1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/nospec.h> 196 #include <linux/sizes.h> 197 #include <linux/uuid.h> 198 199 #include "gem/i915_gem_context.h" 200 #include "gem/i915_gem_internal.h" 201 #include "gt/intel_engine_pm.h" 202 #include "gt/intel_engine_regs.h" 203 #include "gt/intel_engine_user.h" 204 #include "gt/intel_execlists_submission.h" 205 #include "gt/intel_gpu_commands.h" 206 #include "gt/intel_gt.h" 207 #include "gt/intel_gt_clock_utils.h" 208 #include "gt/intel_gt_mcr.h" 209 #include "gt/intel_gt_regs.h" 210 #include "gt/intel_lrc.h" 211 #include "gt/intel_lrc_reg.h" 212 #include "gt/intel_rc6.h" 213 #include "gt/intel_ring.h" 214 #include "gt/uc/intel_guc_slpc.h" 215 216 #include "i915_drv.h" 217 #include "i915_file_private.h" 218 #include "i915_perf.h" 219 #include "i915_perf_oa_regs.h" 220 #include "i915_reg.h" 221 222 /* HW requires this to be a power of two, between 128k and 16M, though driver 223 * is currently generally designed assuming the largest 16M size is used such 224 * that the overflow cases are unlikely in normal operation. 225 */ 226 #define OA_BUFFER_SIZE SZ_16M 227 228 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 229 230 /** 231 * DOC: OA Tail Pointer Race 232 * 233 * There's a HW race condition between OA unit tail pointer register updates and 234 * writes to memory whereby the tail pointer can sometimes get ahead of what's 235 * been written out to the OA buffer so far (in terms of what's visible to the 236 * CPU). 237 * 238 * Although this can be observed explicitly while copying reports to userspace 239 * by checking for a zeroed report-id field in tail reports, we want to account 240 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 241 * redundant read() attempts. 242 * 243 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 244 * in the OA buffer, starting from the tail reported by the HW until we find a 245 * report with its first 2 dwords not 0 meaning its previous report is 246 * completely in memory and ready to be read. Those dwords are also set to 0 247 * once read and the whole buffer is cleared upon OA buffer initialization. The 248 * first dword is the reason for this report while the second is the timestamp, 249 * making the chances of having those 2 fields at 0 fairly unlikely. A more 250 * detailed explanation is available in oa_buffer_check_unlocked(). 251 * 252 * Most of the implementation details for this workaround are in 253 * oa_buffer_check_unlocked() and _append_oa_reports() 254 * 255 * Note for posterity: previously the driver used to define an effective tail 256 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 257 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 258 * This was flawed considering that the OA unit may also automatically generate 259 * non-periodic reports (such as on context switch) or the OA unit may be 260 * enabled without any periodic sampling. 261 */ 262 #define OA_TAIL_MARGIN_NSEC 100000ULL 263 #define INVALID_TAIL_PTR 0xffffffff 264 265 /* The default frequency for checking whether the OA unit has written new 266 * reports to the circular OA buffer... 267 */ 268 #define DEFAULT_POLL_FREQUENCY_HZ 200 269 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 270 271 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 272 static u32 i915_perf_stream_paranoid = true; 273 274 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 275 * of the 64bit timestamp bits to trigger reports from) but there's currently 276 * no known use case for sampling as infrequently as once per 47 thousand years. 277 * 278 * Since the timestamps included in OA reports are only 32bits it seems 279 * reasonable to limit the OA exponent where it's still possible to account for 280 * overflow in OA report timestamps. 281 */ 282 #define OA_EXPONENT_MAX 31 283 284 #define INVALID_CTX_ID 0xffffffff 285 286 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 287 #define OAREPORT_REASON_MASK 0x3f 288 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 289 #define OAREPORT_REASON_SHIFT 19 290 #define OAREPORT_REASON_TIMER (1<<0) 291 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 292 #define OAREPORT_REASON_CLK_RATIO (1<<5) 293 294 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) 295 296 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 297 * 298 * The highest sampling frequency we can theoretically program the OA unit 299 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 300 * 301 * Initialized just before we register the sysctl parameter. 302 */ 303 static int oa_sample_rate_hard_limit; 304 305 /* Theoretically we can program the OA unit to sample every 160ns but don't 306 * allow that by default unless root... 307 * 308 * The default threshold of 100000Hz is based on perf's similar 309 * kernel.perf_event_max_sample_rate sysctl parameter. 310 */ 311 static u32 i915_oa_max_sample_rate = 100000; 312 313 /* XXX: beware if future OA HW adds new report formats that the current 314 * code assumes all reports have a power-of-two size and ~(size - 1) can 315 * be used as a mask to align the OA tail pointer. 316 */ 317 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = { 318 [I915_OA_FORMAT_A13] = { 0, 64 }, 319 [I915_OA_FORMAT_A29] = { 1, 128 }, 320 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 321 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 322 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 323 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 324 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 325 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 326 [I915_OA_FORMAT_A12] = { 0, 64 }, 327 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 328 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 329 [I915_OAR_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 330 [I915_OA_FORMAT_A24u40_A14u32_B8_C8] = { 5, 256 }, 331 [I915_OAM_FORMAT_MPEC8u64_B8_C8] = { 1, 192, TYPE_OAM, HDR_64_BIT }, 332 [I915_OAM_FORMAT_MPEC8u32_B8_C8] = { 2, 128, TYPE_OAM, HDR_64_BIT }, 333 }; 334 335 static const u32 mtl_oa_base[] = { 336 [PERF_GROUP_OAM_SAMEDIA_0] = 0x393000, 337 }; 338 339 #define SAMPLE_OA_REPORT (1<<0) 340 341 /** 342 * struct perf_open_properties - for validated properties given to open a stream 343 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 344 * @single_context: Whether a single or all gpu contexts should be monitored 345 * @hold_preemption: Whether the preemption is disabled for the filtered 346 * context 347 * @ctx_handle: A gem ctx handle for use with @single_context 348 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 349 * @oa_format: An OA unit HW report format 350 * @oa_periodic: Whether to enable periodic OA unit sampling 351 * @oa_period_exponent: The OA unit sampling period is derived from this 352 * @engine: The engine (typically rcs0) being monitored by the OA unit 353 * @has_sseu: Whether @sseu was specified by userspace 354 * @sseu: internal SSEU configuration computed either from the userspace 355 * specified configuration in the opening parameters or a default value 356 * (see get_default_sseu_config()) 357 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 358 * data availability 359 * 360 * As read_properties_unlocked() enumerates and validates the properties given 361 * to open a stream of metrics the configuration is built up in the structure 362 * which starts out zero initialized. 363 */ 364 struct perf_open_properties { 365 u32 sample_flags; 366 367 u64 single_context:1; 368 u64 hold_preemption:1; 369 u64 ctx_handle; 370 371 /* OA sampling state */ 372 int metrics_set; 373 int oa_format; 374 bool oa_periodic; 375 int oa_period_exponent; 376 377 struct intel_engine_cs *engine; 378 379 bool has_sseu; 380 struct intel_sseu sseu; 381 382 u64 poll_oa_period; 383 }; 384 385 struct i915_oa_config_bo { 386 struct llist_node node; 387 388 struct i915_oa_config *oa_config; 389 struct i915_vma *vma; 390 }; 391 392 static struct ctl_table_header *sysctl_header; 393 394 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 395 396 void i915_oa_config_release(struct kref *ref) 397 { 398 struct i915_oa_config *oa_config = 399 container_of(ref, typeof(*oa_config), ref); 400 401 kfree(oa_config->flex_regs); 402 kfree(oa_config->b_counter_regs); 403 kfree(oa_config->mux_regs); 404 405 kfree_rcu(oa_config, rcu); 406 } 407 408 struct i915_oa_config * 409 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 410 { 411 struct i915_oa_config *oa_config; 412 413 rcu_read_lock(); 414 oa_config = idr_find(&perf->metrics_idr, metrics_set); 415 if (oa_config) 416 oa_config = i915_oa_config_get(oa_config); 417 rcu_read_unlock(); 418 419 return oa_config; 420 } 421 422 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 423 { 424 i915_oa_config_put(oa_bo->oa_config); 425 i915_vma_put(oa_bo->vma); 426 kfree(oa_bo); 427 } 428 429 static inline const 430 struct i915_perf_regs *__oa_regs(struct i915_perf_stream *stream) 431 { 432 return &stream->engine->oa_group->regs; 433 } 434 435 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 436 { 437 struct intel_uncore *uncore = stream->uncore; 438 439 return intel_uncore_read(uncore, __oa_regs(stream)->oa_tail_ptr) & 440 GEN12_OAG_OATAILPTR_MASK; 441 } 442 443 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 444 { 445 struct intel_uncore *uncore = stream->uncore; 446 447 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 448 } 449 450 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 451 { 452 struct intel_uncore *uncore = stream->uncore; 453 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 454 455 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 456 } 457 458 #define oa_report_header_64bit(__s) \ 459 ((__s)->oa_buffer.format->header == HDR_64_BIT) 460 461 static u64 oa_report_id(struct i915_perf_stream *stream, void *report) 462 { 463 return oa_report_header_64bit(stream) ? *(u64 *)report : *(u32 *)report; 464 } 465 466 static u64 oa_report_reason(struct i915_perf_stream *stream, void *report) 467 { 468 return (oa_report_id(stream, report) >> OAREPORT_REASON_SHIFT) & 469 (GRAPHICS_VER(stream->perf->i915) == 12 ? 470 OAREPORT_REASON_MASK_EXTENDED : 471 OAREPORT_REASON_MASK); 472 } 473 474 static void oa_report_id_clear(struct i915_perf_stream *stream, u32 *report) 475 { 476 if (oa_report_header_64bit(stream)) 477 *(u64 *)report = 0; 478 else 479 *report = 0; 480 } 481 482 static bool oa_report_ctx_invalid(struct i915_perf_stream *stream, void *report) 483 { 484 return !(oa_report_id(stream, report) & 485 stream->perf->gen8_valid_ctx_bit); 486 } 487 488 static u64 oa_timestamp(struct i915_perf_stream *stream, void *report) 489 { 490 return oa_report_header_64bit(stream) ? 491 *((u64 *)report + 1) : 492 *((u32 *)report + 1); 493 } 494 495 static void oa_timestamp_clear(struct i915_perf_stream *stream, u32 *report) 496 { 497 if (oa_report_header_64bit(stream)) 498 *(u64 *)&report[2] = 0; 499 else 500 report[1] = 0; 501 } 502 503 static u32 oa_context_id(struct i915_perf_stream *stream, u32 *report) 504 { 505 u32 ctx_id = oa_report_header_64bit(stream) ? report[4] : report[2]; 506 507 return ctx_id & stream->specific_ctx_id_mask; 508 } 509 510 static void oa_context_id_squash(struct i915_perf_stream *stream, u32 *report) 511 { 512 if (oa_report_header_64bit(stream)) 513 report[4] = INVALID_CTX_ID; 514 else 515 report[2] = INVALID_CTX_ID; 516 } 517 518 /** 519 * oa_buffer_check_unlocked - check for data and update tail ptr state 520 * @stream: i915 stream instance 521 * 522 * This is either called via fops (for blocking reads in user ctx) or the poll 523 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 524 * if there is data available for userspace to read. 525 * 526 * This function is central to providing a workaround for the OA unit tail 527 * pointer having a race with respect to what data is visible to the CPU. 528 * It is responsible for reading tail pointers from the hardware and giving 529 * the pointers time to 'age' before they are made available for reading. 530 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 531 * 532 * Besides returning true when there is data available to read() this function 533 * also updates the tail in the oa_buffer object. 534 * 535 * Note: It's safe to read OA config state here unlocked, assuming that this is 536 * only called while the stream is enabled, while the global OA configuration 537 * can't be modified. 538 * 539 * Returns: %true if the OA buffer contains data, else %false 540 */ 541 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 542 { 543 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 544 int report_size = stream->oa_buffer.format->size; 545 u32 head, tail, read_tail; 546 unsigned long flags; 547 bool pollin; 548 u32 hw_tail; 549 u32 partial_report_size; 550 551 /* We have to consider the (unlikely) possibility that read() errors 552 * could result in an OA buffer reset which might reset the head and 553 * tail state. 554 */ 555 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 556 557 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 558 559 /* The tail pointer increases in 64 byte increments, not in report_size 560 * steps. Also the report size may not be a power of 2. Compute 561 * potentially partially landed report in the OA buffer 562 */ 563 partial_report_size = OA_TAKEN(hw_tail, stream->oa_buffer.tail); 564 partial_report_size %= report_size; 565 566 /* Subtract partial amount off the tail */ 567 hw_tail = OA_TAKEN(hw_tail, partial_report_size); 568 569 /* NB: The head we observe here might effectively be a little 570 * out of date. If a read() is in progress, the head could be 571 * anywhere between this head and stream->oa_buffer.tail. 572 */ 573 head = stream->oa_buffer.head - gtt_offset; 574 read_tail = stream->oa_buffer.tail - gtt_offset; 575 576 tail = hw_tail; 577 578 /* Walk the stream backward until we find a report with report 579 * id and timestmap not at 0. Since the circular buffer pointers 580 * progress by increments of 64 bytes and that reports can be up 581 * to 256 bytes long, we can't tell whether a report has fully 582 * landed in memory before the report id and timestamp of the 583 * following report have effectively landed. 584 * 585 * This is assuming that the writes of the OA unit land in 586 * memory in the order they were written to. 587 * If not : (╯°□°)╯︵ ┻━┻ 588 */ 589 while (OA_TAKEN(tail, read_tail) >= report_size) { 590 void *report = stream->oa_buffer.vaddr + tail; 591 592 if (oa_report_id(stream, report) || 593 oa_timestamp(stream, report)) 594 break; 595 596 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 597 } 598 599 if (OA_TAKEN(hw_tail, tail) > report_size && 600 __ratelimit(&stream->perf->tail_pointer_race)) 601 drm_notice(&stream->uncore->i915->drm, 602 "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n", 603 head, tail, hw_tail); 604 605 stream->oa_buffer.tail = gtt_offset + tail; 606 607 pollin = OA_TAKEN(stream->oa_buffer.tail, 608 stream->oa_buffer.head) >= report_size; 609 610 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 611 612 return pollin; 613 } 614 615 /** 616 * append_oa_status - Appends a status record to a userspace read() buffer. 617 * @stream: An i915-perf stream opened for OA metrics 618 * @buf: destination buffer given by userspace 619 * @count: the number of bytes userspace wants to read 620 * @offset: (inout): the current position for writing into @buf 621 * @type: The kind of status to report to userspace 622 * 623 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 624 * into the userspace read() buffer. 625 * 626 * The @buf @offset will only be updated on success. 627 * 628 * Returns: 0 on success, negative error code on failure. 629 */ 630 static int append_oa_status(struct i915_perf_stream *stream, 631 char __user *buf, 632 size_t count, 633 size_t *offset, 634 enum drm_i915_perf_record_type type) 635 { 636 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 637 638 if ((count - *offset) < header.size) 639 return -ENOSPC; 640 641 if (copy_to_user(buf + *offset, &header, sizeof(header))) 642 return -EFAULT; 643 644 (*offset) += header.size; 645 646 return 0; 647 } 648 649 /** 650 * append_oa_sample - Copies single OA report into userspace read() buffer. 651 * @stream: An i915-perf stream opened for OA metrics 652 * @buf: destination buffer given by userspace 653 * @count: the number of bytes userspace wants to read 654 * @offset: (inout): the current position for writing into @buf 655 * @report: A single OA report to (optionally) include as part of the sample 656 * 657 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 658 * properties when opening a stream, tracked as `stream->sample_flags`. This 659 * function copies the requested components of a single sample to the given 660 * read() @buf. 661 * 662 * The @buf @offset will only be updated on success. 663 * 664 * Returns: 0 on success, negative error code on failure. 665 */ 666 static int append_oa_sample(struct i915_perf_stream *stream, 667 char __user *buf, 668 size_t count, 669 size_t *offset, 670 const u8 *report) 671 { 672 int report_size = stream->oa_buffer.format->size; 673 struct drm_i915_perf_record_header header; 674 int report_size_partial; 675 u8 *oa_buf_end; 676 677 header.type = DRM_I915_PERF_RECORD_SAMPLE; 678 header.pad = 0; 679 header.size = stream->sample_size; 680 681 if ((count - *offset) < header.size) 682 return -ENOSPC; 683 684 buf += *offset; 685 if (copy_to_user(buf, &header, sizeof(header))) 686 return -EFAULT; 687 buf += sizeof(header); 688 689 oa_buf_end = stream->oa_buffer.vaddr + OA_BUFFER_SIZE; 690 report_size_partial = oa_buf_end - report; 691 692 if (report_size_partial < report_size) { 693 if (copy_to_user(buf, report, report_size_partial)) 694 return -EFAULT; 695 buf += report_size_partial; 696 697 if (copy_to_user(buf, stream->oa_buffer.vaddr, 698 report_size - report_size_partial)) 699 return -EFAULT; 700 } else if (copy_to_user(buf, report, report_size)) { 701 return -EFAULT; 702 } 703 704 (*offset) += header.size; 705 706 return 0; 707 } 708 709 /** 710 * gen8_append_oa_reports - Copies all buffered OA reports into 711 * userspace read() buffer. 712 * @stream: An i915-perf stream opened for OA metrics 713 * @buf: destination buffer given by userspace 714 * @count: the number of bytes userspace wants to read 715 * @offset: (inout): the current position for writing into @buf 716 * 717 * Notably any error condition resulting in a short read (-%ENOSPC or 718 * -%EFAULT) will be returned even though one or more records may 719 * have been successfully copied. In this case it's up to the caller 720 * to decide if the error should be squashed before returning to 721 * userspace. 722 * 723 * Note: reports are consumed from the head, and appended to the 724 * tail, so the tail chases the head?... If you think that's mad 725 * and back-to-front you're not alone, but this follows the 726 * Gen PRM naming convention. 727 * 728 * Returns: 0 on success, negative error code on failure. 729 */ 730 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 731 char __user *buf, 732 size_t count, 733 size_t *offset) 734 { 735 struct intel_uncore *uncore = stream->uncore; 736 int report_size = stream->oa_buffer.format->size; 737 u8 *oa_buf_base = stream->oa_buffer.vaddr; 738 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 739 u32 mask = (OA_BUFFER_SIZE - 1); 740 size_t start_offset = *offset; 741 unsigned long flags; 742 u32 head, tail; 743 int ret = 0; 744 745 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 746 return -EIO; 747 748 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 749 750 head = stream->oa_buffer.head; 751 tail = stream->oa_buffer.tail; 752 753 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 754 755 /* 756 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 757 * while indexing relative to oa_buf_base. 758 */ 759 head -= gtt_offset; 760 tail -= gtt_offset; 761 762 /* 763 * An out of bounds or misaligned head or tail pointer implies a driver 764 * bug since we validate + align the tail pointers we read from the 765 * hardware and we are in full control of the head pointer which should 766 * only be incremented by multiples of the report size. 767 */ 768 if (drm_WARN_ONCE(&uncore->i915->drm, 769 head > OA_BUFFER_SIZE || 770 tail > OA_BUFFER_SIZE, 771 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 772 head, tail)) 773 return -EIO; 774 775 776 for (/* none */; 777 OA_TAKEN(tail, head); 778 head = (head + report_size) & mask) { 779 u8 *report = oa_buf_base + head; 780 u32 *report32 = (void *)report; 781 u32 ctx_id; 782 u64 reason; 783 784 /* 785 * The reason field includes flags identifying what 786 * triggered this specific report (mostly timer 787 * triggered or e.g. due to a context switch). 