xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision 9e255e2b)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "gem/i915_gem_context.h"
199 #include "gt/intel_engine_pm.h"
200 #include "gt/intel_engine_user.h"
201 #include "gt/intel_execlists_submission.h"
202 #include "gt/intel_gpu_commands.h"
203 #include "gt/intel_gt.h"
204 #include "gt/intel_gt_clock_utils.h"
205 #include "gt/intel_lrc.h"
206 #include "gt/intel_ring.h"
207 
208 #include "i915_drv.h"
209 #include "i915_perf.h"
210 
211 /* HW requires this to be a power of two, between 128k and 16M, though driver
212  * is currently generally designed assuming the largest 16M size is used such
213  * that the overflow cases are unlikely in normal operation.
214  */
215 #define OA_BUFFER_SIZE		SZ_16M
216 
217 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
218 
219 /**
220  * DOC: OA Tail Pointer Race
221  *
222  * There's a HW race condition between OA unit tail pointer register updates and
223  * writes to memory whereby the tail pointer can sometimes get ahead of what's
224  * been written out to the OA buffer so far (in terms of what's visible to the
225  * CPU).
226  *
227  * Although this can be observed explicitly while copying reports to userspace
228  * by checking for a zeroed report-id field in tail reports, we want to account
229  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
230  * redundant read() attempts.
231  *
232  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
233  * in the OA buffer, starting from the tail reported by the HW until we find a
234  * report with its first 2 dwords not 0 meaning its previous report is
235  * completely in memory and ready to be read. Those dwords are also set to 0
236  * once read and the whole buffer is cleared upon OA buffer initialization. The
237  * first dword is the reason for this report while the second is the timestamp,
238  * making the chances of having those 2 fields at 0 fairly unlikely. A more
239  * detailed explanation is available in oa_buffer_check_unlocked().
240  *
241  * Most of the implementation details for this workaround are in
242  * oa_buffer_check_unlocked() and _append_oa_reports()
243  *
244  * Note for posterity: previously the driver used to define an effective tail
245  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
246  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
247  * This was flawed considering that the OA unit may also automatically generate
248  * non-periodic reports (such as on context switch) or the OA unit may be
249  * enabled without any periodic sampling.
250  */
251 #define OA_TAIL_MARGIN_NSEC	100000ULL
252 #define INVALID_TAIL_PTR	0xffffffff
253 
254 /* The default frequency for checking whether the OA unit has written new
255  * reports to the circular OA buffer...
256  */
257 #define DEFAULT_POLL_FREQUENCY_HZ 200
258 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
259 
260 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
261 static u32 i915_perf_stream_paranoid = true;
262 
263 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
264  * of the 64bit timestamp bits to trigger reports from) but there's currently
265  * no known use case for sampling as infrequently as once per 47 thousand years.
266  *
267  * Since the timestamps included in OA reports are only 32bits it seems
268  * reasonable to limit the OA exponent where it's still possible to account for
269  * overflow in OA report timestamps.
270  */
271 #define OA_EXPONENT_MAX 31
272 
273 #define INVALID_CTX_ID 0xffffffff
274 
275 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
276 #define OAREPORT_REASON_MASK           0x3f
277 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
278 #define OAREPORT_REASON_SHIFT          19
279 #define OAREPORT_REASON_TIMER          (1<<0)
280 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
281 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
282 
283 
284 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
285  *
286  * The highest sampling frequency we can theoretically program the OA unit
287  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
288  *
289  * Initialized just before we register the sysctl parameter.
290  */
291 static int oa_sample_rate_hard_limit;
292 
293 /* Theoretically we can program the OA unit to sample every 160ns but don't
294  * allow that by default unless root...
295  *
296  * The default threshold of 100000Hz is based on perf's similar
297  * kernel.perf_event_max_sample_rate sysctl parameter.
298  */
299 static u32 i915_oa_max_sample_rate = 100000;
300 
301 /* XXX: beware if future OA HW adds new report formats that the current
302  * code assumes all reports have a power-of-two size and ~(size - 1) can
303  * be used as a mask to align the OA tail pointer.
304  */
305 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
306 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
307 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
308 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
309 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
310 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
311 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
312 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
313 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
314 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
315 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
316 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
317 };
318 
319 #define SAMPLE_OA_REPORT      (1<<0)
320 
321 /**
322  * struct perf_open_properties - for validated properties given to open a stream
323  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
324  * @single_context: Whether a single or all gpu contexts should be monitored
325  * @hold_preemption: Whether the preemption is disabled for the filtered
326  *                   context
327  * @ctx_handle: A gem ctx handle for use with @single_context
328  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
329  * @oa_format: An OA unit HW report format
330  * @oa_periodic: Whether to enable periodic OA unit sampling
331  * @oa_period_exponent: The OA unit sampling period is derived from this
332  * @engine: The engine (typically rcs0) being monitored by the OA unit
333  * @has_sseu: Whether @sseu was specified by userspace
334  * @sseu: internal SSEU configuration computed either from the userspace
335  *        specified configuration in the opening parameters or a default value
336  *        (see get_default_sseu_config())
337  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
338  * data availability
339  *
340  * As read_properties_unlocked() enumerates and validates the properties given
341  * to open a stream of metrics the configuration is built up in the structure
342  * which starts out zero initialized.
343  */
344 struct perf_open_properties {
345 	u32 sample_flags;
346 
347 	u64 single_context:1;
348 	u64 hold_preemption:1;
349 	u64 ctx_handle;
350 
351 	/* OA sampling state */
352 	int metrics_set;
353 	int oa_format;
354 	bool oa_periodic;
355 	int oa_period_exponent;
356 
357 	struct intel_engine_cs *engine;
358 
359 	bool has_sseu;
360 	struct intel_sseu sseu;
361 
362 	u64 poll_oa_period;
363 };
364 
365 struct i915_oa_config_bo {
366 	struct llist_node node;
367 
368 	struct i915_oa_config *oa_config;
369 	struct i915_vma *vma;
370 };
371 
372 static struct ctl_table_header *sysctl_header;
373 
374 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
375 
376 void i915_oa_config_release(struct kref *ref)
377 {
378 	struct i915_oa_config *oa_config =
379 		container_of(ref, typeof(*oa_config), ref);
380 
381 	kfree(oa_config->flex_regs);
382 	kfree(oa_config->b_counter_regs);
383 	kfree(oa_config->mux_regs);
384 
385 	kfree_rcu(oa_config, rcu);
386 }
387 
388 struct i915_oa_config *
389 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
390 {
391 	struct i915_oa_config *oa_config;
392 
393 	rcu_read_lock();
394 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
395 	if (oa_config)
396 		oa_config = i915_oa_config_get(oa_config);
397 	rcu_read_unlock();
398 
399 	return oa_config;
400 }
401 
402 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
403 {
404 	i915_oa_config_put(oa_bo->oa_config);
405 	i915_vma_put(oa_bo->vma);
406 	kfree(oa_bo);
407 }
408 
409 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
410 {
411 	struct intel_uncore *uncore = stream->uncore;
412 
413 	return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
414 	       GEN12_OAG_OATAILPTR_MASK;
415 }
416 
417 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
418 {
419 	struct intel_uncore *uncore = stream->uncore;
420 
421 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
422 }
423 
424 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
425 {
426 	struct intel_uncore *uncore = stream->uncore;
427 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
428 
429 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
430 }
431 
432 /**
433  * oa_buffer_check_unlocked - check for data and update tail ptr state
434  * @stream: i915 stream instance
435  *
436  * This is either called via fops (for blocking reads in user ctx) or the poll
437  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
438  * if there is data available for userspace to read.
439  *
440  * This function is central to providing a workaround for the OA unit tail
441  * pointer having a race with respect to what data is visible to the CPU.
442  * It is responsible for reading tail pointers from the hardware and giving
443  * the pointers time to 'age' before they are made available for reading.
444  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
445  *
446  * Besides returning true when there is data available to read() this function
447  * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
448  * object.
449  *
450  * Note: It's safe to read OA config state here unlocked, assuming that this is
451  * only called while the stream is enabled, while the global OA configuration
452  * can't be modified.
453  *
454  * Returns: %true if the OA buffer contains data, else %false
455  */
456 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
457 {
458 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
459 	int report_size = stream->oa_buffer.format_size;
460 	unsigned long flags;
461 	bool pollin;
462 	u32 hw_tail;
463 	u64 now;
464 
465 	/* We have to consider the (unlikely) possibility that read() errors
466 	 * could result in an OA buffer reset which might reset the head and
467 	 * tail state.
468 	 */
469 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
470 
471 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
472 
473 	/* The tail pointer increases in 64 byte increments,
474 	 * not in report_size steps...
475 	 */
476 	hw_tail &= ~(report_size - 1);
477 
478 	now = ktime_get_mono_fast_ns();
479 
480 	if (hw_tail == stream->oa_buffer.aging_tail &&
481 	    (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
482 		/* If the HW tail hasn't move since the last check and the HW
483 		 * tail has been aging for long enough, declare it the new
484 		 * tail.
485 		 */
486 		stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
487 	} else {
488 		u32 head, tail, aged_tail;
489 
490 		/* NB: The head we observe here might effectively be a little
491 		 * out of date. If a read() is in progress, the head could be
492 		 * anywhere between this head and stream->oa_buffer.tail.
493 		 */
494 		head = stream->oa_buffer.head - gtt_offset;
495 		aged_tail = stream->oa_buffer.tail - gtt_offset;
496 
497 		hw_tail -= gtt_offset;
498 		tail = hw_tail;
499 
500 		/* Walk the stream backward until we find a report with dword 0
501 		 * & 1 not at 0. Since the circular buffer pointers progress by
502 		 * increments of 64 bytes and that reports can be up to 256
503 		 * bytes long, we can't tell whether a report has fully landed
504 		 * in memory before the first 2 dwords of the following report
505 		 * have effectively landed.
506 		 *
507 		 * This is assuming that the writes of the OA unit land in
508 		 * memory in the order they were written to.
509 		 * If not : (╯°□°)╯︵ ┻━┻
510 		 */
511 		while (OA_TAKEN(tail, aged_tail) >= report_size) {
512 			u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
513 
514 			if (report32[0] != 0 || report32[1] != 0)
515 				break;
516 
517 			tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
518 		}
519 
520 		if (OA_TAKEN(hw_tail, tail) > report_size &&
521 		    __ratelimit(&stream->perf->tail_pointer_race))
522 			DRM_NOTE("unlanded report(s) head=0x%x "
523 				 "tail=0x%x hw_tail=0x%x\n",
524 				 head, tail, hw_tail);
525 
526 		stream->oa_buffer.tail = gtt_offset + tail;
527 		stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
528 		stream->oa_buffer.aging_timestamp = now;
529 	}
530 
531 	pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
532 			  stream->oa_buffer.head - gtt_offset) >= report_size;
533 
534 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
535 
536 	return pollin;
537 }
538 
539 /**
540  * append_oa_status - Appends a status record to a userspace read() buffer.
541  * @stream: An i915-perf stream opened for OA metrics
542  * @buf: destination buffer given by userspace
543  * @count: the number of bytes userspace wants to read
544  * @offset: (inout): the current position for writing into @buf
545  * @type: The kind of status to report to userspace
546  *
547  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
548  * into the userspace read() buffer.
549  *
550  * The @buf @offset will only be updated on success.
551  *
552  * Returns: 0 on success, negative error code on failure.
553  */
554 static int append_oa_status(struct i915_perf_stream *stream,
555 			    char __user *buf,
556 			    size_t count,
557 			    size_t *offset,
558 			    enum drm_i915_perf_record_type type)
559 {
560 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
561 
562 	if ((count - *offset) < header.size)
563 		return -ENOSPC;
564 
565 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
566 		return -EFAULT;
567 
568 	(*offset) += header.size;
569 
570 	return 0;
571 }
572 
573 /**
574  * append_oa_sample - Copies single OA report into userspace read() buffer.
575  * @stream: An i915-perf stream opened for OA metrics
576  * @buf: destination buffer given by userspace
577  * @count: the number of bytes userspace wants to read
578  * @offset: (inout): the current position for writing into @buf
579  * @report: A single OA report to (optionally) include as part of the sample
580  *
581  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
582  * properties when opening a stream, tracked as `stream->sample_flags`. This
583  * function copies the requested components of a single sample to the given
584  * read() @buf.
585  *
586  * The @buf @offset will only be updated on success.
587  *
588  * Returns: 0 on success, negative error code on failure.
589  */
590 static int append_oa_sample(struct i915_perf_stream *stream,
591 			    char __user *buf,
592 			    size_t count,
593 			    size_t *offset,
594 			    const u8 *report)
595 {
596 	int report_size = stream->oa_buffer.format_size;
597 	struct drm_i915_perf_record_header header;
598 
599 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
600 	header.pad = 0;
601 	header.size = stream->sample_size;
602 
603 	if ((count - *offset) < header.size)
604 		return -ENOSPC;
605 
606 	buf += *offset;
607 	if (copy_to_user(buf, &header, sizeof(header)))
608 		return -EFAULT;
609 	buf += sizeof(header);
610 
611 	if (copy_to_user(buf, report, report_size))
612 		return -EFAULT;
613 
614 	(*offset) += header.size;
615 
616 	return 0;
617 }
618 
619 /**
620  * gen8_append_oa_reports - Copies all buffered OA reports into
621  *			    userspace read() buffer.
622  * @stream: An i915-perf stream opened for OA metrics
623  * @buf: destination buffer given by userspace
624  * @count: the number of bytes userspace wants to read
625  * @offset: (inout): the current position for writing into @buf
626  *
627  * Notably any error condition resulting in a short read (-%ENOSPC or
628  * -%EFAULT) will be returned even though one or more records may
629  * have been successfully copied. In this case it's up to the caller
630  * to decide if the error should be squashed before returning to
631  * userspace.
632  *
633  * Note: reports are consumed from the head, and appended to the
634  * tail, so the tail chases the head?... If you think that's mad
635  * and back-to-front you're not alone, but this follows the
636  * Gen PRM naming convention.
637  *
638  * Returns: 0 on success, negative error code on failure.
639  */
640 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
641 				  char __user *buf,
642 				  size_t count,
643 				  size_t *offset)
644 {
645 	struct intel_uncore *uncore = stream->uncore;
646 	int report_size = stream->oa_buffer.format_size;
647 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
648 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
649 	u32 mask = (OA_BUFFER_SIZE - 1);
650 	size_t start_offset = *offset;
651 	unsigned long flags;
652 	u32 head, tail;
653 	u32 taken;
654 	int ret = 0;
655 
656 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
657 		return -EIO;
658 
659 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
660 
661 	head = stream->oa_buffer.head;
662 	tail = stream->oa_buffer.tail;
663 
664 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
665 
666 	/*
667 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
668 	 * while indexing relative to oa_buf_base.
669 	 */
670 	head -= gtt_offset;
671 	tail -= gtt_offset;
672 
673 	/*
674 	 * An out of bounds or misaligned head or tail pointer implies a driver
675 	 * bug since we validate + align the tail pointers we read from the
676 	 * hardware and we are in full control of the head pointer which should
677 	 * only be incremented by multiples of the report size (notably also
678 	 * all a power of two).
679 	 */
680 	if (drm_WARN_ONCE(&uncore->i915->drm,
681 			  head > OA_BUFFER_SIZE || head % report_size ||
682 			  tail > OA_BUFFER_SIZE || tail % report_size,
683 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
684 			  head, tail))
685 		return -EIO;
686 
687 
688 	for (/* none */;
689 	     (taken = OA_TAKEN(tail, head));
690 	     head = (head + report_size) & mask) {
691 		u8 *report = oa_buf_base + head;
692 		u32 *report32 = (void *)report;
693 		u32 ctx_id;
694 		u32 reason;
695 
696 		/*
697 		 * All the report sizes factor neatly into the buffer
698 		 * size so we never expect to see a report split
699 		 * between the beginning and end of the buffer.
700 		 *
701 		 * Given the initial alignment check a misalignment
702 		 * here would imply a driver bug that would result
703 		 * in an overrun.
704 		 */
705 		if (drm_WARN_ON(&uncore->i915->drm,
706 				(OA_BUFFER_SIZE - head) < report_size)) {
707 			drm_err(&uncore->i915->drm,
708 				"Spurious OA head ptr: non-integral report offset\n");
709 			break;
710 		}
711 
712 		/*
713 		 * The reason field includes flags identifying what
714 		 * triggered this specific report (mostly timer
715 		 * triggered or e.g. due to a context switch).
716 		 *
717 		 * This field is never expected to be zero so we can
718 		 * check that the report isn't invalid before copying
719 		 * it to userspace...
720 		 */
721 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
722 			  (IS_GEN(stream->perf->i915, 12) ?
723 			   OAREPORT_REASON_MASK_EXTENDED :
724 			   OAREPORT_REASON_MASK));
725 
726 		ctx_id = report32[2] & stream->specific_ctx_id_mask;
727 
728 		/*
729 		 * Squash whatever is in the CTX_ID field if it's marked as
730 		 * invalid to be sure we avoid false-positive, single-context
731 		 * filtering below...
732 		 *
733 		 * Note: that we don't clear the valid_ctx_bit so userspace can
734 		 * understand that the ID has been squashed by the kernel.
735 		 */
736 		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
737 		    INTEL_GEN(stream->perf->i915) <= 11)
738 			ctx_id = report32[2] = INVALID_CTX_ID;
739 
740 		/*
741 		 * NB: For Gen 8 the OA unit no longer supports clock gating
742 		 * off for a specific context and the kernel can't securely
743 		 * stop the counters from updating as system-wide / global
744 		 * values.
