xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision 98b37770)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/nospec.h>
196 #include <linux/sizes.h>
197 #include <linux/uuid.h>
198 
199 #include "gem/i915_gem_context.h"
200 #include "gem/i915_gem_internal.h"
201 #include "gt/intel_engine_pm.h"
202 #include "gt/intel_engine_regs.h"
203 #include "gt/intel_engine_user.h"
204 #include "gt/intel_execlists_submission.h"
205 #include "gt/intel_gpu_commands.h"
206 #include "gt/intel_gt.h"
207 #include "gt/intel_gt_clock_utils.h"
208 #include "gt/intel_gt_mcr.h"
209 #include "gt/intel_gt_regs.h"
210 #include "gt/intel_lrc.h"
211 #include "gt/intel_lrc_reg.h"
212 #include "gt/intel_rc6.h"
213 #include "gt/intel_ring.h"
214 #include "gt/uc/intel_guc_slpc.h"
215 
216 #include "i915_drv.h"
217 #include "i915_file_private.h"
218 #include "i915_perf.h"
219 #include "i915_perf_oa_regs.h"
220 #include "i915_reg.h"
221 
222 /* HW requires this to be a power of two, between 128k and 16M, though driver
223  * is currently generally designed assuming the largest 16M size is used such
224  * that the overflow cases are unlikely in normal operation.
225  */
226 #define OA_BUFFER_SIZE		SZ_16M
227 
228 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
229 
230 /**
231  * DOC: OA Tail Pointer Race
232  *
233  * There's a HW race condition between OA unit tail pointer register updates and
234  * writes to memory whereby the tail pointer can sometimes get ahead of what's
235  * been written out to the OA buffer so far (in terms of what's visible to the
236  * CPU).
237  *
238  * Although this can be observed explicitly while copying reports to userspace
239  * by checking for a zeroed report-id field in tail reports, we want to account
240  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
241  * redundant read() attempts.
242  *
243  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
244  * in the OA buffer, starting from the tail reported by the HW until we find a
245  * report with its first 2 dwords not 0 meaning its previous report is
246  * completely in memory and ready to be read. Those dwords are also set to 0
247  * once read and the whole buffer is cleared upon OA buffer initialization. The
248  * first dword is the reason for this report while the second is the timestamp,
249  * making the chances of having those 2 fields at 0 fairly unlikely. A more
250  * detailed explanation is available in oa_buffer_check_unlocked().
251  *
252  * Most of the implementation details for this workaround are in
253  * oa_buffer_check_unlocked() and _append_oa_reports()
254  *
255  * Note for posterity: previously the driver used to define an effective tail
256  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
257  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
258  * This was flawed considering that the OA unit may also automatically generate
259  * non-periodic reports (such as on context switch) or the OA unit may be
260  * enabled without any periodic sampling.
261  */
262 #define OA_TAIL_MARGIN_NSEC	100000ULL
263 #define INVALID_TAIL_PTR	0xffffffff
264 
265 /* The default frequency for checking whether the OA unit has written new
266  * reports to the circular OA buffer...
267  */
268 #define DEFAULT_POLL_FREQUENCY_HZ 200
269 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
270 
271 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
272 static u32 i915_perf_stream_paranoid = true;
273 
274 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
275  * of the 64bit timestamp bits to trigger reports from) but there's currently
276  * no known use case for sampling as infrequently as once per 47 thousand years.
277  *
278  * Since the timestamps included in OA reports are only 32bits it seems
279  * reasonable to limit the OA exponent where it's still possible to account for
280  * overflow in OA report timestamps.
281  */
282 #define OA_EXPONENT_MAX 31
283 
284 #define INVALID_CTX_ID 0xffffffff
285 
286 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
287 #define OAREPORT_REASON_MASK           0x3f
288 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
289 #define OAREPORT_REASON_SHIFT          19
290 #define OAREPORT_REASON_TIMER          (1<<0)
291 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
292 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
293 
294 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
295 
296 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
297  *
298  * The highest sampling frequency we can theoretically program the OA unit
299  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
300  *
301  * Initialized just before we register the sysctl parameter.
302  */
303 static int oa_sample_rate_hard_limit;
304 
305 /* Theoretically we can program the OA unit to sample every 160ns but don't
306  * allow that by default unless root...
307  *
308  * The default threshold of 100000Hz is based on perf's similar
309  * kernel.perf_event_max_sample_rate sysctl parameter.
310  */
311 static u32 i915_oa_max_sample_rate = 100000;
312 
313 /* XXX: beware if future OA HW adds new report formats that the current
314  * code assumes all reports have a power-of-two size and ~(size - 1) can
315  * be used as a mask to align the OA tail pointer.
316  */
317 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
318 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
319 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
320 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
321 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
322 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
323 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
324 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
325 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
326 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
327 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
328 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
329 	[I915_OAR_FORMAT_A32u40_A4u32_B8_C8]    = { 5, 256 },
330 	[I915_OA_FORMAT_A24u40_A14u32_B8_C8]    = { 5, 256 },
331 	[I915_OAM_FORMAT_MPEC8u64_B8_C8]	= { 1, 192, TYPE_OAM, HDR_64_BIT },
332 	[I915_OAM_FORMAT_MPEC8u32_B8_C8]	= { 2, 128, TYPE_OAM, HDR_64_BIT },
333 };
334 
335 static const u32 mtl_oa_base[] = {
336 	[PERF_GROUP_OAM_SAMEDIA_0] = 0x393000,
337 };
338 
339 #define SAMPLE_OA_REPORT      (1<<0)
340 
341 /**
342  * struct perf_open_properties - for validated properties given to open a stream
343  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
344  * @single_context: Whether a single or all gpu contexts should be monitored
345  * @hold_preemption: Whether the preemption is disabled for the filtered
346  *                   context
347  * @ctx_handle: A gem ctx handle for use with @single_context
348  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
349  * @oa_format: An OA unit HW report format
350  * @oa_periodic: Whether to enable periodic OA unit sampling
351  * @oa_period_exponent: The OA unit sampling period is derived from this
352  * @engine: The engine (typically rcs0) being monitored by the OA unit
353  * @has_sseu: Whether @sseu was specified by userspace
354  * @sseu: internal SSEU configuration computed either from the userspace
355  *        specified configuration in the opening parameters or a default value
356  *        (see get_default_sseu_config())
357  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
358  * data availability
359  *
360  * As read_properties_unlocked() enumerates and validates the properties given
361  * to open a stream of metrics the configuration is built up in the structure
362  * which starts out zero initialized.
363  */
364 struct perf_open_properties {
365 	u32 sample_flags;
366 
367 	u64 single_context:1;
368 	u64 hold_preemption:1;
369 	u64 ctx_handle;
370 
371 	/* OA sampling state */
372 	int metrics_set;
373 	int oa_format;
374 	bool oa_periodic;
375 	int oa_period_exponent;
376 
377 	struct intel_engine_cs *engine;
378 
379 	bool has_sseu;
380 	struct intel_sseu sseu;
381 
382 	u64 poll_oa_period;
383 };
384 
385 struct i915_oa_config_bo {
386 	struct llist_node node;
387 
388 	struct i915_oa_config *oa_config;
389 	struct i915_vma *vma;
390 };
391 
392 static struct ctl_table_header *sysctl_header;
393 
394 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
395 
396 void i915_oa_config_release(struct kref *ref)
397 {
398 	struct i915_oa_config *oa_config =
399 		container_of(ref, typeof(*oa_config), ref);
400 
401 	kfree(oa_config->flex_regs);
402 	kfree(oa_config->b_counter_regs);
403 	kfree(oa_config->mux_regs);
404 
405 	kfree_rcu(oa_config, rcu);
406 }
407 
408 struct i915_oa_config *
409 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
410 {
411 	struct i915_oa_config *oa_config;
412 
413 	rcu_read_lock();
414 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
415 	if (oa_config)
416 		oa_config = i915_oa_config_get(oa_config);
417 	rcu_read_unlock();
418 
419 	return oa_config;
420 }
421 
422 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
423 {
424 	i915_oa_config_put(oa_bo->oa_config);
425 	i915_vma_put(oa_bo->vma);
426 	kfree(oa_bo);
427 }
428 
429 static inline const
430 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream)
431 {
432 	return &stream->engine->oa_group->regs;
433 }
434 
435 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
436 {
437 	struct intel_uncore *uncore = stream->uncore;
438 
439 	return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) &
440 	       GEN12_OAG_OATAILPTR_MASK;
441 }
442 
443 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
444 {
445 	struct intel_uncore *uncore = stream->uncore;
446 
447 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
448 }
449 
450 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
451 {
452 	struct intel_uncore *uncore = stream->uncore;
453 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
454 
455 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
456 }
457 
458 #define oa_report_header_64bit(__s) \
459 	((__s)->oa_buffer.format->header == HDR_64_BIT)
460 
461 static u64 oa_report_id(struct i915_perf_stream *stream, void *report)
462 {
463 	return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report;
464 }
465 
466 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report)
467 {
468 	return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) &
469 	       (GRAPHICS_VER(stream->perf->i915) == 12 ?
470 		OAREPORT_REASON_MASK_EXTENDED :
471 		OAREPORT_REASON_MASK);
472 }
473 
474 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report)
475 {
476 	if (oa_report_header_64bit(stream))
477 		*(u64 *)report = 0;
478 	else
479 		*report = 0;
480 }
481 
482 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report)
483 {
484 	return !(oa_report_id(stream, report) &
485 	       stream->perf->gen8_valid_ctx_bit);
486 }
487 
488 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report)
489 {
490 	return oa_report_header_64bit(stream) ?
491 		*((u64 *)report + 1) :
492 		*((u32 *)report + 1);
493 }
494 
495 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report)
496 {
497 	if (oa_report_header_64bit(stream))
498 		*(u64 *)&report[2] = 0;
499 	else
500 		report[1] = 0;
501 }
502 
503 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report)
504 {
505 	u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2];
506 
507 	return ctx_id & stream->specific_ctx_id_mask;
508 }
509 
510 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report)
511 {
512 	if (oa_report_header_64bit(stream))
513 		report[4] = INVALID_CTX_ID;
514 	else
515 		report[2] = INVALID_CTX_ID;
516 }
517 
518 /**
519  * oa_buffer_check_unlocked - check for data and update tail ptr state
520  * @stream: i915 stream instance
521  *
522  * This is either called via fops (for blocking reads in user ctx) or the poll
523  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
524  * if there is data available for userspace to read.
525  *
526  * This function is central to providing a workaround for the OA unit tail
527  * pointer having a race with respect to what data is visible to the CPU.
528  * It is responsible for reading tail pointers from the hardware and giving
529  * the pointers time to 'age' before they are made available for reading.
530  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
531  *
532  * Besides returning true when there is data available to read() this function
533  * also updates the tail in the oa_buffer object.
534  *
535  * Note: It's safe to read OA config state here unlocked, assuming that this is
536  * only called while the stream is enabled, while the global OA configuration
537  * can't be modified.
538  *
539  * Returns: %true if the OA buffer contains data, else %false
540  */
541 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
542 {
543 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
544 	int report_size = stream->oa_buffer.format->size;
545 	u32 head, tail, read_tail;
546 	unsigned long flags;
547 	bool pollin;
548 	u32 hw_tail;
549 	u32 partial_report_size;
550 
551 	/* We have to consider the (unlikely) possibility that read() errors
552 	 * could result in an OA buffer reset which might reset the head and
553 	 * tail state.
554 	 */
555 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
556 
557 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
558 
559 	/* The tail pointer increases in 64 byte increments, not in report_size
560 	 * steps. Also the report size may not be a power of 2. Compute
561 	 * potentially partially landed report in the OA buffer
562 	 */
563 	partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail);
564 	partial_report_size %= report_size;
565 
566 	/* Subtract partial amount off the tail */
567 	hw_tail = OA_TAKEN(hw_tail, partial_report_size);
568 
569 	/* NB: The head we observe here might effectively be a little
570 	 * out of date. If a read() is in progress, the head could be
571 	 * anywhere between this head and stream->oa_buffer.tail.
572 	 */
573 	head = stream->oa_buffer.head - gtt_offset;
574 	read_tail = stream->oa_buffer.tail - gtt_offset;
575 
576 	tail = hw_tail;
577 
578 	/* Walk the stream backward until we find a report with report
579 	 * id and timestmap not at 0. Since the circular buffer pointers
580 	 * progress by increments of 64 bytes and that reports can be up
581 	 * to 256 bytes long, we can't tell whether a report has fully
582 	 * landed in memory before the report id and timestamp of the
583 	 * following report have effectively landed.
584 	 *
585 	 * This is assuming that the writes of the OA unit land in
586 	 * memory in the order they were written to.
587 	 * If not : (╯°□°)╯︵ ┻━┻
588 	 */
589 	while (OA_TAKEN(tail, read_tail) >= report_size) {
590 		void *report = stream->oa_buffer.vaddr + tail;
591 
592 		if (oa_report_id(stream, report) ||
593 		    oa_timestamp(stream, report))
594 			break;
595 
596 		tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
597 	}
598 
599 	if (OA_TAKEN(hw_tail, tail) > report_size &&
600 	    __ratelimit(&stream->perf->tail_pointer_race))
601 		drm_notice(&stream->uncore->i915->drm,
602 			   "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n",
603 		 head, tail, hw_tail);
604 
605 	stream->oa_buffer.tail = gtt_offset + tail;
606 
607 	pollin = OA_TAKEN(stream->oa_buffer.tail,
608 			  stream->oa_buffer.head) >= report_size;
609 
610 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
611 
612 	return pollin;
613 }
614 
615 /**
616  * append_oa_status - Appends a status record to a userspace read() buffer.
617  * @stream: An i915-perf stream opened for OA metrics
618  * @buf: destination buffer given by userspace
619  * @count: the number of bytes userspace wants to read
620  * @offset: (inout): the current position for writing into @buf
621  * @type: The kind of status to report to userspace
622  *
623  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
624  * into the userspace read() buffer.
625  *
626  * The @buf @offset will only be updated on success.
627  *
628  * Returns: 0 on success, negative error code on failure.
629  */
630 static int append_oa_status(struct i915_perf_stream *stream,
631 			    char __user *buf,
632 			    size_t count,
633 			    size_t *offset,
634 			    enum drm_i915_perf_record_type type)
635 {
636 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
637 
638 	if ((count - *offset) < header.size)
639 		return -ENOSPC;
640 
641 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
642 		return -EFAULT;
643 
644 	(*offset) += header.size;
645 
646 	return 0;
647 }
648 
649 /**
650  * append_oa_sample - Copies single OA report into userspace read() buffer.
651  * @stream: An i915-perf stream opened for OA metrics
652  * @buf: destination buffer given by userspace
653  * @count: the number of bytes userspace wants to read
654  * @offset: (inout): the current position for writing into @buf
655  * @report: A single OA report to (optionally) include as part of the sample
656  *
657  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
658  * properties when opening a stream, tracked as `stream->sample_flags`. This
659  * function copies the requested components of a single sample to the given
660  * read() @buf.
661  *
662  * The @buf @offset will only be updated on success.
663  *
664  * Returns: 0 on success, negative error code on failure.
665  */
666 static int append_oa_sample(struct i915_perf_stream *stream,
667 			    char __user *buf,
668 			    size_t count,
669 			    size_t *offset,
670 			    const u8 *report)
671 {
672 	int report_size = stream->oa_buffer.format->size;
673 	struct drm_i915_perf_record_header header;
674 	int report_size_partial;
675 	u8 *oa_buf_end;
676 
677 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
678 	header.pad = 0;
679 	header.size = stream->sample_size;
680 
681 	if ((count - *offset) < header.size)
682 		return -ENOSPC;
683 
684 	buf += *offset;
685 	if (copy_to_user(buf, &header, sizeof(header)))
686 		return -EFAULT;
687 	buf += sizeof(header);
688 
689 	oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE;
690 	report_size_partial = oa_buf_end - report;
691 
692 	if (report_size_partial < report_size) {
693 		if (copy_to_user(buf, report, report_size_partial))
694 			return -EFAULT;
695 		buf += report_size_partial;
696 
697 		if (copy_to_user(buf, stream->oa_buffer.vaddr,
698 				 report_size - report_size_partial))
699 			return -EFAULT;
700 	} else if (copy_to_user(buf, report, report_size)) {
701 		return -EFAULT;
702 	}
703 
704 	(*offset) += header.size;
705 
706 	return 0;
707 }
708 
709 /**
710  * gen8_append_oa_reports - Copies all buffered OA reports into
711  *			    userspace read() buffer.
712  * @stream: An i915-perf stream opened for OA metrics
713  * @buf: destination buffer given by userspace
714  * @count: the number of bytes userspace wants to read
715  * @offset: (inout): the current position for writing into @buf
716  *
717  * Notably any error condition resulting in a short read (-%ENOSPC or
718  * -%EFAULT) will be returned even though one or more records may
719  * have been successfully copied. In this case it's up to the caller
720  * to decide if the error should be squashed before returning to
721  * userspace.
722  *
723  * Note: reports are consumed from the head, and appended to the
724  * tail, so the tail chases the head?... If you think that's mad
725  * and back-to-front you're not alone, but this follows the
726  * Gen PRM naming convention.
727  *
728  * Returns: 0 on success, negative error code on failure.
729  */
730 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
731 				  char __user *buf,
732 				  size_t count,
733 				  size_t *offset)
734 {
735 	struct intel_uncore *uncore = stream->uncore;
736 	int report_size = stream->oa_buffer.format->size;
737 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
738 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
739 	u32 mask = (OA_BUFFER_SIZE - 1);
740 	size_t start_offset = *offset;
741 	unsigned long flags;
742 	u32 head, tail;
743 	int ret = 0;
744 
745 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
746 		return -EIO;
747 
748 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
749 
750 	head = stream->oa_buffer.head;
751 	tail = stream->oa_buffer.tail;
752 
753 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
754 
755 	/*
756 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
757 	 * while indexing relative to oa_buf_base.
758 	 */
759 	head -= gtt_offset;
760 	tail -= gtt_offset;
761 
762 	/*
763 	 * An out of bounds or misaligned head or tail pointer implies a driver
764 	 * bug since we validate + align the tail pointers we read from the
765 	 * hardware and we are in full control of the head pointer which should
766 	 * only be incremented by multiples of the report size.
767 	 */
768 	if (drm_WARN_ONCE(&uncore->i915->drm,
769 			  head > OA_BUFFER_SIZE ||
770 			  tail > OA_BUFFER_SIZE,
771 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
772 			  head, tail))
773 		return -EIO;
774 
775 
776 	for (/* none */;
777 	     OA_TAKEN(tail, head);
778 	     head = (head + report_size) & mask) {
779 		u8 *report = oa_buf_base + head;
780 		u32 *report32 = (void *)report;
781 		u32 ctx_id;
782 		u64 reason;
783 
784 		/*
785 		 * The reason field includes flags identifying what
786 		 * triggered this specific report (mostly timer
787 		 * triggered or e.g. due to a context switch).
788 		 *
789 		 * In MMIO triggered reports, some platforms do not set the
790 		 * reason bit in this field and it is valid to have a reason
791 		 * field of zero.
792 		 */
793 		reason = oa_report_reason(stream, report);
794 		ctx_id = oa_context_id(stream, report32);
795 
796 		/*
797 		 * Squash whatever is in the CTX_ID field if it's marked as
798 		 * invalid to be sure we avoid false-positive, single-context
799 		 * filtering below...
800 		 *
801 		 * Note: that we don't clear the valid_ctx_bit so userspace can
802 		 * understand that the ID has been squashed by the kernel.
803 		 */
804 		if (oa_report_ctx_invalid(stream, report)) {
805 			ctx_id = INVALID_CTX_ID;
806 			oa_context_id_squash(stream, report32);
807 		}
808 
809 		/*
810 		 * NB: For Gen 8 the OA unit no longer supports clock gating
811 		 * off for a specific context and the kernel can't securely
812 		 * stop the counters from updating as system-wide / global
813 		 * values.
814 		 *
815 		 * Automatic reports now include a context ID so reports can be
816 		 * filtered on the cpu but it's not worth trying to
817 		 * automatically subtract/hide counter progress for other
818 		 * contexts while filtering since we can't stop userspace
819 		 * issuing MI_REPORT_PERF_COUNT commands which would still
820 		 * provide a side-band view of the real values.
821 		 *
822 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
823 		 * to normalize counters for a single filtered context then it
824 		 * needs be forwarded bookend context-switch reports so that it
825 		 * can track switches in between MI_REPORT_PERF_COUNT commands
826 		 * and can itself subtract/ignore the progress of counters
827 		 * associated with other contexts. Note that the hardware
828 		 * automatically triggers reports when switching to a new
829 		 * context which are tagged with the ID of the newly active
830 		 * context. To avoid the complexity (and likely fragility) of
831 		 * reading ahead while parsing reports to try and minimize
832 		 * forwarding redundant context switch reports (i.e. between
833 		 * other, unrelated contexts) we simply elect to forward them
834 		 * all.
835 		 *
836 		 * We don't rely solely on the reason field to identify context
837 		 * switches since it's not-uncommon for periodic samples to
838 		 * identify a switch before any 'context switch' report.
