xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision 8ffd3d5e)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "gem/i915_gem_context.h"
199 #include "gem/i915_gem_internal.h"
200 #include "gt/intel_engine_pm.h"
201 #include "gt/intel_engine_regs.h"
202 #include "gt/intel_engine_user.h"
203 #include "gt/intel_execlists_submission.h"
204 #include "gt/intel_gpu_commands.h"
205 #include "gt/intel_gt.h"
206 #include "gt/intel_gt_clock_utils.h"
207 #include "gt/intel_gt_mcr.h"
208 #include "gt/intel_gt_regs.h"
209 #include "gt/intel_lrc.h"
210 #include "gt/intel_lrc_reg.h"
211 #include "gt/intel_ring.h"
212 #include "gt/uc/intel_guc_slpc.h"
213 
214 #include "i915_drv.h"
215 #include "i915_file_private.h"
216 #include "i915_perf.h"
217 #include "i915_perf_oa_regs.h"
218 #include "i915_reg.h"
219 
220 /* HW requires this to be a power of two, between 128k and 16M, though driver
221  * is currently generally designed assuming the largest 16M size is used such
222  * that the overflow cases are unlikely in normal operation.
223  */
224 #define OA_BUFFER_SIZE		SZ_16M
225 
226 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
227 
228 /**
229  * DOC: OA Tail Pointer Race
230  *
231  * There's a HW race condition between OA unit tail pointer register updates and
232  * writes to memory whereby the tail pointer can sometimes get ahead of what's
233  * been written out to the OA buffer so far (in terms of what's visible to the
234  * CPU).
235  *
236  * Although this can be observed explicitly while copying reports to userspace
237  * by checking for a zeroed report-id field in tail reports, we want to account
238  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
239  * redundant read() attempts.
240  *
241  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
242  * in the OA buffer, starting from the tail reported by the HW until we find a
243  * report with its first 2 dwords not 0 meaning its previous report is
244  * completely in memory and ready to be read. Those dwords are also set to 0
245  * once read and the whole buffer is cleared upon OA buffer initialization. The
246  * first dword is the reason for this report while the second is the timestamp,
247  * making the chances of having those 2 fields at 0 fairly unlikely. A more
248  * detailed explanation is available in oa_buffer_check_unlocked().
249  *
250  * Most of the implementation details for this workaround are in
251  * oa_buffer_check_unlocked() and _append_oa_reports()
252  *
253  * Note for posterity: previously the driver used to define an effective tail
254  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
255  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
256  * This was flawed considering that the OA unit may also automatically generate
257  * non-periodic reports (such as on context switch) or the OA unit may be
258  * enabled without any periodic sampling.
259  */
260 #define OA_TAIL_MARGIN_NSEC	100000ULL
261 #define INVALID_TAIL_PTR	0xffffffff
262 
263 /* The default frequency for checking whether the OA unit has written new
264  * reports to the circular OA buffer...
265  */
266 #define DEFAULT_POLL_FREQUENCY_HZ 200
267 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
268 
269 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
270 static u32 i915_perf_stream_paranoid = true;
271 
272 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
273  * of the 64bit timestamp bits to trigger reports from) but there's currently
274  * no known use case for sampling as infrequently as once per 47 thousand years.
275  *
276  * Since the timestamps included in OA reports are only 32bits it seems
277  * reasonable to limit the OA exponent where it's still possible to account for
278  * overflow in OA report timestamps.
279  */
280 #define OA_EXPONENT_MAX 31
281 
282 #define INVALID_CTX_ID 0xffffffff
283 
284 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
285 #define OAREPORT_REASON_MASK           0x3f
286 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
287 #define OAREPORT_REASON_SHIFT          19
288 #define OAREPORT_REASON_TIMER          (1<<0)
289 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
290 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
291 
292 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
293 
294 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
295  *
296  * The highest sampling frequency we can theoretically program the OA unit
297  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
298  *
299  * Initialized just before we register the sysctl parameter.
300  */
301 static int oa_sample_rate_hard_limit;
302 
303 /* Theoretically we can program the OA unit to sample every 160ns but don't
304  * allow that by default unless root...
305  *
306  * The default threshold of 100000Hz is based on perf's similar
307  * kernel.perf_event_max_sample_rate sysctl parameter.
308  */
309 static u32 i915_oa_max_sample_rate = 100000;
310 
311 /* XXX: beware if future OA HW adds new report formats that the current
312  * code assumes all reports have a power-of-two size and ~(size - 1) can
313  * be used as a mask to align the OA tail pointer.
