 * zeroed via shmfs (and so this memset is redundant when 1575 * first allocating), we may re-init the OA buffer, either 1576 * when re-enabling a stream or in error/reset paths. 1577 * 1578 * The reason we clear the buffer for each re-init is for the 1579 * sanity check in gen8_append_oa_reports() that looks at the 1580 * reason field to make sure it's non-zero which relies on 1581 * the assumption that new reports are being written to zeroed 1582 * memory... 1583 */ 1584 memset(stream->oa_buffer.vaddr, 0, 1585 stream->oa_buffer.vma->size); 1586 1587 stream->pollin = false; 1588 } 1589 1590 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1591 { 1592 struct drm_i915_private *i915 = stream->perf->i915; 1593 struct drm_i915_gem_object *bo; 1594 struct i915_vma *vma; 1595 int ret; 1596 1597 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1598 return -ENODEV; 1599 1600 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1601 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1602 1603 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1604 if (IS_ERR(bo)) { 1605 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1606 return PTR_ERR(bo); 1607 } 1608 1609 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1610 1611 /* PreHSW required 512K alignment, HSW requires 16M */ 1612 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1613 if (IS_ERR(vma)) { 1614 ret = PTR_ERR(vma); 1615 goto err_unref; 1616 } 1617 stream->oa_buffer.vma = vma; 1618 1619 stream->oa_buffer.vaddr = 1620 i915_gem_object_pin_map(bo, I915_MAP_WB); 1621 if (IS_ERR(stream->oa_buffer.vaddr)) { 1622 ret = PTR_ERR(stream->oa_buffer.vaddr); 1623 goto err_unpin; 1624 } 1625 1626 return 0; 1627 1628 err_unpin: 1629 __i915_vma_unpin(vma); 1630 1631 err_unref: 1632 i915_gem_object_put(bo); 1633 1634 stream->oa_buffer.vaddr = NULL; 1635 stream->oa_buffer.vma = NULL; 1636 1637 return ret; 1638 } 1639 1640 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1641 bool save, i915_reg_t reg, u32 offset, 1642 u32 dword_count) 1643 { 1644 u32 cmd; 1645 u32 d; 1646 1647 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1648 if (INTEL_GEN(stream->perf->i915) >= 8) 1649 cmd++; 1650 1651 for (d = 0; d < dword_count; d++) { 1652 *cs++ = cmd; 1653 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1654 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1655 offset) + 4 * d; 1656 *cs++ = 0; 1657 } 1658 1659 return cs; 1660 } 1661 1662 static int alloc_noa_wait(struct i915_perf_stream *stream) 1663 { 1664 struct drm_i915_private *i915 = stream->perf->i915; 1665 struct drm_i915_gem_object *bo; 1666 struct i915_vma *vma; 1667 const u64 delay_ticks = 0xffffffffffffffff - 1668 DIV64_U64_ROUND_UP( 1669 atomic64_read(&stream->perf->noa_programming_delay) * 1670 RUNTIME_INFO(i915)->cs_timestamp_frequency_khz, 1671 1000000ull); 1672 const u32 base = stream->engine->mmio_base; 1673 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1674 u32 *batch, *ts0, *cs, *jump; 1675 int ret, i; 1676 enum { 1677 START_TS, 1678 NOW_TS, 1679 DELTA_TS, 1680 JUMP_PREDICATE, 1681 DELTA_TARGET, 1682 N_CS_GPR 1683 }; 1684 1685 bo = i915_gem_object_create_internal(i915, 4096); 1686 if (IS_ERR(bo)) { 1687 drm_err(&i915->drm, 1688 "Failed to allocate NOA wait batchbuffer\n"); 1689 return PTR_ERR(bo); 1690 } 1691 1692 /* 1693 * We pin in GGTT because we jump into this buffer now because 1694 * multiple OA config BOs will have a jump to this address and it 1695 * needs to be fixed during the lifetime of the i915/perf stream. 1696 */ 1697 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH); 1698 if (IS_ERR(vma)) { 1699 ret = PTR_ERR(vma); 1700 goto err_unref; 1701 } 1702 1703 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1704 if (IS_ERR(batch)) { 1705 ret = PTR_ERR(batch); 1706 goto err_unpin; 1707 } 1708 1709 /* Save registers. */ 1710 for (i = 0; i < N_CS_GPR; i++) 1711 cs = save_restore_register( 1712 stream, cs, true /* save */, CS_GPR(i), 1713 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1714 cs = save_restore_register( 1715 stream, cs, true /* save */, MI_PREDICATE_RESULT_1, 1716 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1717 1718 /* First timestamp snapshot location. */ 1719 ts0 = cs; 1720 1721 /* 1722 * Initial snapshot of the timestamp register to implement the wait. 1723 * We work with 32b values, so clear out the top 32b bits of the 1724 * register because the ALU works 64bits. 1725 */ 1726 *cs++ = MI_LOAD_REGISTER_IMM(1); 1727 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1728 *cs++ = 0; 1729 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1730 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1731 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1732 1733 /* 1734 * This is the location we're going to jump back into until the 1735 * required amount of time has passed. 1736 */ 1737 jump = cs; 1738 1739 /* 1740 * Take another snapshot of the timestamp register. Take care to clear 1741 * up the top 32bits of CS_GPR(1) as we're using it for other 1742 * operations below. 1743 */ 1744 *cs++ = MI_LOAD_REGISTER_IMM(1); 1745 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1746 *cs++ = 0; 1747 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1748 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1749 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1750 1751 /* 1752 * Do a diff between the 2 timestamps and store the result back into 1753 * CS_GPR(1). 1754 */ 1755 *cs++ = MI_MATH(5); 1756 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1757 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1758 *cs++ = MI_MATH_SUB; 1759 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1760 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1761 1762 /* 1763 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1764 * timestamp have rolled over the 32bits) into the predicate register 1765 * to be used for the predicated jump. 1766 */ 1767 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1768 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1769 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1770 1771 /* Restart from the beginning if we had timestamps roll over. */ 1772 *cs++ = (INTEL_GEN(i915) < 8 ? 1773 MI_BATCH_BUFFER_START : 1774 MI_BATCH_BUFFER_START_GEN8) | 1775 MI_BATCH_PREDICATE; 1776 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1777 *cs++ = 0; 1778 1779 /* 1780 * Now add the diff between to previous timestamps and add it to : 1781 * (((1 * << 64) - 1) - delay_ns) 1782 * 1783 * When the Carry Flag contains 1 this means the elapsed time is 1784 * longer than the expected delay, and we can exit the wait loop. 1785 */ 1786 *cs++ = MI_LOAD_REGISTER_IMM(2); 1787 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1788 *cs++ = lower_32_bits(delay_ticks); 1789 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 1790 *cs++ = upper_32_bits(delay_ticks); 1791 1792 *cs++ = MI_MATH(4); 1793 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 1794 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 1795 *cs++ = MI_MATH_ADD; 1796 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1797 1798 *cs++ = MI_ARB_CHECK; 1799 1800 /* 1801 * Transfer the result into the predicate register to be used for the 1802 * predicated jump. 1803 */ 1804 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1805 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1806 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1807 1808 /* Predicate the jump. */ 1809 *cs++ = (INTEL_GEN(i915) < 8 ? 1810 MI_BATCH_BUFFER_START : 1811 MI_BATCH_BUFFER_START_GEN8) | 1812 MI_BATCH_PREDICATE; 1813 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 1814 *cs++ = 0; 1815 1816 /* Restore registers. */ 1817 for (i = 0; i < N_CS_GPR; i++) 1818 cs = save_restore_register( 1819 stream, cs, false /* restore */, CS_GPR(i), 1820 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1821 cs = save_restore_register( 1822 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1, 1823 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1824 1825 /* And return to the ring. */ 1826 *cs++ = MI_BATCH_BUFFER_END; 1827 1828 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 1829 1830 i915_gem_object_flush_map(bo); 1831 i915_gem_object_unpin_map(bo); 1832 1833 stream->noa_wait = vma; 1834 return 0; 1835 1836 err_unpin: 1837 i915_vma_unpin_and_release(&vma, 0); 1838 err_unref: 1839 i915_gem_object_put(bo); 1840 return ret; 1841 } 1842 1843 static u32 *write_cs_mi_lri(u32 *cs, 1844 const struct i915_oa_reg *reg_data, 1845 u32 n_regs) 1846 { 1847 u32 i; 1848 1849 for (i = 0; i < n_regs; i++) { 1850 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 1851 u32 n_lri = min_t(u32, 1852 n_regs - i, 1853 MI_LOAD_REGISTER_IMM_MAX_REGS); 1854 1855 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 1856 } 1857 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 1858 *cs++ = reg_data[i].value; 1859 } 1860 1861 return cs; 1862 } 1863 1864 static int num_lri_dwords(int num_regs) 1865 { 1866 int count = 0; 1867 1868 if (num_regs > 0) { 1869 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 1870 count += num_regs * 2; 1871 } 1872 1873 return count; 1874 } 1875 1876 static struct i915_oa_config_bo * 1877 alloc_oa_config_buffer(struct i915_perf_stream *stream, 1878 struct i915_oa_config *oa_config) 1879 { 1880 struct drm_i915_gem_object *obj; 1881 struct i915_oa_config_bo *oa_bo; 1882 size_t config_length = 0; 1883 u32 *cs; 1884 int err; 1885 1886 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 1887 if (!oa_bo) 1888 return ERR_PTR(-ENOMEM); 1889 1890 config_length += num_lri_dwords(oa_config->mux_regs_len); 1891 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 1892 config_length += num_lri_dwords(oa_config->flex_regs_len); 1893 config_length += 3; /* MI_BATCH_BUFFER_START */ 1894 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 1895 1896 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 1897 if (IS_ERR(obj)) { 1898 err = PTR_ERR(obj); 1899 goto err_free; 1900 } 1901 1902 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 1903 if (IS_ERR(cs)) { 1904 err = PTR_ERR(cs); 1905 goto err_oa_bo; 1906 } 1907 1908 cs = write_cs_mi_lri(cs, 1909 oa_config->mux_regs, 1910 oa_config->mux_regs_len); 1911 cs = write_cs_mi_lri(cs, 1912 oa_config->b_counter_regs, 1913 oa_config->b_counter_regs_len); 1914 cs = write_cs_mi_lri(cs, 1915 oa_config->flex_regs, 1916 oa_config->flex_regs_len); 1917 1918 /* Jump into the active wait. */ 1919 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ? 1920 MI_BATCH_BUFFER_START : 1921 MI_BATCH_BUFFER_START_GEN8); 1922 *cs++ = i915_ggtt_offset(stream->noa_wait); 1923 *cs++ = 0; 1924 1925 i915_gem_object_flush_map(obj); 1926 i915_gem_object_unpin_map(obj); 1927 1928 oa_bo->vma = i915_vma_instance(obj, 1929 &stream->engine->gt->ggtt->vm, 1930 NULL); 1931 if (IS_ERR(oa_bo->vma)) { 1932 err = PTR_ERR(oa_bo->vma); 1933 goto err_oa_bo; 1934 } 1935 1936 oa_bo->oa_config = i915_oa_config_get(oa_config); 1937 llist_add(&oa_bo->node, &stream->oa_config_bos); 1938 1939 return oa_bo; 1940 1941 err_oa_bo: 1942 i915_gem_object_put(obj); 1943 err_free: 1944 kfree(oa_bo); 1945 return ERR_PTR(err); 1946 } 1947 1948 static struct i915_vma * 1949 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 1950 { 1951 struct i915_oa_config_bo *oa_bo; 1952 1953 /* 1954 * Look for the buffer in the already allocated BOs attached 1955 * to the stream. 