1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "i915_drv.h" 199 #include "i915_oa_hsw.h" 200 #include "i915_oa_bdw.h" 201 #include "i915_oa_chv.h" 202 #include "i915_oa_sklgt2.h" 203 #include "i915_oa_sklgt3.h" 204 #include "i915_oa_sklgt4.h" 205 #include "i915_oa_bxt.h" 206 #include "i915_oa_kblgt2.h" 207 #include "i915_oa_kblgt3.h" 208 #include "i915_oa_glk.h" 209 #include "i915_oa_cflgt2.h" 210 #include "i915_oa_cflgt3.h" 211 #include "i915_oa_cnl.h" 212 #include "i915_oa_icl.h" 213 #include "intel_lrc_reg.h" 214 215 /* HW requires this to be a power of two, between 128k and 16M, though driver 216 * is currently generally designed assuming the largest 16M size is used such 217 * that the overflow cases are unlikely in normal operation. 218 */ 219 #define OA_BUFFER_SIZE SZ_16M 220 221 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 222 223 /** 224 * DOC: OA Tail Pointer Race 225 * 226 * There's a HW race condition between OA unit tail pointer register updates and 227 * writes to memory whereby the tail pointer can sometimes get ahead of what's 228 * been written out to the OA buffer so far (in terms of what's visible to the 229 * CPU). 230 * 231 * Although this can be observed explicitly while copying reports to userspace 232 * by checking for a zeroed report-id field in tail reports, we want to account 233 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant 234 * read() attempts. 235 * 236 * In effect we define a tail pointer for reading that lags the real tail 237 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough 238 * time for the corresponding reports to become visible to the CPU. 239 * 240 * To manage this we actually track two tail pointers: 241 * 1) An 'aging' tail with an associated timestamp that is tracked until we 242 * can trust the corresponding data is visible to the CPU; at which point 243 * it is considered 'aged'. 244 * 2) An 'aged' tail that can be used for read()ing. 245 * 246 * The two separate pointers let us decouple read()s from tail pointer aging. 247 * 248 * The tail pointers are checked and updated at a limited rate within a hrtimer 249 * callback (the same callback that is used for delivering EPOLLIN events) 250 * 251 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which 252 * indicates that an updated tail pointer is needed. 253 * 254 * Most of the implementation details for this workaround are in 255 * oa_buffer_check_unlocked() and _append_oa_reports() 256 * 257 * Note for posterity: previously the driver used to define an effective tail 258 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 259 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 260 * This was flawed considering that the OA unit may also automatically generate 261 * non-periodic reports (such as on context switch) or the OA unit may be 262 * enabled without any periodic sampling. 263 */ 264 #define OA_TAIL_MARGIN_NSEC 100000ULL 265 #define INVALID_TAIL_PTR 0xffffffff 266 267 /* frequency for checking whether the OA unit has written new reports to the 268 * circular OA buffer... 269 */ 270 #define POLL_FREQUENCY 200 271 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY) 272 273 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 274 static int zero; 275 static int one = 1; 276 static u32 i915_perf_stream_paranoid = true; 277 278 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 279 * of the 64bit timestamp bits to trigger reports from) but there's currently 280 * no known use case for sampling as infrequently as once per 47 thousand years. 281 * 282 * Since the timestamps included in OA reports are only 32bits it seems 283 * reasonable to limit the OA exponent where it's still possible to account for 284 * overflow in OA report timestamps. 285 */ 286 #define OA_EXPONENT_MAX 31 287 288 #define INVALID_CTX_ID 0xffffffff 289 290 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 291 #define OAREPORT_REASON_MASK 0x3f 292 #define OAREPORT_REASON_SHIFT 19 293 #define OAREPORT_REASON_TIMER (1<<0) 294 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 295 #define OAREPORT_REASON_CLK_RATIO (1<<5) 296 297 298 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 299 * 300 * The highest sampling frequency we can theoretically program the OA unit 301 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 302 * 303 * Initialized just before we register the sysctl parameter. 304 */ 305 static int oa_sample_rate_hard_limit; 306 307 /* Theoretically we can program the OA unit to sample every 160ns but don't 308 * allow that by default unless root... 309 * 310 * The default threshold of 100000Hz is based on perf's similar 311 * kernel.perf_event_max_sample_rate sysctl parameter. 312 */ 313 static u32 i915_oa_max_sample_rate = 100000; 314 315 /* XXX: beware if future OA HW adds new report formats that the current 316 * code assumes all reports have a power-of-two size and ~(size - 1) can 317 * be used as a mask to align the OA tail pointer. 318 */ 319 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 320 [I915_OA_FORMAT_A13] = { 0, 64 }, 321 [I915_OA_FORMAT_A29] = { 1, 128 }, 322 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 323 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 324 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 325 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 326 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 327 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 328 }; 329 330 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { 331 [I915_OA_FORMAT_A12] = { 0, 64 }, 332 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 333 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 334 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 335 }; 336 337 #define SAMPLE_OA_REPORT (1<<0) 338 339 /** 340 * struct perf_open_properties - for validated properties given to open a stream 341 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 342 * @single_context: Whether a single or all gpu contexts should be monitored 343 * @ctx_handle: A gem ctx handle for use with @single_context 344 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 345 * @oa_format: An OA unit HW report format 346 * @oa_periodic: Whether to enable periodic OA unit sampling 347 * @oa_period_exponent: The OA unit sampling period is derived from this 348 * 349 * As read_properties_unlocked() enumerates and validates the properties given 350 * to open a stream of metrics the configuration is built up in the structure 351 * which starts out zero initialized. 352 */ 353 struct perf_open_properties { 354 u32 sample_flags; 355 356 u64 single_context:1; 357 u64 ctx_handle; 358 359 /* OA sampling state */ 360 int metrics_set; 361 int oa_format; 362 bool oa_periodic; 363 int oa_period_exponent; 364 }; 365 366 static void free_oa_config(struct drm_i915_private *dev_priv, 367 struct i915_oa_config *oa_config) 368 { 369 if (!PTR_ERR(oa_config->flex_regs)) 370 kfree(oa_config->flex_regs); 371 if (!PTR_ERR(oa_config->b_counter_regs)) 372 kfree(oa_config->b_counter_regs); 373 if (!PTR_ERR(oa_config->mux_regs)) 374 kfree(oa_config->mux_regs); 375 kfree(oa_config); 376 } 377 378 static void put_oa_config(struct drm_i915_private *dev_priv, 379 struct i915_oa_config *oa_config) 380 { 381 if (!atomic_dec_and_test(&oa_config->ref_count)) 382 return; 383 384 free_oa_config(dev_priv, oa_config); 385 } 386 387 static int get_oa_config(struct drm_i915_private *dev_priv, 388 int metrics_set, 389 struct i915_oa_config **out_config) 390 { 391 int ret; 392 393 if (metrics_set == 1) { 394 *out_config = &dev_priv->perf.oa.test_config; 395 atomic_inc(&dev_priv->perf.oa.test_config.ref_count); 396 return 0; 397 } 398 399 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 400 if (ret) 401 return ret; 402 403 *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set); 404 if (!*out_config) 405 ret = -EINVAL; 406 else 407 atomic_inc(&(*out_config)->ref_count); 408 409 mutex_unlock(&dev_priv->perf.metrics_lock); 410 411 return ret; 412 } 413 414 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv) 415 { 416 return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 417 } 418 419 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv) 420 { 421 u32 oastatus1 = I915_READ(GEN7_OASTATUS1); 422 423 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 424 } 425 426 /** 427 * oa_buffer_check_unlocked - check for data and update tail ptr state 428 * @dev_priv: i915 device instance 429 * 430 * This is either called via fops (for blocking reads in user ctx) or the poll 431 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 432 * if there is data available for userspace to read. 433 * 434 * This function is central to providing a workaround for the OA unit tail 435 * pointer having a race with respect to what data is visible to the CPU. 436 * It is responsible for reading tail pointers from the hardware and giving 437 * the pointers time to 'age' before they are made available for reading. 438 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 439 * 440 * Besides returning true when there is data available to read() this function 441 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp 442 * and .aged_tail_idx state used for reading. 443 * 444 * Note: It's safe to read OA config state here unlocked, assuming that this is 445 * only called while the stream is enabled, while the global OA configuration 446 * can't be modified. 447 * 448 * Returns: %true if the OA buffer contains data, else %false 449 */ 450 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv) 451 { 452 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 453 unsigned long flags; 454 unsigned int aged_idx; 455 u32 head, hw_tail, aged_tail, aging_tail; 456 u64 now; 457 458 /* We have to consider the (unlikely) possibility that read() errors 459 * could result in an OA buffer reset which might reset the head, 460 * tails[] and aged_tail state. 461 */ 462 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 463 464 /* NB: The head we observe here might effectively be a little out of 465 * date (between head and tails[aged_idx].offset if there is currently 466 * a read() in progress. 467 */ 468 head = dev_priv->perf.oa.oa_buffer.head; 469 470 aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 471 aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset; 472 aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset; 473 474 hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv); 475 476 /* The tail pointer increases in 64 byte increments, 477 * not in report_size steps... 478 */ 479 hw_tail &= ~(report_size - 1); 480 481 now = ktime_get_mono_fast_ns(); 482 483 /* Update the aged tail 484 * 485 * Flip the tail pointer available for read()s once the aging tail is 486 * old enough to trust that the corresponding data will be visible to 487 * the CPU... 488 * 489 * Do this before updating the aging pointer in case we may be able to 490 * immediately start aging a new pointer too (if new data has become 491 * available) without needing to wait for a later hrtimer callback. 492 */ 493 if (aging_tail != INVALID_TAIL_PTR && 494 ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) > 495 OA_TAIL_MARGIN_NSEC)) { 496 497 aged_idx ^= 1; 498 dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx; 499 500 aged_tail = aging_tail; 501 502 /* Mark that we need a new pointer to start aging... */ 503 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR; 504 aging_tail = INVALID_TAIL_PTR; 505 } 506 507 /* Update the aging tail 508 * 509 * We throttle aging tail updates until we have a new tail that 510 * represents >= one report more data than is already available for 511 * reading. This ensures there will be enough data for a successful 512 * read once this new pointer has aged and ensures we will give the new 513 * pointer time to age. 514 */ 515 if (aging_tail == INVALID_TAIL_PTR && 516 (aged_tail == INVALID_TAIL_PTR || 517 OA_TAKEN(hw_tail, aged_tail) >= report_size)) { 518 struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma; 519 u32 gtt_offset = i915_ggtt_offset(vma); 520 521 /* Be paranoid and do a bounds check on the pointer read back 522 * from hardware, just in case some spurious hardware condition 523 * could put the tail out of bounds... 524 */ 525 if (hw_tail >= gtt_offset && 526 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) { 527 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = 528 aging_tail = hw_tail; 529 dev_priv->perf.oa.oa_buffer.aging_timestamp = now; 530 } else { 531 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n", 532 hw_tail); 533 } 534 } 535 536 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 537 538 return aged_tail == INVALID_TAIL_PTR ? 539 false : OA_TAKEN(aged_tail, head) >= report_size; 540 } 541 542 /** 543 * append_oa_status - Appends a status record to a userspace read() buffer. 544 * @stream: An i915-perf stream opened for OA metrics 545 * @buf: destination buffer given by userspace 546 * @count: the number of bytes userspace wants to read 547 * @offset: (inout): the current position for writing into @buf 548 * @type: The kind of status to report to userspace 549 * 550 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 551 * into the userspace read() buffer. 552 * 553 * The @buf @offset will only be updated on success. 554 * 555 * Returns: 0 on success, negative error code on failure. 556 */ 557 static int append_oa_status(struct i915_perf_stream *stream, 558 char __user *buf, 559 size_t count, 560 size_t *offset, 561 enum drm_i915_perf_record_type type) 562 { 563 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 564 565 if ((count - *offset) < header.size) 566 return -ENOSPC; 567 568 if (copy_to_user(buf + *offset, &header, sizeof(header))) 569 return -EFAULT; 570 571 (*offset) += header.size; 572 573 return 0; 574 } 575 576 /** 577 * append_oa_sample - Copies single OA report into userspace read() buffer. 