839 		 */
840 		if (!stream->ctx ||
841 		    stream->specific_ctx_id == ctx_id ||
842 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
843 		    reason & OAREPORT_REASON_CTX_SWITCH) {
844 
845 			/*
846 			 * While filtering for a single context we avoid
847 			 * leaking the IDs of other contexts.
848 			 */
849 			if (stream->ctx &&
850 			    stream->specific_ctx_id != ctx_id) {
851 				oa_context_id_squash(stream, report32);
852 			}
853 
854 			ret = append_oa_sample(stream, buf, count, offset,
855 					       report);
856 			if (ret)
857 				break;
858 
859 			stream->oa_buffer.last_ctx_id = ctx_id;
860 		}
861 
862 		if (is_power_of_2(report_size)) {
863 			/*
864 			 * Clear out the report id and timestamp as a means
865 			 * to detect unlanded reports.
866 			 */
867 			oa_report_id_clear(stream, report32);
868 			oa_timestamp_clear(stream, report32);
869 		} else {
870 			u8 *oa_buf_end = stream->oa_buffer.vaddr +
871 					 OA_BUFFER_SIZE;
872 			u32 part = oa_buf_end - (u8 *)report32;
873 
874 			/* Zero out the entire report */
875 			if (report_size <= part) {
876 				memset(report32, 0, report_size);
877 			} else {
878 				memset(report32, 0, part);
879 				memset(oa_buf_base, 0, report_size - part);
880 			}
881 		}
882 	}
883 
884 	if (start_offset != *offset) {
885 		i915_reg_t oaheadptr;
886 
887 		oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
888 			    __oa_regs(stream)->oa_head_ptr :
889 			    GEN8_OAHEADPTR;
890 
891 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
892 
893 		/*
894 		 * We removed the gtt_offset for the copy loop above, indexing
895 		 * relative to oa_buf_base so put back here...
896 		 */
897 		head += gtt_offset;
898 		intel_uncore_write(uncore, oaheadptr,
899 				   head & GEN12_OAG_OAHEADPTR_MASK);
900 		stream->oa_buffer.head = head;
901 
902 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
903 	}
904 
905 	return ret;
906 }
907 
908 /**
909  * gen8_oa_read - copy status records then buffered OA reports
910  * @stream: An i915-perf stream opened for OA metrics
911  * @buf: destination buffer given by userspace
912  * @count: the number of bytes userspace wants to read
913  * @offset: (inout): the current position for writing into @buf
914  *
915  * Checks OA unit status registers and if necessary appends corresponding
916  * status records for userspace (such as for a buffer full condition) and then
917  * initiate appending any buffered OA reports.
918  *
919  * Updates @offset according to the number of bytes successfully copied into
920  * the userspace buffer.
921  *
922  * NB: some data may be successfully copied to the userspace buffer
923  * even if an error is returned, and this is reflected in the
924  * updated @offset.
925  *
926  * Returns: zero on success or a negative error code
927  */
928 static int gen8_oa_read(struct i915_perf_stream *stream,
929 			char __user *buf,
930 			size_t count,
931 			size_t *offset)
932 {
933 	struct intel_uncore *uncore = stream->uncore;
934 	u32 oastatus;
935 	i915_reg_t oastatus_reg;
936 	int ret;
937 
938 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
939 		return -EIO;
940 
941 	oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
942 		       __oa_regs(stream)->oa_status :
943 		       GEN8_OASTATUS;
944 
945 	oastatus = intel_uncore_read(uncore, oastatus_reg);
946 
947 	/*
948 	 * We treat OABUFFER_OVERFLOW as a significant error:
949 	 *
950 	 * Although theoretically we could handle this more gracefully
951 	 * sometimes, some Gens don't correctly suppress certain
952 	 * automatically triggered reports in this condition and so we
953 	 * have to assume that old reports are now being trampled
954 	 * over.
955 	 *
956 	 * Considering how we don't currently give userspace control
957 	 * over the OA buffer size and always configure a large 16MB
958 	 * buffer, then a buffer overflow does anyway likely indicate
959 	 * that something has gone quite badly wrong.
960 	 */
961 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
962 		ret = append_oa_status(stream, buf, count, offset,
963 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
964 		if (ret)
965 			return ret;
966 
967 		drm_dbg(&stream->perf->i915->drm,
968 			"OA buffer overflow (exponent = %d): force restart\n",
969 			stream->period_exponent);
970 
971 		stream->perf->ops.oa_disable(stream);
972 		stream->perf->ops.oa_enable(stream);
973 
974 		/*
975 		 * Note: .oa_enable() is expected to re-init the oabuffer and
976 		 * reset GEN8_OASTATUS for us
977 		 */
978 		oastatus = intel_uncore_read(uncore, oastatus_reg);
979 	}
980 
981 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
982 		ret = append_oa_status(stream, buf, count, offset,
983 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
984 		if (ret)
985 			return ret;
986 
987 		intel_uncore_rmw(uncore, oastatus_reg,
988 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
989 				 GEN8_OASTATUS_REPORT_LOST,
990 				 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
991 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
992 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
993 	}
994 
995 	return gen8_append_oa_reports(stream, buf, count, offset);
996 }
997 
998 /**
999  * gen7_append_oa_reports - Copies all buffered OA reports into
1000  *			    userspace read() buffer.
1001  * @stream: An i915-perf stream opened for OA metrics
1002  * @buf: destination buffer given by userspace
1003  * @count: the number of bytes userspace wants to read
1004  * @offset: (inout): the current position for writing into @buf
1005  *
1006  * Notably any error condition resulting in a short read (-%ENOSPC or
1007  * -%EFAULT) will be returned even though one or more records may
1008  * have been successfully copied. In this case it's up to the caller
1009  * to decide if the error should be squashed before returning to
1010  * userspace.
1011  *
1012  * Note: reports are consumed from the head, and appended to the
1013  * tail, so the tail chases the head?... If you think that's mad
1014  * and back-to-front you're not alone, but this follows the
1015  * Gen PRM naming convention.
1016  *
1017  * Returns: 0 on success, negative error code on failure.
1018  */
1019 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
1020 				  char __user *buf,
1021 				  size_t count,
1022 				  size_t *offset)
1023 {
1024 	struct intel_uncore *uncore = stream->uncore;
1025 	int report_size = stream->oa_buffer.format->size;
1026 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
1027 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1028 	u32 mask = (OA_BUFFER_SIZE - 1);
1029 	size_t start_offset = *offset;
1030 	unsigned long flags;
1031 	u32 head, tail;
1032 	int ret = 0;
1033 
1034 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
1035 		return -EIO;
1036 
1037 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1038 
1039 	head = stream->oa_buffer.head;
1040 	tail = stream->oa_buffer.tail;
1041 
1042 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1043 
1044 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
1045 	 * while indexing relative to oa_buf_base.
1046 	 */
1047 	head -= gtt_offset;
1048 	tail -= gtt_offset;
1049 
1050 	/* An out of bounds or misaligned head or tail pointer implies a driver
1051 	 * bug since we validate + align the tail pointers we read from the
1052 	 * hardware and we are in full control of the head pointer which should
1053 	 * only be incremented by multiples of the report size (notably also
1054 	 * all a power of two).
1055 	 */
1056 	if (drm_WARN_ONCE(&uncore->i915->drm,
1057 			  head > OA_BUFFER_SIZE || head % report_size ||
1058 			  tail > OA_BUFFER_SIZE || tail % report_size,
1059 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1060 			  head, tail))
1061 		return -EIO;
1062 
1063 
1064 	for (/* none */;
1065 	     OA_TAKEN(tail, head);
1066 	     head = (head + report_size) & mask) {
1067 		u8 *report = oa_buf_base + head;
1068 		u32 *report32 = (void *)report;
1069 
1070 		/* All the report sizes factor neatly into the buffer
1071 		 * size so we never expect to see a report split
1072 		 * between the beginning and end of the buffer.
1073 		 *
1074 		 * Given the initial alignment check a misalignment
1075 		 * here would imply a driver bug that would result
1076 		 * in an overrun.
1077 		 */
1078 		if (drm_WARN_ON(&uncore->i915->drm,
1079 				(OA_BUFFER_SIZE - head) < report_size)) {
1080 			drm_err(&uncore->i915->drm,
1081 				"Spurious OA head ptr: non-integral report offset\n");
1082 			break;
1083 		}
1084 
1085 		/* The report-ID field for periodic samples includes
1086 		 * some undocumented flags related to what triggered
1087 		 * the report and is never expected to be zero so we
1088 		 * can check that the report isn't invalid before
1089 		 * copying it to userspace...
1090 		 */
1091 		if (report32[0] == 0) {
1092 			if (__ratelimit(&stream->perf->spurious_report_rs))
1093 				drm_notice(&uncore->i915->drm,
1094 					   "Skipping spurious, invalid OA report\n");
1095 			continue;
1096 		}
1097 
1098 		ret = append_oa_sample(stream, buf, count, offset, report);
1099 		if (ret)
1100 			break;
1101 
1102 		/* Clear out the first 2 dwords as a mean to detect unlanded
1103 		 * reports.
1104 		 */
1105 		report32[0] = 0;
1106 		report32[1] = 0;
1107 	}
1108 
1109 	if (start_offset != *offset) {
1110 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1111 
1112 		/* We removed the gtt_offset for the copy loop above, indexing
1113 		 * relative to oa_buf_base so put back here...
1114 		 */
1115 		head += gtt_offset;
1116 
1117 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1118 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1119 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1120 		stream->oa_buffer.head = head;
1121 
1122 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1123 	}
1124 
1125 	return ret;
1126 }
1127 
1128 /**
1129  * gen7_oa_read - copy status records then buffered OA reports
1130  * @stream: An i915-perf stream opened for OA metrics
1131  * @buf: destination buffer given by userspace
1132  * @count: the number of bytes userspace wants to read
1133  * @offset: (inout): the current position for writing into @buf
1134  *
1135  * Checks Gen 7 specific OA unit status registers and if necessary appends
1136  * corresponding status records for userspace (such as for a buffer full
1137  * condition) and then initiate appending any buffered OA reports.
1138  *
1139  * Updates @offset according to the number of bytes successfully copied into
1140  * the userspace buffer.
1141  *
1142  * Returns: zero on success or a negative error code
1143  */
1144 static int gen7_oa_read(struct i915_perf_stream *stream,
1145 			char __user *buf,
1146 			size_t count,
1147 			size_t *offset)
1148 {
1149 	struct intel_uncore *uncore = stream->uncore;
1150 	u32 oastatus1;
1151 	int ret;
1152 
1153 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1154 		return -EIO;
1155 
1156 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1157 
1158 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1159 	 * bits while the OA unit is enabled (while the tail pointer
1160 	 * may be updated asynchronously) so we ignore status bits
1161 	 * that have already been reported to userspace.
1162 	 */
1163 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1164 
1165 	/* We treat OABUFFER_OVERFLOW as a significant error:
1166 	 *
1167 	 * - The status can be interpreted to mean that the buffer is
1168 	 *   currently full (with a higher precedence than OA_TAKEN()
1169 	 *   which will start to report a near-empty buffer after an
1170 	 *   overflow) but it's awkward that we can't clear the status
1171 	 *   on Haswell, so without a reset we won't be able to catch
1172 	 *   the state again.
1173 	 *
1174 	 * - Since it also implies the HW has started overwriting old
1175 	 *   reports it may also affect our sanity checks for invalid
1176 	 *   reports when copying to userspace that assume new reports
1177 	 *   are being written to cleared memory.
1178 	 *
1179 	 * - In the future we may want to introduce a flight recorder
1180 	 *   mode where the driver will automatically maintain a safe
1181 	 *   guard band between head/tail, avoiding this overflow
1182 	 *   condition, but we avoid the added driver complexity for
1183 	 *   now.
1184 	 */
1185 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1186 		ret = append_oa_status(stream, buf, count, offset,
1187 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1188 		if (ret)
1189 			return ret;
1190 
1191 		drm_dbg(&stream->perf->i915->drm,
1192 			"OA buffer overflow (exponent = %d): force restart\n",
1193 			stream->period_exponent);
1194 
1195 		stream->perf->ops.oa_disable(stream);
1196 		stream->perf->ops.oa_enable(stream);
1197 
1198 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1199 	}
1200 
1201 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1202 		ret = append_oa_status(stream, buf, count, offset,
1203 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1204 		if (ret)
1205 			return ret;
1206 		stream->perf->gen7_latched_oastatus1 |=
1207 			GEN7_OASTATUS1_REPORT_LOST;
1208 	}
1209 
1210 	return gen7_append_oa_reports(stream, buf, count, offset);
1211 }
1212 
1213 /**
1214  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1215  * @stream: An i915-perf stream opened for OA metrics
1216  *
1217  * Called when userspace tries to read() from a blocking stream FD opened
1218  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1219  * OA buffer and wakes us.
1220  *
1221  * Note: it's acceptable to have this return with some false positives
1222  * since any subsequent read handling will return -EAGAIN if there isn't
1223  * really data ready for userspace yet.
1224  *
1225  * Returns: zero on success or a negative error code
1226  */
1227 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1228 {
1229 	/* We would wait indefinitely if periodic sampling is not enabled */
1230 	if (!stream->periodic)
1231 		return -EIO;
1232 
1233 	return wait_event_interruptible(stream->poll_wq,
1234 					oa_buffer_check_unlocked(stream));
1235 }
1236 
1237 /**
1238  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1239  * @stream: An i915-perf stream opened for OA metrics
1240  * @file: An i915 perf stream file
1241  * @wait: poll() state table
1242  *
1243  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1244  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1245  * when it sees data ready to read in the circular OA buffer.
1246  */
1247 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1248 			      struct file *file,
1249 			      poll_table *wait)
1250 {
1251 	poll_wait(file, &stream->poll_wq, wait);
1252 }
1253 
1254 /**
1255  * i915_oa_read - just calls through to &i915_oa_ops->read
1256  * @stream: An i915-perf stream opened for OA metrics
1257  * @buf: destination buffer given by userspace
1258  * @count: the number of bytes userspace wants to read
1259  * @offset: (inout): the current position for writing into @buf
1260  *
1261  * Updates @offset according to the number of bytes successfully copied into
1262  * the userspace buffer.
1263  *
1264  * Returns: zero on success or a negative error code
1265  */
1266 static int i915_oa_read(struct i915_perf_stream *stream,
1267 			char __user *buf,
1268 			size_t count,
1269 			size_t *offset)
1270 {
1271 	return stream->perf->ops.read(stream, buf, count, offset);
1272 }
1273 
1274 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1275 {
1276 	struct i915_gem_engines_iter it;
1277 	struct i915_gem_context *ctx = stream->ctx;
1278 	struct intel_context *ce;
1279 	struct i915_gem_ww_ctx ww;
1280 	int err = -ENODEV;
1281 
1282 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1283 		if (ce->engine != stream->engine) /* first match! */
1284 			continue;
1285 
1286 		err = 0;
1287 		break;
1288 	}
1289 	i915_gem_context_unlock_engines(ctx);
1290 
1291 	if (err)
1292 		return ERR_PTR(err);
1293 
1294 	i915_gem_ww_ctx_init(&ww, true);
1295 retry:
1296 	/*
1297 	 * As the ID is the gtt offset of the context's vma we
1298 	 * pin the vma to ensure the ID remains fixed.
1299 	 */
1300 	err = intel_context_pin_ww(ce, &ww);
1301 	if (err == -EDEADLK) {
1302 		err = i915_gem_ww_ctx_backoff(&ww);
1303 		if (!err)
1304 			goto retry;
1305 	}
1306 	i915_gem_ww_ctx_fini(&ww);
1307 
1308 	if (err)
1309 		return ERR_PTR(err);
1310 
1311 	stream->pinned_ctx = ce;
1312 	return stream->pinned_ctx;
1313 }
1314 
1315 static int
1316 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset)
1317 {
1318 	u32 *cs, cmd;
1319 
1320 	cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1321 	if (GRAPHICS_VER(rq->i915) >= 8)
1322 		cmd++;
1323 
1324 	cs = intel_ring_begin(rq, 4);
1325 	if (IS_ERR(cs))
1326 		return PTR_ERR(cs);
1327 
1328 	*cs++ = cmd;
1329 	*cs++ = i915_mmio_reg_offset(reg);
1330 	*cs++ = ggtt_offset;
1331 	*cs++ = 0;
1332 
1333 	intel_ring_advance(rq, cs);
1334 
1335 	return 0;
1336 }
1337 
1338 static int
1339 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset)
1340 {
1341 	struct i915_request *rq;
1342 	int err;
1343 
1344 	rq = i915_request_create(ce);
1345 	if (IS_ERR(rq))
1346 		return PTR_ERR(rq);
1347 
1348 	i915_request_get(rq);
1349 
1350 	err = __store_reg_to_mem(rq, reg, ggtt_offset);
1351 
1352 	i915_request_add(rq);
1353 	if (!err && i915_request_wait(rq, 0, HZ / 2) < 0)
1354 		err = -ETIME;
1355 
1356 	i915_request_put(rq);
1357 
1358 	return err;
1359 }
1360 
1361 static int
1362 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id)
1363 {
1364 	struct i915_vma *scratch;
1365 	u32 *val;
1366 	int err;
1367 
1368 	scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4);
1369 	if (IS_ERR(scratch))
1370 		return PTR_ERR(scratch);
1371 
1372 	err = i915_vma_sync(scratch);
1373 	if (err)
1374 		goto err_scratch;
1375 
1376 	err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base),
1377 			 i915_ggtt_offset(scratch));
1378 	if (err)
1379 		goto err_scratch;
1380 
1381 	val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB);
1382 	if (IS_ERR(val)) {
1383 		err = PTR_ERR(val);
1384 		goto err_scratch;
1385 	}
1386 
1387 	*ctx_id = *val;
1388 	i915_gem_object_unpin_map(scratch->obj);
1389 
1390 err_scratch:
1391 	i915_vma_unpin_and_release(&scratch, 0);
1392 	return err;
1393 }
1394 
1395 /*
1396  * For execlist mode of submission, pick an unused context id
1397  * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts
1398  * XXX_MAX_CONTEXT_HW_ID is used by idle context
1399  *
1400  * For GuC mode of submission read context id from the upper dword of the
1401  * EXECLIST_STATUS register. Note that we read this value only once and expect
1402  * that the value stays fixed for the entire OA use case. There are cases where
1403  * GuC KMD implementation may deregister a context to reuse it's context id, but
1404  * we prevent that from happening to the OA context by pinning it.
1405  */
1406 static int gen12_get_render_context_id(struct i915_perf_stream *stream)
1407 {
1408 	u32 ctx_id, mask;
1409 	int ret;
1410 
1411 	if (intel_engine_uses_guc(stream->engine)) {
1412 		ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id);
1413 		if (ret)
1414 			return ret;
1415 
1416 		mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) <<
1417 			(GEN12_GUC_SW_CTX_ID_SHIFT - 32);
1418 	} else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) {
1419 		ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) <<
1420 			(XEHP_SW_CTX_ID_SHIFT - 32);
1421 
1422 		mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1423 			(XEHP_SW_CTX_ID_SHIFT - 32);
1424 	} else {
1425 		ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) <<
1426 			 (GEN11_SW_CTX_ID_SHIFT - 32);
1427 
1428 		mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) <<
1429 			(GEN11_SW_CTX_ID_SHIFT - 32);
1430 	}
1431 	stream->specific_ctx_id = ctx_id & mask;
1432 	stream->specific_ctx_id_mask = mask;
1433 
1434 	return 0;
1435 }
1436 
1437 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end)
1438 {
1439 	u32 idx = *offset;
1440 	u32 len = min(MI_LRI_LEN(state[idx]) + idx, end);
1441 	bool found = false;
1442 
1443 	idx++;
1444 	for (; idx < len; idx += 2) {
1445 		if (state[idx] == reg) {
1446 			found = true;
1447 			break;
1448 		}
1449 	}
1450 
1451 	*offset = idx;
1452 	return found;
1453 }
1454 
1455 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg)
1456 {
1457 	u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4;
1458 	u32 *state = ce->lrc_reg_state;
1459 
1460 	if (drm_WARN_ON(&ce->engine->i915->drm, !state))
1461 		return U32_MAX;
1462 
1463 	for (offset = 0; offset < len; ) {
1464 		if (IS_MI_LRI_CMD(state[offset])) {
1465 			/*
1466 			 * We expect reg-value pairs in MI_LRI command, so
1467 			 * MI_LRI_LEN() should be even, if not, issue a warning.
1468 			 */
1469 			drm_WARN_ON(&ce->engine->i915->drm,
1470 				    MI_LRI_LEN(state[offset]) & 0x1);
1471 
1472 			if (oa_find_reg_in_lri(state, reg, &offset, len))
1473 				break;
1474 		} else {
1475 			offset++;
1476 		}
1477 	}
1478 
1479 	return offset < len ? offset : U32_MAX;
1480 }
1481 
1482 static int set_oa_ctx_ctrl_offset(struct intel_context *ce)
1483 {
1484 	i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base);
1485 	struct i915_perf *perf = &ce->engine->i915->perf;
1486 	u32 offset = perf->ctx_oactxctrl_offset;
1487 
1488 	/* Do this only once. Failure is stored as offset of U32_MAX */
1489 	if (offset)
1490 		goto exit;
1491 
1492 	offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg));
1493 	perf->ctx_oactxctrl_offset = offset;
1494 
1495 	drm_dbg(&ce->engine->i915->drm,
1496 		"%s oa ctx control at 0x%08x dword offset\n",
1497 		ce->engine->name, offset);
1498 
1499 exit:
1500 	return offset && offset != U32_MAX ? 0 : -ENODEV;
1501 }
1502 
1503 static bool engine_supports_mi_query(struct intel_engine_cs *engine)
1504 {
1505 	return engine->class == RENDER_CLASS;
1506 }
1507 
1508 /**
1509  * oa_get_render_ctx_id - determine and hold ctx hw id
1510  * @stream: An i915-perf stream opened for OA metrics
1511  *
1512  * Determine the render context hw id, and ensure it remains fixed for the
1513  * lifetime of the stream. This ensures that we don't have to worry about
1514  * updating the context ID in OACONTROL on the fly.
