1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gem/i915_gem_pm.h" 200 #include "gt/intel_lrc_reg.h" 201 202 #include "i915_drv.h" 203 #include "oa/i915_oa_hsw.h" 204 #include "oa/i915_oa_bdw.h" 205 #include "oa/i915_oa_chv.h" 206 #include "oa/i915_oa_sklgt2.h" 207 #include "oa/i915_oa_sklgt3.h" 208 #include "oa/i915_oa_sklgt4.h" 209 #include "oa/i915_oa_bxt.h" 210 #include "oa/i915_oa_kblgt2.h" 211 #include "oa/i915_oa_kblgt3.h" 212 #include "oa/i915_oa_glk.h" 213 #include "oa/i915_oa_cflgt2.h" 214 #include "oa/i915_oa_cflgt3.h" 215 #include "oa/i915_oa_cnl.h" 216 #include "oa/i915_oa_icl.h" 217 218 /* HW requires this to be a power of two, between 128k and 16M, though driver 219 * is currently generally designed assuming the largest 16M size is used such 220 * that the overflow cases are unlikely in normal operation. 221 */ 222 #define OA_BUFFER_SIZE SZ_16M 223 224 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 225 226 /** 227 * DOC: OA Tail Pointer Race 228 * 229 * There's a HW race condition between OA unit tail pointer register updates and 230 * writes to memory whereby the tail pointer can sometimes get ahead of what's 231 * been written out to the OA buffer so far (in terms of what's visible to the 232 * CPU). 233 * 234 * Although this can be observed explicitly while copying reports to userspace 235 * by checking for a zeroed report-id field in tail reports, we want to account 236 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant 237 * read() attempts. 238 * 239 * In effect we define a tail pointer for reading that lags the real tail 240 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough 241 * time for the corresponding reports to become visible to the CPU. 242 * 243 * To manage this we actually track two tail pointers: 244 * 1) An 'aging' tail with an associated timestamp that is tracked until we 245 * can trust the corresponding data is visible to the CPU; at which point 246 * it is considered 'aged'. 247 * 2) An 'aged' tail that can be used for read()ing. 248 * 249 * The two separate pointers let us decouple read()s from tail pointer aging. 250 * 251 * The tail pointers are checked and updated at a limited rate within a hrtimer 252 * callback (the same callback that is used for delivering EPOLLIN events) 253 * 254 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which 255 * indicates that an updated tail pointer is needed. 256 * 257 * Most of the implementation details for this workaround are in 258 * oa_buffer_check_unlocked() and _append_oa_reports() 259 * 260 * Note for posterity: previously the driver used to define an effective tail 261 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 262 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 263 * This was flawed considering that the OA unit may also automatically generate 264 * non-periodic reports (such as on context switch) or the OA unit may be 265 * enabled without any periodic sampling. 266 */ 267 #define OA_TAIL_MARGIN_NSEC 100000ULL 268 #define INVALID_TAIL_PTR 0xffffffff 269 270 /* frequency for checking whether the OA unit has written new reports to the 271 * circular OA buffer... 272 */ 273 #define POLL_FREQUENCY 200 274 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY) 275 276 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 277 static u32 i915_perf_stream_paranoid = true; 278 279 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 280 * of the 64bit timestamp bits to trigger reports from) but there's currently 281 * no known use case for sampling as infrequently as once per 47 thousand years. 282 * 283 * Since the timestamps included in OA reports are only 32bits it seems 284 * reasonable to limit the OA exponent where it's still possible to account for 285 * overflow in OA report timestamps. 286 */ 287 #define OA_EXPONENT_MAX 31 288 289 #define INVALID_CTX_ID 0xffffffff 290 291 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 292 #define OAREPORT_REASON_MASK 0x3f 293 #define OAREPORT_REASON_SHIFT 19 294 #define OAREPORT_REASON_TIMER (1<<0) 295 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 296 #define OAREPORT_REASON_CLK_RATIO (1<<5) 297 298 299 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 300 * 301 * The highest sampling frequency we can theoretically program the OA unit 302 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 303 * 304 * Initialized just before we register the sysctl parameter. 305 */ 306 static int oa_sample_rate_hard_limit; 307 308 /* Theoretically we can program the OA unit to sample every 160ns but don't 309 * allow that by default unless root... 310 * 311 * The default threshold of 100000Hz is based on perf's similar 312 * kernel.perf_event_max_sample_rate sysctl parameter. 313 */ 314 static u32 i915_oa_max_sample_rate = 100000; 315 316 /* XXX: beware if future OA HW adds new report formats that the current 317 * code assumes all reports have a power-of-two size and ~(size - 1) can 318 * be used as a mask to align the OA tail pointer. 319 */ 320 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 321 [I915_OA_FORMAT_A13] = { 0, 64 }, 322 [I915_OA_FORMAT_A29] = { 1, 128 }, 323 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 324 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 325 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 326 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 327 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 328 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 329 }; 330 331 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { 332 [I915_OA_FORMAT_A12] = { 0, 64 }, 333 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 334 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 335 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 336 }; 337 338 #define SAMPLE_OA_REPORT (1<<0) 339 340 /** 341 * struct perf_open_properties - for validated properties given to open a stream 342 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 343 * @single_context: Whether a single or all gpu contexts should be monitored 344 * @ctx_handle: A gem ctx handle for use with @single_context 345 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 346 * @oa_format: An OA unit HW report format 347 * @oa_periodic: Whether to enable periodic OA unit sampling 348 * @oa_period_exponent: The OA unit sampling period is derived from this 349 * 350 * As read_properties_unlocked() enumerates and validates the properties given 351 * to open a stream of metrics the configuration is built up in the structure 352 * which starts out zero initialized. 353 */ 354 struct perf_open_properties { 355 u32 sample_flags; 356 357 u64 single_context:1; 358 u64 ctx_handle; 359 360 /* OA sampling state */ 361 int metrics_set; 362 int oa_format; 363 bool oa_periodic; 364 int oa_period_exponent; 365 }; 366 367 static void free_oa_config(struct drm_i915_private *dev_priv, 368 struct i915_oa_config *oa_config) 369 { 370 if (!PTR_ERR(oa_config->flex_regs)) 371 kfree(oa_config->flex_regs); 372 if (!PTR_ERR(oa_config->b_counter_regs)) 373 kfree(oa_config->b_counter_regs); 374 if (!PTR_ERR(oa_config->mux_regs)) 375 kfree(oa_config->mux_regs); 376 kfree(oa_config); 377 } 378 379 static void put_oa_config(struct drm_i915_private *dev_priv, 380 struct i915_oa_config *oa_config) 381 { 382 if (!atomic_dec_and_test(&oa_config->ref_count)) 383 return; 384 385 free_oa_config(dev_priv, oa_config); 386 } 387 388 static int get_oa_config(struct drm_i915_private *dev_priv, 389 int metrics_set, 390 struct i915_oa_config **out_config) 391 { 392 int ret; 393 394 if (metrics_set == 1) { 395 *out_config = &dev_priv->perf.oa.test_config; 396 atomic_inc(&dev_priv->perf.oa.test_config.ref_count); 397 return 0; 398 } 399 400 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 401 if (ret) 402 return ret; 403 404 *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set); 405 if (!*out_config) 406 ret = -EINVAL; 407 else 408 atomic_inc(&(*out_config)->ref_count); 409 410 mutex_unlock(&dev_priv->perf.metrics_lock); 411 412 return ret; 413 } 414 415 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv) 416 { 417 return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 418 } 419 420 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv) 421 { 422 u32 oastatus1 = I915_READ(GEN7_OASTATUS1); 423 424 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 425 } 426 427 /** 428 * oa_buffer_check_unlocked - check for data and update tail ptr state 429 * @dev_priv: i915 device instance 430 * 431 * This is either called via fops (for blocking reads in user ctx) or the poll 432 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 433 * if there is data available for userspace to read. 434 * 435 * This function is central to providing a workaround for the OA unit tail 436 * pointer having a race with respect to what data is visible to the CPU. 437 * It is responsible for reading tail pointers from the hardware and giving 438 * the pointers time to 'age' before they are made available for reading. 439 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 440 * 441 * Besides returning true when there is data available to read() this function 442 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp 443 * and .aged_tail_idx state used for reading. 444 * 445 * Note: It's safe to read OA config state here unlocked, assuming that this is 446 * only called while the stream is enabled, while the global OA configuration 447 * can't be modified. 448 * 449 * Returns: %true if the OA buffer contains data, else %false 450 */ 451 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv) 452 { 453 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 454 unsigned long flags; 455 unsigned int aged_idx; 456 u32 head, hw_tail, aged_tail, aging_tail; 457 u64 now; 458 459 /* We have to consider the (unlikely) possibility that read() errors 460 * could result in an OA buffer reset which might reset the head, 461 * tails[] and aged_tail state. 462 */ 463 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 464 465 /* NB: The head we observe here might effectively be a little out of 466 * date (between head and tails[aged_idx].offset if there is currently 467 * a read() in progress. 468 */ 469 head = dev_priv->perf.oa.oa_buffer.head; 470 471 aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 472 aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset; 473 aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset; 474 475 hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv); 476 477 /* The tail pointer increases in 64 byte increments, 478 * not in report_size steps... 479 */ 480 hw_tail &= ~(report_size - 1); 481 482 now = ktime_get_mono_fast_ns(); 483 484 /* Update the aged tail 485 * 486 * Flip the tail pointer available for read()s once the aging tail is 487 * old enough to trust that the corresponding data will be visible to 488 * the CPU... 489 * 490 * Do this before updating the aging pointer in case we may be able to 491 * immediately start aging a new pointer too (if new data has become 492 * available) without needing to wait for a later hrtimer callback. 493 */ 494 if (aging_tail != INVALID_TAIL_PTR && 495 ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) > 496 OA_TAIL_MARGIN_NSEC)) { 497 498 aged_idx ^= 1; 499 dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx; 500 501 aged_tail = aging_tail; 502 503 /* Mark that we need a new pointer to start aging... */ 504 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR; 505 aging_tail = INVALID_TAIL_PTR; 506 } 507 508 /* Update the aging tail 509 * 510 * We throttle aging tail updates until we have a new tail that 511 * represents >= one report more data than is already available for 512 * reading. This ensures there will be enough data for a successful 513 * read once this new pointer has aged and ensures we will give the new 514 * pointer time to age. 515 */ 516 if (aging_tail == INVALID_TAIL_PTR && 517 (aged_tail == INVALID_TAIL_PTR || 518 OA_TAKEN(hw_tail, aged_tail) >= report_size)) { 519 struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma; 520 u32 gtt_offset = i915_ggtt_offset(vma); 521 522 /* Be paranoid and do a bounds check on the pointer read back 523 * from hardware, just in case some spurious hardware condition 524 * could put the tail out of bounds... 525 */ 526 if (hw_tail >= gtt_offset && 527 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) { 528 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = 529 aging_tail = hw_tail; 530 dev_priv->perf.oa.oa_buffer.aging_timestamp = now; 531 } else { 532 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n", 533 hw_tail); 534 } 535 } 536 537 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 538 539 return aged_tail == INVALID_TAIL_PTR ? 540 false : OA_TAKEN(aged_tail, head) >= report_size; 541 } 542 543 /** 544 * append_oa_status - Appends a status record to a userspace read() buffer. 545 * @stream: An i915-perf stream opened for OA metrics 546 * @buf: destination buffer given by userspace 547 * @count: the number of bytes userspace wants to read 548 * @offset: (inout): the current position for writing into @buf 549 * @type: The kind of status to report to userspace 550 * 551 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 552 * into the userspace read() buffer. 553 * 554 * The @buf @offset will only be updated on success. 555 * 556 * Returns: 0 on success, negative error code on failure. 557 */ 558 static int append_oa_status(struct i915_perf_stream *stream, 559 char __user *buf, 560 size_t count, 561 size_t *offset, 562 enum drm_i915_perf_record_type type) 563 { 564 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 565 566 if ((count - *offset) < header.size) 567 return -ENOSPC; 568 569 if (copy_to_user(buf + *offset, &header, sizeof(header))) 570 return -EFAULT; 571 572 (*offset) += header.size; 573 574 return 0; 575 } 576 577 /** 578 * append_oa_sample - Copies single OA report into userspace read() buffer. 579 * @stream: An i915-perf stream opened for OA metrics 580 * @buf: destination buffer given by userspace 581 * @count: the number of bytes userspace wants to read 582 * @offset: (inout): the current position for writing into @buf 583 * @report: A single OA report to (optionally) include as part of the sample 584 * 585 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 586 * properties when opening a stream, tracked as `stream->sample_flags`. This 587 * function copies the requested components of a single sample to the given 588 * read() @buf. 589 * 590 * The @buf @offset will only be updated on success. 591 * 592 * Returns: 0 on success, negative error code on failure. 