745 		 *
746 		 * Automatic reports now include a context ID so reports can be
747 		 * filtered on the cpu but it's not worth trying to
748 		 * automatically subtract/hide counter progress for other
749 		 * contexts while filtering since we can't stop userspace
750 		 * issuing MI_REPORT_PERF_COUNT commands which would still
751 		 * provide a side-band view of the real values.
752 		 *
753 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
754 		 * to normalize counters for a single filtered context then it
755 		 * needs be forwarded bookend context-switch reports so that it
756 		 * can track switches in between MI_REPORT_PERF_COUNT commands
757 		 * and can itself subtract/ignore the progress of counters
758 		 * associated with other contexts. Note that the hardware
759 		 * automatically triggers reports when switching to a new
760 		 * context which are tagged with the ID of the newly active
761 		 * context. To avoid the complexity (and likely fragility) of
762 		 * reading ahead while parsing reports to try and minimize
763 		 * forwarding redundant context switch reports (i.e. between
764 		 * other, unrelated contexts) we simply elect to forward them
765 		 * all.
766 		 *
767 		 * We don't rely solely on the reason field to identify context
768 		 * switches since it's not-uncommon for periodic samples to
769 		 * identify a switch before any 'context switch' report.
770 		 */
771 		if (!stream->perf->exclusive_stream->ctx ||
772 		    stream->specific_ctx_id == ctx_id ||
773 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
774 		    reason & OAREPORT_REASON_CTX_SWITCH) {
775 
776 			/*
777 			 * While filtering for a single context we avoid
778 			 * leaking the IDs of other contexts.
779 			 */
780 			if (stream->perf->exclusive_stream->ctx &&
781 			    stream->specific_ctx_id != ctx_id) {
782 				report32[2] = INVALID_CTX_ID;
783 			}
784 
785 			ret = append_oa_sample(stream, buf, count, offset,
786 					       report);
787 			if (ret)
788 				break;
789 
790 			stream->oa_buffer.last_ctx_id = ctx_id;
791 		}
792 
793 		/*
794 		 * Clear out the first 2 dword as a mean to detect unlanded
795 		 * reports.
796 		 */
797 		report32[0] = 0;
798 		report32[1] = 0;
799 	}
800 
801 	if (start_offset != *offset) {
802 		i915_reg_t oaheadptr;
803 
804 		oaheadptr = IS_GEN(stream->perf->i915, 12) ?
805 			    GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
806 
807 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
808 
809 		/*
810 		 * We removed the gtt_offset for the copy loop above, indexing
811 		 * relative to oa_buf_base so put back here...
812 		 */
813 		head += gtt_offset;
814 		intel_uncore_write(uncore, oaheadptr,
815 				   head & GEN12_OAG_OAHEADPTR_MASK);
816 		stream->oa_buffer.head = head;
817 
818 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
819 	}
820 
821 	return ret;
822 }
823 
824 /**
825  * gen8_oa_read - copy status records then buffered OA reports
826  * @stream: An i915-perf stream opened for OA metrics
827  * @buf: destination buffer given by userspace
828  * @count: the number of bytes userspace wants to read
829  * @offset: (inout): the current position for writing into @buf
830  *
831  * Checks OA unit status registers and if necessary appends corresponding
832  * status records for userspace (such as for a buffer full condition) and then
833  * initiate appending any buffered OA reports.
834  *
835  * Updates @offset according to the number of bytes successfully copied into
836  * the userspace buffer.
837  *
838  * NB: some data may be successfully copied to the userspace buffer
839  * even if an error is returned, and this is reflected in the
840  * updated @offset.
841  *
842  * Returns: zero on success or a negative error code
843  */
844 static int gen8_oa_read(struct i915_perf_stream *stream,
845 			char __user *buf,
846 			size_t count,
847 			size_t *offset)
848 {
849 	struct intel_uncore *uncore = stream->uncore;
850 	u32 oastatus;
851 	i915_reg_t oastatus_reg;
852 	int ret;
853 
854 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
855 		return -EIO;
856 
857 	oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
858 		       GEN12_OAG_OASTATUS : GEN8_OASTATUS;
859 
860 	oastatus = intel_uncore_read(uncore, oastatus_reg);
861 
862 	/*
863 	 * We treat OABUFFER_OVERFLOW as a significant error:
864 	 *
865 	 * Although theoretically we could handle this more gracefully
866 	 * sometimes, some Gens don't correctly suppress certain
867 	 * automatically triggered reports in this condition and so we
868 	 * have to assume that old reports are now being trampled
869 	 * over.
870 	 *
871 	 * Considering how we don't currently give userspace control
872 	 * over the OA buffer size and always configure a large 16MB
873 	 * buffer, then a buffer overflow does anyway likely indicate
874 	 * that something has gone quite badly wrong.
875 	 */
876 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
877 		ret = append_oa_status(stream, buf, count, offset,
878 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
879 		if (ret)
880 			return ret;
881 
882 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
883 			  stream->period_exponent);
884 
885 		stream->perf->ops.oa_disable(stream);
886 		stream->perf->ops.oa_enable(stream);
887 
888 		/*
889 		 * Note: .oa_enable() is expected to re-init the oabuffer and
890 		 * reset GEN8_OASTATUS for us
891 		 */
892 		oastatus = intel_uncore_read(uncore, oastatus_reg);
893 	}
894 
895 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
896 		ret = append_oa_status(stream, buf, count, offset,
897 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
898 		if (ret)
899 			return ret;
900 
901 		intel_uncore_rmw(uncore, oastatus_reg,
902 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
903 				 GEN8_OASTATUS_REPORT_LOST,
904 				 IS_GEN_RANGE(uncore->i915, 8, 11) ?
905 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
906 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
907 	}
908 
909 	return gen8_append_oa_reports(stream, buf, count, offset);
910 }
911 
912 /**
913  * gen7_append_oa_reports - Copies all buffered OA reports into
914  *			    userspace read() buffer.
915  * @stream: An i915-perf stream opened for OA metrics
916  * @buf: destination buffer given by userspace
917  * @count: the number of bytes userspace wants to read
918  * @offset: (inout): the current position for writing into @buf
919  *
920  * Notably any error condition resulting in a short read (-%ENOSPC or
921  * -%EFAULT) will be returned even though one or more records may
922  * have been successfully copied. In this case it's up to the caller
923  * to decide if the error should be squashed before returning to
924  * userspace.
925  *
926  * Note: reports are consumed from the head, and appended to the
927  * tail, so the tail chases the head?... If you think that's mad
928  * and back-to-front you're not alone, but this follows the
929  * Gen PRM naming convention.
930  *
931  * Returns: 0 on success, negative error code on failure.
932  */
933 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
934 				  char __user *buf,
935 				  size_t count,
936 				  size_t *offset)
937 {
938 	struct intel_uncore *uncore = stream->uncore;
939 	int report_size = stream->oa_buffer.format_size;
940 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
941 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
942 	u32 mask = (OA_BUFFER_SIZE - 1);
943 	size_t start_offset = *offset;
944 	unsigned long flags;
945 	u32 head, tail;
946 	u32 taken;
947 	int ret = 0;
948 
949 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
950 		return -EIO;
951 
952 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
953 
954 	head = stream->oa_buffer.head;
955 	tail = stream->oa_buffer.tail;
956 
957 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
958 
959 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
960 	 * while indexing relative to oa_buf_base.
961 	 */
962 	head -= gtt_offset;
963 	tail -= gtt_offset;
964 
965 	/* An out of bounds or misaligned head or tail pointer implies a driver
966 	 * bug since we validate + align the tail pointers we read from the
967 	 * hardware and we are in full control of the head pointer which should
968 	 * only be incremented by multiples of the report size (notably also
969 	 * all a power of two).
970 	 */
971 	if (drm_WARN_ONCE(&uncore->i915->drm,
972 			  head > OA_BUFFER_SIZE || head % report_size ||
973 			  tail > OA_BUFFER_SIZE || tail % report_size,
974 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
975 			  head, tail))
976 		return -EIO;
977 
978 
979 	for (/* none */;
980 	     (taken = OA_TAKEN(tail, head));
981 	     head = (head + report_size) & mask) {
982 		u8 *report = oa_buf_base + head;
983 		u32 *report32 = (void *)report;
984 
985 		/* All the report sizes factor neatly into the buffer
986 		 * size so we never expect to see a report split
987 		 * between the beginning and end of the buffer.
988 		 *
989 		 * Given the initial alignment check a misalignment
990 		 * here would imply a driver bug that would result
991 		 * in an overrun.
992 		 */
993 		if (drm_WARN_ON(&uncore->i915->drm,
994 				(OA_BUFFER_SIZE - head) < report_size)) {
995 			drm_err(&uncore->i915->drm,
996 				"Spurious OA head ptr: non-integral report offset\n");
997 			break;
998 		}
999 
1000 		/* The report-ID field for periodic samples includes
1001 		 * some undocumented flags related to what triggered
1002 		 * the report and is never expected to be zero so we
1003 		 * can check that the report isn't invalid before
1004 		 * copying it to userspace...
1005 		 */
1006 		if (report32[0] == 0) {
1007 			if (__ratelimit(&stream->perf->spurious_report_rs))
1008 				DRM_NOTE("Skipping spurious, invalid OA report\n");
1009 			continue;
1010 		}
1011 
1012 		ret = append_oa_sample(stream, buf, count, offset, report);
1013 		if (ret)
1014 			break;
1015 
1016 		/* Clear out the first 2 dwords as a mean to detect unlanded
1017 		 * reports.
1018 		 */
1019 		report32[0] = 0;
1020 		report32[1] = 0;
1021 	}
1022 
1023 	if (start_offset != *offset) {
1024 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1025 
1026 		/* We removed the gtt_offset for the copy loop above, indexing
1027 		 * relative to oa_buf_base so put back here...
1028 		 */
1029 		head += gtt_offset;
1030 
1031 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1032 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1033 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1034 		stream->oa_buffer.head = head;
1035 
1036 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1037 	}
1038 
1039 	return ret;
1040 }
1041 
1042 /**
1043  * gen7_oa_read - copy status records then buffered OA reports
1044  * @stream: An i915-perf stream opened for OA metrics
1045  * @buf: destination buffer given by userspace
1046  * @count: the number of bytes userspace wants to read
1047  * @offset: (inout): the current position for writing into @buf
1048  *
1049  * Checks Gen 7 specific OA unit status registers and if necessary appends
1050  * corresponding status records for userspace (such as for a buffer full
1051  * condition) and then initiate appending any buffered OA reports.
1052  *
1053  * Updates @offset according to the number of bytes successfully copied into
1054  * the userspace buffer.
1055  *
1056  * Returns: zero on success or a negative error code
1057  */
1058 static int gen7_oa_read(struct i915_perf_stream *stream,
1059 			char __user *buf,
1060 			size_t count,
1061 			size_t *offset)
1062 {
1063 	struct intel_uncore *uncore = stream->uncore;
1064 	u32 oastatus1;
1065 	int ret;
1066 
1067 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1068 		return -EIO;
1069 
1070 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1071 
1072 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1073 	 * bits while the OA unit is enabled (while the tail pointer
1074 	 * may be updated asynchronously) so we ignore status bits
1075 	 * that have already been reported to userspace.
1076 	 */
1077 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1078 
1079 	/* We treat OABUFFER_OVERFLOW as a significant error:
1080 	 *
1081 	 * - The status can be interpreted to mean that the buffer is
1082 	 *   currently full (with a higher precedence than OA_TAKEN()
1083 	 *   which will start to report a near-empty buffer after an
1084 	 *   overflow) but it's awkward that we can't clear the status
1085 	 *   on Haswell, so without a reset we won't be able to catch
1086 	 *   the state again.
1087 	 *
1088 	 * - Since it also implies the HW has started overwriting old
1089 	 *   reports it may also affect our sanity checks for invalid
1090 	 *   reports when copying to userspace that assume new reports
1091 	 *   are being written to cleared memory.
1092 	 *
1093 	 * - In the future we may want to introduce a flight recorder
1094 	 *   mode where the driver will automatically maintain a safe
1095 	 *   guard band between head/tail, avoiding this overflow
1096 	 *   condition, but we avoid the added driver complexity for
1097 	 *   now.
1098 	 */
1099 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1100 		ret = append_oa_status(stream, buf, count, offset,
1101 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1102 		if (ret)
1103 			return ret;
1104 
1105 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1106 			  stream->period_exponent);
1107 
1108 		stream->perf->ops.oa_disable(stream);
1109 		stream->perf->ops.oa_enable(stream);
1110 
1111 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1112 	}
1113 
1114 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1115 		ret = append_oa_status(stream, buf, count, offset,
1116 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1117 		if (ret)
1118 			return ret;
1119 		stream->perf->gen7_latched_oastatus1 |=
1120 			GEN7_OASTATUS1_REPORT_LOST;
1121 	}
1122 
1123 	return gen7_append_oa_reports(stream, buf, count, offset);
1124 }
1125 
1126 /**
1127  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1128  * @stream: An i915-perf stream opened for OA metrics
1129  *
1130  * Called when userspace tries to read() from a blocking stream FD opened
1131  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1132  * OA buffer and wakes us.
1133  *
1134  * Note: it's acceptable to have this return with some false positives
1135  * since any subsequent read handling will return -EAGAIN if there isn't
1136  * really data ready for userspace yet.
1137  *
1138  * Returns: zero on success or a negative error code
1139  */
1140 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1141 {
1142 	/* We would wait indefinitely if periodic sampling is not enabled */
1143 	if (!stream->periodic)
1144 		return -EIO;
1145 
1146 	return wait_event_interruptible(stream->poll_wq,
1147 					oa_buffer_check_unlocked(stream));
1148 }
1149 
1150 /**
1151  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1152  * @stream: An i915-perf stream opened for OA metrics
1153  * @file: An i915 perf stream file
1154  * @wait: poll() state table
1155  *
1156  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1157  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1158  * when it sees data ready to read in the circular OA buffer.
1159  */
1160 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1161 			      struct file *file,
1162 			      poll_table *wait)
1163 {
1164 	poll_wait(file, &stream->poll_wq, wait);
1165 }
1166 
1167 /**
1168  * i915_oa_read - just calls through to &i915_oa_ops->read
1169  * @stream: An i915-perf stream opened for OA metrics
1170  * @buf: destination buffer given by userspace
1171  * @count: the number of bytes userspace wants to read
1172  * @offset: (inout): the current position for writing into @buf
1173  *
1174  * Updates @offset according to the number of bytes successfully copied into
1175  * the userspace buffer.
1176  *
1177  * Returns: zero on success or a negative error code
1178  */
1179 static int i915_oa_read(struct i915_perf_stream *stream,
1180 			char __user *buf,
1181 			size_t count,
1182 			size_t *offset)
1183 {
1184 	return stream->perf->ops.read(stream, buf, count, offset);
1185 }
1186 
1187 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1188 {
1189 	struct i915_gem_engines_iter it;
1190 	struct i915_gem_context *ctx = stream->ctx;
1191 	struct intel_context *ce;
1192 	struct i915_gem_ww_ctx ww;
1193 	int err = -ENODEV;
1194 
1195 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1196 		if (ce->engine != stream->engine) /* first match! */
1197 			continue;
1198 
1199 		err = 0;
1200 		break;
1201 	}
1202 	i915_gem_context_unlock_engines(ctx);
1203 
1204 	if (err)
1205 		return ERR_PTR(err);
1206 
1207 	i915_gem_ww_ctx_init(&ww, true);
1208 retry:
1209 	/*
1210 	 * As the ID is the gtt offset of the context's vma we
1211 	 * pin the vma to ensure the ID remains fixed.
1212 	 */
1213 	err = intel_context_pin_ww(ce, &ww);
1214 	if (err == -EDEADLK) {
1215 		err = i915_gem_ww_ctx_backoff(&ww);
1216 		if (!err)
1217 			goto retry;
1218 	}
1219 	i915_gem_ww_ctx_fini(&ww);
1220 
1221 	if (err)
1222 		return ERR_PTR(err);
1223 
1224 	stream->pinned_ctx = ce;
1225 	return stream->pinned_ctx;
1226 }
1227 
1228 /**
1229  * oa_get_render_ctx_id - determine and hold ctx hw id
1230  * @stream: An i915-perf stream opened for OA metrics
1231  *
1232  * Determine the render context hw id, and ensure it remains fixed for the
1233  * lifetime of the stream. This ensures that we don't have to worry about
1234  * updating the context ID in OACONTROL on the fly.
1235  *
1236  * Returns: zero on success or a negative error code
1237  */
1238 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1239 {
1240 	struct intel_context *ce;
1241 
1242 	ce = oa_pin_context(stream);
1243 	if (IS_ERR(ce))
1244 		return PTR_ERR(ce);
1245 
1246 	switch (INTEL_GEN(ce->engine->i915)) {
1247 	case 7: {
1248 		/*
1249 		 * On Haswell we don't do any post processing of the reports
1250 		 * and don't need to use the mask.