1515  *
1516  * Returns: zero on success or a negative error code
1517  */
1518 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1519 {
1520 	struct intel_context *ce;
1521 	int ret = 0;
1522 
1523 	ce = oa_pin_context(stream);
1524 	if (IS_ERR(ce))
1525 		return PTR_ERR(ce);
1526 
1527 	if (engine_supports_mi_query(stream->engine) &&
1528 	    HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) {
1529 		/*
1530 		 * We are enabling perf query here. If we don't find the context
1531 		 * offset here, just return an error.
1532 		 */
1533 		ret = set_oa_ctx_ctrl_offset(ce);
1534 		if (ret) {
1535 			intel_context_unpin(ce);
1536 			drm_err(&stream->perf->i915->drm,
1537 				"Enabling perf query failed for %s\n",
1538 				stream->engine->name);
1539 			return ret;
1540 		}
1541 	}
1542 
1543 	switch (GRAPHICS_VER(ce->engine->i915)) {
1544 	case 7: {
1545 		/*
1546 		 * On Haswell we don't do any post processing of the reports
1547 		 * and don't need to use the mask.
1548 		 */
1549 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1550 		stream->specific_ctx_id_mask = 0;
1551 		break;
1552 	}
1553 
1554 	case 8:
1555 	case 9:
1556 		if (intel_engine_uses_guc(ce->engine)) {
1557 			/*
1558 			 * When using GuC, the context descriptor we write in
1559 			 * i915 is read by GuC and rewritten before it's
1560 			 * actually written into the hardware. The LRCA is
1561 			 * what is put into the context id field of the
1562 			 * context descriptor by GuC. Because it's aligned to
1563 			 * a page, the lower 12bits are always at 0 and
1564 			 * dropped by GuC. They won't be part of the context
1565 			 * ID in the OA reports, so squash those lower bits.
1566 			 */
1567 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1568 
1569 			/*
1570 			 * GuC uses the top bit to signal proxy submission, so
1571 			 * ignore that bit.
1572 			 */
1573 			stream->specific_ctx_id_mask =
1574 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1575 		} else {
1576 			stream->specific_ctx_id_mask =
1577 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1578 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1579 		}
1580 		break;
1581 
1582 	case 11:
1583 	case 12:
1584 		ret = gen12_get_render_context_id(stream);
1585 		break;
1586 
1587 	default:
1588 		MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1589 	}
1590 
1591 	ce->tag = stream->specific_ctx_id;
1592 
1593 	drm_dbg(&stream->perf->i915->drm,
1594 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1595 		stream->specific_ctx_id,
1596 		stream->specific_ctx_id_mask);
1597 
1598 	return ret;
1599 }
1600 
1601 /**
1602  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1603  * @stream: An i915-perf stream opened for OA metrics
1604  *
1605  * In case anything needed doing to ensure the context HW ID would remain valid
1606  * for the lifetime of the stream, then that can be undone here.
1607  */
1608 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1609 {
1610 	struct intel_context *ce;
1611 
1612 	ce = fetch_and_zero(&stream->pinned_ctx);
1613 	if (ce) {
1614 		ce->tag = 0; /* recomputed on next submission after parking */
1615 		intel_context_unpin(ce);
1616 	}
1617 
1618 	stream->specific_ctx_id = INVALID_CTX_ID;
1619 	stream->specific_ctx_id_mask = 0;
1620 }
1621 
1622 static void
1623 free_oa_buffer(struct i915_perf_stream *stream)
1624 {
1625 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1626 				   I915_VMA_RELEASE_MAP);
1627 
1628 	stream->oa_buffer.vaddr = NULL;
1629 }
1630 
1631 static void
1632 free_oa_configs(struct i915_perf_stream *stream)
1633 {
1634 	struct i915_oa_config_bo *oa_bo, *tmp;
1635 
1636 	i915_oa_config_put(stream->oa_config);
1637 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1638 		free_oa_config_bo(oa_bo);
1639 }
1640 
1641 static void
1642 free_noa_wait(struct i915_perf_stream *stream)
1643 {
1644 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1645 }
1646 
1647 static bool engine_supports_oa(const struct intel_engine_cs *engine)
1648 {
1649 	return engine->oa_group;
1650 }
1651 
1652 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type)
1653 {
1654 	return engine->oa_group && engine->oa_group->type == type;
1655 }
1656 
1657 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1658 {
1659 	struct i915_perf *perf = stream->perf;
1660 	struct intel_gt *gt = stream->engine->gt;
1661 	struct i915_perf_group *g = stream->engine->oa_group;
1662 
1663 	if (WARN_ON(stream != g->exclusive_stream))
1664 		return;
1665 
1666 	/*
1667 	 * Unset exclusive_stream first, it will be checked while disabling
1668 	 * the metric set on gen8+.
1669 	 *
1670 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1671 	 */
1672 	WRITE_ONCE(g->exclusive_stream, NULL);
1673 	perf->ops.disable_metric_set(stream);
1674 
1675 	free_oa_buffer(stream);
1676 
1677 	/*
1678 	 * Wa_16011777198:dg2: Unset the override of GUCRC mode to enable rc6.
1679 	 */
1680 	if (stream->override_gucrc)
1681 		drm_WARN_ON(&gt->i915->drm,
1682 			    intel_guc_slpc_unset_gucrc_mode(&gt->uc.guc.slpc));
1683 
1684 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1685 	intel_engine_pm_put(stream->engine);
1686 
1687 	if (stream->ctx)
1688 		oa_put_render_ctx_id(stream);
1689 
1690 	free_oa_configs(stream);
1691 	free_noa_wait(stream);
1692 
1693 	if (perf->spurious_report_rs.missed) {
1694 		drm_notice(&gt->i915->drm,
1695 			   "%d spurious OA report notices suppressed due to ratelimiting\n",
1696 			   perf->spurious_report_rs.missed);
1697 	}
1698 }
1699 
1700 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1701 {
1702 	struct intel_uncore *uncore = stream->uncore;
1703 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1704 	unsigned long flags;
1705 
1706 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1707 
1708 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1709 	 * before OASTATUS1, but after OASTATUS2
1710 	 */
1711 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1712 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1713 	stream->oa_buffer.head = gtt_offset;
1714 
1715 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1716 
1717 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1718 			   gtt_offset | OABUFFER_SIZE_16M);
1719 
1720 	/* Mark that we need updated tail pointers to read from... */
1721 	stream->oa_buffer.tail = gtt_offset;
1722 
1723 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1724 
1725 	/* On Haswell we have to track which OASTATUS1 flags we've
1726 	 * already seen since they can't be cleared while periodic
1727 	 * sampling is enabled.
1728 	 */
1729 	stream->perf->gen7_latched_oastatus1 = 0;
1730 
1731 	/* NB: although the OA buffer will initially be allocated
1732 	 * zeroed via shmfs (and so this memset is redundant when
1733 	 * first allocating), we may re-init the OA buffer, either
1734 	 * when re-enabling a stream or in error/reset paths.
1735 	 *
1736 	 * The reason we clear the buffer for each re-init is for the
1737 	 * sanity check in gen7_append_oa_reports() that looks at the
1738 	 * report-id field to make sure it's non-zero which relies on
1739 	 * the assumption that new reports are being written to zeroed
1740 	 * memory...
1741 	 */
1742 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1743 }
1744 
1745 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1746 {
1747 	struct intel_uncore *uncore = stream->uncore;
1748 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1749 	unsigned long flags;
1750 
1751 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1752 
1753 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1754 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1755 	stream->oa_buffer.head = gtt_offset;
1756 
1757 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1758 
1759 	/*
1760 	 * PRM says:
1761 	 *
1762 	 *  "This MMIO must be set before the OATAILPTR
1763 	 *  register and after the OAHEADPTR register. This is
1764 	 *  to enable proper functionality of the overflow
1765 	 *  bit."
1766 	 */
1767 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1768 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1769 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1770 
1771 	/* Mark that we need updated tail pointers to read from... */
1772 	stream->oa_buffer.tail = gtt_offset;
1773 
1774 	/*
1775 	 * Reset state used to recognise context switches, affecting which
1776 	 * reports we will forward to userspace while filtering for a single
1777 	 * context.
1778 	 */
1779 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1780 
1781 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1782 
1783 	/*
1784 	 * NB: although the OA buffer will initially be allocated
1785 	 * zeroed via shmfs (and so this memset is redundant when
1786 	 * first allocating), we may re-init the OA buffer, either
1787 	 * when re-enabling a stream or in error/reset paths.
1788 	 *
1789 	 * The reason we clear the buffer for each re-init is for the
1790 	 * sanity check in gen8_append_oa_reports() that looks at the
1791 	 * reason field to make sure it's non-zero which relies on
1792 	 * the assumption that new reports are being written to zeroed
1793 	 * memory...
1794 	 */
1795 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1796 }
1797 
1798 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1799 {
1800 	struct intel_uncore *uncore = stream->uncore;
1801 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1802 	unsigned long flags;
1803 
1804 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1805 
1806 	intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0);
1807 	intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr,
1808 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1809 	stream->oa_buffer.head = gtt_offset;
1810 
1811 	/*
1812 	 * PRM says:
1813 	 *
1814 	 *  "This MMIO must be set before the OATAILPTR
1815 	 *  register and after the OAHEADPTR register. This is
1816 	 *  to enable proper functionality of the overflow
1817 	 *  bit."
1818 	 */
1819 	intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset |
1820 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1821 	intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr,
1822 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1823 
1824 	/* Mark that we need updated tail pointers to read from... */
1825 	stream->oa_buffer.tail = gtt_offset;
1826 
1827 	/*
1828 	 * Reset state used to recognise context switches, affecting which
1829 	 * reports we will forward to userspace while filtering for a single
1830 	 * context.
1831 	 */
1832 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1833 
1834 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1835 
1836 	/*
1837 	 * NB: although the OA buffer will initially be allocated
1838 	 * zeroed via shmfs (and so this memset is redundant when
1839 	 * first allocating), we may re-init the OA buffer, either
1840 	 * when re-enabling a stream or in error/reset paths.
1841 	 *
1842 	 * The reason we clear the buffer for each re-init is for the
1843 	 * sanity check in gen8_append_oa_reports() that looks at the
1844 	 * reason field to make sure it's non-zero which relies on
1845 	 * the assumption that new reports are being written to zeroed
1846 	 * memory...
1847 	 */
1848 	memset(stream->oa_buffer.vaddr, 0,
1849 	       stream->oa_buffer.vma->size);
1850 }
1851 
1852 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1853 {
1854 	struct drm_i915_private *i915 = stream->perf->i915;
1855 	struct intel_gt *gt = stream->engine->gt;
1856 	struct drm_i915_gem_object *bo;
1857 	struct i915_vma *vma;
1858 	int ret;
1859 
1860 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1861 		return -ENODEV;
1862 
1863 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1864 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1865 
1866 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1867 	if (IS_ERR(bo)) {
1868 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1869 		return PTR_ERR(bo);
1870 	}
1871 
1872 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1873 
1874 	/* PreHSW required 512K alignment, HSW requires 16M */
1875 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1876 	if (IS_ERR(vma)) {
1877 		ret = PTR_ERR(vma);
1878 		goto err_unref;
1879 	}
1880 
1881 	/*
1882 	 * PreHSW required 512K alignment.
1883 	 * HSW and onwards, align to requested size of OA buffer.
1884 	 */
1885 	ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH);
1886 	if (ret) {
1887 		drm_err(&gt->i915->drm, "Failed to pin OA buffer %d\n", ret);
1888 		goto err_unref;
1889 	}
1890 
1891 	stream->oa_buffer.vma = vma;
1892 
1893 	stream->oa_buffer.vaddr =
1894 		i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1895 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1896 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1897 		goto err_unpin;
1898 	}
1899 
1900 	return 0;
1901 
1902 err_unpin:
1903 	__i915_vma_unpin(vma);
1904 
1905 err_unref:
1906 	i915_gem_object_put(bo);
1907 
1908 	stream->oa_buffer.vaddr = NULL;
1909 	stream->oa_buffer.vma = NULL;
1910 
1911 	return ret;
1912 }
1913 
1914 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1915 				  bool save, i915_reg_t reg, u32 offset,
1916 				  u32 dword_count)
1917 {
1918 	u32 cmd;
1919 	u32 d;
1920 
1921 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1922 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1923 	if (GRAPHICS_VER(stream->perf->i915) >= 8)
1924 		cmd++;
1925 
1926 	for (d = 0; d < dword_count; d++) {
1927 		*cs++ = cmd;
1928 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1929 		*cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d;
1930 		*cs++ = 0;
1931 	}
1932 
1933 	return cs;
1934 }
1935 
1936 static int alloc_noa_wait(struct i915_perf_stream *stream)
1937 {
1938 	struct drm_i915_private *i915 = stream->perf->i915;
1939 	struct intel_gt *gt = stream->engine->gt;
1940 	struct drm_i915_gem_object *bo;
1941 	struct i915_vma *vma;
1942 	const u64 delay_ticks = 0xffffffffffffffff -
1943 		intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1944 		atomic64_read(&stream->perf->noa_programming_delay));
1945 	const u32 base = stream->engine->mmio_base;
1946 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1947 	u32 *batch, *ts0, *cs, *jump;
1948 	struct i915_gem_ww_ctx ww;
1949 	int ret, i;
1950 	enum {
1951 		START_TS,
1952 		NOW_TS,
1953 		DELTA_TS,
1954 		JUMP_PREDICATE,
1955 		DELTA_TARGET,
1956 		N_CS_GPR
1957 	};
1958 	i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ?
1959 					  MI_PREDICATE_RESULT_2_ENGINE(base) :
1960 					  MI_PREDICATE_RESULT_1(RENDER_RING_BASE);
1961 
1962 	/*
1963 	 * gt->scratch was being used to save/restore the GPR registers, but on
1964 	 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region
1965 	 * causes an engine hang. Instead allocate an additional page here to
1966 	 * save/restore GPR registers
1967 	 */
1968 	bo = i915_gem_object_create_internal(i915, 8192);
1969 	if (IS_ERR(bo)) {
1970 		drm_err(&i915->drm,
1971 			"Failed to allocate NOA wait batchbuffer\n");
1972 		return PTR_ERR(bo);
1973 	}
1974 
1975 	i915_gem_ww_ctx_init(&ww, true);
1976 retry:
1977 	ret = i915_gem_object_lock(bo, &ww);
1978 	if (ret)
1979 		goto out_ww;
1980 
1981 	/*
1982 	 * We pin in GGTT because we jump into this buffer now because
1983 	 * multiple OA config BOs will have a jump to this address and it
1984 	 * needs to be fixed during the lifetime of the i915/perf stream.
1985 	 */
1986 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1987 	if (IS_ERR(vma)) {
1988 		ret = PTR_ERR(vma);
1989 		goto out_ww;
1990 	}
1991 
1992 	ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1993 	if (ret)
1994 		goto out_ww;
1995 
1996 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1997 	if (IS_ERR(batch)) {
1998 		ret = PTR_ERR(batch);
1999 		goto err_unpin;
2000 	}
2001 
2002 	stream->noa_wait = vma;
2003 
2004 #define GPR_SAVE_OFFSET 4096
2005 #define PREDICATE_SAVE_OFFSET 4160
2006 
2007 	/* Save registers. */
2008 	for (i = 0; i < N_CS_GPR; i++)
2009 		cs = save_restore_register(
2010 			stream, cs, true /* save */, CS_GPR(i),
2011 			GPR_SAVE_OFFSET + 8 * i, 2);
2012 	cs = save_restore_register(
2013 		stream, cs, true /* save */, mi_predicate_result,
2014 		PREDICATE_SAVE_OFFSET, 1);
2015 
2016 	/* First timestamp snapshot location. */
2017 	ts0 = cs;
2018 
2019 	/*
2020 	 * Initial snapshot of the timestamp register to implement the wait.
2021 	 * We work with 32b values, so clear out the top 32b bits of the
2022 	 * register because the ALU works 64bits.
2023 	 */
2024 	*cs++ = MI_LOAD_REGISTER_IMM(1);
2025 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
2026 	*cs++ = 0;
2027 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2028 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2029 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
2030 
2031 	/*
2032 	 * This is the location we're going to jump back into until the
2033 	 * required amount of time has passed.
2034 	 */
2035 	jump = cs;
2036 
2037 	/*
2038 	 * Take another snapshot of the timestamp register. Take care to clear
2039 	 * up the top 32bits of CS_GPR(1) as we're using it for other
2040 	 * operations below.
2041 	 */
2042 	*cs++ = MI_LOAD_REGISTER_IMM(1);
2043 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
2044 	*cs++ = 0;
2045 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2046 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
2047 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
2048 
2049 	/*
2050 	 * Do a diff between the 2 timestamps and store the result back into
2051 	 * CS_GPR(1).
2052 	 */
2053 	*cs++ = MI_MATH(5);
2054 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
2055 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
2056 	*cs++ = MI_MATH_SUB;
2057 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
2058 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2059 
2060 	/*
2061 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
2062 	 * timestamp have rolled over the 32bits) into the predicate register
2063 	 * to be used for the predicated jump.
2064 	 */
2065 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2066 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2067 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2068 
2069 	if (HAS_MI_SET_PREDICATE(i915))
2070 		*cs++ = MI_SET_PREDICATE | 1;
2071 
2072 	/* Restart from the beginning if we had timestamps roll over. */
2073 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2074 		 MI_BATCH_BUFFER_START :
2075 		 MI_BATCH_BUFFER_START_GEN8) |
2076 		MI_BATCH_PREDICATE;
2077 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
2078 	*cs++ = 0;
2079 
2080 	if (HAS_MI_SET_PREDICATE(i915))
2081 		*cs++ = MI_SET_PREDICATE;
2082 
2083 	/*
2084 	 * Now add the diff between to previous timestamps and add it to :
2085 	 *      (((1 * << 64) - 1) - delay_ns)
2086 	 *
2087 	 * When the Carry Flag contains 1 this means the elapsed time is
2088 	 * longer than the expected delay, and we can exit the wait loop.
2089 	 */
2090 	*cs++ = MI_LOAD_REGISTER_IMM(2);
2091 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
2092 	*cs++ = lower_32_bits(delay_ticks);
2093 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
2094 	*cs++ = upper_32_bits(delay_ticks);
2095 
2096 	*cs++ = MI_MATH(4);
2097 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
2098 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
2099 	*cs++ = MI_MATH_ADD;
2100 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2101 
2102 	*cs++ = MI_ARB_CHECK;
2103 
2104 	/*
2105 	 * Transfer the result into the predicate register to be used for the
2106 	 * predicated jump.