593 */ 594 static int append_oa_sample(struct i915_perf_stream *stream, 595 char __user *buf, 596 size_t count, 597 size_t *offset, 598 const u8 *report) 599 { 600 struct drm_i915_private *dev_priv = stream->dev_priv; 601 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 602 struct drm_i915_perf_record_header header; 603 u32 sample_flags = stream->sample_flags; 604 605 header.type = DRM_I915_PERF_RECORD_SAMPLE; 606 header.pad = 0; 607 header.size = stream->sample_size; 608 609 if ((count - *offset) < header.size) 610 return -ENOSPC; 611 612 buf += *offset; 613 if (copy_to_user(buf, &header, sizeof(header))) 614 return -EFAULT; 615 buf += sizeof(header); 616 617 if (sample_flags & SAMPLE_OA_REPORT) { 618 if (copy_to_user(buf, report, report_size)) 619 return -EFAULT; 620 } 621 622 (*offset) += header.size; 623 624 return 0; 625 } 626 627 /** 628 * Copies all buffered OA reports into userspace read() buffer. 629 * @stream: An i915-perf stream opened for OA metrics 630 * @buf: destination buffer given by userspace 631 * @count: the number of bytes userspace wants to read 632 * @offset: (inout): the current position for writing into @buf 633 * 634 * Notably any error condition resulting in a short read (-%ENOSPC or 635 * -%EFAULT) will be returned even though one or more records may 636 * have been successfully copied. In this case it's up to the caller 637 * to decide if the error should be squashed before returning to 638 * userspace. 639 * 640 * Note: reports are consumed from the head, and appended to the 641 * tail, so the tail chases the head?... If you think that's mad 642 * and back-to-front you're not alone, but this follows the 643 * Gen PRM naming convention. 644 * 645 * Returns: 0 on success, negative error code on failure. 646 */ 647 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 648 char __user *buf, 649 size_t count, 650 size_t *offset) 651 { 652 struct drm_i915_private *dev_priv = stream->dev_priv; 653 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 654 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr; 655 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 656 u32 mask = (OA_BUFFER_SIZE - 1); 657 size_t start_offset = *offset; 658 unsigned long flags; 659 unsigned int aged_tail_idx; 660 u32 head, tail; 661 u32 taken; 662 int ret = 0; 663 664 if (WARN_ON(!stream->enabled)) 665 return -EIO; 666 667 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 668 669 head = dev_priv->perf.oa.oa_buffer.head; 670 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 671 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset; 672 673 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 674 675 /* 676 * An invalid tail pointer here means we're still waiting for the poll 677 * hrtimer callback to give us a pointer 678 */ 679 if (tail == INVALID_TAIL_PTR) 680 return -EAGAIN; 681 682 /* 683 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 684 * while indexing relative to oa_buf_base. 685 */ 686 head -= gtt_offset; 687 tail -= gtt_offset; 688 689 /* 690 * An out of bounds or misaligned head or tail pointer implies a driver 691 * bug since we validate + align the tail pointers we read from the 692 * hardware and we are in full control of the head pointer which should 693 * only be incremented by multiples of the report size (notably also 694 * all a power of two). 695 */ 696 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 697 tail > OA_BUFFER_SIZE || tail % report_size, 698 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 699 head, tail)) 700 return -EIO; 701 702 703 for (/* none */; 704 (taken = OA_TAKEN(tail, head)); 705 head = (head + report_size) & mask) { 706 u8 *report = oa_buf_base + head; 707 u32 *report32 = (void *)report; 708 u32 ctx_id; 709 u32 reason; 710 711 /* 712 * All the report sizes factor neatly into the buffer 713 * size so we never expect to see a report split 714 * between the beginning and end of the buffer. 715 * 716 * Given the initial alignment check a misalignment 717 * here would imply a driver bug that would result 718 * in an overrun. 719 */ 720 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 721 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 722 break; 723 } 724 725 /* 726 * The reason field includes flags identifying what 727 * triggered this specific report (mostly timer 728 * triggered or e.g. due to a context switch). 729 * 730 * This field is never expected to be zero so we can 731 * check that the report isn't invalid before copying 732 * it to userspace... 733 */ 734 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 735 OAREPORT_REASON_MASK); 736 if (reason == 0) { 737 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs)) 738 DRM_NOTE("Skipping spurious, invalid OA report\n"); 739 continue; 740 } 741 742 ctx_id = report32[2] & dev_priv->perf.oa.specific_ctx_id_mask; 743 744 /* 745 * Squash whatever is in the CTX_ID field if it's marked as 746 * invalid to be sure we avoid false-positive, single-context 747 * filtering below... 748 * 749 * Note: that we don't clear the valid_ctx_bit so userspace can 750 * understand that the ID has been squashed by the kernel. 751 */ 752 if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit)) 753 ctx_id = report32[2] = INVALID_CTX_ID; 754 755 /* 756 * NB: For Gen 8 the OA unit no longer supports clock gating 757 * off for a specific context and the kernel can't securely 758 * stop the counters from updating as system-wide / global 759 * values. 760 * 761 * Automatic reports now include a context ID so reports can be 762 * filtered on the cpu but it's not worth trying to 763 * automatically subtract/hide counter progress for other 764 * contexts while filtering since we can't stop userspace 765 * issuing MI_REPORT_PERF_COUNT commands which would still 766 * provide a side-band view of the real values. 767 * 768 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 769 * to normalize counters for a single filtered context then it 770 * needs be forwarded bookend context-switch reports so that it 771 * can track switches in between MI_REPORT_PERF_COUNT commands 772 * and can itself subtract/ignore the progress of counters 773 * associated with other contexts. Note that the hardware 774 * automatically triggers reports when switching to a new 775 * context which are tagged with the ID of the newly active 776 * context. To avoid the complexity (and likely fragility) of 777 * reading ahead while parsing reports to try and minimize 778 * forwarding redundant context switch reports (i.e. between 779 * other, unrelated contexts) we simply elect to forward them 780 * all. 781 * 782 * We don't rely solely on the reason field to identify context 783 * switches since it's not-uncommon for periodic samples to 784 * identify a switch before any 'context switch' report. 785 */ 786 if (!dev_priv->perf.oa.exclusive_stream->ctx || 787 dev_priv->perf.oa.specific_ctx_id == ctx_id || 788 (dev_priv->perf.oa.oa_buffer.last_ctx_id == 789 dev_priv->perf.oa.specific_ctx_id) || 790 reason & OAREPORT_REASON_CTX_SWITCH) { 791 792 /* 793 * While filtering for a single context we avoid 794 * leaking the IDs of other contexts. 795 */ 796 if (dev_priv->perf.oa.exclusive_stream->ctx && 797 dev_priv->perf.oa.specific_ctx_id != ctx_id) { 798 report32[2] = INVALID_CTX_ID; 799 } 800 801 ret = append_oa_sample(stream, buf, count, offset, 802 report); 803 if (ret) 804 break; 805 806 dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id; 807 } 808 809 /* 810 * The above reason field sanity check is based on 811 * the assumption that the OA buffer is initially 812 * zeroed and we reset the field after copying so the 813 * check is still meaningful once old reports start 814 * being overwritten. 815 */ 816 report32[0] = 0; 817 } 818 819 if (start_offset != *offset) { 820 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 821 822 /* 823 * We removed the gtt_offset for the copy loop above, indexing 824 * relative to oa_buf_base so put back here... 825 */ 826 head += gtt_offset; 827 828 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK); 829 dev_priv->perf.oa.oa_buffer.head = head; 830 831 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 832 } 833 834 return ret; 835 } 836 837 /** 838 * gen8_oa_read - copy status records then buffered OA reports 839 * @stream: An i915-perf stream opened for OA metrics 840 * @buf: destination buffer given by userspace 841 * @count: the number of bytes userspace wants to read 842 * @offset: (inout): the current position for writing into @buf 843 * 844 * Checks OA unit status registers and if necessary appends corresponding 845 * status records for userspace (such as for a buffer full condition) and then 846 * initiate appending any buffered OA reports. 847 * 848 * Updates @offset according to the number of bytes successfully copied into 849 * the userspace buffer. 850 * 851 * NB: some data may be successfully copied to the userspace buffer 852 * even if an error is returned, and this is reflected in the 853 * updated @offset. 854 * 855 * Returns: zero on success or a negative error code 856 */ 857 static int gen8_oa_read(struct i915_perf_stream *stream, 858 char __user *buf, 859 size_t count, 860 size_t *offset) 861 { 862 struct drm_i915_private *dev_priv = stream->dev_priv; 863 u32 oastatus; 864 int ret; 865 866 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr)) 867 return -EIO; 868 869 oastatus = I915_READ(GEN8_OASTATUS); 870 871 /* 872 * We treat OABUFFER_OVERFLOW as a significant error: 873 * 874 * Although theoretically we could handle this more gracefully 875 * sometimes, some Gens don't correctly suppress certain 876 * automatically triggered reports in this condition and so we 877 * have to assume that old reports are now being trampled 878 * over. 879 * 880 * Considering how we don't currently give userspace control 881 * over the OA buffer size and always configure a large 16MB 882 * buffer, then a buffer overflow does anyway likely indicate 883 * that something has gone quite badly wrong. 884 */ 885 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 886 ret = append_oa_status(stream, buf, count, offset, 887 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 888 if (ret) 889 return ret; 890 891 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 892 dev_priv->perf.oa.period_exponent); 893 894 dev_priv->perf.oa.ops.oa_disable(stream); 895 dev_priv->perf.oa.ops.oa_enable(stream); 896 897 /* 898 * Note: .oa_enable() is expected to re-init the oabuffer and 899 * reset GEN8_OASTATUS for us 900 */ 901 oastatus = I915_READ(GEN8_OASTATUS); 902 } 903 904 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 905 ret = append_oa_status(stream, buf, count, offset, 906 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 907 if (ret) 908 return ret; 909 I915_WRITE(GEN8_OASTATUS, 910 oastatus & ~GEN8_OASTATUS_REPORT_LOST); 911 } 912 913 return gen8_append_oa_reports(stream, buf, count, offset); 914 } 915 916 /** 917 * Copies all buffered OA reports into userspace read() buffer. 918 * @stream: An i915-perf stream opened for OA metrics 919 * @buf: destination buffer given by userspace 920 * @count: the number of bytes userspace wants to read 921 * @offset: (inout): the current position for writing into @buf 922 * 923 * Notably any error condition resulting in a short read (-%ENOSPC or 924 * -%EFAULT) will be returned even though one or more records may 925 * have been successfully copied. In this case it's up to the caller 926 * to decide if the error should be squashed before returning to 927 * userspace. 928 * 929 * Note: reports are consumed from the head, and appended to the 930 * tail, so the tail chases the head?... If you think that's mad 931 * and back-to-front you're not alone, but this follows the 932 * Gen PRM naming convention. 933 * 934 * Returns: 0 on success, negative error code on failure. 935 */ 936 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 937 char __user *buf, 938 size_t count, 939 size_t *offset) 940 { 941 struct drm_i915_private *dev_priv = stream->dev_priv; 942 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 943 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr; 944 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 945 u32 mask = (OA_BUFFER_SIZE - 1); 946 size_t start_offset = *offset; 947 unsigned long flags; 948 unsigned int aged_tail_idx; 949 u32 head, tail; 950 u32 taken; 951 int ret = 0; 952 953 if (WARN_ON(!stream->enabled)) 954 return -EIO; 955 956 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 957 958 head = dev_priv->perf.oa.oa_buffer.head; 959 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 960 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset; 961 962 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 963 964 /* An invalid tail pointer here means we're still waiting for the poll 965 * hrtimer callback to give us a pointer 966 */ 967 if (tail == INVALID_TAIL_PTR) 968 return -EAGAIN; 969 970 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 971 * while indexing relative to oa_buf_base. 972 */ 973 head -= gtt_offset; 974 tail -= gtt_offset; 975 976 /* An out of bounds or misaligned head or tail pointer implies a driver 977 * bug since we validate + align the tail pointers we read from the 978 * hardware and we are in full control of the head pointer which should 979 * only be incremented by multiples of the report size (notably also 980 * all a power of two). 981 */ 982 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 983 tail > OA_BUFFER_SIZE || tail % report_size, 984 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 985 head, tail)) 986 return -EIO; 987 988 989 for (/* none */; 990 (taken = OA_TAKEN(tail, head)); 991 head = (head + report_size) & mask) { 992 u8 *report = oa_buf_base + head; 993 u32 *report32 = (void *)report; 994 995 /* All the report sizes factor neatly into the buffer 996 * size so we never expect to see a report split 997 * between the beginning and end of the buffer. 998 * 999 * Given the initial alignment check a misalignment 1000 * here would imply a driver bug that would result 1001 * in an overrun. 1002 */ 1003 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 1004 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 1005 break; 1006 } 1007 1008 /* The report-ID field for periodic samples includes 1009 * some undocumented flags related to what triggered 1010 * the report and is never expected to be zero so we 1011 * can check that the report isn't invalid before 1012 * copying it to userspace... 