578 * @stream: An i915-perf stream opened for OA metrics 579 * @buf: destination buffer given by userspace 580 * @count: the number of bytes userspace wants to read 581 * @offset: (inout): the current position for writing into @buf 582 * @report: A single OA report to (optionally) include as part of the sample 583 * 584 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 585 * properties when opening a stream, tracked as `stream->sample_flags`. This 586 * function copies the requested components of a single sample to the given 587 * read() @buf. 588 * 589 * The @buf @offset will only be updated on success. 590 * 591 * Returns: 0 on success, negative error code on failure. 592 */ 593 static int append_oa_sample(struct i915_perf_stream *stream, 594 char __user *buf, 595 size_t count, 596 size_t *offset, 597 const u8 *report) 598 { 599 struct drm_i915_private *dev_priv = stream->dev_priv; 600 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 601 struct drm_i915_perf_record_header header; 602 u32 sample_flags = stream->sample_flags; 603 604 header.type = DRM_I915_PERF_RECORD_SAMPLE; 605 header.pad = 0; 606 header.size = stream->sample_size; 607 608 if ((count - *offset) < header.size) 609 return -ENOSPC; 610 611 buf += *offset; 612 if (copy_to_user(buf, &header, sizeof(header))) 613 return -EFAULT; 614 buf += sizeof(header); 615 616 if (sample_flags & SAMPLE_OA_REPORT) { 617 if (copy_to_user(buf, report, report_size)) 618 return -EFAULT; 619 } 620 621 (*offset) += header.size; 622 623 return 0; 624 } 625 626 /** 627 * Copies all buffered OA reports into userspace read() buffer. 628 * @stream: An i915-perf stream opened for OA metrics 629 * @buf: destination buffer given by userspace 630 * @count: the number of bytes userspace wants to read 631 * @offset: (inout): the current position for writing into @buf 632 * 633 * Notably any error condition resulting in a short read (-%ENOSPC or 634 * -%EFAULT) will be returned even though one or more records may 635 * have been successfully copied. In this case it's up to the caller 636 * to decide if the error should be squashed before returning to 637 * userspace. 638 * 639 * Note: reports are consumed from the head, and appended to the 640 * tail, so the tail chases the head?... If you think that's mad 641 * and back-to-front you're not alone, but this follows the 642 * Gen PRM naming convention. 643 * 644 * Returns: 0 on success, negative error code on failure. 645 */ 646 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 647 char __user *buf, 648 size_t count, 649 size_t *offset) 650 { 651 struct drm_i915_private *dev_priv = stream->dev_priv; 652 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 653 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr; 654 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 655 u32 mask = (OA_BUFFER_SIZE - 1); 656 size_t start_offset = *offset; 657 unsigned long flags; 658 unsigned int aged_tail_idx; 659 u32 head, tail; 660 u32 taken; 661 int ret = 0; 662 663 if (WARN_ON(!stream->enabled)) 664 return -EIO; 665 666 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 667 668 head = dev_priv->perf.oa.oa_buffer.head; 669 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 670 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset; 671 672 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 673 674 /* 675 * An invalid tail pointer here means we're still waiting for the poll 676 * hrtimer callback to give us a pointer 677 */ 678 if (tail == INVALID_TAIL_PTR) 679 return -EAGAIN; 680 681 /* 682 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 683 * while indexing relative to oa_buf_base. 684 */ 685 head -= gtt_offset; 686 tail -= gtt_offset; 687 688 /* 689 * An out of bounds or misaligned head or tail pointer implies a driver 690 * bug since we validate + align the tail pointers we read from the 691 * hardware and we are in full control of the head pointer which should 692 * only be incremented by multiples of the report size (notably also 693 * all a power of two). 694 */ 695 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 696 tail > OA_BUFFER_SIZE || tail % report_size, 697 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 698 head, tail)) 699 return -EIO; 700 701 702 for (/* none */; 703 (taken = OA_TAKEN(tail, head)); 704 head = (head + report_size) & mask) { 705 u8 *report = oa_buf_base + head; 706 u32 *report32 = (void *)report; 707 u32 ctx_id; 708 u32 reason; 709 710 /* 711 * All the report sizes factor neatly into the buffer 712 * size so we never expect to see a report split 713 * between the beginning and end of the buffer. 714 * 715 * Given the initial alignment check a misalignment 716 * here would imply a driver bug that would result 717 * in an overrun. 718 */ 719 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 720 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 721 break; 722 } 723 724 /* 725 * The reason field includes flags identifying what 726 * triggered this specific report (mostly timer 727 * triggered or e.g. due to a context switch). 728 * 729 * This field is never expected to be zero so we can 730 * check that the report isn't invalid before copying 731 * it to userspace... 732 */ 733 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 734 OAREPORT_REASON_MASK); 735 if (reason == 0) { 736 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs)) 737 DRM_NOTE("Skipping spurious, invalid OA report\n"); 738 continue; 739 } 740 741 ctx_id = report32[2] & dev_priv->perf.oa.specific_ctx_id_mask; 742 743 /* 744 * Squash whatever is in the CTX_ID field if it's marked as 745 * invalid to be sure we avoid false-positive, single-context 746 * filtering below... 747 * 748 * Note: that we don't clear the valid_ctx_bit so userspace can 749 * understand that the ID has been squashed by the kernel. 750 */ 751 if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit)) 752 ctx_id = report32[2] = INVALID_CTX_ID; 753 754 /* 755 * NB: For Gen 8 the OA unit no longer supports clock gating 756 * off for a specific context and the kernel can't securely 757 * stop the counters from updating as system-wide / global 758 * values. 759 * 760 * Automatic reports now include a context ID so reports can be 761 * filtered on the cpu but it's not worth trying to 762 * automatically subtract/hide counter progress for other 763 * contexts while filtering since we can't stop userspace 764 * issuing MI_REPORT_PERF_COUNT commands which would still 765 * provide a side-band view of the real values. 766 * 767 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 768 * to normalize counters for a single filtered context then it 769 * needs be forwarded bookend context-switch reports so that it 770 * can track switches in between MI_REPORT_PERF_COUNT commands 771 * and can itself subtract/ignore the progress of counters 772 * associated with other contexts. Note that the hardware 773 * automatically triggers reports when switching to a new 774 * context which are tagged with the ID of the newly active 775 * context. To avoid the complexity (and likely fragility) of 776 * reading ahead while parsing reports to try and minimize 777 * forwarding redundant context switch reports (i.e. between 778 * other, unrelated contexts) we simply elect to forward them 779 * all. 780 * 781 * We don't rely solely on the reason field to identify context 782 * switches since it's not-uncommon for periodic samples to 783 * identify a switch before any 'context switch' report. 784 */ 785 if (!dev_priv->perf.oa.exclusive_stream->ctx || 786 dev_priv->perf.oa.specific_ctx_id == ctx_id || 787 (dev_priv->perf.oa.oa_buffer.last_ctx_id == 788 dev_priv->perf.oa.specific_ctx_id) || 789 reason & OAREPORT_REASON_CTX_SWITCH) { 790 791 /* 792 * While filtering for a single context we avoid 793 * leaking the IDs of other contexts. 794 */ 795 if (dev_priv->perf.oa.exclusive_stream->ctx && 796 dev_priv->perf.oa.specific_ctx_id != ctx_id) { 797 report32[2] = INVALID_CTX_ID; 798 } 799 800 ret = append_oa_sample(stream, buf, count, offset, 801 report); 802 if (ret) 803 break; 804 805 dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id; 806 } 807 808 /* 809 * The above reason field sanity check is based on 810 * the assumption that the OA buffer is initially 811 * zeroed and we reset the field after copying so the 812 * check is still meaningful once old reports start 813 * being overwritten. 814 */ 815 report32[0] = 0; 816 } 817 818 if (start_offset != *offset) { 819 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 820 821 /* 822 * We removed the gtt_offset for the copy loop above, indexing 823 * relative to oa_buf_base so put back here... 824 */ 825 head += gtt_offset; 826 827 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK); 828 dev_priv->perf.oa.oa_buffer.head = head; 829 830 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 831 } 832 833 return ret; 834 } 835 836 /** 837 * gen8_oa_read - copy status records then buffered OA reports 838 * @stream: An i915-perf stream opened for OA metrics 839 * @buf: destination buffer given by userspace 840 * @count: the number of bytes userspace wants to read 841 * @offset: (inout): the current position for writing into @buf 842 * 843 * Checks OA unit status registers and if necessary appends corresponding 844 * status records for userspace (such as for a buffer full condition) and then 845 * initiate appending any buffered OA reports. 846 * 847 * Updates @offset according to the number of bytes successfully copied into 848 * the userspace buffer. 849 * 850 * NB: some data may be successfully copied to the userspace buffer 851 * even if an error is returned, and this is reflected in the 852 * updated @offset. 853 * 854 * Returns: zero on success or a negative error code 855 */ 856 static int gen8_oa_read(struct i915_perf_stream *stream, 857 char __user *buf, 858 size_t count, 859 size_t *offset) 860 { 861 struct drm_i915_private *dev_priv = stream->dev_priv; 862 u32 oastatus; 863 int ret; 864 865 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr)) 866 return -EIO; 867 868 oastatus = I915_READ(GEN8_OASTATUS); 869 870 /* 871 * We treat OABUFFER_OVERFLOW as a significant error: 872 * 873 * Although theoretically we could handle this more gracefully 874 * sometimes, some Gens don't correctly suppress certain 875 * automatically triggered reports in this condition and so we 876 * have to assume that old reports are now being trampled 877 * over. 878 * 879 * Considering how we don't currently give userspace control 880 * over the OA buffer size and always configure a large 16MB 881 * buffer, then a buffer overflow does anyway likely indicate 882 * that something has gone quite badly wrong. 883 */ 884 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 885 ret = append_oa_status(stream, buf, count, offset, 886 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 887 if (ret) 888 return ret; 889 890 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 891 dev_priv->perf.oa.period_exponent); 892 893 dev_priv->perf.oa.ops.oa_disable(dev_priv); 894 dev_priv->perf.oa.ops.oa_enable(dev_priv); 895 896 /* 897 * Note: .oa_enable() is expected to re-init the oabuffer and 898 * reset GEN8_OASTATUS for us 899 */ 900 oastatus = I915_READ(GEN8_OASTATUS); 901 } 902 903 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 904 ret = append_oa_status(stream, buf, count, offset, 905 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 906 if (ret) 907 return ret; 908 I915_WRITE(GEN8_OASTATUS, 909 oastatus & ~GEN8_OASTATUS_REPORT_LOST); 910 } 911 912 return gen8_append_oa_reports(stream, buf, count, offset); 913 } 914 915 /** 916 * Copies all buffered OA reports into userspace read() buffer. 917 * @stream: An i915-perf stream opened for OA metrics 918 * @buf: destination buffer given by userspace 919 * @count: the number of bytes userspace wants to read 920 * @offset: (inout): the current position for writing into @buf 921 * 922 * Notably any error condition resulting in a short read (-%ENOSPC or 923 * -%EFAULT) will be returned even though one or more records may 924 * have been successfully copied. In this case it's up to the caller 925 * to decide if the error should be squashed before returning to 926 * userspace. 927 * 928 * Note: reports are consumed from the head, and appended to the 929 * tail, so the tail chases the head?... If you think that's mad 930 * and back-to-front you're not alone, but this follows the 931 * Gen PRM naming convention. 932 * 933 * Returns: 0 on success, negative error code on failure. 934 */ 935 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 936 char __user *buf, 937 size_t count, 938 size_t *offset) 939 { 940 struct drm_i915_private *dev_priv = stream->dev_priv; 941 int report_size = dev_priv->perf.oa.oa_buffer.format_size; 942 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr; 943 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 944 u32 mask = (OA_BUFFER_SIZE - 1); 945 size_t start_offset = *offset; 946 unsigned long flags; 947 unsigned int aged_tail_idx; 948 u32 head, tail; 949 u32 taken; 950 int ret = 0; 951 952 if (WARN_ON(!stream->enabled)) 953 return -EIO; 954 955 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 956 957 head = dev_priv->perf.oa.oa_buffer.head; 958 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx; 959 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset; 960 961 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 962 963 /* An invalid tail pointer here means we're still waiting for the poll 964 * hrtimer callback to give us a pointer 965 */ 966 if (tail == INVALID_TAIL_PTR) 967 return -EAGAIN; 968 969 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 970 * while indexing relative to oa_buf_base. 971 */ 972 head -= gtt_offset; 973 tail -= gtt_offset; 974 975 /* An out of bounds or misaligned head or tail pointer implies a driver 976 * bug since we validate + align the tail pointers we read from the 977 * hardware and we are in full control of the head pointer which should 978 * only be incremented by multiples of the report size (notably also 979 * all a power of two). 