1251 		 */
1252 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1253 		stream->specific_ctx_id_mask = 0;
1254 		break;
1255 	}
1256 
1257 	case 8:
1258 	case 9:
1259 	case 10:
1260 		if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1261 			stream->specific_ctx_id_mask =
1262 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1263 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1264 		} else {
1265 			/*
1266 			 * When using GuC, the context descriptor we write in
1267 			 * i915 is read by GuC and rewritten before it's
1268 			 * actually written into the hardware. The LRCA is
1269 			 * what is put into the context id field of the
1270 			 * context descriptor by GuC. Because it's aligned to
1271 			 * a page, the lower 12bits are always at 0 and
1272 			 * dropped by GuC. They won't be part of the context
1273 			 * ID in the OA reports, so squash those lower bits.
1274 			 */
1275 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1276 
1277 			/*
1278 			 * GuC uses the top bit to signal proxy submission, so
1279 			 * ignore that bit.
1280 			 */
1281 			stream->specific_ctx_id_mask =
1282 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1283 		}
1284 		break;
1285 
1286 	case 11:
1287 	case 12: {
1288 		stream->specific_ctx_id_mask =
1289 			((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1290 		/*
1291 		 * Pick an unused context id
1292 		 * 0 - BITS_PER_LONG are used by other contexts
1293 		 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1294 		 */
1295 		stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1296 		break;
1297 	}
1298 
1299 	default:
1300 		MISSING_CASE(INTEL_GEN(ce->engine->i915));
1301 	}
1302 
1303 	ce->tag = stream->specific_ctx_id;
1304 
1305 	drm_dbg(&stream->perf->i915->drm,
1306 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1307 		stream->specific_ctx_id,
1308 		stream->specific_ctx_id_mask);
1309 
1310 	return 0;
1311 }
1312 
1313 /**
1314  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1315  * @stream: An i915-perf stream opened for OA metrics
1316  *
1317  * In case anything needed doing to ensure the context HW ID would remain valid
1318  * for the lifetime of the stream, then that can be undone here.
1319  */
1320 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1321 {
1322 	struct intel_context *ce;
1323 
1324 	ce = fetch_and_zero(&stream->pinned_ctx);
1325 	if (ce) {
1326 		ce->tag = 0; /* recomputed on next submission after parking */
1327 		intel_context_unpin(ce);
1328 	}
1329 
1330 	stream->specific_ctx_id = INVALID_CTX_ID;
1331 	stream->specific_ctx_id_mask = 0;
1332 }
1333 
1334 static void
1335 free_oa_buffer(struct i915_perf_stream *stream)
1336 {
1337 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1338 				   I915_VMA_RELEASE_MAP);
1339 
1340 	stream->oa_buffer.vaddr = NULL;
1341 }
1342 
1343 static void
1344 free_oa_configs(struct i915_perf_stream *stream)
1345 {
1346 	struct i915_oa_config_bo *oa_bo, *tmp;
1347 
1348 	i915_oa_config_put(stream->oa_config);
1349 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1350 		free_oa_config_bo(oa_bo);
1351 }
1352 
1353 static void
1354 free_noa_wait(struct i915_perf_stream *stream)
1355 {
1356 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1357 }
1358 
1359 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1360 {
1361 	struct i915_perf *perf = stream->perf;
1362 
1363 	BUG_ON(stream != perf->exclusive_stream);
1364 
1365 	/*
1366 	 * Unset exclusive_stream first, it will be checked while disabling
1367 	 * the metric set on gen8+.
1368 	 *
1369 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1370 	 */
1371 	WRITE_ONCE(perf->exclusive_stream, NULL);
1372 	perf->ops.disable_metric_set(stream);
1373 
1374 	free_oa_buffer(stream);
1375 
1376 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1377 	intel_engine_pm_put(stream->engine);
1378 
1379 	if (stream->ctx)
1380 		oa_put_render_ctx_id(stream);
1381 
1382 	free_oa_configs(stream);
1383 	free_noa_wait(stream);
1384 
1385 	if (perf->spurious_report_rs.missed) {
1386 		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1387 			 perf->spurious_report_rs.missed);
1388 	}
1389 }
1390 
1391 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1392 {
1393 	struct intel_uncore *uncore = stream->uncore;
1394 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1395 	unsigned long flags;
1396 
1397 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1398 
1399 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1400 	 * before OASTATUS1, but after OASTATUS2
1401 	 */
1402 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1403 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1404 	stream->oa_buffer.head = gtt_offset;
1405 
1406 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1407 
1408 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1409 			   gtt_offset | OABUFFER_SIZE_16M);
1410 
1411 	/* Mark that we need updated tail pointers to read from... */
1412 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1413 	stream->oa_buffer.tail = gtt_offset;
1414 
1415 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1416 
1417 	/* On Haswell we have to track which OASTATUS1 flags we've
1418 	 * already seen since they can't be cleared while periodic
1419 	 * sampling is enabled.
1420 	 */
1421 	stream->perf->gen7_latched_oastatus1 = 0;
1422 
1423 	/* NB: although the OA buffer will initially be allocated
1424 	 * zeroed via shmfs (and so this memset is redundant when
1425 	 * first allocating), we may re-init the OA buffer, either
1426 	 * when re-enabling a stream or in error/reset paths.
1427 	 *
1428 	 * The reason we clear the buffer for each re-init is for the
1429 	 * sanity check in gen7_append_oa_reports() that looks at the
1430 	 * report-id field to make sure it's non-zero which relies on
1431 	 * the assumption that new reports are being written to zeroed
1432 	 * memory...
1433 	 */
1434 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1435 }
1436 
1437 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1438 {
1439 	struct intel_uncore *uncore = stream->uncore;
1440 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1441 	unsigned long flags;
1442 
1443 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1444 
1445 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1446 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1447 	stream->oa_buffer.head = gtt_offset;
1448 
1449 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1450 
1451 	/*
1452 	 * PRM says:
1453 	 *
1454 	 *  "This MMIO must be set before the OATAILPTR
1455 	 *  register and after the OAHEADPTR register. This is
1456 	 *  to enable proper functionality of the overflow
1457 	 *  bit."
1458 	 */
1459 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1460 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1461 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1462 
1463 	/* Mark that we need updated tail pointers to read from... */
1464 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1465 	stream->oa_buffer.tail = gtt_offset;
1466 
1467 	/*
1468 	 * Reset state used to recognise context switches, affecting which
1469 	 * reports we will forward to userspace while filtering for a single
1470 	 * context.
1471 	 */
1472 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1473 
1474 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1475 
1476 	/*
1477 	 * NB: although the OA buffer will initially be allocated
1478 	 * zeroed via shmfs (and so this memset is redundant when
1479 	 * first allocating), we may re-init the OA buffer, either
1480 	 * when re-enabling a stream or in error/reset paths.
1481 	 *
1482 	 * The reason we clear the buffer for each re-init is for the
1483 	 * sanity check in gen8_append_oa_reports() that looks at the
1484 	 * reason field to make sure it's non-zero which relies on
1485 	 * the assumption that new reports are being written to zeroed
1486 	 * memory...
1487 	 */
1488 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1489 }
1490 
1491 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1492 {
1493 	struct intel_uncore *uncore = stream->uncore;
1494 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1495 	unsigned long flags;
1496 
1497 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1498 
1499 	intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1500 	intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1501 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1502 	stream->oa_buffer.head = gtt_offset;
1503 
1504 	/*
1505 	 * PRM says:
1506 	 *
1507 	 *  "This MMIO must be set before the OATAILPTR
1508 	 *  register and after the OAHEADPTR register. This is
1509 	 *  to enable proper functionality of the overflow
1510 	 *  bit."
1511 	 */
1512 	intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1513 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1514 	intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1515 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1516 
1517 	/* Mark that we need updated tail pointers to read from... */
1518 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1519 	stream->oa_buffer.tail = gtt_offset;
1520 
1521 	/*
1522 	 * Reset state used to recognise context switches, affecting which
1523 	 * reports we will forward to userspace while filtering for a single
1524 	 * context.
1525 	 */
1526 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1527 
1528 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1529 
1530 	/*
1531 	 * NB: although the OA buffer will initially be allocated
1532 	 * zeroed via shmfs (and so this memset is redundant when
1533 	 * first allocating), we may re-init the OA buffer, either
1534 	 * when re-enabling a stream or in error/reset paths.
1535 	 *
1536 	 * The reason we clear the buffer for each re-init is for the
1537 	 * sanity check in gen8_append_oa_reports() that looks at the
1538 	 * reason field to make sure it's non-zero which relies on
1539 	 * the assumption that new reports are being written to zeroed
1540 	 * memory...
1541 	 */
1542 	memset(stream->oa_buffer.vaddr, 0,
1543 	       stream->oa_buffer.vma->size);
1544 }
1545 
1546 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1547 {
1548 	struct drm_i915_private *i915 = stream->perf->i915;
1549 	struct drm_i915_gem_object *bo;
1550 	struct i915_vma *vma;
1551 	int ret;
1552 
1553 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1554 		return -ENODEV;
1555 
1556 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1557 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1558 
1559 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1560 	if (IS_ERR(bo)) {
1561 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1562 		return PTR_ERR(bo);
1563 	}
1564 
1565 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1566 
1567 	/* PreHSW required 512K alignment, HSW requires 16M */
1568 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1569 	if (IS_ERR(vma)) {
1570 		ret = PTR_ERR(vma);
1571 		goto err_unref;
1572 	}
1573 	stream->oa_buffer.vma = vma;
1574 
1575 	stream->oa_buffer.vaddr =
1576 		i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1577 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1578 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1579 		goto err_unpin;
1580 	}
1581 
1582 	return 0;
1583 
1584 err_unpin:
1585 	__i915_vma_unpin(vma);
1586 
1587 err_unref:
1588 	i915_gem_object_put(bo);
1589 
1590 	stream->oa_buffer.vaddr = NULL;
1591 	stream->oa_buffer.vma = NULL;
1592 
1593 	return ret;
1594 }
1595 
1596 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1597 				  bool save, i915_reg_t reg, u32 offset,
1598 				  u32 dword_count)
1599 {
1600 	u32 cmd;
1601 	u32 d;
1602 
1603 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1604 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1605 	if (INTEL_GEN(stream->perf->i915) >= 8)
1606 		cmd++;
1607 
1608 	for (d = 0; d < dword_count; d++) {
1609 		*cs++ = cmd;
1610 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1611 		*cs++ = intel_gt_scratch_offset(stream->engine->gt,
1612 						offset) + 4 * d;
1613 		*cs++ = 0;
1614 	}
1615 
1616 	return cs;
1617 }
1618 
1619 static int alloc_noa_wait(struct i915_perf_stream *stream)
1620 {
1621 	struct drm_i915_private *i915 = stream->perf->i915;
1622 	struct drm_i915_gem_object *bo;
1623 	struct i915_vma *vma;
1624 	const u64 delay_ticks = 0xffffffffffffffff -
1625 		intel_gt_ns_to_clock_interval(stream->perf->i915->ggtt.vm.gt,
1626 					      atomic64_read(&stream->perf->noa_programming_delay));
1627 	const u32 base = stream->engine->mmio_base;
1628 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1629 	u32 *batch, *ts0, *cs, *jump;
1630 	struct i915_gem_ww_ctx ww;
1631 	int ret, i;
1632 	enum {
1633 		START_TS,
1634 		NOW_TS,
1635 		DELTA_TS,
1636 		JUMP_PREDICATE,
1637 		DELTA_TARGET,
1638 		N_CS_GPR
1639 	};
1640 
1641 	bo = i915_gem_object_create_internal(i915, 4096);
1642 	if (IS_ERR(bo)) {
1643 		drm_err(&i915->drm,
1644 			"Failed to allocate NOA wait batchbuffer\n");
1645 		return PTR_ERR(bo);
1646 	}
1647 
1648 	i915_gem_ww_ctx_init(&ww, true);
1649 retry:
1650 	ret = i915_gem_object_lock(bo, &ww);
1651 	if (ret)
1652 		goto out_ww;
1653 
1654 	/*
1655 	 * We pin in GGTT because we jump into this buffer now because
1656 	 * multiple OA config BOs will have a jump to this address and it
1657 	 * needs to be fixed during the lifetime of the i915/perf stream.
1658 	 */
1659 	vma = i915_gem_object_ggtt_pin_ww(bo, &ww, NULL, 0, 0, PIN_HIGH);
1660 	if (IS_ERR(vma)) {
1661 		ret = PTR_ERR(vma);
1662 		goto out_ww;
1663 	}
1664 
1665 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1666 	if (IS_ERR(batch)) {
1667 		ret = PTR_ERR(batch);
1668 		goto err_unpin;
1669 	}
1670 
1671 	/* Save registers. */
1672 	for (i = 0; i < N_CS_GPR; i++)
1673 		cs = save_restore_register(
1674 			stream, cs, true /* save */, CS_GPR(i),
1675 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1676 	cs = save_restore_register(
1677 		stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1678 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1679 
1680 	/* First timestamp snapshot location. */
1681 	ts0 = cs;
1682 
1683 	/*
1684 	 * Initial snapshot of the timestamp register to implement the wait.
1685 	 * We work with 32b values, so clear out the top 32b bits of the
1686 	 * register because the ALU works 64bits.
1687 	 */
1688 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1689 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1690 	*cs++ = 0;
1691 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1692 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1693 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1694 
1695 	/*
1696 	 * This is the location we're going to jump back into until the
1697 	 * required amount of time has passed.
1698 	 */
1699 	jump = cs;
1700 
1701 	/*
1702 	 * Take another snapshot of the timestamp register. Take care to clear
1703 	 * up the top 32bits of CS_GPR(1) as we're using it for other
1704 	 * operations below.
1705 	 */
1706 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1707 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1708 	*cs++ = 0;
1709 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1710 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1711 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1712 
1713 	/*
1714 	 * Do a diff between the 2 timestamps and store the result back into
1715 	 * CS_GPR(1).
1716 	 */
1717 	*cs++ = MI_MATH(5);
1718 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1719 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1720 	*cs++ = MI_MATH_SUB;
1721 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1722 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1723 
1724 	/*
1725 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1726 	 * timestamp have rolled over the 32bits) into the predicate register
1727 	 * to be used for the predicated jump.
1728 	 */
1729 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1730 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1731 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1732 
1733 	/* Restart from the beginning if we had timestamps roll over. */
1734 	*cs++ = (INTEL_GEN(i915) < 8 ?
1735 		 MI_BATCH_BUFFER_START :
1736 		 MI_BATCH_BUFFER_START_GEN8) |
1737 		MI_BATCH_PREDICATE;
1738 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1739 	*cs++ = 0;
1740 
1741 	/*
1742 	 * Now add the diff between to previous timestamps and add it to :
1743 	 *      (((1 * << 64) - 1) - delay_ns)
1744 	 *
1745 	 * When the Carry Flag contains 1 this means the elapsed time is
1746 	 * longer than the expected delay, and we can exit the wait loop.
1747 	 */
1748 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1749 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1750 	*cs++ = lower_32_bits(delay_ticks);
1751 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1752 	*cs++ = upper_32_bits(delay_ticks);
1753 
1754 	*cs++ = MI_MATH(4);
1755 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1756 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1757 	*cs++ = MI_MATH_ADD;
1758 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1759 
1760 	*cs++ = MI_ARB_CHECK;
1761 
1762 	/*
1763 	 * Transfer the result into the predicate register to be used for the
1764 	 * predicated jump.
1765 	 */
1766 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1767 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1768 	*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1769 
1770 	/* Predicate the jump.  */
1771 	*cs++ = (INTEL_GEN(i915) < 8 ?