314  */
315 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
316 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
317 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
318 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
319 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
320 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
321 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
322 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
323 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
324 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
325 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
326 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
327 	[I915_OAR_FORMAT_A32u40_A4u32_B8_C8]    = { 5, 256 },
328 	[I915_OA_FORMAT_A24u40_A14u32_B8_C8]    = { 5, 256 },
329 };
330 
331 #define SAMPLE_OA_REPORT      (1<<0)
332 
333 /**
334  * struct perf_open_properties - for validated properties given to open a stream
335  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
336  * @single_context: Whether a single or all gpu contexts should be monitored
337  * @hold_preemption: Whether the preemption is disabled for the filtered
338  *                   context
339  * @ctx_handle: A gem ctx handle for use with @single_context
340  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
341  * @oa_format: An OA unit HW report format
342  * @oa_periodic: Whether to enable periodic OA unit sampling
343  * @oa_period_exponent: The OA unit sampling period is derived from this
344  * @engine: The engine (typically rcs0) being monitored by the OA unit
345  * @has_sseu: Whether @sseu was specified by userspace
346  * @sseu: internal SSEU configuration computed either from the userspace
347  *        specified configuration in the opening parameters or a default value
348  *        (see get_default_sseu_config())
349  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
350  * data availability
351  *
352  * As read_properties_unlocked() enumerates and validates the properties given
353  * to open a stream of metrics the configuration is built up in the structure
354  * which starts out zero initialized.
355  */
356 struct perf_open_properties {
357 	u32 sample_flags;
358 
359 	u64 single_context:1;
360 	u64 hold_preemption:1;
361 	u64 ctx_handle;
362 
363 	/* OA sampling state */
364 	int metrics_set;
365 	int oa_format;
366 	bool oa_periodic;
367 	int oa_period_exponent;
368 
369 	struct intel_engine_cs *engine;
370 
371 	bool has_sseu;
372 	struct intel_sseu sseu;
373 
374 	u64 poll_oa_period;
375 };
376 
377 struct i915_oa_config_bo {
378 	struct llist_node node;
379 
380 	struct i915_oa_config *oa_config;
381 	struct i915_vma *vma;
382 };
383 
384 static struct ctl_table_header *sysctl_header;
385 
386 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
387 
388 void i915_oa_config_release(struct kref *ref)
389 {
390 	struct i915_oa_config *oa_config =
391 		container_of(ref, typeof(*oa_config), ref);
392 
393 	kfree(oa_config->flex_regs);
394 	kfree(oa_config->b_counter_regs);
395 	kfree(oa_config->mux_regs);
396 
397 	kfree_rcu(oa_config, rcu);
398 }
399 
400 struct i915_oa_config *
401 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
402 {
403 	struct i915_oa_config *oa_config;
404 
405 	rcu_read_lock();
406 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
407 	if (oa_config)
408 		oa_config = i915_oa_config_get(oa_config);
409 	rcu_read_unlock();
410 
411 	return oa_config;
412 }
413 
414 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
415 {
416 	i915_oa_config_put(oa_bo->oa_config);
417 	i915_vma_put(oa_bo->vma);
418 	kfree(oa_bo);
419 }
420 
421 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
422 {
423 	struct intel_uncore *uncore = stream->uncore;
424 
425 	return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
426 	       GEN12_OAG_OATAILPTR_MASK;
427 }
428 
429 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
430 {
431 	struct intel_uncore *uncore = stream->uncore;
432 
433 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
434 }
435 
436 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
437 {
438 	struct intel_uncore *uncore = stream->uncore;
439 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
440 
441 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
442 }
443 
444 /**
445  * oa_buffer_check_unlocked - check for data and update tail ptr state
446  * @stream: i915 stream instance
447  *
448  * This is either called via fops (for blocking reads in user ctx) or the poll
449  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
450  * if there is data available for userspace to read.
451  *
452  * This function is central to providing a workaround for the OA unit tail
453  * pointer having a race with respect to what data is visible to the CPU.
454  * It is responsible for reading tail pointers from the hardware and giving
455  * the pointers time to 'age' before they are made available for reading.
456  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
457  *
458  * Besides returning true when there is data available to read() this function
459  * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
460  * object.
461  *
462  * Note: It's safe to read OA config state here unlocked, assuming that this is
463  * only called while the stream is enabled, while the global OA configuration
464  * can't be modified.
465  *
466  * Returns: %true if the OA buffer contains data, else %false
467  */
468 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
469 {
470 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
471 	int report_size = stream->oa_buffer.format->size;
472 	unsigned long flags;
473 	bool pollin;
474 	u32 hw_tail;
475 	u64 now;
476 
477 	/* We have to consider the (unlikely) possibility that read() errors
478 	 * could result in an OA buffer reset which might reset the head and
479 	 * tail state.
480 	 */
481 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
482 
483 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
484 
485 	/* The tail pointer increases in 64 byte increments,
486 	 * not in report_size steps...