980 */ 981 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size || 982 tail > OA_BUFFER_SIZE || tail % report_size, 983 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 984 head, tail)) 985 return -EIO; 986 987 988 for (/* none */; 989 (taken = OA_TAKEN(tail, head)); 990 head = (head + report_size) & mask) { 991 u8 *report = oa_buf_base + head; 992 u32 *report32 = (void *)report; 993 994 /* All the report sizes factor neatly into the buffer 995 * size so we never expect to see a report split 996 * between the beginning and end of the buffer. 997 * 998 * Given the initial alignment check a misalignment 999 * here would imply a driver bug that would result 1000 * in an overrun. 1001 */ 1002 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) { 1003 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n"); 1004 break; 1005 } 1006 1007 /* The report-ID field for periodic samples includes 1008 * some undocumented flags related to what triggered 1009 * the report and is never expected to be zero so we 1010 * can check that the report isn't invalid before 1011 * copying it to userspace... 1012 */ 1013 if (report32[0] == 0) { 1014 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs)) 1015 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1016 continue; 1017 } 1018 1019 ret = append_oa_sample(stream, buf, count, offset, report); 1020 if (ret) 1021 break; 1022 1023 /* The above report-id field sanity check is based on 1024 * the assumption that the OA buffer is initially 1025 * zeroed and we reset the field after copying so the 1026 * check is still meaningful once old reports start 1027 * being overwritten. 1028 */ 1029 report32[0] = 0; 1030 } 1031 1032 if (start_offset != *offset) { 1033 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1034 1035 /* We removed the gtt_offset for the copy loop above, indexing 1036 * relative to oa_buf_base so put back here... 1037 */ 1038 head += gtt_offset; 1039 1040 I915_WRITE(GEN7_OASTATUS2, 1041 ((head & GEN7_OASTATUS2_HEAD_MASK) | 1042 GEN7_OASTATUS2_MEM_SELECT_GGTT)); 1043 dev_priv->perf.oa.oa_buffer.head = head; 1044 1045 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1046 } 1047 1048 return ret; 1049 } 1050 1051 /** 1052 * gen7_oa_read - copy status records then buffered OA reports 1053 * @stream: An i915-perf stream opened for OA metrics 1054 * @buf: destination buffer given by userspace 1055 * @count: the number of bytes userspace wants to read 1056 * @offset: (inout): the current position for writing into @buf 1057 * 1058 * Checks Gen 7 specific OA unit status registers and if necessary appends 1059 * corresponding status records for userspace (such as for a buffer full 1060 * condition) and then initiate appending any buffered OA reports. 1061 * 1062 * Updates @offset according to the number of bytes successfully copied into 1063 * the userspace buffer. 1064 * 1065 * Returns: zero on success or a negative error code 1066 */ 1067 static int gen7_oa_read(struct i915_perf_stream *stream, 1068 char __user *buf, 1069 size_t count, 1070 size_t *offset) 1071 { 1072 struct drm_i915_private *dev_priv = stream->dev_priv; 1073 u32 oastatus1; 1074 int ret; 1075 1076 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr)) 1077 return -EIO; 1078 1079 oastatus1 = I915_READ(GEN7_OASTATUS1); 1080 1081 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1082 * bits while the OA unit is enabled (while the tail pointer 1083 * may be updated asynchronously) so we ignore status bits 1084 * that have already been reported to userspace. 1085 */ 1086 oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1; 1087 1088 /* We treat OABUFFER_OVERFLOW as a significant error: 1089 * 1090 * - The status can be interpreted to mean that the buffer is 1091 * currently full (with a higher precedence than OA_TAKEN() 1092 * which will start to report a near-empty buffer after an 1093 * overflow) but it's awkward that we can't clear the status 1094 * on Haswell, so without a reset we won't be able to catch 1095 * the state again. 1096 * 1097 * - Since it also implies the HW has started overwriting old 1098 * reports it may also affect our sanity checks for invalid 1099 * reports when copying to userspace that assume new reports 1100 * are being written to cleared memory. 1101 * 1102 * - In the future we may want to introduce a flight recorder 1103 * mode where the driver will automatically maintain a safe 1104 * guard band between head/tail, avoiding this overflow 1105 * condition, but we avoid the added driver complexity for 1106 * now. 1107 */ 1108 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1109 ret = append_oa_status(stream, buf, count, offset, 1110 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1111 if (ret) 1112 return ret; 1113 1114 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1115 dev_priv->perf.oa.period_exponent); 1116 1117 dev_priv->perf.oa.ops.oa_disable(dev_priv); 1118 dev_priv->perf.oa.ops.oa_enable(dev_priv); 1119 1120 oastatus1 = I915_READ(GEN7_OASTATUS1); 1121 } 1122 1123 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1124 ret = append_oa_status(stream, buf, count, offset, 1125 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1126 if (ret) 1127 return ret; 1128 dev_priv->perf.oa.gen7_latched_oastatus1 |= 1129 GEN7_OASTATUS1_REPORT_LOST; 1130 } 1131 1132 return gen7_append_oa_reports(stream, buf, count, offset); 1133 } 1134 1135 /** 1136 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1137 * @stream: An i915-perf stream opened for OA metrics 1138 * 1139 * Called when userspace tries to read() from a blocking stream FD opened 1140 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1141 * OA buffer and wakes us. 1142 * 1143 * Note: it's acceptable to have this return with some false positives 1144 * since any subsequent read handling will return -EAGAIN if there isn't 1145 * really data ready for userspace yet. 1146 * 1147 * Returns: zero on success or a negative error code 1148 */ 1149 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1150 { 1151 struct drm_i915_private *dev_priv = stream->dev_priv; 1152 1153 /* We would wait indefinitely if periodic sampling is not enabled */ 1154 if (!dev_priv->perf.oa.periodic) 1155 return -EIO; 1156 1157 return wait_event_interruptible(dev_priv->perf.oa.poll_wq, 1158 oa_buffer_check_unlocked(dev_priv)); 1159 } 1160 1161 /** 1162 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1163 * @stream: An i915-perf stream opened for OA metrics 1164 * @file: An i915 perf stream file 1165 * @wait: poll() state table 1166 * 1167 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1168 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1169 * when it sees data ready to read in the circular OA buffer. 1170 */ 1171 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1172 struct file *file, 1173 poll_table *wait) 1174 { 1175 struct drm_i915_private *dev_priv = stream->dev_priv; 1176 1177 poll_wait(file, &dev_priv->perf.oa.poll_wq, wait); 1178 } 1179 1180 /** 1181 * i915_oa_read - just calls through to &i915_oa_ops->read 1182 * @stream: An i915-perf stream opened for OA metrics 1183 * @buf: destination buffer given by userspace 1184 * @count: the number of bytes userspace wants to read 1185 * @offset: (inout): the current position for writing into @buf 1186 * 1187 * Updates @offset according to the number of bytes successfully copied into 1188 * the userspace buffer. 1189 * 1190 * Returns: zero on success or a negative error code 1191 */ 1192 static int i915_oa_read(struct i915_perf_stream *stream, 1193 char __user *buf, 1194 size_t count, 1195 size_t *offset) 1196 { 1197 struct drm_i915_private *dev_priv = stream->dev_priv; 1198 1199 return dev_priv->perf.oa.ops.read(stream, buf, count, offset); 1200 } 1201 1202 static struct intel_context *oa_pin_context(struct drm_i915_private *i915, 1203 struct i915_gem_context *ctx) 1204 { 1205 struct intel_engine_cs *engine = i915->engine[RCS]; 1206 struct intel_context *ce; 1207 int ret; 1208 1209 ret = i915_mutex_lock_interruptible(&i915->drm); 1210 if (ret) 1211 return ERR_PTR(ret); 1212 1213 /* 1214 * As the ID is the gtt offset of the context's vma we 1215 * pin the vma to ensure the ID remains fixed. 1216 * 1217 * NB: implied RCS engine... 1218 */ 1219 ce = intel_context_pin(ctx, engine); 1220 mutex_unlock(&i915->drm.struct_mutex); 1221 if (IS_ERR(ce)) 1222 return ce; 1223 1224 i915->perf.oa.pinned_ctx = ce; 1225 1226 return ce; 1227 } 1228 1229 /** 1230 * oa_get_render_ctx_id - determine and hold ctx hw id 1231 * @stream: An i915-perf stream opened for OA metrics 1232 * 1233 * Determine the render context hw id, and ensure it remains fixed for the 1234 * lifetime of the stream. This ensures that we don't have to worry about 1235 * updating the context ID in OACONTROL on the fly. 1236 * 1237 * Returns: zero on success or a negative error code 1238 */ 1239 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1240 { 1241 struct drm_i915_private *i915 = stream->dev_priv; 1242 struct intel_context *ce; 1243 1244 ce = oa_pin_context(i915, stream->ctx); 1245 if (IS_ERR(ce)) 1246 return PTR_ERR(ce); 1247 1248 switch (INTEL_GEN(i915)) { 1249 case 7: { 1250 /* 1251 * On Haswell we don't do any post processing of the reports 1252 * and don't need to use the mask. 1253 */ 1254 i915->perf.oa.specific_ctx_id = i915_ggtt_offset(ce->state); 1255 i915->perf.oa.specific_ctx_id_mask = 0; 1256 break; 1257 } 1258 1259 case 8: 1260 case 9: 1261 case 10: 1262 if (USES_GUC_SUBMISSION(i915)) { 1263 /* 1264 * When using GuC, the context descriptor we write in 1265 * i915 is read by GuC and rewritten before it's 1266 * actually written into the hardware. The LRCA is 1267 * what is put into the context id field of the 1268 * context descriptor by GuC. Because it's aligned to 1269 * a page, the lower 12bits are always at 0 and 1270 * dropped by GuC. They won't be part of the context 1271 * ID in the OA reports, so squash those lower bits. 1272 */ 1273 i915->perf.oa.specific_ctx_id = 1274 lower_32_bits(ce->lrc_desc) >> 12; 1275 1276 /* 1277 * GuC uses the top bit to signal proxy submission, so 1278 * ignore that bit. 1279 */ 1280 i915->perf.oa.specific_ctx_id_mask = 1281 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1282 } else { 1283 i915->perf.oa.specific_ctx_id_mask = 1284 (1U << GEN8_CTX_ID_WIDTH) - 1; 1285 i915->perf.oa.specific_ctx_id = 1286 upper_32_bits(ce->lrc_desc); 1287 i915->perf.oa.specific_ctx_id &= 1288 i915->perf.oa.specific_ctx_id_mask; 1289 } 1290 break; 1291 1292 case 11: { 1293 i915->perf.oa.specific_ctx_id_mask = 1294 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32) | 1295 ((1U << GEN11_ENGINE_INSTANCE_WIDTH) - 1) << (GEN11_ENGINE_INSTANCE_SHIFT - 32) | 1296 ((1 << GEN11_ENGINE_CLASS_WIDTH) - 1) << (GEN11_ENGINE_CLASS_SHIFT - 32); 1297 i915->perf.oa.specific_ctx_id = upper_32_bits(ce->lrc_desc); 1298 i915->perf.oa.specific_ctx_id &= 1299 i915->perf.oa.specific_ctx_id_mask; 1300 break; 1301 } 1302 1303 default: 1304 MISSING_CASE(INTEL_GEN(i915)); 1305 } 1306 1307 DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1308 i915->perf.oa.specific_ctx_id, 1309 i915->perf.oa.specific_ctx_id_mask); 1310 1311 return 0; 1312 } 1313 1314 /** 1315 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1316 * @stream: An i915-perf stream opened for OA metrics 1317 * 1318 * In case anything needed doing to ensure the context HW ID would remain valid 1319 * for the lifetime of the stream, then that can be undone here. 1320 */ 1321 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1322 { 1323 struct drm_i915_private *dev_priv = stream->dev_priv; 1324 struct intel_context *ce; 1325 1326 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID; 1327 dev_priv->perf.oa.specific_ctx_id_mask = 0; 1328 1329 ce = fetch_and_zero(&dev_priv->perf.oa.pinned_ctx); 1330 if (ce) { 1331 mutex_lock(&dev_priv->drm.struct_mutex); 1332 intel_context_unpin(ce); 1333 mutex_unlock(&dev_priv->drm.struct_mutex); 1334 } 1335 } 1336 1337 static void 1338 free_oa_buffer(struct drm_i915_private *i915) 1339 { 1340 mutex_lock(&i915->drm.struct_mutex); 1341 1342 i915_vma_unpin_and_release(&i915->perf.oa.oa_buffer.vma, 1343 I915_VMA_RELEASE_MAP); 1344 1345 mutex_unlock(&i915->drm.struct_mutex); 1346 1347 i915->perf.oa.oa_buffer.vaddr = NULL; 1348 } 1349 1350 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1351 { 1352 struct drm_i915_private *dev_priv = stream->dev_priv; 1353 1354 BUG_ON(stream != dev_priv->perf.oa.exclusive_stream); 1355 1356 /* 1357 * Unset exclusive_stream first, it will be checked while disabling 1358 * the metric set on gen8+. 1359 */ 1360 mutex_lock(&dev_priv->drm.struct_mutex); 1361 dev_priv->perf.oa.exclusive_stream = NULL; 1362 dev_priv->perf.oa.ops.disable_metric_set(dev_priv); 1363 mutex_unlock(&dev_priv->drm.struct_mutex); 1364 1365 free_oa_buffer(dev_priv); 1366 1367 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 1368 intel_runtime_pm_put(dev_priv); 1369 1370 if (stream->ctx) 1371 oa_put_render_ctx_id(stream); 1372 1373 put_oa_config(dev_priv, stream->oa_config); 1374 1375 if (dev_priv->perf.oa.spurious_report_rs.missed) { 1376 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1377 dev_priv->perf.oa.spurious_report_rs.missed); 1378 } 1379 } 1380 1381 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv) 1382 { 1383 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 1384 unsigned long flags; 1385 1386 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1387 1388 /* Pre-DevBDW: OABUFFER must be set with counters off, 1389 * before OASTATUS1, but after OASTATUS2 1390 */ 1391 I915_WRITE(GEN7_OASTATUS2, 1392 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); /* head */ 1393 dev_priv->perf.oa.oa_buffer.head = gtt_offset; 1394 1395 I915_WRITE(GEN7_OABUFFER, gtt_offset); 1396 1397 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */ 1398 1399 /* Mark that we need updated tail pointers to read from... */ 1400 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1401 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1402 1403 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1404 1405 /* On Haswell we have to track which OASTATUS1 flags we've 1406 * already seen since they can't be cleared while periodic 1407 * sampling is enabled. 