1013 */ 1014 if (report32[0] == 0) { 1015 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs)) 1016 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1017 continue; 1018 } 1019 1020 ret = append_oa_sample(stream, buf, count, offset, report); 1021 if (ret) 1022 break; 1023 1024 /* The above report-id field sanity check is based on 1025 * the assumption that the OA buffer is initially 1026 * zeroed and we reset the field after copying so the 1027 * check is still meaningful once old reports start 1028 * being overwritten. 1029 */ 1030 report32[0] = 0; 1031 } 1032 1033 if (start_offset != *offset) { 1034 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1035 1036 /* We removed the gtt_offset for the copy loop above, indexing 1037 * relative to oa_buf_base so put back here... 1038 */ 1039 head += gtt_offset; 1040 1041 I915_WRITE(GEN7_OASTATUS2, 1042 ((head & GEN7_OASTATUS2_HEAD_MASK) | 1043 GEN7_OASTATUS2_MEM_SELECT_GGTT)); 1044 dev_priv->perf.oa.oa_buffer.head = head; 1045 1046 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1047 } 1048 1049 return ret; 1050 } 1051 1052 /** 1053 * gen7_oa_read - copy status records then buffered OA reports 1054 * @stream: An i915-perf stream opened for OA metrics 1055 * @buf: destination buffer given by userspace 1056 * @count: the number of bytes userspace wants to read 1057 * @offset: (inout): the current position for writing into @buf 1058 * 1059 * Checks Gen 7 specific OA unit status registers and if necessary appends 1060 * corresponding status records for userspace (such as for a buffer full 1061 * condition) and then initiate appending any buffered OA reports. 1062 * 1063 * Updates @offset according to the number of bytes successfully copied into 1064 * the userspace buffer. 1065 * 1066 * Returns: zero on success or a negative error code 1067 */ 1068 static int gen7_oa_read(struct i915_perf_stream *stream, 1069 char __user *buf, 1070 size_t count, 1071 size_t *offset) 1072 { 1073 struct drm_i915_private *dev_priv = stream->dev_priv; 1074 u32 oastatus1; 1075 int ret; 1076 1077 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr)) 1078 return -EIO; 1079 1080 oastatus1 = I915_READ(GEN7_OASTATUS1); 1081 1082 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1083 * bits while the OA unit is enabled (while the tail pointer 1084 * may be updated asynchronously) so we ignore status bits 1085 * that have already been reported to userspace. 1086 */ 1087 oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1; 1088 1089 /* We treat OABUFFER_OVERFLOW as a significant error: 1090 * 1091 * - The status can be interpreted to mean that the buffer is 1092 * currently full (with a higher precedence than OA_TAKEN() 1093 * which will start to report a near-empty buffer after an 1094 * overflow) but it's awkward that we can't clear the status 1095 * on Haswell, so without a reset we won't be able to catch 1096 * the state again. 1097 * 1098 * - Since it also implies the HW has started overwriting old 1099 * reports it may also affect our sanity checks for invalid 1100 * reports when copying to userspace that assume new reports 1101 * are being written to cleared memory. 1102 * 1103 * - In the future we may want to introduce a flight recorder 1104 * mode where the driver will automatically maintain a safe 1105 * guard band between head/tail, avoiding this overflow 1106 * condition, but we avoid the added driver complexity for 1107 * now. 1108 */ 1109 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1110 ret = append_oa_status(stream, buf, count, offset, 1111 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1112 if (ret) 1113 return ret; 1114 1115 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1116 dev_priv->perf.oa.period_exponent); 1117 1118 dev_priv->perf.oa.ops.oa_disable(stream); 1119 dev_priv->perf.oa.ops.oa_enable(stream); 1120 1121 oastatus1 = I915_READ(GEN7_OASTATUS1); 1122 } 1123 1124 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1125 ret = append_oa_status(stream, buf, count, offset, 1126 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1127 if (ret) 1128 return ret; 1129 dev_priv->perf.oa.gen7_latched_oastatus1 |= 1130 GEN7_OASTATUS1_REPORT_LOST; 1131 } 1132 1133 return gen7_append_oa_reports(stream, buf, count, offset); 1134 } 1135 1136 /** 1137 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1138 * @stream: An i915-perf stream opened for OA metrics 1139 * 1140 * Called when userspace tries to read() from a blocking stream FD opened 1141 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1142 * OA buffer and wakes us. 1143 * 1144 * Note: it's acceptable to have this return with some false positives 1145 * since any subsequent read handling will return -EAGAIN if there isn't 1146 * really data ready for userspace yet. 1147 * 1148 * Returns: zero on success or a negative error code 1149 */ 1150 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1151 { 1152 struct drm_i915_private *dev_priv = stream->dev_priv; 1153 1154 /* We would wait indefinitely if periodic sampling is not enabled */ 1155 if (!dev_priv->perf.oa.periodic) 1156 return -EIO; 1157 1158 return wait_event_interruptible(dev_priv->perf.oa.poll_wq, 1159 oa_buffer_check_unlocked(dev_priv)); 1160 } 1161 1162 /** 1163 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1164 * @stream: An i915-perf stream opened for OA metrics 1165 * @file: An i915 perf stream file 1166 * @wait: poll() state table 1167 * 1168 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1169 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1170 * when it sees data ready to read in the circular OA buffer. 1171 */ 1172 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1173 struct file *file, 1174 poll_table *wait) 1175 { 1176 struct drm_i915_private *dev_priv = stream->dev_priv; 1177 1178 poll_wait(file, &dev_priv->perf.oa.poll_wq, wait); 1179 } 1180 1181 /** 1182 * i915_oa_read - just calls through to &i915_oa_ops->read 1183 * @stream: An i915-perf stream opened for OA metrics 1184 * @buf: destination buffer given by userspace 1185 * @count: the number of bytes userspace wants to read 1186 * @offset: (inout): the current position for writing into @buf 1187 * 1188 * Updates @offset according to the number of bytes successfully copied into 1189 * the userspace buffer. 1190 * 1191 * Returns: zero on success or a negative error code 1192 */ 1193 static int i915_oa_read(struct i915_perf_stream *stream, 1194 char __user *buf, 1195 size_t count, 1196 size_t *offset) 1197 { 1198 struct drm_i915_private *dev_priv = stream->dev_priv; 1199 1200 return dev_priv->perf.oa.ops.read(stream, buf, count, offset); 1201 } 1202 1203 static struct intel_context *oa_pin_context(struct drm_i915_private *i915, 1204 struct i915_gem_context *ctx) 1205 { 1206 struct i915_gem_engines_iter it; 1207 struct intel_context *ce; 1208 int err; 1209 1210 err = i915_mutex_lock_interruptible(&i915->drm); 1211 if (err) 1212 return ERR_PTR(err); 1213 1214 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1215 if (ce->engine->class != RENDER_CLASS) 1216 continue; 1217 1218 /* 1219 * As the ID is the gtt offset of the context's vma we 1220 * pin the vma to ensure the ID remains fixed. 1221 */ 1222 err = intel_context_pin(ce); 1223 if (err == 0) { 1224 i915->perf.oa.pinned_ctx = ce; 1225 break; 1226 } 1227 } 1228 i915_gem_context_unlock_engines(ctx); 1229 1230 mutex_unlock(&i915->drm.struct_mutex); 1231 if (err) 1232 return ERR_PTR(err); 1233 1234 return i915->perf.oa.pinned_ctx; 1235 } 1236 1237 /** 1238 * oa_get_render_ctx_id - determine and hold ctx hw id 1239 * @stream: An i915-perf stream opened for OA metrics 1240 * 1241 * Determine the render context hw id, and ensure it remains fixed for the 1242 * lifetime of the stream. This ensures that we don't have to worry about 1243 * updating the context ID in OACONTROL on the fly. 1244 * 1245 * Returns: zero on success or a negative error code 1246 */ 1247 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1248 { 1249 struct drm_i915_private *i915 = stream->dev_priv; 1250 struct intel_context *ce; 1251 1252 ce = oa_pin_context(i915, stream->ctx); 1253 if (IS_ERR(ce)) 1254 return PTR_ERR(ce); 1255 1256 switch (INTEL_GEN(i915)) { 1257 case 7: { 1258 /* 1259 * On Haswell we don't do any post processing of the reports 1260 * and don't need to use the mask. 1261 */ 1262 i915->perf.oa.specific_ctx_id = i915_ggtt_offset(ce->state); 1263 i915->perf.oa.specific_ctx_id_mask = 0; 1264 break; 1265 } 1266 1267 case 8: 1268 case 9: 1269 case 10: 1270 if (USES_GUC_SUBMISSION(i915)) { 1271 /* 1272 * When using GuC, the context descriptor we write in 1273 * i915 is read by GuC and rewritten before it's 1274 * actually written into the hardware. The LRCA is 1275 * what is put into the context id field of the 1276 * context descriptor by GuC. Because it's aligned to 1277 * a page, the lower 12bits are always at 0 and 1278 * dropped by GuC. They won't be part of the context 1279 * ID in the OA reports, so squash those lower bits. 1280 */ 1281 i915->perf.oa.specific_ctx_id = 1282 lower_32_bits(ce->lrc_desc) >> 12; 1283 1284 /* 1285 * GuC uses the top bit to signal proxy submission, so 1286 * ignore that bit. 1287 */ 1288 i915->perf.oa.specific_ctx_id_mask = 1289 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1290 } else { 1291 i915->perf.oa.specific_ctx_id_mask = 1292 (1U << GEN8_CTX_ID_WIDTH) - 1; 1293 i915->perf.oa.specific_ctx_id = 1294 upper_32_bits(ce->lrc_desc); 1295 i915->perf.oa.specific_ctx_id &= 1296 i915->perf.oa.specific_ctx_id_mask; 1297 } 1298 break; 1299 1300 case 11: { 1301 i915->perf.oa.specific_ctx_id_mask = 1302 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32) | 1303 ((1U << GEN11_ENGINE_INSTANCE_WIDTH) - 1) << (GEN11_ENGINE_INSTANCE_SHIFT - 32) | 1304 ((1 << GEN11_ENGINE_CLASS_WIDTH) - 1) << (GEN11_ENGINE_CLASS_SHIFT - 32); 1305 i915->perf.oa.specific_ctx_id = upper_32_bits(ce->lrc_desc); 1306 i915->perf.oa.specific_ctx_id &= 1307 i915->perf.oa.specific_ctx_id_mask; 1308 break; 1309 } 1310 1311 default: 1312 MISSING_CASE(INTEL_GEN(i915)); 1313 } 1314 1315 DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1316 i915->perf.oa.specific_ctx_id, 1317 i915->perf.oa.specific_ctx_id_mask); 1318 1319 return 0; 1320 } 1321 1322 /** 1323 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1324 * @stream: An i915-perf stream opened for OA metrics 1325 * 1326 * In case anything needed doing to ensure the context HW ID would remain valid 1327 * for the lifetime of the stream, then that can be undone here. 1328 */ 1329 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1330 { 1331 struct drm_i915_private *dev_priv = stream->dev_priv; 1332 struct intel_context *ce; 1333 1334 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID; 1335 dev_priv->perf.oa.specific_ctx_id_mask = 0; 1336 1337 ce = fetch_and_zero(&dev_priv->perf.oa.pinned_ctx); 1338 if (ce) { 1339 mutex_lock(&dev_priv->drm.struct_mutex); 1340 intel_context_unpin(ce); 1341 mutex_unlock(&dev_priv->drm.struct_mutex); 1342 } 1343 } 1344 1345 static void 1346 free_oa_buffer(struct drm_i915_private *i915) 1347 { 1348 mutex_lock(&i915->drm.struct_mutex); 1349 1350 i915_vma_unpin_and_release(&i915->perf.oa.oa_buffer.vma, 1351 I915_VMA_RELEASE_MAP); 1352 1353 mutex_unlock(&i915->drm.struct_mutex); 1354 1355 i915->perf.oa.oa_buffer.vaddr = NULL; 1356 } 1357 1358 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1359 { 1360 struct drm_i915_private *dev_priv = stream->dev_priv; 1361 1362 BUG_ON(stream != dev_priv->perf.oa.exclusive_stream); 1363 1364 /* 1365 * Unset exclusive_stream first, it will be checked while disabling 1366 * the metric set on gen8+. 1367 */ 1368 mutex_lock(&dev_priv->drm.struct_mutex); 1369 dev_priv->perf.oa.exclusive_stream = NULL; 1370 dev_priv->perf.oa.ops.disable_metric_set(dev_priv); 1371 mutex_unlock(&dev_priv->drm.struct_mutex); 1372 1373 free_oa_buffer(dev_priv); 1374 1375 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); 1376 intel_runtime_pm_put(&dev_priv->runtime_pm, stream->wakeref); 1377 1378 if (stream->ctx) 1379 oa_put_render_ctx_id(stream); 1380 1381 put_oa_config(dev_priv, stream->oa_config); 1382 1383 if (dev_priv->perf.oa.spurious_report_rs.missed) { 1384 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1385 dev_priv->perf.oa.spurious_report_rs.missed); 1386 } 1387 } 1388 1389 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv) 1390 { 1391 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 1392 unsigned long flags; 1393 1394 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1395 1396 /* Pre-DevBDW: OABUFFER must be set with counters off, 1397 * before OASTATUS1, but after OASTATUS2 1398 */ 1399 I915_WRITE(GEN7_OASTATUS2, 1400 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); /* head */ 1401 dev_priv->perf.oa.oa_buffer.head = gtt_offset; 1402 1403 I915_WRITE(GEN7_OABUFFER, gtt_offset); 1404 1405 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */ 1406 1407 /* Mark that we need updated tail pointers to read from... */ 1408 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1409 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1410 1411 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1412 1413 /* On Haswell we have to track which OASTATUS1 flags we've 1414 * already seen since they can't be cleared while periodic 1415 * sampling is enabled. 1416 */ 1417 dev_priv->perf.oa.gen7_latched_oastatus1 = 0; 1418 1419 /* NB: although the OA buffer will initially be allocated 1420 * zeroed via shmfs (and so this memset is redundant when 1421 * first allocating), we may re-init the OA buffer, either 1422 * when re-enabling a stream or in error/reset paths. 1423 * 1424 * The reason we clear the buffer for each re-init is for the 1425 * sanity check in gen7_append_oa_reports() that looks at the 1426 * report-id field to make sure it's non-zero which relies on 1427 * the assumption that new reports are being written to zeroed 1428 * memory... 1429 */ 1430 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1431 1432 /* Maybe make ->pollin per-stream state if we support multiple 1433 * concurrent streams in the future. 1434 */ 1435 dev_priv->perf.oa.pollin = false; 1436 } 1437 1438 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv) 1439 { 1440 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 1441 unsigned long flags; 1442 1443 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1444 1445 I915_WRITE(GEN8_OASTATUS, 0); 1446 I915_WRITE(GEN8_OAHEADPTR, gtt_offset); 1447 dev_priv->perf.oa.oa_buffer.head = gtt_offset; 1448 1449 I915_WRITE(GEN8_OABUFFER_UDW, 0); 1450 1451 /* 1452 * PRM says: 1453 * 1454 * "This MMIO must be set before the OATAILPTR 1455 * register and after the OAHEADPTR register. This is 1456 * to enable proper functionality of the overflow 1457 * bit." 1458 */ 1459 I915_WRITE(GEN8_OABUFFER, gtt_offset | 1460 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1461 I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1462 1463 /* Mark that we need updated tail pointers to read from... */ 1464 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1465 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1466 1467 /* 1468 * Reset state used to recognise context switches, affecting which 1469 * reports we will forward to userspace while filtering for a single 1470 * context. 