1956 */ 1957 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 1958 if (oa_bo->oa_config == oa_config && 1959 memcmp(oa_bo->oa_config->uuid, 1960 oa_config->uuid, 1961 sizeof(oa_config->uuid)) == 0) 1962 goto out; 1963 } 1964 1965 oa_bo = alloc_oa_config_buffer(stream, oa_config); 1966 if (IS_ERR(oa_bo)) 1967 return ERR_CAST(oa_bo); 1968 1969 out: 1970 return i915_vma_get(oa_bo->vma); 1971 } 1972 1973 static struct i915_request * 1974 emit_oa_config(struct i915_perf_stream *stream, 1975 struct i915_oa_config *oa_config, 1976 struct intel_context *ce) 1977 { 1978 struct i915_request *rq; 1979 struct i915_vma *vma; 1980 int err; 1981 1982 vma = get_oa_vma(stream, oa_config); 1983 if (IS_ERR(vma)) 1984 return ERR_CAST(vma); 1985 1986 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH); 1987 if (err) 1988 goto err_vma_put; 1989 1990 intel_engine_pm_get(ce->engine); 1991 rq = i915_request_create(ce); 1992 intel_engine_pm_put(ce->engine); 1993 if (IS_ERR(rq)) { 1994 err = PTR_ERR(rq); 1995 goto err_vma_unpin; 1996 } 1997 1998 i915_vma_lock(vma); 1999 err = i915_request_await_object(rq, vma->obj, 0); 2000 if (!err) 2001 err = i915_vma_move_to_active(vma, rq, 0); 2002 i915_vma_unlock(vma); 2003 if (err) 2004 goto err_add_request; 2005 2006 err = rq->engine->emit_bb_start(rq, 2007 vma->node.start, 0, 2008 I915_DISPATCH_SECURE); 2009 if (err) 2010 goto err_add_request; 2011 2012 i915_request_get(rq); 2013 err_add_request: 2014 i915_request_add(rq); 2015 err_vma_unpin: 2016 i915_vma_unpin(vma); 2017 err_vma_put: 2018 i915_vma_put(vma); 2019 return err ? ERR_PTR(err) : rq; 2020 } 2021 2022 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2023 { 2024 return stream->pinned_ctx ?: stream->engine->kernel_context; 2025 } 2026 2027 static struct i915_request * 2028 hsw_enable_metric_set(struct i915_perf_stream *stream) 2029 { 2030 struct intel_uncore *uncore = stream->uncore; 2031 2032 /* 2033 * PRM: 2034 * 2035 * OA unit is using “crclk” for its functionality. When trunk 2036 * level clock gating takes place, OA clock would be gated, 2037 * unable to count the events from non-render clock domain. 2038 * Render clock gating must be disabled when OA is enabled to 2039 * count the events from non-render domain. Unit level clock 2040 * gating for RCS should also be disabled. 2041 */ 2042 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2043 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2044 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2045 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2046 2047 return emit_oa_config(stream, stream->oa_config, oa_context(stream)); 2048 } 2049 2050 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2051 { 2052 struct intel_uncore *uncore = stream->uncore; 2053 2054 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2055 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2056 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2057 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2058 2059 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2060 } 2061 2062 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2063 i915_reg_t reg) 2064 { 2065 u32 mmio = i915_mmio_reg_offset(reg); 2066 int i; 2067 2068 /* 2069 * This arbitrary default will select the 'EU FPU0 Pipeline 2070 * Active' event. In the future it's anticipated that there 2071 * will be an explicit 'No Event' we can select, but not yet... 2072 */ 2073 if (!oa_config) 2074 return 0; 2075 2076 for (i = 0; i < oa_config->flex_regs_len; i++) { 2077 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2078 return oa_config->flex_regs[i].value; 2079 } 2080 2081 return 0; 2082 } 2083 /* 2084 * NB: It must always remain pointer safe to run this even if the OA unit 2085 * has been disabled. 2086 * 2087 * It's fine to put out-of-date values into these per-context registers 2088 * in the case that the OA unit has been disabled. 2089 */ 2090 static void 2091 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2092 const struct i915_perf_stream *stream) 2093 { 2094 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2095 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2096 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2097 i915_reg_t flex_regs[] = { 2098 EU_PERF_CNTL0, 2099 EU_PERF_CNTL1, 2100 EU_PERF_CNTL2, 2101 EU_PERF_CNTL3, 2102 EU_PERF_CNTL4, 2103 EU_PERF_CNTL5, 2104 EU_PERF_CNTL6, 2105 }; 2106 u32 *reg_state = ce->lrc_reg_state; 2107 int i; 2108 2109 reg_state[ctx_oactxctrl + 1] = 2110 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2111 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2112 GEN8_OA_COUNTER_RESUME; 2113 2114 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2115 reg_state[ctx_flexeu0 + i * 2 + 1] = 2116 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2117 2118 reg_state[CTX_R_PWR_CLK_STATE] = 2119 intel_sseu_make_rpcs(ce->engine->i915, &ce->sseu); 2120 } 2121 2122 struct flex { 2123 i915_reg_t reg; 2124 u32 offset; 2125 u32 value; 2126 }; 2127 2128 static int 2129 gen8_store_flex(struct i915_request *rq, 2130 struct intel_context *ce, 2131 const struct flex *flex, unsigned int count) 2132 { 2133 u32 offset; 2134 u32 *cs; 2135 2136 cs = intel_ring_begin(rq, 4 * count); 2137 if (IS_ERR(cs)) 2138 return PTR_ERR(cs); 2139 2140 offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE; 2141 do { 2142 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2143 *cs++ = offset + flex->offset * sizeof(u32); 2144 *cs++ = 0; 2145 *cs++ = flex->value; 2146 } while (flex++, --count); 2147 2148 intel_ring_advance(rq, cs); 2149 2150 return 0; 2151 } 2152 2153 static int 2154 gen8_load_flex(struct i915_request *rq, 2155 struct intel_context *ce, 2156 const struct flex *flex, unsigned int count) 2157 { 2158 u32 *cs; 2159 2160 GEM_BUG_ON(!count || count > 63); 2161 2162 cs = intel_ring_begin(rq, 2 * count + 2); 2163 if (IS_ERR(cs)) 2164 return PTR_ERR(cs); 2165 2166 *cs++ = MI_LOAD_REGISTER_IMM(count); 2167 do { 2168 *cs++ = i915_mmio_reg_offset(flex->reg); 2169 *cs++ = flex->value; 2170 } while (flex++, --count); 2171 *cs++ = MI_NOOP; 2172 2173 intel_ring_advance(rq, cs); 2174 2175 return 0; 2176 } 2177 2178 static int gen8_modify_context(struct intel_context *ce, 2179 const struct flex *flex, unsigned int count) 2180 { 2181 struct i915_request *rq; 2182 int err; 2183 2184 rq = intel_engine_create_kernel_request(ce->engine); 2185 if (IS_ERR(rq)) 2186 return PTR_ERR(rq); 2187 2188 /* Serialise with the remote context */ 2189 err = intel_context_prepare_remote_request(ce, rq); 2190 if (err == 0) 2191 err = gen8_store_flex(rq, ce, flex, count); 2192 2193 i915_request_add(rq); 2194 return err; 2195 } 2196 2197 static int gen8_modify_self(struct intel_context *ce, 2198 const struct flex *flex, unsigned int count) 2199 { 2200 struct i915_request *rq; 2201 int err; 2202 2203 intel_engine_pm_get(ce->engine); 2204 rq = i915_request_create(ce); 2205 intel_engine_pm_put(ce->engine); 2206 if (IS_ERR(rq)) 2207 return PTR_ERR(rq); 2208 2209 err = gen8_load_flex(rq, ce, flex, count); 2210 2211 i915_request_add(rq); 2212 return err; 2213 } 2214 2215 static int gen8_configure_context(struct i915_gem_context *ctx, 2216 struct flex *flex, unsigned int count) 2217 { 2218 struct i915_gem_engines_iter it; 2219 struct intel_context *ce; 2220 int err = 0; 2221 2222 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2223 GEM_BUG_ON(ce == ce->engine->kernel_context); 2224 2225 if (ce->engine->class != RENDER_CLASS) 2226 continue; 2227 2228 /* Otherwise OA settings will be set upon first use */ 2229 if (!intel_context_pin_if_active(ce)) 2230 continue; 2231 2232 flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu); 2233 err = gen8_modify_context(ce, flex, count); 2234 2235 intel_context_unpin(ce); 2236 if (err) 2237 break; 2238 } 2239 i915_gem_context_unlock_engines(ctx); 2240 2241 return err; 2242 } 2243 2244 static int gen12_configure_oar_context(struct i915_perf_stream *stream, bool enable) 2245 { 2246 int err; 2247 struct intel_context *ce = stream->pinned_ctx; 2248 u32 format = stream->oa_buffer.format; 2249 struct flex regs_context[] = { 2250 { 2251 GEN8_OACTXCONTROL, 2252 stream->perf->ctx_oactxctrl_offset + 1, 2253 enable ? GEN8_OA_COUNTER_RESUME : 0, 2254 }, 2255 }; 2256 /* Offsets in regs_lri are not used since this configuration is only 2257 * applied using LRI. Initialize the correct offsets for posterity. 2258 */ 2259 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2260 struct flex regs_lri[] = { 2261 { 2262 GEN12_OAR_OACONTROL, 2263 GEN12_OAR_OACONTROL_OFFSET + 1, 2264 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2265 (enable ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2266 }, 2267 { 2268 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2269 CTX_CONTEXT_CONTROL, 2270 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2271 enable ? 2272 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2273 0) 2274 }, 2275 }; 2276 2277 /* Modify the context image of pinned context with regs_context*/ 2278 err = intel_context_lock_pinned(ce); 2279 if (err) 2280 return err; 2281 2282 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context)); 2283 intel_context_unlock_pinned(ce); 2284 if (err) 2285 return err; 2286 2287 /* Apply regs_lri using LRI with pinned context */ 2288 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri)); 2289 } 2290 2291 /* 2292 * Manages updating the per-context aspects of the OA stream 2293 * configuration across all contexts. 2294 * 2295 * The awkward consideration here is that OACTXCONTROL controls the 2296 * exponent for periodic sampling which is primarily used for system 2297 * wide profiling where we'd like a consistent sampling period even in 2298 * the face of context switches. 2299 * 2300 * Our approach of updating the register state context (as opposed to 2301 * say using a workaround batch buffer) ensures that the hardware 2302 * won't automatically reload an out-of-date timer exponent even 2303 * transiently before a WA BB could be parsed. 2304 * 2305 * This function needs to: 2306 * - Ensure the currently running context's per-context OA state is 2307 * updated 2308 * - Ensure that all existing contexts will have the correct per-context 2309 * OA state if they are scheduled for use. 2310 * - Ensure any new contexts will be initialized with the correct 2311 * per-context OA state. 2312 * 2313 * Note: it's only the RCS/Render context that has any OA state. 2314 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2315 */ 2316 static int oa_configure_all_contexts(struct i915_perf_stream *stream, 2317 struct flex *regs, 2318 size_t num_regs) 2319 { 2320 struct drm_i915_private *i915 = stream->perf->i915; 2321 struct intel_engine_cs *engine; 2322 struct i915_gem_context *ctx, *cn; 2323 int err; 2324 2325 lockdep_assert_held(&stream->perf->lock); 2326 2327 /* 2328 * The OA register config is setup through the context image. This image 2329 * might be written to by the GPU on context switch (in particular on 2330 * lite-restore). This means we can't safely update a context's image, 2331 * if this context is scheduled/submitted to run on the GPU. 2332 * 2333 * We could emit the OA register config through the batch buffer but 2334 * this might leave small interval of time where the OA unit is 2335 * configured at an invalid sampling period. 