1408 */ 1409 dev_priv->perf.oa.gen7_latched_oastatus1 = 0; 1410 1411 /* NB: although the OA buffer will initially be allocated 1412 * zeroed via shmfs (and so this memset is redundant when 1413 * first allocating), we may re-init the OA buffer, either 1414 * when re-enabling a stream or in error/reset paths. 1415 * 1416 * The reason we clear the buffer for each re-init is for the 1417 * sanity check in gen7_append_oa_reports() that looks at the 1418 * report-id field to make sure it's non-zero which relies on 1419 * the assumption that new reports are being written to zeroed 1420 * memory... 1421 */ 1422 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1423 1424 /* Maybe make ->pollin per-stream state if we support multiple 1425 * concurrent streams in the future. 1426 */ 1427 dev_priv->perf.oa.pollin = false; 1428 } 1429 1430 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv) 1431 { 1432 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma); 1433 unsigned long flags; 1434 1435 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1436 1437 I915_WRITE(GEN8_OASTATUS, 0); 1438 I915_WRITE(GEN8_OAHEADPTR, gtt_offset); 1439 dev_priv->perf.oa.oa_buffer.head = gtt_offset; 1440 1441 I915_WRITE(GEN8_OABUFFER_UDW, 0); 1442 1443 /* 1444 * PRM says: 1445 * 1446 * "This MMIO must be set before the OATAILPTR 1447 * register and after the OAHEADPTR register. This is 1448 * to enable proper functionality of the overflow 1449 * bit." 1450 */ 1451 I915_WRITE(GEN8_OABUFFER, gtt_offset | 1452 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1453 I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1454 1455 /* Mark that we need updated tail pointers to read from... */ 1456 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR; 1457 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR; 1458 1459 /* 1460 * Reset state used to recognise context switches, affecting which 1461 * reports we will forward to userspace while filtering for a single 1462 * context. 1463 */ 1464 dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID; 1465 1466 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags); 1467 1468 /* 1469 * NB: although the OA buffer will initially be allocated 1470 * zeroed via shmfs (and so this memset is redundant when 1471 * first allocating), we may re-init the OA buffer, either 1472 * when re-enabling a stream or in error/reset paths. 1473 * 1474 * The reason we clear the buffer for each re-init is for the 1475 * sanity check in gen8_append_oa_reports() that looks at the 1476 * reason field to make sure it's non-zero which relies on 1477 * the assumption that new reports are being written to zeroed 1478 * memory... 1479 */ 1480 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1481 1482 /* 1483 * Maybe make ->pollin per-stream state if we support multiple 1484 * concurrent streams in the future. 1485 */ 1486 dev_priv->perf.oa.pollin = false; 1487 } 1488 1489 static int alloc_oa_buffer(struct drm_i915_private *dev_priv) 1490 { 1491 struct drm_i915_gem_object *bo; 1492 struct i915_vma *vma; 1493 int ret; 1494 1495 if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma)) 1496 return -ENODEV; 1497 1498 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 1499 if (ret) 1500 return ret; 1501 1502 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1503 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1504 1505 bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE); 1506 if (IS_ERR(bo)) { 1507 DRM_ERROR("Failed to allocate OA buffer\n"); 1508 ret = PTR_ERR(bo); 1509 goto unlock; 1510 } 1511 1512 ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC); 1513 if (ret) 1514 goto err_unref; 1515 1516 /* PreHSW required 512K alignment, HSW requires 16M */ 1517 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1518 if (IS_ERR(vma)) { 1519 ret = PTR_ERR(vma); 1520 goto err_unref; 1521 } 1522 dev_priv->perf.oa.oa_buffer.vma = vma; 1523 1524 dev_priv->perf.oa.oa_buffer.vaddr = 1525 i915_gem_object_pin_map(bo, I915_MAP_WB); 1526 if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) { 1527 ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr); 1528 goto err_unpin; 1529 } 1530 1531 dev_priv->perf.oa.ops.init_oa_buffer(dev_priv); 1532 1533 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n", 1534 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma), 1535 dev_priv->perf.oa.oa_buffer.vaddr); 1536 1537 goto unlock; 1538 1539 err_unpin: 1540 __i915_vma_unpin(vma); 1541 1542 err_unref: 1543 i915_gem_object_put(bo); 1544 1545 dev_priv->perf.oa.oa_buffer.vaddr = NULL; 1546 dev_priv->perf.oa.oa_buffer.vma = NULL; 1547 1548 unlock: 1549 mutex_unlock(&dev_priv->drm.struct_mutex); 1550 return ret; 1551 } 1552 1553 static void config_oa_regs(struct drm_i915_private *dev_priv, 1554 const struct i915_oa_reg *regs, 1555 u32 n_regs) 1556 { 1557 u32 i; 1558 1559 for (i = 0; i < n_regs; i++) { 1560 const struct i915_oa_reg *reg = regs + i; 1561 1562 I915_WRITE(reg->addr, reg->value); 1563 } 1564 } 1565 1566 static int hsw_enable_metric_set(struct drm_i915_private *dev_priv, 1567 const struct i915_oa_config *oa_config) 1568 { 1569 /* PRM: 1570 * 1571 * OA unit is using “crclk” for its functionality. When trunk 1572 * level clock gating takes place, OA clock would be gated, 1573 * unable to count the events from non-render clock domain. 1574 * Render clock gating must be disabled when OA is enabled to 1575 * count the events from non-render domain. Unit level clock 1576 * gating for RCS should also be disabled. 1577 */ 1578 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) & 1579 ~GEN7_DOP_CLOCK_GATE_ENABLE)); 1580 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) | 1581 GEN6_CSUNIT_CLOCK_GATE_DISABLE)); 1582 1583 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len); 1584 1585 /* It apparently takes a fairly long time for a new MUX 1586 * configuration to be be applied after these register writes. 1587 * This delay duration was derived empirically based on the 1588 * render_basic config but hopefully it covers the maximum 1589 * configuration latency. 1590 * 1591 * As a fallback, the checks in _append_oa_reports() to skip 1592 * invalid OA reports do also seem to work to discard reports 1593 * generated before this config has completed - albeit not 1594 * silently. 1595 * 1596 * Unfortunately this is essentially a magic number, since we 1597 * don't currently know of a reliable mechanism for predicting 1598 * how long the MUX config will take to apply and besides 1599 * seeing invalid reports we don't know of a reliable way to 1600 * explicitly check that the MUX config has landed. 1601 * 1602 * It's even possible we've miss characterized the underlying 1603 * problem - it just seems like the simplest explanation why 1604 * a delay at this location would mitigate any invalid reports. 1605 */ 1606 usleep_range(15000, 20000); 1607 1608 config_oa_regs(dev_priv, oa_config->b_counter_regs, 1609 oa_config->b_counter_regs_len); 1610 1611 return 0; 1612 } 1613 1614 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv) 1615 { 1616 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) & 1617 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE)); 1618 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) | 1619 GEN7_DOP_CLOCK_GATE_ENABLE)); 1620 1621 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) & 1622 ~GT_NOA_ENABLE)); 1623 } 1624 1625 /* 1626 * NB: It must always remain pointer safe to run this even if the OA unit 1627 * has been disabled. 1628 * 1629 * It's fine to put out-of-date values into these per-context registers 1630 * in the case that the OA unit has been disabled. 1631 */ 1632 static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx, 1633 u32 *reg_state, 1634 const struct i915_oa_config *oa_config) 1635 { 1636 struct drm_i915_private *dev_priv = ctx->i915; 1637 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset; 1638 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset; 1639 /* The MMIO offsets for Flex EU registers aren't contiguous */ 1640 i915_reg_t flex_regs[] = { 1641 EU_PERF_CNTL0, 1642 EU_PERF_CNTL1, 1643 EU_PERF_CNTL2, 1644 EU_PERF_CNTL3, 1645 EU_PERF_CNTL4, 1646 EU_PERF_CNTL5, 1647 EU_PERF_CNTL6, 1648 }; 1649 int i; 1650 1651 CTX_REG(reg_state, ctx_oactxctrl, GEN8_OACTXCONTROL, 1652 (dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 1653 (dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) | 1654 GEN8_OA_COUNTER_RESUME); 1655 1656 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) { 1657 u32 state_offset = ctx_flexeu0 + i * 2; 1658 u32 mmio = i915_mmio_reg_offset(flex_regs[i]); 1659 1660 /* 1661 * This arbitrary default will select the 'EU FPU0 Pipeline 1662 * Active' event. In the future it's anticipated that there 1663 * will be an explicit 'No Event' we can select, but not yet... 1664 */ 1665 u32 value = 0; 1666 1667 if (oa_config) { 1668 u32 j; 1669 1670 for (j = 0; j < oa_config->flex_regs_len; j++) { 1671 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) { 1672 value = oa_config->flex_regs[j].value; 1673 break; 1674 } 1675 } 1676 } 1677 1678 CTX_REG(reg_state, state_offset, flex_regs[i], value); 1679 } 1680 } 1681 1682 /* 1683 * Manages updating the per-context aspects of the OA stream 1684 * configuration across all contexts. 1685 * 1686 * The awkward consideration here is that OACTXCONTROL controls the 1687 * exponent for periodic sampling which is primarily used for system 1688 * wide profiling where we'd like a consistent sampling period even in 1689 * the face of context switches. 1690 * 1691 * Our approach of updating the register state context (as opposed to 1692 * say using a workaround batch buffer) ensures that the hardware 1693 * won't automatically reload an out-of-date timer exponent even 1694 * transiently before a WA BB could be parsed. 1695 * 1696 * This function needs to: 1697 * - Ensure the currently running context's per-context OA state is 1698 * updated 1699 * - Ensure that all existing contexts will have the correct per-context 1700 * OA state if they are scheduled for use. 1701 * - Ensure any new contexts will be initialized with the correct 1702 * per-context OA state. 1703 * 1704 * Note: it's only the RCS/Render context that has any OA state. 1705 */ 1706 static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv, 1707 const struct i915_oa_config *oa_config) 1708 { 1709 struct intel_engine_cs *engine = dev_priv->engine[RCS]; 1710 unsigned int map_type = i915_coherent_map_type(dev_priv); 1711 struct i915_gem_context *ctx; 1712 struct i915_request *rq; 1713 int ret; 1714 1715 lockdep_assert_held(&dev_priv->drm.struct_mutex); 1716 1717 /* 1718 * The OA register config is setup through the context image. This image 1719 * might be written to by the GPU on context switch (in particular on 1720 * lite-restore). This means we can't safely update a context's image, 1721 * if this context is scheduled/submitted to run on the GPU. 1722 * 1723 * We could emit the OA register config through the batch buffer but 1724 * this might leave small interval of time where the OA unit is 1725 * configured at an invalid sampling period. 1726 * 1727 * So far the best way to work around this issue seems to be draining 1728 * the GPU from any submitted work. 1729 */ 1730 ret = i915_gem_wait_for_idle(dev_priv, 1731 I915_WAIT_LOCKED, 1732 MAX_SCHEDULE_TIMEOUT); 1733 if (ret) 1734 return ret; 1735 1736 /* Update all contexts now that we've stalled the submission. */ 1737 list_for_each_entry(ctx, &dev_priv->contexts.list, link) { 1738 struct intel_context *ce = to_intel_context(ctx, engine); 1739 u32 *regs; 1740 1741 /* OA settings will be set upon first use */ 1742 if (!ce->state) 1743 continue; 1744 1745 regs = i915_gem_object_pin_map(ce->state->obj, map_type); 1746 if (IS_ERR(regs)) 1747 return PTR_ERR(regs); 1748 1749 ce->state->obj->mm.dirty = true; 1750 regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs); 1751 1752 gen8_update_reg_state_unlocked(ctx, regs, oa_config); 1753 1754 i915_gem_object_unpin_map(ce->state->obj); 1755 } 1756 1757 /* 1758 * Apply the configuration by doing one context restore of the edited 1759 * context image. 1760 */ 1761 rq = i915_request_alloc(engine, dev_priv->kernel_context); 1762 if (IS_ERR(rq)) 1763 return PTR_ERR(rq); 1764 1765 i915_request_add(rq); 1766 1767 return 0; 1768 } 1769 1770 static int gen8_enable_metric_set(struct drm_i915_private *dev_priv, 1771 const struct i915_oa_config *oa_config) 1772 { 1773 int ret; 1774 1775 /* 1776 * We disable slice/unslice clock ratio change reports on SKL since 1777 * they are too noisy. The HW generates a lot of redundant reports 1778 * where the ratio hasn't really changed causing a lot of redundant 1779 * work to processes and increasing the chances we'll hit buffer 1780 * overruns. 1781 * 1782 * Although we don't currently use the 'disable overrun' OABUFFER 1783 * feature it's worth noting that clock ratio reports have to be 1784 * disabled before considering to use that feature since the HW doesn't 1785 * correctly block these reports. 1786 * 1787 * Currently none of the high-level metrics we have depend on knowing 1788 * this ratio to normalize. 1789 * 1790 * Note: This register is not power context saved and restored, but 1791 * that's OK considering that we disable RC6 while the OA unit is 1792 * enabled. 1793 * 1794 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 1795 * be read back from automatically triggered reports, as part of the 1796 * RPT_ID field. 