1471 */ 1472 dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID; 1473 1474 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1475 1476 /* 1477 * NB: although the OA buffer will initially be allocated 1478 * zeroed via shmfs (and so this memset is redundant when 1479 * first allocating), we may re-init the OA buffer, either 1480 * when re-enabling a stream or in error/reset paths. 1481 * 1482 * The reason we clear the buffer for each re-init is for the 1483 * sanity check in gen8_append_oa_reports() that looks at the 1484 * reason field to make sure it's non-zero which relies on 1485 * the assumption that new reports are being written to zeroed 1486 * memory... 1487 */ 1488 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1489 1490 /* 1491 * Maybe make ->pollin per-stream state if we support multiple 1492 * concurrent streams in the future. 1493 */ 1494 dev_priv->perf.oa.pollin = false; 1495 } 1496 1497 static int alloc_oa_buffer(struct drm_i915_private *dev_priv) 1498 { 1499 struct drm_i915_gem_object *bo; 1500 struct i915_vma *vma; 1501 int ret; 1502 1503 if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma)) 1504 return -ENODEV; 1505 1506 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 1507 if (ret) 1508 return ret; 1509 1510 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1511 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1512 1513 bo = i915_gem_object_create_shmem(dev_priv, OA_BUFFER_SIZE); 1514 if (IS_ERR(bo)) { 1515 DRM_ERROR("Failed to allocate OA buffer\n"); 1516 ret = PTR_ERR(bo); 1517 goto unlock; 1518 } 1519 1520 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1521 1522 /* PreHSW required 512K alignment, HSW requires 16M */ 1523 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1524 if (IS_ERR(vma)) { 1525 ret = PTR_ERR(vma); 1526 goto err_unref; 1527 } 1528 dev_priv->perf.oa.oa_buffer.vma = vma; 1529 1530 dev_priv->perf.oa.oa_buffer.vaddr = 1531 i915_gem_object_pin_map(bo, I915_MAP_WB); 1532 if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) { 1533 ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr); 1534 goto err_unpin; 1535 } 1536 1537 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n", 1538 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma), 1539 dev_priv->perf.oa.oa_buffer.vaddr); 1540 1541 goto unlock; 1542 1543 err_unpin: 1544 __i915_vma_unpin(vma); 1545 1546 err_unref: 1547 i915_gem_object_put(bo); 1548 1549 dev_priv->perf.oa.oa_buffer.vaddr = NULL; 1550 dev_priv->perf.oa.oa_buffer.vma = NULL; 1551 1552 unlock: 1553 mutex_unlock(&dev_priv->drm.struct_mutex); 1554 return ret; 1555 } 1556 1557 static void config_oa_regs(struct drm_i915_private *dev_priv, 1558 const struct i915_oa_reg *regs, 1559 u32 n_regs) 1560 { 1561 u32 i; 1562 1563 for (i = 0; i < n_regs; i++) { 1564 const struct i915_oa_reg *reg = regs + i; 1565 1566 I915_WRITE(reg->addr, reg->value); 1567 } 1568 } 1569 1570 static void delay_after_mux(void) 1571 { 1572 /* 1573 * It apparently takes a fairly long time for a new MUX 1574 * configuration to be be applied after these register writes. 1575 * This delay duration was derived empirically based on the 1576 * render_basic config but hopefully it covers the maximum 1577 * configuration latency. 1578 * 1579 * As a fallback, the checks in _append_oa_reports() to skip 1580 * invalid OA reports do also seem to work to discard reports 1581 * generated before this config has completed - albeit not 1582 * silently. 1583 * 1584 * Unfortunately this is essentially a magic number, since we 1585 * don't currently know of a reliable mechanism for predicting 1586 * how long the MUX config will take to apply and besides 1587 * seeing invalid reports we don't know of a reliable way to 1588 * explicitly check that the MUX config has landed. 1589 * 1590 * It's even possible we've miss characterized the underlying 1591 * problem - it just seems like the simplest explanation why 1592 * a delay at this location would mitigate any invalid reports. 1593 */ 1594 usleep_range(15000, 20000); 1595 } 1596 1597 static int hsw_enable_metric_set(struct i915_perf_stream *stream) 1598 { 1599 struct drm_i915_private *dev_priv = stream->dev_priv; 1600 const struct i915_oa_config *oa_config = stream->oa_config; 1601 1602 /* 1603 * PRM: 1604 * 1605 * OA unit is using “crclk” for its functionality. When trunk 1606 * level clock gating takes place, OA clock would be gated, 1607 * unable to count the events from non-render clock domain. 1608 * Render clock gating must be disabled when OA is enabled to 1609 * count the events from non-render domain. Unit level clock 1610 * gating for RCS should also be disabled. 1611 */ 1612 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) & 1613 ~GEN7_DOP_CLOCK_GATE_ENABLE)); 1614 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) | 1615 GEN6_CSUNIT_CLOCK_GATE_DISABLE)); 1616 1617 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len); 1618 delay_after_mux(); 1619 1620 config_oa_regs(dev_priv, oa_config->b_counter_regs, 1621 oa_config->b_counter_regs_len); 1622 1623 return 0; 1624 } 1625 1626 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv) 1627 { 1628 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) & 1629 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE)); 1630 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) | 1631 GEN7_DOP_CLOCK_GATE_ENABLE)); 1632 1633 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) & 1634 ~GT_NOA_ENABLE)); 1635 } 1636 1637 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 1638 i915_reg_t reg) 1639 { 1640 u32 mmio = i915_mmio_reg_offset(reg); 1641 int i; 1642 1643 /* 1644 * This arbitrary default will select the 'EU FPU0 Pipeline 1645 * Active' event. In the future it's anticipated that there 1646 * will be an explicit 'No Event' we can select, but not yet... 1647 */ 1648 if (!oa_config) 1649 return 0; 1650 1651 for (i = 0; i < oa_config->flex_regs_len; i++) { 1652 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 1653 return oa_config->flex_regs[i].value; 1654 } 1655 1656 return 0; 1657 } 1658 /* 1659 * NB: It must always remain pointer safe to run this even if the OA unit 1660 * has been disabled. 1661 * 1662 * It's fine to put out-of-date values into these per-context registers 1663 * in the case that the OA unit has been disabled. 1664 */ 1665 static void 1666 gen8_update_reg_state_unlocked(struct intel_context *ce, 1667 u32 *reg_state, 1668 const struct i915_oa_config *oa_config) 1669 { 1670 struct drm_i915_private *i915 = ce->gem_context->i915; 1671 u32 ctx_oactxctrl = i915->perf.oa.ctx_oactxctrl_offset; 1672 u32 ctx_flexeu0 = i915->perf.oa.ctx_flexeu0_offset; 1673 /* The MMIO offsets for Flex EU registers aren't contiguous */ 1674 i915_reg_t flex_regs[] = { 1675 EU_PERF_CNTL0, 1676 EU_PERF_CNTL1, 1677 EU_PERF_CNTL2, 1678 EU_PERF_CNTL3, 1679 EU_PERF_CNTL4, 1680 EU_PERF_CNTL5, 1681 EU_PERF_CNTL6, 1682 }; 1683 int i; 1684 1685 CTX_REG(reg_state, ctx_oactxctrl, GEN8_OACTXCONTROL, 1686 (i915->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 1687 (i915->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) | 1688 GEN8_OA_COUNTER_RESUME); 1689 1690 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) { 1691 CTX_REG(reg_state, ctx_flexeu0 + i * 2, flex_regs[i], 1692 oa_config_flex_reg(oa_config, flex_regs[i])); 1693 } 1694 1695 CTX_REG(reg_state, 1696 CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 1697 intel_sseu_make_rpcs(i915, &ce->sseu)); 1698 } 1699 1700 struct flex { 1701 i915_reg_t reg; 1702 u32 offset; 1703 u32 value; 1704 }; 1705 1706 static int 1707 gen8_store_flex(struct i915_request *rq, 1708 struct intel_context *ce, 1709 const struct flex *flex, unsigned int count) 1710 { 1711 u32 offset; 1712 u32 *cs; 1713 1714 cs = intel_ring_begin(rq, 4 * count); 1715 if (IS_ERR(cs)) 1716 return PTR_ERR(cs); 1717 1718 offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE; 1719 do { 1720 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 1721 *cs++ = offset + (flex->offset + 1) * sizeof(u32); 1722 *cs++ = 0; 1723 *cs++ = flex->value; 1724 } while (flex++, --count); 1725 1726 intel_ring_advance(rq, cs); 1727 1728 return 0; 1729 } 1730 1731 static int 1732 gen8_load_flex(struct i915_request *rq, 1733 struct intel_context *ce, 1734 const struct flex *flex, unsigned int count) 1735 { 1736 u32 *cs; 1737 1738 GEM_BUG_ON(!count || count > 63); 1739 1740 cs = intel_ring_begin(rq, 2 * count + 2); 1741 if (IS_ERR(cs)) 1742 return PTR_ERR(cs); 1743 1744 *cs++ = MI_LOAD_REGISTER_IMM(count); 1745 do { 1746 *cs++ = i915_mmio_reg_offset(flex->reg); 1747 *cs++ = flex->value; 1748 } while (flex++, --count); 1749 *cs++ = MI_NOOP; 1750 1751 intel_ring_advance(rq, cs); 1752 1753 return 0; 1754 } 1755 1756 static int gen8_modify_context(struct intel_context *ce, 1757 const struct flex *flex, unsigned int count) 1758 { 1759 struct i915_request *rq; 1760 int err; 1761 1762 lockdep_assert_held(&ce->pin_mutex); 1763 1764 rq = i915_request_create(ce->engine->kernel_context); 1765 if (IS_ERR(rq)) 1766 return PTR_ERR(rq); 1767 1768 /* Serialise with the remote context */ 1769 err = intel_context_prepare_remote_request(ce, rq); 1770 if (err == 0) 1771 err = gen8_store_flex(rq, ce, flex, count); 1772 1773 i915_request_add(rq); 1774 return err; 1775 } 1776 1777 static int gen8_modify_self(struct intel_context *ce, 1778 const struct flex *flex, unsigned int count) 1779 { 1780 struct i915_request *rq; 1781 int err; 1782 1783 rq = i915_request_create(ce); 1784 if (IS_ERR(rq)) 1785 return PTR_ERR(rq); 1786 1787 err = gen8_load_flex(rq, ce, flex, count); 1788 1789 i915_request_add(rq); 1790 return err; 1791 } 1792 1793 static int gen8_configure_context(struct i915_gem_context *ctx, 1794 struct flex *flex, unsigned int count) 1795 { 1796 struct i915_gem_engines_iter it; 1797 struct intel_context *ce; 1798 int err = 0; 1799 1800 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1801 GEM_BUG_ON(ce == ce->engine->kernel_context); 1802 1803 if (ce->engine->class != RENDER_CLASS) 1804 continue; 1805 1806 err = intel_context_lock_pinned(ce); 1807 if (err) 1808 break; 1809 1810 flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu); 1811 1812 /* Otherwise OA settings will be set upon first use */ 1813 if (intel_context_is_pinned(ce)) 1814 err = gen8_modify_context(ce, flex, count); 1815 1816 intel_context_unlock_pinned(ce); 1817 if (err) 1818 break; 1819 } 1820 i915_gem_context_unlock_engines(ctx); 1821 1822 return err; 1823 } 1824 1825 /* 1826 * Manages updating the per-context aspects of the OA stream 1827 * configuration across all contexts. 1828 * 1829 * The awkward consideration here is that OACTXCONTROL controls the 1830 * exponent for periodic sampling which is primarily used for system 1831 * wide profiling where we'd like a consistent sampling period even in 1832 * the face of context switches. 1833 * 1834 * Our approach of updating the register state context (as opposed to 1835 * say using a workaround batch buffer) ensures that the hardware 1836 * won't automatically reload an out-of-date timer exponent even 1837 * transiently before a WA BB could be parsed. 1838 * 1839 * This function needs to: 1840 * - Ensure the currently running context's per-context OA state is 1841 * updated 1842 * - Ensure that all existing contexts will have the correct per-context 1843 * OA state if they are scheduled for use. 1844 * - Ensure any new contexts will be initialized with the correct 1845 * per-context OA state. 1846 * 1847 * Note: it's only the RCS/Render context that has any OA state. 1848 */ 1849 static int gen8_configure_all_contexts(struct drm_i915_private *i915, 1850 const struct i915_oa_config *oa_config) 1851 { 1852 /* The MMIO offsets for Flex EU registers aren't contiguous */ 1853 const u32 ctx_flexeu0 = i915->perf.oa.ctx_flexeu0_offset; 1854 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N)) 1855 struct flex regs[] = { 1856 { 1857 GEN8_R_PWR_CLK_STATE, 1858 CTX_R_PWR_CLK_STATE, 1859 }, 1860 { 1861 GEN8_OACTXCONTROL, 1862 i915->perf.oa.ctx_oactxctrl_offset, 1863 ((i915->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 1864 (i915->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) | 1865 GEN8_OA_COUNTER_RESUME) 1866 }, 1867 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 1868 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 1869 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 1870 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 1871 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 1872 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 1873 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 1874 }; 1875 #undef ctx_flexeuN 1876 struct intel_engine_cs *engine; 1877 struct i915_gem_context *ctx; 1878 enum intel_engine_id id; 1879 int i; 1880 1881 for (i = 2; i < ARRAY_SIZE(regs); i++) 1882 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 1883 1884 lockdep_assert_held(&i915->drm.struct_mutex); 1885 1886 /* 1887 * The OA register config is setup through the context image. This image 1888 * might be written to by the GPU on context switch (in particular on 1889 * lite-restore). This means we can't safely update a context's image, 1890 * if this context is scheduled/submitted to run on the GPU. 1891 * 1892 * We could emit the OA register config through the batch buffer but 1893 * this might leave small interval of time where the OA unit is 1894 * configured at an invalid sampling period. 1895 * 1896 * Note that since we emit all requests from a single ring, there 1897 * is still an implicit global barrier here that may cause a high 1898 * priority context to wait for an otherwise independent low priority 1899 * context. Contexts idle at the time of reconfiguration are not 1900 * trapped behind the barrier. 1901 */ 1902 list_for_each_entry(ctx, &i915->contexts.list, link) { 1903 int err; 1904 1905 if (ctx == i915->kernel_context) 1906 continue; 1907 1908 err = gen8_configure_context(ctx, regs, ARRAY_SIZE(regs)); 1909 if (err) 1910 return err; 1911 } 1912 1913 /* 1914 * After updating all other contexts, we need to modify ourselves. 