2107 	 */
2108 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2109 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2110 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2111 
2112 	if (HAS_MI_SET_PREDICATE(i915))
2113 		*cs++ = MI_SET_PREDICATE | 1;
2114 
2115 	/* Predicate the jump.  */
2116 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2117 		 MI_BATCH_BUFFER_START :
2118 		 MI_BATCH_BUFFER_START_GEN8) |
2119 		MI_BATCH_PREDICATE;
2120 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
2121 	*cs++ = 0;
2122 
2123 	if (HAS_MI_SET_PREDICATE(i915))
2124 		*cs++ = MI_SET_PREDICATE;
2125 
2126 	/* Restore registers. */
2127 	for (i = 0; i < N_CS_GPR; i++)
2128 		cs = save_restore_register(
2129 			stream, cs, false /* restore */, CS_GPR(i),
2130 			GPR_SAVE_OFFSET + 8 * i, 2);
2131 	cs = save_restore_register(
2132 		stream, cs, false /* restore */, mi_predicate_result,
2133 		PREDICATE_SAVE_OFFSET, 1);
2134 
2135 	/* And return to the ring. */
2136 	*cs++ = MI_BATCH_BUFFER_END;
2137 
2138 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
2139 
2140 	i915_gem_object_flush_map(bo);
2141 	__i915_gem_object_release_map(bo);
2142 
2143 	goto out_ww;
2144 
2145 err_unpin:
2146 	i915_vma_unpin_and_release(&vma, 0);
2147 out_ww:
2148 	if (ret == -EDEADLK) {
2149 		ret = i915_gem_ww_ctx_backoff(&ww);
2150 		if (!ret)
2151 			goto retry;
2152 	}
2153 	i915_gem_ww_ctx_fini(&ww);
2154 	if (ret)
2155 		i915_gem_object_put(bo);
2156 	return ret;
2157 }
2158 
2159 static u32 *write_cs_mi_lri(u32 *cs,
2160 			    const struct i915_oa_reg *reg_data,
2161 			    u32 n_regs)
2162 {
2163 	u32 i;
2164 
2165 	for (i = 0; i < n_regs; i++) {
2166 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
2167 			u32 n_lri = min_t(u32,
2168 					  n_regs - i,
2169 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
2170 
2171 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
2172 		}
2173 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
2174 		*cs++ = reg_data[i].value;
2175 	}
2176 
2177 	return cs;
2178 }
2179 
2180 static int num_lri_dwords(int num_regs)
2181 {
2182 	int count = 0;
2183 
2184 	if (num_regs > 0) {
2185 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
2186 		count += num_regs * 2;
2187 	}
2188 
2189 	return count;
2190 }
2191 
2192 static struct i915_oa_config_bo *
2193 alloc_oa_config_buffer(struct i915_perf_stream *stream,
2194 		       struct i915_oa_config *oa_config)
2195 {
2196 	struct drm_i915_gem_object *obj;
2197 	struct i915_oa_config_bo *oa_bo;
2198 	struct i915_gem_ww_ctx ww;
2199 	size_t config_length = 0;
2200 	u32 *cs;
2201 	int err;
2202 
2203 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
2204 	if (!oa_bo)
2205 		return ERR_PTR(-ENOMEM);
2206 
2207 	config_length += num_lri_dwords(oa_config->mux_regs_len);
2208 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
2209 	config_length += num_lri_dwords(oa_config->flex_regs_len);
2210 	config_length += 3; /* MI_BATCH_BUFFER_START */
2211 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
2212 
2213 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
2214 	if (IS_ERR(obj)) {
2215 		err = PTR_ERR(obj);
2216 		goto err_free;
2217 	}
2218 
2219 	i915_gem_ww_ctx_init(&ww, true);
2220 retry:
2221 	err = i915_gem_object_lock(obj, &ww);
2222 	if (err)
2223 		goto out_ww;
2224 
2225 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
2226 	if (IS_ERR(cs)) {
2227 		err = PTR_ERR(cs);
2228 		goto out_ww;
2229 	}
2230 
2231 	cs = write_cs_mi_lri(cs,
2232 			     oa_config->mux_regs,
2233 			     oa_config->mux_regs_len);
2234 	cs = write_cs_mi_lri(cs,
2235 			     oa_config->b_counter_regs,
2236 			     oa_config->b_counter_regs_len);
2237 	cs = write_cs_mi_lri(cs,
2238 			     oa_config->flex_regs,
2239 			     oa_config->flex_regs_len);
2240 
2241 	/* Jump into the active wait. */
2242 	*cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
2243 		 MI_BATCH_BUFFER_START :
2244 		 MI_BATCH_BUFFER_START_GEN8);
2245 	*cs++ = i915_ggtt_offset(stream->noa_wait);
2246 	*cs++ = 0;
2247 
2248 	i915_gem_object_flush_map(obj);
2249 	__i915_gem_object_release_map(obj);
2250 
2251 	oa_bo->vma = i915_vma_instance(obj,
2252 				       &stream->engine->gt->ggtt->vm,
2253 				       NULL);
2254 	if (IS_ERR(oa_bo->vma)) {
2255 		err = PTR_ERR(oa_bo->vma);
2256 		goto out_ww;
2257 	}
2258 
2259 	oa_bo->oa_config = i915_oa_config_get(oa_config);
2260 	llist_add(&oa_bo->node, &stream->oa_config_bos);
2261 
2262 out_ww:
2263 	if (err == -EDEADLK) {
2264 		err = i915_gem_ww_ctx_backoff(&ww);
2265 		if (!err)
2266 			goto retry;
2267 	}
2268 	i915_gem_ww_ctx_fini(&ww);
2269 
2270 	if (err)
2271 		i915_gem_object_put(obj);
2272 err_free:
2273 	if (err) {
2274 		kfree(oa_bo);
2275 		return ERR_PTR(err);
2276 	}
2277 	return oa_bo;
2278 }
2279 
2280 static struct i915_vma *
2281 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
2282 {
2283 	struct i915_oa_config_bo *oa_bo;
2284 
2285 	/*
2286 	 * Look for the buffer in the already allocated BOs attached
2287 	 * to the stream.
2288 	 */
2289 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
2290 		if (oa_bo->oa_config == oa_config &&
2291 		    memcmp(oa_bo->oa_config->uuid,
2292 			   oa_config->uuid,
2293 			   sizeof(oa_config->uuid)) == 0)
2294 			goto out;
2295 	}
2296 
2297 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
2298 	if (IS_ERR(oa_bo))
2299 		return ERR_CAST(oa_bo);
2300 
2301 out:
2302 	return i915_vma_get(oa_bo->vma);
2303 }
2304 
2305 static int
2306 emit_oa_config(struct i915_perf_stream *stream,
2307 	       struct i915_oa_config *oa_config,
2308 	       struct intel_context *ce,
2309 	       struct i915_active *active)
2310 {
2311 	struct i915_request *rq;
2312 	struct i915_vma *vma;
2313 	struct i915_gem_ww_ctx ww;
2314 	int err;
2315 
2316 	vma = get_oa_vma(stream, oa_config);
2317 	if (IS_ERR(vma))
2318 		return PTR_ERR(vma);
2319 
2320 	i915_gem_ww_ctx_init(&ww, true);
2321 retry:
2322 	err = i915_gem_object_lock(vma->obj, &ww);
2323 	if (err)
2324 		goto err;
2325 
2326 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
2327 	if (err)
2328 		goto err;
2329 
2330 	intel_engine_pm_get(ce->engine);
2331 	rq = i915_request_create(ce);
2332 	intel_engine_pm_put(ce->engine);
2333 	if (IS_ERR(rq)) {
2334 		err = PTR_ERR(rq);
2335 		goto err_vma_unpin;
2336 	}
2337 
2338 	if (!IS_ERR_OR_NULL(active)) {
2339 		/* After all individual context modifications */
2340 		err = i915_request_await_active(rq, active,
2341 						I915_ACTIVE_AWAIT_ACTIVE);
2342 		if (err)
2343 			goto err_add_request;
2344 
2345 		err = i915_active_add_request(active, rq);
2346 		if (err)
2347 			goto err_add_request;
2348 	}
2349 
2350 	err = i915_vma_move_to_active(vma, rq, 0);
2351 	if (err)
2352 		goto err_add_request;
2353 
2354 	err = rq->engine->emit_bb_start(rq,
2355 					i915_vma_offset(vma), 0,
2356 					I915_DISPATCH_SECURE);
2357 	if (err)
2358 		goto err_add_request;
2359 
2360 err_add_request:
2361 	i915_request_add(rq);
2362 err_vma_unpin:
2363 	i915_vma_unpin(vma);
2364 err:
2365 	if (err == -EDEADLK) {
2366 		err = i915_gem_ww_ctx_backoff(&ww);
2367 		if (!err)
2368 			goto retry;
2369 	}
2370 
2371 	i915_gem_ww_ctx_fini(&ww);
2372 	i915_vma_put(vma);
2373 	return err;
2374 }
2375 
2376 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2377 {
2378 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2379 }
2380 
2381 static int
2382 hsw_enable_metric_set(struct i915_perf_stream *stream,
2383 		      struct i915_active *active)
2384 {
2385 	struct intel_uncore *uncore = stream->uncore;
2386 
2387 	/*
2388 	 * PRM:
2389 	 *
2390 	 * OA unit is using “crclk” for its functionality. When trunk
2391 	 * level clock gating takes place, OA clock would be gated,
2392 	 * unable to count the events from non-render clock domain.
2393 	 * Render clock gating must be disabled when OA is enabled to
2394 	 * count the events from non-render domain. Unit level clock
2395 	 * gating for RCS should also be disabled.
2396 	 */
2397 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2398 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2399 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2400 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2401 
2402 	return emit_oa_config(stream,
2403 			      stream->oa_config, oa_context(stream),
2404 			      active);
2405 }
2406 
2407 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2408 {
2409 	struct intel_uncore *uncore = stream->uncore;
2410 
2411 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2412 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2413 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2414 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2415 
2416 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2417 }
2418 
2419 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2420 			      i915_reg_t reg)
2421 {
2422 	u32 mmio = i915_mmio_reg_offset(reg);
2423 	int i;
2424 
2425 	/*
2426 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2427 	 * Active' event. In the future it's anticipated that there
2428 	 * will be an explicit 'No Event' we can select, but not yet...
2429 	 */
2430 	if (!oa_config)
2431 		return 0;
2432 
2433 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2434 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2435 			return oa_config->flex_regs[i].value;
2436 	}
2437 
2438 	return 0;
2439 }
2440 /*
2441  * NB: It must always remain pointer safe to run this even if the OA unit
2442  * has been disabled.
2443  *
2444  * It's fine to put out-of-date values into these per-context registers
2445  * in the case that the OA unit has been disabled.
2446  */
2447 static void
2448 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2449 			       const struct i915_perf_stream *stream)
2450 {
2451 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2452 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2453 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2454 	static const i915_reg_t flex_regs[] = {
2455 		EU_PERF_CNTL0,
2456 		EU_PERF_CNTL1,
2457 		EU_PERF_CNTL2,
2458 		EU_PERF_CNTL3,
2459 		EU_PERF_CNTL4,
2460 		EU_PERF_CNTL5,
2461 		EU_PERF_CNTL6,
2462 	};
2463 	u32 *reg_state = ce->lrc_reg_state;
2464 	int i;
2465 
2466 	reg_state[ctx_oactxctrl + 1] =
2467 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2468 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2469 		GEN8_OA_COUNTER_RESUME;
2470 
2471 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2472 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2473 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2474 }
2475 
2476 struct flex {
2477 	i915_reg_t reg;
2478 	u32 offset;
2479 	u32 value;
2480 };
2481 
2482 static int
2483 gen8_store_flex(struct i915_request *rq,
2484 		struct intel_context *ce,
2485 		const struct flex *flex, unsigned int count)
2486 {
2487 	u32 offset;
2488 	u32 *cs;
2489 
2490 	cs = intel_ring_begin(rq, 4 * count);
2491 	if (IS_ERR(cs))
2492 		return PTR_ERR(cs);
2493 
2494 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2495 	do {
2496 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2497 		*cs++ = offset + flex->offset * sizeof(u32);
2498 		*cs++ = 0;
2499 		*cs++ = flex->value;
2500 	} while (flex++, --count);
2501 
2502 	intel_ring_advance(rq, cs);
2503 
2504 	return 0;
2505 }
2506 
2507 static int
2508 gen8_load_flex(struct i915_request *rq,
2509 	       struct intel_context *ce,
2510 	       const struct flex *flex, unsigned int count)
2511 {
2512 	u32 *cs;
2513 
2514 	GEM_BUG_ON(!count || count > 63);
2515 
2516 	cs = intel_ring_begin(rq, 2 * count + 2);
2517 	if (IS_ERR(cs))
2518 		return PTR_ERR(cs);
2519 
2520 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2521 	do {
2522 		*cs++ = i915_mmio_reg_offset(flex->reg);
2523 		*cs++ = flex->value;
2524 	} while (flex++, --count);
2525 	*cs++ = MI_NOOP;
2526 
2527 	intel_ring_advance(rq, cs);
2528 
2529 	return 0;
2530 }
2531 
2532 static int gen8_modify_context(struct intel_context *ce,
2533 			       const struct flex *flex, unsigned int count)
2534 {
2535 	struct i915_request *rq;
2536 	int err;
2537 
2538 	rq = intel_engine_create_kernel_request(ce->engine);
2539 	if (IS_ERR(rq))
2540 		return PTR_ERR(rq);
2541 
2542 	/* Serialise with the remote context */
2543 	err = intel_context_prepare_remote_request(ce, rq);
2544 	if (err == 0)
2545 		err = gen8_store_flex(rq, ce, flex, count);
2546 
2547 	i915_request_add(rq);
2548 	return err;
2549 }
2550 
2551 static int
2552 gen8_modify_self(struct intel_context *ce,
2553 		 const struct flex *flex, unsigned int count,
2554 		 struct i915_active *active)
2555 {
2556 	struct i915_request *rq;
2557 	int err;
2558 
2559 	intel_engine_pm_get(ce->engine);
2560 	rq = i915_request_create(ce);
2561 	intel_engine_pm_put(ce->engine);
2562 	if (IS_ERR(rq))
2563 		return PTR_ERR(rq);
2564 
2565 	if (!IS_ERR_OR_NULL(active)) {
2566 		err = i915_active_add_request(active, rq);
2567 		if (err)
2568 			goto err_add_request;
2569 	}
2570 
2571 	err = gen8_load_flex(rq, ce, flex, count);
2572 	if (err)
2573 		goto err_add_request;
2574 
2575 err_add_request:
2576 	i915_request_add(rq);
2577 	return err;
2578 }
2579 
2580 static int gen8_configure_context(struct i915_perf_stream *stream,
2581 				  struct i915_gem_context *ctx,
2582 				  struct flex *flex, unsigned int count)
2583 {
2584 	struct i915_gem_engines_iter it;
2585 	struct intel_context *ce;
2586 	int err = 0;
2587 
2588 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2589 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2590 
2591 		if (ce->engine->class != RENDER_CLASS)
2592 			continue;
2593 
2594 		/* Otherwise OA settings will be set upon first use */
2595 		if (!intel_context_pin_if_active(ce))
2596 			continue;
2597 
2598 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2599 		err = gen8_modify_context(ce, flex, count);
2600 
2601 		intel_context_unpin(ce);
2602 		if (err)
2603 			break;
2604 	}
2605 	i915_gem_context_unlock_engines(ctx);
2606 
2607 	return err;
2608 }
2609 
2610 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2611 				       struct i915_active *active)
2612 {
2613 	int err;
2614 	struct intel_context *ce = stream->pinned_ctx;
2615 	u32 format = stream->oa_buffer.format->format;
2616 	u32 offset = stream->perf->ctx_oactxctrl_offset;
2617 	struct flex regs_context[] = {
2618 		{
2619 			GEN8_OACTXCONTROL,
2620 			offset + 1,
2621 			active ? GEN8_OA_COUNTER_RESUME : 0,
2622 		},
2623 	};
2624 	/* Offsets in regs_lri are not used since this configuration is only
2625 	 * applied using LRI. Initialize the correct offsets for posterity.
2626 	 */
2627 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2628 	struct flex regs_lri[] = {
2629 		{
2630 			GEN12_OAR_OACONTROL,
2631 			GEN12_OAR_OACONTROL_OFFSET + 1,
2632 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2633 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2634 		},
2635 		{
2636 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2637 			CTX_CONTEXT_CONTROL,
2638 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2639 				      active ?
2640 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2641 				      0)
2642 		},
2643 	};
2644 
2645 	/* Modify the context image of pinned context with regs_context */
2646 	err = intel_context_lock_pinned(ce);
2647 	if (err)
2648 		return err;
2649 
2650 	err = gen8_modify_context(ce, regs_context,
2651 				  ARRAY_SIZE(regs_context));
2652 	intel_context_unlock_pinned(ce);
2653 	if (err)
2654 		return err;
2655 
2656 	/* Apply regs_lri using LRI with pinned context */
2657 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2658 }
2659 
2660 /*
2661  * Manages updating the per-context aspects of the OA stream
2662  * configuration across all contexts.
2663  *
2664  * The awkward consideration here is that OACTXCONTROL controls the
2665  * exponent for periodic sampling which is primarily used for system
2666  * wide profiling where we'd like a consistent sampling period even in
2667  * the face of context switches.
2668  *
2669  * Our approach of updating the register state context (as opposed to
2670  * say using a workaround batch buffer) ensures that the hardware
2671  * won't automatically reload an out-of-date timer exponent even
2672  * transiently before a WA BB could be parsed.
2673  *
2674  * This function needs to:
2675  * - Ensure the currently running context's per-context OA state is
2676  *   updated
2677  * - Ensure that all existing contexts will have the correct per-context
2678  *   OA state if they are scheduled for use.
2679  * - Ensure any new contexts will be initialized with the correct
2680  *   per-context OA state.
2681  *
2682  * Note: it's only the RCS/Render context that has any OA state.
2683  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2684  */
2685 static int
2686 oa_configure_all_contexts(struct i915_perf_stream *stream,
2687 			  struct flex *regs,
2688 			  size_t num_regs,
2689 			  struct i915_active *active)
2690 {
2691 	struct drm_i915_private *i915 = stream->perf->i915;
2692 	struct intel_engine_cs *engine;
2693 	struct intel_gt *gt = stream->engine->gt;
2694 	struct i915_gem_context *ctx, *cn;
2695 	int err;
2696 
2697 	lockdep_assert_held(&gt->perf.lock);
2698 
2699 	/*
2700 	 * The OA register config is setup through the context image. This image
2701 	 * might be written to by the GPU on context switch (in particular on
2702 	 * lite-restore). This means we can't safely update a context's image,
2703 	 * if this context is scheduled/submitted to run on the GPU.
2704 	 *
2705 	 * We could emit the OA register config through the batch buffer but
2706 	 * this might leave small interval of time where the OA unit is
2707 	 * configured at an invalid sampling period.
2708 	 *
2709 	 * Note that since we emit all requests from a single ring, there
2710 	 * is still an implicit global barrier here that may cause a high
2711 	 * priority context to wait for an otherwise independent low priority
2712 	 * context. Contexts idle at the time of reconfiguration are not
2713 	 * trapped behind the barrier.
2714 	 */
2715 	spin_lock(&i915->gem.contexts.lock);
2716 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2717 		if (!kref_get_unless_zero(&ctx->ref))
2718 			continue;
2719 
2720 		spin_unlock(&i915->gem.contexts.lock);
2721 
2722 		err = gen8_configure_context(stream, ctx, regs, num_regs);
2723 		if (err) {
2724 			i915_gem_context_put(ctx);
2725 			return err;
2726 		}
2727 
2728 		spin_lock(&i915->gem.contexts.lock);
2729 		list_safe_reset_next(ctx, cn, link);
2730 		i915_gem_context_put(ctx);
2731 	}
2732 	spin_unlock(&i915->gem.contexts.lock);
2733 
2734 	/*
2735 	 * After updating all other contexts, we need to modify ourselves.
2736 	 * If we don't modify the kernel_context, we do not get events while
2737 	 * idle.
2738 	 */
2739 	for_each_uabi_engine(engine, i915) {
2740 		struct intel_context *ce = engine->kernel_context;
2741 
2742 		if (engine->class != RENDER_CLASS)
2743 			continue;
2744 
2745 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2746 
2747 		err = gen8_modify_self(ce, regs, num_regs, active);
2748 		if (err)
2749 			return err;
2750 	}
2751 
2752 	return 0;
2753 }
2754 
2755 static int
2756 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2757 			     const struct i915_oa_config *oa_config,
2758 			     struct i915_active *active)
2759 {
2760 	struct flex regs[] = {
2761 		{
2762 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2763 			CTX_R_PWR_CLK_STATE,
2764 		},
2765 	};
2766 
2767 	if (stream->engine->class != RENDER_CLASS)
2768 		return 0;
2769 
2770 	return oa_configure_all_contexts(stream,
2771 					 regs, ARRAY_SIZE(regs),
2772 					 active);
2773 }
2774 
2775 static int
2776 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2777 			   const struct i915_oa_config *oa_config,
2778 			   struct i915_active *active)
2779 {
2780 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2781 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2782 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2783 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2784 	struct flex regs[] = {
2785 		{
2786 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2787 			CTX_R_PWR_CLK_STATE,
2788 		},
2789 		{
2790 			GEN8_OACTXCONTROL,
2791 			ctx_oactxctrl + 1,
2792 		},
2793 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2794 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2795 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2796 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2797 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2798 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2799 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2800 	};
2801 #undef ctx_flexeuN
2802 	int i;
2803 
2804 	regs[1].value =
2805 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2806 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2807 		GEN8_OA_COUNTER_RESUME;
2808 
2809 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2810 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2811 
2812 	return oa_configure_all_contexts(stream,
2813 					 regs, ARRAY_SIZE(regs),
2814 					 active);
2815 }
2816 
2817 static int
2818 gen8_enable_metric_set(struct i915_perf_stream *stream,
2819 		       struct i915_active *active)
2820 {
2821 	struct intel_uncore *uncore = stream->uncore;
2822 	struct i915_oa_config *oa_config = stream->oa_config;
2823 	int ret;
2824 
2825 	/*
2826 	 * We disable slice/unslice clock ratio change reports on SKL since
2827 	 * they are too noisy. The HW generates a lot of redundant reports
2828 	 * where the ratio hasn't really changed causing a lot of redundant
2829 	 * work to processes and increasing the chances we'll hit buffer
2830 	 * overruns.
2831 	 *
2832 	 * Although we don't currently use the 'disable overrun' OABUFFER
2833 	 * feature it's worth noting that clock ratio reports have to be
2834 	 * disabled before considering to use that feature since the HW doesn't
2835 	 * correctly block these reports.
2836 	 *
2837 	 * Currently none of the high-level metrics we have depend on knowing
2838 	 * this ratio to normalize.
2839 	 *
2840 	 * Note: This register is not power context saved and restored, but
2841 	 * that's OK considering that we disable RC6 while the OA unit is
2842 	 * enabled.
2843 	 *
2844 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2845 	 * be read back from automatically triggered reports, as part of the
2846 	 * RPT_ID field.