1772 		 MI_BATCH_BUFFER_START :
1773 		 MI_BATCH_BUFFER_START_GEN8) |
1774 		MI_BATCH_PREDICATE;
1775 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1776 	*cs++ = 0;
1777 
1778 	/* Restore registers. */
1779 	for (i = 0; i < N_CS_GPR; i++)
1780 		cs = save_restore_register(
1781 			stream, cs, false /* restore */, CS_GPR(i),
1782 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1783 	cs = save_restore_register(
1784 		stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1785 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1786 
1787 	/* And return to the ring. */
1788 	*cs++ = MI_BATCH_BUFFER_END;
1789 
1790 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1791 
1792 	i915_gem_object_flush_map(bo);
1793 	__i915_gem_object_release_map(bo);
1794 
1795 	stream->noa_wait = vma;
1796 	goto out_ww;
1797 
1798 err_unpin:
1799 	i915_vma_unpin_and_release(&vma, 0);
1800 out_ww:
1801 	if (ret == -EDEADLK) {
1802 		ret = i915_gem_ww_ctx_backoff(&ww);
1803 		if (!ret)
1804 			goto retry;
1805 	}
1806 	i915_gem_ww_ctx_fini(&ww);
1807 	if (ret)
1808 		i915_gem_object_put(bo);
1809 	return ret;
1810 }
1811 
1812 static u32 *write_cs_mi_lri(u32 *cs,
1813 			    const struct i915_oa_reg *reg_data,
1814 			    u32 n_regs)
1815 {
1816 	u32 i;
1817 
1818 	for (i = 0; i < n_regs; i++) {
1819 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1820 			u32 n_lri = min_t(u32,
1821 					  n_regs - i,
1822 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
1823 
1824 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1825 		}
1826 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1827 		*cs++ = reg_data[i].value;
1828 	}
1829 
1830 	return cs;
1831 }
1832 
1833 static int num_lri_dwords(int num_regs)
1834 {
1835 	int count = 0;
1836 
1837 	if (num_regs > 0) {
1838 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1839 		count += num_regs * 2;
1840 	}
1841 
1842 	return count;
1843 }
1844 
1845 static struct i915_oa_config_bo *
1846 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1847 		       struct i915_oa_config *oa_config)
1848 {
1849 	struct drm_i915_gem_object *obj;
1850 	struct i915_oa_config_bo *oa_bo;
1851 	struct i915_gem_ww_ctx ww;
1852 	size_t config_length = 0;
1853 	u32 *cs;
1854 	int err;
1855 
1856 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1857 	if (!oa_bo)
1858 		return ERR_PTR(-ENOMEM);
1859 
1860 	config_length += num_lri_dwords(oa_config->mux_regs_len);
1861 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1862 	config_length += num_lri_dwords(oa_config->flex_regs_len);
1863 	config_length += 3; /* MI_BATCH_BUFFER_START */
1864 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1865 
1866 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1867 	if (IS_ERR(obj)) {
1868 		err = PTR_ERR(obj);
1869 		goto err_free;
1870 	}
1871 
1872 	i915_gem_ww_ctx_init(&ww, true);
1873 retry:
1874 	err = i915_gem_object_lock(obj, &ww);
1875 	if (err)
1876 		goto out_ww;
1877 
1878 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1879 	if (IS_ERR(cs)) {
1880 		err = PTR_ERR(cs);
1881 		goto out_ww;
1882 	}
1883 
1884 	cs = write_cs_mi_lri(cs,
1885 			     oa_config->mux_regs,
1886 			     oa_config->mux_regs_len);
1887 	cs = write_cs_mi_lri(cs,
1888 			     oa_config->b_counter_regs,
1889 			     oa_config->b_counter_regs_len);
1890 	cs = write_cs_mi_lri(cs,
1891 			     oa_config->flex_regs,
1892 			     oa_config->flex_regs_len);
1893 
1894 	/* Jump into the active wait. */
1895 	*cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1896 		 MI_BATCH_BUFFER_START :
1897 		 MI_BATCH_BUFFER_START_GEN8);
1898 	*cs++ = i915_ggtt_offset(stream->noa_wait);
1899 	*cs++ = 0;
1900 
1901 	i915_gem_object_flush_map(obj);
1902 	__i915_gem_object_release_map(obj);
1903 
1904 	oa_bo->vma = i915_vma_instance(obj,
1905 				       &stream->engine->gt->ggtt->vm,
1906 				       NULL);
1907 	if (IS_ERR(oa_bo->vma)) {
1908 		err = PTR_ERR(oa_bo->vma);
1909 		goto out_ww;
1910 	}
1911 
1912 	oa_bo->oa_config = i915_oa_config_get(oa_config);
1913 	llist_add(&oa_bo->node, &stream->oa_config_bos);
1914 
1915 out_ww:
1916 	if (err == -EDEADLK) {
1917 		err = i915_gem_ww_ctx_backoff(&ww);
1918 		if (!err)
1919 			goto retry;
1920 	}
1921 	i915_gem_ww_ctx_fini(&ww);
1922 
1923 	if (err)
1924 		i915_gem_object_put(obj);
1925 err_free:
1926 	if (err) {
1927 		kfree(oa_bo);
1928 		return ERR_PTR(err);
1929 	}
1930 	return oa_bo;
1931 }
1932 
1933 static struct i915_vma *
1934 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1935 {
1936 	struct i915_oa_config_bo *oa_bo;
1937 
1938 	/*
1939 	 * Look for the buffer in the already allocated BOs attached
1940 	 * to the stream.
1941 	 */
1942 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1943 		if (oa_bo->oa_config == oa_config &&
1944 		    memcmp(oa_bo->oa_config->uuid,
1945 			   oa_config->uuid,
1946 			   sizeof(oa_config->uuid)) == 0)
1947 			goto out;
1948 	}
1949 
1950 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
1951 	if (IS_ERR(oa_bo))
1952 		return ERR_CAST(oa_bo);
1953 
1954 out:
1955 	return i915_vma_get(oa_bo->vma);
1956 }
1957 
1958 static int
1959 emit_oa_config(struct i915_perf_stream *stream,
1960 	       struct i915_oa_config *oa_config,
1961 	       struct intel_context *ce,
1962 	       struct i915_active *active)
1963 {
1964 	struct i915_request *rq;
1965 	struct i915_vma *vma;
1966 	struct i915_gem_ww_ctx ww;
1967 	int err;
1968 
1969 	vma = get_oa_vma(stream, oa_config);
1970 	if (IS_ERR(vma))
1971 		return PTR_ERR(vma);
1972 
1973 	i915_gem_ww_ctx_init(&ww, true);
1974 retry:
1975 	err = i915_gem_object_lock(vma->obj, &ww);
1976 	if (err)
1977 		goto err;
1978 
1979 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1980 	if (err)
1981 		goto err;
1982 
1983 	intel_engine_pm_get(ce->engine);
1984 	rq = i915_request_create(ce);
1985 	intel_engine_pm_put(ce->engine);
1986 	if (IS_ERR(rq)) {
1987 		err = PTR_ERR(rq);
1988 		goto err_vma_unpin;
1989 	}
1990 
1991 	if (!IS_ERR_OR_NULL(active)) {
1992 		/* After all individual context modifications */
1993 		err = i915_request_await_active(rq, active,
1994 						I915_ACTIVE_AWAIT_ACTIVE);
1995 		if (err)
1996 			goto err_add_request;
1997 
1998 		err = i915_active_add_request(active, rq);
1999 		if (err)
2000 			goto err_add_request;
2001 	}
2002 
2003 	err = i915_request_await_object(rq, vma->obj, 0);
2004 	if (!err)
2005 		err = i915_vma_move_to_active(vma, rq, 0);
2006 	if (err)
2007 		goto err_add_request;
2008 
2009 	err = rq->engine->emit_bb_start(rq,
2010 					vma->node.start, 0,
2011 					I915_DISPATCH_SECURE);
2012 	if (err)
2013 		goto err_add_request;
2014 
2015 err_add_request:
2016 	i915_request_add(rq);
2017 err_vma_unpin:
2018 	i915_vma_unpin(vma);
2019 err:
2020 	if (err == -EDEADLK) {
2021 		err = i915_gem_ww_ctx_backoff(&ww);
2022 		if (!err)
2023 			goto retry;
2024 	}
2025 
2026 	i915_gem_ww_ctx_fini(&ww);
2027 	i915_vma_put(vma);
2028 	return err;
2029 }
2030 
2031 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2032 {
2033 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2034 }
2035 
2036 static int
2037 hsw_enable_metric_set(struct i915_perf_stream *stream,
2038 		      struct i915_active *active)
2039 {
2040 	struct intel_uncore *uncore = stream->uncore;
2041 
2042 	/*
2043 	 * PRM:
2044 	 *
2045 	 * OA unit is using “crclk” for its functionality. When trunk
2046 	 * level clock gating takes place, OA clock would be gated,
2047 	 * unable to count the events from non-render clock domain.
2048 	 * Render clock gating must be disabled when OA is enabled to
2049 	 * count the events from non-render domain. Unit level clock
2050 	 * gating for RCS should also be disabled.
2051 	 */
2052 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2053 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2054 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2055 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2056 
2057 	return emit_oa_config(stream,
2058 			      stream->oa_config, oa_context(stream),
2059 			      active);
2060 }
2061 
2062 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2063 {
2064 	struct intel_uncore *uncore = stream->uncore;
2065 
2066 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2067 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2068 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2069 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2070 
2071 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2072 }
2073 
2074 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2075 			      i915_reg_t reg)
2076 {
2077 	u32 mmio = i915_mmio_reg_offset(reg);
2078 	int i;
2079 
2080 	/*
2081 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2082 	 * Active' event. In the future it's anticipated that there
2083 	 * will be an explicit 'No Event' we can select, but not yet...
2084 	 */
2085 	if (!oa_config)
2086 		return 0;
2087 
2088 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2089 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2090 			return oa_config->flex_regs[i].value;
2091 	}
2092 
2093 	return 0;
2094 }
2095 /*
2096  * NB: It must always remain pointer safe to run this even if the OA unit
2097  * has been disabled.
2098  *
2099  * It's fine to put out-of-date values into these per-context registers
2100  * in the case that the OA unit has been disabled.
2101  */
2102 static void
2103 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2104 			       const struct i915_perf_stream *stream)
2105 {
2106 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2107 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2108 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2109 	i915_reg_t flex_regs[] = {
2110 		EU_PERF_CNTL0,
2111 		EU_PERF_CNTL1,
2112 		EU_PERF_CNTL2,
2113 		EU_PERF_CNTL3,
2114 		EU_PERF_CNTL4,
2115 		EU_PERF_CNTL5,
2116 		EU_PERF_CNTL6,
2117 	};
2118 	u32 *reg_state = ce->lrc_reg_state;
2119 	int i;
2120 
2121 	reg_state[ctx_oactxctrl + 1] =
2122 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2123 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2124 		GEN8_OA_COUNTER_RESUME;
2125 
2126 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2127 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2128 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2129 }
2130 
2131 struct flex {
2132 	i915_reg_t reg;
2133 	u32 offset;
2134 	u32 value;
2135 };
2136 
2137 static int
2138 gen8_store_flex(struct i915_request *rq,
2139 		struct intel_context *ce,
2140 		const struct flex *flex, unsigned int count)
2141 {
2142 	u32 offset;
2143 	u32 *cs;
2144 
2145 	cs = intel_ring_begin(rq, 4 * count);
2146 	if (IS_ERR(cs))
2147 		return PTR_ERR(cs);
2148 
2149 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2150 	do {
2151 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2152 		*cs++ = offset + flex->offset * sizeof(u32);
2153 		*cs++ = 0;
2154 		*cs++ = flex->value;
2155 	} while (flex++, --count);
2156 
2157 	intel_ring_advance(rq, cs);
2158 
2159 	return 0;
2160 }
2161 
2162 static int
2163 gen8_load_flex(struct i915_request *rq,
2164 	       struct intel_context *ce,
2165 	       const struct flex *flex, unsigned int count)
2166 {
2167 	u32 *cs;
2168 
2169 	GEM_BUG_ON(!count || count > 63);
2170 
2171 	cs = intel_ring_begin(rq, 2 * count + 2);
2172 	if (IS_ERR(cs))
2173 		return PTR_ERR(cs);
2174 
2175 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2176 	do {
2177 		*cs++ = i915_mmio_reg_offset(flex->reg);
2178 		*cs++ = flex->value;
2179 	} while (flex++, --count);
2180 	*cs++ = MI_NOOP;
2181 
2182 	intel_ring_advance(rq, cs);
2183 
2184 	return 0;
2185 }
2186 
2187 static int gen8_modify_context(struct intel_context *ce,
2188 			       const struct flex *flex, unsigned int count)
2189 {
2190 	struct i915_request *rq;
2191 	int err;
2192 
2193 	rq = intel_engine_create_kernel_request(ce->engine);
2194 	if (IS_ERR(rq))
2195 		return PTR_ERR(rq);
2196 
2197 	/* Serialise with the remote context */
2198 	err = intel_context_prepare_remote_request(ce, rq);
2199 	if (err == 0)
2200 		err = gen8_store_flex(rq, ce, flex, count);
2201 
2202 	i915_request_add(rq);
2203 	return err;
2204 }
2205 
2206 static int
2207 gen8_modify_self(struct intel_context *ce,
2208 		 const struct flex *flex, unsigned int count,
2209 		 struct i915_active *active)
2210 {
2211 	struct i915_request *rq;
2212 	int err;
2213 
2214 	intel_engine_pm_get(ce->engine);
2215 	rq = i915_request_create(ce);
2216 	intel_engine_pm_put(ce->engine);
2217 	if (IS_ERR(rq))
2218 		return PTR_ERR(rq);
2219 
2220 	if (!IS_ERR_OR_NULL(active)) {
2221 		err = i915_active_add_request(active, rq);
2222 		if (err)
2223 			goto err_add_request;
2224 	}
2225 
2226 	err = gen8_load_flex(rq, ce, flex, count);
2227 	if (err)
2228 		goto err_add_request;
2229 
2230 err_add_request:
2231 	i915_request_add(rq);
2232 	return err;
2233 }
2234 
2235 static int gen8_configure_context(struct i915_gem_context *ctx,
2236 				  struct flex *flex, unsigned int count)
2237 {
2238 	struct i915_gem_engines_iter it;
2239 	struct intel_context *ce;
2240 	int err = 0;
2241 
2242 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2243 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2244 
2245 		if (ce->engine->class != RENDER_CLASS)
2246 			continue;
2247 
2248 		/* Otherwise OA settings will be set upon first use */
2249 		if (!intel_context_pin_if_active(ce))
2250 			continue;
2251 
2252 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2253 		err = gen8_modify_context(ce, flex, count);
2254 
2255 		intel_context_unpin(ce);
2256 		if (err)
2257 			break;
2258 	}
2259 	i915_gem_context_unlock_engines(ctx);
2260 
2261 	return err;
2262 }
2263 
2264 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2265 				       struct i915_active *active)
2266 {
2267 	int err;
2268 	struct intel_context *ce = stream->pinned_ctx;
2269 	u32 format = stream->oa_buffer.format;
2270 	struct flex regs_context[] = {
2271 		{
2272 			GEN8_OACTXCONTROL,
2273 			stream->perf->ctx_oactxctrl_offset + 1,
2274 			active ? GEN8_OA_COUNTER_RESUME : 0,
2275 		},
2276 	};
2277 	/* Offsets in regs_lri are not used since this configuration is only
2278 	 * applied using LRI. Initialize the correct offsets for posterity.
2279 	 */
2280 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2281 	struct flex regs_lri[] = {
2282 		{
2283 			GEN12_OAR_OACONTROL,
2284 			GEN12_OAR_OACONTROL_OFFSET + 1,
2285 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2286 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2287 		},
2288 		{
2289 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2290 			CTX_CONTEXT_CONTROL,
2291 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2292 				      active ?
2293 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2294 				      0)
2295 		},
2296 	};
2297 
2298 	/* Modify the context image of pinned context with regs_context*/
2299 	err = intel_context_lock_pinned(ce);
2300 	if (err)
2301 		return err;
2302 
2303 	err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2304 	intel_context_unlock_pinned(ce);
2305 	if (err)
2306 		return err;
2307 
2308 	/* Apply regs_lri using LRI with pinned context */
2309 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2310 }
2311 
2312 /*
2313  * Manages updating the per-context aspects of the OA stream
2314  * configuration across all contexts.
2315  *
2316  * The awkward consideration here is that OACTXCONTROL controls the
2317  * exponent for periodic sampling which is primarily used for system
2318  * wide profiling where we'd like a consistent sampling period even in
2319  * the face of context switches.
2320  *
2321  * Our approach of updating the register state context (as opposed to
2322  * say using a workaround batch buffer) ensures that the hardware
2323  * won't automatically reload an out-of-date timer exponent even
2324  * transiently before a WA BB could be parsed.
2325  *
2326  * This function needs to:
2327  * - Ensure the currently running context's per-context OA state is
2328  *   updated
2329  * - Ensure that all existing contexts will have the correct per-context
2330  *   OA state if they are scheduled for use.
2331  * - Ensure any new contexts will be initialized with the correct
2332  *   per-context OA state.
2333  *
2334  * Note: it's only the RCS/Render context that has any OA state.
2335  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2336  */
2337 static int
2338 oa_configure_all_contexts(struct i915_perf_stream *stream,
2339 			  struct flex *regs,
2340 			  size_t num_regs,
2341 			  struct i915_active *active)
2342 {
2343 	struct drm_i915_private *i915 = stream->perf->i915;
2344 	struct intel_engine_cs *engine;
2345 	struct i915_gem_context *ctx, *cn;
2346 	int err;
2347 
2348 	lockdep_assert_held(&stream->perf->lock);
2349 
2350 	/*
2351 	 * The OA register config is setup through the context image. This image
2352 	 * might be written to by the GPU on context switch (in particular on
2353 	 * lite-restore). This means we can't safely update a context's image,
2354 	 * if this context is scheduled/submitted to run on the GPU.
2355 	 *
2356 	 * We could emit the OA register config through the batch buffer but
2357 	 * this might leave small interval of time where the OA unit is
2358 	 * configured at an invalid sampling period.
2359 	 *
2360 	 * Note that since we emit all requests from a single ring, there
2361 	 * is still an implicit global barrier here that may cause a high
2362 	 * priority context to wait for an otherwise independent low priority
2363 	 * context. Contexts idle at the time of reconfiguration are not
2364 	 * trapped behind the barrier.
2365 	 */
2366 	spin_lock(&i915->gem.contexts.lock);
2367 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2368 		if (!kref_get_unless_zero(&ctx->ref))
2369 			continue;
2370 
2371 		spin_unlock(&i915->gem.contexts.lock);
2372 
2373 		err = gen8_configure_context(ctx, regs, num_regs);
2374 		if (err) {
2375 			i915_gem_context_put(ctx);
2376 			return err;
2377 		}
2378 
2379 		spin_lock(&i915->gem.contexts.lock);
2380 		list_safe_reset_next(ctx, cn, link);
2381 		i915_gem_context_put(ctx);
2382 	}
2383 	spin_unlock(&i915->gem.contexts.lock);
2384 
2385 	/*
2386 	 * After updating all other contexts, we need to modify ourselves.
2387 	 * If we don't modify the kernel_context, we do not get events while
2388 	 * idle.