1797 */ 1798 if (IS_GEN(dev_priv, 9, 11)) { 1799 I915_WRITE(GEN8_OA_DEBUG, 1800 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 1801 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 1802 } 1803 1804 /* 1805 * Update all contexts prior writing the mux configurations as we need 1806 * to make sure all slices/subslices are ON before writing to NOA 1807 * registers. 1808 */ 1809 ret = gen8_configure_all_contexts(dev_priv, oa_config); 1810 if (ret) 1811 return ret; 1812 1813 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len); 1814 1815 config_oa_regs(dev_priv, oa_config->b_counter_regs, 1816 oa_config->b_counter_regs_len); 1817 1818 return 0; 1819 } 1820 1821 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv) 1822 { 1823 /* Reset all contexts' slices/subslices configurations. */ 1824 gen8_configure_all_contexts(dev_priv, NULL); 1825 1826 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) & 1827 ~GT_NOA_ENABLE)); 1828 } 1829 1830 static void gen10_disable_metric_set(struct drm_i915_private *dev_priv) 1831 { 1832 /* Reset all contexts' slices/subslices configurations. */ 1833 gen8_configure_all_contexts(dev_priv, NULL); 1834 1835 /* Make sure we disable noa to save power. */ 1836 I915_WRITE(RPM_CONFIG1, 1837 I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE); 1838 } 1839 1840 static void gen7_oa_enable(struct drm_i915_private *dev_priv) 1841 { 1842 struct i915_gem_context *ctx = 1843 dev_priv->perf.oa.exclusive_stream->ctx; 1844 u32 ctx_id = dev_priv->perf.oa.specific_ctx_id; 1845 bool periodic = dev_priv->perf.oa.periodic; 1846 u32 period_exponent = dev_priv->perf.oa.period_exponent; 1847 u32 report_format = dev_priv->perf.oa.oa_buffer.format; 1848 1849 /* 1850 * Reset buf pointers so we don't forward reports from before now. 1851 * 1852 * Think carefully if considering trying to avoid this, since it 1853 * also ensures status flags and the buffer itself are cleared 1854 * in error paths, and we have checks for invalid reports based 1855 * on the assumption that certain fields are written to zeroed 1856 * memory which this helps maintains. 1857 */ 1858 gen7_init_oa_buffer(dev_priv); 1859 1860 I915_WRITE(GEN7_OACONTROL, 1861 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 1862 (period_exponent << 1863 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 1864 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 1865 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 1866 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 1867 GEN7_OACONTROL_ENABLE); 1868 } 1869 1870 static void gen8_oa_enable(struct drm_i915_private *dev_priv) 1871 { 1872 u32 report_format = dev_priv->perf.oa.oa_buffer.format; 1873 1874 /* 1875 * Reset buf pointers so we don't forward reports from before now. 1876 * 1877 * Think carefully if considering trying to avoid this, since it 1878 * also ensures status flags and the buffer itself are cleared 1879 * in error paths, and we have checks for invalid reports based 1880 * on the assumption that certain fields are written to zeroed 1881 * memory which this helps maintains. 1882 */ 1883 gen8_init_oa_buffer(dev_priv); 1884 1885 /* 1886 * Note: we don't rely on the hardware to perform single context 1887 * filtering and instead filter on the cpu based on the context-id 1888 * field of reports 1889 */ 1890 I915_WRITE(GEN8_OACONTROL, (report_format << 1891 GEN8_OA_REPORT_FORMAT_SHIFT) | 1892 GEN8_OA_COUNTER_ENABLE); 1893 } 1894 1895 /** 1896 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 1897 * @stream: An i915 perf stream opened for OA metrics 1898 * 1899 * [Re]enables hardware periodic sampling according to the period configured 1900 * when opening the stream. This also starts a hrtimer that will periodically 1901 * check for data in the circular OA buffer for notifying userspace (e.g. 1902 * during a read() or poll()). 1903 */ 1904 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 1905 { 1906 struct drm_i915_private *dev_priv = stream->dev_priv; 1907 1908 dev_priv->perf.oa.ops.oa_enable(dev_priv); 1909 1910 if (dev_priv->perf.oa.periodic) 1911 hrtimer_start(&dev_priv->perf.oa.poll_check_timer, 1912 ns_to_ktime(POLL_PERIOD), 1913 HRTIMER_MODE_REL_PINNED); 1914 } 1915 1916 static void gen7_oa_disable(struct drm_i915_private *dev_priv) 1917 { 1918 I915_WRITE(GEN7_OACONTROL, 0); 1919 if (intel_wait_for_register(dev_priv, 1920 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 1921 50)) 1922 DRM_ERROR("wait for OA to be disabled timed out\n"); 1923 } 1924 1925 static void gen8_oa_disable(struct drm_i915_private *dev_priv) 1926 { 1927 I915_WRITE(GEN8_OACONTROL, 0); 1928 if (intel_wait_for_register(dev_priv, 1929 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 1930 50)) 1931 DRM_ERROR("wait for OA to be disabled timed out\n"); 1932 } 1933 1934 /** 1935 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 1936 * @stream: An i915 perf stream opened for OA metrics 1937 * 1938 * Stops the OA unit from periodically writing counter reports into the 1939 * circular OA buffer. This also stops the hrtimer that periodically checks for 1940 * data in the circular OA buffer, for notifying userspace. 1941 */ 1942 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 1943 { 1944 struct drm_i915_private *dev_priv = stream->dev_priv; 1945 1946 dev_priv->perf.oa.ops.oa_disable(dev_priv); 1947 1948 if (dev_priv->perf.oa.periodic) 1949 hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer); 1950 } 1951 1952 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 1953 .destroy = i915_oa_stream_destroy, 1954 .enable = i915_oa_stream_enable, 1955 .disable = i915_oa_stream_disable, 1956 .wait_unlocked = i915_oa_wait_unlocked, 1957 .poll_wait = i915_oa_poll_wait, 1958 .read = i915_oa_read, 1959 }; 1960 1961 /** 1962 * i915_oa_stream_init - validate combined props for OA stream and init 1963 * @stream: An i915 perf stream 1964 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 1965 * @props: The property state that configures stream (individually validated) 1966 * 1967 * While read_properties_unlocked() validates properties in isolation it 1968 * doesn't ensure that the combination necessarily makes sense. 1969 * 1970 * At this point it has been determined that userspace wants a stream of 1971 * OA metrics, but still we need to further validate the combined 1972 * properties are OK. 1973 * 1974 * If the configuration makes sense then we can allocate memory for 1975 * a circular OA buffer and apply the requested metric set configuration. 1976 * 1977 * Returns: zero on success or a negative error code. 1978 */ 1979 static int i915_oa_stream_init(struct i915_perf_stream *stream, 1980 struct drm_i915_perf_open_param *param, 1981 struct perf_open_properties *props) 1982 { 1983 struct drm_i915_private *dev_priv = stream->dev_priv; 1984 int format_size; 1985 int ret; 1986 1987 /* If the sysfs metrics/ directory wasn't registered for some 1988 * reason then don't let userspace try their luck with config 1989 * IDs 1990 */ 1991 if (!dev_priv->perf.metrics_kobj) { 1992 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 1993 return -EINVAL; 1994 } 1995 1996 if (!(props->sample_flags & SAMPLE_OA_REPORT)) { 1997 DRM_DEBUG("Only OA report sampling supported\n"); 1998 return -EINVAL; 1999 } 2000 2001 if (!dev_priv->perf.oa.ops.init_oa_buffer) { 2002 DRM_DEBUG("OA unit not supported\n"); 2003 return -ENODEV; 2004 } 2005 2006 /* To avoid the complexity of having to accurately filter 2007 * counter reports and marshal to the appropriate client 2008 * we currently only allow exclusive access 2009 */ 2010 if (dev_priv->perf.oa.exclusive_stream) { 2011 DRM_DEBUG("OA unit already in use\n"); 2012 return -EBUSY; 2013 } 2014 2015 if (!props->oa_format) { 2016 DRM_DEBUG("OA report format not specified\n"); 2017 return -EINVAL; 2018 } 2019 2020 /* We set up some ratelimit state to potentially throttle any _NOTES 2021 * about spurious, invalid OA reports which we don't forward to 2022 * userspace. 2023 * 2024 * The initialization is associated with opening the stream (not driver 2025 * init) considering we print a _NOTE about any throttling when closing 2026 * the stream instead of waiting until driver _fini which no one would 2027 * ever see. 2028 * 2029 * Using the same limiting factors as printk_ratelimit() 2030 */ 2031 ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs, 2032 5 * HZ, 10); 2033 /* Since we use a DRM_NOTE for spurious reports it would be 2034 * inconsistent to let __ratelimit() automatically print a warning for 2035 * throttling. 2036 */ 2037 ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs, 2038 RATELIMIT_MSG_ON_RELEASE); 2039 2040 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2041 2042 format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size; 2043 2044 stream->sample_flags |= SAMPLE_OA_REPORT; 2045 stream->sample_size += format_size; 2046 2047 dev_priv->perf.oa.oa_buffer.format_size = format_size; 2048 if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0)) 2049 return -EINVAL; 2050 2051 dev_priv->perf.oa.oa_buffer.format = 2052 dev_priv->perf.oa.oa_formats[props->oa_format].format; 2053 2054 dev_priv->perf.oa.periodic = props->oa_periodic; 2055 if (dev_priv->perf.oa.periodic) 2056 dev_priv->perf.oa.period_exponent = props->oa_period_exponent; 2057 2058 if (stream->ctx) { 2059 ret = oa_get_render_ctx_id(stream); 2060 if (ret) { 2061 DRM_DEBUG("Invalid context id to filter with\n"); 2062 return ret; 2063 } 2064 } 2065 2066 ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config); 2067 if (ret) { 2068 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2069 goto err_config; 2070 } 2071 2072 /* PRM - observability performance counters: 2073 * 2074 * OACONTROL, performance counter enable, note: 2075 * 2076 * "When this bit is set, in order to have coherent counts, 2077 * RC6 power state and trunk clock gating must be disabled. 2078 * This can be achieved by programming MMIO registers as 2079 * 0xA094=0 and 0xA090[31]=1" 2080 * 2081 * In our case we are expecting that taking pm + FORCEWAKE 2082 * references will effectively disable RC6. 2083 */ 2084 intel_runtime_pm_get(dev_priv); 2085 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); 2086 2087 ret = alloc_oa_buffer(dev_priv); 2088 if (ret) 2089 goto err_oa_buf_alloc; 2090 2091 ret = i915_mutex_lock_interruptible(&dev_priv->drm); 2092 if (ret) 2093 goto err_lock; 2094 2095 ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv, 2096 stream->oa_config); 2097 if (ret) { 2098 DRM_DEBUG("Unable to enable metric set\n"); 2099 goto err_enable; 2100 } 2101 2102 stream->ops = &i915_oa_stream_ops; 2103 2104 dev_priv->perf.oa.exclusive_stream = stream; 2105 2106 mutex_unlock(&dev_priv->drm.struct_mutex); 2107 2108 return 0; 2109 2110 err_enable: 2111 dev_priv->perf.oa.ops.disable_metric_set(dev_priv); 2112 mutex_unlock(&dev_priv->drm.struct_mutex); 2113 2114 err_lock: 2115 free_oa_buffer(dev_priv); 2116 2117 err_oa_buf_alloc: 2118 put_oa_config(dev_priv, stream->oa_config); 2119 2120 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); 2121 intel_runtime_pm_put(dev_priv); 2122 2123 err_config: 2124 if (stream->ctx) 2125 oa_put_render_ctx_id(stream); 2126 2127 return ret; 2128 } 2129 2130 void i915_oa_init_reg_state(struct intel_engine_cs *engine, 2131 struct i915_gem_context *ctx, 2132 u32 *reg_state) 2133 { 2134 struct i915_perf_stream *stream; 2135 2136 if (engine->id != RCS) 2137 return; 2138 2139 stream = engine->i915->perf.oa.exclusive_stream; 2140 if (stream) 2141 gen8_update_reg_state_unlocked(ctx, reg_state, stream->oa_config); 2142 } 2143 2144 /** 2145 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation 2146 * @stream: An i915 perf stream 2147 * @file: An i915 perf stream file 2148 * @buf: destination buffer given by userspace 2149 * @count: the number of bytes userspace wants to read 2150 * @ppos: (inout) file seek position (unused) 2151 * 2152 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to 2153 * ensure that if we've successfully copied any data then reporting that takes 2154 * precedence over any internal error status, so the data isn't lost. 2155 * 2156 * For example ret will be -ENOSPC whenever there is more buffered data than 2157 * can be copied to userspace, but that's only interesting if we weren't able 2158 * to copy some data because it implies the userspace buffer is too small to 2159 * receive a single record (and we never split records). 2160 * 2161 * Another case with ret == -EFAULT is more of a grey area since it would seem 2162 * like bad form for userspace to ask us to overrun its buffer, but the user 2163 * knows best: 2164 * 2165 * http://yarchive.net/comp/linux/partial_reads_writes.html 2166 * 2167 * Returns: The number of bytes copied or a negative error code on failure. 2168 */ 2169 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream, 2170 struct file *file, 2171 char __user *buf, 2172 size_t count, 2173 loff_t *ppos) 2174 { 2175 /* Note we keep the offset (aka bytes read) separate from any 2176 * error status so that the final check for whether we return 2177 * the bytes read with a higher precedence than any error (see 2178 * comment below) doesn't need to be handled/duplicated in 2179 * stream->ops->read() implementations. 2180 */ 2181 size_t offset = 0; 2182 int ret = stream->ops->read(stream, buf, count, &offset); 2183 2184 return offset ?: (ret ?: -EAGAIN); 2185 } 2186 2187 /** 2188 * i915_perf_read - handles read() FOP for i915 perf stream FDs 2189 * @file: An i915 perf stream file 2190 * @buf: destination buffer given by userspace 2191 * @count: the number of bytes userspace wants to read 2192 * @ppos: (inout) file seek position (unused) 2193 * 2194 * The entry point for handling a read() on a stream file descriptor from 2195 * userspace. Most of the work is left to the i915_perf_read_locked() and 2196 * &i915_perf_stream_ops->read but to save having stream implementations (of 2197 * which we might have multiple later) we handle blocking read here. 2198 * 2199 * We can also consistently treat trying to read from a disabled stream 2200 * as an IO error so implementations can assume the stream is enabled 2201 * while reading. 