788 * 789 * In MMIO triggered reports, some platforms do not set the 790 * reason bit in this field and it is valid to have a reason 791 * field of zero. 792 */ 793 reason = oa_report_reason(stream, report); 794 ctx_id = oa_context_id(stream, report32); 795 796 /* 797 * Squash whatever is in the CTX_ID field if it's marked as 798 * invalid to be sure we avoid false-positive, single-context 799 * filtering below... 800 * 801 * Note: that we don't clear the valid_ctx_bit so userspace can 802 * understand that the ID has been squashed by the kernel. 803 */ 804 if (oa_report_ctx_invalid(stream, report)) { 805 ctx_id = INVALID_CTX_ID; 806 oa_context_id_squash(stream, report32); 807 } 808 809 /* 810 * NB: For Gen 8 the OA unit no longer supports clock gating 811 * off for a specific context and the kernel can't securely 812 * stop the counters from updating as system-wide / global 813 * values. 814 * 815 * Automatic reports now include a context ID so reports can be 816 * filtered on the cpu but it's not worth trying to 817 * automatically subtract/hide counter progress for other 818 * contexts while filtering since we can't stop userspace 819 * issuing MI_REPORT_PERF_COUNT commands which would still 820 * provide a side-band view of the real values. 821 * 822 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 823 * to normalize counters for a single filtered context then it 824 * needs be forwarded bookend context-switch reports so that it 825 * can track switches in between MI_REPORT_PERF_COUNT commands 826 * and can itself subtract/ignore the progress of counters 827 * associated with other contexts. Note that the hardware 828 * automatically triggers reports when switching to a new 829 * context which are tagged with the ID of the newly active 830 * context. To avoid the complexity (and likely fragility) of 831 * reading ahead while parsing reports to try and minimize 832 * forwarding redundant context switch reports (i.e. between 833 * other, unrelated contexts) we simply elect to forward them 834 * all. 835 * 836 * We don't rely solely on the reason field to identify context 837 * switches since it's not-uncommon for periodic samples to 838 * identify a switch before any 'context switch' report. 839 */ 840 if (!stream->ctx || 841 stream->specific_ctx_id == ctx_id || 842 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 843 reason & OAREPORT_REASON_CTX_SWITCH) { 844 845 /* 846 * While filtering for a single context we avoid 847 * leaking the IDs of other contexts. 848 */ 849 if (stream->ctx && 850 stream->specific_ctx_id != ctx_id) { 851 oa_context_id_squash(stream, report32); 852 } 853 854 ret = append_oa_sample(stream, buf, count, offset, 855 report); 856 if (ret) 857 break; 858 859 stream->oa_buffer.last_ctx_id = ctx_id; 860 } 861 862 if (is_power_of_2(report_size)) { 863 /* 864 * Clear out the report id and timestamp as a means 865 * to detect unlanded reports. 866 */ 867 oa_report_id_clear(stream, report32); 868 oa_timestamp_clear(stream, report32); 869 } else { 870 u8 *oa_buf_end = stream->oa_buffer.vaddr + 871 OA_BUFFER_SIZE; 872 u32 part = oa_buf_end - (u8 *)report32; 873 874 /* Zero out the entire report */ 875 if (report_size <= part) { 876 memset(report32, 0, report_size); 877 } else { 878 memset(report32, 0, part); 879 memset(oa_buf_base, 0, report_size - part); 880 } 881 } 882 } 883 884 if (start_offset != *offset) { 885 i915_reg_t oaheadptr; 886 887 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ? 888 __oa_regs(stream)->oa_head_ptr : 889 GEN8_OAHEADPTR; 890 891 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 892 893 /* 894 * We removed the gtt_offset for the copy loop above, indexing 895 * relative to oa_buf_base so put back here... 896 */ 897 head += gtt_offset; 898 intel_uncore_write(uncore, oaheadptr, 899 head & GEN12_OAG_OAHEADPTR_MASK); 900 stream->oa_buffer.head = head; 901 902 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 903 } 904 905 return ret; 906 } 907 908 /** 909 * gen8_oa_read - copy status records then buffered OA reports 910 * @stream: An i915-perf stream opened for OA metrics 911 * @buf: destination buffer given by userspace 912 * @count: the number of bytes userspace wants to read 913 * @offset: (inout): the current position for writing into @buf 914 * 915 * Checks OA unit status registers and if necessary appends corresponding 916 * status records for userspace (such as for a buffer full condition) and then 917 * initiate appending any buffered OA reports. 918 * 919 * Updates @offset according to the number of bytes successfully copied into 920 * the userspace buffer. 921 * 922 * NB: some data may be successfully copied to the userspace buffer 923 * even if an error is returned, and this is reflected in the 924 * updated @offset. 925 * 926 * Returns: zero on success or a negative error code 927 */ 928 static int gen8_oa_read(struct i915_perf_stream *stream, 929 char __user *buf, 930 size_t count, 931 size_t *offset) 932 { 933 struct intel_uncore *uncore = stream->uncore; 934 u32 oastatus; 935 i915_reg_t oastatus_reg; 936 int ret; 937 938 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 939 return -EIO; 940 941 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ? 942 __oa_regs(stream)->oa_status : 943 GEN8_OASTATUS; 944 945 oastatus = intel_uncore_read(uncore, oastatus_reg); 946 947 /* 948 * We treat OABUFFER_OVERFLOW as a significant error: 949 * 950 * Although theoretically we could handle this more gracefully 951 * sometimes, some Gens don't correctly suppress certain 952 * automatically triggered reports in this condition and so we 953 * have to assume that old reports are now being trampled 954 * over. 955 * 956 * Considering how we don't currently give userspace control 957 * over the OA buffer size and always configure a large 16MB 958 * buffer, then a buffer overflow does anyway likely indicate 959 * that something has gone quite badly wrong. 960 */ 961 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 962 ret = append_oa_status(stream, buf, count, offset, 963 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 964 if (ret) 965 return ret; 966 967 drm_dbg(&stream->perf->i915->drm, 968 "OA buffer overflow (exponent = %d): force restart\n", 969 stream->period_exponent); 970 971 stream->perf->ops.oa_disable(stream); 972 stream->perf->ops.oa_enable(stream); 973 974 /* 975 * Note: .oa_enable() is expected to re-init the oabuffer and 976 * reset GEN8_OASTATUS for us 977 */ 978 oastatus = intel_uncore_read(uncore, oastatus_reg); 979 } 980 981 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 982 ret = append_oa_status(stream, buf, count, offset, 983 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 984 if (ret) 985 return ret; 986 987 intel_uncore_rmw(uncore, oastatus_reg, 988 GEN8_OASTATUS_COUNTER_OVERFLOW | 989 GEN8_OASTATUS_REPORT_LOST, 990 IS_GRAPHICS_VER(uncore->i915, 8, 11) ? 991 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 992 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 993 } 994 995 return gen8_append_oa_reports(stream, buf, count, offset); 996 } 997 998 /** 999 * gen7_append_oa_reports - Copies all buffered OA reports into 1000 * userspace read() buffer. 1001 * @stream: An i915-perf stream opened for OA metrics 1002 * @buf: destination buffer given by userspace 1003 * @count: the number of bytes userspace wants to read 1004 * @offset: (inout): the current position for writing into @buf 1005 * 1006 * Notably any error condition resulting in a short read (-%ENOSPC or 1007 * -%EFAULT) will be returned even though one or more records may 1008 * have been successfully copied. In this case it's up to the caller 1009 * to decide if the error should be squashed before returning to 1010 * userspace. 1011 * 1012 * Note: reports are consumed from the head, and appended to the 1013 * tail, so the tail chases the head?... If you think that's mad 1014 * and back-to-front you're not alone, but this follows the 1015 * Gen PRM naming convention. 1016 * 1017 * Returns: 0 on success, negative error code on failure. 1018 */ 1019 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 1020 char __user *buf, 1021 size_t count, 1022 size_t *offset) 1023 { 1024 struct intel_uncore *uncore = stream->uncore; 1025 int report_size = stream->oa_buffer.format->size; 1026 u8 *oa_buf_base = stream->oa_buffer.vaddr; 1027 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1028 u32 mask = (OA_BUFFER_SIZE - 1); 1029 size_t start_offset = *offset; 1030 unsigned long flags; 1031 u32 head, tail; 1032 int ret = 0; 1033 1034 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 1035 return -EIO; 1036 1037 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1038 1039 head = stream->oa_buffer.head; 1040 tail = stream->oa_buffer.tail; 1041 1042 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1043 1044 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 1045 * while indexing relative to oa_buf_base. 1046 */ 1047 head -= gtt_offset; 1048 tail -= gtt_offset; 1049 1050 /* An out of bounds or misaligned head or tail pointer implies a driver 1051 * bug since we validate + align the tail pointers we read from the 1052 * hardware and we are in full control of the head pointer which should 1053 * only be incremented by multiples of the report size (notably also 1054 * all a power of two). 1055 */ 1056 if (drm_WARN_ONCE(&uncore->i915->drm, 1057 head > OA_BUFFER_SIZE || head % report_size || 1058 tail > OA_BUFFER_SIZE || tail % report_size, 1059 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 1060 head, tail)) 1061 return -EIO; 1062 1063 1064 for (/* none */; 1065 OA_TAKEN(tail, head); 1066 head = (head + report_size) & mask) { 1067 u8 *report = oa_buf_base + head; 1068 u32 *report32 = (void *)report; 1069 1070 /* All the report sizes factor neatly into the buffer 1071 * size so we never expect to see a report split 1072 * between the beginning and end of the buffer. 1073 * 1074 * Given the initial alignment check a misalignment 1075 * here would imply a driver bug that would result 1076 * in an overrun. 1077 */ 1078 if (drm_WARN_ON(&uncore->i915->drm, 1079 (OA_BUFFER_SIZE - head) < report_size)) { 1080 drm_err(&uncore->i915->drm, 1081 "Spurious OA head ptr: non-integral report offset\n"); 1082 break; 1083 } 1084 1085 /* The report-ID field for periodic samples includes 1086 * some undocumented flags related to what triggered 1087 * the report and is never expected to be zero so we 1088 * can check that the report isn't invalid before 1089 * copying it to userspace... 1090 */ 1091 if (report32[0] == 0) { 1092 if (__ratelimit(&stream->perf->spurious_report_rs)) 1093 drm_notice(&uncore->i915->drm, 1094 "Skipping spurious, invalid OA report\n"); 1095 continue; 1096 } 1097 1098 ret = append_oa_sample(stream, buf, count, offset, report); 1099 if (ret) 1100 break; 1101 1102 /* Clear out the first 2 dwords as a mean to detect unlanded 1103 * reports. 1104 */ 1105 report32[0] = 0; 1106 report32[1] = 0; 1107 } 1108 1109 if (start_offset != *offset) { 1110 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1111 1112 /* We removed the gtt_offset for the copy loop above, indexing 1113 * relative to oa_buf_base so put back here... 1114 */ 1115 head += gtt_offset; 1116 1117 intel_uncore_write(uncore, GEN7_OASTATUS2, 1118 (head & GEN7_OASTATUS2_HEAD_MASK) | 1119 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1120 stream->oa_buffer.head = head; 1121 1122 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1123 } 1124 1125 return ret; 1126 } 1127 1128 /** 1129 * gen7_oa_read - copy status records then buffered OA reports 1130 * @stream: An i915-perf stream opened for OA metrics 1131 * @buf: destination buffer given by userspace 1132 * @count: the number of bytes userspace wants to read 1133 * @offset: (inout): the current position for writing into @buf 1134 * 1135 * Checks Gen 7 specific OA unit status registers and if necessary appends 1136 * corresponding status records for userspace (such as for a buffer full 1137 * condition) and then initiate appending any buffered OA reports. 1138 * 1139 * Updates @offset according to the number of bytes successfully copied into 1140 * the userspace buffer. 1141 * 1142 * Returns: zero on success or a negative error code 1143 */ 1144 static int gen7_oa_read(struct i915_perf_stream *stream, 1145 char __user *buf, 1146 size_t count, 1147 size_t *offset) 1148 { 1149 struct intel_uncore *uncore = stream->uncore; 1150 u32 oastatus1; 1151 int ret; 1152 1153 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1154 return -EIO; 1155 1156 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1157 1158 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1159 * bits while the OA unit is enabled (while the tail pointer 1160 * may be updated asynchronously) so we ignore status bits 1161 * that have already been reported to userspace. 1162 */ 1163 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1164 1165 /* We treat OABUFFER_OVERFLOW as a significant error: 1166 * 1167 * - The status can be interpreted to mean that the buffer is 1168 * currently full (with a higher precedence than OA_TAKEN() 1169 * which will start to report a near-empty buffer after an 1170 * overflow) but it's awkward that we can't clear the status 1171 * on Haswell, so without a reset we won't be able to catch 1172 * the state again. 1173 * 1174 * - Since it also implies the HW has started overwriting old 1175 * reports it may also affect our sanity checks for invalid 1176 * reports when copying to userspace that assume new reports 1177 * are being written to cleared memory. 1178 * 1179 * - In the future we may want to introduce a flight recorder 1180 * mode where the driver will automatically maintain a safe 1181 * guard band between head/tail, avoiding this overflow 1182 * condition, but we avoid the added driver complexity for 1183 * now. 1184 */ 1185 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1186 ret = append_oa_status(stream, buf, count, offset, 1187 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1188 if (ret) 1189 return ret; 1190 1191 drm_dbg(&stream->perf->i915->drm, 1192 "OA buffer overflow (exponent = %d): force restart\n", 1193 stream->period_exponent); 1194 1195 stream->perf->ops.oa_disable(stream); 1196 stream->perf->ops.oa_enable(stream); 1197 1198 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1199 } 1200 1201 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1202 ret = append_oa_status(stream, buf, count, offset, 1203 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1204 if (ret) 1205 return ret; 1206 stream->perf->gen7_latched_oastatus1 |= 1207 GEN7_OASTATUS1_REPORT_LOST; 1208 } 1209 1210 return gen7_append_oa_reports(stream, buf, count, offset); 1211 } 1212 1213 /** 1214 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1215 * @stream: An i915-perf stream opened for OA metrics 1216 * 1217 * Called when userspace tries to read() from a blocking stream FD opened 1218 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1219 * OA buffer and wakes us. 1220 * 1221 * Note: it's acceptable to have this return with some false positives 1222 * since any subsequent read handling will return -EAGAIN if there isn't 1223 * really data ready for userspace yet. 1224 * 1225 * Returns: zero on success or a negative error code 1226 */ 1227 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1228 { 1229 /* We would wait indefinitely if periodic sampling is not enabled */ 1230 if (!stream->periodic) 1231 return -EIO; 1232 1233 return wait_event_interruptible(stream->poll_wq, 1234 oa_buffer_check_unlocked(stream)); 1235 } 1236 1237 /** 1238 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1239 * @stream: An i915-perf stream opened for OA metrics 1240 * @file: An i915 perf stream file 1241 * @wait: poll() state table 1242 * 1243 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1244 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1245 * when it sees data ready to read in the circular OA buffer. 1246 */ 1247 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1248 struct file *file, 1249 poll_table *wait) 1250 { 1251 poll_wait(file, &stream->poll_wq, wait); 1252 } 1253 1254 /** 1255 * i915_oa_read - just calls through to &i915_oa_ops->read 1256 * @stream: An i915-perf stream opened for OA metrics 1257 * @buf: destination buffer given by userspace 1258 * @count: the number of bytes userspace wants to read 1259 * @offset: (inout): the current position for writing into @buf 1260 * 1261 * Updates @offset according to the number of bytes successfully copied into 1262 * the userspace buffer. 1263 * 1264 * Returns: zero on success or a negative error code 1265 */ 1266 static int i915_oa_read(struct i915_perf_stream *stream, 1267 char __user *buf, 1268 size_t count, 1269 size_t *offset) 1270 { 1271 return stream->perf->ops.read(stream, buf, count, offset); 1272 } 1273 1274 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1275 { 1276 struct i915_gem_engines_iter it; 1277 struct i915_gem_context *ctx = stream->ctx; 1278 struct intel_context *ce; 1279 struct i915_gem_ww_ctx ww; 1280 int err = -ENODEV; 1281 1282 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1283 if (ce->engine != stream->engine) /* first match! */ 1284 continue; 1285 1286 err = 0; 1287 break; 1288 } 1289 i915_gem_context_unlock_engines(ctx); 1290 1291 if (err) 1292 return ERR_PTR(err); 1293 1294 i915_gem_ww_ctx_init(&ww, true); 1295 retry: 1296 /* 1297 * As the ID is the gtt offset of the context's vma we 1298 * pin the vma to ensure the ID remains fixed. 1299 */ 1300 err = intel_context_pin_ww(ce, &ww); 1301 if (err == -EDEADLK) { 1302 err = i915_gem_ww_ctx_backoff(&ww); 1303 if (!err) 1304 goto retry; 1305 } 1306 i915_gem_ww_ctx_fini(&ww); 1307 1308 if (err) 1309 return ERR_PTR(err); 1310 1311 stream->pinned_ctx = ce; 1312 return stream->pinned_ctx; 1313 } 1314 1315 static int 1316 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset) 1317 { 1318 u32 *cs, cmd; 1319 1320 cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; 1321 if (GRAPHICS_VER(rq->i915) >= 8) 1322 cmd++; 1323 1324 cs = intel_ring_begin(rq, 4); 1325 if (IS_ERR(cs)) 1326 return PTR_ERR(cs); 1327 1328 *cs++ = cmd; 1329 *cs++ = i915_mmio_reg_offset(reg); 1330 *cs++ = ggtt_offset; 1331 *cs++ = 0; 1332 1333 intel_ring_advance(rq, cs); 1334 1335 return 0; 1336 } 1337 1338 static int 1339 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset) 1340 { 1341 struct i915_request *rq; 1342 int err; 1343 1344 rq = i915_request_create(ce); 1345 if (IS_ERR(rq)) 1346 return PTR_ERR(rq); 1347 1348 i915_request_get(rq); 1349 1350 err = __store_reg_to_mem(rq, reg, ggtt_offset); 1351 1352 i915_request_add(rq); 1353 if (!err && i915_request_wait(rq, 0, HZ / 2) < 0) 1354 err = -ETIME; 1355 1356 i915_request_put(rq); 1357 1358 return err; 1359 } 1360 1361 static int 1362 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id) 1363 { 1364 struct i915_vma *scratch; 1365 u32 *val; 1366 int err; 1367 1368 scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4); 1369 if (IS_ERR(scratch)) 1370 return PTR_ERR(scratch); 1371 1372 err = i915_vma_sync(scratch); 1373 if (err) 1374 goto err_scratch; 1375 1376 err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base), 1377 i915_ggtt_offset(scratch)); 1378 if (err) 1379 goto err_scratch; 1380 1381 val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB); 1382 if (IS_ERR(val)) { 1383 err = PTR_ERR(val); 1384 goto err_scratch; 1385 } 1386 1387 *ctx_id = *val; 1388 i915_gem_object_unpin_map(scratch->obj); 1389 1390 err_scratch: 1391 i915_vma_unpin_and_release(&scratch, 0); 1392 return err; 1393 } 1394 1395 /* 1396 * For execlist mode of submission, pick an unused context id 1397 * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts 1398 * XXX_MAX_CONTEXT_HW_ID is used by idle context 1399 * 1400 * For GuC mode of submission read context id from the upper dword of the 1401 * EXECLIST_STATUS register. Note that we read this value only once and expect 1402 * that the value stays fixed for the entire OA use case. There are cases where 1403 * GuC KMD implementation may deregister a context to reuse it's context id, but 1404 * we prevent that from happening to the OA context by pinning it. 1405 */ 1406 static int gen12_get_render_context_id(struct i915_perf_stream *stream) 1407 { 1408 u32 ctx_id, mask; 1409 int ret; 1410 1411 if (intel_engine_uses_guc(stream->engine)) { 1412 ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id); 1413 if (ret) 1414 return ret; 1415 1416 mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) << 1417 (GEN12_GUC_SW_CTX_ID_SHIFT - 32); 1418 } else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) { 1419 ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) << 1420 (XEHP_SW_CTX_ID_SHIFT - 32); 1421 1422 mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) << 1423 (XEHP_SW_CTX_ID_SHIFT - 32); 1424 } else { 1425 ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << 1426 (GEN11_SW_CTX_ID_SHIFT - 32); 1427 1428 mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << 1429 (GEN11_SW_CTX_ID_SHIFT - 32); 1430 } 1431 stream->specific_ctx_id = ctx_id & mask; 1432 stream->specific_ctx_id_mask = mask; 1433 1434 return 0; 1435 } 1436 1437 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end) 1438 { 1439 u32 idx = *offset; 1440 u32 len = min(MI_LRI_LEN(state[idx]) + idx, end); 1441 bool found = false; 1442 1443 idx++; 1444 for (; idx < len; idx += 2) { 1445 if (state[idx] == reg) { 1446 found = true; 1447 break; 1448 } 1449 } 1450 1451 *offset = idx; 1452 return found; 1453 } 1454 1455 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg) 1456 { 1457 u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4; 1458 u32 *state = ce->lrc_reg_state; 1459 1460 if (drm_WARN_ON(&ce->engine->i915->drm, !state)) 1461 return U32_MAX; 1462 1463 for (offset = 0; offset < len; ) { 1464 if (IS_MI_LRI_CMD(state[offset])) { 1465 /* 1466 * We expect reg-value pairs in MI_LRI command, so 1467 * MI_LRI_LEN() should be even, if not, issue a warning. 