1915 * If we don't modify the kernel_context, we do not get events while 1916 * idle. 1917 */ 1918 for_each_engine(engine, i915, id) { 1919 struct intel_context *ce = engine->kernel_context; 1920 int err; 1921 1922 if (engine->class != RENDER_CLASS) 1923 continue; 1924 1925 regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu); 1926 1927 err = gen8_modify_self(ce, regs, ARRAY_SIZE(regs)); 1928 if (err) 1929 return err; 1930 } 1931 1932 return 0; 1933 } 1934 1935 static int gen8_enable_metric_set(struct i915_perf_stream *stream) 1936 { 1937 struct drm_i915_private *dev_priv = stream->dev_priv; 1938 const struct i915_oa_config *oa_config = stream->oa_config; 1939 int ret; 1940 1941 /* 1942 * We disable slice/unslice clock ratio change reports on SKL since 1943 * they are too noisy. The HW generates a lot of redundant reports 1944 * where the ratio hasn't really changed causing a lot of redundant 1945 * work to processes and increasing the chances we'll hit buffer 1946 * overruns. 1947 * 1948 * Although we don't currently use the 'disable overrun' OABUFFER 1949 * feature it's worth noting that clock ratio reports have to be 1950 * disabled before considering to use that feature since the HW doesn't 1951 * correctly block these reports. 1952 * 1953 * Currently none of the high-level metrics we have depend on knowing 1954 * this ratio to normalize. 1955 * 1956 * Note: This register is not power context saved and restored, but 1957 * that's OK considering that we disable RC6 while the OA unit is 1958 * enabled. 1959 * 1960 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 1961 * be read back from automatically triggered reports, as part of the 1962 * RPT_ID field. 1963 */ 1964 if (IS_GEN_RANGE(dev_priv, 9, 11)) { 1965 I915_WRITE(GEN8_OA_DEBUG, 1966 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 1967 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 1968 } 1969 1970 /* 1971 * Update all contexts prior writing the mux configurations as we need 1972 * to make sure all slices/subslices are ON before writing to NOA 1973 * registers. 1974 */ 1975 ret = gen8_configure_all_contexts(dev_priv, oa_config); 1976 if (ret) 1977 return ret; 1978 1979 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len); 1980 delay_after_mux(); 1981 1982 config_oa_regs(dev_priv, oa_config->b_counter_regs, 1983 oa_config->b_counter_regs_len); 1984 1985 return 0; 1986 } 1987 1988 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv) 1989 { 1990 /* Reset all contexts' slices/subslices configurations. */ 1991 gen8_configure_all_contexts(dev_priv, NULL); 1992 1993 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) & 1994 ~GT_NOA_ENABLE)); 1995 } 1996 1997 static void gen10_disable_metric_set(struct drm_i915_private *dev_priv) 1998 { 1999 /* Reset all contexts' slices/subslices configurations. */ 2000 gen8_configure_all_contexts(dev_priv, NULL); 2001 2002 /* Make sure we disable noa to save power. */ 2003 I915_WRITE(RPM_CONFIG1, 2004 I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE); 2005 } 2006 2007 static void gen7_oa_enable(struct i915_perf_stream *stream) 2008 { 2009 struct drm_i915_private *dev_priv = stream->dev_priv; 2010 struct i915_gem_context *ctx = stream->ctx; 2011 u32 ctx_id = dev_priv->perf.oa.specific_ctx_id; 2012 bool periodic = dev_priv->perf.oa.periodic; 2013 u32 period_exponent = dev_priv->perf.oa.period_exponent; 2014 u32 report_format = dev_priv->perf.oa.oa_buffer.format; 2015 2016 /* 2017 * Reset buf pointers so we don't forward reports from before now. 2018 * 2019 * Think carefully if considering trying to avoid this, since it 2020 * also ensures status flags and the buffer itself are cleared 2021 * in error paths, and we have checks for invalid reports based 2022 * on the assumption that certain fields are written to zeroed 2023 * memory which this helps maintains. 2024 */ 2025 gen7_init_oa_buffer(dev_priv); 2026 2027 I915_WRITE(GEN7_OACONTROL, 2028 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2029 (period_exponent << 2030 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2031 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2032 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2033 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2034 GEN7_OACONTROL_ENABLE); 2035 } 2036 2037 static void gen8_oa_enable(struct i915_perf_stream *stream) 2038 { 2039 struct drm_i915_private *dev_priv = stream->dev_priv; 2040 u32 report_format = dev_priv->perf.oa.oa_buffer.format; 2041 2042 /* 2043 * Reset buf pointers so we don't forward reports from before now. 2044 * 2045 * Think carefully if considering trying to avoid this, since it 2046 * also ensures status flags and the buffer itself are cleared 2047 * in error paths, and we have checks for invalid reports based 2048 * on the assumption that certain fields are written to zeroed 2049 * memory which this helps maintains. 2050 */ 2051 gen8_init_oa_buffer(dev_priv); 2052 2053 /* 2054 * Note: we don't rely on the hardware to perform single context 2055 * filtering and instead filter on the cpu based on the context-id 2056 * field of reports 2057 */ 2058 I915_WRITE(GEN8_OACONTROL, (report_format << 2059 GEN8_OA_REPORT_FORMAT_SHIFT) | 2060 GEN8_OA_COUNTER_ENABLE); 2061 } 2062 2063 /** 2064 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2065 * @stream: An i915 perf stream opened for OA metrics 2066 * 2067 * [Re]enables hardware periodic sampling according to the period configured 2068 * when opening the stream. This also starts a hrtimer that will periodically 2069 * check for data in the circular OA buffer for notifying userspace (e.g. 2070 * during a read() or poll()). 2071 */ 2072 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2073 { 2074 struct drm_i915_private *dev_priv = stream->dev_priv; 2075 2076 dev_priv->perf.oa.ops.oa_enable(stream); 2077 2078 if (dev_priv->perf.oa.periodic) 2079 hrtimer_start(&dev_priv->perf.oa.poll_check_timer, 2080 ns_to_ktime(POLL_PERIOD), 2081 HRTIMER_MODE_REL_PINNED); 2082 } 2083 2084 static void gen7_oa_disable(struct i915_perf_stream *stream) 2085 { 2086 struct intel_uncore *uncore = &stream->dev_priv->uncore; 2087 2088 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2089 if (intel_wait_for_register(uncore, 2090 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2091 50)) 2092 DRM_ERROR("wait for OA to be disabled timed out\n"); 2093 } 2094 2095 static void gen8_oa_disable(struct i915_perf_stream *stream) 2096 { 2097 struct intel_uncore *uncore = &stream->dev_priv->uncore; 2098 2099 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2100 if (intel_wait_for_register(uncore, 2101 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2102 50)) 2103 DRM_ERROR("wait for OA to be disabled timed out\n"); 2104 } 2105 2106 /** 2107 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2108 * @stream: An i915 perf stream opened for OA metrics 2109 * 2110 * Stops the OA unit from periodically writing counter reports into the 2111 * circular OA buffer. This also stops the hrtimer that periodically checks for 2112 * data in the circular OA buffer, for notifying userspace. 2113 */ 2114 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2115 { 2116 struct drm_i915_private *dev_priv = stream->dev_priv; 2117 2118 dev_priv->perf.oa.ops.oa_disable(stream); 2119 2120 if (dev_priv->perf.oa.periodic) 2121 hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer); 2122 } 2123 2124 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2125 .destroy = i915_oa_stream_destroy, 2126 .enable = i915_oa_stream_enable, 2127 .disable = i915_oa_stream_disable, 2128 .wait_unlocked = i915_oa_wait_unlocked, 2129 .poll_wait = i915_oa_poll_wait, 2130 .read = i915_oa_read, 2131 }; 2132 2133 /** 2134 * i915_oa_stream_init - validate combined props for OA stream and init 2135 * @stream: An i915 perf stream 2136 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2137 * @props: The property state that configures stream (individually validated) 2138 * 2139 * While read_properties_unlocked() validates properties in isolation it 2140 * doesn't ensure that the combination necessarily makes sense. 2141 * 2142 * At this point it has been determined that userspace wants a stream of 2143 * OA metrics, but still we need to further validate the combined 2144 * properties are OK. 2145 * 2146 * If the configuration makes sense then we can allocate memory for 2147 * a circular OA buffer and apply the requested metric set configuration. 2148 * 2149 * Returns: zero on success or a negative error code. 2150 */ 2151 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2152 struct drm_i915_perf_open_param *param, 2153 struct perf_open_properties *props) 2154 { 2155 struct drm_i915_private *dev_priv = stream->dev_priv; 2156 int format_size; 2157 int ret; 2158 2159 /* If the sysfs metrics/ directory wasn't registered for some 2160 * reason then don't let userspace try their luck with config 2161 * IDs 2162 */ 2163 if (!dev_priv->perf.metrics_kobj) { 2164 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2165 return -EINVAL; 2166 } 2167 2168 if (!(props->sample_flags & SAMPLE_OA_REPORT)) { 2169 DRM_DEBUG("Only OA report sampling supported\n"); 2170 return -EINVAL; 2171 } 2172 2173 if (!dev_priv->perf.oa.ops.enable_metric_set) { 2174 DRM_DEBUG("OA unit not supported\n"); 2175 return -ENODEV; 2176 } 2177 2178 /* To avoid the complexity of having to accurately filter 2179 * counter reports and marshal to the appropriate client 2180 * we currently only allow exclusive access 2181 */ 2182 if (dev_priv->perf.oa.exclusive_stream) { 2183 DRM_DEBUG("OA unit already in use\n"); 2184 return -EBUSY; 2185 } 2186 2187 if (!props->oa_format) { 2188 DRM_DEBUG("OA report format not specified\n"); 2189 return -EINVAL; 2190 } 2191 2192 /* We set up some ratelimit state to potentially throttle any _NOTES 2193 * about spurious, invalid OA reports which we don't forward to 2194 * userspace. 2195 * 2196 * The initialization is associated with opening the stream (not driver 2197 * init) considering we print a _NOTE about any throttling when closing 2198 * the stream instead of waiting until driver _fini which no one would 2199 * ever see. 2200 * 2201 * Using the same limiting factors as printk_ratelimit() 2202 */ 2203 ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs, 2204 5 * HZ, 10); 2205 /* Since we use a DRM_NOTE for spurious reports it would be 2206 * inconsistent to let __ratelimit() automatically print a warning for 2207 * throttling. 2208 */ 2209 ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs, 2210 RATELIMIT_MSG_ON_RELEASE); 2211 2212 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2213 2214 format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size; 2215 2216 stream->sample_flags |= SAMPLE_OA_REPORT; 2217 stream->sample_size += format_size; 2218 2219 dev_priv->perf.oa.oa_buffer.format_size = format_size; 2220 if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0)) 2221 return -EINVAL; 2222 2223 dev_priv->perf.oa.oa_buffer.format = 2224 dev_priv->perf.oa.oa_formats[props->oa_format].format; 2225 2226 dev_priv->perf.oa.periodic = props->oa_periodic; 2227 if (dev_priv->perf.oa.periodic) 2228 dev_priv->perf.oa.period_exponent = props->oa_period_exponent; 2229 2230 if (stream->ctx) { 2231 ret = oa_get_render_ctx_id(stream); 2232 if (ret) { 2233 DRM_DEBUG("Invalid context id to filter with\n"); 2234 return ret; 2235 } 2236 } 2237 2238 ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config); 2239 if (ret) { 2240 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2241 goto err_config; 2242 } 2243 2244 /* PRM - observability performance counters: 2245 * 2246 * OACONTROL, performance counter enable, note: 2247 * 2248 * "When this bit is set, in order to have coherent counts, 2249 * RC6 power state and trunk clock gating must be disabled. 2250 * This can be achieved by programming MMIO registers as 2251 * 0xA094=0 and 0xA090[31]=1" 2252 * 2253 * In our case we are expecting that taking pm + FORCEWAKE 2254 * references will effectively disable RC6. 2255 */ 2256 stream->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 2257 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL); 2258 2259 ret = alloc_oa_buffer(dev_priv); 2260 if (ret) 2261 goto err_oa_buf_alloc; 2262 2263 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 2264 if (ret) 2265 goto err_lock; 2266 2267 stream->ops = &i915_oa_stream_ops; 2268 dev_priv->perf.oa.exclusive_stream = stream; 2269 2270 ret = dev_priv->perf.oa.ops.enable_metric_set(stream); 2271 if (ret) { 2272 DRM_DEBUG("Unable to enable metric set\n"); 2273 goto err_enable; 2274 } 2275 2276 mutex_unlock(&dev_priv->drm.struct_mutex); 2277 2278 return 0; 2279 2280 err_enable: 2281 dev_priv->perf.oa.exclusive_stream = NULL; 2282 dev_priv->perf.oa.ops.disable_metric_set(dev_priv); 2283 mutex_unlock(&dev_priv->drm.struct_mutex); 2284 2285 err_lock: 2286 free_oa_buffer(dev_priv); 2287 2288 err_oa_buf_alloc: 2289 put_oa_config(dev_priv, stream->oa_config); 2290 2291 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL); 2292 intel_runtime_pm_put(&dev_priv->runtime_pm, stream->wakeref); 2293 2294 err_config: 2295 if (stream->ctx) 2296 oa_put_render_ctx_id(stream); 2297 2298 return ret; 2299 } 2300 2301 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 2302 struct intel_context *ce, 2303 u32 *regs) 2304 { 2305 struct i915_perf_stream *stream; 2306 2307 if (engine->class != RENDER_CLASS) 2308 return; 2309 2310 stream = engine->i915->perf.oa.exclusive_stream; 2311 if (stream) 2312 gen8_update_reg_state_unlocked(ce, regs, stream->oa_config); 2313 } 2314 2315 /** 2316 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation 2317 * @stream: An i915 perf stream 2318 * @file: An i915 perf stream file 2319 * @buf: destination buffer given by userspace 2320 * @count: the number of bytes userspace wants to read 2321 * @ppos: (inout) file seek position (unused) 2322 * 2323 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to 2324 * ensure that if we've successfully copied any data then reporting that takes 2325 * precedence over any internal error status, so the data isn't lost. 2326 * 2327 * For example ret will be -ENOSPC whenever there is more buffered data than 2328 * can be copied to userspace, but that's only interesting if we weren't able 2329 * to copy some data because it implies the userspace buffer is too small to 2330 * receive a single record (and we never split records). 