2336 * 2337 * Note that since we emit all requests from a single ring, there 2338 * is still an implicit global barrier here that may cause a high 2339 * priority context to wait for an otherwise independent low priority 2340 * context. Contexts idle at the time of reconfiguration are not 2341 * trapped behind the barrier. 2342 */ 2343 spin_lock(&i915->gem.contexts.lock); 2344 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2345 if (!kref_get_unless_zero(&ctx->ref)) 2346 continue; 2347 2348 spin_unlock(&i915->gem.contexts.lock); 2349 2350 err = gen8_configure_context(ctx, regs, num_regs); 2351 if (err) { 2352 i915_gem_context_put(ctx); 2353 return err; 2354 } 2355 2356 spin_lock(&i915->gem.contexts.lock); 2357 list_safe_reset_next(ctx, cn, link); 2358 i915_gem_context_put(ctx); 2359 } 2360 spin_unlock(&i915->gem.contexts.lock); 2361 2362 /* 2363 * After updating all other contexts, we need to modify ourselves. 2364 * If we don't modify the kernel_context, we do not get events while 2365 * idle. 2366 */ 2367 for_each_uabi_engine(engine, i915) { 2368 struct intel_context *ce = engine->kernel_context; 2369 2370 if (engine->class != RENDER_CLASS) 2371 continue; 2372 2373 regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu); 2374 2375 err = gen8_modify_self(ce, regs, num_regs); 2376 if (err) 2377 return err; 2378 } 2379 2380 return 0; 2381 } 2382 2383 static int gen12_configure_all_contexts(struct i915_perf_stream *stream, 2384 const struct i915_oa_config *oa_config) 2385 { 2386 struct flex regs[] = { 2387 { 2388 GEN8_R_PWR_CLK_STATE, 2389 CTX_R_PWR_CLK_STATE, 2390 }, 2391 }; 2392 2393 return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs)); 2394 } 2395 2396 static int lrc_configure_all_contexts(struct i915_perf_stream *stream, 2397 const struct i915_oa_config *oa_config) 2398 { 2399 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2400 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2401 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2402 struct flex regs[] = { 2403 { 2404 GEN8_R_PWR_CLK_STATE, 2405 CTX_R_PWR_CLK_STATE, 2406 }, 2407 { 2408 GEN8_OACTXCONTROL, 2409 stream->perf->ctx_oactxctrl_offset + 1, 2410 }, 2411 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2412 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2413 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2414 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2415 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2416 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2417 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2418 }; 2419 #undef ctx_flexeuN 2420 int i; 2421 2422 regs[1].value = 2423 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2424 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2425 GEN8_OA_COUNTER_RESUME; 2426 2427 for (i = 2; i < ARRAY_SIZE(regs); i++) 2428 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2429 2430 return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs)); 2431 } 2432 2433 static struct i915_request * 2434 gen8_enable_metric_set(struct i915_perf_stream *stream) 2435 { 2436 struct intel_uncore *uncore = stream->uncore; 2437 struct i915_oa_config *oa_config = stream->oa_config; 2438 int ret; 2439 2440 /* 2441 * We disable slice/unslice clock ratio change reports on SKL since 2442 * they are too noisy. The HW generates a lot of redundant reports 2443 * where the ratio hasn't really changed causing a lot of redundant 2444 * work to processes and increasing the chances we'll hit buffer 2445 * overruns. 2446 * 2447 * Although we don't currently use the 'disable overrun' OABUFFER 2448 * feature it's worth noting that clock ratio reports have to be 2449 * disabled before considering to use that feature since the HW doesn't 2450 * correctly block these reports. 2451 * 2452 * Currently none of the high-level metrics we have depend on knowing 2453 * this ratio to normalize. 2454 * 2455 * Note: This register is not power context saved and restored, but 2456 * that's OK considering that we disable RC6 while the OA unit is 2457 * enabled. 2458 * 2459 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2460 * be read back from automatically triggered reports, as part of the 2461 * RPT_ID field. 2462 */ 2463 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) { 2464 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2465 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2466 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2467 } 2468 2469 /* 2470 * Update all contexts prior writing the mux configurations as we need 2471 * to make sure all slices/subslices are ON before writing to NOA 2472 * registers. 2473 */ 2474 ret = lrc_configure_all_contexts(stream, oa_config); 2475 if (ret) 2476 return ERR_PTR(ret); 2477 2478 return emit_oa_config(stream, oa_config, oa_context(stream)); 2479 } 2480 2481 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2482 { 2483 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2484 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2485 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2486 } 2487 2488 static struct i915_request * 2489 gen12_enable_metric_set(struct i915_perf_stream *stream) 2490 { 2491 struct intel_uncore *uncore = stream->uncore; 2492 struct i915_oa_config *oa_config = stream->oa_config; 2493 bool periodic = stream->periodic; 2494 u32 period_exponent = stream->period_exponent; 2495 int ret; 2496 2497 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2498 /* Disable clk ratio reports, like previous Gens. */ 2499 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2500 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2501 /* 2502 * If the user didn't require OA reports, instruct 2503 * the hardware not to emit ctx switch reports. 2504 */ 2505 oag_report_ctx_switches(stream)); 2506 2507 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2508 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2509 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2510 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2511 : 0); 2512 2513 /* 2514 * Update all contexts prior writing the mux configurations as we need 2515 * to make sure all slices/subslices are ON before writing to NOA 2516 * registers. 2517 */ 2518 ret = gen12_configure_all_contexts(stream, oa_config); 2519 if (ret) 2520 return ERR_PTR(ret); 2521 2522 /* 2523 * For Gen12, performance counters are context 2524 * saved/restored. Only enable it for the context that 2525 * requested this. 2526 */ 2527 if (stream->ctx) { 2528 ret = gen12_configure_oar_context(stream, true); 2529 if (ret) 2530 return ERR_PTR(ret); 2531 } 2532 2533 return emit_oa_config(stream, oa_config, oa_context(stream)); 2534 } 2535 2536 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2537 { 2538 struct intel_uncore *uncore = stream->uncore; 2539 2540 /* Reset all contexts' slices/subslices configurations. */ 2541 lrc_configure_all_contexts(stream, NULL); 2542 2543 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2544 } 2545 2546 static void gen10_disable_metric_set(struct i915_perf_stream *stream) 2547 { 2548 struct intel_uncore *uncore = stream->uncore; 2549 2550 /* Reset all contexts' slices/subslices configurations. */ 2551 lrc_configure_all_contexts(stream, NULL); 2552 2553 /* Make sure we disable noa to save power. */ 2554 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2555 } 2556 2557 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2558 { 2559 struct intel_uncore *uncore = stream->uncore; 2560 2561 /* Reset all contexts' slices/subslices configurations. */ 2562 gen12_configure_all_contexts(stream, NULL); 2563 2564 /* disable the context save/restore or OAR counters */ 2565 if (stream->ctx) 2566 gen12_configure_oar_context(stream, false); 2567 2568 /* Make sure we disable noa to save power. */ 2569 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2570 } 2571 2572 static void gen7_oa_enable(struct i915_perf_stream *stream) 2573 { 2574 struct intel_uncore *uncore = stream->uncore; 2575 struct i915_gem_context *ctx = stream->ctx; 2576 u32 ctx_id = stream->specific_ctx_id; 2577 bool periodic = stream->periodic; 2578 u32 period_exponent = stream->period_exponent; 2579 u32 report_format = stream->oa_buffer.format; 2580 2581 /* 2582 * Reset buf pointers so we don't forward reports from before now. 2583 * 2584 * Think carefully if considering trying to avoid this, since it 2585 * also ensures status flags and the buffer itself are cleared 2586 * in error paths, and we have checks for invalid reports based 2587 * on the assumption that certain fields are written to zeroed 2588 * memory which this helps maintains. 2589 */ 2590 gen7_init_oa_buffer(stream); 2591 2592 intel_uncore_write(uncore, GEN7_OACONTROL, 2593 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2594 (period_exponent << 2595 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2596 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2597 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2598 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2599 GEN7_OACONTROL_ENABLE); 2600 } 2601 2602 static void gen8_oa_enable(struct i915_perf_stream *stream) 2603 { 2604 struct intel_uncore *uncore = stream->uncore; 2605 u32 report_format = stream->oa_buffer.format; 2606 2607 /* 2608 * Reset buf pointers so we don't forward reports from before now. 2609 * 2610 * Think carefully if considering trying to avoid this, since it 2611 * also ensures status flags and the buffer itself are cleared 2612 * in error paths, and we have checks for invalid reports based 2613 * on the assumption that certain fields are written to zeroed 2614 * memory which this helps maintains. 2615 */ 2616 gen8_init_oa_buffer(stream); 2617 2618 /* 2619 * Note: we don't rely on the hardware to perform single context 2620 * filtering and instead filter on the cpu based on the context-id 2621 * field of reports 2622 */ 2623 intel_uncore_write(uncore, GEN8_OACONTROL, 2624 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2625 GEN8_OA_COUNTER_ENABLE); 2626 } 2627 2628 static void gen12_oa_enable(struct i915_perf_stream *stream) 2629 { 2630 struct intel_uncore *uncore = stream->uncore; 2631 u32 report_format = stream->oa_buffer.format; 2632 2633 /* 2634 * If we don't want OA reports from the OA buffer, then we don't even 2635 * need to program the OAG unit. 2636 */ 2637 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2638 return; 2639 2640 gen12_init_oa_buffer(stream); 2641 2642 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2643 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2644 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2645 } 2646 2647 /** 2648 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2649 * @stream: An i915 perf stream opened for OA metrics 2650 * 2651 * [Re]enables hardware periodic sampling according to the period configured 2652 * when opening the stream. This also starts a hrtimer that will periodically 2653 * check for data in the circular OA buffer for notifying userspace (e.g. 2654 * during a read() or poll()). 