2202 * 2203 * Returns: The number of bytes copied or a negative error code on failure. 2204 */ 2205 static ssize_t i915_perf_read(struct file *file, 2206 char __user *buf, 2207 size_t count, 2208 loff_t *ppos) 2209 { 2210 struct i915_perf_stream *stream = file->private_data; 2211 struct drm_i915_private *dev_priv = stream->dev_priv; 2212 ssize_t ret; 2213 2214 /* To ensure it's handled consistently we simply treat all reads of a 2215 * disabled stream as an error. In particular it might otherwise lead 2216 * to a deadlock for blocking file descriptors... 2217 */ 2218 if (!stream->enabled) 2219 return -EIO; 2220 2221 if (!(file->f_flags & O_NONBLOCK)) { 2222 /* There's the small chance of false positives from 2223 * stream->ops->wait_unlocked. 2224 * 2225 * E.g. with single context filtering since we only wait until 2226 * oabuffer has >= 1 report we don't immediately know whether 2227 * any reports really belong to the current context 2228 */ 2229 do { 2230 ret = stream->ops->wait_unlocked(stream); 2231 if (ret) 2232 return ret; 2233 2234 mutex_lock(&dev_priv->perf.lock); 2235 ret = i915_perf_read_locked(stream, file, 2236 buf, count, ppos); 2237 mutex_unlock(&dev_priv->perf.lock); 2238 } while (ret == -EAGAIN); 2239 } else { 2240 mutex_lock(&dev_priv->perf.lock); 2241 ret = i915_perf_read_locked(stream, file, buf, count, ppos); 2242 mutex_unlock(&dev_priv->perf.lock); 2243 } 2244 2245 /* We allow the poll checking to sometimes report false positive EPOLLIN 2246 * events where we might actually report EAGAIN on read() if there's 2247 * not really any data available. In this situation though we don't 2248 * want to enter a busy loop between poll() reporting a EPOLLIN event 2249 * and read() returning -EAGAIN. Clearing the oa.pollin state here 2250 * effectively ensures we back off until the next hrtimer callback 2251 * before reporting another EPOLLIN event. 2252 */ 2253 if (ret >= 0 || ret == -EAGAIN) { 2254 /* Maybe make ->pollin per-stream state if we support multiple 2255 * concurrent streams in the future. 2256 */ 2257 dev_priv->perf.oa.pollin = false; 2258 } 2259 2260 return ret; 2261 } 2262 2263 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 2264 { 2265 struct drm_i915_private *dev_priv = 2266 container_of(hrtimer, typeof(*dev_priv), 2267 perf.oa.poll_check_timer); 2268 2269 if (oa_buffer_check_unlocked(dev_priv)) { 2270 dev_priv->perf.oa.pollin = true; 2271 wake_up(&dev_priv->perf.oa.poll_wq); 2272 } 2273 2274 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD)); 2275 2276 return HRTIMER_RESTART; 2277 } 2278 2279 /** 2280 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 2281 * @dev_priv: i915 device instance 2282 * @stream: An i915 perf stream 2283 * @file: An i915 perf stream file 2284 * @wait: poll() state table 2285 * 2286 * For handling userspace polling on an i915 perf stream, this calls through to 2287 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 2288 * will be woken for new stream data. 2289 * 2290 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2291 * with any non-file-operation driver hooks. 2292 * 2293 * Returns: any poll events that are ready without sleeping 2294 */ 2295 static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv, 2296 struct i915_perf_stream *stream, 2297 struct file *file, 2298 poll_table *wait) 2299 { 2300 __poll_t events = 0; 2301 2302 stream->ops->poll_wait(stream, file, wait); 2303 2304 /* Note: we don't explicitly check whether there's something to read 2305 * here since this path may be very hot depending on what else 2306 * userspace is polling, or on the timeout in use. We rely solely on 2307 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 2308 * samples to read. 2309 */ 2310 if (dev_priv->perf.oa.pollin) 2311 events |= EPOLLIN; 2312 2313 return events; 2314 } 2315 2316 /** 2317 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 2318 * @file: An i915 perf stream file 2319 * @wait: poll() state table 2320 * 2321 * For handling userspace polling on an i915 perf stream, this ensures 2322 * poll_wait() gets called with a wait queue that will be woken for new stream 2323 * data. 2324 * 2325 * Note: Implementation deferred to i915_perf_poll_locked() 2326 * 2327 * Returns: any poll events that are ready without sleeping 2328 */ 2329 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 2330 { 2331 struct i915_perf_stream *stream = file->private_data; 2332 struct drm_i915_private *dev_priv = stream->dev_priv; 2333 __poll_t ret; 2334 2335 mutex_lock(&dev_priv->perf.lock); 2336 ret = i915_perf_poll_locked(dev_priv, stream, file, wait); 2337 mutex_unlock(&dev_priv->perf.lock); 2338 2339 return ret; 2340 } 2341 2342 /** 2343 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 2344 * @stream: A disabled i915 perf stream 2345 * 2346 * [Re]enables the associated capture of data for this stream. 2347 * 2348 * If a stream was previously enabled then there's currently no intention 2349 * to provide userspace any guarantee about the preservation of previously 2350 * buffered data. 2351 */ 2352 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 2353 { 2354 if (stream->enabled) 2355 return; 2356 2357 /* Allow stream->ops->enable() to refer to this */ 2358 stream->enabled = true; 2359 2360 if (stream->ops->enable) 2361 stream->ops->enable(stream); 2362 } 2363 2364 /** 2365 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 2366 * @stream: An enabled i915 perf stream 2367 * 2368 * Disables the associated capture of data for this stream. 2369 * 2370 * The intention is that disabling an re-enabling a stream will ideally be 2371 * cheaper than destroying and re-opening a stream with the same configuration, 2372 * though there are no formal guarantees about what state or buffered data 2373 * must be retained between disabling and re-enabling a stream. 2374 * 2375 * Note: while a stream is disabled it's considered an error for userspace 2376 * to attempt to read from the stream (-EIO). 2377 */ 2378 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 2379 { 2380 if (!stream->enabled) 2381 return; 2382 2383 /* Allow stream->ops->disable() to refer to this */ 2384 stream->enabled = false; 2385 2386 if (stream->ops->disable) 2387 stream->ops->disable(stream); 2388 } 2389 2390 /** 2391 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 2392 * @stream: An i915 perf stream 2393 * @cmd: the ioctl request 2394 * @arg: the ioctl data 2395 * 2396 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2397 * with any non-file-operation driver hooks. 2398 * 2399 * Returns: zero on success or a negative error code. Returns -EINVAL for 2400 * an unknown ioctl request. 2401 */ 2402 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 2403 unsigned int cmd, 2404 unsigned long arg) 2405 { 2406 switch (cmd) { 2407 case I915_PERF_IOCTL_ENABLE: 2408 i915_perf_enable_locked(stream); 2409 return 0; 2410 case I915_PERF_IOCTL_DISABLE: 2411 i915_perf_disable_locked(stream); 2412 return 0; 2413 } 2414 2415 return -EINVAL; 2416 } 2417 2418 /** 2419 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 2420 * @file: An i915 perf stream file 2421 * @cmd: the ioctl request 2422 * @arg: the ioctl data 2423 * 2424 * Implementation deferred to i915_perf_ioctl_locked(). 2425 * 2426 * Returns: zero on success or a negative error code. Returns -EINVAL for 2427 * an unknown ioctl request. 2428 */ 2429 static long i915_perf_ioctl(struct file *file, 2430 unsigned int cmd, 2431 unsigned long arg) 2432 { 2433 struct i915_perf_stream *stream = file->private_data; 2434 struct drm_i915_private *dev_priv = stream->dev_priv; 2435 long ret; 2436 2437 mutex_lock(&dev_priv->perf.lock); 2438 ret = i915_perf_ioctl_locked(stream, cmd, arg); 2439 mutex_unlock(&dev_priv->perf.lock); 2440 2441 return ret; 2442 } 2443 2444 /** 2445 * i915_perf_destroy_locked - destroy an i915 perf stream 2446 * @stream: An i915 perf stream 2447 * 2448 * Frees all resources associated with the given i915 perf @stream, disabling 2449 * any associated data capture in the process. 2450 * 2451 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize 2452 * with any non-file-operation driver hooks. 2453 */ 2454 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 2455 { 2456 if (stream->enabled) 2457 i915_perf_disable_locked(stream); 2458 2459 if (stream->ops->destroy) 2460 stream->ops->destroy(stream); 2461 2462 list_del(&stream->link); 2463 2464 if (stream->ctx) 2465 i915_gem_context_put(stream->ctx); 2466 2467 kfree(stream); 2468 } 2469 2470 /** 2471 * i915_perf_release - handles userspace close() of a stream file 2472 * @inode: anonymous inode associated with file 2473 * @file: An i915 perf stream file 2474 * 2475 * Cleans up any resources associated with an open i915 perf stream file. 2476 * 2477 * NB: close() can't really fail from the userspace point of view. 2478 * 2479 * Returns: zero on success or a negative error code. 2480 */ 2481 static int i915_perf_release(struct inode *inode, struct file *file) 2482 { 2483 struct i915_perf_stream *stream = file->private_data; 2484 struct drm_i915_private *dev_priv = stream->dev_priv; 2485 2486 mutex_lock(&dev_priv->perf.lock); 2487 i915_perf_destroy_locked(stream); 2488 mutex_unlock(&dev_priv->perf.lock); 2489 2490 return 0; 2491 } 2492 2493 2494 static const struct file_operations fops = { 2495 .owner = THIS_MODULE, 2496 .llseek = no_llseek, 2497 .release = i915_perf_release, 2498 .poll = i915_perf_poll, 2499 .read = i915_perf_read, 2500 .unlocked_ioctl = i915_perf_ioctl, 2501 /* Our ioctl have no arguments, so it's safe to use the same function 2502 * to handle 32bits compatibility. 2503 */ 2504 .compat_ioctl = i915_perf_ioctl, 2505 }; 2506 2507 2508 /** 2509 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 2510 * @dev_priv: i915 device instance 2511 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 2512 * @props: individually validated u64 property value pairs 2513 * @file: drm file 2514 * 2515 * See i915_perf_ioctl_open() for interface details. 2516 * 2517 * Implements further stream config validation and stream initialization on 2518 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex 2519 * taken to serialize with any non-file-operation driver hooks. 2520 * 2521 * Note: at this point the @props have only been validated in isolation and 2522 * it's still necessary to validate that the combination of properties makes 2523 * sense. 2524 * 2525 * In the case where userspace is interested in OA unit metrics then further 2526 * config validation and stream initialization details will be handled by 2527 * i915_oa_stream_init(). The code here should only validate config state that 2528 * will be relevant to all stream types / backends. 2529 * 2530 * Returns: zero on success or a negative error code. 2531 */ 2532 static int 2533 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv, 2534 struct drm_i915_perf_open_param *param, 2535 struct perf_open_properties *props, 2536 struct drm_file *file) 2537 { 2538 struct i915_gem_context *specific_ctx = NULL; 2539 struct i915_perf_stream *stream = NULL; 2540 unsigned long f_flags = 0; 2541 bool privileged_op = true; 2542 int stream_fd; 2543 int ret; 2544 2545 if (props->single_context) { 2546 u32 ctx_handle = props->ctx_handle; 2547 struct drm_i915_file_private *file_priv = file->driver_priv; 2548 2549 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 2550 if (!specific_ctx) { 2551 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 2552 ctx_handle); 2553 ret = -ENOENT; 2554 goto err; 2555 } 2556 } 2557 2558 /* 2559 * On Haswell the OA unit supports clock gating off for a specific 2560 * context and in this mode there's no visibility of metrics for the 2561 * rest of the system, which we consider acceptable for a 2562 * non-privileged client. 2563 * 2564 * For Gen8+ the OA unit no longer supports clock gating off for a 2565 * specific context and the kernel can't securely stop the counters 2566 * from updating as system-wide / global values. Even though we can 2567 * filter reports based on the included context ID we can't block 2568 * clients from seeing the raw / global counter values via 2569 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 2570 * enable the OA unit by default. 2571 */ 2572 if (IS_HASWELL(dev_priv) && specific_ctx) 2573 privileged_op = false; 2574 2575 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 2576 * we check a dev.i915.perf_stream_paranoid sysctl option 2577 * to determine if it's ok to access system wide OA counters 2578 * without CAP_SYS_ADMIN privileges. 2579 */ 2580 if (privileged_op && 2581 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 2582 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n"); 2583 ret = -EACCES; 2584 goto err_ctx; 2585 } 2586 2587 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 2588 if (!stream) { 2589 ret = -ENOMEM; 2590 goto err_ctx; 2591 } 2592 2593 stream->dev_priv = dev_priv; 2594 stream->ctx = specific_ctx; 2595 2596 ret = i915_oa_stream_init(stream, param, props); 2597 if (ret) 2598 goto err_alloc; 2599 2600 /* we avoid simply assigning stream->sample_flags = props->sample_flags 2601 * to have _stream_init check the combination of sample flags more 2602 * thoroughly, but still this is the expected result at this point. 