2331 * 2332 * Another case with ret == -EFAULT is more of a grey area since it would seem 2333 * like bad form for userspace to ask us to overrun its buffer, but the user 2334 * knows best: 2335 * 2336 * http://yarchive.net/comp/linux/partial_reads_writes.html 2337 * 2338 * Returns: The number of bytes copied or a negative error code on failure. 2339 */ 2340 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream, 2341 struct file *file, 2342 char __user *buf, 2343 size_t count, 2344 loff_t *ppos) 2345 { 2346 /* Note we keep the offset (aka bytes read) separate from any 2347 * error status so that the final check for whether we return 2348 * the bytes read with a higher precedence than any error (see 2349 * comment below) doesn't need to be handled/duplicated in 2350 * stream->ops->read() implementations. 2351 */ 2352 size_t offset = 0; 2353 int ret = stream->ops->read(stream, buf, count, &offset); 2354 2355 return offset ?: (ret ?: -EAGAIN); 2356 } 2357 2358 /** 2359 * i915_perf_read - handles read() FOP for i915 perf stream FDs 2360 * @file: An i915 perf stream file 2361 * @buf: destination buffer given by userspace 2362 * @count: the number of bytes userspace wants to read 2363 * @ppos: (inout) file seek position (unused) 2364 * 2365 * The entry point for handling a read() on a stream file descriptor from 2366 * userspace. Most of the work is left to the i915_perf_read_locked() and 2367 * &i915_perf_stream_ops->read but to save having stream implementations (of 2368 * which we might have multiple later) we handle blocking read here. 2369 * 2370 * We can also consistently treat trying to read from a disabled stream 2371 * as an IO error so implementations can assume the stream is enabled 2372 * while reading. 2373 * 2374 * Returns: The number of bytes copied or a negative error code on failure. 2375 */ 2376 static ssize_t i915_perf_read(struct file *file, 2377 char __user *buf, 2378 size_t count, 2379 loff_t *ppos) 2380 { 2381 struct i915_perf_stream *stream = file->private_data; 2382 struct drm_i915_private *dev_priv = stream->dev_priv; 2383 ssize_t ret; 2384 2385 /* To ensure it's handled consistently we simply treat all reads of a 2386 * disabled stream as an error. In particular it might otherwise lead 2387 * to a deadlock for blocking file descriptors... 2388 */ 2389 if (!stream->enabled) 2390 return -EIO; 2391 2392 if (!(file->f_flags & O_NONBLOCK)) { 2393 /* There's the small chance of false positives from 2394 * stream->ops->wait_unlocked. 2395 * 2396 * E.g. with single context filtering since we only wait until 2397 * oabuffer has >= 1 report we don't immediately know whether 2398 * any reports really belong to the current context 2399 */ 2400 do { 2401 ret = stream->ops->wait_unlocked(stream); 2402 if (ret) 2403 return ret; 2404 2405 mutex_lock(&dev_priv->perf.lock); 2406 ret = i915_perf_read_locked(stream, file, 2407 buf, count, ppos); 2408 mutex_unlock(&dev_priv->perf.lock); 2409 } while (ret == -EAGAIN); 2410 } else { 2411 mutex_lock(&dev_priv->perf.lock); 2412 ret = i915_perf_read_locked(stream, file, buf, count, ppos); 2413 mutex_unlock(&dev_priv->perf.lock); 2414 } 2415 2416 /* We allow the poll checking to sometimes report false positive EPOLLIN 2417 * events where we might actually report EAGAIN on read() if there's 2418 * not really any data available. In this situation though we don't 2419 * want to enter a busy loop between poll() reporting a EPOLLIN event 2420 * and read() returning -EAGAIN. Clearing the oa.pollin state here 2421 * effectively ensures we back off until the next hrtimer callback 2422 * before reporting another EPOLLIN event. 2423 */ 2424 if (ret >= 0 || ret == -EAGAIN) { 2425 /* Maybe make ->pollin per-stream state if we support multiple 2426 * concurrent streams in the future. 2427 */ 2428 dev_priv->perf.oa.pollin = false; 2429 } 2430 2431 return ret; 2432 } 2433 2434 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 2435 { 2436 struct drm_i915_private *dev_priv = 2437 container_of(hrtimer, typeof(*dev_priv), 2438 perf.oa.poll_check_timer); 2439 2440 if (oa_buffer_check_unlocked(dev_priv)) { 2441 dev_priv->perf.oa.pollin = true; 2442 wake_up(&dev_priv->perf.oa.poll_wq); 2443 } 2444 2445 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD)); 2446 2447 return HRTIMER_RESTART; 2448 } 2449 2450 /** 2451 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 2452 * @dev_priv: i915 device instance 2453 * @stream: An i915 perf stream 2454 * @file: An i915 perf stream file 2455 * @wait: poll() state table 2456 * 2457 * For handling userspace polling on an i915 perf stream, this calls through to 2458 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 2459 * will be woken for new stream data. 2460 * 2461 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2462 * with any non-file-operation driver hooks. 2463 * 2464 * Returns: any poll events that are ready without sleeping 2465 */ 2466 static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv, 2467 struct i915_perf_stream *stream, 2468 struct file *file, 2469 poll_table *wait) 2470 { 2471 __poll_t events = 0; 2472 2473 stream->ops->poll_wait(stream, file, wait); 2474 2475 /* Note: we don't explicitly check whether there's something to read 2476 * here since this path may be very hot depending on what else 2477 * userspace is polling, or on the timeout in use. We rely solely on 2478 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 2479 * samples to read. 2480 */ 2481 if (dev_priv->perf.oa.pollin) 2482 events |= EPOLLIN; 2483 2484 return events; 2485 } 2486 2487 /** 2488 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 2489 * @file: An i915 perf stream file 2490 * @wait: poll() state table 2491 * 2492 * For handling userspace polling on an i915 perf stream, this ensures 2493 * poll_wait() gets called with a wait queue that will be woken for new stream 2494 * data. 2495 * 2496 * Note: Implementation deferred to i915_perf_poll_locked() 2497 * 2498 * Returns: any poll events that are ready without sleeping 2499 */ 2500 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 2501 { 2502 struct i915_perf_stream *stream = file->private_data; 2503 struct drm_i915_private *dev_priv = stream->dev_priv; 2504 __poll_t ret; 2505 2506 mutex_lock(&dev_priv->perf.lock); 2507 ret = i915_perf_poll_locked(dev_priv, stream, file, wait); 2508 mutex_unlock(&dev_priv->perf.lock); 2509 2510 return ret; 2511 } 2512 2513 /** 2514 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 2515 * @stream: A disabled i915 perf stream 2516 * 2517 * [Re]enables the associated capture of data for this stream. 2518 * 2519 * If a stream was previously enabled then there's currently no intention 2520 * to provide userspace any guarantee about the preservation of previously 2521 * buffered data. 2522 */ 2523 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 2524 { 2525 if (stream->enabled) 2526 return; 2527 2528 /* Allow stream->ops->enable() to refer to this */ 2529 stream->enabled = true; 2530 2531 if (stream->ops->enable) 2532 stream->ops->enable(stream); 2533 } 2534 2535 /** 2536 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 2537 * @stream: An enabled i915 perf stream 2538 * 2539 * Disables the associated capture of data for this stream. 2540 * 2541 * The intention is that disabling an re-enabling a stream will ideally be 2542 * cheaper than destroying and re-opening a stream with the same configuration, 2543 * though there are no formal guarantees about what state or buffered data 2544 * must be retained between disabling and re-enabling a stream. 2545 * 2546 * Note: while a stream is disabled it's considered an error for userspace 2547 * to attempt to read from the stream (-EIO). 2548 */ 2549 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 2550 { 2551 if (!stream->enabled) 2552 return; 2553 2554 /* Allow stream->ops->disable() to refer to this */ 2555 stream->enabled = false; 2556 2557 if (stream->ops->disable) 2558 stream->ops->disable(stream); 2559 } 2560 2561 /** 2562 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 2563 * @stream: An i915 perf stream 2564 * @cmd: the ioctl request 2565 * @arg: the ioctl data 2566 * 2567 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2568 * with any non-file-operation driver hooks. 2569 * 2570 * Returns: zero on success or a negative error code. Returns -EINVAL for 2571 * an unknown ioctl request. 2572 */ 2573 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 2574 unsigned int cmd, 2575 unsigned long arg) 2576 { 2577 switch (cmd) { 2578 case I915_PERF_IOCTL_ENABLE: 2579 i915_perf_enable_locked(stream); 2580 return 0; 2581 case I915_PERF_IOCTL_DISABLE: 2582 i915_perf_disable_locked(stream); 2583 return 0; 2584 } 2585 2586 return -EINVAL; 2587 } 2588 2589 /** 2590 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 2591 * @file: An i915 perf stream file 2592 * @cmd: the ioctl request 2593 * @arg: the ioctl data 2594 * 2595 * Implementation deferred to i915_perf_ioctl_locked(). 2596 * 2597 * Returns: zero on success or a negative error code. Returns -EINVAL for 2598 * an unknown ioctl request. 2599 */ 2600 static long i915_perf_ioctl(struct file *file, 2601 unsigned int cmd, 2602 unsigned long arg) 2603 { 2604 struct i915_perf_stream *stream = file->private_data; 2605 struct drm_i915_private *dev_priv = stream->dev_priv; 2606 long ret; 2607 2608 mutex_lock(&dev_priv->perf.lock); 2609 ret = i915_perf_ioctl_locked(stream, cmd, arg); 2610 mutex_unlock(&dev_priv->perf.lock); 2611 2612 return ret; 2613 } 2614 2615 /** 2616 * i915_perf_destroy_locked - destroy an i915 perf stream 2617 * @stream: An i915 perf stream 2618 * 2619 * Frees all resources associated with the given i915 perf @stream, disabling 2620 * any associated data capture in the process. 2621 * 2622 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2623 * with any non-file-operation driver hooks. 2624 */ 2625 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 2626 { 2627 if (stream->enabled) 2628 i915_perf_disable_locked(stream); 2629 2630 if (stream->ops->destroy) 2631 stream->ops->destroy(stream); 2632 2633 list_del(&stream->link); 2634 2635 if (stream->ctx) 2636 i915_gem_context_put(stream->ctx); 2637 2638 kfree(stream); 2639 } 2640 2641 /** 2642 * i915_perf_release - handles userspace close() of a stream file 2643 * @inode: anonymous inode associated with file 2644 * @file: An i915 perf stream file 2645 * 2646 * Cleans up any resources associated with an open i915 perf stream file. 2647 * 2648 * NB: close() can't really fail from the userspace point of view. 2649 * 2650 * Returns: zero on success or a negative error code. 2651 */ 2652 static int i915_perf_release(struct inode *inode, struct file *file) 2653 { 2654 struct i915_perf_stream *stream = file->private_data; 2655 struct drm_i915_private *dev_priv = stream->dev_priv; 2656 2657 mutex_lock(&dev_priv->perf.lock); 2658 i915_perf_destroy_locked(stream); 2659 mutex_unlock(&dev_priv->perf.lock); 2660 2661 /* Release the reference the perf stream kept on the driver. */ 2662 drm_dev_put(&dev_priv->drm); 2663 2664 return 0; 2665 } 2666 2667 2668 static const struct file_operations fops = { 2669 .owner = THIS_MODULE, 2670 .llseek = no_llseek, 2671 .release = i915_perf_release, 2672 .poll = i915_perf_poll, 2673 .read = i915_perf_read, 2674 .unlocked_ioctl = i915_perf_ioctl, 2675 /* Our ioctl have no arguments, so it's safe to use the same function 2676 * to handle 32bits compatibility. 2677 */ 2678 .compat_ioctl = i915_perf_ioctl, 2679 }; 2680 2681 2682 /** 2683 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 2684 * @dev_priv: i915 device instance 2685 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 2686 * @props: individually validated u64 property value pairs 2687 * @file: drm file 2688 * 2689 * See i915_perf_ioctl_open() for interface details. 2690 * 2691 * Implements further stream config validation and stream initialization on 2692 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex 2693 * taken to serialize with any non-file-operation driver hooks. 2694 * 2695 * Note: at this point the @props have only been validated in isolation and 2696 * it's still necessary to validate that the combination of properties makes 2697 * sense. 2698 * 2699 * In the case where userspace is interested in OA unit metrics then further 2700 * config validation and stream initialization details will be handled by 2701 * i915_oa_stream_init(). The code here should only validate config state that 2702 * will be relevant to all stream types / backends. 2703 * 2704 * Returns: zero on success or a negative error code. 2705 */ 2706 static int 2707 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv, 2708 struct drm_i915_perf_open_param *param, 2709 struct perf_open_properties *props, 2710 struct drm_file *file) 2711 { 2712 struct i915_gem_context *specific_ctx = NULL; 2713 struct i915_perf_stream *stream = NULL; 2714 unsigned long f_flags = 0; 2715 bool privileged_op = true; 2716 int stream_fd; 2717 int ret; 2718 2719 if (props->single_context) { 2720 u32 ctx_handle = props->ctx_handle; 2721 struct drm_i915_file_private *file_priv = file->driver_priv; 2722 2723 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 2724 if (!specific_ctx) { 2725 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 2726 ctx_handle); 2727 ret = -ENOENT; 2728 goto err; 2729 } 2730 } 2731 2732 /* 2733 * On Haswell the OA unit supports clock gating off for a specific 2734 * context and in this mode there's no visibility of metrics for the 2735 * rest of the system, which we consider acceptable for a 2736 * non-privileged client. 2737 * 2738 * For Gen8+ the OA unit no longer supports clock gating off for a 2739 * specific context and the kernel can't securely stop the counters 2740 * from updating as system-wide / global values. Even though we can 2741 * filter reports based on the included context ID we can't block 2742 * clients from seeing the raw / global counter values via 2743 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 2744 * enable the OA unit by default. 2745 */ 2746 if (IS_HASWELL(dev_priv) && specific_ctx) 2747 privileged_op = false; 2748 2749 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 2750 * we check a dev.i915.perf_stream_paranoid sysctl option 2751 * to determine if it's ok to access system wide OA counters 2752 * without CAP_SYS_ADMIN privileges. 2753 */ 2754 if (privileged_op && 2755 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 2756 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n"); 2757 ret = -EACCES; 2758 goto err_ctx; 2759 } 2760 2761 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 2762 if (!stream) { 2763 ret = -ENOMEM; 2764 goto err_ctx; 2765 } 2766 2767 stream->dev_priv = dev_priv; 2768 stream->ctx = specific_ctx; 2769 2770 ret = i915_oa_stream_init(stream, param, props); 2771 if (ret) 2772 goto err_alloc; 2773 2774 /* we avoid simply assigning stream->sample_flags = props->sample_flags 2775 * to have _stream_init check the combination of sample flags more 2776 * thoroughly, but still this is the expected result at this point. 