1468 */ 1469 drm_WARN_ON(&ce->engine->i915->drm, 1470 MI_LRI_LEN(state[offset]) & 0x1); 1471 1472 if (oa_find_reg_in_lri(state, reg, &offset, len)) 1473 break; 1474 } else { 1475 offset++; 1476 } 1477 } 1478 1479 return offset < len ? offset : U32_MAX; 1480 } 1481 1482 static int set_oa_ctx_ctrl_offset(struct intel_context *ce) 1483 { 1484 i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base); 1485 struct i915_perf *perf = &ce->engine->i915->perf; 1486 u32 offset = perf->ctx_oactxctrl_offset; 1487 1488 /* Do this only once. Failure is stored as offset of U32_MAX */ 1489 if (offset) 1490 goto exit; 1491 1492 offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg)); 1493 perf->ctx_oactxctrl_offset = offset; 1494 1495 drm_dbg(&ce->engine->i915->drm, 1496 "%s oa ctx control at 0x%08x dword offset\n", 1497 ce->engine->name, offset); 1498 1499 exit: 1500 return offset && offset != U32_MAX ? 0 : -ENODEV; 1501 } 1502 1503 static bool engine_supports_mi_query(struct intel_engine_cs *engine) 1504 { 1505 return engine->class == RENDER_CLASS; 1506 } 1507 1508 /** 1509 * oa_get_render_ctx_id - determine and hold ctx hw id 1510 * @stream: An i915-perf stream opened for OA metrics 1511 * 1512 * Determine the render context hw id, and ensure it remains fixed for the 1513 * lifetime of the stream. This ensures that we don't have to worry about 1514 * updating the context ID in OACONTROL on the fly. 1515 * 1516 * Returns: zero on success or a negative error code 1517 */ 1518 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1519 { 1520 struct intel_context *ce; 1521 int ret = 0; 1522 1523 ce = oa_pin_context(stream); 1524 if (IS_ERR(ce)) 1525 return PTR_ERR(ce); 1526 1527 if (engine_supports_mi_query(stream->engine) && 1528 HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) { 1529 /* 1530 * We are enabling perf query here. If we don't find the context 1531 * offset here, just return an error. 1532 */ 1533 ret = set_oa_ctx_ctrl_offset(ce); 1534 if (ret) { 1535 intel_context_unpin(ce); 1536 drm_err(&stream->perf->i915->drm, 1537 "Enabling perf query failed for %s\n", 1538 stream->engine->name); 1539 return ret; 1540 } 1541 } 1542 1543 switch (GRAPHICS_VER(ce->engine->i915)) { 1544 case 7: { 1545 /* 1546 * On Haswell we don't do any post processing of the reports 1547 * and don't need to use the mask. 1548 */ 1549 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1550 stream->specific_ctx_id_mask = 0; 1551 break; 1552 } 1553 1554 case 8: 1555 case 9: 1556 if (intel_engine_uses_guc(ce->engine)) { 1557 /* 1558 * When using GuC, the context descriptor we write in 1559 * i915 is read by GuC and rewritten before it's 1560 * actually written into the hardware. The LRCA is 1561 * what is put into the context id field of the 1562 * context descriptor by GuC. Because it's aligned to 1563 * a page, the lower 12bits are always at 0 and 1564 * dropped by GuC. They won't be part of the context 1565 * ID in the OA reports, so squash those lower bits. 1566 */ 1567 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1568 1569 /* 1570 * GuC uses the top bit to signal proxy submission, so 1571 * ignore that bit. 1572 */ 1573 stream->specific_ctx_id_mask = 1574 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1575 } else { 1576 stream->specific_ctx_id_mask = 1577 (1U << GEN8_CTX_ID_WIDTH) - 1; 1578 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1579 } 1580 break; 1581 1582 case 11: 1583 case 12: 1584 ret = gen12_get_render_context_id(stream); 1585 break; 1586 1587 default: 1588 MISSING_CASE(GRAPHICS_VER(ce->engine->i915)); 1589 } 1590 1591 ce->tag = stream->specific_ctx_id; 1592 1593 drm_dbg(&stream->perf->i915->drm, 1594 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1595 stream->specific_ctx_id, 1596 stream->specific_ctx_id_mask); 1597 1598 return ret; 1599 } 1600 1601 /** 1602 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1603 * @stream: An i915-perf stream opened for OA metrics 1604 * 1605 * In case anything needed doing to ensure the context HW ID would remain valid 1606 * for the lifetime of the stream, then that can be undone here. 1607 */ 1608 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1609 { 1610 struct intel_context *ce; 1611 1612 ce = fetch_and_zero(&stream->pinned_ctx); 1613 if (ce) { 1614 ce->tag = 0; /* recomputed on next submission after parking */ 1615 intel_context_unpin(ce); 1616 } 1617 1618 stream->specific_ctx_id = INVALID_CTX_ID; 1619 stream->specific_ctx_id_mask = 0; 1620 } 1621 1622 static void 1623 free_oa_buffer(struct i915_perf_stream *stream) 1624 { 1625 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1626 I915_VMA_RELEASE_MAP); 1627 1628 stream->oa_buffer.vaddr = NULL; 1629 } 1630 1631 static void 1632 free_oa_configs(struct i915_perf_stream *stream) 1633 { 1634 struct i915_oa_config_bo *oa_bo, *tmp; 1635 1636 i915_oa_config_put(stream->oa_config); 1637 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1638 free_oa_config_bo(oa_bo); 1639 } 1640 1641 static void 1642 free_noa_wait(struct i915_perf_stream *stream) 1643 { 1644 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1645 } 1646 1647 static bool engine_supports_oa(const struct intel_engine_cs *engine) 1648 { 1649 return engine->oa_group; 1650 } 1651 1652 static bool engine_supports_oa_format(struct intel_engine_cs *engine, int type) 1653 { 1654 return engine->oa_group && engine->oa_group->type == type; 1655 } 1656 1657 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1658 { 1659 struct i915_perf *perf = stream->perf; 1660 struct intel_gt *gt = stream->engine->gt; 1661 struct i915_perf_group *g = stream->engine->oa_group; 1662 1663 if (WARN_ON(stream != g->exclusive_stream)) 1664 return; 1665 1666 /* 1667 * Unset exclusive_stream first, it will be checked while disabling 1668 * the metric set on gen8+. 1669 * 1670 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1671 */ 1672 WRITE_ONCE(g->exclusive_stream, NULL); 1673 perf->ops.disable_metric_set(stream); 1674 1675 free_oa_buffer(stream); 1676 1677 /* 1678 * Wa_16011777198:dg2: Unset the override of GUCRC mode to enable rc6. 1679 */ 1680 if (stream->override_gucrc) 1681 drm_WARN_ON(>->i915->drm, 1682 intel_guc_slpc_unset_gucrc_mode(>->uc.guc.slpc)); 1683 1684 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1685 intel_engine_pm_put(stream->engine); 1686 1687 if (stream->ctx) 1688 oa_put_render_ctx_id(stream); 1689 1690 free_oa_configs(stream); 1691 free_noa_wait(stream); 1692 1693 if (perf->spurious_report_rs.missed) { 1694 drm_notice(>->i915->drm, 1695 "%d spurious OA report notices suppressed due to ratelimiting\n", 1696 perf->spurious_report_rs.missed); 1697 } 1698 } 1699 1700 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1701 { 1702 struct intel_uncore *uncore = stream->uncore; 1703 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1704 unsigned long flags; 1705 1706 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1707 1708 /* Pre-DevBDW: OABUFFER must be set with counters off, 1709 * before OASTATUS1, but after OASTATUS2 1710 */ 1711 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1712 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1713 stream->oa_buffer.head = gtt_offset; 1714 1715 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1716 1717 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1718 gtt_offset | OABUFFER_SIZE_16M); 1719 1720 /* Mark that we need updated tail pointers to read from... */ 1721 stream->oa_buffer.tail = gtt_offset; 1722 1723 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1724 1725 /* On Haswell we have to track which OASTATUS1 flags we've 1726 * already seen since they can't be cleared while periodic 1727 * sampling is enabled. 1728 */ 1729 stream->perf->gen7_latched_oastatus1 = 0; 1730 1731 /* NB: although the OA buffer will initially be allocated 1732 * zeroed via shmfs (and so this memset is redundant when 1733 * first allocating), we may re-init the OA buffer, either 1734 * when re-enabling a stream or in error/reset paths. 1735 * 1736 * The reason we clear the buffer for each re-init is for the 1737 * sanity check in gen7_append_oa_reports() that looks at the 1738 * report-id field to make sure it's non-zero which relies on 1739 * the assumption that new reports are being written to zeroed 1740 * memory... 1741 */ 1742 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1743 } 1744 1745 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1746 { 1747 struct intel_uncore *uncore = stream->uncore; 1748 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1749 unsigned long flags; 1750 1751 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1752 1753 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1754 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1755 stream->oa_buffer.head = gtt_offset; 1756 1757 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1758 1759 /* 1760 * PRM says: 1761 * 1762 * "This MMIO must be set before the OATAILPTR 1763 * register and after the OAHEADPTR register. This is 1764 * to enable proper functionality of the overflow 1765 * bit." 1766 */ 1767 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1768 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1769 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1770 1771 /* Mark that we need updated tail pointers to read from... */ 1772 stream->oa_buffer.tail = gtt_offset; 1773 1774 /* 1775 * Reset state used to recognise context switches, affecting which 1776 * reports we will forward to userspace while filtering for a single 1777 * context. 1778 */ 1779 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1780 1781 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1782 1783 /* 1784 * NB: although the OA buffer will initially be allocated 1785 * zeroed via shmfs (and so this memset is redundant when 1786 * first allocating), we may re-init the OA buffer, either 1787 * when re-enabling a stream or in error/reset paths. 1788 * 1789 * The reason we clear the buffer for each re-init is for the 1790 * sanity check in gen8_append_oa_reports() that looks at the 1791 * reason field to make sure it's non-zero which relies on 1792 * the assumption that new reports are being written to zeroed 1793 * memory... 1794 */ 1795 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1796 } 1797 1798 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1799 { 1800 struct intel_uncore *uncore = stream->uncore; 1801 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1802 unsigned long flags; 1803 1804 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1805 1806 intel_uncore_write(uncore, __oa_regs(stream)->oa_status, 0); 1807 intel_uncore_write(uncore, __oa_regs(stream)->oa_head_ptr, 1808 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1809 stream->oa_buffer.head = gtt_offset; 1810 1811 /* 1812 * PRM says: 1813 * 1814 * "This MMIO must be set before the OATAILPTR 1815 * register and after the OAHEADPTR register. This is 1816 * to enable proper functionality of the overflow 1817 * bit." 1818 */ 1819 intel_uncore_write(uncore, __oa_regs(stream)->oa_buffer, gtt_offset | 1820 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1821 intel_uncore_write(uncore, __oa_regs(stream)->oa_tail_ptr, 1822 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1823 1824 /* Mark that we need updated tail pointers to read from... */ 1825 stream->oa_buffer.tail = gtt_offset; 1826 1827 /* 1828 * Reset state used to recognise context switches, affecting which 1829 * reports we will forward to userspace while filtering for a single 1830 * context. 1831 */ 1832 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1833 1834 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1835 1836 /* 1837 * NB: although the OA buffer will initially be allocated 1838 * zeroed via shmfs (and so this memset is redundant when 1839 * first allocating), we may re-init the OA buffer, either 1840 * when re-enabling a stream or in error/reset paths. 1841 * 1842 * The reason we clear the buffer for each re-init is for the 1843 * sanity check in gen8_append_oa_reports() that looks at the 1844 * reason field to make sure it's non-zero which relies on 1845 * the assumption that new reports are being written to zeroed 1846 * memory... 1847 */ 1848 memset(stream->oa_buffer.vaddr, 0, 1849 stream->oa_buffer.vma->size); 1850 } 1851 1852 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1853 { 1854 struct drm_i915_private *i915 = stream->perf->i915; 1855 struct intel_gt *gt = stream->engine->gt; 1856 struct drm_i915_gem_object *bo; 1857 struct i915_vma *vma; 1858 int ret; 1859 1860 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1861 return -ENODEV; 1862 1863 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1864 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1865 1866 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1867 if (IS_ERR(bo)) { 1868 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1869 return PTR_ERR(bo); 1870 } 1871 1872 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1873 1874 /* PreHSW required 512K alignment, HSW requires 16M */ 1875 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1876 if (IS_ERR(vma)) { 1877 ret = PTR_ERR(vma); 1878 goto err_unref; 1879 } 1880 1881 /* 1882 * PreHSW required 512K alignment. 1883 * HSW and onwards, align to requested size of OA buffer. 1884 */ 1885 ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH); 1886 if (ret) { 1887 drm_err(>->i915->drm, "Failed to pin OA buffer %d\n", ret); 1888 goto err_unref; 1889 } 1890 1891 stream->oa_buffer.vma = vma; 1892 1893 stream->oa_buffer.vaddr = 1894 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB); 1895 if (IS_ERR(stream->oa_buffer.vaddr)) { 1896 ret = PTR_ERR(stream->oa_buffer.vaddr); 1897 goto err_unpin; 1898 } 1899 1900 return 0; 1901 1902 err_unpin: 1903 __i915_vma_unpin(vma); 1904 1905 err_unref: 1906 i915_gem_object_put(bo); 1907 1908 stream->oa_buffer.vaddr = NULL; 1909 stream->oa_buffer.vma = NULL; 1910 1911 return ret; 1912 } 1913 1914 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1915 bool save, i915_reg_t reg, u32 offset, 1916 u32 dword_count) 1917 { 1918 u32 cmd; 1919 u32 d; 1920 1921 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1922 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1923 if (GRAPHICS_VER(stream->perf->i915) >= 8) 1924 cmd++; 1925 1926 for (d = 0; d < dword_count; d++) { 1927 *cs++ = cmd; 1928 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1929 *cs++ = i915_ggtt_offset(stream->noa_wait) + offset + 4 * d; 1930 *cs++ = 0; 1931 } 1932 1933 return cs; 1934 } 1935 1936 static int alloc_noa_wait(struct i915_perf_stream *stream) 1937 { 1938 struct drm_i915_private *i915 = stream->perf->i915; 1939 struct intel_gt *gt = stream->engine->gt; 1940 struct drm_i915_gem_object *bo; 1941 struct i915_vma *vma; 1942 const u64 delay_ticks = 0xffffffffffffffff - 1943 intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915), 1944 atomic64_read(&stream->perf->noa_programming_delay)); 1945 const u32 base = stream->engine->mmio_base; 1946 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1947 u32 *batch, *ts0, *cs, *jump; 1948 struct i915_gem_ww_ctx ww; 1949 int ret, i; 1950 enum { 1951 START_TS, 1952 NOW_TS, 1953 DELTA_TS, 1954 JUMP_PREDICATE, 1955 DELTA_TARGET, 1956 N_CS_GPR 1957 }; 1958 i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ? 1959 MI_PREDICATE_RESULT_2_ENGINE(base) : 1960 MI_PREDICATE_RESULT_1(RENDER_RING_BASE); 1961 1962 /* 1963 * gt->scratch was being used to save/restore the GPR registers, but on 1964 * MTL the scratch uses stolen lmem. An MI_SRM to this memory region 1965 * causes an engine hang. Instead allocate an additional page here to 1966 * save/restore GPR registers 1967 */ 1968 bo = i915_gem_object_create_internal(i915, 8192); 1969 if (IS_ERR(bo)) { 1970 drm_err(&i915->drm, 1971 "Failed to allocate NOA wait batchbuffer\n"); 1972 return PTR_ERR(bo); 1973 } 1974 1975 i915_gem_ww_ctx_init(&ww, true); 1976 retry: 1977 ret = i915_gem_object_lock(bo, &ww); 1978 if (ret) 1979 goto out_ww; 1980 1981 /* 1982 * We pin in GGTT because we jump into this buffer now because 1983 * multiple OA config BOs will have a jump to this address and it 1984 * needs to be fixed during the lifetime of the i915/perf stream. 1985 */ 1986 vma = i915_vma_instance(bo, >->ggtt->vm, NULL); 1987 if (IS_ERR(vma)) { 1988 ret = PTR_ERR(vma); 1989 goto out_ww; 1990 } 1991 1992 ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 1993 if (ret) 1994 goto out_ww; 1995 1996 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1997 if (IS_ERR(batch)) { 1998 ret = PTR_ERR(batch); 1999 goto err_unpin; 2000 } 2001 2002 stream->noa_wait = vma; 2003 2004 #define GPR_SAVE_OFFSET 4096 2005 #define PREDICATE_SAVE_OFFSET 4160 2006 2007 /* Save registers. */ 2008 for (i = 0; i < N_CS_GPR; i++) 2009 cs = save_restore_register( 2010 stream, cs, true /* save */, CS_GPR(i), 2011 GPR_SAVE_OFFSET + 8 * i, 2); 2012 cs = save_restore_register( 2013 stream, cs, true /* save */, mi_predicate_result, 2014 PREDICATE_SAVE_OFFSET, 1); 2015 2016 /* First timestamp snapshot location. */ 2017 ts0 = cs; 2018 2019 /* 2020 * Initial snapshot of the timestamp register to implement the wait. 2021 * We work with 32b values, so clear out the top 32b bits of the 2022 * register because the ALU works 64bits. 2023 */ 2024 *cs++ = MI_LOAD_REGISTER_IMM(1); 2025 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 2026 *cs++ = 0; 2027 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2028 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 2029 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 2030 2031 /* 2032 * This is the location we're going to jump back into until the 2033 * required amount of time has passed. 2034 */ 2035 jump = cs; 2036 2037 /* 2038 * Take another snapshot of the timestamp register. Take care to clear 2039 * up the top 32bits of CS_GPR(1) as we're using it for other 2040 * operations below. 