2655 */ 2656 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2657 { 2658 stream->perf->ops.oa_enable(stream); 2659 2660 if (stream->periodic) 2661 hrtimer_start(&stream->poll_check_timer, 2662 ns_to_ktime(POLL_PERIOD), 2663 HRTIMER_MODE_REL_PINNED); 2664 } 2665 2666 static void gen7_oa_disable(struct i915_perf_stream *stream) 2667 { 2668 struct intel_uncore *uncore = stream->uncore; 2669 2670 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2671 if (intel_wait_for_register(uncore, 2672 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2673 50)) 2674 drm_err(&stream->perf->i915->drm, 2675 "wait for OA to be disabled timed out\n"); 2676 } 2677 2678 static void gen8_oa_disable(struct i915_perf_stream *stream) 2679 { 2680 struct intel_uncore *uncore = stream->uncore; 2681 2682 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2683 if (intel_wait_for_register(uncore, 2684 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2685 50)) 2686 drm_err(&stream->perf->i915->drm, 2687 "wait for OA to be disabled timed out\n"); 2688 } 2689 2690 static void gen12_oa_disable(struct i915_perf_stream *stream) 2691 { 2692 struct intel_uncore *uncore = stream->uncore; 2693 2694 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 2695 if (intel_wait_for_register(uncore, 2696 GEN12_OAG_OACONTROL, 2697 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 2698 50)) 2699 drm_err(&stream->perf->i915->drm, 2700 "wait for OA to be disabled timed out\n"); 2701 2702 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 2703 if (intel_wait_for_register(uncore, 2704 GEN12_OA_TLB_INV_CR, 2705 1, 0, 2706 50)) 2707 drm_err(&stream->perf->i915->drm, 2708 "wait for OA tlb invalidate timed out\n"); 2709 } 2710 2711 /** 2712 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2713 * @stream: An i915 perf stream opened for OA metrics 2714 * 2715 * Stops the OA unit from periodically writing counter reports into the 2716 * circular OA buffer. This also stops the hrtimer that periodically checks for 2717 * data in the circular OA buffer, for notifying userspace. 2718 */ 2719 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2720 { 2721 stream->perf->ops.oa_disable(stream); 2722 2723 if (stream->periodic) 2724 hrtimer_cancel(&stream->poll_check_timer); 2725 } 2726 2727 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2728 .destroy = i915_oa_stream_destroy, 2729 .enable = i915_oa_stream_enable, 2730 .disable = i915_oa_stream_disable, 2731 .wait_unlocked = i915_oa_wait_unlocked, 2732 .poll_wait = i915_oa_poll_wait, 2733 .read = i915_oa_read, 2734 }; 2735 2736 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 2737 { 2738 struct i915_request *rq; 2739 2740 rq = stream->perf->ops.enable_metric_set(stream); 2741 if (IS_ERR(rq)) 2742 return PTR_ERR(rq); 2743 2744 i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT); 2745 i915_request_put(rq); 2746 2747 return 0; 2748 } 2749 2750 /** 2751 * i915_oa_stream_init - validate combined props for OA stream and init 2752 * @stream: An i915 perf stream 2753 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2754 * @props: The property state that configures stream (individually validated) 2755 * 2756 * While read_properties_unlocked() validates properties in isolation it 2757 * doesn't ensure that the combination necessarily makes sense. 2758 * 2759 * At this point it has been determined that userspace wants a stream of 2760 * OA metrics, but still we need to further validate the combined 2761 * properties are OK. 2762 * 2763 * If the configuration makes sense then we can allocate memory for 2764 * a circular OA buffer and apply the requested metric set configuration. 2765 * 2766 * Returns: zero on success or a negative error code. 2767 */ 2768 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2769 struct drm_i915_perf_open_param *param, 2770 struct perf_open_properties *props) 2771 { 2772 struct drm_i915_private *i915 = stream->perf->i915; 2773 struct i915_perf *perf = stream->perf; 2774 int format_size; 2775 int ret; 2776 2777 if (!props->engine) { 2778 DRM_DEBUG("OA engine not specified\n"); 2779 return -EINVAL; 2780 } 2781 2782 /* 2783 * If the sysfs metrics/ directory wasn't registered for some 2784 * reason then don't let userspace try their luck with config 2785 * IDs 2786 */ 2787 if (!perf->metrics_kobj) { 2788 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2789 return -EINVAL; 2790 } 2791 2792 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 2793 (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) { 2794 DRM_DEBUG("Only OA report sampling supported\n"); 2795 return -EINVAL; 2796 } 2797 2798 if (!perf->ops.enable_metric_set) { 2799 DRM_DEBUG("OA unit not supported\n"); 2800 return -ENODEV; 2801 } 2802 2803 /* 2804 * To avoid the complexity of having to accurately filter 2805 * counter reports and marshal to the appropriate client 2806 * we currently only allow exclusive access 2807 */ 2808 if (perf->exclusive_stream) { 2809 DRM_DEBUG("OA unit already in use\n"); 2810 return -EBUSY; 2811 } 2812 2813 if (!props->oa_format) { 2814 DRM_DEBUG("OA report format not specified\n"); 2815 return -EINVAL; 2816 } 2817 2818 stream->engine = props->engine; 2819 stream->uncore = stream->engine->gt->uncore; 2820 2821 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2822 2823 format_size = perf->oa_formats[props->oa_format].size; 2824 2825 stream->sample_flags = props->sample_flags; 2826 stream->sample_size += format_size; 2827 2828 stream->oa_buffer.format_size = format_size; 2829 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0)) 2830 return -EINVAL; 2831 2832 stream->hold_preemption = props->hold_preemption; 2833 2834 stream->oa_buffer.format = 2835 perf->oa_formats[props->oa_format].format; 2836 2837 stream->periodic = props->oa_periodic; 2838 if (stream->periodic) 2839 stream->period_exponent = props->oa_period_exponent; 2840 2841 if (stream->ctx) { 2842 ret = oa_get_render_ctx_id(stream); 2843 if (ret) { 2844 DRM_DEBUG("Invalid context id to filter with\n"); 2845 return ret; 2846 } 2847 } 2848 2849 ret = alloc_noa_wait(stream); 2850 if (ret) { 2851 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n"); 2852 goto err_noa_wait_alloc; 2853 } 2854 2855 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 2856 if (!stream->oa_config) { 2857 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2858 ret = -EINVAL; 2859 goto err_config; 2860 } 2861 2862 /* PRM - observability performance counters: 2863 * 2864 * OACONTROL, performance counter enable, note: 2865 * 2866 * "When this bit is set, in order to have coherent counts, 2867 * RC6 power state and trunk clock gating must be disabled. 2868 * This can be achieved by programming MMIO registers as 2869 * 0xA094=0 and 0xA090[31]=1" 2870 * 2871 * In our case we are expecting that taking pm + FORCEWAKE 2872 * references will effectively disable RC6. 2873 */ 2874 intel_engine_pm_get(stream->engine); 2875 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 2876 2877 ret = alloc_oa_buffer(stream); 2878 if (ret) 2879 goto err_oa_buf_alloc; 2880 2881 stream->ops = &i915_oa_stream_ops; 2882 WRITE_ONCE(perf->exclusive_stream, stream); 2883 2884 ret = i915_perf_stream_enable_sync(stream); 2885 if (ret) { 2886 DRM_DEBUG("Unable to enable metric set\n"); 2887 goto err_enable; 2888 } 2889 2890 DRM_DEBUG("opening stream oa config uuid=%s\n", 2891 stream->oa_config->uuid); 2892 2893 hrtimer_init(&stream->poll_check_timer, 2894 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2895 stream->poll_check_timer.function = oa_poll_check_timer_cb; 2896 init_waitqueue_head(&stream->poll_wq); 2897 spin_lock_init(&stream->oa_buffer.ptr_lock); 2898 2899 return 0; 2900 2901 err_enable: 2902 WRITE_ONCE(perf->exclusive_stream, NULL); 2903 perf->ops.disable_metric_set(stream); 2904 2905 free_oa_buffer(stream); 2906 2907 err_oa_buf_alloc: 2908 free_oa_configs(stream); 2909 2910 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 2911 intel_engine_pm_put(stream->engine); 2912 2913 err_config: 2914 free_noa_wait(stream); 2915 2916 err_noa_wait_alloc: 2917 if (stream->ctx) 2918 oa_put_render_ctx_id(stream); 2919 2920 return ret; 2921 } 2922 2923 void i915_oa_init_reg_state(const struct intel_context *ce, 2924 const struct intel_engine_cs *engine) 2925 { 2926 struct i915_perf_stream *stream; 2927 2928 if (engine->class != RENDER_CLASS) 2929 return; 2930 2931 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 2932 stream = READ_ONCE(engine->i915->perf.exclusive_stream); 2933 /* 2934 * For gen12, only CTX_R_PWR_CLK_STATE needs update, but the caller 2935 * is already doing that, so nothing to be done for gen12 here. 2936 */ 2937 if (stream && INTEL_GEN(stream->perf->i915) < 12) 2938 gen8_update_reg_state_unlocked(ce, stream); 2939 } 2940 2941 /** 2942 * i915_perf_read - handles read() FOP for i915 perf stream FDs 2943 * @file: An i915 perf stream file 2944 * @buf: destination buffer given by userspace 2945 * @count: the number of bytes userspace wants to read 2946 * @ppos: (inout) file seek position (unused) 2947 * 2948 * The entry point for handling a read() on a stream file descriptor from 2949 * userspace. Most of the work is left to the i915_perf_read_locked() and 2950 * &i915_perf_stream_ops->read but to save having stream implementations (of 2951 * which we might have multiple later) we handle blocking read here. 2952 * 2953 * We can also consistently treat trying to read from a disabled stream 2954 * as an IO error so implementations can assume the stream is enabled 2955 * while reading. 2956 * 2957 * Returns: The number of bytes copied or a negative error code on failure. 2958 */ 2959 static ssize_t i915_perf_read(struct file *file, 2960 char __user *buf, 2961 size_t count, 2962 loff_t *ppos) 2963 { 2964 struct i915_perf_stream *stream = file->private_data; 2965 struct i915_perf *perf = stream->perf; 2966 size_t offset = 0; 2967 int ret; 2968 2969 /* To ensure it's handled consistently we simply treat all reads of a 2970 * disabled stream as an error. In particular it might otherwise lead 2971 * to a deadlock for blocking file descriptors... 2972 */ 2973 if (!stream->enabled) 2974 return -EIO; 2975 2976 if (!(file->f_flags & O_NONBLOCK)) { 2977 /* There's the small chance of false positives from 2978 * stream->ops->wait_unlocked. 