2389 	 */
2390 	for_each_uabi_engine(engine, i915) {
2391 		struct intel_context *ce = engine->kernel_context;
2392 
2393 		if (engine->class != RENDER_CLASS)
2394 			continue;
2395 
2396 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2397 
2398 		err = gen8_modify_self(ce, regs, num_regs, active);
2399 		if (err)
2400 			return err;
2401 	}
2402 
2403 	return 0;
2404 }
2405 
2406 static int
2407 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2408 			     const struct i915_oa_config *oa_config,
2409 			     struct i915_active *active)
2410 {
2411 	struct flex regs[] = {
2412 		{
2413 			GEN8_R_PWR_CLK_STATE,
2414 			CTX_R_PWR_CLK_STATE,
2415 		},
2416 	};
2417 
2418 	return oa_configure_all_contexts(stream,
2419 					 regs, ARRAY_SIZE(regs),
2420 					 active);
2421 }
2422 
2423 static int
2424 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2425 			   const struct i915_oa_config *oa_config,
2426 			   struct i915_active *active)
2427 {
2428 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2429 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2430 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2431 	struct flex regs[] = {
2432 		{
2433 			GEN8_R_PWR_CLK_STATE,
2434 			CTX_R_PWR_CLK_STATE,
2435 		},
2436 		{
2437 			GEN8_OACTXCONTROL,
2438 			stream->perf->ctx_oactxctrl_offset + 1,
2439 		},
2440 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2441 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2442 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2443 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2444 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2445 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2446 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2447 	};
2448 #undef ctx_flexeuN
2449 	int i;
2450 
2451 	regs[1].value =
2452 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2453 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2454 		GEN8_OA_COUNTER_RESUME;
2455 
2456 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2457 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2458 
2459 	return oa_configure_all_contexts(stream,
2460 					 regs, ARRAY_SIZE(regs),
2461 					 active);
2462 }
2463 
2464 static int
2465 gen8_enable_metric_set(struct i915_perf_stream *stream,
2466 		       struct i915_active *active)
2467 {
2468 	struct intel_uncore *uncore = stream->uncore;
2469 	struct i915_oa_config *oa_config = stream->oa_config;
2470 	int ret;
2471 
2472 	/*
2473 	 * We disable slice/unslice clock ratio change reports on SKL since
2474 	 * they are too noisy. The HW generates a lot of redundant reports
2475 	 * where the ratio hasn't really changed causing a lot of redundant
2476 	 * work to processes and increasing the chances we'll hit buffer
2477 	 * overruns.
2478 	 *
2479 	 * Although we don't currently use the 'disable overrun' OABUFFER
2480 	 * feature it's worth noting that clock ratio reports have to be
2481 	 * disabled before considering to use that feature since the HW doesn't
2482 	 * correctly block these reports.
2483 	 *
2484 	 * Currently none of the high-level metrics we have depend on knowing
2485 	 * this ratio to normalize.
2486 	 *
2487 	 * Note: This register is not power context saved and restored, but
2488 	 * that's OK considering that we disable RC6 while the OA unit is
2489 	 * enabled.
2490 	 *
2491 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2492 	 * be read back from automatically triggered reports, as part of the
2493 	 * RPT_ID field.
2494 	 */
2495 	if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2496 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2497 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2498 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2499 	}
2500 
2501 	/*
2502 	 * Update all contexts prior writing the mux configurations as we need
2503 	 * to make sure all slices/subslices are ON before writing to NOA
2504 	 * registers.
2505 	 */
2506 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2507 	if (ret)
2508 		return ret;
2509 
2510 	return emit_oa_config(stream,
2511 			      stream->oa_config, oa_context(stream),
2512 			      active);
2513 }
2514 
2515 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2516 {
2517 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2518 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2519 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2520 }
2521 
2522 static int
2523 gen12_enable_metric_set(struct i915_perf_stream *stream,
2524 			struct i915_active *active)
2525 {
2526 	struct intel_uncore *uncore = stream->uncore;
2527 	struct i915_oa_config *oa_config = stream->oa_config;
2528 	bool periodic = stream->periodic;
2529 	u32 period_exponent = stream->period_exponent;
2530 	int ret;
2531 
2532 	intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2533 			   /* Disable clk ratio reports, like previous Gens. */
2534 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2535 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2536 			   /*
2537 			    * If the user didn't require OA reports, instruct
2538 			    * the hardware not to emit ctx switch reports.
2539 			    */
2540 			   oag_report_ctx_switches(stream));
2541 
2542 	intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2543 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2544 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2545 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2546 			    : 0);
2547 
2548 	/*
2549 	 * Update all contexts prior writing the mux configurations as we need
2550 	 * to make sure all slices/subslices are ON before writing to NOA
2551 	 * registers.
2552 	 */
2553 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2554 	if (ret)
2555 		return ret;
2556 
2557 	/*
2558 	 * For Gen12, performance counters are context
2559 	 * saved/restored. Only enable it for the context that
2560 	 * requested this.
2561 	 */
2562 	if (stream->ctx) {
2563 		ret = gen12_configure_oar_context(stream, active);
2564 		if (ret)
2565 			return ret;
2566 	}
2567 
2568 	return emit_oa_config(stream,
2569 			      stream->oa_config, oa_context(stream),
2570 			      active);
2571 }
2572 
2573 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2574 {
2575 	struct intel_uncore *uncore = stream->uncore;
2576 
2577 	/* Reset all contexts' slices/subslices configurations. */
2578 	lrc_configure_all_contexts(stream, NULL, NULL);
2579 
2580 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2581 }
2582 
2583 static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2584 {
2585 	struct intel_uncore *uncore = stream->uncore;
2586 
2587 	/* Reset all contexts' slices/subslices configurations. */
2588 	lrc_configure_all_contexts(stream, NULL, NULL);
2589 
2590 	/* Make sure we disable noa to save power. */
2591 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2592 }
2593 
2594 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2595 {
2596 	struct intel_uncore *uncore = stream->uncore;
2597 
2598 	/* Reset all contexts' slices/subslices configurations. */
2599 	gen12_configure_all_contexts(stream, NULL, NULL);
2600 
2601 	/* disable the context save/restore or OAR counters */
2602 	if (stream->ctx)
2603 		gen12_configure_oar_context(stream, NULL);
2604 
2605 	/* Make sure we disable noa to save power. */
2606 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2607 }
2608 
2609 static void gen7_oa_enable(struct i915_perf_stream *stream)
2610 {
2611 	struct intel_uncore *uncore = stream->uncore;
2612 	struct i915_gem_context *ctx = stream->ctx;
2613 	u32 ctx_id = stream->specific_ctx_id;
2614 	bool periodic = stream->periodic;
2615 	u32 period_exponent = stream->period_exponent;
2616 	u32 report_format = stream->oa_buffer.format;
2617 
2618 	/*
2619 	 * Reset buf pointers so we don't forward reports from before now.
2620 	 *
2621 	 * Think carefully if considering trying to avoid this, since it
2622 	 * also ensures status flags and the buffer itself are cleared
2623 	 * in error paths, and we have checks for invalid reports based
2624 	 * on the assumption that certain fields are written to zeroed
2625 	 * memory which this helps maintains.
2626 	 */
2627 	gen7_init_oa_buffer(stream);
2628 
2629 	intel_uncore_write(uncore, GEN7_OACONTROL,
2630 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2631 			   (period_exponent <<
2632 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2633 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2634 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2635 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2636 			   GEN7_OACONTROL_ENABLE);
2637 }
2638 
2639 static void gen8_oa_enable(struct i915_perf_stream *stream)
2640 {
2641 	struct intel_uncore *uncore = stream->uncore;
2642 	u32 report_format = stream->oa_buffer.format;
2643 
2644 	/*
2645 	 * Reset buf pointers so we don't forward reports from before now.
2646 	 *
2647 	 * Think carefully if considering trying to avoid this, since it
2648 	 * also ensures status flags and the buffer itself are cleared
2649 	 * in error paths, and we have checks for invalid reports based
2650 	 * on the assumption that certain fields are written to zeroed
2651 	 * memory which this helps maintains.
2652 	 */
2653 	gen8_init_oa_buffer(stream);
2654 
2655 	/*
2656 	 * Note: we don't rely on the hardware to perform single context
2657 	 * filtering and instead filter on the cpu based on the context-id
2658 	 * field of reports
2659 	 */
2660 	intel_uncore_write(uncore, GEN8_OACONTROL,
2661 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2662 			   GEN8_OA_COUNTER_ENABLE);
2663 }
2664 
2665 static void gen12_oa_enable(struct i915_perf_stream *stream)
2666 {
2667 	struct intel_uncore *uncore = stream->uncore;
2668 	u32 report_format = stream->oa_buffer.format;
2669 
2670 	/*
2671 	 * If we don't want OA reports from the OA buffer, then we don't even
2672 	 * need to program the OAG unit.
2673 	 */
2674 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2675 		return;
2676 
2677 	gen12_init_oa_buffer(stream);
2678 
2679 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2680 			   (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2681 			   GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2682 }
2683 
2684 /**
2685  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2686  * @stream: An i915 perf stream opened for OA metrics
2687  *
2688  * [Re]enables hardware periodic sampling according to the period configured
2689  * when opening the stream. This also starts a hrtimer that will periodically
2690  * check for data in the circular OA buffer for notifying userspace (e.g.
2691  * during a read() or poll()).
2692  */
2693 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2694 {
2695 	stream->pollin = false;
2696 
2697 	stream->perf->ops.oa_enable(stream);
2698 
2699 	if (stream->sample_flags & SAMPLE_OA_REPORT)
2700 		hrtimer_start(&stream->poll_check_timer,
2701 			      ns_to_ktime(stream->poll_oa_period),
2702 			      HRTIMER_MODE_REL_PINNED);
2703 }
2704 
2705 static void gen7_oa_disable(struct i915_perf_stream *stream)
2706 {
2707 	struct intel_uncore *uncore = stream->uncore;
2708 
2709 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2710 	if (intel_wait_for_register(uncore,
2711 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2712 				    50))
2713 		drm_err(&stream->perf->i915->drm,
2714 			"wait for OA to be disabled timed out\n");
2715 }
2716 
2717 static void gen8_oa_disable(struct i915_perf_stream *stream)
2718 {
2719 	struct intel_uncore *uncore = stream->uncore;
2720 
2721 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2722 	if (intel_wait_for_register(uncore,
2723 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2724 				    50))
2725 		drm_err(&stream->perf->i915->drm,
2726 			"wait for OA to be disabled timed out\n");
2727 }
2728 
2729 static void gen12_oa_disable(struct i915_perf_stream *stream)
2730 {
2731 	struct intel_uncore *uncore = stream->uncore;
2732 
2733 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2734 	if (intel_wait_for_register(uncore,
2735 				    GEN12_OAG_OACONTROL,
2736 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2737 				    50))
2738 		drm_err(&stream->perf->i915->drm,
2739 			"wait for OA to be disabled timed out\n");
2740 
2741 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2742 	if (intel_wait_for_register(uncore,
2743 				    GEN12_OA_TLB_INV_CR,
2744 				    1, 0,
2745 				    50))
2746 		drm_err(&stream->perf->i915->drm,
2747 			"wait for OA tlb invalidate timed out\n");
2748 }
2749 
2750 /**
2751  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2752  * @stream: An i915 perf stream opened for OA metrics
2753  *
2754  * Stops the OA unit from periodically writing counter reports into the
2755  * circular OA buffer. This also stops the hrtimer that periodically checks for
2756  * data in the circular OA buffer, for notifying userspace.
2757  */
2758 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2759 {
2760 	stream->perf->ops.oa_disable(stream);
2761 
2762 	if (stream->sample_flags & SAMPLE_OA_REPORT)
2763 		hrtimer_cancel(&stream->poll_check_timer);
2764 }
2765 
2766 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2767 	.destroy = i915_oa_stream_destroy,
2768 	.enable = i915_oa_stream_enable,
2769 	.disable = i915_oa_stream_disable,
2770 	.wait_unlocked = i915_oa_wait_unlocked,
2771 	.poll_wait = i915_oa_poll_wait,
2772 	.read = i915_oa_read,
2773 };
2774 
2775 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2776 {
2777 	struct i915_active *active;
2778 	int err;
2779 
2780 	active = i915_active_create();
2781 	if (!active)
2782 		return -ENOMEM;
2783 
2784 	err = stream->perf->ops.enable_metric_set(stream, active);
2785 	if (err == 0)
2786 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2787 
2788 	i915_active_put(active);
2789 	return err;
2790 }
2791 
2792 static void
2793 get_default_sseu_config(struct intel_sseu *out_sseu,
2794 			struct intel_engine_cs *engine)
2795 {
2796 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2797 
2798 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2799 
2800 	if (IS_GEN(engine->i915, 11)) {
2801 		/*
2802 		 * We only need subslice count so it doesn't matter which ones
2803 		 * we select - just turn off low bits in the amount of half of
2804 		 * all available subslices per slice.
2805 		 */
2806 		out_sseu->subslice_mask =
2807 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2808 		out_sseu->slice_mask = 0x1;
2809 	}
2810 }
2811 
2812 static int
2813 get_sseu_config(struct intel_sseu *out_sseu,
2814 		struct intel_engine_cs *engine,
2815 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
2816 {
2817 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
2818 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
2819 		return -EINVAL;
2820 
2821 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2822 }
2823 
2824 /**
2825  * i915_oa_stream_init - validate combined props for OA stream and init
2826  * @stream: An i915 perf stream
2827  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2828  * @props: The property state that configures stream (individually validated)
2829  *
2830  * While read_properties_unlocked() validates properties in isolation it
2831  * doesn't ensure that the combination necessarily makes sense.
2832  *
2833  * At this point it has been determined that userspace wants a stream of
2834  * OA metrics, but still we need to further validate the combined
2835  * properties are OK.
2836  *
2837  * If the configuration makes sense then we can allocate memory for
2838  * a circular OA buffer and apply the requested metric set configuration.
2839  *
2840  * Returns: zero on success or a negative error code.
2841  */
2842 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2843 			       struct drm_i915_perf_open_param *param,
2844 			       struct perf_open_properties *props)
2845 {
2846 	struct drm_i915_private *i915 = stream->perf->i915;
2847 	struct i915_perf *perf = stream->perf;
2848 	int format_size;
2849 	int ret;
2850 
2851 	if (!props->engine) {
2852 		DRM_DEBUG("OA engine not specified\n");
2853 		return -EINVAL;
2854 	}
2855 
2856 	/*
2857 	 * If the sysfs metrics/ directory wasn't registered for some
2858 	 * reason then don't let userspace try their luck with config
2859 	 * IDs
2860 	 */
2861 	if (!perf->metrics_kobj) {
2862 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2863 		return -EINVAL;
2864 	}
2865 
2866 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2867 	    (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2868 		DRM_DEBUG("Only OA report sampling supported\n");
2869 		return -EINVAL;
2870 	}
2871 
2872 	if (!perf->ops.enable_metric_set) {
2873 		DRM_DEBUG("OA unit not supported\n");
2874 		return -ENODEV;
2875 	}
2876 
2877 	/*
2878 	 * To avoid the complexity of having to accurately filter
2879 	 * counter reports and marshal to the appropriate client
2880 	 * we currently only allow exclusive access
2881 	 */
2882 	if (perf->exclusive_stream) {
2883 		DRM_DEBUG("OA unit already in use\n");
2884 		return -EBUSY;
2885 	}
2886 
2887 	if (!props->oa_format) {
2888 		DRM_DEBUG("OA report format not specified\n");
2889 		return -EINVAL;
2890 	}
2891 
2892 	stream->engine = props->engine;
2893 	stream->uncore = stream->engine->gt->uncore;
2894 
2895 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2896 
2897 	format_size = perf->oa_formats[props->oa_format].size;
2898 
2899 	stream->sample_flags = props->sample_flags;
2900 	stream->sample_size += format_size;
2901 
2902 	stream->oa_buffer.format_size = format_size;
2903 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2904 		return -EINVAL;
2905 
2906 	stream->hold_preemption = props->hold_preemption;
2907 
2908 	stream->oa_buffer.format =
2909 		perf->oa_formats[props->oa_format].format;
2910 
2911 	stream->periodic = props->oa_periodic;
2912 	if (stream->periodic)
2913 		stream->period_exponent = props->oa_period_exponent;
2914 
2915 	if (stream->ctx) {
2916 		ret = oa_get_render_ctx_id(stream);
2917 		if (ret) {
2918 			DRM_DEBUG("Invalid context id to filter with\n");
2919 			return ret;
2920 		}
2921 	}
2922 
2923 	ret = alloc_noa_wait(stream);
2924 	if (ret) {
2925 		DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2926 		goto err_noa_wait_alloc;
2927 	}
2928 
2929 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2930 	if (!stream->oa_config) {
2931 		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2932 		ret = -EINVAL;
2933 		goto err_config;
2934 	}
2935 
2936 	/* PRM - observability performance counters:
2937 	 *
2938 	 *   OACONTROL, performance counter enable, note:
2939 	 *
2940 	 *   "When this bit is set, in order to have coherent counts,
2941 	 *   RC6 power state and trunk clock gating must be disabled.
2942 	 *   This can be achieved by programming MMIO registers as
2943 	 *   0xA094=0 and 0xA090[31]=1"
2944 	 *
2945 	 *   In our case we are expecting that taking pm + FORCEWAKE
2946 	 *   references will effectively disable RC6.