2777 */ 2778 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 2779 ret = -ENODEV; 2780 goto err_flags; 2781 } 2782 2783 list_add(&stream->link, &dev_priv->perf.streams); 2784 2785 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 2786 f_flags |= O_CLOEXEC; 2787 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 2788 f_flags |= O_NONBLOCK; 2789 2790 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 2791 if (stream_fd < 0) { 2792 ret = stream_fd; 2793 goto err_open; 2794 } 2795 2796 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 2797 i915_perf_enable_locked(stream); 2798 2799 /* Take a reference on the driver that will be kept with stream_fd 2800 * until its release. 2801 */ 2802 drm_dev_get(&dev_priv->drm); 2803 2804 return stream_fd; 2805 2806 err_open: 2807 list_del(&stream->link); 2808 err_flags: 2809 if (stream->ops->destroy) 2810 stream->ops->destroy(stream); 2811 err_alloc: 2812 kfree(stream); 2813 err_ctx: 2814 if (specific_ctx) 2815 i915_gem_context_put(specific_ctx); 2816 err: 2817 return ret; 2818 } 2819 2820 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent) 2821 { 2822 return div64_u64(1000000000ULL * (2ULL << exponent), 2823 1000ULL * RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz); 2824 } 2825 2826 /** 2827 * read_properties_unlocked - validate + copy userspace stream open properties 2828 * @dev_priv: i915 device instance 2829 * @uprops: The array of u64 key value pairs given by userspace 2830 * @n_props: The number of key value pairs expected in @uprops 2831 * @props: The stream configuration built up while validating properties 2832 * 2833 * Note this function only validates properties in isolation it doesn't 2834 * validate that the combination of properties makes sense or that all 2835 * properties necessary for a particular kind of stream have been set. 2836 * 2837 * Note that there currently aren't any ordering requirements for properties so 2838 * we shouldn't validate or assume anything about ordering here. This doesn't 2839 * rule out defining new properties with ordering requirements in the future. 2840 */ 2841 static int read_properties_unlocked(struct drm_i915_private *dev_priv, 2842 u64 __user *uprops, 2843 u32 n_props, 2844 struct perf_open_properties *props) 2845 { 2846 u64 __user *uprop = uprops; 2847 u32 i; 2848 2849 memset(props, 0, sizeof(struct perf_open_properties)); 2850 2851 if (!n_props) { 2852 DRM_DEBUG("No i915 perf properties given\n"); 2853 return -EINVAL; 2854 } 2855 2856 /* Considering that ID = 0 is reserved and assuming that we don't 2857 * (currently) expect any configurations to ever specify duplicate 2858 * values for a particular property ID then the last _PROP_MAX value is 2859 * one greater than the maximum number of properties we expect to get 2860 * from userspace. 2861 */ 2862 if (n_props >= DRM_I915_PERF_PROP_MAX) { 2863 DRM_DEBUG("More i915 perf properties specified than exist\n"); 2864 return -EINVAL; 2865 } 2866 2867 for (i = 0; i < n_props; i++) { 2868 u64 oa_period, oa_freq_hz; 2869 u64 id, value; 2870 int ret; 2871 2872 ret = get_user(id, uprop); 2873 if (ret) 2874 return ret; 2875 2876 ret = get_user(value, uprop + 1); 2877 if (ret) 2878 return ret; 2879 2880 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 2881 DRM_DEBUG("Unknown i915 perf property ID\n"); 2882 return -EINVAL; 2883 } 2884 2885 switch ((enum drm_i915_perf_property_id)id) { 2886 case DRM_I915_PERF_PROP_CTX_HANDLE: 2887 props->single_context = 1; 2888 props->ctx_handle = value; 2889 break; 2890 case DRM_I915_PERF_PROP_SAMPLE_OA: 2891 if (value) 2892 props->sample_flags |= SAMPLE_OA_REPORT; 2893 break; 2894 case DRM_I915_PERF_PROP_OA_METRICS_SET: 2895 if (value == 0) { 2896 DRM_DEBUG("Unknown OA metric set ID\n"); 2897 return -EINVAL; 2898 } 2899 props->metrics_set = value; 2900 break; 2901 case DRM_I915_PERF_PROP_OA_FORMAT: 2902 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 2903 DRM_DEBUG("Out-of-range OA report format %llu\n", 2904 value); 2905 return -EINVAL; 2906 } 2907 if (!dev_priv->perf.oa.oa_formats[value].size) { 2908 DRM_DEBUG("Unsupported OA report format %llu\n", 2909 value); 2910 return -EINVAL; 2911 } 2912 props->oa_format = value; 2913 break; 2914 case DRM_I915_PERF_PROP_OA_EXPONENT: 2915 if (value > OA_EXPONENT_MAX) { 2916 DRM_DEBUG("OA timer exponent too high (> %u)\n", 2917 OA_EXPONENT_MAX); 2918 return -EINVAL; 2919 } 2920 2921 /* Theoretically we can program the OA unit to sample 2922 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 2923 * for BXT. We don't allow such high sampling 2924 * frequencies by default unless root. 2925 */ 2926 2927 BUILD_BUG_ON(sizeof(oa_period) != 8); 2928 oa_period = oa_exponent_to_ns(dev_priv, value); 2929 2930 /* This check is primarily to ensure that oa_period <= 2931 * UINT32_MAX (before passing to do_div which only 2932 * accepts a u32 denominator), but we can also skip 2933 * checking anything < 1Hz which implicitly can't be 2934 * limited via an integer oa_max_sample_rate. 2935 */ 2936 if (oa_period <= NSEC_PER_SEC) { 2937 u64 tmp = NSEC_PER_SEC; 2938 do_div(tmp, oa_period); 2939 oa_freq_hz = tmp; 2940 } else 2941 oa_freq_hz = 0; 2942 2943 if (oa_freq_hz > i915_oa_max_sample_rate && 2944 !capable(CAP_SYS_ADMIN)) { 2945 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n", 2946 i915_oa_max_sample_rate); 2947 return -EACCES; 2948 } 2949 2950 props->oa_periodic = true; 2951 props->oa_period_exponent = value; 2952 break; 2953 case DRM_I915_PERF_PROP_MAX: 2954 MISSING_CASE(id); 2955 return -EINVAL; 2956 } 2957 2958 uprop += 2; 2959 } 2960 2961 return 0; 2962 } 2963 2964 /** 2965 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 2966 * @dev: drm device 2967 * @data: ioctl data copied from userspace (unvalidated) 2968 * @file: drm file 2969 * 2970 * Validates the stream open parameters given by userspace including flags 2971 * and an array of u64 key, value pair properties. 2972 * 2973 * Very little is assumed up front about the nature of the stream being 2974 * opened (for instance we don't assume it's for periodic OA unit metrics). An 2975 * i915-perf stream is expected to be a suitable interface for other forms of 2976 * buffered data written by the GPU besides periodic OA metrics. 2977 * 2978 * Note we copy the properties from userspace outside of the i915 perf 2979 * mutex to avoid an awkward lockdep with mmap_sem. 2980 * 2981 * Most of the implementation details are handled by 2982 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock 2983 * mutex for serializing with any non-file-operation driver hooks. 2984 * 2985 * Return: A newly opened i915 Perf stream file descriptor or negative 2986 * error code on failure. 2987 */ 2988 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 2989 struct drm_file *file) 2990 { 2991 struct drm_i915_private *dev_priv = dev->dev_private; 2992 struct drm_i915_perf_open_param *param = data; 2993 struct perf_open_properties props; 2994 u32 known_open_flags; 2995 int ret; 2996 2997 if (!dev_priv->perf.initialized) { 2998 DRM_DEBUG("i915 perf interface not available for this system\n"); 2999 return -ENOTSUPP; 3000 } 3001 3002 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3003 I915_PERF_FLAG_FD_NONBLOCK | 3004 I915_PERF_FLAG_DISABLED; 3005 if (param->flags & ~known_open_flags) { 3006 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 3007 return -EINVAL; 3008 } 3009 3010 ret = read_properties_unlocked(dev_priv, 3011 u64_to_user_ptr(param->properties_ptr), 3012 param->num_properties, 3013 &props); 3014 if (ret) 3015 return ret; 3016 3017 mutex_lock(&dev_priv->perf.lock); 3018 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file); 3019 mutex_unlock(&dev_priv->perf.lock); 3020 3021 return ret; 3022 } 3023 3024 /** 3025 * i915_perf_register - exposes i915-perf to userspace 3026 * @dev_priv: i915 device instance 3027 * 3028 * In particular OA metric sets are advertised under a sysfs metrics/ 3029 * directory allowing userspace to enumerate valid IDs that can be 3030 * used to open an i915-perf stream. 3031 */ 3032 void i915_perf_register(struct drm_i915_private *dev_priv) 3033 { 3034 int ret; 3035 3036 if (!dev_priv->perf.initialized) 3037 return; 3038 3039 /* To be sure we're synchronized with an attempted 3040 * i915_perf_open_ioctl(); considering that we register after 3041 * being exposed to userspace. 3042 */ 3043 mutex_lock(&dev_priv->perf.lock); 3044 3045 dev_priv->perf.metrics_kobj = 3046 kobject_create_and_add("metrics", 3047 &dev_priv->drm.primary->kdev->kobj); 3048 if (!dev_priv->perf.metrics_kobj) 3049 goto exit; 3050 3051 sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr); 3052 3053 if (INTEL_GEN(dev_priv) >= 11) { 3054 i915_perf_load_test_config_icl(dev_priv); 3055 } else if (IS_CANNONLAKE(dev_priv)) { 3056 i915_perf_load_test_config_cnl(dev_priv); 3057 } else if (IS_COFFEELAKE(dev_priv)) { 3058 if (IS_CFL_GT2(dev_priv)) 3059 i915_perf_load_test_config_cflgt2(dev_priv); 3060 if (IS_CFL_GT3(dev_priv)) 3061 i915_perf_load_test_config_cflgt3(dev_priv); 3062 } else if (IS_GEMINILAKE(dev_priv)) { 3063 i915_perf_load_test_config_glk(dev_priv); 3064 } else if (IS_KABYLAKE(dev_priv)) { 3065 if (IS_KBL_GT2(dev_priv)) 3066 i915_perf_load_test_config_kblgt2(dev_priv); 3067 else if (IS_KBL_GT3(dev_priv)) 3068 i915_perf_load_test_config_kblgt3(dev_priv); 3069 } else if (IS_BROXTON(dev_priv)) { 3070 i915_perf_load_test_config_bxt(dev_priv); 3071 } else if (IS_SKYLAKE(dev_priv)) { 3072 if (IS_SKL_GT2(dev_priv)) 3073 i915_perf_load_test_config_sklgt2(dev_priv); 3074 else if (IS_SKL_GT3(dev_priv)) 3075 i915_perf_load_test_config_sklgt3(dev_priv); 3076 else if (IS_SKL_GT4(dev_priv)) 3077 i915_perf_load_test_config_sklgt4(dev_priv); 3078 } else if (IS_CHERRYVIEW(dev_priv)) { 3079 i915_perf_load_test_config_chv(dev_priv); 3080 } else if (IS_BROADWELL(dev_priv)) { 3081 i915_perf_load_test_config_bdw(dev_priv); 3082 } else if (IS_HASWELL(dev_priv)) { 3083 i915_perf_load_test_config_hsw(dev_priv); 3084 } 3085 3086 if (dev_priv->perf.oa.test_config.id == 0) 3087 goto sysfs_error; 3088 3089 ret = sysfs_create_group(dev_priv->perf.metrics_kobj, 3090 &dev_priv->perf.oa.test_config.sysfs_metric); 3091 if (ret) 3092 goto sysfs_error; 3093 3094 atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1); 3095 3096 goto exit; 3097 3098 sysfs_error: 3099 kobject_put(dev_priv->perf.metrics_kobj); 3100 dev_priv->perf.metrics_kobj = NULL; 3101 3102 exit: 3103 mutex_unlock(&dev_priv->perf.lock); 3104 } 3105 3106 /** 3107 * i915_perf_unregister - hide i915-perf from userspace 3108 * @dev_priv: i915 device instance 3109 * 3110 * i915-perf state cleanup is split up into an 'unregister' and 3111 * 'deinit' phase where the interface is first hidden from 3112 * userspace by i915_perf_unregister() before cleaning up 3113 * remaining state in i915_perf_fini(). 3114 */ 3115 void i915_perf_unregister(struct drm_i915_private *dev_priv) 3116 { 3117 if (!dev_priv->perf.metrics_kobj) 3118 return; 3119 3120 sysfs_remove_group(dev_priv->perf.metrics_kobj, 3121 &dev_priv->perf.oa.test_config.sysfs_metric); 3122 3123 kobject_put(dev_priv->perf.metrics_kobj); 3124 dev_priv->perf.metrics_kobj = NULL; 3125 } 3126 3127 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr) 3128 { 3129 static const i915_reg_t flex_eu_regs[] = { 3130 EU_PERF_CNTL0, 3131 EU_PERF_CNTL1, 3132 EU_PERF_CNTL2, 3133 EU_PERF_CNTL3, 3134 EU_PERF_CNTL4, 3135 EU_PERF_CNTL5, 3136 EU_PERF_CNTL6, 3137 }; 3138 int i; 3139 3140 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3141 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3142 return true; 3143 } 3144 return false; 3145 } 3146 3147 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr) 3148 { 3149 return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) && 3150 addr <= i915_mmio_reg_offset(OASTARTTRIG8)) || 3151 (addr >= i915_mmio_reg_offset(OAREPORTTRIG1) && 3152 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) || 3153 (addr >= i915_mmio_reg_offset(OACEC0_0) && 3154 addr <= i915_mmio_reg_offset(OACEC7_1)); 3155 } 3156 3157 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3158 { 3159 return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) || 3160 (addr >= i915_mmio_reg_offset(MICRO_BP0_0) && 3161 addr <= i915_mmio_reg_offset(NOA_WRITE)) || 3162 (addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) && 3163 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) || 3164 (addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) && 3165 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI)); 3166 } 3167 3168 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3169 { 3170 return gen7_is_valid_mux_addr(dev_priv, addr) || 3171 addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) || 3172 (addr >= i915_mmio_reg_offset(RPM_CONFIG0) && 3173 addr <= i915_mmio_reg_offset(NOA_CONFIG(8))); 3174 } 3175 3176 static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3177 { 3178 return gen8_is_valid_mux_addr(dev_priv, addr) || 3179 addr == i915_mmio_reg_offset(GEN10_NOA_WRITE_HIGH) || 3180 (addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) && 3181 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI)); 3182 } 3183 3184 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3185 { 3186 return gen7_is_valid_mux_addr(dev_priv, addr) || 3187 (addr >= 0x25100 && addr <= 0x2FF90) || 3188 (addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) && 3189 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) || 3190 addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0); 3191 } 3192 3193 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3194 { 3195 return gen7_is_valid_mux_addr(dev_priv, addr) || 3196 (addr >= 0x182300 && addr <= 0x1823A4); 3197 } 3198 3199 static u32 mask_reg_value(u32 reg, u32 val) 3200 { 3201 /* HALF_SLICE_CHICKEN2 is programmed with a the 3202 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3203 * programmed by userspace doesn't change this. 3204 */ 3205 if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg) 3206 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3207 3208 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3209 * indicated by its name and a bunch of selection fields used by OA 3210 * configs. 