2041 */ 2042 *cs++ = MI_LOAD_REGISTER_IMM(1); 2043 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 2044 *cs++ = 0; 2045 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2046 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 2047 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 2048 2049 /* 2050 * Do a diff between the 2 timestamps and store the result back into 2051 * CS_GPR(1). 2052 */ 2053 *cs++ = MI_MATH(5); 2054 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 2055 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 2056 *cs++ = MI_MATH_SUB; 2057 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 2058 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 2059 2060 /* 2061 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 2062 * timestamp have rolled over the 32bits) into the predicate register 2063 * to be used for the predicated jump. 2064 */ 2065 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2066 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 2067 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 2068 2069 if (HAS_MI_SET_PREDICATE(i915)) 2070 *cs++ = MI_SET_PREDICATE | 1; 2071 2072 /* Restart from the beginning if we had timestamps roll over. */ 2073 *cs++ = (GRAPHICS_VER(i915) < 8 ? 2074 MI_BATCH_BUFFER_START : 2075 MI_BATCH_BUFFER_START_GEN8) | 2076 MI_BATCH_PREDICATE; 2077 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 2078 *cs++ = 0; 2079 2080 if (HAS_MI_SET_PREDICATE(i915)) 2081 *cs++ = MI_SET_PREDICATE; 2082 2083 /* 2084 * Now add the diff between to previous timestamps and add it to : 2085 * (((1 * << 64) - 1) - delay_ns) 2086 * 2087 * When the Carry Flag contains 1 this means the elapsed time is 2088 * longer than the expected delay, and we can exit the wait loop. 2089 */ 2090 *cs++ = MI_LOAD_REGISTER_IMM(2); 2091 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 2092 *cs++ = lower_32_bits(delay_ticks); 2093 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 2094 *cs++ = upper_32_bits(delay_ticks); 2095 2096 *cs++ = MI_MATH(4); 2097 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 2098 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 2099 *cs++ = MI_MATH_ADD; 2100 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 2101 2102 *cs++ = MI_ARB_CHECK; 2103 2104 /* 2105 * Transfer the result into the predicate register to be used for the 2106 * predicated jump. 2107 */ 2108 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 2109 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 2110 *cs++ = i915_mmio_reg_offset(mi_predicate_result); 2111 2112 if (HAS_MI_SET_PREDICATE(i915)) 2113 *cs++ = MI_SET_PREDICATE | 1; 2114 2115 /* Predicate the jump. */ 2116 *cs++ = (GRAPHICS_VER(i915) < 8 ? 2117 MI_BATCH_BUFFER_START : 2118 MI_BATCH_BUFFER_START_GEN8) | 2119 MI_BATCH_PREDICATE; 2120 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 2121 *cs++ = 0; 2122 2123 if (HAS_MI_SET_PREDICATE(i915)) 2124 *cs++ = MI_SET_PREDICATE; 2125 2126 /* Restore registers. */ 2127 for (i = 0; i < N_CS_GPR; i++) 2128 cs = save_restore_register( 2129 stream, cs, false /* restore */, CS_GPR(i), 2130 GPR_SAVE_OFFSET + 8 * i, 2); 2131 cs = save_restore_register( 2132 stream, cs, false /* restore */, mi_predicate_result, 2133 PREDICATE_SAVE_OFFSET, 1); 2134 2135 /* And return to the ring. */ 2136 *cs++ = MI_BATCH_BUFFER_END; 2137 2138 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 2139 2140 i915_gem_object_flush_map(bo); 2141 __i915_gem_object_release_map(bo); 2142 2143 goto out_ww; 2144 2145 err_unpin: 2146 i915_vma_unpin_and_release(&vma, 0); 2147 out_ww: 2148 if (ret == -EDEADLK) { 2149 ret = i915_gem_ww_ctx_backoff(&ww); 2150 if (!ret) 2151 goto retry; 2152 } 2153 i915_gem_ww_ctx_fini(&ww); 2154 if (ret) 2155 i915_gem_object_put(bo); 2156 return ret; 2157 } 2158 2159 static u32 *write_cs_mi_lri(u32 *cs, 2160 const struct i915_oa_reg *reg_data, 2161 u32 n_regs) 2162 { 2163 u32 i; 2164 2165 for (i = 0; i < n_regs; i++) { 2166 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 2167 u32 n_lri = min_t(u32, 2168 n_regs - i, 2169 MI_LOAD_REGISTER_IMM_MAX_REGS); 2170 2171 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 2172 } 2173 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 2174 *cs++ = reg_data[i].value; 2175 } 2176 2177 return cs; 2178 } 2179 2180 static int num_lri_dwords(int num_regs) 2181 { 2182 int count = 0; 2183 2184 if (num_regs > 0) { 2185 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 2186 count += num_regs * 2; 2187 } 2188 2189 return count; 2190 } 2191 2192 static struct i915_oa_config_bo * 2193 alloc_oa_config_buffer(struct i915_perf_stream *stream, 2194 struct i915_oa_config *oa_config) 2195 { 2196 struct drm_i915_gem_object *obj; 2197 struct i915_oa_config_bo *oa_bo; 2198 struct i915_gem_ww_ctx ww; 2199 size_t config_length = 0; 2200 u32 *cs; 2201 int err; 2202 2203 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 2204 if (!oa_bo) 2205 return ERR_PTR(-ENOMEM); 2206 2207 config_length += num_lri_dwords(oa_config->mux_regs_len); 2208 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 2209 config_length += num_lri_dwords(oa_config->flex_regs_len); 2210 config_length += 3; /* MI_BATCH_BUFFER_START */ 2211 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 2212 2213 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 2214 if (IS_ERR(obj)) { 2215 err = PTR_ERR(obj); 2216 goto err_free; 2217 } 2218 2219 i915_gem_ww_ctx_init(&ww, true); 2220 retry: 2221 err = i915_gem_object_lock(obj, &ww); 2222 if (err) 2223 goto out_ww; 2224 2225 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 2226 if (IS_ERR(cs)) { 2227 err = PTR_ERR(cs); 2228 goto out_ww; 2229 } 2230 2231 cs = write_cs_mi_lri(cs, 2232 oa_config->mux_regs, 2233 oa_config->mux_regs_len); 2234 cs = write_cs_mi_lri(cs, 2235 oa_config->b_counter_regs, 2236 oa_config->b_counter_regs_len); 2237 cs = write_cs_mi_lri(cs, 2238 oa_config->flex_regs, 2239 oa_config->flex_regs_len); 2240 2241 /* Jump into the active wait. */ 2242 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ? 2243 MI_BATCH_BUFFER_START : 2244 MI_BATCH_BUFFER_START_GEN8); 2245 *cs++ = i915_ggtt_offset(stream->noa_wait); 2246 *cs++ = 0; 2247 2248 i915_gem_object_flush_map(obj); 2249 __i915_gem_object_release_map(obj); 2250 2251 oa_bo->vma = i915_vma_instance(obj, 2252 &stream->engine->gt->ggtt->vm, 2253 NULL); 2254 if (IS_ERR(oa_bo->vma)) { 2255 err = PTR_ERR(oa_bo->vma); 2256 goto out_ww; 2257 } 2258 2259 oa_bo->oa_config = i915_oa_config_get(oa_config); 2260 llist_add(&oa_bo->node, &stream->oa_config_bos); 2261 2262 out_ww: 2263 if (err == -EDEADLK) { 2264 err = i915_gem_ww_ctx_backoff(&ww); 2265 if (!err) 2266 goto retry; 2267 } 2268 i915_gem_ww_ctx_fini(&ww); 2269 2270 if (err) 2271 i915_gem_object_put(obj); 2272 err_free: 2273 if (err) { 2274 kfree(oa_bo); 2275 return ERR_PTR(err); 2276 } 2277 return oa_bo; 2278 } 2279 2280 static struct i915_vma * 2281 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 2282 { 2283 struct i915_oa_config_bo *oa_bo; 2284 2285 /* 2286 * Look for the buffer in the already allocated BOs attached 2287 * to the stream. 2288 */ 2289 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 2290 if (oa_bo->oa_config == oa_config && 2291 memcmp(oa_bo->oa_config->uuid, 2292 oa_config->uuid, 2293 sizeof(oa_config->uuid)) == 0) 2294 goto out; 2295 } 2296 2297 oa_bo = alloc_oa_config_buffer(stream, oa_config); 2298 if (IS_ERR(oa_bo)) 2299 return ERR_CAST(oa_bo); 2300 2301 out: 2302 return i915_vma_get(oa_bo->vma); 2303 } 2304 2305 static int 2306 emit_oa_config(struct i915_perf_stream *stream, 2307 struct i915_oa_config *oa_config, 2308 struct intel_context *ce, 2309 struct i915_active *active) 2310 { 2311 struct i915_request *rq; 2312 struct i915_vma *vma; 2313 struct i915_gem_ww_ctx ww; 2314 int err; 2315 2316 vma = get_oa_vma(stream, oa_config); 2317 if (IS_ERR(vma)) 2318 return PTR_ERR(vma); 2319 2320 i915_gem_ww_ctx_init(&ww, true); 2321 retry: 2322 err = i915_gem_object_lock(vma->obj, &ww); 2323 if (err) 2324 goto err; 2325 2326 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 2327 if (err) 2328 goto err; 2329 2330 intel_engine_pm_get(ce->engine); 2331 rq = i915_request_create(ce); 2332 intel_engine_pm_put(ce->engine); 2333 if (IS_ERR(rq)) { 2334 err = PTR_ERR(rq); 2335 goto err_vma_unpin; 2336 } 2337 2338 if (!IS_ERR_OR_NULL(active)) { 2339 /* After all individual context modifications */ 2340 err = i915_request_await_active(rq, active, 2341 I915_ACTIVE_AWAIT_ACTIVE); 2342 if (err) 2343 goto err_add_request; 2344 2345 err = i915_active_add_request(active, rq); 2346 if (err) 2347 goto err_add_request; 2348 } 2349 2350 err = i915_vma_move_to_active(vma, rq, 0); 2351 if (err) 2352 goto err_add_request; 2353 2354 err = rq->engine->emit_bb_start(rq, 2355 i915_vma_offset(vma), 0, 2356 I915_DISPATCH_SECURE); 2357 if (err) 2358 goto err_add_request; 2359 2360 err_add_request: 2361 i915_request_add(rq); 2362 err_vma_unpin: 2363 i915_vma_unpin(vma); 2364 err: 2365 if (err == -EDEADLK) { 2366 err = i915_gem_ww_ctx_backoff(&ww); 2367 if (!err) 2368 goto retry; 2369 } 2370 2371 i915_gem_ww_ctx_fini(&ww); 2372 i915_vma_put(vma); 2373 return err; 2374 } 2375 2376 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2377 { 2378 return stream->pinned_ctx ?: stream->engine->kernel_context; 2379 } 2380 2381 static int 2382 hsw_enable_metric_set(struct i915_perf_stream *stream, 2383 struct i915_active *active) 2384 { 2385 struct intel_uncore *uncore = stream->uncore; 2386 2387 /* 2388 * PRM: 2389 * 2390 * OA unit is using “crclk” for its functionality. When trunk 2391 * level clock gating takes place, OA clock would be gated, 2392 * unable to count the events from non-render clock domain. 2393 * Render clock gating must be disabled when OA is enabled to 2394 * count the events from non-render domain. Unit level clock 2395 * gating for RCS should also be disabled. 2396 */ 2397 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2398 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2399 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2400 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2401 2402 return emit_oa_config(stream, 2403 stream->oa_config, oa_context(stream), 2404 active); 2405 } 2406 2407 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2408 { 2409 struct intel_uncore *uncore = stream->uncore; 2410 2411 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2412 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2413 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2414 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2415 2416 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2417 } 2418 2419 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2420 i915_reg_t reg) 2421 { 2422 u32 mmio = i915_mmio_reg_offset(reg); 2423 int i; 2424 2425 /* 2426 * This arbitrary default will select the 'EU FPU0 Pipeline 2427 * Active' event. In the future it's anticipated that there 2428 * will be an explicit 'No Event' we can select, but not yet... 2429 */ 2430 if (!oa_config) 2431 return 0; 2432 2433 for (i = 0; i < oa_config->flex_regs_len; i++) { 2434 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2435 return oa_config->flex_regs[i].value; 2436 } 2437 2438 return 0; 2439 } 2440 /* 2441 * NB: It must always remain pointer safe to run this even if the OA unit 2442 * has been disabled. 2443 * 2444 * It's fine to put out-of-date values into these per-context registers 2445 * in the case that the OA unit has been disabled. 2446 */ 2447 static void 2448 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2449 const struct i915_perf_stream *stream) 2450 { 2451 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2452 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2453 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2454 static const i915_reg_t flex_regs[] = { 2455 EU_PERF_CNTL0, 2456 EU_PERF_CNTL1, 2457 EU_PERF_CNTL2, 2458 EU_PERF_CNTL3, 2459 EU_PERF_CNTL4, 2460 EU_PERF_CNTL5, 2461 EU_PERF_CNTL6, 2462 }; 2463 u32 *reg_state = ce->lrc_reg_state; 2464 int i; 2465 2466 reg_state[ctx_oactxctrl + 1] = 2467 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2468 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2469 GEN8_OA_COUNTER_RESUME; 2470 2471 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2472 reg_state[ctx_flexeu0 + i * 2 + 1] = 2473 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2474 } 2475 2476 struct flex { 2477 i915_reg_t reg; 2478 u32 offset; 2479 u32 value; 2480 }; 2481 2482 static int 2483 gen8_store_flex(struct i915_request *rq, 2484 struct intel_context *ce, 2485 const struct flex *flex, unsigned int count) 2486 { 2487 u32 offset; 2488 u32 *cs; 2489 2490 cs = intel_ring_begin(rq, 4 * count); 2491 if (IS_ERR(cs)) 2492 return PTR_ERR(cs); 2493 2494 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2495 do { 2496 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2497 *cs++ = offset + flex->offset * sizeof(u32); 2498 *cs++ = 0; 2499 *cs++ = flex->value; 2500 } while (flex++, --count); 2501 2502 intel_ring_advance(rq, cs); 2503 2504 return 0; 2505 } 2506 2507 static int 2508 gen8_load_flex(struct i915_request *rq, 2509 struct intel_context *ce, 2510 const struct flex *flex, unsigned int count) 2511 { 2512 u32 *cs; 2513 2514 GEM_BUG_ON(!count || count > 63); 2515 2516 cs = intel_ring_begin(rq, 2 * count + 2); 2517 if (IS_ERR(cs)) 2518 return PTR_ERR(cs); 2519 2520 *cs++ = MI_LOAD_REGISTER_IMM(count); 2521 do { 2522 *cs++ = i915_mmio_reg_offset(flex->reg); 2523 *cs++ = flex->value; 2524 } while (flex++, --count); 2525 *cs++ = MI_NOOP; 2526 2527 intel_ring_advance(rq, cs); 2528 2529 return 0; 2530 } 2531 2532 static int gen8_modify_context(struct intel_context *ce, 2533 const struct flex *flex, unsigned int count) 2534 { 2535 struct i915_request *rq; 2536 int err; 2537 2538 rq = intel_engine_create_kernel_request(ce->engine); 2539 if (IS_ERR(rq)) 2540 return PTR_ERR(rq); 2541 2542 /* Serialise with the remote context */ 2543 err = intel_context_prepare_remote_request(ce, rq); 2544 if (err == 0) 2545 err = gen8_store_flex(rq, ce, flex, count); 2546 2547 i915_request_add(rq); 2548 return err; 2549 } 2550 2551 static int 2552 gen8_modify_self(struct intel_context *ce, 2553 const struct flex *flex, unsigned int count, 2554 struct i915_active *active) 2555 { 2556 struct i915_request *rq; 2557 int err; 2558 2559 intel_engine_pm_get(ce->engine); 2560 rq = i915_request_create(ce); 2561 intel_engine_pm_put(ce->engine); 2562 if (IS_ERR(rq)) 2563 return PTR_ERR(rq); 2564 2565 if (!IS_ERR_OR_NULL(active)) { 2566 err = i915_active_add_request(active, rq); 2567 if (err) 2568 goto err_add_request; 2569 } 2570 2571 err = gen8_load_flex(rq, ce, flex, count); 2572 if (err) 2573 goto err_add_request; 2574 2575 err_add_request: 2576 i915_request_add(rq); 2577 return err; 2578 } 2579 2580 static int gen8_configure_context(struct i915_perf_stream *stream, 2581 struct i915_gem_context *ctx, 2582 struct flex *flex, unsigned int count) 2583 { 2584 struct i915_gem_engines_iter it; 2585 struct intel_context *ce; 2586 int err = 0; 2587 2588 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2589 GEM_BUG_ON(ce == ce->engine->kernel_context); 2590 2591 if (ce->engine->class != RENDER_CLASS) 2592 continue; 2593 2594 /* Otherwise OA settings will be set upon first use */ 2595 if (!intel_context_pin_if_active(ce)) 2596 continue; 2597 2598 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2599 err = gen8_modify_context(ce, flex, count); 2600 2601 intel_context_unpin(ce); 2602 if (err) 2603 break; 2604 } 2605 i915_gem_context_unlock_engines(ctx); 2606 2607 return err; 2608 } 2609 2610 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2611 struct i915_active *active) 2612 { 2613 int err; 2614 struct intel_context *ce = stream->pinned_ctx; 2615 u32 format = stream->oa_buffer.format->format; 2616 u32 offset = stream->perf->ctx_oactxctrl_offset; 2617 struct flex regs_context[] = { 2618 { 2619 GEN8_OACTXCONTROL, 2620 offset + 1, 2621 active ? GEN8_OA_COUNTER_RESUME : 0, 2622 }, 2623 }; 2624 /* Offsets in regs_lri are not used since this configuration is only 2625 * applied using LRI. Initialize the correct offsets for posterity. 2626 */ 2627 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2628 struct flex regs_lri[] = { 2629 { 2630 GEN12_OAR_OACONTROL, 2631 GEN12_OAR_OACONTROL_OFFSET + 1, 2632 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2633 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2634 }, 2635 { 2636 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2637 CTX_CONTEXT_CONTROL, 2638 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2639 active ? 2640 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2641 0) 2642 }, 2643 }; 2644 2645 /* Modify the context image of pinned context with regs_context */ 2646 err = intel_context_lock_pinned(ce); 2647 if (err) 2648 return err; 2649 2650 err = gen8_modify_context(ce, regs_context, 2651 ARRAY_SIZE(regs_context)); 2652 intel_context_unlock_pinned(ce); 2653 if (err) 2654 return err; 2655 2656 /* Apply regs_lri using LRI with pinned context */ 2657 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2658 } 2659 2660 /* 2661 * Manages updating the per-context aspects of the OA stream 2662 * configuration across all contexts. 2663 * 2664 * The awkward consideration here is that OACTXCONTROL controls the 2665 * exponent for periodic sampling which is primarily used for system 2666 * wide profiling where we'd like a consistent sampling period even in 2667 * the face of context switches. 2668 * 2669 * Our approach of updating the register state context (as opposed to 2670 * say using a workaround batch buffer) ensures that the hardware 2671 * won't automatically reload an out-of-date timer exponent even 2672 * transiently before a WA BB could be parsed. 2673 * 2674 * This function needs to: 2675 * - Ensure the currently running context's per-context OA state is 2676 * updated 2677 * - Ensure that all existing contexts will have the correct per-context 2678 * OA state if they are scheduled for use. 2679 * - Ensure any new contexts will be initialized with the correct 2680 * per-context OA state. 2681 * 2682 * Note: it's only the RCS/Render context that has any OA state. 2683 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2684 */ 2685 static int 2686 oa_configure_all_contexts(struct i915_perf_stream *stream, 2687 struct flex *regs, 2688 size_t num_regs, 2689 struct i915_active *active) 2690 { 2691 struct drm_i915_private *i915 = stream->perf->i915; 2692 struct intel_engine_cs *engine; 2693 struct intel_gt *gt = stream->engine->gt; 2694 struct i915_gem_context *ctx, *cn; 2695 int err; 2696 2697 lockdep_assert_held(>->perf.lock); 2698 2699 /* 2700 * The OA register config is setup through the context image. This image 2701 * might be written to by the GPU on context switch (in particular on 2702 * lite-restore). This means we can't safely update a context's image, 2703 * if this context is scheduled/submitted to run on the GPU. 2704 * 2705 * We could emit the OA register config through the batch buffer but 2706 * this might leave small interval of time where the OA unit is 2707 * configured at an invalid sampling period. 2708 * 2709 * Note that since we emit all requests from a single ring, there 2710 * is still an implicit global barrier here that may cause a high 2711 * priority context to wait for an otherwise independent low priority 2712 * context. Contexts idle at the time of reconfiguration are not 2713 * trapped behind the barrier. 2714 */ 2715 spin_lock(&i915->gem.contexts.lock); 2716 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2717 if (!kref_get_unless_zero(&ctx->ref)) 2718 continue; 2719 2720 spin_unlock(&i915->gem.contexts.lock); 2721 2722 err = gen8_configure_context(stream, ctx, regs, num_regs); 2723 if (err) { 2724 i915_gem_context_put(ctx); 2725 return err; 2726 } 2727 2728 spin_lock(&i915->gem.contexts.lock); 2729 list_safe_reset_next(ctx, cn, link); 2730 i915_gem_context_put(ctx); 2731 } 2732 spin_unlock(&i915->gem.contexts.lock); 2733 2734 /* 2735 * After updating all other contexts, we need to modify ourselves. 