2947 	 */
2948 	intel_engine_pm_get(stream->engine);
2949 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2950 
2951 	ret = alloc_oa_buffer(stream);
2952 	if (ret)
2953 		goto err_oa_buf_alloc;
2954 
2955 	stream->ops = &i915_oa_stream_ops;
2956 
2957 	perf->sseu = props->sseu;
2958 	WRITE_ONCE(perf->exclusive_stream, stream);
2959 
2960 	ret = i915_perf_stream_enable_sync(stream);
2961 	if (ret) {
2962 		DRM_DEBUG("Unable to enable metric set\n");
2963 		goto err_enable;
2964 	}
2965 
2966 	DRM_DEBUG("opening stream oa config uuid=%s\n",
2967 		  stream->oa_config->uuid);
2968 
2969 	hrtimer_init(&stream->poll_check_timer,
2970 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2971 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
2972 	init_waitqueue_head(&stream->poll_wq);
2973 	spin_lock_init(&stream->oa_buffer.ptr_lock);
2974 
2975 	return 0;
2976 
2977 err_enable:
2978 	WRITE_ONCE(perf->exclusive_stream, NULL);
2979 	perf->ops.disable_metric_set(stream);
2980 
2981 	free_oa_buffer(stream);
2982 
2983 err_oa_buf_alloc:
2984 	free_oa_configs(stream);
2985 
2986 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2987 	intel_engine_pm_put(stream->engine);
2988 
2989 err_config:
2990 	free_noa_wait(stream);
2991 
2992 err_noa_wait_alloc:
2993 	if (stream->ctx)
2994 		oa_put_render_ctx_id(stream);
2995 
2996 	return ret;
2997 }
2998 
2999 void i915_oa_init_reg_state(const struct intel_context *ce,
3000 			    const struct intel_engine_cs *engine)
3001 {
3002 	struct i915_perf_stream *stream;
3003 
3004 	if (engine->class != RENDER_CLASS)
3005 		return;
3006 
3007 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3008 	stream = READ_ONCE(engine->i915->perf.exclusive_stream);
3009 	if (stream && INTEL_GEN(stream->perf->i915) < 12)
3010 		gen8_update_reg_state_unlocked(ce, stream);
3011 }
3012 
3013 /**
3014  * i915_perf_read - handles read() FOP for i915 perf stream FDs
3015  * @file: An i915 perf stream file
3016  * @buf: destination buffer given by userspace
3017  * @count: the number of bytes userspace wants to read
3018  * @ppos: (inout) file seek position (unused)
3019  *
3020  * The entry point for handling a read() on a stream file descriptor from
3021  * userspace. Most of the work is left to the i915_perf_read_locked() and
3022  * &i915_perf_stream_ops->read but to save having stream implementations (of
3023  * which we might have multiple later) we handle blocking read here.
3024  *
3025  * We can also consistently treat trying to read from a disabled stream
3026  * as an IO error so implementations can assume the stream is enabled
3027  * while reading.
3028  *
3029  * Returns: The number of bytes copied or a negative error code on failure.
3030  */
3031 static ssize_t i915_perf_read(struct file *file,
3032 			      char __user *buf,
3033 			      size_t count,
3034 			      loff_t *ppos)
3035 {
3036 	struct i915_perf_stream *stream = file->private_data;
3037 	struct i915_perf *perf = stream->perf;
3038 	size_t offset = 0;
3039 	int ret;
3040 
3041 	/* To ensure it's handled consistently we simply treat all reads of a
3042 	 * disabled stream as an error. In particular it might otherwise lead
3043 	 * to a deadlock for blocking file descriptors...
3044 	 */
3045 	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3046 		return -EIO;
3047 
3048 	if (!(file->f_flags & O_NONBLOCK)) {
3049 		/* There's the small chance of false positives from
3050 		 * stream->ops->wait_unlocked.
3051 		 *
3052 		 * E.g. with single context filtering since we only wait until
3053 		 * oabuffer has >= 1 report we don't immediately know whether
3054 		 * any reports really belong to the current context
3055 		 */
3056 		do {
3057 			ret = stream->ops->wait_unlocked(stream);
3058 			if (ret)
3059 				return ret;
3060 
3061 			mutex_lock(&perf->lock);
3062 			ret = stream->ops->read(stream, buf, count, &offset);
3063 			mutex_unlock(&perf->lock);
3064 		} while (!offset && !ret);
3065 	} else {
3066 		mutex_lock(&perf->lock);
3067 		ret = stream->ops->read(stream, buf, count, &offset);
3068 		mutex_unlock(&perf->lock);
3069 	}
3070 
3071 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3072 	 * events where we might actually report EAGAIN on read() if there's
3073 	 * not really any data available. In this situation though we don't
3074 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3075 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3076 	 * effectively ensures we back off until the next hrtimer callback
3077 	 * before reporting another EPOLLIN event.
3078 	 * The exception to this is if ops->read() returned -ENOSPC which means
3079 	 * that more OA data is available than could fit in the user provided
3080 	 * buffer. In this case we want the next poll() call to not block.
3081 	 */
3082 	if (ret != -ENOSPC)
3083 		stream->pollin = false;
3084 
3085 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3086 	return offset ?: (ret ?: -EAGAIN);
3087 }
3088 
3089 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3090 {
3091 	struct i915_perf_stream *stream =
3092 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3093 
3094 	if (oa_buffer_check_unlocked(stream)) {
3095 		stream->pollin = true;
3096 		wake_up(&stream->poll_wq);
3097 	}
3098 
3099 	hrtimer_forward_now(hrtimer,
3100 			    ns_to_ktime(stream->poll_oa_period));
3101 
3102 	return HRTIMER_RESTART;
3103 }
3104 
3105 /**
3106  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3107  * @stream: An i915 perf stream
3108  * @file: An i915 perf stream file
3109  * @wait: poll() state table
3110  *
3111  * For handling userspace polling on an i915 perf stream, this calls through to
3112  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3113  * will be woken for new stream data.
3114  *
3115  * Note: The &perf->lock mutex has been taken to serialize
3116  * with any non-file-operation driver hooks.
3117  *
3118  * Returns: any poll events that are ready without sleeping
3119  */
3120 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3121 				      struct file *file,
3122 				      poll_table *wait)
3123 {
3124 	__poll_t events = 0;
3125 
3126 	stream->ops->poll_wait(stream, file, wait);
3127 
3128 	/* Note: we don't explicitly check whether there's something to read
3129 	 * here since this path may be very hot depending on what else
3130 	 * userspace is polling, or on the timeout in use. We rely solely on
3131 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3132 	 * samples to read.
3133 	 */
3134 	if (stream->pollin)
3135 		events |= EPOLLIN;
3136 
3137 	return events;
3138 }
3139 
3140 /**
3141  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3142  * @file: An i915 perf stream file
3143  * @wait: poll() state table
3144  *
3145  * For handling userspace polling on an i915 perf stream, this ensures
3146  * poll_wait() gets called with a wait queue that will be woken for new stream
3147  * data.
3148  *
3149  * Note: Implementation deferred to i915_perf_poll_locked()
3150  *
3151  * Returns: any poll events that are ready without sleeping
3152  */
3153 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3154 {
3155 	struct i915_perf_stream *stream = file->private_data;
3156 	struct i915_perf *perf = stream->perf;
3157 	__poll_t ret;
3158 
3159 	mutex_lock(&perf->lock);
3160 	ret = i915_perf_poll_locked(stream, file, wait);
3161 	mutex_unlock(&perf->lock);
3162 
3163 	return ret;
3164 }
3165 
3166 /**
3167  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3168  * @stream: A disabled i915 perf stream
3169  *
3170  * [Re]enables the associated capture of data for this stream.
3171  *
3172  * If a stream was previously enabled then there's currently no intention
3173  * to provide userspace any guarantee about the preservation of previously
3174  * buffered data.
3175  */
3176 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3177 {
3178 	if (stream->enabled)
3179 		return;
3180 
3181 	/* Allow stream->ops->enable() to refer to this */
3182 	stream->enabled = true;
3183 
3184 	if (stream->ops->enable)
3185 		stream->ops->enable(stream);
3186 
3187 	if (stream->hold_preemption)
3188 		intel_context_set_nopreempt(stream->pinned_ctx);
3189 }
3190 
3191 /**
3192  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3193  * @stream: An enabled i915 perf stream
3194  *
3195  * Disables the associated capture of data for this stream.
3196  *
3197  * The intention is that disabling an re-enabling a stream will ideally be
3198  * cheaper than destroying and re-opening a stream with the same configuration,
3199  * though there are no formal guarantees about what state or buffered data
3200  * must be retained between disabling and re-enabling a stream.
3201  *
3202  * Note: while a stream is disabled it's considered an error for userspace
3203  * to attempt to read from the stream (-EIO).
3204  */
3205 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3206 {
3207 	if (!stream->enabled)
3208 		return;
3209 
3210 	/* Allow stream->ops->disable() to refer to this */
3211 	stream->enabled = false;
3212 
3213 	if (stream->hold_preemption)
3214 		intel_context_clear_nopreempt(stream->pinned_ctx);
3215 
3216 	if (stream->ops->disable)
3217 		stream->ops->disable(stream);
3218 }
3219 
3220 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3221 				    unsigned long metrics_set)
3222 {
3223 	struct i915_oa_config *config;
3224 	long ret = stream->oa_config->id;
3225 
3226 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3227 	if (!config)
3228 		return -EINVAL;
3229 
3230 	if (config != stream->oa_config) {
3231 		int err;
3232 
3233 		/*
3234 		 * If OA is bound to a specific context, emit the
3235 		 * reconfiguration inline from that context. The update
3236 		 * will then be ordered with respect to submission on that
3237 		 * context.
3238 		 *
3239 		 * When set globally, we use a low priority kernel context,
3240 		 * so it will effectively take effect when idle.
3241 		 */
3242 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3243 		if (!err)
3244 			config = xchg(&stream->oa_config, config);
3245 		else
3246 			ret = err;
3247 	}
3248 
3249 	i915_oa_config_put(config);
3250 
3251 	return ret;
3252 }
3253 
3254 /**
3255  * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3256  * @stream: An i915 perf stream
3257  * @cmd: the ioctl request
3258  * @arg: the ioctl data
3259  *
3260  * Note: The &perf->lock mutex has been taken to serialize
3261  * with any non-file-operation driver hooks.
3262  *
3263  * Returns: zero on success or a negative error code. Returns -EINVAL for
3264  * an unknown ioctl request.
3265  */
3266 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3267 				   unsigned int cmd,
3268 				   unsigned long arg)
3269 {
3270 	switch (cmd) {
3271 	case I915_PERF_IOCTL_ENABLE:
3272 		i915_perf_enable_locked(stream);
3273 		return 0;
3274 	case I915_PERF_IOCTL_DISABLE:
3275 		i915_perf_disable_locked(stream);
3276 		return 0;
3277 	case I915_PERF_IOCTL_CONFIG:
3278 		return i915_perf_config_locked(stream, arg);
3279 	}
3280 
3281 	return -EINVAL;
3282 }
3283 
3284 /**
3285  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3286  * @file: An i915 perf stream file
3287  * @cmd: the ioctl request
3288  * @arg: the ioctl data
3289  *
3290  * Implementation deferred to i915_perf_ioctl_locked().
3291  *
3292  * Returns: zero on success or a negative error code. Returns -EINVAL for
3293  * an unknown ioctl request.
3294  */
3295 static long i915_perf_ioctl(struct file *file,
3296 			    unsigned int cmd,
3297 			    unsigned long arg)
3298 {
3299 	struct i915_perf_stream *stream = file->private_data;
3300 	struct i915_perf *perf = stream->perf;
3301 	long ret;
3302 
3303 	mutex_lock(&perf->lock);
3304 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3305 	mutex_unlock(&perf->lock);
3306 
3307 	return ret;
3308 }
3309 
3310 /**
3311  * i915_perf_destroy_locked - destroy an i915 perf stream
3312  * @stream: An i915 perf stream
3313  *
3314  * Frees all resources associated with the given i915 perf @stream, disabling
3315  * any associated data capture in the process.
3316  *
3317  * Note: The &perf->lock mutex has been taken to serialize
3318  * with any non-file-operation driver hooks.
3319  */
3320 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3321 {
3322 	if (stream->enabled)
3323 		i915_perf_disable_locked(stream);
3324 
3325 	if (stream->ops->destroy)
3326 		stream->ops->destroy(stream);
3327 
3328 	if (stream->ctx)
3329 		i915_gem_context_put(stream->ctx);
3330 
3331 	kfree(stream);
3332 }
3333 
3334 /**
3335  * i915_perf_release - handles userspace close() of a stream file
3336  * @inode: anonymous inode associated with file
3337  * @file: An i915 perf stream file
3338  *
3339  * Cleans up any resources associated with an open i915 perf stream file.
3340  *
3341  * NB: close() can't really fail from the userspace point of view.
3342  *
3343  * Returns: zero on success or a negative error code.
3344  */
3345 static int i915_perf_release(struct inode *inode, struct file *file)
3346 {
3347 	struct i915_perf_stream *stream = file->private_data;
3348 	struct i915_perf *perf = stream->perf;
3349 
3350 	mutex_lock(&perf->lock);
3351 	i915_perf_destroy_locked(stream);
3352 	mutex_unlock(&perf->lock);
3353 
3354 	/* Release the reference the perf stream kept on the driver. */
3355 	drm_dev_put(&perf->i915->drm);
3356 
3357 	return 0;
3358 }
3359 
3360 
3361 static const struct file_operations fops = {
3362 	.owner		= THIS_MODULE,
3363 	.llseek		= no_llseek,
3364 	.release	= i915_perf_release,
3365 	.poll		= i915_perf_poll,
3366 	.read		= i915_perf_read,
3367 	.unlocked_ioctl	= i915_perf_ioctl,
3368 	/* Our ioctl have no arguments, so it's safe to use the same function
3369 	 * to handle 32bits compatibility.
3370 	 */
3371 	.compat_ioctl   = i915_perf_ioctl,
3372 };
3373 
3374 
3375 /**
3376  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3377  * @perf: i915 perf instance
3378  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3379  * @props: individually validated u64 property value pairs
3380  * @file: drm file
3381  *
3382  * See i915_perf_ioctl_open() for interface details.
3383  *
3384  * Implements further stream config validation and stream initialization on
3385  * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3386  * taken to serialize with any non-file-operation driver hooks.
3387  *
3388  * Note: at this point the @props have only been validated in isolation and
3389  * it's still necessary to validate that the combination of properties makes
3390  * sense.
3391  *
3392  * In the case where userspace is interested in OA unit metrics then further
3393  * config validation and stream initialization details will be handled by
3394  * i915_oa_stream_init(). The code here should only validate config state that
3395  * will be relevant to all stream types / backends.
3396  *
3397  * Returns: zero on success or a negative error code.
3398  */
3399 static int
3400 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3401 			    struct drm_i915_perf_open_param *param,
3402 			    struct perf_open_properties *props,
3403 			    struct drm_file *file)
3404 {
3405 	struct i915_gem_context *specific_ctx = NULL;
3406 	struct i915_perf_stream *stream = NULL;
3407 	unsigned long f_flags = 0;
3408 	bool privileged_op = true;
3409 	int stream_fd;
3410 	int ret;
3411 
3412 	if (props->single_context) {
3413 		u32 ctx_handle = props->ctx_handle;
3414 		struct drm_i915_file_private *file_priv = file->driver_priv;
3415 
3416 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3417 		if (!specific_ctx) {
3418 			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3419 				  ctx_handle);
3420 			ret = -ENOENT;
3421 			goto err;
3422 		}
3423 	}
3424 
3425 	/*
3426 	 * On Haswell the OA unit supports clock gating off for a specific
3427 	 * context and in this mode there's no visibility of metrics for the
3428 	 * rest of the system, which we consider acceptable for a
3429 	 * non-privileged client.
3430 	 *
3431 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3432 	 * specific context and the kernel can't securely stop the counters
3433 	 * from updating as system-wide / global values. Even though we can
3434 	 * filter reports based on the included context ID we can't block
3435 	 * clients from seeing the raw / global counter values via
3436 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3437 	 * enable the OA unit by default.
3438 	 *
3439 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3440 	 * per context basis. So we can relax requirements there if the user
3441 	 * doesn't request global stream access (i.e. query based sampling
3442 	 * using MI_RECORD_PERF_COUNT.
3443 	 */
3444 	if (IS_HASWELL(perf->i915) && specific_ctx)
3445 		privileged_op = false;
3446 	else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3447 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3448 		privileged_op = false;
3449 
3450 	if (props->hold_preemption) {
3451 		if (!props->single_context) {
3452 			DRM_DEBUG("preemption disable with no context\n");
3453 			ret = -EINVAL;
3454 			goto err;
3455 		}
3456 		privileged_op = true;
3457 	}
3458 
3459 	/*
3460 	 * Asking for SSEU configuration is a priviliged operation.
3461 	 */
3462 	if (props->has_sseu)
3463 		privileged_op = true;
3464 	else
3465 		get_default_sseu_config(&props->sseu, props->engine);
3466 
3467 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3468 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3469 	 * to determine if it's ok to access system wide OA counters
3470 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3471 	 */
3472 	if (privileged_op &&
3473 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3474 		DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3475 		ret = -EACCES;
3476 		goto err_ctx;
3477 	}
3478 
3479 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3480 	if (!stream) {
3481 		ret = -ENOMEM;
3482 		goto err_ctx;
3483 	}
3484 
3485 	stream->perf = perf;
3486 	stream->ctx = specific_ctx;
3487 	stream->poll_oa_period = props->poll_oa_period;
3488 
3489 	ret = i915_oa_stream_init(stream, param, props);
3490 	if (ret)
3491 		goto err_alloc;
3492 
3493 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3494 	 * to have _stream_init check the combination of sample flags more
3495 	 * thoroughly, but still this is the expected result at this point.