2847 	 */
2848 	if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2849 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2850 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2851 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2852 	}
2853 
2854 	/*
2855 	 * Update all contexts prior writing the mux configurations as we need
2856 	 * to make sure all slices/subslices are ON before writing to NOA
2857 	 * registers.
2858 	 */
2859 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2860 	if (ret)
2861 		return ret;
2862 
2863 	return emit_oa_config(stream,
2864 			      stream->oa_config, oa_context(stream),
2865 			      active);
2866 }
2867 
2868 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2869 {
2870 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2871 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2872 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2873 }
2874 
2875 static int
2876 gen12_enable_metric_set(struct i915_perf_stream *stream,
2877 			struct i915_active *active)
2878 {
2879 	struct drm_i915_private *i915 = stream->perf->i915;
2880 	struct intel_uncore *uncore = stream->uncore;
2881 	struct i915_oa_config *oa_config = stream->oa_config;
2882 	bool periodic = stream->periodic;
2883 	u32 period_exponent = stream->period_exponent;
2884 	u32 sqcnt1;
2885 	int ret;
2886 
2887 	/*
2888 	 * Wa_1508761755:xehpsdv, dg2
2889 	 * EU NOA signals behave incorrectly if EU clock gating is enabled.
2890 	 * Disable thread stall DOP gating and EU DOP gating.
2891 	 */
2892 	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2893 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2894 					     _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
2895 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2896 				   _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING));
2897 	}
2898 
2899 	intel_uncore_write(uncore, __oa_regs(stream)->oa_debug,
2900 			   /* Disable clk ratio reports, like previous Gens. */
2901 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2902 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2903 			   /*
2904 			    * If the user didn't require OA reports, instruct
2905 			    * the hardware not to emit ctx switch reports.
2906 			    */
2907 			   oag_report_ctx_switches(stream));
2908 
2909 	intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ?
2910 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2911 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2912 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2913 			    : 0);
2914 
2915 	/*
2916 	 * Initialize Super Queue Internal Cnt Register
2917 	 * Set PMON Enable in order to collect valid metrics.
2918 	 * Enable byets per clock reporting in OA for XEHPSDV onward.
2919 	 */
2920 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2921 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2922 
2923 	intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1);
2924 
2925 	/*
2926 	 * Update all contexts prior writing the mux configurations as we need
2927 	 * to make sure all slices/subslices are ON before writing to NOA
2928 	 * registers.
2929 	 */
2930 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2931 	if (ret)
2932 		return ret;
2933 
2934 	/*
2935 	 * For Gen12, performance counters are context
2936 	 * saved/restored. Only enable it for the context that
2937 	 * requested this.
2938 	 */
2939 	if (stream->ctx) {
2940 		ret = gen12_configure_oar_context(stream, active);
2941 		if (ret)
2942 			return ret;
2943 	}
2944 
2945 	return emit_oa_config(stream,
2946 			      stream->oa_config, oa_context(stream),
2947 			      active);
2948 }
2949 
2950 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2951 {
2952 	struct intel_uncore *uncore = stream->uncore;
2953 
2954 	/* Reset all contexts' slices/subslices configurations. */
2955 	lrc_configure_all_contexts(stream, NULL, NULL);
2956 
2957 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2958 }
2959 
2960 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2961 {
2962 	struct intel_uncore *uncore = stream->uncore;
2963 
2964 	/* Reset all contexts' slices/subslices configurations. */
2965 	lrc_configure_all_contexts(stream, NULL, NULL);
2966 
2967 	/* Make sure we disable noa to save power. */
2968 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2969 }
2970 
2971 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2972 {
2973 	struct intel_uncore *uncore = stream->uncore;
2974 	struct drm_i915_private *i915 = stream->perf->i915;
2975 	u32 sqcnt1;
2976 
2977 	/*
2978 	 * Wa_1508761755:xehpsdv, dg2
2979 	 * Enable thread stall DOP gating and EU DOP gating.
2980 	 */
2981 	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2982 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2983 					     _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE));
2984 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2985 				   _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING));
2986 	}
2987 
2988 	/* Reset all contexts' slices/subslices configurations. */
2989 	gen12_configure_all_contexts(stream, NULL, NULL);
2990 
2991 	/* disable the context save/restore or OAR counters */
2992 	if (stream->ctx)
2993 		gen12_configure_oar_context(stream, NULL);
2994 
2995 	/* Make sure we disable noa to save power. */
2996 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2997 
2998 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2999 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
3000 
3001 	/* Reset PMON Enable to save power. */
3002 	intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0);
3003 }
3004 
3005 static void gen7_oa_enable(struct i915_perf_stream *stream)
3006 {
3007 	struct intel_uncore *uncore = stream->uncore;
3008 	struct i915_gem_context *ctx = stream->ctx;
3009 	u32 ctx_id = stream->specific_ctx_id;
3010 	bool periodic = stream->periodic;
3011 	u32 period_exponent = stream->period_exponent;
3012 	u32 report_format = stream->oa_buffer.format->format;
3013 
3014 	/*
3015 	 * Reset buf pointers so we don't forward reports from before now.
3016 	 *
3017 	 * Think carefully if considering trying to avoid this, since it
3018 	 * also ensures status flags and the buffer itself are cleared
3019 	 * in error paths, and we have checks for invalid reports based
3020 	 * on the assumption that certain fields are written to zeroed
3021 	 * memory which this helps maintains.
3022 	 */
3023 	gen7_init_oa_buffer(stream);
3024 
3025 	intel_uncore_write(uncore, GEN7_OACONTROL,
3026 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
3027 			   (period_exponent <<
3028 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
3029 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
3030 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
3031 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
3032 			   GEN7_OACONTROL_ENABLE);
3033 }
3034 
3035 static void gen8_oa_enable(struct i915_perf_stream *stream)
3036 {
3037 	struct intel_uncore *uncore = stream->uncore;
3038 	u32 report_format = stream->oa_buffer.format->format;
3039 
3040 	/*
3041 	 * Reset buf pointers so we don't forward reports from before now.
3042 	 *
3043 	 * Think carefully if considering trying to avoid this, since it
3044 	 * also ensures status flags and the buffer itself are cleared
3045 	 * in error paths, and we have checks for invalid reports based
3046 	 * on the assumption that certain fields are written to zeroed
3047 	 * memory which this helps maintains.
3048 	 */
3049 	gen8_init_oa_buffer(stream);
3050 
3051 	/*
3052 	 * Note: we don't rely on the hardware to perform single context
3053 	 * filtering and instead filter on the cpu based on the context-id
3054 	 * field of reports
3055 	 */
3056 	intel_uncore_write(uncore, GEN8_OACONTROL,
3057 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
3058 			   GEN8_OA_COUNTER_ENABLE);
3059 }
3060 
3061 static void gen12_oa_enable(struct i915_perf_stream *stream)
3062 {
3063 	const struct i915_perf_regs *regs;
3064 	u32 val;
3065 
3066 	/*
3067 	 * If we don't want OA reports from the OA buffer, then we don't even
3068 	 * need to program the OAG unit.
3069 	 */
3070 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
3071 		return;
3072 
3073 	gen12_init_oa_buffer(stream);
3074 
3075 	regs = __oa_regs(stream);
3076 	val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) |
3077 	      GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE;
3078 
3079 	intel_uncore_write(stream->uncore, regs->oa_ctrl, val);
3080 }
3081 
3082 /**
3083  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
3084  * @stream: An i915 perf stream opened for OA metrics
3085  *
3086  * [Re]enables hardware periodic sampling according to the period configured
3087  * when opening the stream. This also starts a hrtimer that will periodically
3088  * check for data in the circular OA buffer for notifying userspace (e.g.
3089  * during a read() or poll()).
3090  */
3091 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
3092 {
3093 	stream->pollin = false;
3094 
3095 	stream->perf->ops.oa_enable(stream);
3096 
3097 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3098 		hrtimer_start(&stream->poll_check_timer,
3099 			      ns_to_ktime(stream->poll_oa_period),
3100 			      HRTIMER_MODE_REL_PINNED);
3101 }
3102 
3103 static void gen7_oa_disable(struct i915_perf_stream *stream)
3104 {
3105 	struct intel_uncore *uncore = stream->uncore;
3106 
3107 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
3108 	if (intel_wait_for_register(uncore,
3109 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
3110 				    50))
3111 		drm_err(&stream->perf->i915->drm,
3112 			"wait for OA to be disabled timed out\n");
3113 }
3114 
3115 static void gen8_oa_disable(struct i915_perf_stream *stream)
3116 {
3117 	struct intel_uncore *uncore = stream->uncore;
3118 
3119 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
3120 	if (intel_wait_for_register(uncore,
3121 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
3122 				    50))
3123 		drm_err(&stream->perf->i915->drm,
3124 			"wait for OA to be disabled timed out\n");
3125 }
3126 
3127 static void gen12_oa_disable(struct i915_perf_stream *stream)
3128 {
3129 	struct intel_uncore *uncore = stream->uncore;
3130 
3131 	intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0);
3132 	if (intel_wait_for_register(uncore,
3133 				    __oa_regs(stream)->oa_ctrl,
3134 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
3135 				    50))
3136 		drm_err(&stream->perf->i915->drm,
3137 			"wait for OA to be disabled timed out\n");
3138 
3139 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
3140 	if (intel_wait_for_register(uncore,
3141 				    GEN12_OA_TLB_INV_CR,
3142 				    1, 0,
3143 				    50))
3144 		drm_err(&stream->perf->i915->drm,
3145 			"wait for OA tlb invalidate timed out\n");
3146 }
3147 
3148 /**
3149  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
3150  * @stream: An i915 perf stream opened for OA metrics
3151  *
3152  * Stops the OA unit from periodically writing counter reports into the
3153  * circular OA buffer. This also stops the hrtimer that periodically checks for
3154  * data in the circular OA buffer, for notifying userspace.
3155  */
3156 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
3157 {
3158 	stream->perf->ops.oa_disable(stream);
3159 
3160 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3161 		hrtimer_cancel(&stream->poll_check_timer);
3162 }
3163 
3164 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
3165 	.destroy = i915_oa_stream_destroy,
3166 	.enable = i915_oa_stream_enable,
3167 	.disable = i915_oa_stream_disable,
3168 	.wait_unlocked = i915_oa_wait_unlocked,
3169 	.poll_wait = i915_oa_poll_wait,
3170 	.read = i915_oa_read,
3171 };
3172 
3173 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
3174 {
3175 	struct i915_active *active;
3176 	int err;
3177 
3178 	active = i915_active_create();
3179 	if (!active)
3180 		return -ENOMEM;
3181 
3182 	err = stream->perf->ops.enable_metric_set(stream, active);
3183 	if (err == 0)
3184 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
3185 
3186 	i915_active_put(active);
3187 	return err;
3188 }
3189 
3190 static void
3191 get_default_sseu_config(struct intel_sseu *out_sseu,
3192 			struct intel_engine_cs *engine)
3193 {
3194 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
3195 
3196 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
3197 
3198 	if (GRAPHICS_VER(engine->i915) == 11) {
3199 		/*
3200 		 * We only need subslice count so it doesn't matter which ones
3201 		 * we select - just turn off low bits in the amount of half of
3202 		 * all available subslices per slice.
3203 		 */
3204 		out_sseu->subslice_mask =
3205 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
3206 		out_sseu->slice_mask = 0x1;
3207 	}
3208 }
3209 
3210 static int
3211 get_sseu_config(struct intel_sseu *out_sseu,
3212 		struct intel_engine_cs *engine,
3213 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
3214 {
3215 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
3216 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
3217 		return -EINVAL;
3218 
3219 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
3220 }
3221 
3222 /*
3223  * OA timestamp frequency = CS timestamp frequency in most platforms. On some
3224  * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such
3225  * cases, return the adjusted CS timestamp frequency to the user.
3226  */
3227 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915)
3228 {
3229 	/*
3230 	 * Wa_18013179988:dg2
3231 	 * Wa_14015846243:mtl
3232 	 */
3233 	if (IS_DG2(i915) || IS_METEORLAKE(i915)) {
3234 		intel_wakeref_t wakeref;
3235 		u32 reg, shift;
3236 
3237 		with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref)
3238 			reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0);
3239 
3240 		shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK,
3241 				      reg);
3242 
3243 		return to_gt(i915)->clock_frequency << (3 - shift);
3244 	}
3245 
3246 	return to_gt(i915)->clock_frequency;
3247 }
3248 
3249 /**
3250  * i915_oa_stream_init - validate combined props for OA stream and init
3251  * @stream: An i915 perf stream
3252  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
3253  * @props: The property state that configures stream (individually validated)
3254  *
3255  * While read_properties_unlocked() validates properties in isolation it
3256  * doesn't ensure that the combination necessarily makes sense.
3257  *
3258  * At this point it has been determined that userspace wants a stream of
3259  * OA metrics, but still we need to further validate the combined
3260  * properties are OK.
3261  *
3262  * If the configuration makes sense then we can allocate memory for
3263  * a circular OA buffer and apply the requested metric set configuration.
3264  *
3265  * Returns: zero on success or a negative error code.
3266  */
3267 static int i915_oa_stream_init(struct i915_perf_stream *stream,
3268 			       struct drm_i915_perf_open_param *param,
3269 			       struct perf_open_properties *props)
3270 {
3271 	struct drm_i915_private *i915 = stream->perf->i915;
3272 	struct i915_perf *perf = stream->perf;
3273 	struct i915_perf_group *g;
3274 	struct intel_gt *gt;
3275 	int ret;
3276 
3277 	if (!props->engine) {
3278 		drm_dbg(&stream->perf->i915->drm,
3279 			"OA engine not specified\n");
3280 		return -EINVAL;
3281 	}
3282 	gt = props->engine->gt;
3283 	g = props->engine->oa_group;
3284 
3285 	/*
3286 	 * If the sysfs metrics/ directory wasn't registered for some
3287 	 * reason then don't let userspace try their luck with config
3288 	 * IDs
3289 	 */
3290 	if (!perf->metrics_kobj) {
3291 		drm_dbg(&stream->perf->i915->drm,
3292 			"OA metrics weren't advertised via sysfs\n");
3293 		return -EINVAL;
3294 	}
3295 
3296 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
3297 	    (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
3298 		drm_dbg(&stream->perf->i915->drm,
3299 			"Only OA report sampling supported\n");
3300 		return -EINVAL;
3301 	}
3302 
3303 	if (!perf->ops.enable_metric_set) {
3304 		drm_dbg(&stream->perf->i915->drm,
3305 			"OA unit not supported\n");
3306 		return -ENODEV;
3307 	}
3308 
3309 	/*
3310 	 * To avoid the complexity of having to accurately filter
3311 	 * counter reports and marshal to the appropriate client
3312 	 * we currently only allow exclusive access
3313 	 */
3314 	if (g->exclusive_stream) {
3315 		drm_dbg(&stream->perf->i915->drm,
3316 			"OA unit already in use\n");
3317 		return -EBUSY;
3318 	}
3319 
3320 	if (!props->oa_format) {
3321 		drm_dbg(&stream->perf->i915->drm,
3322 			"OA report format not specified\n");
3323 		return -EINVAL;
3324 	}
3325 
3326 	stream->engine = props->engine;
3327 	stream->uncore = stream->engine->gt->uncore;
3328 
3329 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
3330 
3331 	stream->oa_buffer.format = &perf->oa_formats[props->oa_format];
3332 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0))
3333 		return -EINVAL;
3334 
3335 	stream->sample_flags = props->sample_flags;
3336 	stream->sample_size += stream->oa_buffer.format->size;
3337 
3338 	stream->hold_preemption = props->hold_preemption;
3339 
3340 	stream->periodic = props->oa_periodic;
3341 	if (stream->periodic)
3342 		stream->period_exponent = props->oa_period_exponent;
3343 
3344 	if (stream->ctx) {
3345 		ret = oa_get_render_ctx_id(stream);
3346 		if (ret) {
3347 			drm_dbg(&stream->perf->i915->drm,
3348 				"Invalid context id to filter with\n");
3349 			return ret;
3350 		}
3351 	}
3352 
3353 	ret = alloc_noa_wait(stream);
3354 	if (ret) {
3355 		drm_dbg(&stream->perf->i915->drm,
3356 			"Unable to allocate NOA wait batch buffer\n");
3357 		goto err_noa_wait_alloc;
3358 	}
3359 
3360 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
3361 	if (!stream->oa_config) {
3362 		drm_dbg(&stream->perf->i915->drm,
3363 			"Invalid OA config id=%i\n", props->metrics_set);
3364 		ret = -EINVAL;
3365 		goto err_config;
3366 	}
3367 
3368 	/* PRM - observability performance counters:
3369 	 *
3370 	 *   OACONTROL, performance counter enable, note:
3371 	 *
3372 	 *   "When this bit is set, in order to have coherent counts,
3373 	 *   RC6 power state and trunk clock gating must be disabled.
3374 	 *   This can be achieved by programming MMIO registers as
3375 	 *   0xA094=0 and 0xA090[31]=1"
3376 	 *
3377 	 *   In our case we are expecting that taking pm + FORCEWAKE
3378 	 *   references will effectively disable RC6.
3379 	 */
3380 	intel_engine_pm_get(stream->engine);
3381 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
3382 
3383 	/*
3384 	 * Wa_16011777198:dg2: GuC resets render as part of the Wa. This causes
3385 	 * OA to lose the configuration state. Prevent this by overriding GUCRC
3386 	 * mode.
3387 	 */
3388 	if (intel_uc_uses_guc_rc(&gt->uc) &&
3389 	    (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
3390 	     IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))) {
3391 		ret = intel_guc_slpc_override_gucrc_mode(&gt->uc.guc.slpc,
3392 							 SLPC_GUCRC_MODE_GUCRC_NO_RC6);
3393 		if (ret) {
3394 			drm_dbg(&stream->perf->i915->drm,
3395 				"Unable to override gucrc mode\n");
3396 			goto err_gucrc;
3397 		}
3398 
3399 		stream->override_gucrc = true;
3400 	}
3401 
3402 	ret = alloc_oa_buffer(stream);
3403 	if (ret)
3404 		goto err_oa_buf_alloc;
3405 
3406 	stream->ops = &i915_oa_stream_ops;
3407 
3408 	stream->engine->gt->perf.sseu = props->sseu;
3409 	WRITE_ONCE(g->exclusive_stream, stream);
3410 
3411 	ret = i915_perf_stream_enable_sync(stream);
3412 	if (ret) {
3413 		drm_dbg(&stream->perf->i915->drm,
3414 			"Unable to enable metric set\n");
3415 		goto err_enable;
3416 	}
3417 
3418 	drm_dbg(&stream->perf->i915->drm,
3419 		"opening stream oa config uuid=%s\n",
3420 		  stream->oa_config->uuid);
3421 
3422 	hrtimer_init(&stream->poll_check_timer,
3423 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3424 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
3425 	init_waitqueue_head(&stream->poll_wq);
3426 	spin_lock_init(&stream->oa_buffer.ptr_lock);
3427 	mutex_init(&stream->lock);
3428 
3429 	return 0;
3430 
3431 err_enable:
3432 	WRITE_ONCE(g->exclusive_stream, NULL);
3433 	perf->ops.disable_metric_set(stream);
3434 
3435 	free_oa_buffer(stream);
3436 
3437 err_oa_buf_alloc:
3438 	if (stream->override_gucrc)
3439 		intel_guc_slpc_unset_gucrc_mode(&gt->uc.guc.slpc);
3440 
3441 err_gucrc:
3442 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3443 	intel_engine_pm_put(stream->engine);
3444 
3445 	free_oa_configs(stream);
3446 
3447 err_config:
3448 	free_noa_wait(stream);
3449 
3450 err_noa_wait_alloc:
3451 	if (stream->ctx)
3452 		oa_put_render_ctx_id(stream);
3453 
3454 	return ret;
3455 }
3456 
3457 void i915_oa_init_reg_state(const struct intel_context *ce,
3458 			    const struct intel_engine_cs *engine)
3459 {
3460 	struct i915_perf_stream *stream;
3461 
3462 	if (engine->class != RENDER_CLASS)
3463 		return;
3464 
3465 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3466 	stream = READ_ONCE(engine->oa_group->exclusive_stream);
3467 	if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3468 		gen8_update_reg_state_unlocked(ce, stream);
3469 }
3470 
3471 /**
3472  * i915_perf_read - handles read() FOP for i915 perf stream FDs
3473  * @file: An i915 perf stream file
3474  * @buf: destination buffer given by userspace
3475  * @count: the number of bytes userspace wants to read
3476  * @ppos: (inout) file seek position (unused)
3477  *
3478  * The entry point for handling a read() on a stream file descriptor from
3479  * userspace. Most of the work is left to the i915_perf_read_locked() and
3480  * &i915_perf_stream_ops->read but to save having stream implementations (of
3481  * which we might have multiple later) we handle blocking read here.
3482  *
3483  * We can also consistently treat trying to read from a disabled stream
3484  * as an IO error so implementations can assume the stream is enabled
3485  * while reading.
3486  *
3487  * Returns: The number of bytes copied or a negative error code on failure.