2979 * 2980 * E.g. with single context filtering since we only wait until 2981 * oabuffer has >= 1 report we don't immediately know whether 2982 * any reports really belong to the current context 2983 */ 2984 do { 2985 ret = stream->ops->wait_unlocked(stream); 2986 if (ret) 2987 return ret; 2988 2989 mutex_lock(&perf->lock); 2990 ret = stream->ops->read(stream, buf, count, &offset); 2991 mutex_unlock(&perf->lock); 2992 } while (!offset && !ret); 2993 } else { 2994 mutex_lock(&perf->lock); 2995 ret = stream->ops->read(stream, buf, count, &offset); 2996 mutex_unlock(&perf->lock); 2997 } 2998 2999 /* We allow the poll checking to sometimes report false positive EPOLLIN 3000 * events where we might actually report EAGAIN on read() if there's 3001 * not really any data available. In this situation though we don't 3002 * want to enter a busy loop between poll() reporting a EPOLLIN event 3003 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3004 * effectively ensures we back off until the next hrtimer callback 3005 * before reporting another EPOLLIN event. 3006 * The exception to this is if ops->read() returned -ENOSPC which means 3007 * that more OA data is available than could fit in the user provided 3008 * buffer. In this case we want the next poll() call to not block. 3009 */ 3010 if (ret != -ENOSPC) 3011 stream->pollin = false; 3012 3013 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3014 return offset ?: (ret ?: -EAGAIN); 3015 } 3016 3017 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3018 { 3019 struct i915_perf_stream *stream = 3020 container_of(hrtimer, typeof(*stream), poll_check_timer); 3021 3022 if (oa_buffer_check_unlocked(stream)) { 3023 stream->pollin = true; 3024 wake_up(&stream->poll_wq); 3025 } 3026 3027 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD)); 3028 3029 return HRTIMER_RESTART; 3030 } 3031 3032 /** 3033 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3034 * @stream: An i915 perf stream 3035 * @file: An i915 perf stream file 3036 * @wait: poll() state table 3037 * 3038 * For handling userspace polling on an i915 perf stream, this calls through to 3039 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3040 * will be woken for new stream data. 3041 * 3042 * Note: The &perf->lock mutex has been taken to serialize 3043 * with any non-file-operation driver hooks. 3044 * 3045 * Returns: any poll events that are ready without sleeping 3046 */ 3047 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3048 struct file *file, 3049 poll_table *wait) 3050 { 3051 __poll_t events = 0; 3052 3053 stream->ops->poll_wait(stream, file, wait); 3054 3055 /* Note: we don't explicitly check whether there's something to read 3056 * here since this path may be very hot depending on what else 3057 * userspace is polling, or on the timeout in use. We rely solely on 3058 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3059 * samples to read. 3060 */ 3061 if (stream->pollin) 3062 events |= EPOLLIN; 3063 3064 return events; 3065 } 3066 3067 /** 3068 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3069 * @file: An i915 perf stream file 3070 * @wait: poll() state table 3071 * 3072 * For handling userspace polling on an i915 perf stream, this ensures 3073 * poll_wait() gets called with a wait queue that will be woken for new stream 3074 * data. 3075 * 3076 * Note: Implementation deferred to i915_perf_poll_locked() 3077 * 3078 * Returns: any poll events that are ready without sleeping 3079 */ 3080 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3081 { 3082 struct i915_perf_stream *stream = file->private_data; 3083 struct i915_perf *perf = stream->perf; 3084 __poll_t ret; 3085 3086 mutex_lock(&perf->lock); 3087 ret = i915_perf_poll_locked(stream, file, wait); 3088 mutex_unlock(&perf->lock); 3089 3090 return ret; 3091 } 3092 3093 /** 3094 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3095 * @stream: A disabled i915 perf stream 3096 * 3097 * [Re]enables the associated capture of data for this stream. 3098 * 3099 * If a stream was previously enabled then there's currently no intention 3100 * to provide userspace any guarantee about the preservation of previously 3101 * buffered data. 3102 */ 3103 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3104 { 3105 if (stream->enabled) 3106 return; 3107 3108 /* Allow stream->ops->enable() to refer to this */ 3109 stream->enabled = true; 3110 3111 if (stream->ops->enable) 3112 stream->ops->enable(stream); 3113 3114 if (stream->hold_preemption) 3115 intel_context_set_nopreempt(stream->pinned_ctx); 3116 } 3117 3118 /** 3119 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3120 * @stream: An enabled i915 perf stream 3121 * 3122 * Disables the associated capture of data for this stream. 3123 * 3124 * The intention is that disabling an re-enabling a stream will ideally be 3125 * cheaper than destroying and re-opening a stream with the same configuration, 3126 * though there are no formal guarantees about what state or buffered data 3127 * must be retained between disabling and re-enabling a stream. 3128 * 3129 * Note: while a stream is disabled it's considered an error for userspace 3130 * to attempt to read from the stream (-EIO). 3131 */ 3132 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3133 { 3134 if (!stream->enabled) 3135 return; 3136 3137 /* Allow stream->ops->disable() to refer to this */ 3138 stream->enabled = false; 3139 3140 if (stream->hold_preemption) 3141 intel_context_clear_nopreempt(stream->pinned_ctx); 3142 3143 if (stream->ops->disable) 3144 stream->ops->disable(stream); 3145 } 3146 3147 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3148 unsigned long metrics_set) 3149 { 3150 struct i915_oa_config *config; 3151 long ret = stream->oa_config->id; 3152 3153 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3154 if (!config) 3155 return -EINVAL; 3156 3157 if (config != stream->oa_config) { 3158 struct i915_request *rq; 3159 3160 /* 3161 * If OA is bound to a specific context, emit the 3162 * reconfiguration inline from that context. The update 3163 * will then be ordered with respect to submission on that 3164 * context. 3165 * 3166 * When set globally, we use a low priority kernel context, 3167 * so it will effectively take effect when idle. 3168 */ 3169 rq = emit_oa_config(stream, config, oa_context(stream)); 3170 if (!IS_ERR(rq)) { 3171 config = xchg(&stream->oa_config, config); 3172 i915_request_put(rq); 3173 } else { 3174 ret = PTR_ERR(rq); 3175 } 3176 } 3177 3178 i915_oa_config_put(config); 3179 3180 return ret; 3181 } 3182 3183 /** 3184 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3185 * @stream: An i915 perf stream 3186 * @cmd: the ioctl request 3187 * @arg: the ioctl data 3188 * 3189 * Note: The &perf->lock mutex has been taken to serialize 3190 * with any non-file-operation driver hooks. 3191 * 3192 * Returns: zero on success or a negative error code. Returns -EINVAL for 3193 * an unknown ioctl request. 3194 */ 3195 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3196 unsigned int cmd, 3197 unsigned long arg) 3198 { 3199 switch (cmd) { 3200 case I915_PERF_IOCTL_ENABLE: 3201 i915_perf_enable_locked(stream); 3202 return 0; 3203 case I915_PERF_IOCTL_DISABLE: 3204 i915_perf_disable_locked(stream); 3205 return 0; 3206 case I915_PERF_IOCTL_CONFIG: 3207 return i915_perf_config_locked(stream, arg); 3208 } 3209 3210 return -EINVAL; 3211 } 3212 3213 /** 3214 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3215 * @file: An i915 perf stream file 3216 * @cmd: the ioctl request 3217 * @arg: the ioctl data 3218 * 3219 * Implementation deferred to i915_perf_ioctl_locked(). 3220 * 3221 * Returns: zero on success or a negative error code. Returns -EINVAL for 3222 * an unknown ioctl request. 3223 */ 3224 static long i915_perf_ioctl(struct file *file, 3225 unsigned int cmd, 3226 unsigned long arg) 3227 { 3228 struct i915_perf_stream *stream = file->private_data; 3229 struct i915_perf *perf = stream->perf; 3230 long ret; 3231 3232 mutex_lock(&perf->lock); 3233 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3234 mutex_unlock(&perf->lock); 3235 3236 return ret; 3237 } 3238 3239 /** 3240 * i915_perf_destroy_locked - destroy an i915 perf stream 3241 * @stream: An i915 perf stream 3242 * 3243 * Frees all resources associated with the given i915 perf @stream, disabling 3244 * any associated data capture in the process. 3245 * 3246 * Note: The &perf->lock mutex has been taken to serialize 3247 * with any non-file-operation driver hooks. 3248 */ 3249 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3250 { 3251 if (stream->enabled) 3252 i915_perf_disable_locked(stream); 3253 3254 if (stream->ops->destroy) 3255 stream->ops->destroy(stream); 3256 3257 if (stream->ctx) 3258 i915_gem_context_put(stream->ctx); 3259 3260 kfree(stream); 3261 } 3262 3263 /** 3264 * i915_perf_release - handles userspace close() of a stream file 3265 * @inode: anonymous inode associated with file 3266 * @file: An i915 perf stream file 3267 * 3268 * Cleans up any resources associated with an open i915 perf stream file. 3269 * 3270 * NB: close() can't really fail from the userspace point of view. 3271 * 3272 * Returns: zero on success or a negative error code. 3273 */ 3274 static int i915_perf_release(struct inode *inode, struct file *file) 3275 { 3276 struct i915_perf_stream *stream = file->private_data; 3277 struct i915_perf *perf = stream->perf; 3278 3279 mutex_lock(&perf->lock); 3280 i915_perf_destroy_locked(stream); 3281 mutex_unlock(&perf->lock); 3282 3283 /* Release the reference the perf stream kept on the driver. */ 3284 drm_dev_put(&perf->i915->drm); 3285 3286 return 0; 3287 } 3288 3289 3290 static const struct file_operations fops = { 3291 .owner = THIS_MODULE, 3292 .llseek = no_llseek, 3293 .release = i915_perf_release, 3294 .poll = i915_perf_poll, 3295 .read = i915_perf_read, 3296 .unlocked_ioctl = i915_perf_ioctl, 3297 /* Our ioctl have no arguments, so it's safe to use the same function 3298 * to handle 32bits compatibility. 3299 */ 3300 .compat_ioctl = i915_perf_ioctl, 3301 }; 3302 3303 3304 /** 3305 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3306 * @perf: i915 perf instance 3307 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3308 * @props: individually validated u64 property value pairs 3309 * @file: drm file 3310 * 3311 * See i915_perf_ioctl_open() for interface details. 3312 * 3313 * Implements further stream config validation and stream initialization on 3314 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex 3315 * taken to serialize with any non-file-operation driver hooks. 3316 * 3317 * Note: at this point the @props have only been validated in isolation and 3318 * it's still necessary to validate that the combination of properties makes 3319 * sense. 3320 * 3321 * In the case where userspace is interested in OA unit metrics then further 3322 * config validation and stream initialization details will be handled by 3323 * i915_oa_stream_init(). The code here should only validate config state that 3324 * will be relevant to all stream types / backends. 3325 * 3326 * Returns: zero on success or a negative error code. 3327 */ 3328 static int 3329 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3330 struct drm_i915_perf_open_param *param, 3331 struct perf_open_properties *props, 3332 struct drm_file *file) 3333 { 3334 struct i915_gem_context *specific_ctx = NULL; 3335 struct i915_perf_stream *stream = NULL; 3336 unsigned long f_flags = 0; 3337 bool privileged_op = true; 3338 int stream_fd; 3339 int ret; 3340 3341 if (props->single_context) { 3342 u32 ctx_handle = props->ctx_handle; 3343 struct drm_i915_file_private *file_priv = file->driver_priv; 3344 3345 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3346 if (!specific_ctx) { 3347 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 3348 ctx_handle); 3349 ret = -ENOENT; 3350 goto err; 3351 } 3352 } 3353 3354 /* 3355 * On Haswell the OA unit supports clock gating off for a specific 3356 * context and in this mode there's no visibility of metrics for the 3357 * rest of the system, which we consider acceptable for a 3358 * non-privileged client. 