2736 * If we don't modify the kernel_context, we do not get events while 2737 * idle. 2738 */ 2739 for_each_uabi_engine(engine, i915) { 2740 struct intel_context *ce = engine->kernel_context; 2741 2742 if (engine->class != RENDER_CLASS) 2743 continue; 2744 2745 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2746 2747 err = gen8_modify_self(ce, regs, num_regs, active); 2748 if (err) 2749 return err; 2750 } 2751 2752 return 0; 2753 } 2754 2755 static int 2756 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2757 const struct i915_oa_config *oa_config, 2758 struct i915_active *active) 2759 { 2760 struct flex regs[] = { 2761 { 2762 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2763 CTX_R_PWR_CLK_STATE, 2764 }, 2765 }; 2766 2767 if (stream->engine->class != RENDER_CLASS) 2768 return 0; 2769 2770 return oa_configure_all_contexts(stream, 2771 regs, ARRAY_SIZE(regs), 2772 active); 2773 } 2774 2775 static int 2776 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2777 const struct i915_oa_config *oa_config, 2778 struct i915_active *active) 2779 { 2780 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2781 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2782 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2783 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2784 struct flex regs[] = { 2785 { 2786 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE), 2787 CTX_R_PWR_CLK_STATE, 2788 }, 2789 { 2790 GEN8_OACTXCONTROL, 2791 ctx_oactxctrl + 1, 2792 }, 2793 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2794 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2795 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2796 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2797 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2798 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2799 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2800 }; 2801 #undef ctx_flexeuN 2802 int i; 2803 2804 regs[1].value = 2805 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2806 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2807 GEN8_OA_COUNTER_RESUME; 2808 2809 for (i = 2; i < ARRAY_SIZE(regs); i++) 2810 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2811 2812 return oa_configure_all_contexts(stream, 2813 regs, ARRAY_SIZE(regs), 2814 active); 2815 } 2816 2817 static int 2818 gen8_enable_metric_set(struct i915_perf_stream *stream, 2819 struct i915_active *active) 2820 { 2821 struct intel_uncore *uncore = stream->uncore; 2822 struct i915_oa_config *oa_config = stream->oa_config; 2823 int ret; 2824 2825 /* 2826 * We disable slice/unslice clock ratio change reports on SKL since 2827 * they are too noisy. The HW generates a lot of redundant reports 2828 * where the ratio hasn't really changed causing a lot of redundant 2829 * work to processes and increasing the chances we'll hit buffer 2830 * overruns. 2831 * 2832 * Although we don't currently use the 'disable overrun' OABUFFER 2833 * feature it's worth noting that clock ratio reports have to be 2834 * disabled before considering to use that feature since the HW doesn't 2835 * correctly block these reports. 2836 * 2837 * Currently none of the high-level metrics we have depend on knowing 2838 * this ratio to normalize. 2839 * 2840 * Note: This register is not power context saved and restored, but 2841 * that's OK considering that we disable RC6 while the OA unit is 2842 * enabled. 2843 * 2844 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2845 * be read back from automatically triggered reports, as part of the 2846 * RPT_ID field. 2847 */ 2848 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) { 2849 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2850 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2851 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2852 } 2853 2854 /* 2855 * Update all contexts prior writing the mux configurations as we need 2856 * to make sure all slices/subslices are ON before writing to NOA 2857 * registers. 2858 */ 2859 ret = lrc_configure_all_contexts(stream, oa_config, active); 2860 if (ret) 2861 return ret; 2862 2863 return emit_oa_config(stream, 2864 stream->oa_config, oa_context(stream), 2865 active); 2866 } 2867 2868 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2869 { 2870 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2871 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2872 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2873 } 2874 2875 static int 2876 gen12_enable_metric_set(struct i915_perf_stream *stream, 2877 struct i915_active *active) 2878 { 2879 struct drm_i915_private *i915 = stream->perf->i915; 2880 struct intel_uncore *uncore = stream->uncore; 2881 struct i915_oa_config *oa_config = stream->oa_config; 2882 bool periodic = stream->periodic; 2883 u32 period_exponent = stream->period_exponent; 2884 u32 sqcnt1; 2885 int ret; 2886 2887 /* 2888 * Wa_1508761755:xehpsdv, dg2 2889 * EU NOA signals behave incorrectly if EU clock gating is enabled. 2890 * Disable thread stall DOP gating and EU DOP gating. 2891 */ 2892 if (IS_XEHPSDV(i915) || IS_DG2(i915)) { 2893 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2894 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE)); 2895 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2896 _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING)); 2897 } 2898 2899 intel_uncore_write(uncore, __oa_regs(stream)->oa_debug, 2900 /* Disable clk ratio reports, like previous Gens. */ 2901 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2902 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2903 /* 2904 * If the user didn't require OA reports, instruct 2905 * the hardware not to emit ctx switch reports. 2906 */ 2907 oag_report_ctx_switches(stream)); 2908 2909 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctx_ctrl, periodic ? 2910 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2911 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2912 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2913 : 0); 2914 2915 /* 2916 * Initialize Super Queue Internal Cnt Register 2917 * Set PMON Enable in order to collect valid metrics. 2918 * Enable byets per clock reporting in OA for XEHPSDV onward. 2919 */ 2920 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 2921 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 2922 2923 intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1); 2924 2925 /* 2926 * Update all contexts prior writing the mux configurations as we need 2927 * to make sure all slices/subslices are ON before writing to NOA 2928 * registers. 2929 */ 2930 ret = gen12_configure_all_contexts(stream, oa_config, active); 2931 if (ret) 2932 return ret; 2933 2934 /* 2935 * For Gen12, performance counters are context 2936 * saved/restored. Only enable it for the context that 2937 * requested this. 2938 */ 2939 if (stream->ctx) { 2940 ret = gen12_configure_oar_context(stream, active); 2941 if (ret) 2942 return ret; 2943 } 2944 2945 return emit_oa_config(stream, 2946 stream->oa_config, oa_context(stream), 2947 active); 2948 } 2949 2950 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2951 { 2952 struct intel_uncore *uncore = stream->uncore; 2953 2954 /* Reset all contexts' slices/subslices configurations. */ 2955 lrc_configure_all_contexts(stream, NULL, NULL); 2956 2957 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2958 } 2959 2960 static void gen11_disable_metric_set(struct i915_perf_stream *stream) 2961 { 2962 struct intel_uncore *uncore = stream->uncore; 2963 2964 /* Reset all contexts' slices/subslices configurations. */ 2965 lrc_configure_all_contexts(stream, NULL, NULL); 2966 2967 /* Make sure we disable noa to save power. */ 2968 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2969 } 2970 2971 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2972 { 2973 struct intel_uncore *uncore = stream->uncore; 2974 struct drm_i915_private *i915 = stream->perf->i915; 2975 u32 sqcnt1; 2976 2977 /* 2978 * Wa_1508761755:xehpsdv, dg2 2979 * Enable thread stall DOP gating and EU DOP gating. 2980 */ 2981 if (IS_XEHPSDV(i915) || IS_DG2(i915)) { 2982 intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN, 2983 _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE)); 2984 intel_uncore_write(uncore, GEN7_ROW_CHICKEN2, 2985 _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING)); 2986 } 2987 2988 /* Reset all contexts' slices/subslices configurations. */ 2989 gen12_configure_all_contexts(stream, NULL, NULL); 2990 2991 /* disable the context save/restore or OAR counters */ 2992 if (stream->ctx) 2993 gen12_configure_oar_context(stream, NULL); 2994 2995 /* Make sure we disable noa to save power. */ 2996 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2997 2998 sqcnt1 = GEN12_SQCNT1_PMON_ENABLE | 2999 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0); 3000 3001 /* Reset PMON Enable to save power. */ 3002 intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0); 3003 } 3004 3005 static void gen7_oa_enable(struct i915_perf_stream *stream) 3006 { 3007 struct intel_uncore *uncore = stream->uncore; 3008 struct i915_gem_context *ctx = stream->ctx; 3009 u32 ctx_id = stream->specific_ctx_id; 3010 bool periodic = stream->periodic; 3011 u32 period_exponent = stream->period_exponent; 3012 u32 report_format = stream->oa_buffer.format->format; 3013 3014 /* 3015 * Reset buf pointers so we don't forward reports from before now. 3016 * 3017 * Think carefully if considering trying to avoid this, since it 3018 * also ensures status flags and the buffer itself are cleared 3019 * in error paths, and we have checks for invalid reports based 3020 * on the assumption that certain fields are written to zeroed 3021 * memory which this helps maintains. 3022 */ 3023 gen7_init_oa_buffer(stream); 3024 3025 intel_uncore_write(uncore, GEN7_OACONTROL, 3026 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 3027 (period_exponent << 3028 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 3029 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 3030 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 3031 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 3032 GEN7_OACONTROL_ENABLE); 3033 } 3034 3035 static void gen8_oa_enable(struct i915_perf_stream *stream) 3036 { 3037 struct intel_uncore *uncore = stream->uncore; 3038 u32 report_format = stream->oa_buffer.format->format; 3039 3040 /* 3041 * Reset buf pointers so we don't forward reports from before now. 3042 * 3043 * Think carefully if considering trying to avoid this, since it 3044 * also ensures status flags and the buffer itself are cleared 3045 * in error paths, and we have checks for invalid reports based 3046 * on the assumption that certain fields are written to zeroed 3047 * memory which this helps maintains. 3048 */ 3049 gen8_init_oa_buffer(stream); 3050 3051 /* 3052 * Note: we don't rely on the hardware to perform single context 3053 * filtering and instead filter on the cpu based on the context-id 3054 * field of reports 3055 */ 3056 intel_uncore_write(uncore, GEN8_OACONTROL, 3057 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 3058 GEN8_OA_COUNTER_ENABLE); 3059 } 3060 3061 static void gen12_oa_enable(struct i915_perf_stream *stream) 3062 { 3063 const struct i915_perf_regs *regs; 3064 u32 val; 3065 3066 /* 3067 * If we don't want OA reports from the OA buffer, then we don't even 3068 * need to program the OAG unit. 3069 */ 3070 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 3071 return; 3072 3073 gen12_init_oa_buffer(stream); 3074 3075 regs = __oa_regs(stream); 3076 val = (stream->oa_buffer.format->format << regs->oa_ctrl_counter_format_shift) | 3077 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE; 3078 3079 intel_uncore_write(stream->uncore, regs->oa_ctrl, val); 3080 } 3081 3082 /** 3083 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 3084 * @stream: An i915 perf stream opened for OA metrics 3085 * 3086 * [Re]enables hardware periodic sampling according to the period configured 3087 * when opening the stream. This also starts a hrtimer that will periodically 3088 * check for data in the circular OA buffer for notifying userspace (e.g. 3089 * during a read() or poll()). 3090 */ 3091 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 3092 { 3093 stream->pollin = false; 3094 3095 stream->perf->ops.oa_enable(stream); 3096 3097 if (stream->sample_flags & SAMPLE_OA_REPORT) 3098 hrtimer_start(&stream->poll_check_timer, 3099 ns_to_ktime(stream->poll_oa_period), 3100 HRTIMER_MODE_REL_PINNED); 3101 } 3102 3103 static void gen7_oa_disable(struct i915_perf_stream *stream) 3104 { 3105 struct intel_uncore *uncore = stream->uncore; 3106 3107 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 3108 if (intel_wait_for_register(uncore, 3109 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 3110 50)) 3111 drm_err(&stream->perf->i915->drm, 3112 "wait for OA to be disabled timed out\n"); 3113 } 3114 3115 static void gen8_oa_disable(struct i915_perf_stream *stream) 3116 { 3117 struct intel_uncore *uncore = stream->uncore; 3118 3119 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 3120 if (intel_wait_for_register(uncore, 3121 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 3122 50)) 3123 drm_err(&stream->perf->i915->drm, 3124 "wait for OA to be disabled timed out\n"); 3125 } 3126 3127 static void gen12_oa_disable(struct i915_perf_stream *stream) 3128 { 3129 struct intel_uncore *uncore = stream->uncore; 3130 3131 intel_uncore_write(uncore, __oa_regs(stream)->oa_ctrl, 0); 3132 if (intel_wait_for_register(uncore, 3133 __oa_regs(stream)->oa_ctrl, 3134 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 3135 50)) 3136 drm_err(&stream->perf->i915->drm, 3137 "wait for OA to be disabled timed out\n"); 3138 3139 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 3140 if (intel_wait_for_register(uncore, 3141 GEN12_OA_TLB_INV_CR, 3142 1, 0, 3143 50)) 3144 drm_err(&stream->perf->i915->drm, 3145 "wait for OA tlb invalidate timed out\n"); 3146 } 3147 3148 /** 3149 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 3150 * @stream: An i915 perf stream opened for OA metrics 3151 * 3152 * Stops the OA unit from periodically writing counter reports into the 3153 * circular OA buffer. This also stops the hrtimer that periodically checks for 3154 * data in the circular OA buffer, for notifying userspace. 3155 */ 3156 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 3157 { 3158 stream->perf->ops.oa_disable(stream); 3159 3160 if (stream->sample_flags & SAMPLE_OA_REPORT) 3161 hrtimer_cancel(&stream->poll_check_timer); 3162 } 3163 3164 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 3165 .destroy = i915_oa_stream_destroy, 3166 .enable = i915_oa_stream_enable, 3167 .disable = i915_oa_stream_disable, 3168 .wait_unlocked = i915_oa_wait_unlocked, 3169 .poll_wait = i915_oa_poll_wait, 3170 .read = i915_oa_read, 3171 }; 3172 3173 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 3174 { 3175 struct i915_active *active; 3176 int err; 3177 3178 active = i915_active_create(); 3179 if (!active) 3180 return -ENOMEM; 3181 3182 err = stream->perf->ops.enable_metric_set(stream, active); 3183 if (err == 0) 3184 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 3185 3186 i915_active_put(active); 3187 return err; 3188 } 3189 3190 static void 3191 get_default_sseu_config(struct intel_sseu *out_sseu, 3192 struct intel_engine_cs *engine) 3193 { 3194 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 3195 3196 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 3197 3198 if (GRAPHICS_VER(engine->i915) == 11) { 3199 /* 3200 * We only need subslice count so it doesn't matter which ones 3201 * we select - just turn off low bits in the amount of half of 3202 * all available subslices per slice. 3203 */ 3204 out_sseu->subslice_mask = 3205 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 3206 out_sseu->slice_mask = 0x1; 3207 } 3208 } 3209 3210 static int 3211 get_sseu_config(struct intel_sseu *out_sseu, 3212 struct intel_engine_cs *engine, 3213 const struct drm_i915_gem_context_param_sseu *drm_sseu) 3214 { 3215 if (drm_sseu->engine.engine_class != engine->uabi_class || 3216 drm_sseu->engine.engine_instance != engine->uabi_instance) 3217 return -EINVAL; 3218 3219 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 3220 } 3221 3222 /* 3223 * OA timestamp frequency = CS timestamp frequency in most platforms. On some 3224 * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such 3225 * cases, return the adjusted CS timestamp frequency to the user. 3226 */ 3227 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915) 3228 { 3229 /* 3230 * Wa_18013179988:dg2 3231 * Wa_14015846243:mtl 3232 */ 3233 if (IS_DG2(i915) || IS_METEORLAKE(i915)) { 3234 intel_wakeref_t wakeref; 3235 u32 reg, shift; 3236 3237 with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref) 3238 reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0); 3239 3240 shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK, 3241 reg); 3242 3243 return to_gt(i915)->clock_frequency << (3 - shift); 3244 } 3245 3246 return to_gt(i915)->clock_frequency; 3247 } 3248 3249 /** 3250 * i915_oa_stream_init - validate combined props for OA stream and init 3251 * @stream: An i915 perf stream 3252 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 3253 * @props: The property state that configures stream (individually validated) 3254 * 3255 * While read_properties_unlocked() validates properties in isolation it 3256 * doesn't ensure that the combination necessarily makes sense. 3257 * 3258 * At this point it has been determined that userspace wants a stream of 3259 * OA metrics, but still we need to further validate the combined 3260 * properties are OK. 3261 * 3262 * If the configuration makes sense then we can allocate memory for 3263 * a circular OA buffer and apply the requested metric set configuration. 3264 * 3265 * Returns: zero on success or a negative error code. 3266 */ 3267 static int i915_oa_stream_init(struct i915_perf_stream *stream, 3268 struct drm_i915_perf_open_param *param, 3269 struct perf_open_properties *props) 3270 { 3271 struct drm_i915_private *i915 = stream->perf->i915; 3272 struct i915_perf *perf = stream->perf; 3273 struct i915_perf_group *g; 3274 struct intel_gt *gt; 3275 int ret; 3276 3277 if (!props->engine) { 3278 drm_dbg(&stream->perf->i915->drm, 3279 "OA engine not specified\n"); 3280 return -EINVAL; 3281 } 3282 gt = props->engine->gt; 3283 g = props->engine->oa_group; 3284 3285 /* 3286 * If the sysfs metrics/ directory wasn't registered for some 3287 * reason then don't let userspace try their luck with config 3288 * IDs 3289 */ 3290 if (!perf->metrics_kobj) { 3291 drm_dbg(&stream->perf->i915->drm, 3292 "OA metrics weren't advertised via sysfs\n"); 3293 return -EINVAL; 3294 } 3295 3296 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 3297 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) { 3298 drm_dbg(&stream->perf->i915->drm, 3299 "Only OA report sampling supported\n"); 3300 return -EINVAL; 3301 } 3302 3303 if (!perf->ops.enable_metric_set) { 3304 drm_dbg(&stream->perf->i915->drm, 3305 "OA unit not supported\n"); 3306 return -ENODEV; 3307 } 3308 3309 /* 3310 * To avoid the complexity of having to accurately filter 3311 * counter reports and marshal to the appropriate client 3312 * we currently only allow exclusive access 3313 */ 3314 if (g->exclusive_stream) { 3315 drm_dbg(&stream->perf->i915->drm, 3316 "OA unit already in use\n"); 3317 return -EBUSY; 3318 } 3319 3320 if (!props->oa_format) { 3321 drm_dbg(&stream->perf->i915->drm, 3322 "OA report format not specified\n"); 3323 return -EINVAL; 3324 } 3325 3326 stream->engine = props->engine; 3327 stream->uncore = stream->engine->gt->uncore; 3328 3329 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 3330 3331 stream->oa_buffer.format = &perf->oa_formats[props->oa_format]; 3332 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0)) 3333 return -EINVAL; 3334 3335 stream->sample_flags = props->sample_flags; 3336 stream->sample_size += stream->oa_buffer.format->size; 3337 3338 stream->hold_preemption = props->hold_preemption; 3339 3340 stream->periodic = props->oa_periodic; 3341 if (stream->periodic) 3342 stream->period_exponent = props->oa_period_exponent; 3343 3344 if (stream->ctx) { 3345 ret = oa_get_render_ctx_id(stream); 3346 if (ret) { 3347 drm_dbg(&stream->perf->i915->drm, 3348 "Invalid context id to filter with\n"); 3349 return ret; 3350 } 3351 } 3352 3353 ret = alloc_noa_wait(stream); 3354 if (ret) { 3355 drm_dbg(&stream->perf->i915->drm, 3356 "Unable to allocate NOA wait batch buffer\n"); 3357 goto err_noa_wait_alloc; 3358 } 3359 3360 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 3361 if (!stream->oa_config) { 3362 drm_dbg(&stream->perf->i915->drm, 3363 "Invalid OA config id=%i\n", props->metrics_set); 3364 ret = -EINVAL; 3365 goto err_config; 3366 } 3367 3368 /* PRM - observability performance counters: 3369 * 3370 * OACONTROL, performance counter enable, note: 3371 * 3372 * "When this bit is set, in order to have coherent counts, 3373 * RC6 power state and trunk clock gating must be disabled. 