3488  */
3489 static ssize_t i915_perf_read(struct file *file,
3490 			      char __user *buf,
3491 			      size_t count,
3492 			      loff_t *ppos)
3493 {
3494 	struct i915_perf_stream *stream = file->private_data;
3495 	size_t offset = 0;
3496 	int ret;
3497 
3498 	/* To ensure it's handled consistently we simply treat all reads of a
3499 	 * disabled stream as an error. In particular it might otherwise lead
3500 	 * to a deadlock for blocking file descriptors...
3501 	 */
3502 	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3503 		return -EIO;
3504 
3505 	if (!(file->f_flags & O_NONBLOCK)) {
3506 		/* There's the small chance of false positives from
3507 		 * stream->ops->wait_unlocked.
3508 		 *
3509 		 * E.g. with single context filtering since we only wait until
3510 		 * oabuffer has >= 1 report we don't immediately know whether
3511 		 * any reports really belong to the current context
3512 		 */
3513 		do {
3514 			ret = stream->ops->wait_unlocked(stream);
3515 			if (ret)
3516 				return ret;
3517 
3518 			mutex_lock(&stream->lock);
3519 			ret = stream->ops->read(stream, buf, count, &offset);
3520 			mutex_unlock(&stream->lock);
3521 		} while (!offset && !ret);
3522 	} else {
3523 		mutex_lock(&stream->lock);
3524 		ret = stream->ops->read(stream, buf, count, &offset);
3525 		mutex_unlock(&stream->lock);
3526 	}
3527 
3528 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3529 	 * events where we might actually report EAGAIN on read() if there's
3530 	 * not really any data available. In this situation though we don't
3531 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3532 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3533 	 * effectively ensures we back off until the next hrtimer callback
3534 	 * before reporting another EPOLLIN event.
3535 	 * The exception to this is if ops->read() returned -ENOSPC which means
3536 	 * that more OA data is available than could fit in the user provided
3537 	 * buffer. In this case we want the next poll() call to not block.
3538 	 */
3539 	if (ret != -ENOSPC)
3540 		stream->pollin = false;
3541 
3542 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3543 	return offset ?: (ret ?: -EAGAIN);
3544 }
3545 
3546 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3547 {
3548 	struct i915_perf_stream *stream =
3549 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3550 
3551 	if (oa_buffer_check_unlocked(stream)) {
3552 		stream->pollin = true;
3553 		wake_up(&stream->poll_wq);
3554 	}
3555 
3556 	hrtimer_forward_now(hrtimer,
3557 			    ns_to_ktime(stream->poll_oa_period));
3558 
3559 	return HRTIMER_RESTART;
3560 }
3561 
3562 /**
3563  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3564  * @stream: An i915 perf stream
3565  * @file: An i915 perf stream file
3566  * @wait: poll() state table
3567  *
3568  * For handling userspace polling on an i915 perf stream, this calls through to
3569  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3570  * will be woken for new stream data.
3571  *
3572  * Returns: any poll events that are ready without sleeping
3573  */
3574 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3575 				      struct file *file,
3576 				      poll_table *wait)
3577 {
3578 	__poll_t events = 0;
3579 
3580 	stream->ops->poll_wait(stream, file, wait);
3581 
3582 	/* Note: we don't explicitly check whether there's something to read
3583 	 * here since this path may be very hot depending on what else
3584 	 * userspace is polling, or on the timeout in use. We rely solely on
3585 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3586 	 * samples to read.
3587 	 */
3588 	if (stream->pollin)
3589 		events |= EPOLLIN;
3590 
3591 	return events;
3592 }
3593 
3594 /**
3595  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3596  * @file: An i915 perf stream file
3597  * @wait: poll() state table
3598  *
3599  * For handling userspace polling on an i915 perf stream, this ensures
3600  * poll_wait() gets called with a wait queue that will be woken for new stream
3601  * data.
3602  *
3603  * Note: Implementation deferred to i915_perf_poll_locked()
3604  *
3605  * Returns: any poll events that are ready without sleeping
3606  */
3607 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3608 {
3609 	struct i915_perf_stream *stream = file->private_data;
3610 	__poll_t ret;
3611 
3612 	mutex_lock(&stream->lock);
3613 	ret = i915_perf_poll_locked(stream, file, wait);
3614 	mutex_unlock(&stream->lock);
3615 
3616 	return ret;
3617 }
3618 
3619 /**
3620  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3621  * @stream: A disabled i915 perf stream
3622  *
3623  * [Re]enables the associated capture of data for this stream.
3624  *
3625  * If a stream was previously enabled then there's currently no intention
3626  * to provide userspace any guarantee about the preservation of previously
3627  * buffered data.
3628  */
3629 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3630 {
3631 	if (stream->enabled)
3632 		return;
3633 
3634 	/* Allow stream->ops->enable() to refer to this */
3635 	stream->enabled = true;
3636 
3637 	if (stream->ops->enable)
3638 		stream->ops->enable(stream);
3639 
3640 	if (stream->hold_preemption)
3641 		intel_context_set_nopreempt(stream->pinned_ctx);
3642 }
3643 
3644 /**
3645  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3646  * @stream: An enabled i915 perf stream
3647  *
3648  * Disables the associated capture of data for this stream.
3649  *
3650  * The intention is that disabling an re-enabling a stream will ideally be
3651  * cheaper than destroying and re-opening a stream with the same configuration,
3652  * though there are no formal guarantees about what state or buffered data
3653  * must be retained between disabling and re-enabling a stream.
3654  *
3655  * Note: while a stream is disabled it's considered an error for userspace
3656  * to attempt to read from the stream (-EIO).
3657  */
3658 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3659 {
3660 	if (!stream->enabled)
3661 		return;
3662 
3663 	/* Allow stream->ops->disable() to refer to this */
3664 	stream->enabled = false;
3665 
3666 	if (stream->hold_preemption)
3667 		intel_context_clear_nopreempt(stream->pinned_ctx);
3668 
3669 	if (stream->ops->disable)
3670 		stream->ops->disable(stream);
3671 }
3672 
3673 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3674 				    unsigned long metrics_set)
3675 {
3676 	struct i915_oa_config *config;
3677 	long ret = stream->oa_config->id;
3678 
3679 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3680 	if (!config)
3681 		return -EINVAL;
3682 
3683 	if (config != stream->oa_config) {
3684 		int err;
3685 
3686 		/*
3687 		 * If OA is bound to a specific context, emit the
3688 		 * reconfiguration inline from that context. The update
3689 		 * will then be ordered with respect to submission on that
3690 		 * context.
3691 		 *
3692 		 * When set globally, we use a low priority kernel context,
3693 		 * so it will effectively take effect when idle.
3694 		 */
3695 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3696 		if (!err)
3697 			config = xchg(&stream->oa_config, config);
3698 		else
3699 			ret = err;
3700 	}
3701 
3702 	i915_oa_config_put(config);
3703 
3704 	return ret;
3705 }
3706 
3707 /**
3708  * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3709  * @stream: An i915 perf stream
3710  * @cmd: the ioctl request
3711  * @arg: the ioctl data
3712  *
3713  * Returns: zero on success or a negative error code. Returns -EINVAL for
3714  * an unknown ioctl request.
3715  */
3716 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3717 				   unsigned int cmd,
3718 				   unsigned long arg)
3719 {
3720 	switch (cmd) {
3721 	case I915_PERF_IOCTL_ENABLE:
3722 		i915_perf_enable_locked(stream);
3723 		return 0;
3724 	case I915_PERF_IOCTL_DISABLE:
3725 		i915_perf_disable_locked(stream);
3726 		return 0;
3727 	case I915_PERF_IOCTL_CONFIG:
3728 		return i915_perf_config_locked(stream, arg);
3729 	}
3730 
3731 	return -EINVAL;
3732 }
3733 
3734 /**
3735  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3736  * @file: An i915 perf stream file
3737  * @cmd: the ioctl request
3738  * @arg: the ioctl data
3739  *
3740  * Implementation deferred to i915_perf_ioctl_locked().
3741  *
3742  * Returns: zero on success or a negative error code. Returns -EINVAL for
3743  * an unknown ioctl request.
3744  */
3745 static long i915_perf_ioctl(struct file *file,
3746 			    unsigned int cmd,
3747 			    unsigned long arg)
3748 {
3749 	struct i915_perf_stream *stream = file->private_data;
3750 	long ret;
3751 
3752 	mutex_lock(&stream->lock);
3753 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3754 	mutex_unlock(&stream->lock);
3755 
3756 	return ret;
3757 }
3758 
3759 /**
3760  * i915_perf_destroy_locked - destroy an i915 perf stream
3761  * @stream: An i915 perf stream
3762  *
3763  * Frees all resources associated with the given i915 perf @stream, disabling
3764  * any associated data capture in the process.
3765  *
3766  * Note: The &gt->perf.lock mutex has been taken to serialize
3767  * with any non-file-operation driver hooks.
3768  */
3769 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3770 {
3771 	if (stream->enabled)
3772 		i915_perf_disable_locked(stream);
3773 
3774 	if (stream->ops->destroy)
3775 		stream->ops->destroy(stream);
3776 
3777 	if (stream->ctx)
3778 		i915_gem_context_put(stream->ctx);
3779 
3780 	kfree(stream);
3781 }
3782 
3783 /**
3784  * i915_perf_release - handles userspace close() of a stream file
3785  * @inode: anonymous inode associated with file
3786  * @file: An i915 perf stream file
3787  *
3788  * Cleans up any resources associated with an open i915 perf stream file.
3789  *
3790  * NB: close() can't really fail from the userspace point of view.
3791  *
3792  * Returns: zero on success or a negative error code.
3793  */
3794 static int i915_perf_release(struct inode *inode, struct file *file)
3795 {
3796 	struct i915_perf_stream *stream = file->private_data;
3797 	struct i915_perf *perf = stream->perf;
3798 	struct intel_gt *gt = stream->engine->gt;
3799 
3800 	/*
3801 	 * Within this call, we know that the fd is being closed and we have no
3802 	 * other user of stream->lock. Use the perf lock to destroy the stream
3803 	 * here.
3804 	 */
3805 	mutex_lock(&gt->perf.lock);
3806 	i915_perf_destroy_locked(stream);
3807 	mutex_unlock(&gt->perf.lock);
3808 
3809 	/* Release the reference the perf stream kept on the driver. */
3810 	drm_dev_put(&perf->i915->drm);
3811 
3812 	return 0;
3813 }
3814 
3815 
3816 static const struct file_operations fops = {
3817 	.owner		= THIS_MODULE,
3818 	.llseek		= no_llseek,
3819 	.release	= i915_perf_release,
3820 	.poll		= i915_perf_poll,
3821 	.read		= i915_perf_read,
3822 	.unlocked_ioctl	= i915_perf_ioctl,
3823 	/* Our ioctl have no arguments, so it's safe to use the same function
3824 	 * to handle 32bits compatibility.
3825 	 */
3826 	.compat_ioctl   = i915_perf_ioctl,
3827 };
3828 
3829 
3830 /**
3831  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3832  * @perf: i915 perf instance
3833  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3834  * @props: individually validated u64 property value pairs
3835  * @file: drm file
3836  *
3837  * See i915_perf_ioctl_open() for interface details.
3838  *
3839  * Implements further stream config validation and stream initialization on
3840  * behalf of i915_perf_open_ioctl() with the &gt->perf.lock mutex
3841  * taken to serialize with any non-file-operation driver hooks.
3842  *
3843  * Note: at this point the @props have only been validated in isolation and
3844  * it's still necessary to validate that the combination of properties makes
3845  * sense.
3846  *
3847  * In the case where userspace is interested in OA unit metrics then further
3848  * config validation and stream initialization details will be handled by
3849  * i915_oa_stream_init(). The code here should only validate config state that
3850  * will be relevant to all stream types / backends.
3851  *
3852  * Returns: zero on success or a negative error code.
3853  */
3854 static int
3855 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3856 			    struct drm_i915_perf_open_param *param,
3857 			    struct perf_open_properties *props,
3858 			    struct drm_file *file)
3859 {
3860 	struct i915_gem_context *specific_ctx = NULL;
3861 	struct i915_perf_stream *stream = NULL;
3862 	unsigned long f_flags = 0;
3863 	bool privileged_op = true;
3864 	int stream_fd;
3865 	int ret;
3866 
3867 	if (props->single_context) {
3868 		u32 ctx_handle = props->ctx_handle;
3869 		struct drm_i915_file_private *file_priv = file->driver_priv;
3870 
3871 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3872 		if (IS_ERR(specific_ctx)) {
3873 			drm_dbg(&perf->i915->drm,
3874 				"Failed to look up context with ID %u for opening perf stream\n",
3875 				  ctx_handle);
3876 			ret = PTR_ERR(specific_ctx);
3877 			goto err;
3878 		}
3879 	}
3880 
3881 	/*
3882 	 * On Haswell the OA unit supports clock gating off for a specific
3883 	 * context and in this mode there's no visibility of metrics for the
3884 	 * rest of the system, which we consider acceptable for a
3885 	 * non-privileged client.
3886 	 *
3887 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3888 	 * specific context and the kernel can't securely stop the counters
3889 	 * from updating as system-wide / global values. Even though we can
3890 	 * filter reports based on the included context ID we can't block
3891 	 * clients from seeing the raw / global counter values via
3892 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3893 	 * enable the OA unit by default.
3894 	 *
3895 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3896 	 * per context basis. So we can relax requirements there if the user
3897 	 * doesn't request global stream access (i.e. query based sampling
3898 	 * using MI_RECORD_PERF_COUNT.
3899 	 */
3900 	if (IS_HASWELL(perf->i915) && specific_ctx)
3901 		privileged_op = false;
3902 	else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3903 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3904 		privileged_op = false;
3905 
3906 	if (props->hold_preemption) {
3907 		if (!props->single_context) {
3908 			drm_dbg(&perf->i915->drm,
3909 				"preemption disable with no context\n");
3910 			ret = -EINVAL;
3911 			goto err;
3912 		}
3913 		privileged_op = true;
3914 	}
3915 
3916 	/*
3917 	 * Asking for SSEU configuration is a priviliged operation.
3918 	 */
3919 	if (props->has_sseu)
3920 		privileged_op = true;
3921 	else
3922 		get_default_sseu_config(&props->sseu, props->engine);
3923 
3924 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3925 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3926 	 * to determine if it's ok to access system wide OA counters
3927 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3928 	 */
3929 	if (privileged_op &&
3930 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3931 		drm_dbg(&perf->i915->drm,
3932 			"Insufficient privileges to open i915 perf stream\n");
3933 		ret = -EACCES;
3934 		goto err_ctx;
3935 	}
3936 
3937 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3938 	if (!stream) {
3939 		ret = -ENOMEM;
3940 		goto err_ctx;
3941 	}
3942 
3943 	stream->perf = perf;
3944 	stream->ctx = specific_ctx;
3945 	stream->poll_oa_period = props->poll_oa_period;
3946 
3947 	ret = i915_oa_stream_init(stream, param, props);
3948 	if (ret)
3949 		goto err_alloc;
3950 
3951 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3952 	 * to have _stream_init check the combination of sample flags more
3953 	 * thoroughly, but still this is the expected result at this point.
3954 	 */
3955 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3956 		ret = -ENODEV;
3957 		goto err_flags;
3958 	}
3959 
3960 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3961 		f_flags |= O_CLOEXEC;
3962 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3963 		f_flags |= O_NONBLOCK;
3964 
3965 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3966 	if (stream_fd < 0) {
3967 		ret = stream_fd;
3968 		goto err_flags;
3969 	}
3970 
3971 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3972 		i915_perf_enable_locked(stream);
3973 
3974 	/* Take a reference on the driver that will be kept with stream_fd
3975 	 * until its release.
3976 	 */
3977 	drm_dev_get(&perf->i915->drm);
3978 
3979 	return stream_fd;
3980 
3981 err_flags:
3982 	if (stream->ops->destroy)
3983 		stream->ops->destroy(stream);
3984 err_alloc:
3985 	kfree(stream);
3986 err_ctx:
3987 	if (specific_ctx)
3988 		i915_gem_context_put(specific_ctx);
3989 err:
3990 	return ret;
3991 }
3992 
3993 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3994 {
3995 	u64 nom = (2ULL << exponent) * NSEC_PER_SEC;
3996 	u32 den = i915_perf_oa_timestamp_frequency(perf->i915);
3997 
3998 	return div_u64(nom + den - 1, den);
3999 }
4000 
4001 static __always_inline bool
4002 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
4003 {
4004 	return test_bit(format, perf->format_mask);
4005 }
4006 
4007 static __always_inline void
4008 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
4009 {
4010 	__set_bit(format, perf->format_mask);
4011 }
4012 
4013 /**
4014  * read_properties_unlocked - validate + copy userspace stream open properties
4015  * @perf: i915 perf instance
4016  * @uprops: The array of u64 key value pairs given by userspace
4017  * @n_props: The number of key value pairs expected in @uprops
4018  * @props: The stream configuration built up while validating properties
4019  *
4020  * Note this function only validates properties in isolation it doesn't
4021  * validate that the combination of properties makes sense or that all
4022  * properties necessary for a particular kind of stream have been set.
4023  *
4024  * Note that there currently aren't any ordering requirements for properties so
4025  * we shouldn't validate or assume anything about ordering here. This doesn't
4026  * rule out defining new properties with ordering requirements in the future.
4027  */
4028 static int read_properties_unlocked(struct i915_perf *perf,
4029 				    u64 __user *uprops,
4030 				    u32 n_props,
4031 				    struct perf_open_properties *props)
4032 {
4033 	struct drm_i915_gem_context_param_sseu user_sseu;
4034 	const struct i915_oa_format *f;
4035 	u64 __user *uprop = uprops;
4036 	bool config_instance = false;
4037 	bool config_class = false;
4038 	bool config_sseu = false;
4039 	u8 class, instance;
4040 	u32 i;
4041 	int ret;
4042 
4043 	memset(props, 0, sizeof(struct perf_open_properties));
4044 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
4045 
4046 	/* Considering that ID = 0 is reserved and assuming that we don't
4047 	 * (currently) expect any configurations to ever specify duplicate
4048 	 * values for a particular property ID then the last _PROP_MAX value is
4049 	 * one greater than the maximum number of properties we expect to get
4050 	 * from userspace.
4051 	 */
4052 	if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) {
4053 		drm_dbg(&perf->i915->drm,
4054 			"Invalid number of i915 perf properties given\n");
4055 		return -EINVAL;
4056 	}
4057 
4058 	/* Defaults when class:instance is not passed */
4059 	class = I915_ENGINE_CLASS_RENDER;
4060 	instance = 0;
4061 
4062 	for (i = 0; i < n_props; i++) {
4063 		u64 oa_period, oa_freq_hz;
4064 		u64 id, value;
4065 
4066 		ret = get_user(id, uprop);
4067 		if (ret)
4068 			return ret;
4069 
4070 		ret = get_user(value, uprop + 1);
4071 		if (ret)
4072 			return ret;
4073 
4074 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
4075 			drm_dbg(&perf->i915->drm,
4076 				"Unknown i915 perf property ID\n");
4077 			return -EINVAL;
4078 		}
4079 
4080 		switch ((enum drm_i915_perf_property_id)id) {
4081 		case DRM_I915_PERF_PROP_CTX_HANDLE:
4082 			props->single_context = 1;
4083 			props->ctx_handle = value;
4084 			break;
4085 		case DRM_I915_PERF_PROP_SAMPLE_OA:
4086 			if (value)
4087 				props->sample_flags |= SAMPLE_OA_REPORT;
4088 			break;
4089 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
4090 			if (value == 0) {
4091 				drm_dbg(&perf->i915->drm,
4092 					"Unknown OA metric set ID\n");
4093 				return -EINVAL;
4094 			}
4095 			props->metrics_set = value;
4096 			break;
4097 		case DRM_I915_PERF_PROP_OA_FORMAT:
4098 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
4099 				drm_dbg(&perf->i915->drm,
4100 					"Out-of-range OA report format %llu\n",
4101 					  value);
4102 				return -EINVAL;
4103 			}
4104 			if (!oa_format_valid(perf, value)) {
4105 				drm_dbg(&perf->i915->drm,
4106 					"Unsupported OA report format %llu\n",
4107 					  value);
4108 				return -EINVAL;
4109 			}
4110 			props->oa_format = value;
4111 			break;
4112 		case DRM_I915_PERF_PROP_OA_EXPONENT:
4113 			if (value > OA_EXPONENT_MAX) {
4114 				drm_dbg(&perf->i915->drm,
4115 					"OA timer exponent too high (> %u)\n",
4116 					 OA_EXPONENT_MAX);
4117 				return -EINVAL;
4118 			}
4119 
4120 			/* Theoretically we can program the OA unit to sample
4121 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
4122 			 * for BXT. We don't allow such high sampling
4123 			 * frequencies by default unless root.
4124 			 */
4125 
4126 			BUILD_BUG_ON(sizeof(oa_period) != 8);
4127 			oa_period = oa_exponent_to_ns(perf, value);
4128 
4129 			/* This check is primarily to ensure that oa_period <=
4130 			 * UINT32_MAX (before passing to do_div which only
4131 			 * accepts a u32 denominator), but we can also skip
4132 			 * checking anything < 1Hz which implicitly can't be
4133 			 * limited via an integer oa_max_sample_rate.