3359 * 3360 * For Gen8->11 the OA unit no longer supports clock gating off for a 3361 * specific context and the kernel can't securely stop the counters 3362 * from updating as system-wide / global values. Even though we can 3363 * filter reports based on the included context ID we can't block 3364 * clients from seeing the raw / global counter values via 3365 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3366 * enable the OA unit by default. 3367 * 3368 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3369 * per context basis. So we can relax requirements there if the user 3370 * doesn't request global stream access (i.e. query based sampling 3371 * using MI_RECORD_PERF_COUNT. 3372 */ 3373 if (IS_HASWELL(perf->i915) && specific_ctx) 3374 privileged_op = false; 3375 else if (IS_GEN(perf->i915, 12) && specific_ctx && 3376 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3377 privileged_op = false; 3378 3379 if (props->hold_preemption) { 3380 if (!props->single_context) { 3381 DRM_DEBUG("preemption disable with no context\n"); 3382 ret = -EINVAL; 3383 goto err; 3384 } 3385 privileged_op = true; 3386 } 3387 3388 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3389 * we check a dev.i915.perf_stream_paranoid sysctl option 3390 * to determine if it's ok to access system wide OA counters 3391 * without CAP_SYS_ADMIN privileges. 3392 */ 3393 if (privileged_op && 3394 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3395 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n"); 3396 ret = -EACCES; 3397 goto err_ctx; 3398 } 3399 3400 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3401 if (!stream) { 3402 ret = -ENOMEM; 3403 goto err_ctx; 3404 } 3405 3406 stream->perf = perf; 3407 stream->ctx = specific_ctx; 3408 3409 ret = i915_oa_stream_init(stream, param, props); 3410 if (ret) 3411 goto err_alloc; 3412 3413 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3414 * to have _stream_init check the combination of sample flags more 3415 * thoroughly, but still this is the expected result at this point. 3416 */ 3417 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3418 ret = -ENODEV; 3419 goto err_flags; 3420 } 3421 3422 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3423 f_flags |= O_CLOEXEC; 3424 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3425 f_flags |= O_NONBLOCK; 3426 3427 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3428 if (stream_fd < 0) { 3429 ret = stream_fd; 3430 goto err_flags; 3431 } 3432 3433 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3434 i915_perf_enable_locked(stream); 3435 3436 /* Take a reference on the driver that will be kept with stream_fd 3437 * until its release. 3438 */ 3439 drm_dev_get(&perf->i915->drm); 3440 3441 return stream_fd; 3442 3443 err_flags: 3444 if (stream->ops->destroy) 3445 stream->ops->destroy(stream); 3446 err_alloc: 3447 kfree(stream); 3448 err_ctx: 3449 if (specific_ctx) 3450 i915_gem_context_put(specific_ctx); 3451 err: 3452 return ret; 3453 } 3454 3455 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3456 { 3457 return div64_u64(1000000000ULL * (2ULL << exponent), 3458 1000ULL * RUNTIME_INFO(perf->i915)->cs_timestamp_frequency_khz); 3459 } 3460 3461 /** 3462 * read_properties_unlocked - validate + copy userspace stream open properties 3463 * @perf: i915 perf instance 3464 * @uprops: The array of u64 key value pairs given by userspace 3465 * @n_props: The number of key value pairs expected in @uprops 3466 * @props: The stream configuration built up while validating properties 3467 * 3468 * Note this function only validates properties in isolation it doesn't 3469 * validate that the combination of properties makes sense or that all 3470 * properties necessary for a particular kind of stream have been set. 3471 * 3472 * Note that there currently aren't any ordering requirements for properties so 3473 * we shouldn't validate or assume anything about ordering here. This doesn't 3474 * rule out defining new properties with ordering requirements in the future. 3475 */ 3476 static int read_properties_unlocked(struct i915_perf *perf, 3477 u64 __user *uprops, 3478 u32 n_props, 3479 struct perf_open_properties *props) 3480 { 3481 u64 __user *uprop = uprops; 3482 u32 i; 3483 3484 memset(props, 0, sizeof(struct perf_open_properties)); 3485 3486 if (!n_props) { 3487 DRM_DEBUG("No i915 perf properties given\n"); 3488 return -EINVAL; 3489 } 3490 3491 /* At the moment we only support using i915-perf on the RCS. */ 3492 props->engine = intel_engine_lookup_user(perf->i915, 3493 I915_ENGINE_CLASS_RENDER, 3494 0); 3495 if (!props->engine) { 3496 DRM_DEBUG("No RENDER-capable engines\n"); 3497 return -EINVAL; 3498 } 3499 3500 /* Considering that ID = 0 is reserved and assuming that we don't 3501 * (currently) expect any configurations to ever specify duplicate 3502 * values for a particular property ID then the last _PROP_MAX value is 3503 * one greater than the maximum number of properties we expect to get 3504 * from userspace. 3505 */ 3506 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3507 DRM_DEBUG("More i915 perf properties specified than exist\n"); 3508 return -EINVAL; 3509 } 3510 3511 for (i = 0; i < n_props; i++) { 3512 u64 oa_period, oa_freq_hz; 3513 u64 id, value; 3514 int ret; 3515 3516 ret = get_user(id, uprop); 3517 if (ret) 3518 return ret; 3519 3520 ret = get_user(value, uprop + 1); 3521 if (ret) 3522 return ret; 3523 3524 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3525 DRM_DEBUG("Unknown i915 perf property ID\n"); 3526 return -EINVAL; 3527 } 3528 3529 switch ((enum drm_i915_perf_property_id)id) { 3530 case DRM_I915_PERF_PROP_CTX_HANDLE: 3531 props->single_context = 1; 3532 props->ctx_handle = value; 3533 break; 3534 case DRM_I915_PERF_PROP_SAMPLE_OA: 3535 if (value) 3536 props->sample_flags |= SAMPLE_OA_REPORT; 3537 break; 3538 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3539 if (value == 0) { 3540 DRM_DEBUG("Unknown OA metric set ID\n"); 3541 return -EINVAL; 3542 } 3543 props->metrics_set = value; 3544 break; 3545 case DRM_I915_PERF_PROP_OA_FORMAT: 3546 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3547 DRM_DEBUG("Out-of-range OA report format %llu\n", 3548 value); 3549 return -EINVAL; 3550 } 3551 if (!perf->oa_formats[value].size) { 3552 DRM_DEBUG("Unsupported OA report format %llu\n", 3553 value); 3554 return -EINVAL; 3555 } 3556 props->oa_format = value; 3557 break; 3558 case DRM_I915_PERF_PROP_OA_EXPONENT: 3559 if (value > OA_EXPONENT_MAX) { 3560 DRM_DEBUG("OA timer exponent too high (> %u)\n", 3561 OA_EXPONENT_MAX); 3562 return -EINVAL; 3563 } 3564 3565 /* Theoretically we can program the OA unit to sample 3566 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 3567 * for BXT. We don't allow such high sampling 3568 * frequencies by default unless root. 3569 */ 3570 3571 BUILD_BUG_ON(sizeof(oa_period) != 8); 3572 oa_period = oa_exponent_to_ns(perf, value); 3573 3574 /* This check is primarily to ensure that oa_period <= 3575 * UINT32_MAX (before passing to do_div which only 3576 * accepts a u32 denominator), but we can also skip 3577 * checking anything < 1Hz which implicitly can't be 3578 * limited via an integer oa_max_sample_rate. 3579 */ 3580 if (oa_period <= NSEC_PER_SEC) { 3581 u64 tmp = NSEC_PER_SEC; 3582 do_div(tmp, oa_period); 3583 oa_freq_hz = tmp; 3584 } else 3585 oa_freq_hz = 0; 3586 3587 if (oa_freq_hz > i915_oa_max_sample_rate && 3588 !capable(CAP_SYS_ADMIN)) { 3589 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n", 3590 i915_oa_max_sample_rate); 3591 return -EACCES; 3592 } 3593 3594 props->oa_periodic = true; 3595 props->oa_period_exponent = value; 3596 break; 3597 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 3598 props->hold_preemption = !!value; 3599 break; 3600 case DRM_I915_PERF_PROP_MAX: 3601 MISSING_CASE(id); 3602 return -EINVAL; 3603 } 3604 3605 uprop += 2; 3606 } 3607 3608 return 0; 3609 } 3610 3611 /** 3612 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 3613 * @dev: drm device 3614 * @data: ioctl data copied from userspace (unvalidated) 3615 * @file: drm file 3616 * 3617 * Validates the stream open parameters given by userspace including flags 3618 * and an array of u64 key, value pair properties. 3619 * 3620 * Very little is assumed up front about the nature of the stream being 3621 * opened (for instance we don't assume it's for periodic OA unit metrics). An 3622 * i915-perf stream is expected to be a suitable interface for other forms of 3623 * buffered data written by the GPU besides periodic OA metrics. 3624 * 3625 * Note we copy the properties from userspace outside of the i915 perf 3626 * mutex to avoid an awkward lockdep with mmap_sem. 3627 * 3628 * Most of the implementation details are handled by 3629 * i915_perf_open_ioctl_locked() after taking the &perf->lock 3630 * mutex for serializing with any non-file-operation driver hooks. 3631 * 3632 * Return: A newly opened i915 Perf stream file descriptor or negative 3633 * error code on failure. 3634 */ 3635 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3636 struct drm_file *file) 3637 { 3638 struct i915_perf *perf = &to_i915(dev)->perf; 3639 struct drm_i915_perf_open_param *param = data; 3640 struct perf_open_properties props; 3641 u32 known_open_flags; 3642 int ret; 3643 3644 if (!perf->i915) { 3645 DRM_DEBUG("i915 perf interface not available for this system\n"); 3646 return -ENOTSUPP; 3647 } 3648 3649 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3650 I915_PERF_FLAG_FD_NONBLOCK | 3651 I915_PERF_FLAG_DISABLED; 3652 if (param->flags & ~known_open_flags) { 3653 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 3654 return -EINVAL; 3655 } 3656 3657 ret = read_properties_unlocked(perf, 3658 u64_to_user_ptr(param->properties_ptr), 3659 param->num_properties, 3660 &props); 3661 if (ret) 3662 return ret; 3663 3664 mutex_lock(&perf->lock); 3665 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 3666 mutex_unlock(&perf->lock); 3667 3668 return ret; 3669 } 3670 3671 /** 3672 * i915_perf_register - exposes i915-perf to userspace 3673 * @i915: i915 device instance 3674 * 3675 * In particular OA metric sets are advertised under a sysfs metrics/ 3676 * directory allowing userspace to enumerate valid IDs that can be 3677 * used to open an i915-perf stream. 3678 */ 3679 void i915_perf_register(struct drm_i915_private *i915) 3680 { 3681 struct i915_perf *perf = &i915->perf; 3682 int ret; 3683 3684 if (!perf->i915) 3685 return; 3686 3687 /* To be sure we're synchronized with an attempted 3688 * i915_perf_open_ioctl(); considering that we register after 3689 * being exposed to userspace. 