2603 */ 2604 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 2605 ret = -ENODEV; 2606 goto err_flags; 2607 } 2608 2609 list_add(&stream->link, &dev_priv->perf.streams); 2610 2611 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 2612 f_flags |= O_CLOEXEC; 2613 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 2614 f_flags |= O_NONBLOCK; 2615 2616 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 2617 if (stream_fd < 0) { 2618 ret = stream_fd; 2619 goto err_open; 2620 } 2621 2622 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 2623 i915_perf_enable_locked(stream); 2624 2625 return stream_fd; 2626 2627 err_open: 2628 list_del(&stream->link); 2629 err_flags: 2630 if (stream->ops->destroy) 2631 stream->ops->destroy(stream); 2632 err_alloc: 2633 kfree(stream); 2634 err_ctx: 2635 if (specific_ctx) 2636 i915_gem_context_put(specific_ctx); 2637 err: 2638 return ret; 2639 } 2640 2641 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent) 2642 { 2643 return div64_u64(1000000000ULL * (2ULL << exponent), 2644 1000ULL * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz); 2645 } 2646 2647 /** 2648 * read_properties_unlocked - validate + copy userspace stream open properties 2649 * @dev_priv: i915 device instance 2650 * @uprops: The array of u64 key value pairs given by userspace 2651 * @n_props: The number of key value pairs expected in @uprops 2652 * @props: The stream configuration built up while validating properties 2653 * 2654 * Note this function only validates properties in isolation it doesn't 2655 * validate that the combination of properties makes sense or that all 2656 * properties necessary for a particular kind of stream have been set. 2657 * 2658 * Note that there currently aren't any ordering requirements for properties so 2659 * we shouldn't validate or assume anything about ordering here. This doesn't 2660 * rule out defining new properties with ordering requirements in the future. 2661 */ 2662 static int read_properties_unlocked(struct drm_i915_private *dev_priv, 2663 u64 __user *uprops, 2664 u32 n_props, 2665 struct perf_open_properties *props) 2666 { 2667 u64 __user *uprop = uprops; 2668 u32 i; 2669 2670 memset(props, 0, sizeof(struct perf_open_properties)); 2671 2672 if (!n_props) { 2673 DRM_DEBUG("No i915 perf properties given\n"); 2674 return -EINVAL; 2675 } 2676 2677 /* Considering that ID = 0 is reserved and assuming that we don't 2678 * (currently) expect any configurations to ever specify duplicate 2679 * values for a particular property ID then the last _PROP_MAX value is 2680 * one greater than the maximum number of properties we expect to get 2681 * from userspace. 2682 */ 2683 if (n_props >= DRM_I915_PERF_PROP_MAX) { 2684 DRM_DEBUG("More i915 perf properties specified than exist\n"); 2685 return -EINVAL; 2686 } 2687 2688 for (i = 0; i < n_props; i++) { 2689 u64 oa_period, oa_freq_hz; 2690 u64 id, value; 2691 int ret; 2692 2693 ret = get_user(id, uprop); 2694 if (ret) 2695 return ret; 2696 2697 ret = get_user(value, uprop + 1); 2698 if (ret) 2699 return ret; 2700 2701 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 2702 DRM_DEBUG("Unknown i915 perf property ID\n"); 2703 return -EINVAL; 2704 } 2705 2706 switch ((enum drm_i915_perf_property_id)id) { 2707 case DRM_I915_PERF_PROP_CTX_HANDLE: 2708 props->single_context = 1; 2709 props->ctx_handle = value; 2710 break; 2711 case DRM_I915_PERF_PROP_SAMPLE_OA: 2712 if (value) 2713 props->sample_flags |= SAMPLE_OA_REPORT; 2714 break; 2715 case DRM_I915_PERF_PROP_OA_METRICS_SET: 2716 if (value == 0) { 2717 DRM_DEBUG("Unknown OA metric set ID\n"); 2718 return -EINVAL; 2719 } 2720 props->metrics_set = value; 2721 break; 2722 case DRM_I915_PERF_PROP_OA_FORMAT: 2723 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 2724 DRM_DEBUG("Out-of-range OA report format %llu\n", 2725 value); 2726 return -EINVAL; 2727 } 2728 if (!dev_priv->perf.oa.oa_formats[value].size) { 2729 DRM_DEBUG("Unsupported OA report format %llu\n", 2730 value); 2731 return -EINVAL; 2732 } 2733 props->oa_format = value; 2734 break; 2735 case DRM_I915_PERF_PROP_OA_EXPONENT: 2736 if (value > OA_EXPONENT_MAX) { 2737 DRM_DEBUG("OA timer exponent too high (> %u)\n", 2738 OA_EXPONENT_MAX); 2739 return -EINVAL; 2740 } 2741 2742 /* Theoretically we can program the OA unit to sample 2743 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 2744 * for BXT. We don't allow such high sampling 2745 * frequencies by default unless root. 2746 */ 2747 2748 BUILD_BUG_ON(sizeof(oa_period) != 8); 2749 oa_period = oa_exponent_to_ns(dev_priv, value); 2750 2751 /* This check is primarily to ensure that oa_period <= 2752 * UINT32_MAX (before passing to do_div which only 2753 * accepts a u32 denominator), but we can also skip 2754 * checking anything < 1Hz which implicitly can't be 2755 * limited via an integer oa_max_sample_rate. 2756 */ 2757 if (oa_period <= NSEC_PER_SEC) { 2758 u64 tmp = NSEC_PER_SEC; 2759 do_div(tmp, oa_period); 2760 oa_freq_hz = tmp; 2761 } else 2762 oa_freq_hz = 0; 2763 2764 if (oa_freq_hz > i915_oa_max_sample_rate && 2765 !capable(CAP_SYS_ADMIN)) { 2766 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n", 2767 i915_oa_max_sample_rate); 2768 return -EACCES; 2769 } 2770 2771 props->oa_periodic = true; 2772 props->oa_period_exponent = value; 2773 break; 2774 case DRM_I915_PERF_PROP_MAX: 2775 MISSING_CASE(id); 2776 return -EINVAL; 2777 } 2778 2779 uprop += 2; 2780 } 2781 2782 return 0; 2783 } 2784 2785 /** 2786 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 2787 * @dev: drm device 2788 * @data: ioctl data copied from userspace (unvalidated) 2789 * @file: drm file 2790 * 2791 * Validates the stream open parameters given by userspace including flags 2792 * and an array of u64 key, value pair properties. 2793 * 2794 * Very little is assumed up front about the nature of the stream being 2795 * opened (for instance we don't assume it's for periodic OA unit metrics). An 2796 * i915-perf stream is expected to be a suitable interface for other forms of 2797 * buffered data written by the GPU besides periodic OA metrics. 2798 * 2799 * Note we copy the properties from userspace outside of the i915 perf 2800 * mutex to avoid an awkward lockdep with mmap_sem. 2801 * 2802 * Most of the implementation details are handled by 2803 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock 2804 * mutex for serializing with any non-file-operation driver hooks. 2805 * 2806 * Return: A newly opened i915 Perf stream file descriptor or negative 2807 * error code on failure. 2808 */ 2809 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 2810 struct drm_file *file) 2811 { 2812 struct drm_i915_private *dev_priv = dev->dev_private; 2813 struct drm_i915_perf_open_param *param = data; 2814 struct perf_open_properties props; 2815 u32 known_open_flags; 2816 int ret; 2817 2818 if (!dev_priv->perf.initialized) { 2819 DRM_DEBUG("i915 perf interface not available for this system\n"); 2820 return -ENOTSUPP; 2821 } 2822 2823 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 2824 I915_PERF_FLAG_FD_NONBLOCK | 2825 I915_PERF_FLAG_DISABLED; 2826 if (param->flags & ~known_open_flags) { 2827 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 2828 return -EINVAL; 2829 } 2830 2831 ret = read_properties_unlocked(dev_priv, 2832 u64_to_user_ptr(param->properties_ptr), 2833 param->num_properties, 2834 &props); 2835 if (ret) 2836 return ret; 2837 2838 mutex_lock(&dev_priv->perf.lock); 2839 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file); 2840 mutex_unlock(&dev_priv->perf.lock); 2841 2842 return ret; 2843 } 2844 2845 /** 2846 * i915_perf_register - exposes i915-perf to userspace 2847 * @dev_priv: i915 device instance 2848 * 2849 * In particular OA metric sets are advertised under a sysfs metrics/ 2850 * directory allowing userspace to enumerate valid IDs that can be 2851 * used to open an i915-perf stream. 2852 */ 2853 void i915_perf_register(struct drm_i915_private *dev_priv) 2854 { 2855 int ret; 2856 2857 if (!dev_priv->perf.initialized) 2858 return; 2859 2860 /* To be sure we're synchronized with an attempted 2861 * i915_perf_open_ioctl(); considering that we register after 2862 * being exposed to userspace. 2863 */ 2864 mutex_lock(&dev_priv->perf.lock); 2865 2866 dev_priv->perf.metrics_kobj = 2867 kobject_create_and_add("metrics", 2868 &dev_priv->drm.primary->kdev->kobj); 2869 if (!dev_priv->perf.metrics_kobj) 2870 goto exit; 2871 2872 sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr); 2873 2874 if (IS_HASWELL(dev_priv)) { 2875 i915_perf_load_test_config_hsw(dev_priv); 2876 } else if (IS_BROADWELL(dev_priv)) { 2877 i915_perf_load_test_config_bdw(dev_priv); 2878 } else if (IS_CHERRYVIEW(dev_priv)) { 2879 i915_perf_load_test_config_chv(dev_priv); 2880 } else if (IS_SKYLAKE(dev_priv)) { 2881 if (IS_SKL_GT2(dev_priv)) 2882 i915_perf_load_test_config_sklgt2(dev_priv); 2883 else if (IS_SKL_GT3(dev_priv)) 2884 i915_perf_load_test_config_sklgt3(dev_priv); 2885 else if (IS_SKL_GT4(dev_priv)) 2886 i915_perf_load_test_config_sklgt4(dev_priv); 2887 } else if (IS_BROXTON(dev_priv)) { 2888 i915_perf_load_test_config_bxt(dev_priv); 2889 } else if (IS_KABYLAKE(dev_priv)) { 2890 if (IS_KBL_GT2(dev_priv)) 2891 i915_perf_load_test_config_kblgt2(dev_priv); 2892 else if (IS_KBL_GT3(dev_priv)) 2893 i915_perf_load_test_config_kblgt3(dev_priv); 2894 } else if (IS_GEMINILAKE(dev_priv)) { 2895 i915_perf_load_test_config_glk(dev_priv); 2896 } else if (IS_COFFEELAKE(dev_priv)) { 2897 if (IS_CFL_GT2(dev_priv)) 2898 i915_perf_load_test_config_cflgt2(dev_priv); 2899 if (IS_CFL_GT3(dev_priv)) 2900 i915_perf_load_test_config_cflgt3(dev_priv); 2901 } else if (IS_CANNONLAKE(dev_priv)) { 2902 i915_perf_load_test_config_cnl(dev_priv); 2903 } else if (IS_ICELAKE(dev_priv)) { 2904 i915_perf_load_test_config_icl(dev_priv); 2905 } 2906 2907 if (dev_priv->perf.oa.test_config.id == 0) 2908 goto sysfs_error; 2909 2910 ret = sysfs_create_group(dev_priv->perf.metrics_kobj, 2911 &dev_priv->perf.oa.test_config.sysfs_metric); 2912 if (ret) 2913 goto sysfs_error; 2914 2915 atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1); 2916 2917 goto exit; 2918 2919 sysfs_error: 2920 kobject_put(dev_priv->perf.metrics_kobj); 2921 dev_priv->perf.metrics_kobj = NULL; 2922 2923 exit: 2924 mutex_unlock(&dev_priv->perf.lock); 2925 } 2926 2927 /** 2928 * i915_perf_unregister - hide i915-perf from userspace 2929 * @dev_priv: i915 device instance 2930 * 2931 * i915-perf state cleanup is split up into an 'unregister' and 2932 * 'deinit' phase where the interface is first hidden from 2933 * userspace by i915_perf_unregister() before cleaning up 2934 * remaining state in i915_perf_fini(). 2935 */ 2936 void i915_perf_unregister(struct drm_i915_private *dev_priv) 2937 { 2938 if (!dev_priv->perf.metrics_kobj) 2939 return; 2940 2941 sysfs_remove_group(dev_priv->perf.metrics_kobj, 2942 &dev_priv->perf.oa.test_config.sysfs_metric); 2943 2944 kobject_put(dev_priv->perf.metrics_kobj); 2945 dev_priv->perf.metrics_kobj = NULL; 2946 } 2947 2948 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr) 2949 { 2950 static const i915_reg_t flex_eu_regs[] = { 2951 EU_PERF_CNTL0, 2952 EU_PERF_CNTL1, 2953 EU_PERF_CNTL2, 2954 EU_PERF_CNTL3, 2955 EU_PERF_CNTL4, 2956 EU_PERF_CNTL5, 2957 EU_PERF_CNTL6, 2958 }; 2959 int i; 2960 2961 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 2962 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 2963 return true; 2964 } 2965 return false; 2966 } 2967 2968 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr) 2969 { 2970 return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) && 2971 addr <= i915_mmio_reg_offset(OASTARTTRIG8)) || 2972 (addr >= i915_mmio_reg_offset(OAREPORTTRIG1) && 2973 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) || 2974 (addr >= i915_mmio_reg_offset(OACEC0_0) && 2975 addr <= i915_mmio_reg_offset(OACEC7_1)); 2976 } 2977 2978 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 2979 { 2980 return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) || 2981 (addr >= i915_mmio_reg_offset(MICRO_BP0_0) && 2982 addr <= i915_mmio_reg_offset(NOA_WRITE)) || 2983 (addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) && 2984 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) || 2985 (addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) && 2986 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI)); 2987 } 2988 2989 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 2990 { 2991 return gen7_is_valid_mux_addr(dev_priv, addr) || 2992 addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) || 2993 (addr >= i915_mmio_reg_offset(RPM_CONFIG0) && 2994 addr <= i915_mmio_reg_offset(NOA_CONFIG(8))); 2995 } 2996 2997 static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 2998 { 2999 return gen8_is_valid_mux_addr(dev_priv, addr) || 3000 (addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) && 3001 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI)); 3002 } 3003 3004 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3005 { 3006 return gen7_is_valid_mux_addr(dev_priv, addr) || 3007 (addr >= 0x25100 && addr <= 0x2FF90) || 3008 (addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) && 3009 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) || 3010 addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0); 3011 } 3012 3013 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr) 3014 { 3015 return gen7_is_valid_mux_addr(dev_priv, addr) || 3016 (addr >= 0x182300 && addr <= 0x1823A4); 3017 } 3018 3019 static uint32_t mask_reg_value(u32 reg, u32 val) 3020 { 3021 /* HALF_SLICE_CHICKEN2 is programmed with a the 3022 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3023 * programmed by userspace doesn't change this. 3024 */ 3025 if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg) 3026 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3027 3028 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3029 * indicated by its name and a bunch of selection fields used by OA 3030 * configs. 