4134 			 */
4135 			if (oa_period <= NSEC_PER_SEC) {
4136 				u64 tmp = NSEC_PER_SEC;
4137 				do_div(tmp, oa_period);
4138 				oa_freq_hz = tmp;
4139 			} else
4140 				oa_freq_hz = 0;
4141 
4142 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
4143 				drm_dbg(&perf->i915->drm,
4144 					"OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
4145 					  i915_oa_max_sample_rate);
4146 				return -EACCES;
4147 			}
4148 
4149 			props->oa_periodic = true;
4150 			props->oa_period_exponent = value;
4151 			break;
4152 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
4153 			props->hold_preemption = !!value;
4154 			break;
4155 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
4156 			if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) {
4157 				drm_dbg(&perf->i915->drm,
4158 					"SSEU config not supported on gfx %x\n",
4159 					GRAPHICS_VER_FULL(perf->i915));
4160 				return -ENODEV;
4161 			}
4162 
4163 			if (copy_from_user(&user_sseu,
4164 					   u64_to_user_ptr(value),
4165 					   sizeof(user_sseu))) {
4166 				drm_dbg(&perf->i915->drm,
4167 					"Unable to copy global sseu parameter\n");
4168 				return -EFAULT;
4169 			}
4170 			config_sseu = true;
4171 			break;
4172 		}
4173 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
4174 			if (value < 100000 /* 100us */) {
4175 				drm_dbg(&perf->i915->drm,
4176 					"OA availability timer too small (%lluns < 100us)\n",
4177 					  value);
4178 				return -EINVAL;
4179 			}
4180 			props->poll_oa_period = value;
4181 			break;
4182 		case DRM_I915_PERF_PROP_OA_ENGINE_CLASS:
4183 			class = (u8)value;
4184 			config_class = true;
4185 			break;
4186 		case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE:
4187 			instance = (u8)value;
4188 			config_instance = true;
4189 			break;
4190 		default:
4191 			MISSING_CASE(id);
4192 			return -EINVAL;
4193 		}
4194 
4195 		uprop += 2;
4196 	}
4197 
4198 	if ((config_class && !config_instance) ||
4199 	    (config_instance && !config_class)) {
4200 		drm_dbg(&perf->i915->drm,
4201 			"OA engine-class and engine-instance parameters must be passed together\n");
4202 		return -EINVAL;
4203 	}
4204 
4205 	props->engine = intel_engine_lookup_user(perf->i915, class, instance);
4206 	if (!props->engine) {
4207 		drm_dbg(&perf->i915->drm,
4208 			"OA engine class and instance invalid %d:%d\n",
4209 			class, instance);
4210 		return -EINVAL;
4211 	}
4212 
4213 	if (!engine_supports_oa(props->engine)) {
4214 		drm_dbg(&perf->i915->drm,
4215 			"Engine not supported by OA %d:%d\n",
4216 			class, instance);
4217 		return -EINVAL;
4218 	}
4219 
4220 	/*
4221 	 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
4222 	 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM
4223 	 * does not work as expected.
4224 	 */
4225 	if (IS_MTL_MEDIA_STEP(props->engine->i915, STEP_A0, STEP_C0) &&
4226 	    props->engine->oa_group->type == TYPE_OAM &&
4227 	    intel_check_bios_c6_setup(&props->engine->gt->rc6)) {
4228 		drm_dbg(&perf->i915->drm,
4229 			"OAM requires media C6 to be disabled in BIOS\n");
4230 		return -EINVAL;
4231 	}
4232 
4233 	i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX);
4234 	f = &perf->oa_formats[i];
4235 	if (!engine_supports_oa_format(props->engine, f->type)) {
4236 		drm_dbg(&perf->i915->drm,
4237 			"Invalid OA format %d for class %d\n",
4238 			f->type, props->engine->class);
4239 		return -EINVAL;
4240 	}
4241 
4242 	if (config_sseu) {
4243 		ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
4244 		if (ret) {
4245 			drm_dbg(&perf->i915->drm,
4246 				"Invalid SSEU configuration\n");
4247 			return ret;
4248 		}
4249 		props->has_sseu = true;
4250 	}
4251 
4252 	return 0;
4253 }
4254 
4255 /**
4256  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
4257  * @dev: drm device
4258  * @data: ioctl data copied from userspace (unvalidated)
4259  * @file: drm file
4260  *
4261  * Validates the stream open parameters given by userspace including flags
4262  * and an array of u64 key, value pair properties.
4263  *
4264  * Very little is assumed up front about the nature of the stream being
4265  * opened (for instance we don't assume it's for periodic OA unit metrics). An
4266  * i915-perf stream is expected to be a suitable interface for other forms of
4267  * buffered data written by the GPU besides periodic OA metrics.
4268  *
4269  * Note we copy the properties from userspace outside of the i915 perf
4270  * mutex to avoid an awkward lockdep with mmap_lock.
4271  *
4272  * Most of the implementation details are handled by
4273  * i915_perf_open_ioctl_locked() after taking the &gt->perf.lock
4274  * mutex for serializing with any non-file-operation driver hooks.
4275  *
4276  * Return: A newly opened i915 Perf stream file descriptor or negative
4277  * error code on failure.
4278  */
4279 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
4280 			 struct drm_file *file)
4281 {
4282 	struct i915_perf *perf = &to_i915(dev)->perf;
4283 	struct drm_i915_perf_open_param *param = data;
4284 	struct intel_gt *gt;
4285 	struct perf_open_properties props;
4286 	u32 known_open_flags;
4287 	int ret;
4288 
4289 	if (!perf->i915)
4290 		return -ENOTSUPP;
4291 
4292 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
4293 			   I915_PERF_FLAG_FD_NONBLOCK |
4294 			   I915_PERF_FLAG_DISABLED;
4295 	if (param->flags & ~known_open_flags) {
4296 		drm_dbg(&perf->i915->drm,
4297 			"Unknown drm_i915_perf_open_param flag\n");
4298 		return -EINVAL;
4299 	}
4300 
4301 	ret = read_properties_unlocked(perf,
4302 				       u64_to_user_ptr(param->properties_ptr),
4303 				       param->num_properties,
4304 				       &props);
4305 	if (ret)
4306 		return ret;
4307 
4308 	gt = props.engine->gt;
4309 
4310 	mutex_lock(&gt->perf.lock);
4311 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
4312 	mutex_unlock(&gt->perf.lock);
4313 
4314 	return ret;
4315 }
4316 
4317 /**
4318  * i915_perf_register - exposes i915-perf to userspace
4319  * @i915: i915 device instance
4320  *
4321  * In particular OA metric sets are advertised under a sysfs metrics/
4322  * directory allowing userspace to enumerate valid IDs that can be
4323  * used to open an i915-perf stream.
4324  */
4325 void i915_perf_register(struct drm_i915_private *i915)
4326 {
4327 	struct i915_perf *perf = &i915->perf;
4328 	struct intel_gt *gt = to_gt(i915);
4329 
4330 	if (!perf->i915)
4331 		return;
4332 
4333 	/* To be sure we're synchronized with an attempted
4334 	 * i915_perf_open_ioctl(); considering that we register after
4335 	 * being exposed to userspace.
4336 	 */
4337 	mutex_lock(&gt->perf.lock);
4338 
4339 	perf->metrics_kobj =
4340 		kobject_create_and_add("metrics",
4341 				       &i915->drm.primary->kdev->kobj);
4342 
4343 	mutex_unlock(&gt->perf.lock);
4344 }
4345 
4346 /**
4347  * i915_perf_unregister - hide i915-perf from userspace
4348  * @i915: i915 device instance
4349  *
4350  * i915-perf state cleanup is split up into an 'unregister' and
4351  * 'deinit' phase where the interface is first hidden from
4352  * userspace by i915_perf_unregister() before cleaning up
4353  * remaining state in i915_perf_fini().
4354  */
4355 void i915_perf_unregister(struct drm_i915_private *i915)
4356 {
4357 	struct i915_perf *perf = &i915->perf;
4358 
4359 	if (!perf->metrics_kobj)
4360 		return;
4361 
4362 	kobject_put(perf->metrics_kobj);
4363 	perf->metrics_kobj = NULL;
4364 }
4365 
4366 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
4367 {
4368 	static const i915_reg_t flex_eu_regs[] = {
4369 		EU_PERF_CNTL0,
4370 		EU_PERF_CNTL1,
4371 		EU_PERF_CNTL2,
4372 		EU_PERF_CNTL3,
4373 		EU_PERF_CNTL4,
4374 		EU_PERF_CNTL5,
4375 		EU_PERF_CNTL6,
4376 	};
4377 	int i;
4378 
4379 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
4380 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
4381 			return true;
4382 	}
4383 	return false;
4384 }
4385 
4386 static bool reg_in_range_table(u32 addr, const struct i915_range *table)
4387 {
4388 	while (table->start || table->end) {
4389 		if (addr >= table->start && addr <= table->end)
4390 			return true;
4391 
4392 		table++;
4393 	}
4394 
4395 	return false;
4396 }
4397 
4398 #define REG_EQUAL(addr, mmio) \
4399 	((addr) == i915_mmio_reg_offset(mmio))
4400 
4401 static const struct i915_range gen7_oa_b_counters[] = {
4402 	{ .start = 0x2710, .end = 0x272c },	/* OASTARTTRIG[1-8] */
4403 	{ .start = 0x2740, .end = 0x275c },	/* OAREPORTTRIG[1-8] */
4404 	{ .start = 0x2770, .end = 0x27ac },	/* OACEC[0-7][0-1] */
4405 	{}
4406 };
4407 
4408 static const struct i915_range gen12_oa_b_counters[] = {
4409 	{ .start = 0x2b2c, .end = 0x2b2c },	/* GEN12_OAG_OA_PESS */
4410 	{ .start = 0xd900, .end = 0xd91c },	/* GEN12_OAG_OASTARTTRIG[1-8] */
4411 	{ .start = 0xd920, .end = 0xd93c },	/* GEN12_OAG_OAREPORTTRIG1[1-8] */
4412 	{ .start = 0xd940, .end = 0xd97c },	/* GEN12_OAG_CEC[0-7][0-1] */
4413 	{ .start = 0xdc00, .end = 0xdc3c },	/* GEN12_OAG_SCEC[0-7][0-1] */
4414 	{ .start = 0xdc40, .end = 0xdc40 },	/* GEN12_OAG_SPCTR_CNF */
4415 	{ .start = 0xdc44, .end = 0xdc44 },	/* GEN12_OAA_DBG_REG */
4416 	{}
4417 };
4418 
4419 static const struct i915_range mtl_oam_b_counters[] = {
4420 	{ .start = 0x393000, .end = 0x39301c },	/* GEN12_OAM_STARTTRIG1[1-8] */
4421 	{ .start = 0x393020, .end = 0x39303c },	/* GEN12_OAM_REPORTTRIG1[1-8] */
4422 	{ .start = 0x393040, .end = 0x39307c },	/* GEN12_OAM_CEC[0-7][0-1] */
4423 	{ .start = 0x393200, .end = 0x39323C },	/* MPES[0-7] */
4424 	{}
4425 };
4426 
4427 static const struct i915_range xehp_oa_b_counters[] = {
4428 	{ .start = 0xdc48, .end = 0xdc48 },	/* OAA_ENABLE_REG */
4429 	{ .start = 0xdd00, .end = 0xdd48 },	/* OAG_LCE0_0 - OAA_LENABLE_REG */
4430 	{}
4431 };
4432 
4433 static const struct i915_range gen7_oa_mux_regs[] = {
4434 	{ .start = 0x91b8, .end = 0x91cc },	/* OA_PERFCNT[1-2], OA_PERFMATRIX */
4435 	{ .start = 0x9800, .end = 0x9888 },	/* MICRO_BP0_0 - NOA_WRITE */
4436 	{ .start = 0xe180, .end = 0xe180 },	/* HALF_SLICE_CHICKEN2 */
4437 	{}
4438 };
4439 
4440 static const struct i915_range hsw_oa_mux_regs[] = {
4441 	{ .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
4442 	{ .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
4443 	{ .start = 0x25100, .end = 0x2ff90 },
4444 	{}
4445 };
4446 
4447 static const struct i915_range chv_oa_mux_regs[] = {
4448 	{ .start = 0x182300, .end = 0x1823a4 },
4449 	{}
4450 };
4451 
4452 static const struct i915_range gen8_oa_mux_regs[] = {
4453 	{ .start = 0x0d00, .end = 0x0d2c },	/* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
4454 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4455 	{}
4456 };
4457 
4458 static const struct i915_range gen11_oa_mux_regs[] = {
4459 	{ .start = 0x91c8, .end = 0x91dc },	/* OA_PERFCNT[3-4] */
4460 	{}
4461 };
4462 
4463 static const struct i915_range gen12_oa_mux_regs[] = {
4464 	{ .start = 0x0d00, .end = 0x0d04 },     /* RPM_CONFIG[0-1] */
4465 	{ .start = 0x0d0c, .end = 0x0d2c },     /* NOA_CONFIG[0-8] */
4466 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4467 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4468 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4469 	{}
4470 };
4471 
4472 /*
4473  * Ref: 14010536224:
4474  * 0x20cc is repurposed on MTL, so use a separate array for MTL.
4475  */
4476 static const struct i915_range mtl_oa_mux_regs[] = {
4477 	{ .start = 0x0d00, .end = 0x0d04 },	/* RPM_CONFIG[0-1] */
4478 	{ .start = 0x0d0c, .end = 0x0d2c },	/* NOA_CONFIG[0-8] */
4479 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4480 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4481 	{ .start = 0x38d100, .end = 0x38d114},	/* VISACTL */
4482 	{}
4483 };
4484 
4485 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4486 {
4487 	return reg_in_range_table(addr, gen7_oa_b_counters);
4488 }
4489 
4490 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4491 {
4492 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4493 		reg_in_range_table(addr, gen8_oa_mux_regs);
4494 }
4495 
4496 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4497 {
4498 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4499 		reg_in_range_table(addr, gen8_oa_mux_regs) ||
4500 		reg_in_range_table(addr, gen11_oa_mux_regs);
4501 }
4502 
4503 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4504 {
4505 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4506 		reg_in_range_table(addr, hsw_oa_mux_regs);
4507 }
4508 
4509 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4510 {
4511 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4512 		reg_in_range_table(addr, chv_oa_mux_regs);
4513 }
4514 
4515 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4516 {
4517 	return reg_in_range_table(addr, gen12_oa_b_counters);
4518 }
4519 
4520 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr)
4521 {
4522 	if (HAS_OAM(perf->i915) &&
4523 	    GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70))
4524 		return reg_in_range_table(addr, mtl_oam_b_counters);
4525 
4526 	return false;
4527 }
4528 
4529 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4530 {
4531 	return reg_in_range_table(addr, xehp_oa_b_counters) ||
4532 		reg_in_range_table(addr, gen12_oa_b_counters) ||
4533 		mtl_is_valid_oam_b_counter_addr(perf, addr);
4534 }
4535 
4536 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4537 {
4538 	if (IS_METEORLAKE(perf->i915))
4539 		return reg_in_range_table(addr, mtl_oa_mux_regs);
4540 	else
4541 		return reg_in_range_table(addr, gen12_oa_mux_regs);
4542 }
4543 
4544 static u32 mask_reg_value(u32 reg, u32 val)
4545 {
4546 	/* HALF_SLICE_CHICKEN2 is programmed with a the
4547 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4548 	 * programmed by userspace doesn't change this.
4549 	 */
4550 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4551 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4552 
4553 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
4554 	 * indicated by its name and a bunch of selection fields used by OA
4555 	 * configs.
4556 	 */
4557 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4558 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4559 
4560 	return val;
4561 }
4562 
4563 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4564 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4565 					 u32 __user *regs,
4566 					 u32 n_regs)
4567 {
4568 	struct i915_oa_reg *oa_regs;
4569 	int err;
4570 	u32 i;
4571 
4572 	if (!n_regs)
4573 		return NULL;
4574 
4575 	/* No is_valid function means we're not allowing any register to be programmed. */
4576 	GEM_BUG_ON(!is_valid);
4577 	if (!is_valid)
4578 		return ERR_PTR(-EINVAL);
4579 
4580 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4581 	if (!oa_regs)
4582 		return ERR_PTR(-ENOMEM);
4583 
4584 	for (i = 0; i < n_regs; i++) {
4585 		u32 addr, value;
4586 
4587 		err = get_user(addr, regs);
4588 		if (err)
4589 			goto addr_err;
4590 
4591 		if (!is_valid(perf, addr)) {
4592 			drm_dbg(&perf->i915->drm,
4593 				"Invalid oa_reg address: %X\n", addr);
4594 			err = -EINVAL;
4595 			goto addr_err;
4596 		}
4597 
4598 		err = get_user(value, regs + 1);
4599 		if (err)
4600 			goto addr_err;
4601 
4602 		oa_regs[i].addr = _MMIO(addr);
4603 		oa_regs[i].value = mask_reg_value(addr, value);
4604 
4605 		regs += 2;
4606 	}
4607 
4608 	return oa_regs;
4609 
4610 addr_err:
4611 	kfree(oa_regs);
4612 	return ERR_PTR(err);
4613 }
4614 
4615 static ssize_t show_dynamic_id(struct kobject *kobj,
4616 			       struct kobj_attribute *attr,
4617 			       char *buf)
4618 {
4619 	struct i915_oa_config *oa_config =
4620 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
4621 
4622 	return sprintf(buf, "%d\n", oa_config->id);
4623 }
4624 
4625 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4626 					 struct i915_oa_config *oa_config)
4627 {
4628 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4629 	oa_config->sysfs_metric_id.attr.name = "id";
4630 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4631 	oa_config->sysfs_metric_id.show = show_dynamic_id;
4632 	oa_config->sysfs_metric_id.store = NULL;
4633 
4634 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4635 	oa_config->attrs[1] = NULL;
4636 
4637 	oa_config->sysfs_metric.name = oa_config->uuid;
4638 	oa_config->sysfs_metric.attrs = oa_config->attrs;
4639 
4640 	return sysfs_create_group(perf->metrics_kobj,
4641 				  &oa_config->sysfs_metric);
4642 }
4643 
4644 /**
4645  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4646  * @dev: drm device
4647  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4648  *        userspace (unvalidated)
4649  * @file: drm file
4650  *
4651  * Validates the submitted OA register to be saved into a new OA config that
4652  * can then be used for programming the OA unit and its NOA network.
4653  *
4654  * Returns: A new allocated config number to be used with the perf open ioctl
4655  * or a negative error code on failure.
4656  */
4657 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4658 			       struct drm_file *file)
4659 {
4660 	struct i915_perf *perf = &to_i915(dev)->perf;
4661 	struct drm_i915_perf_oa_config *args = data;
4662 	struct i915_oa_config *oa_config, *tmp;
4663 	struct i915_oa_reg *regs;
4664 	int err, id;
4665 
4666 	if (!perf->i915)
4667 		return -ENOTSUPP;
4668 
4669 	if (!perf->metrics_kobj) {
4670 		drm_dbg(&perf->i915->drm,
4671 			"OA metrics weren't advertised via sysfs\n");
4672 		return -EINVAL;
4673 	}
4674 
4675 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4676 		drm_dbg(&perf->i915->drm,
4677 			"Insufficient privileges to add i915 OA config\n");
4678 		return -EACCES;
4679 	}
4680 
4681 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4682 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4683 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4684 		drm_dbg(&perf->i915->drm,
4685 			"No OA registers given\n");
4686 		return -EINVAL;
4687 	}
4688 
4689 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4690 	if (!oa_config) {
4691 		drm_dbg(&perf->i915->drm,
4692 			"Failed to allocate memory for the OA config\n");
4693 		return -ENOMEM;
4694 	}
4695 
4696 	oa_config->perf = perf;
4697 	kref_init(&oa_config->ref);
4698 
4699 	if (!uuid_is_valid(args->uuid)) {
4700 		drm_dbg(&perf->i915->drm,
4701 			"Invalid uuid format for OA config\n");
4702 		err = -EINVAL;
4703 		goto reg_err;
4704 	}
4705 
4706 	/* Last character in oa_config->uuid will be 0 because oa_config is
4707 	 * kzalloc.
4708 	 */
4709 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4710 
4711 	oa_config->mux_regs_len = args->n_mux_regs;
4712 	regs = alloc_oa_regs(perf,
4713 			     perf->ops.is_valid_mux_reg,
4714 			     u64_to_user_ptr(args->mux_regs_ptr),
4715 			     args->n_mux_regs);
4716 
4717 	if (IS_ERR(regs)) {
4718 		drm_dbg(&perf->i915->drm,
4719 			"Failed to create OA config for mux_regs\n");
4720 		err = PTR_ERR(regs);
4721 		goto reg_err;
4722 	}
4723 	oa_config->mux_regs = regs;
4724 
4725 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4726 	regs = alloc_oa_regs(perf,
4727 			     perf->ops.is_valid_b_counter_reg,
4728 			     u64_to_user_ptr(args->boolean_regs_ptr),
4729 			     args->n_boolean_regs);
4730 
4731 	if (IS_ERR(regs)) {
4732 		drm_dbg(&perf->i915->drm,
4733 			"Failed to create OA config for b_counter_regs\n");
4734 		err = PTR_ERR(regs);
4735 		goto reg_err;
4736 	}
4737 	oa_config->b_counter_regs = regs;
4738 
4739 	if (GRAPHICS_VER(perf->i915) < 8) {
4740 		if (args->n_flex_regs != 0) {
4741 			err = -EINVAL;
4742 			goto reg_err;
4743 		}
4744 	} else {
4745 		oa_config->flex_regs_len = args->n_flex_regs;
4746 		regs = alloc_oa_regs(perf,
4747 				     perf->ops.is_valid_flex_reg,
4748 				     u64_to_user_ptr(args->flex_regs_ptr),
4749 				     args->n_flex_regs);
4750 
4751 		if (IS_ERR(regs)) {
4752 			drm_dbg(&perf->i915->drm,
4753 				"Failed to create OA config for flex_regs\n");
4754 			err = PTR_ERR(regs);
4755 			goto reg_err;
4756 		}
4757 		oa_config->flex_regs = regs;
4758 	}
4759 
4760 	err = mutex_lock_interruptible(&perf->metrics_lock);
4761 	if (err)
4762 		goto reg_err;
4763 
4764 	/* We shouldn't have too many configs, so this iteration shouldn't be
4765 	 * too costly.