3496 	 */
3497 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3498 		ret = -ENODEV;
3499 		goto err_flags;
3500 	}
3501 
3502 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3503 		f_flags |= O_CLOEXEC;
3504 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3505 		f_flags |= O_NONBLOCK;
3506 
3507 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3508 	if (stream_fd < 0) {
3509 		ret = stream_fd;
3510 		goto err_flags;
3511 	}
3512 
3513 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3514 		i915_perf_enable_locked(stream);
3515 
3516 	/* Take a reference on the driver that will be kept with stream_fd
3517 	 * until its release.
3518 	 */
3519 	drm_dev_get(&perf->i915->drm);
3520 
3521 	return stream_fd;
3522 
3523 err_flags:
3524 	if (stream->ops->destroy)
3525 		stream->ops->destroy(stream);
3526 err_alloc:
3527 	kfree(stream);
3528 err_ctx:
3529 	if (specific_ctx)
3530 		i915_gem_context_put(specific_ctx);
3531 err:
3532 	return ret;
3533 }
3534 
3535 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3536 {
3537 	return intel_gt_clock_interval_to_ns(perf->i915->ggtt.vm.gt,
3538 					     2ULL << exponent);
3539 }
3540 
3541 static __always_inline bool
3542 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
3543 {
3544 	return test_bit(format, perf->format_mask);
3545 }
3546 
3547 static __always_inline void
3548 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
3549 {
3550 	__set_bit(format, perf->format_mask);
3551 }
3552 
3553 /**
3554  * read_properties_unlocked - validate + copy userspace stream open properties
3555  * @perf: i915 perf instance
3556  * @uprops: The array of u64 key value pairs given by userspace
3557  * @n_props: The number of key value pairs expected in @uprops
3558  * @props: The stream configuration built up while validating properties
3559  *
3560  * Note this function only validates properties in isolation it doesn't
3561  * validate that the combination of properties makes sense or that all
3562  * properties necessary for a particular kind of stream have been set.
3563  *
3564  * Note that there currently aren't any ordering requirements for properties so
3565  * we shouldn't validate or assume anything about ordering here. This doesn't
3566  * rule out defining new properties with ordering requirements in the future.
3567  */
3568 static int read_properties_unlocked(struct i915_perf *perf,
3569 				    u64 __user *uprops,
3570 				    u32 n_props,
3571 				    struct perf_open_properties *props)
3572 {
3573 	u64 __user *uprop = uprops;
3574 	u32 i;
3575 	int ret;
3576 
3577 	memset(props, 0, sizeof(struct perf_open_properties));
3578 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3579 
3580 	if (!n_props) {
3581 		DRM_DEBUG("No i915 perf properties given\n");
3582 		return -EINVAL;
3583 	}
3584 
3585 	/* At the moment we only support using i915-perf on the RCS. */
3586 	props->engine = intel_engine_lookup_user(perf->i915,
3587 						 I915_ENGINE_CLASS_RENDER,
3588 						 0);
3589 	if (!props->engine) {
3590 		DRM_DEBUG("No RENDER-capable engines\n");
3591 		return -EINVAL;
3592 	}
3593 
3594 	/* Considering that ID = 0 is reserved and assuming that we don't
3595 	 * (currently) expect any configurations to ever specify duplicate
3596 	 * values for a particular property ID then the last _PROP_MAX value is
3597 	 * one greater than the maximum number of properties we expect to get
3598 	 * from userspace.
3599 	 */
3600 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
3601 		DRM_DEBUG("More i915 perf properties specified than exist\n");
3602 		return -EINVAL;
3603 	}
3604 
3605 	for (i = 0; i < n_props; i++) {
3606 		u64 oa_period, oa_freq_hz;
3607 		u64 id, value;
3608 
3609 		ret = get_user(id, uprop);
3610 		if (ret)
3611 			return ret;
3612 
3613 		ret = get_user(value, uprop + 1);
3614 		if (ret)
3615 			return ret;
3616 
3617 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3618 			DRM_DEBUG("Unknown i915 perf property ID\n");
3619 			return -EINVAL;
3620 		}
3621 
3622 		switch ((enum drm_i915_perf_property_id)id) {
3623 		case DRM_I915_PERF_PROP_CTX_HANDLE:
3624 			props->single_context = 1;
3625 			props->ctx_handle = value;
3626 			break;
3627 		case DRM_I915_PERF_PROP_SAMPLE_OA:
3628 			if (value)
3629 				props->sample_flags |= SAMPLE_OA_REPORT;
3630 			break;
3631 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
3632 			if (value == 0) {
3633 				DRM_DEBUG("Unknown OA metric set ID\n");
3634 				return -EINVAL;
3635 			}
3636 			props->metrics_set = value;
3637 			break;
3638 		case DRM_I915_PERF_PROP_OA_FORMAT:
3639 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3640 				DRM_DEBUG("Out-of-range OA report format %llu\n",
3641 					  value);
3642 				return -EINVAL;
3643 			}
3644 			if (!oa_format_valid(perf, value)) {
3645 				DRM_DEBUG("Unsupported OA report format %llu\n",
3646 					  value);
3647 				return -EINVAL;
3648 			}
3649 			props->oa_format = value;
3650 			break;
3651 		case DRM_I915_PERF_PROP_OA_EXPONENT:
3652 			if (value > OA_EXPONENT_MAX) {
3653 				DRM_DEBUG("OA timer exponent too high (> %u)\n",
3654 					 OA_EXPONENT_MAX);
3655 				return -EINVAL;
3656 			}
3657 
3658 			/* Theoretically we can program the OA unit to sample
3659 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3660 			 * for BXT. We don't allow such high sampling
3661 			 * frequencies by default unless root.
3662 			 */
3663 
3664 			BUILD_BUG_ON(sizeof(oa_period) != 8);
3665 			oa_period = oa_exponent_to_ns(perf, value);
3666 
3667 			/* This check is primarily to ensure that oa_period <=
3668 			 * UINT32_MAX (before passing to do_div which only
3669 			 * accepts a u32 denominator), but we can also skip
3670 			 * checking anything < 1Hz which implicitly can't be
3671 			 * limited via an integer oa_max_sample_rate.
3672 			 */
3673 			if (oa_period <= NSEC_PER_SEC) {
3674 				u64 tmp = NSEC_PER_SEC;
3675 				do_div(tmp, oa_period);
3676 				oa_freq_hz = tmp;
3677 			} else
3678 				oa_freq_hz = 0;
3679 
3680 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3681 				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3682 					  i915_oa_max_sample_rate);
3683 				return -EACCES;
3684 			}
3685 
3686 			props->oa_periodic = true;
3687 			props->oa_period_exponent = value;
3688 			break;
3689 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3690 			props->hold_preemption = !!value;
3691 			break;
3692 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3693 			struct drm_i915_gem_context_param_sseu user_sseu;
3694 
3695 			if (copy_from_user(&user_sseu,
3696 					   u64_to_user_ptr(value),
3697 					   sizeof(user_sseu))) {
3698 				DRM_DEBUG("Unable to copy global sseu parameter\n");
3699 				return -EFAULT;
3700 			}
3701 
3702 			ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3703 			if (ret) {
3704 				DRM_DEBUG("Invalid SSEU configuration\n");
3705 				return ret;
3706 			}
3707 			props->has_sseu = true;
3708 			break;
3709 		}
3710 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3711 			if (value < 100000 /* 100us */) {
3712 				DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
3713 					  value);
3714 				return -EINVAL;
3715 			}
3716 			props->poll_oa_period = value;
3717 			break;
3718 		case DRM_I915_PERF_PROP_MAX:
3719 			MISSING_CASE(id);
3720 			return -EINVAL;
3721 		}
3722 
3723 		uprop += 2;
3724 	}
3725 
3726 	return 0;
3727 }
3728 
3729 /**
3730  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3731  * @dev: drm device
3732  * @data: ioctl data copied from userspace (unvalidated)
3733  * @file: drm file
3734  *
3735  * Validates the stream open parameters given by userspace including flags
3736  * and an array of u64 key, value pair properties.
3737  *
3738  * Very little is assumed up front about the nature of the stream being
3739  * opened (for instance we don't assume it's for periodic OA unit metrics). An
3740  * i915-perf stream is expected to be a suitable interface for other forms of
3741  * buffered data written by the GPU besides periodic OA metrics.
3742  *
3743  * Note we copy the properties from userspace outside of the i915 perf
3744  * mutex to avoid an awkward lockdep with mmap_lock.
3745  *
3746  * Most of the implementation details are handled by
3747  * i915_perf_open_ioctl_locked() after taking the &perf->lock
3748  * mutex for serializing with any non-file-operation driver hooks.
3749  *
3750  * Return: A newly opened i915 Perf stream file descriptor or negative
3751  * error code on failure.
3752  */
3753 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3754 			 struct drm_file *file)
3755 {
3756 	struct i915_perf *perf = &to_i915(dev)->perf;
3757 	struct drm_i915_perf_open_param *param = data;
3758 	struct perf_open_properties props;
3759 	u32 known_open_flags;
3760 	int ret;
3761 
3762 	if (!perf->i915) {
3763 		DRM_DEBUG("i915 perf interface not available for this system\n");
3764 		return -ENOTSUPP;
3765 	}
3766 
3767 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3768 			   I915_PERF_FLAG_FD_NONBLOCK |
3769 			   I915_PERF_FLAG_DISABLED;
3770 	if (param->flags & ~known_open_flags) {
3771 		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3772 		return -EINVAL;
3773 	}
3774 
3775 	ret = read_properties_unlocked(perf,
3776 				       u64_to_user_ptr(param->properties_ptr),
3777 				       param->num_properties,
3778 				       &props);
3779 	if (ret)
3780 		return ret;
3781 
3782 	mutex_lock(&perf->lock);
3783 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3784 	mutex_unlock(&perf->lock);
3785 
3786 	return ret;
3787 }
3788 
3789 /**
3790  * i915_perf_register - exposes i915-perf to userspace
3791  * @i915: i915 device instance
3792  *
3793  * In particular OA metric sets are advertised under a sysfs metrics/
3794  * directory allowing userspace to enumerate valid IDs that can be
3795  * used to open an i915-perf stream.
3796  */
3797 void i915_perf_register(struct drm_i915_private *i915)
3798 {
3799 	struct i915_perf *perf = &i915->perf;
3800 
3801 	if (!perf->i915)
3802 		return;
3803 
3804 	/* To be sure we're synchronized with an attempted
3805 	 * i915_perf_open_ioctl(); considering that we register after
3806 	 * being exposed to userspace.
3807 	 */
3808 	mutex_lock(&perf->lock);
3809 
3810 	perf->metrics_kobj =
3811 		kobject_create_and_add("metrics",
3812 				       &i915->drm.primary->kdev->kobj);
3813 
3814 	mutex_unlock(&perf->lock);
3815 }
3816 
3817 /**
3818  * i915_perf_unregister - hide i915-perf from userspace
3819  * @i915: i915 device instance
3820  *
3821  * i915-perf state cleanup is split up into an 'unregister' and
3822  * 'deinit' phase where the interface is first hidden from
3823  * userspace by i915_perf_unregister() before cleaning up
3824  * remaining state in i915_perf_fini().
3825  */
3826 void i915_perf_unregister(struct drm_i915_private *i915)
3827 {
3828 	struct i915_perf *perf = &i915->perf;
3829 
3830 	if (!perf->metrics_kobj)
3831 		return;
3832 
3833 	kobject_put(perf->metrics_kobj);
3834 	perf->metrics_kobj = NULL;
3835 }
3836 
3837 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3838 {
3839 	static const i915_reg_t flex_eu_regs[] = {
3840 		EU_PERF_CNTL0,
3841 		EU_PERF_CNTL1,
3842 		EU_PERF_CNTL2,
3843 		EU_PERF_CNTL3,
3844 		EU_PERF_CNTL4,
3845 		EU_PERF_CNTL5,
3846 		EU_PERF_CNTL6,
3847 	};
3848 	int i;
3849 
3850 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3851 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3852 			return true;
3853 	}
3854 	return false;
3855 }
3856 
3857 #define ADDR_IN_RANGE(addr, start, end) \
3858 	((addr) >= (start) && \
3859 	 (addr) <= (end))
3860 
3861 #define REG_IN_RANGE(addr, start, end) \
3862 	((addr) >= i915_mmio_reg_offset(start) && \
3863 	 (addr) <= i915_mmio_reg_offset(end))
3864 
3865 #define REG_EQUAL(addr, mmio) \
3866 	((addr) == i915_mmio_reg_offset(mmio))
3867 
3868 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3869 {
3870 	return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3871 	       REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3872 	       REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3873 }
3874 
3875 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3876 {
3877 	return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3878 	       REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3879 	       REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3880 	       REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3881 }
3882 
3883 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3884 {
3885 	return gen7_is_valid_mux_addr(perf, addr) ||
3886 	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3887 	       REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3888 }
3889 
3890 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3891 {
3892 	return gen8_is_valid_mux_addr(perf, addr) ||
3893 	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3894 	       REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3895 }
3896 
3897 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3898 {
3899 	return gen7_is_valid_mux_addr(perf, addr) ||
3900 	       ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3901 	       REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3902 	       REG_EQUAL(addr, HSW_MBVID2_MISR0);
3903 }
3904 
3905 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3906 {
3907 	return gen7_is_valid_mux_addr(perf, addr) ||
3908 	       ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3909 }
3910 
3911 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3912 {
3913 	return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3914 	       REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3915 	       REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3916 	       REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3917 	       REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3918 	       REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3919 	       REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3920 }
3921 
3922 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3923 {
3924 	return REG_EQUAL(addr, NOA_WRITE) ||
3925 	       REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3926 	       REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3927 	       REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3928 	       REG_EQUAL(addr, RPM_CONFIG0) ||
3929 	       REG_EQUAL(addr, RPM_CONFIG1) ||
3930 	       REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3931 }
3932 
3933 static u32 mask_reg_value(u32 reg, u32 val)
3934 {
3935 	/* HALF_SLICE_CHICKEN2 is programmed with a the
3936 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3937 	 * programmed by userspace doesn't change this.
3938 	 */
3939 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3940 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3941 
3942 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3943 	 * indicated by its name and a bunch of selection fields used by OA
3944 	 * configs.
3945 	 */
3946 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3947 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3948 
3949 	return val;
3950 }
3951 
3952 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3953 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3954 					 u32 __user *regs,
3955 					 u32 n_regs)
3956 {
3957 	struct i915_oa_reg *oa_regs;
3958 	int err;
3959 	u32 i;
3960 
3961 	if (!n_regs)
3962 		return NULL;
3963 
3964 	/* No is_valid function means we're not allowing any register to be programmed. */
3965 	GEM_BUG_ON(!is_valid);
3966 	if (!is_valid)
3967 		return ERR_PTR(-EINVAL);
3968 
3969 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3970 	if (!oa_regs)
3971 		return ERR_PTR(-ENOMEM);
3972 
3973 	for (i = 0; i < n_regs; i++) {
3974 		u32 addr, value;
3975 
3976 		err = get_user(addr, regs);
3977 		if (err)
3978 			goto addr_err;
3979 
3980 		if (!is_valid(perf, addr)) {
3981 			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3982 			err = -EINVAL;
3983 			goto addr_err;
3984 		}
3985 
3986 		err = get_user(value, regs + 1);
3987 		if (err)
3988 			goto addr_err;
3989 
3990 		oa_regs[i].addr = _MMIO(addr);
3991 		oa_regs[i].value = mask_reg_value(addr, value);
3992 
3993 		regs += 2;
3994 	}
3995 
3996 	return oa_regs;
3997 
3998 addr_err:
3999 	kfree(oa_regs);
4000 	return ERR_PTR(err);
4001 }
4002 
4003 static ssize_t show_dynamic_id(struct device *dev,
4004 			       struct device_attribute *attr,
4005 			       char *buf)
4006 {
4007 	struct i915_oa_config *oa_config =
4008 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
4009 
4010 	return sprintf(buf, "%d\n", oa_config->id);
4011 }
4012 
4013 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4014 					 struct i915_oa_config *oa_config)
4015 {
4016 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4017 	oa_config->sysfs_metric_id.attr.name = "id";
4018 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4019 	oa_config->sysfs_metric_id.show = show_dynamic_id;
4020 	oa_config->sysfs_metric_id.store = NULL;
4021 
4022 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4023 	oa_config->attrs[1] = NULL;
4024 
4025 	oa_config->sysfs_metric.name = oa_config->uuid;
4026 	oa_config->sysfs_metric.attrs = oa_config->attrs;
4027 
4028 	return sysfs_create_group(perf->metrics_kobj,
4029 				  &oa_config->sysfs_metric);
4030 }
4031 
4032 /**
4033  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4034  * @dev: drm device
4035  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4036  *        userspace (unvalidated)
4037  * @file: drm file
4038  *
4039  * Validates the submitted OA register to be saved into a new OA config that
4040  * can then be used for programming the OA unit and its NOA network.
4041  *
4042  * Returns: A new allocated config number to be used with the perf open ioctl
4043  * or a negative error code on failure.