3690 */ 3691 mutex_lock(&perf->lock); 3692 3693 perf->metrics_kobj = 3694 kobject_create_and_add("metrics", 3695 &i915->drm.primary->kdev->kobj); 3696 if (!perf->metrics_kobj) 3697 goto exit; 3698 3699 sysfs_attr_init(&perf->test_config.sysfs_metric_id.attr); 3700 3701 if (IS_TIGERLAKE(i915)) { 3702 i915_perf_load_test_config_tgl(i915); 3703 } else if (INTEL_GEN(i915) >= 11) { 3704 i915_perf_load_test_config_icl(i915); 3705 } else if (IS_CANNONLAKE(i915)) { 3706 i915_perf_load_test_config_cnl(i915); 3707 } else if (IS_COFFEELAKE(i915)) { 3708 if (IS_CFL_GT2(i915)) 3709 i915_perf_load_test_config_cflgt2(i915); 3710 if (IS_CFL_GT3(i915)) 3711 i915_perf_load_test_config_cflgt3(i915); 3712 } else if (IS_GEMINILAKE(i915)) { 3713 i915_perf_load_test_config_glk(i915); 3714 } else if (IS_KABYLAKE(i915)) { 3715 if (IS_KBL_GT2(i915)) 3716 i915_perf_load_test_config_kblgt2(i915); 3717 else if (IS_KBL_GT3(i915)) 3718 i915_perf_load_test_config_kblgt3(i915); 3719 } else if (IS_BROXTON(i915)) { 3720 i915_perf_load_test_config_bxt(i915); 3721 } else if (IS_SKYLAKE(i915)) { 3722 if (IS_SKL_GT2(i915)) 3723 i915_perf_load_test_config_sklgt2(i915); 3724 else if (IS_SKL_GT3(i915)) 3725 i915_perf_load_test_config_sklgt3(i915); 3726 else if (IS_SKL_GT4(i915)) 3727 i915_perf_load_test_config_sklgt4(i915); 3728 } else if (IS_CHERRYVIEW(i915)) { 3729 i915_perf_load_test_config_chv(i915); 3730 } else if (IS_BROADWELL(i915)) { 3731 i915_perf_load_test_config_bdw(i915); 3732 } else if (IS_HASWELL(i915)) { 3733 i915_perf_load_test_config_hsw(i915); 3734 } 3735 3736 if (perf->test_config.id == 0) 3737 goto sysfs_error; 3738 3739 ret = sysfs_create_group(perf->metrics_kobj, 3740 &perf->test_config.sysfs_metric); 3741 if (ret) 3742 goto sysfs_error; 3743 3744 perf->test_config.perf = perf; 3745 kref_init(&perf->test_config.ref); 3746 3747 goto exit; 3748 3749 sysfs_error: 3750 kobject_put(perf->metrics_kobj); 3751 perf->metrics_kobj = NULL; 3752 3753 exit: 3754 mutex_unlock(&perf->lock); 3755 } 3756 3757 /** 3758 * i915_perf_unregister - hide i915-perf from userspace 3759 * @i915: i915 device instance 3760 * 3761 * i915-perf state cleanup is split up into an 'unregister' and 3762 * 'deinit' phase where the interface is first hidden from 3763 * userspace by i915_perf_unregister() before cleaning up 3764 * remaining state in i915_perf_fini(). 3765 */ 3766 void i915_perf_unregister(struct drm_i915_private *i915) 3767 { 3768 struct i915_perf *perf = &i915->perf; 3769 3770 if (!perf->metrics_kobj) 3771 return; 3772 3773 sysfs_remove_group(perf->metrics_kobj, 3774 &perf->test_config.sysfs_metric); 3775 3776 kobject_put(perf->metrics_kobj); 3777 perf->metrics_kobj = NULL; 3778 } 3779 3780 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 3781 { 3782 static const i915_reg_t flex_eu_regs[] = { 3783 EU_PERF_CNTL0, 3784 EU_PERF_CNTL1, 3785 EU_PERF_CNTL2, 3786 EU_PERF_CNTL3, 3787 EU_PERF_CNTL4, 3788 EU_PERF_CNTL5, 3789 EU_PERF_CNTL6, 3790 }; 3791 int i; 3792 3793 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3794 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3795 return true; 3796 } 3797 return false; 3798 } 3799 3800 #define ADDR_IN_RANGE(addr, start, end) \ 3801 ((addr) >= (start) && \ 3802 (addr) <= (end)) 3803 3804 #define REG_IN_RANGE(addr, start, end) \ 3805 ((addr) >= i915_mmio_reg_offset(start) && \ 3806 (addr) <= i915_mmio_reg_offset(end)) 3807 3808 #define REG_EQUAL(addr, mmio) \ 3809 ((addr) == i915_mmio_reg_offset(mmio)) 3810 3811 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3812 { 3813 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) || 3814 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) || 3815 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1); 3816 } 3817 3818 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3819 { 3820 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) || 3821 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) || 3822 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) || 3823 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI); 3824 } 3825 3826 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3827 { 3828 return gen7_is_valid_mux_addr(perf, addr) || 3829 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3830 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8)); 3831 } 3832 3833 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3834 { 3835 return gen8_is_valid_mux_addr(perf, addr) || 3836 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3837 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI); 3838 } 3839 3840 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3841 { 3842 return gen7_is_valid_mux_addr(perf, addr) || 3843 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) || 3844 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) || 3845 REG_EQUAL(addr, HSW_MBVID2_MISR0); 3846 } 3847 3848 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3849 { 3850 return gen7_is_valid_mux_addr(perf, addr) || 3851 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4); 3852 } 3853 3854 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3855 { 3856 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) || 3857 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) || 3858 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) || 3859 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) || 3860 REG_EQUAL(addr, GEN12_OAA_DBG_REG) || 3861 REG_EQUAL(addr, GEN12_OAG_OA_PESS) || 3862 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF); 3863 } 3864 3865 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3866 { 3867 return REG_EQUAL(addr, NOA_WRITE) || 3868 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3869 REG_EQUAL(addr, GDT_CHICKEN_BITS) || 3870 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3871 REG_EQUAL(addr, RPM_CONFIG0) || 3872 REG_EQUAL(addr, RPM_CONFIG1) || 3873 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8)); 3874 } 3875 3876 static u32 mask_reg_value(u32 reg, u32 val) 3877 { 3878 /* HALF_SLICE_CHICKEN2 is programmed with a the 3879 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3880 * programmed by userspace doesn't change this. 3881 */ 3882 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 3883 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3884 3885 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3886 * indicated by its name and a bunch of selection fields used by OA 3887 * configs. 3888 */ 3889 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 3890 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3891 3892 return val; 3893 } 3894 3895 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 3896 bool (*is_valid)(struct i915_perf *perf, u32 addr), 3897 u32 __user *regs, 3898 u32 n_regs) 3899 { 3900 struct i915_oa_reg *oa_regs; 3901 int err; 3902 u32 i; 3903 3904 if (!n_regs) 3905 return NULL; 3906 3907 if (!access_ok(regs, n_regs * sizeof(u32) * 2)) 3908 return ERR_PTR(-EFAULT); 3909 3910 /* No is_valid function means we're not allowing any register to be programmed. */ 3911 GEM_BUG_ON(!is_valid); 3912 if (!is_valid) 3913 return ERR_PTR(-EINVAL); 3914 3915 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3916 if (!oa_regs) 3917 return ERR_PTR(-ENOMEM); 3918 3919 for (i = 0; i < n_regs; i++) { 3920 u32 addr, value; 3921 3922 err = get_user(addr, regs); 3923 if (err) 3924 goto addr_err; 3925 3926 if (!is_valid(perf, addr)) { 3927 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3928 err = -EINVAL; 3929 goto addr_err; 3930 } 3931 3932 err = get_user(value, regs + 1); 3933 if (err) 3934 goto addr_err; 3935 3936 oa_regs[i].addr = _MMIO(addr); 3937 oa_regs[i].value = mask_reg_value(addr, value); 3938 3939 regs += 2; 3940 } 3941 3942 return oa_regs; 3943 3944 addr_err: 3945 kfree(oa_regs); 3946 return ERR_PTR(err); 3947 } 3948 3949 static ssize_t show_dynamic_id(struct device *dev, 3950 struct device_attribute *attr, 3951 char *buf) 3952 { 3953 struct i915_oa_config *oa_config = 3954 container_of(attr, typeof(*oa_config), sysfs_metric_id); 3955 3956 return sprintf(buf, "%d\n", oa_config->id); 3957 } 3958 3959 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 3960 struct i915_oa_config *oa_config) 3961 { 3962 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 3963 oa_config->sysfs_metric_id.attr.name = "id"; 3964 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 3965 oa_config->sysfs_metric_id.show = show_dynamic_id; 3966 oa_config->sysfs_metric_id.store = NULL; 3967 3968 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 3969 oa_config->attrs[1] = NULL; 3970 3971 oa_config->sysfs_metric.name = oa_config->uuid; 3972 oa_config->sysfs_metric.attrs = oa_config->attrs; 3973 3974 return sysfs_create_group(perf->metrics_kobj, 3975 &oa_config->sysfs_metric); 3976 } 3977 3978 /** 3979 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 3980 * @dev: drm device 3981 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 3982 * userspace (unvalidated) 3983 * @file: drm file 3984 * 3985 * Validates the submitted OA register to be saved into a new OA config that 3986 * can then be used for programming the OA unit and its NOA network. 3987 * 3988 * Returns: A new allocated config number to be used with the perf open ioctl 3989 * or a negative error code on failure. 3990 */ 3991 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3992 struct drm_file *file) 3993 { 3994 struct i915_perf *perf = &to_i915(dev)->perf; 3995 struct drm_i915_perf_oa_config *args = data; 3996 struct i915_oa_config *oa_config, *tmp; 3997 struct i915_oa_reg *regs; 3998 int err, id; 3999 4000 if (!perf->i915) { 4001 DRM_DEBUG("i915 perf interface not available for this system\n"); 4002 return -ENOTSUPP; 4003 } 4004 4005 if (!perf->metrics_kobj) { 4006 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 4007 return -EINVAL; 4008 } 4009 4010 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 4011 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 4012 return -EACCES; 4013 } 4014 4015 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4016 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4017 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4018 DRM_DEBUG("No OA registers given\n"); 4019 return -EINVAL; 4020 } 4021 4022 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4023 if (!oa_config) { 4024 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 4025 return -ENOMEM; 4026 } 4027 4028 oa_config->perf = perf; 4029 kref_init(&oa_config->ref); 4030 4031 if (!uuid_is_valid(args->uuid)) { 4032 DRM_DEBUG("Invalid uuid format for OA config\n"); 4033 err = -EINVAL; 4034 goto reg_err; 4035 } 4036 4037 /* Last character in oa_config->uuid will be 0 because oa_config is 4038 * kzalloc. 