3374 * This can be achieved by programming MMIO registers as 3375 * 0xA094=0 and 0xA090[31]=1" 3376 * 3377 * In our case we are expecting that taking pm + FORCEWAKE 3378 * references will effectively disable RC6. 3379 */ 3380 intel_engine_pm_get(stream->engine); 3381 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 3382 3383 /* 3384 * Wa_16011777198:dg2: GuC resets render as part of the Wa. This causes 3385 * OA to lose the configuration state. Prevent this by overriding GUCRC 3386 * mode. 3387 */ 3388 if (intel_uc_uses_guc_rc(>->uc) && 3389 (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || 3390 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))) { 3391 ret = intel_guc_slpc_override_gucrc_mode(>->uc.guc.slpc, 3392 SLPC_GUCRC_MODE_GUCRC_NO_RC6); 3393 if (ret) { 3394 drm_dbg(&stream->perf->i915->drm, 3395 "Unable to override gucrc mode\n"); 3396 goto err_gucrc; 3397 } 3398 3399 stream->override_gucrc = true; 3400 } 3401 3402 ret = alloc_oa_buffer(stream); 3403 if (ret) 3404 goto err_oa_buf_alloc; 3405 3406 stream->ops = &i915_oa_stream_ops; 3407 3408 stream->engine->gt->perf.sseu = props->sseu; 3409 WRITE_ONCE(g->exclusive_stream, stream); 3410 3411 ret = i915_perf_stream_enable_sync(stream); 3412 if (ret) { 3413 drm_dbg(&stream->perf->i915->drm, 3414 "Unable to enable metric set\n"); 3415 goto err_enable; 3416 } 3417 3418 drm_dbg(&stream->perf->i915->drm, 3419 "opening stream oa config uuid=%s\n", 3420 stream->oa_config->uuid); 3421 3422 hrtimer_init(&stream->poll_check_timer, 3423 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3424 stream->poll_check_timer.function = oa_poll_check_timer_cb; 3425 init_waitqueue_head(&stream->poll_wq); 3426 spin_lock_init(&stream->oa_buffer.ptr_lock); 3427 mutex_init(&stream->lock); 3428 3429 return 0; 3430 3431 err_enable: 3432 WRITE_ONCE(g->exclusive_stream, NULL); 3433 perf->ops.disable_metric_set(stream); 3434 3435 free_oa_buffer(stream); 3436 3437 err_oa_buf_alloc: 3438 if (stream->override_gucrc) 3439 intel_guc_slpc_unset_gucrc_mode(>->uc.guc.slpc); 3440 3441 err_gucrc: 3442 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 3443 intel_engine_pm_put(stream->engine); 3444 3445 free_oa_configs(stream); 3446 3447 err_config: 3448 free_noa_wait(stream); 3449 3450 err_noa_wait_alloc: 3451 if (stream->ctx) 3452 oa_put_render_ctx_id(stream); 3453 3454 return ret; 3455 } 3456 3457 void i915_oa_init_reg_state(const struct intel_context *ce, 3458 const struct intel_engine_cs *engine) 3459 { 3460 struct i915_perf_stream *stream; 3461 3462 if (engine->class != RENDER_CLASS) 3463 return; 3464 3465 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 3466 stream = READ_ONCE(engine->oa_group->exclusive_stream); 3467 if (stream && GRAPHICS_VER(stream->perf->i915) < 12) 3468 gen8_update_reg_state_unlocked(ce, stream); 3469 } 3470 3471 /** 3472 * i915_perf_read - handles read() FOP for i915 perf stream FDs 3473 * @file: An i915 perf stream file 3474 * @buf: destination buffer given by userspace 3475 * @count: the number of bytes userspace wants to read 3476 * @ppos: (inout) file seek position (unused) 3477 * 3478 * The entry point for handling a read() on a stream file descriptor from 3479 * userspace. Most of the work is left to the i915_perf_read_locked() and 3480 * &i915_perf_stream_ops->read but to save having stream implementations (of 3481 * which we might have multiple later) we handle blocking read here. 3482 * 3483 * We can also consistently treat trying to read from a disabled stream 3484 * as an IO error so implementations can assume the stream is enabled 3485 * while reading. 3486 * 3487 * Returns: The number of bytes copied or a negative error code on failure. 3488 */ 3489 static ssize_t i915_perf_read(struct file *file, 3490 char __user *buf, 3491 size_t count, 3492 loff_t *ppos) 3493 { 3494 struct i915_perf_stream *stream = file->private_data; 3495 size_t offset = 0; 3496 int ret; 3497 3498 /* To ensure it's handled consistently we simply treat all reads of a 3499 * disabled stream as an error. In particular it might otherwise lead 3500 * to a deadlock for blocking file descriptors... 3501 */ 3502 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT)) 3503 return -EIO; 3504 3505 if (!(file->f_flags & O_NONBLOCK)) { 3506 /* There's the small chance of false positives from 3507 * stream->ops->wait_unlocked. 3508 * 3509 * E.g. with single context filtering since we only wait until 3510 * oabuffer has >= 1 report we don't immediately know whether 3511 * any reports really belong to the current context 3512 */ 3513 do { 3514 ret = stream->ops->wait_unlocked(stream); 3515 if (ret) 3516 return ret; 3517 3518 mutex_lock(&stream->lock); 3519 ret = stream->ops->read(stream, buf, count, &offset); 3520 mutex_unlock(&stream->lock); 3521 } while (!offset && !ret); 3522 } else { 3523 mutex_lock(&stream->lock); 3524 ret = stream->ops->read(stream, buf, count, &offset); 3525 mutex_unlock(&stream->lock); 3526 } 3527 3528 /* We allow the poll checking to sometimes report false positive EPOLLIN 3529 * events where we might actually report EAGAIN on read() if there's 3530 * not really any data available. In this situation though we don't 3531 * want to enter a busy loop between poll() reporting a EPOLLIN event 3532 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3533 * effectively ensures we back off until the next hrtimer callback 3534 * before reporting another EPOLLIN event. 3535 * The exception to this is if ops->read() returned -ENOSPC which means 3536 * that more OA data is available than could fit in the user provided 3537 * buffer. In this case we want the next poll() call to not block. 3538 */ 3539 if (ret != -ENOSPC) 3540 stream->pollin = false; 3541 3542 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3543 return offset ?: (ret ?: -EAGAIN); 3544 } 3545 3546 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3547 { 3548 struct i915_perf_stream *stream = 3549 container_of(hrtimer, typeof(*stream), poll_check_timer); 3550 3551 if (oa_buffer_check_unlocked(stream)) { 3552 stream->pollin = true; 3553 wake_up(&stream->poll_wq); 3554 } 3555 3556 hrtimer_forward_now(hrtimer, 3557 ns_to_ktime(stream->poll_oa_period)); 3558 3559 return HRTIMER_RESTART; 3560 } 3561 3562 /** 3563 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3564 * @stream: An i915 perf stream 3565 * @file: An i915 perf stream file 3566 * @wait: poll() state table 3567 * 3568 * For handling userspace polling on an i915 perf stream, this calls through to 3569 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3570 * will be woken for new stream data. 3571 * 3572 * Returns: any poll events that are ready without sleeping 3573 */ 3574 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3575 struct file *file, 3576 poll_table *wait) 3577 { 3578 __poll_t events = 0; 3579 3580 stream->ops->poll_wait(stream, file, wait); 3581 3582 /* Note: we don't explicitly check whether there's something to read 3583 * here since this path may be very hot depending on what else 3584 * userspace is polling, or on the timeout in use. We rely solely on 3585 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3586 * samples to read. 3587 */ 3588 if (stream->pollin) 3589 events |= EPOLLIN; 3590 3591 return events; 3592 } 3593 3594 /** 3595 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3596 * @file: An i915 perf stream file 3597 * @wait: poll() state table 3598 * 3599 * For handling userspace polling on an i915 perf stream, this ensures 3600 * poll_wait() gets called with a wait queue that will be woken for new stream 3601 * data. 3602 * 3603 * Note: Implementation deferred to i915_perf_poll_locked() 3604 * 3605 * Returns: any poll events that are ready without sleeping 3606 */ 3607 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3608 { 3609 struct i915_perf_stream *stream = file->private_data; 3610 __poll_t ret; 3611 3612 mutex_lock(&stream->lock); 3613 ret = i915_perf_poll_locked(stream, file, wait); 3614 mutex_unlock(&stream->lock); 3615 3616 return ret; 3617 } 3618 3619 /** 3620 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3621 * @stream: A disabled i915 perf stream 3622 * 3623 * [Re]enables the associated capture of data for this stream. 3624 * 3625 * If a stream was previously enabled then there's currently no intention 3626 * to provide userspace any guarantee about the preservation of previously 3627 * buffered data. 3628 */ 3629 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3630 { 3631 if (stream->enabled) 3632 return; 3633 3634 /* Allow stream->ops->enable() to refer to this */ 3635 stream->enabled = true; 3636 3637 if (stream->ops->enable) 3638 stream->ops->enable(stream); 3639 3640 if (stream->hold_preemption) 3641 intel_context_set_nopreempt(stream->pinned_ctx); 3642 } 3643 3644 /** 3645 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3646 * @stream: An enabled i915 perf stream 3647 * 3648 * Disables the associated capture of data for this stream. 3649 * 3650 * The intention is that disabling an re-enabling a stream will ideally be 3651 * cheaper than destroying and re-opening a stream with the same configuration, 3652 * though there are no formal guarantees about what state or buffered data 3653 * must be retained between disabling and re-enabling a stream. 3654 * 3655 * Note: while a stream is disabled it's considered an error for userspace 3656 * to attempt to read from the stream (-EIO). 3657 */ 3658 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3659 { 3660 if (!stream->enabled) 3661 return; 3662 3663 /* Allow stream->ops->disable() to refer to this */ 3664 stream->enabled = false; 3665 3666 if (stream->hold_preemption) 3667 intel_context_clear_nopreempt(stream->pinned_ctx); 3668 3669 if (stream->ops->disable) 3670 stream->ops->disable(stream); 3671 } 3672 3673 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3674 unsigned long metrics_set) 3675 { 3676 struct i915_oa_config *config; 3677 long ret = stream->oa_config->id; 3678 3679 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3680 if (!config) 3681 return -EINVAL; 3682 3683 if (config != stream->oa_config) { 3684 int err; 3685 3686 /* 3687 * If OA is bound to a specific context, emit the 3688 * reconfiguration inline from that context. The update 3689 * will then be ordered with respect to submission on that 3690 * context. 3691 * 3692 * When set globally, we use a low priority kernel context, 3693 * so it will effectively take effect when idle. 3694 */ 3695 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3696 if (!err) 3697 config = xchg(&stream->oa_config, config); 3698 else 3699 ret = err; 3700 } 3701 3702 i915_oa_config_put(config); 3703 3704 return ret; 3705 } 3706 3707 /** 3708 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs 3709 * @stream: An i915 perf stream 3710 * @cmd: the ioctl request 3711 * @arg: the ioctl data 3712 * 3713 * Returns: zero on success or a negative error code. Returns -EINVAL for 3714 * an unknown ioctl request. 3715 */ 3716 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3717 unsigned int cmd, 3718 unsigned long arg) 3719 { 3720 switch (cmd) { 3721 case I915_PERF_IOCTL_ENABLE: 3722 i915_perf_enable_locked(stream); 3723 return 0; 3724 case I915_PERF_IOCTL_DISABLE: 3725 i915_perf_disable_locked(stream); 3726 return 0; 3727 case I915_PERF_IOCTL_CONFIG: 3728 return i915_perf_config_locked(stream, arg); 3729 } 3730 3731 return -EINVAL; 3732 } 3733 3734 /** 3735 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3736 * @file: An i915 perf stream file 3737 * @cmd: the ioctl request 3738 * @arg: the ioctl data 3739 * 3740 * Implementation deferred to i915_perf_ioctl_locked(). 3741 * 3742 * Returns: zero on success or a negative error code. Returns -EINVAL for 3743 * an unknown ioctl request. 3744 */ 3745 static long i915_perf_ioctl(struct file *file, 3746 unsigned int cmd, 3747 unsigned long arg) 3748 { 3749 struct i915_perf_stream *stream = file->private_data; 3750 long ret; 3751 3752 mutex_lock(&stream->lock); 3753 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3754 mutex_unlock(&stream->lock); 3755 3756 return ret; 3757 } 3758 3759 /** 3760 * i915_perf_destroy_locked - destroy an i915 perf stream 3761 * @stream: An i915 perf stream 3762 * 3763 * Frees all resources associated with the given i915 perf @stream, disabling 3764 * any associated data capture in the process. 3765 * 3766 * Note: The >->perf.lock mutex has been taken to serialize 3767 * with any non-file-operation driver hooks. 3768 */ 3769 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3770 { 3771 if (stream->enabled) 3772 i915_perf_disable_locked(stream); 3773 3774 if (stream->ops->destroy) 3775 stream->ops->destroy(stream); 3776 3777 if (stream->ctx) 3778 i915_gem_context_put(stream->ctx); 3779 3780 kfree(stream); 3781 } 3782 3783 /** 3784 * i915_perf_release - handles userspace close() of a stream file 3785 * @inode: anonymous inode associated with file 3786 * @file: An i915 perf stream file 3787 * 3788 * Cleans up any resources associated with an open i915 perf stream file. 3789 * 3790 * NB: close() can't really fail from the userspace point of view. 3791 * 3792 * Returns: zero on success or a negative error code. 3793 */ 3794 static int i915_perf_release(struct inode *inode, struct file *file) 3795 { 3796 struct i915_perf_stream *stream = file->private_data; 3797 struct i915_perf *perf = stream->perf; 3798 struct intel_gt *gt = stream->engine->gt; 3799 3800 /* 3801 * Within this call, we know that the fd is being closed and we have no 3802 * other user of stream->lock. Use the perf lock to destroy the stream 3803 * here. 3804 */ 3805 mutex_lock(>->perf.lock); 3806 i915_perf_destroy_locked(stream); 3807 mutex_unlock(>->perf.lock); 3808 3809 /* Release the reference the perf stream kept on the driver. */ 3810 drm_dev_put(&perf->i915->drm); 3811 3812 return 0; 3813 } 3814 3815 3816 static const struct file_operations fops = { 3817 .owner = THIS_MODULE, 3818 .llseek = no_llseek, 3819 .release = i915_perf_release, 3820 .poll = i915_perf_poll, 3821 .read = i915_perf_read, 3822 .unlocked_ioctl = i915_perf_ioctl, 3823 /* Our ioctl have no arguments, so it's safe to use the same function 3824 * to handle 32bits compatibility. 3825 */ 3826 .compat_ioctl = i915_perf_ioctl, 3827 }; 3828 3829 3830 /** 3831 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3832 * @perf: i915 perf instance 3833 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3834 * @props: individually validated u64 property value pairs 3835 * @file: drm file 3836 * 3837 * See i915_perf_ioctl_open() for interface details. 3838 * 3839 * Implements further stream config validation and stream initialization on 3840 * behalf of i915_perf_open_ioctl() with the >->perf.lock mutex 3841 * taken to serialize with any non-file-operation driver hooks. 3842 * 3843 * Note: at this point the @props have only been validated in isolation and 3844 * it's still necessary to validate that the combination of properties makes 3845 * sense. 3846 * 3847 * In the case where userspace is interested in OA unit metrics then further 3848 * config validation and stream initialization details will be handled by 3849 * i915_oa_stream_init(). The code here should only validate config state that 3850 * will be relevant to all stream types / backends. 3851 * 3852 * Returns: zero on success or a negative error code. 3853 */ 3854 static int 3855 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3856 struct drm_i915_perf_open_param *param, 3857 struct perf_open_properties *props, 3858 struct drm_file *file) 3859 { 3860 struct i915_gem_context *specific_ctx = NULL; 3861 struct i915_perf_stream *stream = NULL; 3862 unsigned long f_flags = 0; 3863 bool privileged_op = true; 3864 int stream_fd; 3865 int ret; 3866 3867 if (props->single_context) { 3868 u32 ctx_handle = props->ctx_handle; 3869 struct drm_i915_file_private *file_priv = file->driver_priv; 3870 3871 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3872 if (IS_ERR(specific_ctx)) { 3873 drm_dbg(&perf->i915->drm, 3874 "Failed to look up context with ID %u for opening perf stream\n", 3875 ctx_handle); 3876 ret = PTR_ERR(specific_ctx); 3877 goto err; 3878 } 3879 } 3880 3881 /* 3882 * On Haswell the OA unit supports clock gating off for a specific 3883 * context and in this mode there's no visibility of metrics for the 3884 * rest of the system, which we consider acceptable for a 3885 * non-privileged client. 3886 * 3887 * For Gen8->11 the OA unit no longer supports clock gating off for a 3888 * specific context and the kernel can't securely stop the counters 3889 * from updating as system-wide / global values. Even though we can 3890 * filter reports based on the included context ID we can't block 3891 * clients from seeing the raw / global counter values via 3892 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3893 * enable the OA unit by default. 3894 * 3895 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3896 * per context basis. So we can relax requirements there if the user 3897 * doesn't request global stream access (i.e. query based sampling 3898 * using MI_RECORD_PERF_COUNT. 3899 */ 3900 if (IS_HASWELL(perf->i915) && specific_ctx) 3901 privileged_op = false; 3902 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx && 3903 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3904 privileged_op = false; 3905 3906 if (props->hold_preemption) { 3907 if (!props->single_context) { 3908 drm_dbg(&perf->i915->drm, 3909 "preemption disable with no context\n"); 3910 ret = -EINVAL; 3911 goto err; 3912 } 3913 privileged_op = true; 3914 } 3915 3916 /* 3917 * Asking for SSEU configuration is a priviliged operation. 3918 */ 3919 if (props->has_sseu) 3920 privileged_op = true; 3921 else 3922 get_default_sseu_config(&props->sseu, props->engine); 3923 3924 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3925 * we check a dev.i915.perf_stream_paranoid sysctl option 3926 * to determine if it's ok to access system wide OA counters 3927 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3928 */ 3929 if (privileged_op && 3930 i915_perf_stream_paranoid && !perfmon_capable()) { 3931 drm_dbg(&perf->i915->drm, 3932 "Insufficient privileges to open i915 perf stream\n"); 3933 ret = -EACCES; 3934 goto err_ctx; 3935 } 3936 3937 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3938 if (!stream) { 3939 ret = -ENOMEM; 3940 goto err_ctx; 3941 } 3942 3943 stream->perf = perf; 3944 stream->ctx = specific_ctx; 3945 stream->poll_oa_period = props->poll_oa_period; 3946 3947 ret = i915_oa_stream_init(stream, param, props); 3948 if (ret) 3949 goto err_alloc; 3950 3951 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3952 * to have _stream_init check the combination of sample flags more 3953 * thoroughly, but still this is the expected result at this point. 3954 */ 3955 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3956 ret = -ENODEV; 3957 goto err_flags; 3958 } 3959 3960 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3961 f_flags |= O_CLOEXEC; 3962 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3963 f_flags |= O_NONBLOCK; 3964 3965 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3966 if (stream_fd < 0) { 3967 ret = stream_fd; 3968 goto err_flags; 3969 } 3970 3971 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3972 i915_perf_enable_locked(stream); 3973 3974 /* Take a reference on the driver that will be kept with stream_fd 3975 * until its release. 