4044  */
4045 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4046 			       struct drm_file *file)
4047 {
4048 	struct i915_perf *perf = &to_i915(dev)->perf;
4049 	struct drm_i915_perf_oa_config *args = data;
4050 	struct i915_oa_config *oa_config, *tmp;
4051 	struct i915_oa_reg *regs;
4052 	int err, id;
4053 
4054 	if (!perf->i915) {
4055 		DRM_DEBUG("i915 perf interface not available for this system\n");
4056 		return -ENOTSUPP;
4057 	}
4058 
4059 	if (!perf->metrics_kobj) {
4060 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
4061 		return -EINVAL;
4062 	}
4063 
4064 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4065 		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4066 		return -EACCES;
4067 	}
4068 
4069 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4070 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4071 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4072 		DRM_DEBUG("No OA registers given\n");
4073 		return -EINVAL;
4074 	}
4075 
4076 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4077 	if (!oa_config) {
4078 		DRM_DEBUG("Failed to allocate memory for the OA config\n");
4079 		return -ENOMEM;
4080 	}
4081 
4082 	oa_config->perf = perf;
4083 	kref_init(&oa_config->ref);
4084 
4085 	if (!uuid_is_valid(args->uuid)) {
4086 		DRM_DEBUG("Invalid uuid format for OA config\n");
4087 		err = -EINVAL;
4088 		goto reg_err;
4089 	}
4090 
4091 	/* Last character in oa_config->uuid will be 0 because oa_config is
4092 	 * kzalloc.
4093 	 */
4094 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4095 
4096 	oa_config->mux_regs_len = args->n_mux_regs;
4097 	regs = alloc_oa_regs(perf,
4098 			     perf->ops.is_valid_mux_reg,
4099 			     u64_to_user_ptr(args->mux_regs_ptr),
4100 			     args->n_mux_regs);
4101 
4102 	if (IS_ERR(regs)) {
4103 		DRM_DEBUG("Failed to create OA config for mux_regs\n");
4104 		err = PTR_ERR(regs);
4105 		goto reg_err;
4106 	}
4107 	oa_config->mux_regs = regs;
4108 
4109 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4110 	regs = alloc_oa_regs(perf,
4111 			     perf->ops.is_valid_b_counter_reg,
4112 			     u64_to_user_ptr(args->boolean_regs_ptr),
4113 			     args->n_boolean_regs);
4114 
4115 	if (IS_ERR(regs)) {
4116 		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4117 		err = PTR_ERR(regs);
4118 		goto reg_err;
4119 	}
4120 	oa_config->b_counter_regs = regs;
4121 
4122 	if (INTEL_GEN(perf->i915) < 8) {
4123 		if (args->n_flex_regs != 0) {
4124 			err = -EINVAL;
4125 			goto reg_err;
4126 		}
4127 	} else {
4128 		oa_config->flex_regs_len = args->n_flex_regs;
4129 		regs = alloc_oa_regs(perf,
4130 				     perf->ops.is_valid_flex_reg,
4131 				     u64_to_user_ptr(args->flex_regs_ptr),
4132 				     args->n_flex_regs);
4133 
4134 		if (IS_ERR(regs)) {
4135 			DRM_DEBUG("Failed to create OA config for flex_regs\n");
4136 			err = PTR_ERR(regs);
4137 			goto reg_err;
4138 		}
4139 		oa_config->flex_regs = regs;
4140 	}
4141 
4142 	err = mutex_lock_interruptible(&perf->metrics_lock);
4143 	if (err)
4144 		goto reg_err;
4145 
4146 	/* We shouldn't have too many configs, so this iteration shouldn't be
4147 	 * too costly.
4148 	 */
4149 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4150 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4151 			DRM_DEBUG("OA config already exists with this uuid\n");
4152 			err = -EADDRINUSE;
4153 			goto sysfs_err;
4154 		}
4155 	}
4156 
4157 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4158 	if (err) {
4159 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4160 		goto sysfs_err;
4161 	}
4162 
4163 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4164 	oa_config->id = idr_alloc(&perf->metrics_idr,
4165 				  oa_config, 2,
4166 				  0, GFP_KERNEL);
4167 	if (oa_config->id < 0) {
4168 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4169 		err = oa_config->id;
4170 		goto sysfs_err;
4171 	}
4172 
4173 	mutex_unlock(&perf->metrics_lock);
4174 
4175 	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4176 
4177 	return oa_config->id;
4178 
4179 sysfs_err:
4180 	mutex_unlock(&perf->metrics_lock);
4181 reg_err:
4182 	i915_oa_config_put(oa_config);
4183 	DRM_DEBUG("Failed to add new OA config\n");
4184 	return err;
4185 }
4186 
4187 /**
4188  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4189  * @dev: drm device
4190  * @data: ioctl data (pointer to u64 integer) copied from userspace
4191  * @file: drm file
4192  *
4193  * Configs can be removed while being used, the will stop appearing in sysfs
4194  * and their content will be freed when the stream using the config is closed.
4195  *
4196  * Returns: 0 on success or a negative error code on failure.
4197  */
4198 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4199 				  struct drm_file *file)
4200 {
4201 	struct i915_perf *perf = &to_i915(dev)->perf;
4202 	u64 *arg = data;
4203 	struct i915_oa_config *oa_config;
4204 	int ret;
4205 
4206 	if (!perf->i915) {
4207 		DRM_DEBUG("i915 perf interface not available for this system\n");
4208 		return -ENOTSUPP;
4209 	}
4210 
4211 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4212 		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4213 		return -EACCES;
4214 	}
4215 
4216 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4217 	if (ret)
4218 		return ret;
4219 
4220 	oa_config = idr_find(&perf->metrics_idr, *arg);
4221 	if (!oa_config) {
4222 		DRM_DEBUG("Failed to remove unknown OA config\n");
4223 		ret = -ENOENT;
4224 		goto err_unlock;
4225 	}
4226 
4227 	GEM_BUG_ON(*arg != oa_config->id);
4228 
4229 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4230 
4231 	idr_remove(&perf->metrics_idr, *arg);
4232 
4233 	mutex_unlock(&perf->metrics_lock);
4234 
4235 	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4236 
4237 	i915_oa_config_put(oa_config);
4238 
4239 	return 0;
4240 
4241 err_unlock:
4242 	mutex_unlock(&perf->metrics_lock);
4243 	return ret;
4244 }
4245 
4246 static struct ctl_table oa_table[] = {
4247 	{
4248 	 .procname = "perf_stream_paranoid",
4249 	 .data = &i915_perf_stream_paranoid,
4250 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4251 	 .mode = 0644,
4252 	 .proc_handler = proc_dointvec_minmax,
4253 	 .extra1 = SYSCTL_ZERO,
4254 	 .extra2 = SYSCTL_ONE,
4255 	 },
4256 	{
4257 	 .procname = "oa_max_sample_rate",
4258 	 .data = &i915_oa_max_sample_rate,
4259 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4260 	 .mode = 0644,
4261 	 .proc_handler = proc_dointvec_minmax,
4262 	 .extra1 = SYSCTL_ZERO,
4263 	 .extra2 = &oa_sample_rate_hard_limit,
4264 	 },
4265 	{}
4266 };
4267 
4268 static struct ctl_table i915_root[] = {
4269 	{
4270 	 .procname = "i915",
4271 	 .maxlen = 0,
4272 	 .mode = 0555,
4273 	 .child = oa_table,
4274 	 },
4275 	{}
4276 };
4277 
4278 static struct ctl_table dev_root[] = {
4279 	{
4280 	 .procname = "dev",
4281 	 .maxlen = 0,
4282 	 .mode = 0555,
4283 	 .child = i915_root,
4284 	 },
4285 	{}
4286 };
4287 
4288 static void oa_init_supported_formats(struct i915_perf *perf)
4289 {
4290 	struct drm_i915_private *i915 = perf->i915;
4291 	enum intel_platform platform = INTEL_INFO(i915)->platform;
4292 
4293 	switch (platform) {
4294 	case INTEL_HASWELL:
4295 		oa_format_add(perf, I915_OA_FORMAT_A13);
4296 		oa_format_add(perf, I915_OA_FORMAT_A13);
4297 		oa_format_add(perf, I915_OA_FORMAT_A29);
4298 		oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
4299 		oa_format_add(perf, I915_OA_FORMAT_B4_C8);
4300 		oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
4301 		oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
4302 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4303 		break;
4304 
4305 	case INTEL_BROADWELL:
4306 	case INTEL_CHERRYVIEW:
4307 	case INTEL_SKYLAKE:
4308 	case INTEL_BROXTON:
4309 	case INTEL_KABYLAKE:
4310 	case INTEL_GEMINILAKE:
4311 	case INTEL_COFFEELAKE:
4312 	case INTEL_COMETLAKE:
4313 	case INTEL_CANNONLAKE:
4314 	case INTEL_ICELAKE:
4315 	case INTEL_ELKHARTLAKE:
4316 	case INTEL_JASPERLAKE:
4317 	case INTEL_TIGERLAKE:
4318 	case INTEL_ROCKETLAKE:
4319 	case INTEL_DG1:
4320 	case INTEL_ALDERLAKE_S:
4321 		oa_format_add(perf, I915_OA_FORMAT_A12);
4322 		oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
4323 		oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
4324 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4325 		break;
4326 
4327 	default:
4328 		MISSING_CASE(platform);
4329 	}
4330 }
4331 
4332 /**
4333  * i915_perf_init - initialize i915-perf state on module bind
4334  * @i915: i915 device instance
4335  *
4336  * Initializes i915-perf state without exposing anything to userspace.
4337  *
4338  * Note: i915-perf initialization is split into an 'init' and 'register'
4339  * phase with the i915_perf_register() exposing state to userspace.
4340  */
4341 void i915_perf_init(struct drm_i915_private *i915)
4342 {
4343 	struct i915_perf *perf = &i915->perf;
4344 
4345 	/* XXX const struct i915_perf_ops! */
4346 
4347 	perf->oa_formats = oa_formats;
4348 	if (IS_HASWELL(i915)) {
4349 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4350 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4351 		perf->ops.is_valid_flex_reg = NULL;
4352 		perf->ops.enable_metric_set = hsw_enable_metric_set;
4353 		perf->ops.disable_metric_set = hsw_disable_metric_set;
4354 		perf->ops.oa_enable = gen7_oa_enable;
4355 		perf->ops.oa_disable = gen7_oa_disable;
4356 		perf->ops.read = gen7_oa_read;
4357 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4358 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4359 		/* Note: that although we could theoretically also support the
4360 		 * legacy ringbuffer mode on BDW (and earlier iterations of
4361 		 * this driver, before upstreaming did this) it didn't seem
4362 		 * worth the complexity to maintain now that BDW+ enable
4363 		 * execlist mode by default.
4364 		 */
4365 		perf->ops.read = gen8_oa_read;
4366 
4367 		if (IS_GEN_RANGE(i915, 8, 9)) {
4368 			perf->ops.is_valid_b_counter_reg =
4369 				gen7_is_valid_b_counter_addr;
4370 			perf->ops.is_valid_mux_reg =
4371 				gen8_is_valid_mux_addr;
4372 			perf->ops.is_valid_flex_reg =
4373 				gen8_is_valid_flex_addr;
4374 
4375 			if (IS_CHERRYVIEW(i915)) {
4376 				perf->ops.is_valid_mux_reg =
4377 					chv_is_valid_mux_addr;
4378 			}
4379 
4380 			perf->ops.oa_enable = gen8_oa_enable;
4381 			perf->ops.oa_disable = gen8_oa_disable;
4382 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4383 			perf->ops.disable_metric_set = gen8_disable_metric_set;
4384 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4385 
4386 			if (IS_GEN(i915, 8)) {
4387 				perf->ctx_oactxctrl_offset = 0x120;
4388 				perf->ctx_flexeu0_offset = 0x2ce;
4389 
4390 				perf->gen8_valid_ctx_bit = BIT(25);
4391 			} else {
4392 				perf->ctx_oactxctrl_offset = 0x128;
4393 				perf->ctx_flexeu0_offset = 0x3de;
4394 
4395 				perf->gen8_valid_ctx_bit = BIT(16);
4396 			}
4397 		} else if (IS_GEN_RANGE(i915, 10, 11)) {
4398 			perf->ops.is_valid_b_counter_reg =
4399 				gen7_is_valid_b_counter_addr;
4400 			perf->ops.is_valid_mux_reg =
4401 				gen10_is_valid_mux_addr;
4402 			perf->ops.is_valid_flex_reg =
4403 				gen8_is_valid_flex_addr;
4404 
4405 			perf->ops.oa_enable = gen8_oa_enable;
4406 			perf->ops.oa_disable = gen8_oa_disable;
4407 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4408 			perf->ops.disable_metric_set = gen10_disable_metric_set;
4409 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4410 
4411 			if (IS_GEN(i915, 10)) {
4412 				perf->ctx_oactxctrl_offset = 0x128;
4413 				perf->ctx_flexeu0_offset = 0x3de;
4414 			} else {
4415 				perf->ctx_oactxctrl_offset = 0x124;
4416 				perf->ctx_flexeu0_offset = 0x78e;
4417 			}
4418 			perf->gen8_valid_ctx_bit = BIT(16);
4419 		} else if (IS_GEN(i915, 12)) {
4420 			perf->ops.is_valid_b_counter_reg =
4421 				gen12_is_valid_b_counter_addr;
4422 			perf->ops.is_valid_mux_reg =
4423 				gen12_is_valid_mux_addr;
4424 			perf->ops.is_valid_flex_reg =
4425 				gen8_is_valid_flex_addr;
4426 
4427 			perf->ops.oa_enable = gen12_oa_enable;
4428 			perf->ops.oa_disable = gen12_oa_disable;
4429 			perf->ops.enable_metric_set = gen12_enable_metric_set;
4430 			perf->ops.disable_metric_set = gen12_disable_metric_set;
4431 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4432 
4433 			perf->ctx_flexeu0_offset = 0;
4434 			perf->ctx_oactxctrl_offset = 0x144;
4435 		}
4436 	}
4437 
4438 	if (perf->ops.enable_metric_set) {
4439 		mutex_init(&perf->lock);
4440 
4441 		/* Choose a representative limit */
4442 		oa_sample_rate_hard_limit = i915->gt.clock_frequency / 2;
4443 
4444 		mutex_init(&perf->metrics_lock);
4445 		idr_init_base(&perf->metrics_idr, 1);
4446 
4447 		/* We set up some ratelimit state to potentially throttle any
4448 		 * _NOTES about spurious, invalid OA reports which we don't
4449 		 * forward to userspace.
4450 		 *
4451 		 * We print a _NOTE about any throttling when closing the
4452 		 * stream instead of waiting until driver _fini which no one
4453 		 * would ever see.
4454 		 *
4455 		 * Using the same limiting factors as printk_ratelimit()
4456 		 */
4457 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4458 		/* Since we use a DRM_NOTE for spurious reports it would be
4459 		 * inconsistent to let __ratelimit() automatically print a
4460 		 * warning for throttling.
4461 		 */
4462 		ratelimit_set_flags(&perf->spurious_report_rs,
4463 				    RATELIMIT_MSG_ON_RELEASE);
4464 
4465 		ratelimit_state_init(&perf->tail_pointer_race,
4466 				     5 * HZ, 10);
4467 		ratelimit_set_flags(&perf->tail_pointer_race,
4468 				    RATELIMIT_MSG_ON_RELEASE);
4469 
4470 		atomic64_set(&perf->noa_programming_delay,
4471 			     500 * 1000 /* 500us */);
4472 
4473 		perf->i915 = i915;
4474 
4475 		oa_init_supported_formats(perf);
4476 	}
4477 }
4478 
4479 static int destroy_config(int id, void *p, void *data)
4480 {
4481 	i915_oa_config_put(p);
4482 	return 0;
4483 }
4484 
4485 void i915_perf_sysctl_register(void)
4486 {
4487 	sysctl_header = register_sysctl_table(dev_root);
4488 }
4489 
4490 void i915_perf_sysctl_unregister(void)
4491 {
4492 	unregister_sysctl_table(sysctl_header);
4493 }
4494 
4495 /**
4496  * i915_perf_fini - Counter part to i915_perf_init()
4497  * @i915: i915 device instance
4498  */
4499 void i915_perf_fini(struct drm_i915_private *i915)
4500 {
4501 	struct i915_perf *perf = &i915->perf;
4502 
4503 	if (!perf->i915)
4504 		return;
4505 
4506 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
4507 	idr_destroy(&perf->metrics_idr);
4508 
4509 	memset(&perf->ops, 0, sizeof(perf->ops));
4510 	perf->i915 = NULL;
4511 }
4512 
4513 /**
4514  * i915_perf_ioctl_version - Version of the i915-perf subsystem
4515  *
4516  * This version number is used by userspace to detect available features.
4517  */
4518 int i915_perf_ioctl_version(void)
4519 {
4520 	/*
4521 	 * 1: Initial version
4522 	 *   I915_PERF_IOCTL_ENABLE
4523 	 *   I915_PERF_IOCTL_DISABLE
4524 	 *
4525 	 * 2: Added runtime modification of OA config.
4526 	 *   I915_PERF_IOCTL_CONFIG
4527 	 *
4528 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4529 	 *    preemption on a particular context so that performance data is
4530 	 *    accessible from a delta of MI_RPC reports without looking at the
4531 	 *    OA buffer.
4532 	 *
4533 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4534 	 *    be run for the duration of the performance recording based on
4535 	 *    their SSEU configuration.
4536 	 *
4537 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4538 	 *    interval for the hrtimer used to check for OA data.
4539 	 */
4540 	return 5;
4541 }
4542 
4543 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4544 #include "selftests/i915_perf.c"
4545 #endif
4546