4039 */ 4040 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4041 4042 oa_config->mux_regs_len = args->n_mux_regs; 4043 regs = alloc_oa_regs(perf, 4044 perf->ops.is_valid_mux_reg, 4045 u64_to_user_ptr(args->mux_regs_ptr), 4046 args->n_mux_regs); 4047 4048 if (IS_ERR(regs)) { 4049 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 4050 err = PTR_ERR(regs); 4051 goto reg_err; 4052 } 4053 oa_config->mux_regs = regs; 4054 4055 oa_config->b_counter_regs_len = args->n_boolean_regs; 4056 regs = alloc_oa_regs(perf, 4057 perf->ops.is_valid_b_counter_reg, 4058 u64_to_user_ptr(args->boolean_regs_ptr), 4059 args->n_boolean_regs); 4060 4061 if (IS_ERR(regs)) { 4062 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 4063 err = PTR_ERR(regs); 4064 goto reg_err; 4065 } 4066 oa_config->b_counter_regs = regs; 4067 4068 if (INTEL_GEN(perf->i915) < 8) { 4069 if (args->n_flex_regs != 0) { 4070 err = -EINVAL; 4071 goto reg_err; 4072 } 4073 } else { 4074 oa_config->flex_regs_len = args->n_flex_regs; 4075 regs = alloc_oa_regs(perf, 4076 perf->ops.is_valid_flex_reg, 4077 u64_to_user_ptr(args->flex_regs_ptr), 4078 args->n_flex_regs); 4079 4080 if (IS_ERR(regs)) { 4081 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 4082 err = PTR_ERR(regs); 4083 goto reg_err; 4084 } 4085 oa_config->flex_regs = regs; 4086 } 4087 4088 err = mutex_lock_interruptible(&perf->metrics_lock); 4089 if (err) 4090 goto reg_err; 4091 4092 /* We shouldn't have too many configs, so this iteration shouldn't be 4093 * too costly. 4094 */ 4095 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4096 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4097 DRM_DEBUG("OA config already exists with this uuid\n"); 4098 err = -EADDRINUSE; 4099 goto sysfs_err; 4100 } 4101 } 4102 4103 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4104 if (err) { 4105 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4106 goto sysfs_err; 4107 } 4108 4109 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4110 oa_config->id = idr_alloc(&perf->metrics_idr, 4111 oa_config, 2, 4112 0, GFP_KERNEL); 4113 if (oa_config->id < 0) { 4114 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4115 err = oa_config->id; 4116 goto sysfs_err; 4117 } 4118 4119 mutex_unlock(&perf->metrics_lock); 4120 4121 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4122 4123 return oa_config->id; 4124 4125 sysfs_err: 4126 mutex_unlock(&perf->metrics_lock); 4127 reg_err: 4128 i915_oa_config_put(oa_config); 4129 DRM_DEBUG("Failed to add new OA config\n"); 4130 return err; 4131 } 4132 4133 /** 4134 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4135 * @dev: drm device 4136 * @data: ioctl data (pointer to u64 integer) copied from userspace 4137 * @file: drm file 4138 * 4139 * Configs can be removed while being used, the will stop appearing in sysfs 4140 * and their content will be freed when the stream using the config is closed. 4141 * 4142 * Returns: 0 on success or a negative error code on failure. 4143 */ 4144 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4145 struct drm_file *file) 4146 { 4147 struct i915_perf *perf = &to_i915(dev)->perf; 4148 u64 *arg = data; 4149 struct i915_oa_config *oa_config; 4150 int ret; 4151 4152 if (!perf->i915) { 4153 DRM_DEBUG("i915 perf interface not available for this system\n"); 4154 return -ENOTSUPP; 4155 } 4156 4157 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 4158 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 4159 return -EACCES; 4160 } 4161 4162 ret = mutex_lock_interruptible(&perf->metrics_lock); 4163 if (ret) 4164 return ret; 4165 4166 oa_config = idr_find(&perf->metrics_idr, *arg); 4167 if (!oa_config) { 4168 DRM_DEBUG("Failed to remove unknown OA config\n"); 4169 ret = -ENOENT; 4170 goto err_unlock; 4171 } 4172 4173 GEM_BUG_ON(*arg != oa_config->id); 4174 4175 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4176 4177 idr_remove(&perf->metrics_idr, *arg); 4178 4179 mutex_unlock(&perf->metrics_lock); 4180 4181 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4182 4183 i915_oa_config_put(oa_config); 4184 4185 return 0; 4186 4187 err_unlock: 4188 mutex_unlock(&perf->metrics_lock); 4189 return ret; 4190 } 4191 4192 static struct ctl_table oa_table[] = { 4193 { 4194 .procname = "perf_stream_paranoid", 4195 .data = &i915_perf_stream_paranoid, 4196 .maxlen = sizeof(i915_perf_stream_paranoid), 4197 .mode = 0644, 4198 .proc_handler = proc_dointvec_minmax, 4199 .extra1 = SYSCTL_ZERO, 4200 .extra2 = SYSCTL_ONE, 4201 }, 4202 { 4203 .procname = "oa_max_sample_rate", 4204 .data = &i915_oa_max_sample_rate, 4205 .maxlen = sizeof(i915_oa_max_sample_rate), 4206 .mode = 0644, 4207 .proc_handler = proc_dointvec_minmax, 4208 .extra1 = SYSCTL_ZERO, 4209 .extra2 = &oa_sample_rate_hard_limit, 4210 }, 4211 {} 4212 }; 4213 4214 static struct ctl_table i915_root[] = { 4215 { 4216 .procname = "i915", 4217 .maxlen = 0, 4218 .mode = 0555, 4219 .child = oa_table, 4220 }, 4221 {} 4222 }; 4223 4224 static struct ctl_table dev_root[] = { 4225 { 4226 .procname = "dev", 4227 .maxlen = 0, 4228 .mode = 0555, 4229 .child = i915_root, 4230 }, 4231 {} 4232 }; 4233 4234 /** 4235 * i915_perf_init - initialize i915-perf state on module bind 4236 * @i915: i915 device instance 4237 * 4238 * Initializes i915-perf state without exposing anything to userspace. 4239 * 4240 * Note: i915-perf initialization is split into an 'init' and 'register' 4241 * phase with the i915_perf_register() exposing state to userspace. 4242 */ 4243 void i915_perf_init(struct drm_i915_private *i915) 4244 { 4245 struct i915_perf *perf = &i915->perf; 4246 4247 /* XXX const struct i915_perf_ops! */ 4248 4249 if (IS_HASWELL(i915)) { 4250 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4251 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4252 perf->ops.is_valid_flex_reg = NULL; 4253 perf->ops.enable_metric_set = hsw_enable_metric_set; 4254 perf->ops.disable_metric_set = hsw_disable_metric_set; 4255 perf->ops.oa_enable = gen7_oa_enable; 4256 perf->ops.oa_disable = gen7_oa_disable; 4257 perf->ops.read = gen7_oa_read; 4258 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4259 4260 perf->oa_formats = hsw_oa_formats; 4261 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4262 /* Note: that although we could theoretically also support the 4263 * legacy ringbuffer mode on BDW (and earlier iterations of 4264 * this driver, before upstreaming did this) it didn't seem 4265 * worth the complexity to maintain now that BDW+ enable 4266 * execlist mode by default. 4267 */ 4268 perf->ops.read = gen8_oa_read; 4269 4270 if (IS_GEN_RANGE(i915, 8, 9)) { 4271 perf->oa_formats = gen8_plus_oa_formats; 4272 4273 perf->ops.is_valid_b_counter_reg = 4274 gen7_is_valid_b_counter_addr; 4275 perf->ops.is_valid_mux_reg = 4276 gen8_is_valid_mux_addr; 4277 perf->ops.is_valid_flex_reg = 4278 gen8_is_valid_flex_addr; 4279 4280 if (IS_CHERRYVIEW(i915)) { 4281 perf->ops.is_valid_mux_reg = 4282 chv_is_valid_mux_addr; 4283 } 4284 4285 perf->ops.oa_enable = gen8_oa_enable; 4286 perf->ops.oa_disable = gen8_oa_disable; 4287 perf->ops.enable_metric_set = gen8_enable_metric_set; 4288 perf->ops.disable_metric_set = gen8_disable_metric_set; 4289 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4290 4291 if (IS_GEN(i915, 8)) { 4292 perf->ctx_oactxctrl_offset = 0x120; 4293 perf->ctx_flexeu0_offset = 0x2ce; 4294 4295 perf->gen8_valid_ctx_bit = BIT(25); 4296 } else { 4297 perf->ctx_oactxctrl_offset = 0x128; 4298 perf->ctx_flexeu0_offset = 0x3de; 4299 4300 perf->gen8_valid_ctx_bit = BIT(16); 4301 } 4302 } else if (IS_GEN_RANGE(i915, 10, 11)) { 4303 perf->oa_formats = gen8_plus_oa_formats; 4304 4305 perf->ops.is_valid_b_counter_reg = 4306 gen7_is_valid_b_counter_addr; 4307 perf->ops.is_valid_mux_reg = 4308 gen10_is_valid_mux_addr; 4309 perf->ops.is_valid_flex_reg = 4310 gen8_is_valid_flex_addr; 4311 4312 perf->ops.oa_enable = gen8_oa_enable; 4313 perf->ops.oa_disable = gen8_oa_disable; 4314 perf->ops.enable_metric_set = gen8_enable_metric_set; 4315 perf->ops.disable_metric_set = gen10_disable_metric_set; 4316 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4317 4318 if (IS_GEN(i915, 10)) { 4319 perf->ctx_oactxctrl_offset = 0x128; 4320 perf->ctx_flexeu0_offset = 0x3de; 4321 } else { 4322 perf->ctx_oactxctrl_offset = 0x124; 4323 perf->ctx_flexeu0_offset = 0x78e; 4324 } 4325 perf->gen8_valid_ctx_bit = BIT(16); 4326 } else if (IS_GEN(i915, 12)) { 4327 perf->oa_formats = gen12_oa_formats; 4328 4329 perf->ops.is_valid_b_counter_reg = 4330 gen12_is_valid_b_counter_addr; 4331 perf->ops.is_valid_mux_reg = 4332 gen12_is_valid_mux_addr; 4333 perf->ops.is_valid_flex_reg = 4334 gen8_is_valid_flex_addr; 4335 4336 perf->ops.oa_enable = gen12_oa_enable; 4337 perf->ops.oa_disable = gen12_oa_disable; 4338 perf->ops.enable_metric_set = gen12_enable_metric_set; 4339 perf->ops.disable_metric_set = gen12_disable_metric_set; 4340 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4341 4342 perf->ctx_flexeu0_offset = 0; 4343 perf->ctx_oactxctrl_offset = 0x144; 4344 } 4345 } 4346 4347 if (perf->ops.enable_metric_set) { 4348 mutex_init(&perf->lock); 4349 4350 oa_sample_rate_hard_limit = 1000 * 4351 (RUNTIME_INFO(i915)->cs_timestamp_frequency_khz / 2); 4352 4353 mutex_init(&perf->metrics_lock); 4354 idr_init(&perf->metrics_idr); 4355 4356 /* We set up some ratelimit state to potentially throttle any 4357 * _NOTES about spurious, invalid OA reports which we don't 4358 * forward to userspace. 4359 * 4360 * We print a _NOTE about any throttling when closing the 4361 * stream instead of waiting until driver _fini which no one 4362 * would ever see. 4363 * 4364 * Using the same limiting factors as printk_ratelimit() 4365 */ 4366 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4367 /* Since we use a DRM_NOTE for spurious reports it would be 4368 * inconsistent to let __ratelimit() automatically print a 4369 * warning for throttling. 4370 */ 4371 ratelimit_set_flags(&perf->spurious_report_rs, 4372 RATELIMIT_MSG_ON_RELEASE); 4373 4374 atomic64_set(&perf->noa_programming_delay, 4375 500 * 1000 /* 500us */); 4376 4377 perf->i915 = i915; 4378 } 4379 } 4380 4381 static int destroy_config(int id, void *p, void *data) 4382 { 4383 i915_oa_config_put(p); 4384 return 0; 4385 } 4386 4387 void i915_perf_sysctl_register(void) 4388 { 4389 sysctl_header = register_sysctl_table(dev_root); 4390 } 4391 4392 void i915_perf_sysctl_unregister(void) 4393 { 4394 unregister_sysctl_table(sysctl_header); 4395 } 4396 4397 /** 4398 * i915_perf_fini - Counter part to i915_perf_init() 4399 * @i915: i915 device instance 4400 */ 4401 void i915_perf_fini(struct drm_i915_private *i915) 4402 { 4403 struct i915_perf *perf = &i915->perf; 4404 4405 if (!perf->i915) 4406 return; 4407 4408 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4409 idr_destroy(&perf->metrics_idr); 4410 4411 memset(&perf->ops, 0, sizeof(perf->ops)); 4412 perf->i915 = NULL; 4413 } 4414 4415 /** 4416 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4417 * 4418 * This version number is used by userspace to detect available features. 4419 */ 4420 int i915_perf_ioctl_version(void) 4421 { 4422 /* 4423 * 1: Initial version 4424 * I915_PERF_IOCTL_ENABLE 4425 * I915_PERF_IOCTL_DISABLE 4426 * 4427 * 2: Added runtime modification of OA config. 4428 * I915_PERF_IOCTL_CONFIG 4429 * 4430 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4431 * preemption on a particular context so that performance data is 4432 * accessible from a delta of MI_RPC reports without looking at the 4433 * OA buffer. 4434 */ 4435 return 3; 4436 } 4437 4438 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4439 #include "selftests/i915_perf.c" 4440 #endif 4441