3211 */ 3212 if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg) 3213 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3214 3215 return val; 3216 } 3217 3218 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv, 3219 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr), 3220 u32 __user *regs, 3221 u32 n_regs) 3222 { 3223 struct i915_oa_reg *oa_regs; 3224 int err; 3225 u32 i; 3226 3227 if (!n_regs) 3228 return NULL; 3229 3230 if (!access_ok(regs, n_regs * sizeof(u32) * 2)) 3231 return ERR_PTR(-EFAULT); 3232 3233 /* No is_valid function means we're not allowing any register to be programmed. */ 3234 GEM_BUG_ON(!is_valid); 3235 if (!is_valid) 3236 return ERR_PTR(-EINVAL); 3237 3238 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3239 if (!oa_regs) 3240 return ERR_PTR(-ENOMEM); 3241 3242 for (i = 0; i < n_regs; i++) { 3243 u32 addr, value; 3244 3245 err = get_user(addr, regs); 3246 if (err) 3247 goto addr_err; 3248 3249 if (!is_valid(dev_priv, addr)) { 3250 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3251 err = -EINVAL; 3252 goto addr_err; 3253 } 3254 3255 err = get_user(value, regs + 1); 3256 if (err) 3257 goto addr_err; 3258 3259 oa_regs[i].addr = _MMIO(addr); 3260 oa_regs[i].value = mask_reg_value(addr, value); 3261 3262 regs += 2; 3263 } 3264 3265 return oa_regs; 3266 3267 addr_err: 3268 kfree(oa_regs); 3269 return ERR_PTR(err); 3270 } 3271 3272 static ssize_t show_dynamic_id(struct device *dev, 3273 struct device_attribute *attr, 3274 char *buf) 3275 { 3276 struct i915_oa_config *oa_config = 3277 container_of(attr, typeof(*oa_config), sysfs_metric_id); 3278 3279 return sprintf(buf, "%d\n", oa_config->id); 3280 } 3281 3282 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv, 3283 struct i915_oa_config *oa_config) 3284 { 3285 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 3286 oa_config->sysfs_metric_id.attr.name = "id"; 3287 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 3288 oa_config->sysfs_metric_id.show = show_dynamic_id; 3289 oa_config->sysfs_metric_id.store = NULL; 3290 3291 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 3292 oa_config->attrs[1] = NULL; 3293 3294 oa_config->sysfs_metric.name = oa_config->uuid; 3295 oa_config->sysfs_metric.attrs = oa_config->attrs; 3296 3297 return sysfs_create_group(dev_priv->perf.metrics_kobj, 3298 &oa_config->sysfs_metric); 3299 } 3300 3301 /** 3302 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 3303 * @dev: drm device 3304 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 3305 * userspace (unvalidated) 3306 * @file: drm file 3307 * 3308 * Validates the submitted OA register to be saved into a new OA config that 3309 * can then be used for programming the OA unit and its NOA network. 3310 * 3311 * Returns: A new allocated config number to be used with the perf open ioctl 3312 * or a negative error code on failure. 3313 */ 3314 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3315 struct drm_file *file) 3316 { 3317 struct drm_i915_private *dev_priv = dev->dev_private; 3318 struct drm_i915_perf_oa_config *args = data; 3319 struct i915_oa_config *oa_config, *tmp; 3320 int err, id; 3321 3322 if (!dev_priv->perf.initialized) { 3323 DRM_DEBUG("i915 perf interface not available for this system\n"); 3324 return -ENOTSUPP; 3325 } 3326 3327 if (!dev_priv->perf.metrics_kobj) { 3328 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 3329 return -EINVAL; 3330 } 3331 3332 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3333 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 3334 return -EACCES; 3335 } 3336 3337 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 3338 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 3339 (!args->flex_regs_ptr || !args->n_flex_regs)) { 3340 DRM_DEBUG("No OA registers given\n"); 3341 return -EINVAL; 3342 } 3343 3344 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 3345 if (!oa_config) { 3346 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 3347 return -ENOMEM; 3348 } 3349 3350 atomic_set(&oa_config->ref_count, 1); 3351 3352 if (!uuid_is_valid(args->uuid)) { 3353 DRM_DEBUG("Invalid uuid format for OA config\n"); 3354 err = -EINVAL; 3355 goto reg_err; 3356 } 3357 3358 /* Last character in oa_config->uuid will be 0 because oa_config is 3359 * kzalloc. 3360 */ 3361 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 3362 3363 oa_config->mux_regs_len = args->n_mux_regs; 3364 oa_config->mux_regs = 3365 alloc_oa_regs(dev_priv, 3366 dev_priv->perf.oa.ops.is_valid_mux_reg, 3367 u64_to_user_ptr(args->mux_regs_ptr), 3368 args->n_mux_regs); 3369 3370 if (IS_ERR(oa_config->mux_regs)) { 3371 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 3372 err = PTR_ERR(oa_config->mux_regs); 3373 goto reg_err; 3374 } 3375 3376 oa_config->b_counter_regs_len = args->n_boolean_regs; 3377 oa_config->b_counter_regs = 3378 alloc_oa_regs(dev_priv, 3379 dev_priv->perf.oa.ops.is_valid_b_counter_reg, 3380 u64_to_user_ptr(args->boolean_regs_ptr), 3381 args->n_boolean_regs); 3382 3383 if (IS_ERR(oa_config->b_counter_regs)) { 3384 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 3385 err = PTR_ERR(oa_config->b_counter_regs); 3386 goto reg_err; 3387 } 3388 3389 if (INTEL_GEN(dev_priv) < 8) { 3390 if (args->n_flex_regs != 0) { 3391 err = -EINVAL; 3392 goto reg_err; 3393 } 3394 } else { 3395 oa_config->flex_regs_len = args->n_flex_regs; 3396 oa_config->flex_regs = 3397 alloc_oa_regs(dev_priv, 3398 dev_priv->perf.oa.ops.is_valid_flex_reg, 3399 u64_to_user_ptr(args->flex_regs_ptr), 3400 args->n_flex_regs); 3401 3402 if (IS_ERR(oa_config->flex_regs)) { 3403 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 3404 err = PTR_ERR(oa_config->flex_regs); 3405 goto reg_err; 3406 } 3407 } 3408 3409 err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 3410 if (err) 3411 goto reg_err; 3412 3413 /* We shouldn't have too many configs, so this iteration shouldn't be 3414 * too costly. 3415 */ 3416 idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) { 3417 if (!strcmp(tmp->uuid, oa_config->uuid)) { 3418 DRM_DEBUG("OA config already exists with this uuid\n"); 3419 err = -EADDRINUSE; 3420 goto sysfs_err; 3421 } 3422 } 3423 3424 err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config); 3425 if (err) { 3426 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 3427 goto sysfs_err; 3428 } 3429 3430 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 3431 oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr, 3432 oa_config, 2, 3433 0, GFP_KERNEL); 3434 if (oa_config->id < 0) { 3435 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 3436 err = oa_config->id; 3437 goto sysfs_err; 3438 } 3439 3440 mutex_unlock(&dev_priv->perf.metrics_lock); 3441 3442 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 3443 3444 return oa_config->id; 3445 3446 sysfs_err: 3447 mutex_unlock(&dev_priv->perf.metrics_lock); 3448 reg_err: 3449 put_oa_config(dev_priv, oa_config); 3450 DRM_DEBUG("Failed to add new OA config\n"); 3451 return err; 3452 } 3453 3454 /** 3455 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 3456 * @dev: drm device 3457 * @data: ioctl data (pointer to u64 integer) copied from userspace 3458 * @file: drm file 3459 * 3460 * Configs can be removed while being used, the will stop appearing in sysfs 3461 * and their content will be freed when the stream using the config is closed. 3462 * 3463 * Returns: 0 on success or a negative error code on failure. 3464 */ 3465 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3466 struct drm_file *file) 3467 { 3468 struct drm_i915_private *dev_priv = dev->dev_private; 3469 u64 *arg = data; 3470 struct i915_oa_config *oa_config; 3471 int ret; 3472 3473 if (!dev_priv->perf.initialized) { 3474 DRM_DEBUG("i915 perf interface not available for this system\n"); 3475 return -ENOTSUPP; 3476 } 3477 3478 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3479 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 3480 return -EACCES; 3481 } 3482 3483 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 3484 if (ret) 3485 goto lock_err; 3486 3487 oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg); 3488 if (!oa_config) { 3489 DRM_DEBUG("Failed to remove unknown OA config\n"); 3490 ret = -ENOENT; 3491 goto config_err; 3492 } 3493 3494 GEM_BUG_ON(*arg != oa_config->id); 3495 3496 sysfs_remove_group(dev_priv->perf.metrics_kobj, 3497 &oa_config->sysfs_metric); 3498 3499 idr_remove(&dev_priv->perf.metrics_idr, *arg); 3500 3501 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 3502 3503 put_oa_config(dev_priv, oa_config); 3504 3505 config_err: 3506 mutex_unlock(&dev_priv->perf.metrics_lock); 3507 lock_err: 3508 return ret; 3509 } 3510 3511 static struct ctl_table oa_table[] = { 3512 { 3513 .procname = "perf_stream_paranoid", 3514 .data = &i915_perf_stream_paranoid, 3515 .maxlen = sizeof(i915_perf_stream_paranoid), 3516 .mode = 0644, 3517 .proc_handler = proc_dointvec_minmax, 3518 .extra1 = SYSCTL_ZERO, 3519 .extra2 = SYSCTL_ONE, 3520 }, 3521 { 3522 .procname = "oa_max_sample_rate", 3523 .data = &i915_oa_max_sample_rate, 3524 .maxlen = sizeof(i915_oa_max_sample_rate), 3525 .mode = 0644, 3526 .proc_handler = proc_dointvec_minmax, 3527 .extra1 = SYSCTL_ZERO, 3528 .extra2 = &oa_sample_rate_hard_limit, 3529 }, 3530 {} 3531 }; 3532 3533 static struct ctl_table i915_root[] = { 3534 { 3535 .procname = "i915", 3536 .maxlen = 0, 3537 .mode = 0555, 3538 .child = oa_table, 3539 }, 3540 {} 3541 }; 3542 3543 static struct ctl_table dev_root[] = { 3544 { 3545 .procname = "dev", 3546 .maxlen = 0, 3547 .mode = 0555, 3548 .child = i915_root, 3549 }, 3550 {} 3551 }; 3552 3553 /** 3554 * i915_perf_init - initialize i915-perf state on module load 3555 * @dev_priv: i915 device instance 3556 * 3557 * Initializes i915-perf state without exposing anything to userspace. 3558 * 3559 * Note: i915-perf initialization is split into an 'init' and 'register' 3560 * phase with the i915_perf_register() exposing state to userspace. 3561 */ 3562 void i915_perf_init(struct drm_i915_private *dev_priv) 3563 { 3564 if (IS_HASWELL(dev_priv)) { 3565 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3566 gen7_is_valid_b_counter_addr; 3567 dev_priv->perf.oa.ops.is_valid_mux_reg = 3568 hsw_is_valid_mux_addr; 3569 dev_priv->perf.oa.ops.is_valid_flex_reg = NULL; 3570 dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set; 3571 dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set; 3572 dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable; 3573 dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable; 3574 dev_priv->perf.oa.ops.read = gen7_oa_read; 3575 dev_priv->perf.oa.ops.oa_hw_tail_read = 3576 gen7_oa_hw_tail_read; 3577 3578 dev_priv->perf.oa.oa_formats = hsw_oa_formats; 3579 } else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) { 3580 /* Note: that although we could theoretically also support the 3581 * legacy ringbuffer mode on BDW (and earlier iterations of 3582 * this driver, before upstreaming did this) it didn't seem 3583 * worth the complexity to maintain now that BDW+ enable 3584 * execlist mode by default. 3585 */ 3586 dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats; 3587 3588 dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable; 3589 dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable; 3590 dev_priv->perf.oa.ops.read = gen8_oa_read; 3591 dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 3592 3593 if (IS_GEN_RANGE(dev_priv, 8, 9)) { 3594 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3595 gen7_is_valid_b_counter_addr; 3596 dev_priv->perf.oa.ops.is_valid_mux_reg = 3597 gen8_is_valid_mux_addr; 3598 dev_priv->perf.oa.ops.is_valid_flex_reg = 3599 gen8_is_valid_flex_addr; 3600 3601 if (IS_CHERRYVIEW(dev_priv)) { 3602 dev_priv->perf.oa.ops.is_valid_mux_reg = 3603 chv_is_valid_mux_addr; 3604 } 3605 3606 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set; 3607 dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set; 3608 3609 if (IS_GEN(dev_priv, 8)) { 3610 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120; 3611 dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce; 3612 3613 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25); 3614 } else { 3615 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128; 3616 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de; 3617 3618 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16); 3619 } 3620 } else if (IS_GEN_RANGE(dev_priv, 10, 11)) { 3621 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3622 gen7_is_valid_b_counter_addr; 3623 dev_priv->perf.oa.ops.is_valid_mux_reg = 3624 gen10_is_valid_mux_addr; 3625 dev_priv->perf.oa.ops.is_valid_flex_reg = 3626 gen8_is_valid_flex_addr; 3627 3628 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set; 3629 dev_priv->perf.oa.ops.disable_metric_set = gen10_disable_metric_set; 3630 3631 if (IS_GEN(dev_priv, 10)) { 3632 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128; 3633 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de; 3634 } else { 3635 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x124; 3636 dev_priv->perf.oa.ctx_flexeu0_offset = 0x78e; 3637 } 3638 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16); 3639 } 3640 } 3641 3642 if (dev_priv->perf.oa.ops.enable_metric_set) { 3643 hrtimer_init(&dev_priv->perf.oa.poll_check_timer, 3644 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3645 dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb; 3646 init_waitqueue_head(&dev_priv->perf.oa.poll_wq); 3647 3648 INIT_LIST_HEAD(&dev_priv->perf.streams); 3649 mutex_init(&dev_priv->perf.lock); 3650 spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock); 3651 3652 oa_sample_rate_hard_limit = 1000 * 3653 (RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz / 2); 3654 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root); 3655 3656 mutex_init(&dev_priv->perf.metrics_lock); 3657 idr_init(&dev_priv->perf.metrics_idr); 3658 3659 dev_priv->perf.initialized = true; 3660 } 3661 } 3662 3663 static int destroy_config(int id, void *p, void *data) 3664 { 3665 struct drm_i915_private *dev_priv = data; 3666 struct i915_oa_config *oa_config = p; 3667 3668 put_oa_config(dev_priv, oa_config); 3669 3670 return 0; 3671 } 3672 3673 /** 3674 * i915_perf_fini - Counter part to i915_perf_init() 3675 * @dev_priv: i915 device instance 3676 */ 3677 void i915_perf_fini(struct drm_i915_private *dev_priv) 3678 { 3679 if (!dev_priv->perf.initialized) 3680 return; 3681 3682 idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv); 3683 idr_destroy(&dev_priv->perf.metrics_idr); 3684 3685 unregister_sysctl_table(dev_priv->perf.sysctl_header); 3686 3687 memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops)); 3688 3689 dev_priv->perf.initialized = false; 3690 } 3691