4766 	 */
4767 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4768 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4769 			drm_dbg(&perf->i915->drm,
4770 				"OA config already exists with this uuid\n");
4771 			err = -EADDRINUSE;
4772 			goto sysfs_err;
4773 		}
4774 	}
4775 
4776 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4777 	if (err) {
4778 		drm_dbg(&perf->i915->drm,
4779 			"Failed to create sysfs entry for OA config\n");
4780 		goto sysfs_err;
4781 	}
4782 
4783 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4784 	oa_config->id = idr_alloc(&perf->metrics_idr,
4785 				  oa_config, 2,
4786 				  0, GFP_KERNEL);
4787 	if (oa_config->id < 0) {
4788 		drm_dbg(&perf->i915->drm,
4789 			"Failed to create sysfs entry for OA config\n");
4790 		err = oa_config->id;
4791 		goto sysfs_err;
4792 	}
4793 	id = oa_config->id;
4794 
4795 	drm_dbg(&perf->i915->drm,
4796 		"Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4797 	mutex_unlock(&perf->metrics_lock);
4798 
4799 	return id;
4800 
4801 sysfs_err:
4802 	mutex_unlock(&perf->metrics_lock);
4803 reg_err:
4804 	i915_oa_config_put(oa_config);
4805 	drm_dbg(&perf->i915->drm,
4806 		"Failed to add new OA config\n");
4807 	return err;
4808 }
4809 
4810 /**
4811  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4812  * @dev: drm device
4813  * @data: ioctl data (pointer to u64 integer) copied from userspace
4814  * @file: drm file
4815  *
4816  * Configs can be removed while being used, the will stop appearing in sysfs
4817  * and their content will be freed when the stream using the config is closed.
4818  *
4819  * Returns: 0 on success or a negative error code on failure.
4820  */
4821 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4822 				  struct drm_file *file)
4823 {
4824 	struct i915_perf *perf = &to_i915(dev)->perf;
4825 	u64 *arg = data;
4826 	struct i915_oa_config *oa_config;
4827 	int ret;
4828 
4829 	if (!perf->i915)
4830 		return -ENOTSUPP;
4831 
4832 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4833 		drm_dbg(&perf->i915->drm,
4834 			"Insufficient privileges to remove i915 OA config\n");
4835 		return -EACCES;
4836 	}
4837 
4838 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4839 	if (ret)
4840 		return ret;
4841 
4842 	oa_config = idr_find(&perf->metrics_idr, *arg);
4843 	if (!oa_config) {
4844 		drm_dbg(&perf->i915->drm,
4845 			"Failed to remove unknown OA config\n");
4846 		ret = -ENOENT;
4847 		goto err_unlock;
4848 	}
4849 
4850 	GEM_BUG_ON(*arg != oa_config->id);
4851 
4852 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4853 
4854 	idr_remove(&perf->metrics_idr, *arg);
4855 
4856 	mutex_unlock(&perf->metrics_lock);
4857 
4858 	drm_dbg(&perf->i915->drm,
4859 		"Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4860 
4861 	i915_oa_config_put(oa_config);
4862 
4863 	return 0;
4864 
4865 err_unlock:
4866 	mutex_unlock(&perf->metrics_lock);
4867 	return ret;
4868 }
4869 
4870 static struct ctl_table oa_table[] = {
4871 	{
4872 	 .procname = "perf_stream_paranoid",
4873 	 .data = &i915_perf_stream_paranoid,
4874 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4875 	 .mode = 0644,
4876 	 .proc_handler = proc_dointvec_minmax,
4877 	 .extra1 = SYSCTL_ZERO,
4878 	 .extra2 = SYSCTL_ONE,
4879 	 },
4880 	{
4881 	 .procname = "oa_max_sample_rate",
4882 	 .data = &i915_oa_max_sample_rate,
4883 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4884 	 .mode = 0644,
4885 	 .proc_handler = proc_dointvec_minmax,
4886 	 .extra1 = SYSCTL_ZERO,
4887 	 .extra2 = &oa_sample_rate_hard_limit,
4888 	 },
4889 	{}
4890 };
4891 
4892 static u32 num_perf_groups_per_gt(struct intel_gt *gt)
4893 {
4894 	return 1;
4895 }
4896 
4897 static u32 __oam_engine_group(struct intel_engine_cs *engine)
4898 {
4899 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) {
4900 		/*
4901 		 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices
4902 		 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA.
4903 		 */
4904 		drm_WARN_ON(&engine->i915->drm,
4905 			    engine->gt->type != GT_MEDIA);
4906 
4907 		return PERF_GROUP_OAM_SAMEDIA_0;
4908 	}
4909 
4910 	return PERF_GROUP_INVALID;
4911 }
4912 
4913 static u32 __oa_engine_group(struct intel_engine_cs *engine)
4914 {
4915 	switch (engine->class) {
4916 	case RENDER_CLASS:
4917 		return PERF_GROUP_OAG;
4918 
4919 	case VIDEO_DECODE_CLASS:
4920 	case VIDEO_ENHANCEMENT_CLASS:
4921 		return __oam_engine_group(engine);
4922 
4923 	default:
4924 		return PERF_GROUP_INVALID;
4925 	}
4926 }
4927 
4928 static struct i915_perf_regs __oam_regs(u32 base)
4929 {
4930 	return (struct i915_perf_regs) {
4931 		base,
4932 		GEN12_OAM_HEAD_POINTER(base),
4933 		GEN12_OAM_TAIL_POINTER(base),
4934 		GEN12_OAM_BUFFER(base),
4935 		GEN12_OAM_CONTEXT_CONTROL(base),
4936 		GEN12_OAM_CONTROL(base),
4937 		GEN12_OAM_DEBUG(base),
4938 		GEN12_OAM_STATUS(base),
4939 		GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT,
4940 	};
4941 }
4942 
4943 static struct i915_perf_regs __oag_regs(void)
4944 {
4945 	return (struct i915_perf_regs) {
4946 		0,
4947 		GEN12_OAG_OAHEADPTR,
4948 		GEN12_OAG_OATAILPTR,
4949 		GEN12_OAG_OABUFFER,
4950 		GEN12_OAG_OAGLBCTXCTRL,
4951 		GEN12_OAG_OACONTROL,
4952 		GEN12_OAG_OA_DEBUG,
4953 		GEN12_OAG_OASTATUS,
4954 		GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT,
4955 	};
4956 }
4957 
4958 static void oa_init_groups(struct intel_gt *gt)
4959 {
4960 	int i, num_groups = gt->perf.num_perf_groups;
4961 
4962 	for (i = 0; i < num_groups; i++) {
4963 		struct i915_perf_group *g = &gt->perf.group[i];
4964 
4965 		/* Fused off engines can result in a group with num_engines == 0 */
4966 		if (g->num_engines == 0)
4967 			continue;
4968 
4969 		if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) {
4970 			g->regs = __oag_regs();
4971 			g->type = TYPE_OAG;
4972 		} else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
4973 			g->regs = __oam_regs(mtl_oa_base[i]);
4974 			g->type = TYPE_OAM;
4975 		}
4976 	}
4977 }
4978 
4979 static int oa_init_gt(struct intel_gt *gt)
4980 {
4981 	u32 num_groups = num_perf_groups_per_gt(gt);
4982 	struct intel_engine_cs *engine;
4983 	struct i915_perf_group *g;
4984 	intel_engine_mask_t tmp;
4985 
4986 	g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL);
4987 	if (!g)
4988 		return -ENOMEM;
4989 
4990 	for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) {
4991 		u32 index = __oa_engine_group(engine);
4992 
4993 		engine->oa_group = NULL;
4994 		if (index < num_groups) {
4995 			g[index].num_engines++;
4996 			engine->oa_group = &g[index];
4997 		}
4998 	}
4999 
5000 	gt->perf.num_perf_groups = num_groups;
5001 	gt->perf.group = g;
5002 
5003 	oa_init_groups(gt);
5004 
5005 	return 0;
5006 }
5007 
5008 static int oa_init_engine_groups(struct i915_perf *perf)
5009 {
5010 	struct intel_gt *gt;
5011 	int i, ret;
5012 
5013 	for_each_gt(gt, perf->i915, i) {
5014 		ret = oa_init_gt(gt);
5015 		if (ret)
5016 			return ret;
5017 	}
5018 
5019 	return 0;
5020 }
5021 
5022 static void oa_init_supported_formats(struct i915_perf *perf)
5023 {
5024 	struct drm_i915_private *i915 = perf->i915;
5025 	enum intel_platform platform = INTEL_INFO(i915)->platform;
5026 
5027 	switch (platform) {
5028 	case INTEL_HASWELL:
5029 		oa_format_add(perf, I915_OA_FORMAT_A13);
5030 		oa_format_add(perf, I915_OA_FORMAT_A13);
5031 		oa_format_add(perf, I915_OA_FORMAT_A29);
5032 		oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
5033 		oa_format_add(perf, I915_OA_FORMAT_B4_C8);
5034 		oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
5035 		oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
5036 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
5037 		break;
5038 
5039 	case INTEL_BROADWELL:
5040 	case INTEL_CHERRYVIEW:
5041 	case INTEL_SKYLAKE:
5042 	case INTEL_BROXTON:
5043 	case INTEL_KABYLAKE:
5044 	case INTEL_GEMINILAKE:
5045 	case INTEL_COFFEELAKE:
5046 	case INTEL_COMETLAKE:
5047 	case INTEL_ICELAKE:
5048 	case INTEL_ELKHARTLAKE:
5049 	case INTEL_JASPERLAKE:
5050 	case INTEL_TIGERLAKE:
5051 	case INTEL_ROCKETLAKE:
5052 	case INTEL_DG1:
5053 	case INTEL_ALDERLAKE_S:
5054 	case INTEL_ALDERLAKE_P:
5055 		oa_format_add(perf, I915_OA_FORMAT_A12);
5056 		oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
5057 		oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
5058 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
5059 		break;
5060 
5061 	case INTEL_DG2:
5062 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5063 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5064 		break;
5065 
5066 	case INTEL_METEORLAKE:
5067 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
5068 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
5069 		oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8);
5070 		oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8);
5071 		break;
5072 
5073 	default:
5074 		MISSING_CASE(platform);
5075 	}
5076 }
5077 
5078 static void i915_perf_init_info(struct drm_i915_private *i915)
5079 {
5080 	struct i915_perf *perf = &i915->perf;
5081 
5082 	switch (GRAPHICS_VER(i915)) {
5083 	case 8:
5084 		perf->ctx_oactxctrl_offset = 0x120;
5085 		perf->ctx_flexeu0_offset = 0x2ce;
5086 		perf->gen8_valid_ctx_bit = BIT(25);
5087 		break;
5088 	case 9:
5089 		perf->ctx_oactxctrl_offset = 0x128;
5090 		perf->ctx_flexeu0_offset = 0x3de;
5091 		perf->gen8_valid_ctx_bit = BIT(16);
5092 		break;
5093 	case 11:
5094 		perf->ctx_oactxctrl_offset = 0x124;
5095 		perf->ctx_flexeu0_offset = 0x78e;
5096 		perf->gen8_valid_ctx_bit = BIT(16);
5097 		break;
5098 	case 12:
5099 		perf->gen8_valid_ctx_bit = BIT(16);
5100 		/*
5101 		 * Calculate offset at runtime in oa_pin_context for gen12 and
5102 		 * cache the value in perf->ctx_oactxctrl_offset.
5103 		 */
5104 		break;
5105 	default:
5106 		MISSING_CASE(GRAPHICS_VER(i915));
5107 	}
5108 }
5109 
5110 /**
5111  * i915_perf_init - initialize i915-perf state on module bind
5112  * @i915: i915 device instance
5113  *
5114  * Initializes i915-perf state without exposing anything to userspace.
5115  *
5116  * Note: i915-perf initialization is split into an 'init' and 'register'
5117  * phase with the i915_perf_register() exposing state to userspace.
5118  */
5119 int i915_perf_init(struct drm_i915_private *i915)
5120 {
5121 	struct i915_perf *perf = &i915->perf;
5122 
5123 	perf->oa_formats = oa_formats;
5124 	if (IS_HASWELL(i915)) {
5125 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
5126 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
5127 		perf->ops.is_valid_flex_reg = NULL;
5128 		perf->ops.enable_metric_set = hsw_enable_metric_set;
5129 		perf->ops.disable_metric_set = hsw_disable_metric_set;
5130 		perf->ops.oa_enable = gen7_oa_enable;
5131 		perf->ops.oa_disable = gen7_oa_disable;
5132 		perf->ops.read = gen7_oa_read;
5133 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
5134 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
5135 		/* Note: that although we could theoretically also support the
5136 		 * legacy ringbuffer mode on BDW (and earlier iterations of
5137 		 * this driver, before upstreaming did this) it didn't seem
5138 		 * worth the complexity to maintain now that BDW+ enable
5139 		 * execlist mode by default.
5140 		 */
5141 		perf->ops.read = gen8_oa_read;
5142 		i915_perf_init_info(i915);
5143 
5144 		if (IS_GRAPHICS_VER(i915, 8, 9)) {
5145 			perf->ops.is_valid_b_counter_reg =
5146 				gen7_is_valid_b_counter_addr;
5147 			perf->ops.is_valid_mux_reg =
5148 				gen8_is_valid_mux_addr;
5149 			perf->ops.is_valid_flex_reg =
5150 				gen8_is_valid_flex_addr;
5151 
5152 			if (IS_CHERRYVIEW(i915)) {
5153 				perf->ops.is_valid_mux_reg =
5154 					chv_is_valid_mux_addr;
5155 			}
5156 
5157 			perf->ops.oa_enable = gen8_oa_enable;
5158 			perf->ops.oa_disable = gen8_oa_disable;
5159 			perf->ops.enable_metric_set = gen8_enable_metric_set;
5160 			perf->ops.disable_metric_set = gen8_disable_metric_set;
5161 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5162 		} else if (GRAPHICS_VER(i915) == 11) {
5163 			perf->ops.is_valid_b_counter_reg =
5164 				gen7_is_valid_b_counter_addr;
5165 			perf->ops.is_valid_mux_reg =
5166 				gen11_is_valid_mux_addr;
5167 			perf->ops.is_valid_flex_reg =
5168 				gen8_is_valid_flex_addr;
5169 
5170 			perf->ops.oa_enable = gen8_oa_enable;
5171 			perf->ops.oa_disable = gen8_oa_disable;
5172 			perf->ops.enable_metric_set = gen8_enable_metric_set;
5173 			perf->ops.disable_metric_set = gen11_disable_metric_set;
5174 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
5175 		} else if (GRAPHICS_VER(i915) == 12) {
5176 			perf->ops.is_valid_b_counter_reg =
5177 				HAS_OA_SLICE_CONTRIB_LIMITS(i915) ?
5178 				xehp_is_valid_b_counter_addr :
5179 				gen12_is_valid_b_counter_addr;
5180 			perf->ops.is_valid_mux_reg =
5181 				gen12_is_valid_mux_addr;
5182 			perf->ops.is_valid_flex_reg =
5183 				gen8_is_valid_flex_addr;
5184 
5185 			perf->ops.oa_enable = gen12_oa_enable;
5186 			perf->ops.oa_disable = gen12_oa_disable;
5187 			perf->ops.enable_metric_set = gen12_enable_metric_set;
5188 			perf->ops.disable_metric_set = gen12_disable_metric_set;
5189 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
5190 		}
5191 	}
5192 
5193 	if (perf->ops.enable_metric_set) {
5194 		struct intel_gt *gt;
5195 		int i, ret;
5196 
5197 		for_each_gt(gt, i915, i)
5198 			mutex_init(&gt->perf.lock);
5199 
5200 		/* Choose a representative limit */
5201 		oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
5202 
5203 		mutex_init(&perf->metrics_lock);
5204 		idr_init_base(&perf->metrics_idr, 1);
5205 
5206 		/* We set up some ratelimit state to potentially throttle any
5207 		 * _NOTES about spurious, invalid OA reports which we don't
5208 		 * forward to userspace.
5209 		 *
5210 		 * We print a _NOTE about any throttling when closing the
5211 		 * stream instead of waiting until driver _fini which no one
5212 		 * would ever see.
5213 		 *
5214 		 * Using the same limiting factors as printk_ratelimit()
5215 		 */
5216 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
5217 		/* Since we use a DRM_NOTE for spurious reports it would be
5218 		 * inconsistent to let __ratelimit() automatically print a
5219 		 * warning for throttling.
5220 		 */
5221 		ratelimit_set_flags(&perf->spurious_report_rs,
5222 				    RATELIMIT_MSG_ON_RELEASE);
5223 
5224 		ratelimit_state_init(&perf->tail_pointer_race,
5225 				     5 * HZ, 10);
5226 		ratelimit_set_flags(&perf->tail_pointer_race,
5227 				    RATELIMIT_MSG_ON_RELEASE);
5228 
5229 		atomic64_set(&perf->noa_programming_delay,
5230 			     500 * 1000 /* 500us */);
5231 
5232 		perf->i915 = i915;
5233 
5234 		ret = oa_init_engine_groups(perf);
5235 		if (ret) {
5236 			drm_err(&i915->drm,
5237 				"OA initialization failed %d\n", ret);
5238 			return ret;
5239 		}
5240 
5241 		oa_init_supported_formats(perf);
5242 	}
5243 
5244 	return 0;
5245 }
5246 
5247 static int destroy_config(int id, void *p, void *data)
5248 {
5249 	i915_oa_config_put(p);
5250 	return 0;
5251 }
5252 
5253 int i915_perf_sysctl_register(void)
5254 {
5255 	sysctl_header = register_sysctl("dev/i915", oa_table);
5256 	return 0;
5257 }
5258 
5259 void i915_perf_sysctl_unregister(void)
5260 {
5261 	unregister_sysctl_table(sysctl_header);
5262 }
5263 
5264 /**
5265  * i915_perf_fini - Counter part to i915_perf_init()
5266  * @i915: i915 device instance
5267  */
5268 void i915_perf_fini(struct drm_i915_private *i915)
5269 {
5270 	struct i915_perf *perf = &i915->perf;
5271 	struct intel_gt *gt;
5272 	int i;
5273 
5274 	if (!perf->i915)
5275 		return;
5276 
5277 	for_each_gt(gt, perf->i915, i)
5278 		kfree(gt->perf.group);
5279 
5280 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
5281 	idr_destroy(&perf->metrics_idr);
5282 
5283 	memset(&perf->ops, 0, sizeof(perf->ops));
5284 	perf->i915 = NULL;
5285 }
5286 
5287 /**
5288  * i915_perf_ioctl_version - Version of the i915-perf subsystem
5289  * @i915: The i915 device
5290  *
5291  * This version number is used by userspace to detect available features.
5292  */
5293 int i915_perf_ioctl_version(struct drm_i915_private *i915)
5294 {
5295 	/*
5296 	 * 1: Initial version
5297 	 *   I915_PERF_IOCTL_ENABLE
5298 	 *   I915_PERF_IOCTL_DISABLE
5299 	 *
5300 	 * 2: Added runtime modification of OA config.
5301 	 *   I915_PERF_IOCTL_CONFIG
5302 	 *
5303 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
5304 	 *    preemption on a particular context so that performance data is
5305 	 *    accessible from a delta of MI_RPC reports without looking at the
5306 	 *    OA buffer.
5307 	 *
5308 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
5309 	 *    be run for the duration of the performance recording based on
5310 	 *    their SSEU configuration.
5311 	 *
5312 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
5313 	 *    interval for the hrtimer used to check for OA data.
5314 	 *
5315 	 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and
5316 	 *    DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE
5317 	 *
5318 	 * 7: Add support for video decode and enhancement classes.
5319 	 */
5320 
5321 	/*
5322 	 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media
5323 	 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6
5324 	 * to indicate that OA media is not supported.
5325 	 */
5326 	if (IS_MTL_MEDIA_STEP(i915, STEP_A0, STEP_C0)) {
5327 		struct intel_gt *gt;
5328 		int i;
5329 
5330 		for_each_gt(gt, i915, i) {
5331 			if (gt->type == GT_MEDIA &&
5332 			    intel_check_bios_c6_setup(&gt->rc6))
5333 				return 6;
5334 		}
5335 	}
5336 
5337 	return 7;
5338 }
5339 
5340 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5341 #include "selftests/i915_perf.c"
5342 #endif
5343