3976 */ 3977 drm_dev_get(&perf->i915->drm); 3978 3979 return stream_fd; 3980 3981 err_flags: 3982 if (stream->ops->destroy) 3983 stream->ops->destroy(stream); 3984 err_alloc: 3985 kfree(stream); 3986 err_ctx: 3987 if (specific_ctx) 3988 i915_gem_context_put(specific_ctx); 3989 err: 3990 return ret; 3991 } 3992 3993 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3994 { 3995 u64 nom = (2ULL << exponent) * NSEC_PER_SEC; 3996 u32 den = i915_perf_oa_timestamp_frequency(perf->i915); 3997 3998 return div_u64(nom + den - 1, den); 3999 } 4000 4001 static __always_inline bool 4002 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format) 4003 { 4004 return test_bit(format, perf->format_mask); 4005 } 4006 4007 static __always_inline void 4008 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format) 4009 { 4010 __set_bit(format, perf->format_mask); 4011 } 4012 4013 /** 4014 * read_properties_unlocked - validate + copy userspace stream open properties 4015 * @perf: i915 perf instance 4016 * @uprops: The array of u64 key value pairs given by userspace 4017 * @n_props: The number of key value pairs expected in @uprops 4018 * @props: The stream configuration built up while validating properties 4019 * 4020 * Note this function only validates properties in isolation it doesn't 4021 * validate that the combination of properties makes sense or that all 4022 * properties necessary for a particular kind of stream have been set. 4023 * 4024 * Note that there currently aren't any ordering requirements for properties so 4025 * we shouldn't validate or assume anything about ordering here. This doesn't 4026 * rule out defining new properties with ordering requirements in the future. 4027 */ 4028 static int read_properties_unlocked(struct i915_perf *perf, 4029 u64 __user *uprops, 4030 u32 n_props, 4031 struct perf_open_properties *props) 4032 { 4033 struct drm_i915_gem_context_param_sseu user_sseu; 4034 const struct i915_oa_format *f; 4035 u64 __user *uprop = uprops; 4036 bool config_instance = false; 4037 bool config_class = false; 4038 bool config_sseu = false; 4039 u8 class, instance; 4040 u32 i; 4041 int ret; 4042 4043 memset(props, 0, sizeof(struct perf_open_properties)); 4044 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 4045 4046 /* Considering that ID = 0 is reserved and assuming that we don't 4047 * (currently) expect any configurations to ever specify duplicate 4048 * values for a particular property ID then the last _PROP_MAX value is 4049 * one greater than the maximum number of properties we expect to get 4050 * from userspace. 4051 */ 4052 if (!n_props || n_props >= DRM_I915_PERF_PROP_MAX) { 4053 drm_dbg(&perf->i915->drm, 4054 "Invalid number of i915 perf properties given\n"); 4055 return -EINVAL; 4056 } 4057 4058 /* Defaults when class:instance is not passed */ 4059 class = I915_ENGINE_CLASS_RENDER; 4060 instance = 0; 4061 4062 for (i = 0; i < n_props; i++) { 4063 u64 oa_period, oa_freq_hz; 4064 u64 id, value; 4065 4066 ret = get_user(id, uprop); 4067 if (ret) 4068 return ret; 4069 4070 ret = get_user(value, uprop + 1); 4071 if (ret) 4072 return ret; 4073 4074 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 4075 drm_dbg(&perf->i915->drm, 4076 "Unknown i915 perf property ID\n"); 4077 return -EINVAL; 4078 } 4079 4080 switch ((enum drm_i915_perf_property_id)id) { 4081 case DRM_I915_PERF_PROP_CTX_HANDLE: 4082 props->single_context = 1; 4083 props->ctx_handle = value; 4084 break; 4085 case DRM_I915_PERF_PROP_SAMPLE_OA: 4086 if (value) 4087 props->sample_flags |= SAMPLE_OA_REPORT; 4088 break; 4089 case DRM_I915_PERF_PROP_OA_METRICS_SET: 4090 if (value == 0) { 4091 drm_dbg(&perf->i915->drm, 4092 "Unknown OA metric set ID\n"); 4093 return -EINVAL; 4094 } 4095 props->metrics_set = value; 4096 break; 4097 case DRM_I915_PERF_PROP_OA_FORMAT: 4098 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 4099 drm_dbg(&perf->i915->drm, 4100 "Out-of-range OA report format %llu\n", 4101 value); 4102 return -EINVAL; 4103 } 4104 if (!oa_format_valid(perf, value)) { 4105 drm_dbg(&perf->i915->drm, 4106 "Unsupported OA report format %llu\n", 4107 value); 4108 return -EINVAL; 4109 } 4110 props->oa_format = value; 4111 break; 4112 case DRM_I915_PERF_PROP_OA_EXPONENT: 4113 if (value > OA_EXPONENT_MAX) { 4114 drm_dbg(&perf->i915->drm, 4115 "OA timer exponent too high (> %u)\n", 4116 OA_EXPONENT_MAX); 4117 return -EINVAL; 4118 } 4119 4120 /* Theoretically we can program the OA unit to sample 4121 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 4122 * for BXT. We don't allow such high sampling 4123 * frequencies by default unless root. 4124 */ 4125 4126 BUILD_BUG_ON(sizeof(oa_period) != 8); 4127 oa_period = oa_exponent_to_ns(perf, value); 4128 4129 /* This check is primarily to ensure that oa_period <= 4130 * UINT32_MAX (before passing to do_div which only 4131 * accepts a u32 denominator), but we can also skip 4132 * checking anything < 1Hz which implicitly can't be 4133 * limited via an integer oa_max_sample_rate. 4134 */ 4135 if (oa_period <= NSEC_PER_SEC) { 4136 u64 tmp = NSEC_PER_SEC; 4137 do_div(tmp, oa_period); 4138 oa_freq_hz = tmp; 4139 } else 4140 oa_freq_hz = 0; 4141 4142 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 4143 drm_dbg(&perf->i915->drm, 4144 "OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 4145 i915_oa_max_sample_rate); 4146 return -EACCES; 4147 } 4148 4149 props->oa_periodic = true; 4150 props->oa_period_exponent = value; 4151 break; 4152 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 4153 props->hold_preemption = !!value; 4154 break; 4155 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 4156 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) { 4157 drm_dbg(&perf->i915->drm, 4158 "SSEU config not supported on gfx %x\n", 4159 GRAPHICS_VER_FULL(perf->i915)); 4160 return -ENODEV; 4161 } 4162 4163 if (copy_from_user(&user_sseu, 4164 u64_to_user_ptr(value), 4165 sizeof(user_sseu))) { 4166 drm_dbg(&perf->i915->drm, 4167 "Unable to copy global sseu parameter\n"); 4168 return -EFAULT; 4169 } 4170 config_sseu = true; 4171 break; 4172 } 4173 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 4174 if (value < 100000 /* 100us */) { 4175 drm_dbg(&perf->i915->drm, 4176 "OA availability timer too small (%lluns < 100us)\n", 4177 value); 4178 return -EINVAL; 4179 } 4180 props->poll_oa_period = value; 4181 break; 4182 case DRM_I915_PERF_PROP_OA_ENGINE_CLASS: 4183 class = (u8)value; 4184 config_class = true; 4185 break; 4186 case DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE: 4187 instance = (u8)value; 4188 config_instance = true; 4189 break; 4190 default: 4191 MISSING_CASE(id); 4192 return -EINVAL; 4193 } 4194 4195 uprop += 2; 4196 } 4197 4198 if ((config_class && !config_instance) || 4199 (config_instance && !config_class)) { 4200 drm_dbg(&perf->i915->drm, 4201 "OA engine-class and engine-instance parameters must be passed together\n"); 4202 return -EINVAL; 4203 } 4204 4205 props->engine = intel_engine_lookup_user(perf->i915, class, instance); 4206 if (!props->engine) { 4207 drm_dbg(&perf->i915->drm, 4208 "OA engine class and instance invalid %d:%d\n", 4209 class, instance); 4210 return -EINVAL; 4211 } 4212 4213 if (!engine_supports_oa(props->engine)) { 4214 drm_dbg(&perf->i915->drm, 4215 "Engine not supported by OA %d:%d\n", 4216 class, instance); 4217 return -EINVAL; 4218 } 4219 4220 /* 4221 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media 4222 * C6 disable in BIOS. Fail if Media C6 is enabled on steppings where OAM 4223 * does not work as expected. 4224 */ 4225 if (IS_MTL_MEDIA_STEP(props->engine->i915, STEP_A0, STEP_C0) && 4226 props->engine->oa_group->type == TYPE_OAM && 4227 intel_check_bios_c6_setup(&props->engine->gt->rc6)) { 4228 drm_dbg(&perf->i915->drm, 4229 "OAM requires media C6 to be disabled in BIOS\n"); 4230 return -EINVAL; 4231 } 4232 4233 i = array_index_nospec(props->oa_format, I915_OA_FORMAT_MAX); 4234 f = &perf->oa_formats[i]; 4235 if (!engine_supports_oa_format(props->engine, f->type)) { 4236 drm_dbg(&perf->i915->drm, 4237 "Invalid OA format %d for class %d\n", 4238 f->type, props->engine->class); 4239 return -EINVAL; 4240 } 4241 4242 if (config_sseu) { 4243 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 4244 if (ret) { 4245 drm_dbg(&perf->i915->drm, 4246 "Invalid SSEU configuration\n"); 4247 return ret; 4248 } 4249 props->has_sseu = true; 4250 } 4251 4252 return 0; 4253 } 4254 4255 /** 4256 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 4257 * @dev: drm device 4258 * @data: ioctl data copied from userspace (unvalidated) 4259 * @file: drm file 4260 * 4261 * Validates the stream open parameters given by userspace including flags 4262 * and an array of u64 key, value pair properties. 4263 * 4264 * Very little is assumed up front about the nature of the stream being 4265 * opened (for instance we don't assume it's for periodic OA unit metrics). An 4266 * i915-perf stream is expected to be a suitable interface for other forms of 4267 * buffered data written by the GPU besides periodic OA metrics. 4268 * 4269 * Note we copy the properties from userspace outside of the i915 perf 4270 * mutex to avoid an awkward lockdep with mmap_lock. 4271 * 4272 * Most of the implementation details are handled by 4273 * i915_perf_open_ioctl_locked() after taking the >->perf.lock 4274 * mutex for serializing with any non-file-operation driver hooks. 4275 * 4276 * Return: A newly opened i915 Perf stream file descriptor or negative 4277 * error code on failure. 4278 */ 4279 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 4280 struct drm_file *file) 4281 { 4282 struct i915_perf *perf = &to_i915(dev)->perf; 4283 struct drm_i915_perf_open_param *param = data; 4284 struct intel_gt *gt; 4285 struct perf_open_properties props; 4286 u32 known_open_flags; 4287 int ret; 4288 4289 if (!perf->i915) 4290 return -ENOTSUPP; 4291 4292 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 4293 I915_PERF_FLAG_FD_NONBLOCK | 4294 I915_PERF_FLAG_DISABLED; 4295 if (param->flags & ~known_open_flags) { 4296 drm_dbg(&perf->i915->drm, 4297 "Unknown drm_i915_perf_open_param flag\n"); 4298 return -EINVAL; 4299 } 4300 4301 ret = read_properties_unlocked(perf, 4302 u64_to_user_ptr(param->properties_ptr), 4303 param->num_properties, 4304 &props); 4305 if (ret) 4306 return ret; 4307 4308 gt = props.engine->gt; 4309 4310 mutex_lock(>->perf.lock); 4311 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 4312 mutex_unlock(>->perf.lock); 4313 4314 return ret; 4315 } 4316 4317 /** 4318 * i915_perf_register - exposes i915-perf to userspace 4319 * @i915: i915 device instance 4320 * 4321 * In particular OA metric sets are advertised under a sysfs metrics/ 4322 * directory allowing userspace to enumerate valid IDs that can be 4323 * used to open an i915-perf stream. 4324 */ 4325 void i915_perf_register(struct drm_i915_private *i915) 4326 { 4327 struct i915_perf *perf = &i915->perf; 4328 struct intel_gt *gt = to_gt(i915); 4329 4330 if (!perf->i915) 4331 return; 4332 4333 /* To be sure we're synchronized with an attempted 4334 * i915_perf_open_ioctl(); considering that we register after 4335 * being exposed to userspace. 4336 */ 4337 mutex_lock(>->perf.lock); 4338 4339 perf->metrics_kobj = 4340 kobject_create_and_add("metrics", 4341 &i915->drm.primary->kdev->kobj); 4342 4343 mutex_unlock(>->perf.lock); 4344 } 4345 4346 /** 4347 * i915_perf_unregister - hide i915-perf from userspace 4348 * @i915: i915 device instance 4349 * 4350 * i915-perf state cleanup is split up into an 'unregister' and 4351 * 'deinit' phase where the interface is first hidden from 4352 * userspace by i915_perf_unregister() before cleaning up 4353 * remaining state in i915_perf_fini(). 4354 */ 4355 void i915_perf_unregister(struct drm_i915_private *i915) 4356 { 4357 struct i915_perf *perf = &i915->perf; 4358 4359 if (!perf->metrics_kobj) 4360 return; 4361 4362 kobject_put(perf->metrics_kobj); 4363 perf->metrics_kobj = NULL; 4364 } 4365 4366 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 4367 { 4368 static const i915_reg_t flex_eu_regs[] = { 4369 EU_PERF_CNTL0, 4370 EU_PERF_CNTL1, 4371 EU_PERF_CNTL2, 4372 EU_PERF_CNTL3, 4373 EU_PERF_CNTL4, 4374 EU_PERF_CNTL5, 4375 EU_PERF_CNTL6, 4376 }; 4377 int i; 4378 4379 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 4380 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 4381 return true; 4382 } 4383 return false; 4384 } 4385 4386 static bool reg_in_range_table(u32 addr, const struct i915_range *table) 4387 { 4388 while (table->start || table->end) { 4389 if (addr >= table->start && addr <= table->end) 4390 return true; 4391 4392 table++; 4393 } 4394 4395 return false; 4396 } 4397 4398 #define REG_EQUAL(addr, mmio) \ 4399 ((addr) == i915_mmio_reg_offset(mmio)) 4400 4401 static const struct i915_range gen7_oa_b_counters[] = { 4402 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */ 4403 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */ 4404 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */ 4405 {} 4406 }; 4407 4408 static const struct i915_range gen12_oa_b_counters[] = { 4409 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */ 4410 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */ 4411 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */ 4412 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */ 4413 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */ 4414 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */ 4415 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */ 4416 {} 4417 }; 4418 4419 static const struct i915_range mtl_oam_b_counters[] = { 4420 { .start = 0x393000, .end = 0x39301c }, /* GEN12_OAM_STARTTRIG1[1-8] */ 4421 { .start = 0x393020, .end = 0x39303c }, /* GEN12_OAM_REPORTTRIG1[1-8] */ 4422 { .start = 0x393040, .end = 0x39307c }, /* GEN12_OAM_CEC[0-7][0-1] */ 4423 { .start = 0x393200, .end = 0x39323C }, /* MPES[0-7] */ 4424 {} 4425 }; 4426 4427 static const struct i915_range xehp_oa_b_counters[] = { 4428 { .start = 0xdc48, .end = 0xdc48 }, /* OAA_ENABLE_REG */ 4429 { .start = 0xdd00, .end = 0xdd48 }, /* OAG_LCE0_0 - OAA_LENABLE_REG */ 4430 {} 4431 }; 4432 4433 static const struct i915_range gen7_oa_mux_regs[] = { 4434 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */ 4435 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */ 4436 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */ 4437 {} 4438 }; 4439 4440 static const struct i915_range hsw_oa_mux_regs[] = { 4441 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */ 4442 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */ 4443 { .start = 0x25100, .end = 0x2ff90 }, 4444 {} 4445 }; 4446 4447 static const struct i915_range chv_oa_mux_regs[] = { 4448 { .start = 0x182300, .end = 0x1823a4 }, 4449 {} 4450 }; 4451 4452 static const struct i915_range gen8_oa_mux_regs[] = { 4453 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */ 4454 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4455 {} 4456 }; 4457 4458 static const struct i915_range gen11_oa_mux_regs[] = { 4459 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */ 4460 {} 4461 }; 4462 4463 static const struct i915_range gen12_oa_mux_regs[] = { 4464 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4465 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4466 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4467 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4468 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */ 4469 {} 4470 }; 4471 4472 /* 4473 * Ref: 14010536224: 4474 * 0x20cc is repurposed on MTL, so use a separate array for MTL. 4475 */ 4476 static const struct i915_range mtl_oa_mux_regs[] = { 4477 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */ 4478 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */ 4479 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */ 4480 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */ 4481 { .start = 0x38d100, .end = 0x38d114}, /* VISACTL */ 4482 {} 4483 }; 4484 4485 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4486 { 4487 return reg_in_range_table(addr, gen7_oa_b_counters); 4488 } 4489 4490 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4491 { 4492 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4493 reg_in_range_table(addr, gen8_oa_mux_regs); 4494 } 4495 4496 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4497 { 4498 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4499 reg_in_range_table(addr, gen8_oa_mux_regs) || 4500 reg_in_range_table(addr, gen11_oa_mux_regs); 4501 } 4502 4503 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4504 { 4505 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4506 reg_in_range_table(addr, hsw_oa_mux_regs); 4507 } 4508 4509 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4510 { 4511 return reg_in_range_table(addr, gen7_oa_mux_regs) || 4512 reg_in_range_table(addr, chv_oa_mux_regs); 4513 } 4514 4515 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4516 { 4517 return reg_in_range_table(addr, gen12_oa_b_counters); 4518 } 4519 4520 static bool mtl_is_valid_oam_b_counter_addr(struct i915_perf *perf, u32 addr) 4521 { 4522 if (HAS_OAM(perf->i915) && 4523 GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 70)) 4524 return reg_in_range_table(addr, mtl_oam_b_counters); 4525 4526 return false; 4527 } 4528 4529 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 4530 { 4531 return reg_in_range_table(addr, xehp_oa_b_counters) || 4532 reg_in_range_table(addr, gen12_oa_b_counters) || 4533 mtl_is_valid_oam_b_counter_addr(perf, addr); 4534 } 4535 4536 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 4537 { 4538 if (IS_METEORLAKE(perf->i915)) 4539 return reg_in_range_table(addr, mtl_oa_mux_regs); 4540 else 4541 return reg_in_range_table(addr, gen12_oa_mux_regs); 4542 } 4543 4544 static u32 mask_reg_value(u32 reg, u32 val) 4545 { 4546 /* HALF_SLICE_CHICKEN2 is programmed with a the 4547 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 4548 * programmed by userspace doesn't change this. 4549 */ 4550 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 4551 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 4552 4553 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 4554 * indicated by its name and a bunch of selection fields used by OA 4555 * configs. 4556 */ 4557 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 4558 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 4559 4560 return val; 4561 } 4562 4563 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 4564 bool (*is_valid)(struct i915_perf *perf, u32 addr), 4565 u32 __user *regs, 4566 u32 n_regs) 4567 { 4568 struct i915_oa_reg *oa_regs; 4569 int err; 4570 u32 i; 4571 4572 if (!n_regs) 4573 return NULL; 4574 4575 /* No is_valid function means we're not allowing any register to be programmed. */ 4576 GEM_BUG_ON(!is_valid); 4577 if (!is_valid) 4578 return ERR_PTR(-EINVAL); 4579 4580 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 4581 if (!oa_regs) 4582 return ERR_PTR(-ENOMEM); 4583 4584 for (i = 0; i < n_regs; i++) { 4585 u32 addr, value; 4586 4587 err = get_user(addr, regs); 4588 if (err) 4589 goto addr_err; 4590 4591 if (!is_valid(perf, addr)) { 4592 drm_dbg(&perf->i915->drm, 4593 "Invalid oa_reg address: %X\n", addr); 4594 err = -EINVAL; 4595 goto addr_err; 4596 } 4597 4598 err = get_user(value, regs + 1); 4599 if (err) 4600 goto addr_err; 4601 4602 oa_regs[i].addr = _MMIO(addr); 4603 oa_regs[i].value = mask_reg_value(addr, value); 4604 4605 regs += 2; 4606 } 4607 4608 return oa_regs; 4609 4610 addr_err: 4611 kfree(oa_regs); 4612 return ERR_PTR(err); 4613 } 4614 4615 static ssize_t show_dynamic_id(struct kobject *kobj, 4616 struct kobj_attribute *attr, 4617 char *buf) 4618 { 4619 struct i915_oa_config *oa_config = 4620 container_of(attr, typeof(*oa_config), sysfs_metric_id); 4621 4622 return sprintf(buf, "%d\n", oa_config->id); 4623 } 4624 4625 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 4626 struct i915_oa_config *oa_config) 4627 { 4628 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 4629 oa_config->sysfs_metric_id.attr.name = "id"; 4630 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 4631 oa_config->sysfs_metric_id.show = show_dynamic_id; 4632 oa_config->sysfs_metric_id.store = NULL; 4633 4634 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 4635 oa_config->attrs[1] = NULL; 4636 4637 oa_config->sysfs_metric.name = oa_config->uuid; 4638 oa_config->sysfs_metric.attrs = oa_config->attrs; 4639 4640 return sysfs_create_group(perf->metrics_kobj, 4641 &oa_config->sysfs_metric); 4642 } 4643 4644 /** 4645 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4646 * @dev: drm device 4647 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4648 * userspace (unvalidated) 4649 * @file: drm file 4650 * 4651 * Validates the submitted OA register to be saved into a new OA config that 4652 * can then be used for programming the OA unit and its NOA network. 