3031 */ 3032 if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg) 3033 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3034 3035 return val; 3036 } 3037 3038 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv, 3039 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr), 3040 u32 __user *regs, 3041 u32 n_regs) 3042 { 3043 struct i915_oa_reg *oa_regs; 3044 int err; 3045 u32 i; 3046 3047 if (!n_regs) 3048 return NULL; 3049 3050 if (!access_ok(VERIFY_READ, regs, n_regs * sizeof(u32) * 2)) 3051 return ERR_PTR(-EFAULT); 3052 3053 /* No is_valid function means we're not allowing any register to be programmed. */ 3054 GEM_BUG_ON(!is_valid); 3055 if (!is_valid) 3056 return ERR_PTR(-EINVAL); 3057 3058 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3059 if (!oa_regs) 3060 return ERR_PTR(-ENOMEM); 3061 3062 for (i = 0; i < n_regs; i++) { 3063 u32 addr, value; 3064 3065 err = get_user(addr, regs); 3066 if (err) 3067 goto addr_err; 3068 3069 if (!is_valid(dev_priv, addr)) { 3070 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3071 err = -EINVAL; 3072 goto addr_err; 3073 } 3074 3075 err = get_user(value, regs + 1); 3076 if (err) 3077 goto addr_err; 3078 3079 oa_regs[i].addr = _MMIO(addr); 3080 oa_regs[i].value = mask_reg_value(addr, value); 3081 3082 regs += 2; 3083 } 3084 3085 return oa_regs; 3086 3087 addr_err: 3088 kfree(oa_regs); 3089 return ERR_PTR(err); 3090 } 3091 3092 static ssize_t show_dynamic_id(struct device *dev, 3093 struct device_attribute *attr, 3094 char *buf) 3095 { 3096 struct i915_oa_config *oa_config = 3097 container_of(attr, typeof(*oa_config), sysfs_metric_id); 3098 3099 return sprintf(buf, "%d\n", oa_config->id); 3100 } 3101 3102 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv, 3103 struct i915_oa_config *oa_config) 3104 { 3105 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 3106 oa_config->sysfs_metric_id.attr.name = "id"; 3107 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 3108 oa_config->sysfs_metric_id.show = show_dynamic_id; 3109 oa_config->sysfs_metric_id.store = NULL; 3110 3111 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 3112 oa_config->attrs[1] = NULL; 3113 3114 oa_config->sysfs_metric.name = oa_config->uuid; 3115 oa_config->sysfs_metric.attrs = oa_config->attrs; 3116 3117 return sysfs_create_group(dev_priv->perf.metrics_kobj, 3118 &oa_config->sysfs_metric); 3119 } 3120 3121 /** 3122 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 3123 * @dev: drm device 3124 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 3125 * userspace (unvalidated) 3126 * @file: drm file 3127 * 3128 * Validates the submitted OA register to be saved into a new OA config that 3129 * can then be used for programming the OA unit and its NOA network. 3130 * 3131 * Returns: A new allocated config number to be used with the perf open ioctl 3132 * or a negative error code on failure. 3133 */ 3134 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 3135 struct drm_file *file) 3136 { 3137 struct drm_i915_private *dev_priv = dev->dev_private; 3138 struct drm_i915_perf_oa_config *args = data; 3139 struct i915_oa_config *oa_config, *tmp; 3140 int err, id; 3141 3142 if (!dev_priv->perf.initialized) { 3143 DRM_DEBUG("i915 perf interface not available for this system\n"); 3144 return -ENOTSUPP; 3145 } 3146 3147 if (!dev_priv->perf.metrics_kobj) { 3148 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 3149 return -EINVAL; 3150 } 3151 3152 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3153 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 3154 return -EACCES; 3155 } 3156 3157 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 3158 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 3159 (!args->flex_regs_ptr || !args->n_flex_regs)) { 3160 DRM_DEBUG("No OA registers given\n"); 3161 return -EINVAL; 3162 } 3163 3164 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 3165 if (!oa_config) { 3166 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 3167 return -ENOMEM; 3168 } 3169 3170 atomic_set(&oa_config->ref_count, 1); 3171 3172 if (!uuid_is_valid(args->uuid)) { 3173 DRM_DEBUG("Invalid uuid format for OA config\n"); 3174 err = -EINVAL; 3175 goto reg_err; 3176 } 3177 3178 /* Last character in oa_config->uuid will be 0 because oa_config is 3179 * kzalloc. 3180 */ 3181 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 3182 3183 oa_config->mux_regs_len = args->n_mux_regs; 3184 oa_config->mux_regs = 3185 alloc_oa_regs(dev_priv, 3186 dev_priv->perf.oa.ops.is_valid_mux_reg, 3187 u64_to_user_ptr(args->mux_regs_ptr), 3188 args->n_mux_regs); 3189 3190 if (IS_ERR(oa_config->mux_regs)) { 3191 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 3192 err = PTR_ERR(oa_config->mux_regs); 3193 goto reg_err; 3194 } 3195 3196 oa_config->b_counter_regs_len = args->n_boolean_regs; 3197 oa_config->b_counter_regs = 3198 alloc_oa_regs(dev_priv, 3199 dev_priv->perf.oa.ops.is_valid_b_counter_reg, 3200 u64_to_user_ptr(args->boolean_regs_ptr), 3201 args->n_boolean_regs); 3202 3203 if (IS_ERR(oa_config->b_counter_regs)) { 3204 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 3205 err = PTR_ERR(oa_config->b_counter_regs); 3206 goto reg_err; 3207 } 3208 3209 if (INTEL_GEN(dev_priv) < 8) { 3210 if (args->n_flex_regs != 0) { 3211 err = -EINVAL; 3212 goto reg_err; 3213 } 3214 } else { 3215 oa_config->flex_regs_len = args->n_flex_regs; 3216 oa_config->flex_regs = 3217 alloc_oa_regs(dev_priv, 3218 dev_priv->perf.oa.ops.is_valid_flex_reg, 3219 u64_to_user_ptr(args->flex_regs_ptr), 3220 args->n_flex_regs); 3221 3222 if (IS_ERR(oa_config->flex_regs)) { 3223 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 3224 err = PTR_ERR(oa_config->flex_regs); 3225 goto reg_err; 3226 } 3227 } 3228 3229 err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 3230 if (err) 3231 goto reg_err; 3232 3233 /* We shouldn't have too many configs, so this iteration shouldn't be 3234 * too costly. 3235 */ 3236 idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) { 3237 if (!strcmp(tmp->uuid, oa_config->uuid)) { 3238 DRM_DEBUG("OA config already exists with this uuid\n"); 3239 err = -EADDRINUSE; 3240 goto sysfs_err; 3241 } 3242 } 3243 3244 err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config); 3245 if (err) { 3246 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 3247 goto sysfs_err; 3248 } 3249 3250 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 3251 oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr, 3252 oa_config, 2, 3253 0, GFP_KERNEL); 3254 if (oa_config->id < 0) { 3255 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 3256 err = oa_config->id; 3257 goto sysfs_err; 3258 } 3259 3260 mutex_unlock(&dev_priv->perf.metrics_lock); 3261 3262 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 3263 3264 return oa_config->id; 3265 3266 sysfs_err: 3267 mutex_unlock(&dev_priv->perf.metrics_lock); 3268 reg_err: 3269 put_oa_config(dev_priv, oa_config); 3270 DRM_DEBUG("Failed to add new OA config\n"); 3271 return err; 3272 } 3273 3274 /** 3275 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 3276 * @dev: drm device 3277 * @data: ioctl data (pointer to u64 integer) copied from userspace 3278 * @file: drm file 3279 * 3280 * Configs can be removed while being used, the will stop appearing in sysfs 3281 * and their content will be freed when the stream using the config is closed. 3282 * 3283 * Returns: 0 on success or a negative error code on failure. 3284 */ 3285 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 3286 struct drm_file *file) 3287 { 3288 struct drm_i915_private *dev_priv = dev->dev_private; 3289 u64 *arg = data; 3290 struct i915_oa_config *oa_config; 3291 int ret; 3292 3293 if (!dev_priv->perf.initialized) { 3294 DRM_DEBUG("i915 perf interface not available for this system\n"); 3295 return -ENOTSUPP; 3296 } 3297 3298 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) { 3299 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 3300 return -EACCES; 3301 } 3302 3303 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock); 3304 if (ret) 3305 goto lock_err; 3306 3307 oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg); 3308 if (!oa_config) { 3309 DRM_DEBUG("Failed to remove unknown OA config\n"); 3310 ret = -ENOENT; 3311 goto config_err; 3312 } 3313 3314 GEM_BUG_ON(*arg != oa_config->id); 3315 3316 sysfs_remove_group(dev_priv->perf.metrics_kobj, 3317 &oa_config->sysfs_metric); 3318 3319 idr_remove(&dev_priv->perf.metrics_idr, *arg); 3320 3321 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 3322 3323 put_oa_config(dev_priv, oa_config); 3324 3325 config_err: 3326 mutex_unlock(&dev_priv->perf.metrics_lock); 3327 lock_err: 3328 return ret; 3329 } 3330 3331 static struct ctl_table oa_table[] = { 3332 { 3333 .procname = "perf_stream_paranoid", 3334 .data = &i915_perf_stream_paranoid, 3335 .maxlen = sizeof(i915_perf_stream_paranoid), 3336 .mode = 0644, 3337 .proc_handler = proc_dointvec_minmax, 3338 .extra1 = &zero, 3339 .extra2 = &one, 3340 }, 3341 { 3342 .procname = "oa_max_sample_rate", 3343 .data = &i915_oa_max_sample_rate, 3344 .maxlen = sizeof(i915_oa_max_sample_rate), 3345 .mode = 0644, 3346 .proc_handler = proc_dointvec_minmax, 3347 .extra1 = &zero, 3348 .extra2 = &oa_sample_rate_hard_limit, 3349 }, 3350 {} 3351 }; 3352 3353 static struct ctl_table i915_root[] = { 3354 { 3355 .procname = "i915", 3356 .maxlen = 0, 3357 .mode = 0555, 3358 .child = oa_table, 3359 }, 3360 {} 3361 }; 3362 3363 static struct ctl_table dev_root[] = { 3364 { 3365 .procname = "dev", 3366 .maxlen = 0, 3367 .mode = 0555, 3368 .child = i915_root, 3369 }, 3370 {} 3371 }; 3372 3373 /** 3374 * i915_perf_init - initialize i915-perf state on module load 3375 * @dev_priv: i915 device instance 3376 * 3377 * Initializes i915-perf state without exposing anything to userspace. 3378 * 3379 * Note: i915-perf initialization is split into an 'init' and 'register' 3380 * phase with the i915_perf_register() exposing state to userspace. 3381 */ 3382 void i915_perf_init(struct drm_i915_private *dev_priv) 3383 { 3384 if (IS_HASWELL(dev_priv)) { 3385 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3386 gen7_is_valid_b_counter_addr; 3387 dev_priv->perf.oa.ops.is_valid_mux_reg = 3388 hsw_is_valid_mux_addr; 3389 dev_priv->perf.oa.ops.is_valid_flex_reg = NULL; 3390 dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer; 3391 dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set; 3392 dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set; 3393 dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable; 3394 dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable; 3395 dev_priv->perf.oa.ops.read = gen7_oa_read; 3396 dev_priv->perf.oa.ops.oa_hw_tail_read = 3397 gen7_oa_hw_tail_read; 3398 3399 dev_priv->perf.oa.oa_formats = hsw_oa_formats; 3400 } else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) { 3401 /* Note: that although we could theoretically also support the 3402 * legacy ringbuffer mode on BDW (and earlier iterations of 3403 * this driver, before upstreaming did this) it didn't seem 3404 * worth the complexity to maintain now that BDW+ enable 3405 * execlist mode by default. 3406 */ 3407 dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats; 3408 3409 dev_priv->perf.oa.ops.init_oa_buffer = gen8_init_oa_buffer; 3410 dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable; 3411 dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable; 3412 dev_priv->perf.oa.ops.read = gen8_oa_read; 3413 dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 3414 3415 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv)) { 3416 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3417 gen7_is_valid_b_counter_addr; 3418 dev_priv->perf.oa.ops.is_valid_mux_reg = 3419 gen8_is_valid_mux_addr; 3420 dev_priv->perf.oa.ops.is_valid_flex_reg = 3421 gen8_is_valid_flex_addr; 3422 3423 if (IS_CHERRYVIEW(dev_priv)) { 3424 dev_priv->perf.oa.ops.is_valid_mux_reg = 3425 chv_is_valid_mux_addr; 3426 } 3427 3428 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set; 3429 dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set; 3430 3431 if (IS_GEN8(dev_priv)) { 3432 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120; 3433 dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce; 3434 3435 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25); 3436 } else { 3437 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128; 3438 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de; 3439 3440 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16); 3441 } 3442 } else if (IS_GEN(dev_priv, 10, 11)) { 3443 dev_priv->perf.oa.ops.is_valid_b_counter_reg = 3444 gen7_is_valid_b_counter_addr; 3445 dev_priv->perf.oa.ops.is_valid_mux_reg = 3446 gen10_is_valid_mux_addr; 3447 dev_priv->perf.oa.ops.is_valid_flex_reg = 3448 gen8_is_valid_flex_addr; 3449 3450 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set; 3451 dev_priv->perf.oa.ops.disable_metric_set = gen10_disable_metric_set; 3452 3453 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128; 3454 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de; 3455 3456 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16); 3457 } 3458 } 3459 3460 if (dev_priv->perf.oa.ops.enable_metric_set) { 3461 hrtimer_init(&dev_priv->perf.oa.poll_check_timer, 3462 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3463 dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb; 3464 init_waitqueue_head(&dev_priv->perf.oa.poll_wq); 3465 3466 INIT_LIST_HEAD(&dev_priv->perf.streams); 3467 mutex_init(&dev_priv->perf.lock); 3468 spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock); 3469 3470 oa_sample_rate_hard_limit = 1000 * 3471 (INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz / 2); 3472 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root); 3473 3474 mutex_init(&dev_priv->perf.metrics_lock); 3475 idr_init(&dev_priv->perf.metrics_idr); 3476 3477 dev_priv->perf.initialized = true; 3478 } 3479 } 3480 3481 static int destroy_config(int id, void *p, void *data) 3482 { 3483 struct drm_i915_private *dev_priv = data; 3484 struct i915_oa_config *oa_config = p; 3485 3486 put_oa_config(dev_priv, oa_config); 3487 3488 return 0; 3489 } 3490 3491 /** 3492 * i915_perf_fini - Counter part to i915_perf_init() 3493 * @dev_priv: i915 device instance 3494 */ 3495 void i915_perf_fini(struct drm_i915_private *dev_priv) 3496 { 3497 if (!dev_priv->perf.initialized) 3498 return; 3499 3500 idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv); 3501 idr_destroy(&dev_priv->perf.metrics_idr); 3502 3503 unregister_sysctl_table(dev_priv->perf.sysctl_header); 3504 3505 memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops)); 3506 3507 dev_priv->perf.initialized = false; 3508 } 3509