4653 * 4654 * Returns: A new allocated config number to be used with the perf open ioctl 4655 * or a negative error code on failure. 4656 */ 4657 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4658 struct drm_file *file) 4659 { 4660 struct i915_perf *perf = &to_i915(dev)->perf; 4661 struct drm_i915_perf_oa_config *args = data; 4662 struct i915_oa_config *oa_config, *tmp; 4663 struct i915_oa_reg *regs; 4664 int err, id; 4665 4666 if (!perf->i915) 4667 return -ENOTSUPP; 4668 4669 if (!perf->metrics_kobj) { 4670 drm_dbg(&perf->i915->drm, 4671 "OA metrics weren't advertised via sysfs\n"); 4672 return -EINVAL; 4673 } 4674 4675 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4676 drm_dbg(&perf->i915->drm, 4677 "Insufficient privileges to add i915 OA config\n"); 4678 return -EACCES; 4679 } 4680 4681 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4682 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4683 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4684 drm_dbg(&perf->i915->drm, 4685 "No OA registers given\n"); 4686 return -EINVAL; 4687 } 4688 4689 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4690 if (!oa_config) { 4691 drm_dbg(&perf->i915->drm, 4692 "Failed to allocate memory for the OA config\n"); 4693 return -ENOMEM; 4694 } 4695 4696 oa_config->perf = perf; 4697 kref_init(&oa_config->ref); 4698 4699 if (!uuid_is_valid(args->uuid)) { 4700 drm_dbg(&perf->i915->drm, 4701 "Invalid uuid format for OA config\n"); 4702 err = -EINVAL; 4703 goto reg_err; 4704 } 4705 4706 /* Last character in oa_config->uuid will be 0 because oa_config is 4707 * kzalloc. 4708 */ 4709 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4710 4711 oa_config->mux_regs_len = args->n_mux_regs; 4712 regs = alloc_oa_regs(perf, 4713 perf->ops.is_valid_mux_reg, 4714 u64_to_user_ptr(args->mux_regs_ptr), 4715 args->n_mux_regs); 4716 4717 if (IS_ERR(regs)) { 4718 drm_dbg(&perf->i915->drm, 4719 "Failed to create OA config for mux_regs\n"); 4720 err = PTR_ERR(regs); 4721 goto reg_err; 4722 } 4723 oa_config->mux_regs = regs; 4724 4725 oa_config->b_counter_regs_len = args->n_boolean_regs; 4726 regs = alloc_oa_regs(perf, 4727 perf->ops.is_valid_b_counter_reg, 4728 u64_to_user_ptr(args->boolean_regs_ptr), 4729 args->n_boolean_regs); 4730 4731 if (IS_ERR(regs)) { 4732 drm_dbg(&perf->i915->drm, 4733 "Failed to create OA config for b_counter_regs\n"); 4734 err = PTR_ERR(regs); 4735 goto reg_err; 4736 } 4737 oa_config->b_counter_regs = regs; 4738 4739 if (GRAPHICS_VER(perf->i915) < 8) { 4740 if (args->n_flex_regs != 0) { 4741 err = -EINVAL; 4742 goto reg_err; 4743 } 4744 } else { 4745 oa_config->flex_regs_len = args->n_flex_regs; 4746 regs = alloc_oa_regs(perf, 4747 perf->ops.is_valid_flex_reg, 4748 u64_to_user_ptr(args->flex_regs_ptr), 4749 args->n_flex_regs); 4750 4751 if (IS_ERR(regs)) { 4752 drm_dbg(&perf->i915->drm, 4753 "Failed to create OA config for flex_regs\n"); 4754 err = PTR_ERR(regs); 4755 goto reg_err; 4756 } 4757 oa_config->flex_regs = regs; 4758 } 4759 4760 err = mutex_lock_interruptible(&perf->metrics_lock); 4761 if (err) 4762 goto reg_err; 4763 4764 /* We shouldn't have too many configs, so this iteration shouldn't be 4765 * too costly. 4766 */ 4767 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4768 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4769 drm_dbg(&perf->i915->drm, 4770 "OA config already exists with this uuid\n"); 4771 err = -EADDRINUSE; 4772 goto sysfs_err; 4773 } 4774 } 4775 4776 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4777 if (err) { 4778 drm_dbg(&perf->i915->drm, 4779 "Failed to create sysfs entry for OA config\n"); 4780 goto sysfs_err; 4781 } 4782 4783 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4784 oa_config->id = idr_alloc(&perf->metrics_idr, 4785 oa_config, 2, 4786 0, GFP_KERNEL); 4787 if (oa_config->id < 0) { 4788 drm_dbg(&perf->i915->drm, 4789 "Failed to create sysfs entry for OA config\n"); 4790 err = oa_config->id; 4791 goto sysfs_err; 4792 } 4793 id = oa_config->id; 4794 4795 drm_dbg(&perf->i915->drm, 4796 "Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4797 mutex_unlock(&perf->metrics_lock); 4798 4799 return id; 4800 4801 sysfs_err: 4802 mutex_unlock(&perf->metrics_lock); 4803 reg_err: 4804 i915_oa_config_put(oa_config); 4805 drm_dbg(&perf->i915->drm, 4806 "Failed to add new OA config\n"); 4807 return err; 4808 } 4809 4810 /** 4811 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4812 * @dev: drm device 4813 * @data: ioctl data (pointer to u64 integer) copied from userspace 4814 * @file: drm file 4815 * 4816 * Configs can be removed while being used, the will stop appearing in sysfs 4817 * and their content will be freed when the stream using the config is closed. 4818 * 4819 * Returns: 0 on success or a negative error code on failure. 4820 */ 4821 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4822 struct drm_file *file) 4823 { 4824 struct i915_perf *perf = &to_i915(dev)->perf; 4825 u64 *arg = data; 4826 struct i915_oa_config *oa_config; 4827 int ret; 4828 4829 if (!perf->i915) 4830 return -ENOTSUPP; 4831 4832 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4833 drm_dbg(&perf->i915->drm, 4834 "Insufficient privileges to remove i915 OA config\n"); 4835 return -EACCES; 4836 } 4837 4838 ret = mutex_lock_interruptible(&perf->metrics_lock); 4839 if (ret) 4840 return ret; 4841 4842 oa_config = idr_find(&perf->metrics_idr, *arg); 4843 if (!oa_config) { 4844 drm_dbg(&perf->i915->drm, 4845 "Failed to remove unknown OA config\n"); 4846 ret = -ENOENT; 4847 goto err_unlock; 4848 } 4849 4850 GEM_BUG_ON(*arg != oa_config->id); 4851 4852 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4853 4854 idr_remove(&perf->metrics_idr, *arg); 4855 4856 mutex_unlock(&perf->metrics_lock); 4857 4858 drm_dbg(&perf->i915->drm, 4859 "Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4860 4861 i915_oa_config_put(oa_config); 4862 4863 return 0; 4864 4865 err_unlock: 4866 mutex_unlock(&perf->metrics_lock); 4867 return ret; 4868 } 4869 4870 static struct ctl_table oa_table[] = { 4871 { 4872 .procname = "perf_stream_paranoid", 4873 .data = &i915_perf_stream_paranoid, 4874 .maxlen = sizeof(i915_perf_stream_paranoid), 4875 .mode = 0644, 4876 .proc_handler = proc_dointvec_minmax, 4877 .extra1 = SYSCTL_ZERO, 4878 .extra2 = SYSCTL_ONE, 4879 }, 4880 { 4881 .procname = "oa_max_sample_rate", 4882 .data = &i915_oa_max_sample_rate, 4883 .maxlen = sizeof(i915_oa_max_sample_rate), 4884 .mode = 0644, 4885 .proc_handler = proc_dointvec_minmax, 4886 .extra1 = SYSCTL_ZERO, 4887 .extra2 = &oa_sample_rate_hard_limit, 4888 }, 4889 {} 4890 }; 4891 4892 static u32 num_perf_groups_per_gt(struct intel_gt *gt) 4893 { 4894 return 1; 4895 } 4896 4897 static u32 __oam_engine_group(struct intel_engine_cs *engine) 4898 { 4899 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 70)) { 4900 /* 4901 * There's 1 SAMEDIA gt and 1 OAM per SAMEDIA gt. All media slices 4902 * within the gt use the same OAM. All MTL SKUs list 1 SA MEDIA. 4903 */ 4904 drm_WARN_ON(&engine->i915->drm, 4905 engine->gt->type != GT_MEDIA); 4906 4907 return PERF_GROUP_OAM_SAMEDIA_0; 4908 } 4909 4910 return PERF_GROUP_INVALID; 4911 } 4912 4913 static u32 __oa_engine_group(struct intel_engine_cs *engine) 4914 { 4915 switch (engine->class) { 4916 case RENDER_CLASS: 4917 return PERF_GROUP_OAG; 4918 4919 case VIDEO_DECODE_CLASS: 4920 case VIDEO_ENHANCEMENT_CLASS: 4921 return __oam_engine_group(engine); 4922 4923 default: 4924 return PERF_GROUP_INVALID; 4925 } 4926 } 4927 4928 static struct i915_perf_regs __oam_regs(u32 base) 4929 { 4930 return (struct i915_perf_regs) { 4931 base, 4932 GEN12_OAM_HEAD_POINTER(base), 4933 GEN12_OAM_TAIL_POINTER(base), 4934 GEN12_OAM_BUFFER(base), 4935 GEN12_OAM_CONTEXT_CONTROL(base), 4936 GEN12_OAM_CONTROL(base), 4937 GEN12_OAM_DEBUG(base), 4938 GEN12_OAM_STATUS(base), 4939 GEN12_OAM_CONTROL_COUNTER_FORMAT_SHIFT, 4940 }; 4941 } 4942 4943 static struct i915_perf_regs __oag_regs(void) 4944 { 4945 return (struct i915_perf_regs) { 4946 0, 4947 GEN12_OAG_OAHEADPTR, 4948 GEN12_OAG_OATAILPTR, 4949 GEN12_OAG_OABUFFER, 4950 GEN12_OAG_OAGLBCTXCTRL, 4951 GEN12_OAG_OACONTROL, 4952 GEN12_OAG_OA_DEBUG, 4953 GEN12_OAG_OASTATUS, 4954 GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT, 4955 }; 4956 } 4957 4958 static void oa_init_groups(struct intel_gt *gt) 4959 { 4960 int i, num_groups = gt->perf.num_perf_groups; 4961 4962 for (i = 0; i < num_groups; i++) { 4963 struct i915_perf_group *g = >->perf.group[i]; 4964 4965 /* Fused off engines can result in a group with num_engines == 0 */ 4966 if (g->num_engines == 0) 4967 continue; 4968 4969 if (i == PERF_GROUP_OAG && gt->type != GT_MEDIA) { 4970 g->regs = __oag_regs(); 4971 g->type = TYPE_OAG; 4972 } else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { 4973 g->regs = __oam_regs(mtl_oa_base[i]); 4974 g->type = TYPE_OAM; 4975 } 4976 } 4977 } 4978 4979 static int oa_init_gt(struct intel_gt *gt) 4980 { 4981 u32 num_groups = num_perf_groups_per_gt(gt); 4982 struct intel_engine_cs *engine; 4983 struct i915_perf_group *g; 4984 intel_engine_mask_t tmp; 4985 4986 g = kcalloc(num_groups, sizeof(*g), GFP_KERNEL); 4987 if (!g) 4988 return -ENOMEM; 4989 4990 for_each_engine_masked(engine, gt, ALL_ENGINES, tmp) { 4991 u32 index = __oa_engine_group(engine); 4992 4993 engine->oa_group = NULL; 4994 if (index < num_groups) { 4995 g[index].num_engines++; 4996 engine->oa_group = &g[index]; 4997 } 4998 } 4999 5000 gt->perf.num_perf_groups = num_groups; 5001 gt->perf.group = g; 5002 5003 oa_init_groups(gt); 5004 5005 return 0; 5006 } 5007 5008 static int oa_init_engine_groups(struct i915_perf *perf) 5009 { 5010 struct intel_gt *gt; 5011 int i, ret; 5012 5013 for_each_gt(gt, perf->i915, i) { 5014 ret = oa_init_gt(gt); 5015 if (ret) 5016 return ret; 5017 } 5018 5019 return 0; 5020 } 5021 5022 static void oa_init_supported_formats(struct i915_perf *perf) 5023 { 5024 struct drm_i915_private *i915 = perf->i915; 5025 enum intel_platform platform = INTEL_INFO(i915)->platform; 5026 5027 switch (platform) { 5028 case INTEL_HASWELL: 5029 oa_format_add(perf, I915_OA_FORMAT_A13); 5030 oa_format_add(perf, I915_OA_FORMAT_A13); 5031 oa_format_add(perf, I915_OA_FORMAT_A29); 5032 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8); 5033 oa_format_add(perf, I915_OA_FORMAT_B4_C8); 5034 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8); 5035 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16); 5036 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 5037 break; 5038 5039 case INTEL_BROADWELL: 5040 case INTEL_CHERRYVIEW: 5041 case INTEL_SKYLAKE: 5042 case INTEL_BROXTON: 5043 case INTEL_KABYLAKE: 5044 case INTEL_GEMINILAKE: 5045 case INTEL_COFFEELAKE: 5046 case INTEL_COMETLAKE: 5047 case INTEL_ICELAKE: 5048 case INTEL_ELKHARTLAKE: 5049 case INTEL_JASPERLAKE: 5050 case INTEL_TIGERLAKE: 5051 case INTEL_ROCKETLAKE: 5052 case INTEL_DG1: 5053 case INTEL_ALDERLAKE_S: 5054 case INTEL_ALDERLAKE_P: 5055 oa_format_add(perf, I915_OA_FORMAT_A12); 5056 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8); 5057 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8); 5058 oa_format_add(perf, I915_OA_FORMAT_C4_B8); 5059 break; 5060 5061 case INTEL_DG2: 5062 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8); 5063 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8); 5064 break; 5065 5066 case INTEL_METEORLAKE: 5067 oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8); 5068 oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8); 5069 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u64_B8_C8); 5070 oa_format_add(perf, I915_OAM_FORMAT_MPEC8u32_B8_C8); 5071 break; 5072 5073 default: 5074 MISSING_CASE(platform); 5075 } 5076 } 5077 5078 static void i915_perf_init_info(struct drm_i915_private *i915) 5079 { 5080 struct i915_perf *perf = &i915->perf; 5081 5082 switch (GRAPHICS_VER(i915)) { 5083 case 8: 5084 perf->ctx_oactxctrl_offset = 0x120; 5085 perf->ctx_flexeu0_offset = 0x2ce; 5086 perf->gen8_valid_ctx_bit = BIT(25); 5087 break; 5088 case 9: 5089 perf->ctx_oactxctrl_offset = 0x128; 5090 perf->ctx_flexeu0_offset = 0x3de; 5091 perf->gen8_valid_ctx_bit = BIT(16); 5092 break; 5093 case 11: 5094 perf->ctx_oactxctrl_offset = 0x124; 5095 perf->ctx_flexeu0_offset = 0x78e; 5096 perf->gen8_valid_ctx_bit = BIT(16); 5097 break; 5098 case 12: 5099 perf->gen8_valid_ctx_bit = BIT(16); 5100 /* 5101 * Calculate offset at runtime in oa_pin_context for gen12 and 5102 * cache the value in perf->ctx_oactxctrl_offset. 5103 */ 5104 break; 5105 default: 5106 MISSING_CASE(GRAPHICS_VER(i915)); 5107 } 5108 } 5109 5110 /** 5111 * i915_perf_init - initialize i915-perf state on module bind 5112 * @i915: i915 device instance 5113 * 5114 * Initializes i915-perf state without exposing anything to userspace. 5115 * 5116 * Note: i915-perf initialization is split into an 'init' and 'register' 5117 * phase with the i915_perf_register() exposing state to userspace. 5118 */ 5119 int i915_perf_init(struct drm_i915_private *i915) 5120 { 5121 struct i915_perf *perf = &i915->perf; 5122 5123 perf->oa_formats = oa_formats; 5124 if (IS_HASWELL(i915)) { 5125 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 5126 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 5127 perf->ops.is_valid_flex_reg = NULL; 5128 perf->ops.enable_metric_set = hsw_enable_metric_set; 5129 perf->ops.disable_metric_set = hsw_disable_metric_set; 5130 perf->ops.oa_enable = gen7_oa_enable; 5131 perf->ops.oa_disable = gen7_oa_disable; 5132 perf->ops.read = gen7_oa_read; 5133 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 5134 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 5135 /* Note: that although we could theoretically also support the 5136 * legacy ringbuffer mode on BDW (and earlier iterations of 5137 * this driver, before upstreaming did this) it didn't seem 5138 * worth the complexity to maintain now that BDW+ enable 5139 * execlist mode by default. 5140 */ 5141 perf->ops.read = gen8_oa_read; 5142 i915_perf_init_info(i915); 5143 5144 if (IS_GRAPHICS_VER(i915, 8, 9)) { 5145 perf->ops.is_valid_b_counter_reg = 5146 gen7_is_valid_b_counter_addr; 5147 perf->ops.is_valid_mux_reg = 5148 gen8_is_valid_mux_addr; 5149 perf->ops.is_valid_flex_reg = 5150 gen8_is_valid_flex_addr; 5151 5152 if (IS_CHERRYVIEW(i915)) { 5153 perf->ops.is_valid_mux_reg = 5154 chv_is_valid_mux_addr; 5155 } 5156 5157 perf->ops.oa_enable = gen8_oa_enable; 5158 perf->ops.oa_disable = gen8_oa_disable; 5159 perf->ops.enable_metric_set = gen8_enable_metric_set; 5160 perf->ops.disable_metric_set = gen8_disable_metric_set; 5161 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 5162 } else if (GRAPHICS_VER(i915) == 11) { 5163 perf->ops.is_valid_b_counter_reg = 5164 gen7_is_valid_b_counter_addr; 5165 perf->ops.is_valid_mux_reg = 5166 gen11_is_valid_mux_addr; 5167 perf->ops.is_valid_flex_reg = 5168 gen8_is_valid_flex_addr; 5169 5170 perf->ops.oa_enable = gen8_oa_enable; 5171 perf->ops.oa_disable = gen8_oa_disable; 5172 perf->ops.enable_metric_set = gen8_enable_metric_set; 5173 perf->ops.disable_metric_set = gen11_disable_metric_set; 5174 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 5175 } else if (GRAPHICS_VER(i915) == 12) { 5176 perf->ops.is_valid_b_counter_reg = 5177 HAS_OA_SLICE_CONTRIB_LIMITS(i915) ? 5178 xehp_is_valid_b_counter_addr : 5179 gen12_is_valid_b_counter_addr; 5180 perf->ops.is_valid_mux_reg = 5181 gen12_is_valid_mux_addr; 5182 perf->ops.is_valid_flex_reg = 5183 gen8_is_valid_flex_addr; 5184 5185 perf->ops.oa_enable = gen12_oa_enable; 5186 perf->ops.oa_disable = gen12_oa_disable; 5187 perf->ops.enable_metric_set = gen12_enable_metric_set; 5188 perf->ops.disable_metric_set = gen12_disable_metric_set; 5189 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 5190 } 5191 } 5192 5193 if (perf->ops.enable_metric_set) { 5194 struct intel_gt *gt; 5195 int i, ret; 5196 5197 for_each_gt(gt, i915, i) 5198 mutex_init(>->perf.lock); 5199 5200 /* Choose a representative limit */ 5201 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2; 5202 5203 mutex_init(&perf->metrics_lock); 5204 idr_init_base(&perf->metrics_idr, 1); 5205 5206 /* We set up some ratelimit state to potentially throttle any 5207 * _NOTES about spurious, invalid OA reports which we don't 5208 * forward to userspace. 5209 * 5210 * We print a _NOTE about any throttling when closing the 5211 * stream instead of waiting until driver _fini which no one 5212 * would ever see. 5213 * 5214 * Using the same limiting factors as printk_ratelimit() 5215 */ 5216 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 5217 /* Since we use a DRM_NOTE for spurious reports it would be 5218 * inconsistent to let __ratelimit() automatically print a 5219 * warning for throttling. 5220 */ 5221 ratelimit_set_flags(&perf->spurious_report_rs, 5222 RATELIMIT_MSG_ON_RELEASE); 5223 5224 ratelimit_state_init(&perf->tail_pointer_race, 5225 5 * HZ, 10); 5226 ratelimit_set_flags(&perf->tail_pointer_race, 5227 RATELIMIT_MSG_ON_RELEASE); 5228 5229 atomic64_set(&perf->noa_programming_delay, 5230 500 * 1000 /* 500us */); 5231 5232 perf->i915 = i915; 5233 5234 ret = oa_init_engine_groups(perf); 5235 if (ret) { 5236 drm_err(&i915->drm, 5237 "OA initialization failed %d\n", ret); 5238 return ret; 5239 } 5240 5241 oa_init_supported_formats(perf); 5242 } 5243 5244 return 0; 5245 } 5246 5247 static int destroy_config(int id, void *p, void *data) 5248 { 5249 i915_oa_config_put(p); 5250 return 0; 5251 } 5252 5253 int i915_perf_sysctl_register(void) 5254 { 5255 sysctl_header = register_sysctl("dev/i915", oa_table); 5256 return 0; 5257 } 5258 5259 void i915_perf_sysctl_unregister(void) 5260 { 5261 unregister_sysctl_table(sysctl_header); 5262 } 5263 5264 /** 5265 * i915_perf_fini - Counter part to i915_perf_init() 5266 * @i915: i915 device instance 5267 */ 5268 void i915_perf_fini(struct drm_i915_private *i915) 5269 { 5270 struct i915_perf *perf = &i915->perf; 5271 struct intel_gt *gt; 5272 int i; 5273 5274 if (!perf->i915) 5275 return; 5276 5277 for_each_gt(gt, perf->i915, i) 5278 kfree(gt->perf.group); 5279 5280 idr_for_each(&perf->metrics_idr, destroy_config, perf); 5281 idr_destroy(&perf->metrics_idr); 5282 5283 memset(&perf->ops, 0, sizeof(perf->ops)); 5284 perf->i915 = NULL; 5285 } 5286 5287 /** 5288 * i915_perf_ioctl_version - Version of the i915-perf subsystem 5289 * @i915: The i915 device 5290 * 5291 * This version number is used by userspace to detect available features. 5292 */ 5293 int i915_perf_ioctl_version(struct drm_i915_private *i915) 5294 { 5295 /* 5296 * 1: Initial version 5297 * I915_PERF_IOCTL_ENABLE 5298 * I915_PERF_IOCTL_DISABLE 5299 * 5300 * 2: Added runtime modification of OA config. 5301 * I915_PERF_IOCTL_CONFIG 5302 * 5303 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 5304 * preemption on a particular context so that performance data is 5305 * accessible from a delta of MI_RPC reports without looking at the 5306 * OA buffer. 5307 * 5308 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 5309 * be run for the duration of the performance recording based on 5310 * their SSEU configuration. 5311 * 5312 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 5313 * interval for the hrtimer used to check for OA data. 5314 * 5315 * 6: Add DRM_I915_PERF_PROP_OA_ENGINE_CLASS and 5316 * DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE 5317 * 5318 * 7: Add support for video decode and enhancement classes. 5319 */ 5320 5321 /* 5322 * Wa_14017512683: mtl[a0..c0): Use of OAM must be preceded with Media 5323 * C6 disable in BIOS. If Media C6 is enabled in BIOS, return version 6 5324 * to indicate that OA media is not supported. 5325 */ 5326 if (IS_MTL_MEDIA_STEP(i915, STEP_A0, STEP_C0)) { 5327 struct intel_gt *gt; 5328 int i; 5329 5330 for_each_gt(gt, i915, i) { 5331 if (gt->type == GT_MEDIA && 5332 intel_check_bios_c6_setup(>->rc6)) 5333 return 6; 5334 } 5335 } 5336 5337 return 7; 5338 } 5339 5340 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5341 #include "selftests/i915_perf.c" 5342 #endif 5343