487 	 */
488 	hw_tail &= ~(report_size - 1);
489 
490 	now = ktime_get_mono_fast_ns();
491 
492 	if (hw_tail == stream->oa_buffer.aging_tail &&
493 	    (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
494 		/* If the HW tail hasn't move since the last check and the HW
495 		 * tail has been aging for long enough, declare it the new
496 		 * tail.
497 		 */
498 		stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
499 	} else {
500 		u32 head, tail, aged_tail;
501 
502 		/* NB: The head we observe here might effectively be a little
503 		 * out of date. If a read() is in progress, the head could be
504 		 * anywhere between this head and stream->oa_buffer.tail.
505 		 */
506 		head = stream->oa_buffer.head - gtt_offset;
507 		aged_tail = stream->oa_buffer.tail - gtt_offset;
508 
509 		hw_tail -= gtt_offset;
510 		tail = hw_tail;
511 
512 		/* Walk the stream backward until we find a report with dword 0
513 		 * & 1 not at 0. Since the circular buffer pointers progress by
514 		 * increments of 64 bytes and that reports can be up to 256
515 		 * bytes long, we can't tell whether a report has fully landed
516 		 * in memory before the first 2 dwords of the following report
517 		 * have effectively landed.
518 		 *
519 		 * This is assuming that the writes of the OA unit land in
520 		 * memory in the order they were written to.
521 		 * If not : (╯°□°)╯︵ ┻━┻
522 		 */
523 		while (OA_TAKEN(tail, aged_tail) >= report_size) {
524 			u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
525 
526 			if (report32[0] != 0 || report32[1] != 0)
527 				break;
528 
529 			tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
530 		}
531 
532 		if (OA_TAKEN(hw_tail, tail) > report_size &&
533 		    __ratelimit(&stream->perf->tail_pointer_race))
534 			drm_notice(&stream->uncore->i915->drm,
535 				   "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n",
536 				   head, tail, hw_tail);
537 
538 		stream->oa_buffer.tail = gtt_offset + tail;
539 		stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
540 		stream->oa_buffer.aging_timestamp = now;
541 	}
542 
543 	pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
544 			  stream->oa_buffer.head - gtt_offset) >= report_size;
545 
546 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
547 
548 	return pollin;
549 }
550 
551 /**
552  * append_oa_status - Appends a status record to a userspace read() buffer.
553  * @stream: An i915-perf stream opened for OA metrics
554  * @buf: destination buffer given by userspace
555  * @count: the number of bytes userspace wants to read
556  * @offset: (inout): the current position for writing into @buf
557  * @type: The kind of status to report to userspace
558  *
559  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
560  * into the userspace read() buffer.
561  *
562  * The @buf @offset will only be updated on success.
563  *
564  * Returns: 0 on success, negative error code on failure.
565  */
566 static int append_oa_status(struct i915_perf_stream *stream,
567 			    char __user *buf,
568 			    size_t count,
569 			    size_t *offset,
570 			    enum drm_i915_perf_record_type type)
571 {
572 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
573 
574 	if ((count - *offset) < header.size)
575 		return -ENOSPC;
576 
577 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
578 		return -EFAULT;
579 
580 	(*offset) += header.size;
581 
582 	return 0;
583 }
584 
585 /**
586  * append_oa_sample - Copies single OA report into userspace read() buffer.
587  * @stream: An i915-perf stream opened for OA metrics
588  * @buf: destination buffer given by userspace
589  * @count: the number of bytes userspace wants to read
590  * @offset: (inout): the current position for writing into @buf
591  * @report: A single OA report to (optionally) include as part of the sample
592  *
593  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
594  * properties when opening a stream, tracked as `stream->sample_flags`. This
595  * function copies the requested components of a single sample to the given
596  * read() @buf.
597  *
598  * The @buf @offset will only be updated on success.
599  *
600  * Returns: 0 on success, negative error code on failure.
601  */
602 static int append_oa_sample(struct i915_perf_stream *stream,
603 			    char __user *buf,
604 			    size_t count,
605 			    size_t *offset,
606 			    const u8 *report)
607 {
608 	int report_size = stream->oa_buffer.format->size;
609 	struct drm_i915_perf_record_header header;
610 
611 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
612 	header.pad = 0;
613 	header.size = stream->sample_size;
614 
615 	if ((count - *offset) < header.size)
616 		return -ENOSPC;
617 
618 	buf += *offset;
619 	if (copy_to_user(buf, &header, sizeof(header)))
620 		return -EFAULT;
621 	buf += sizeof(header);
622 
623 	if (copy_to_user(buf, report, report_size))
624 		return -EFAULT;
625 
626 	(*offset) += header.size;
627 
628 	return 0;
629 }
630 
631 /**
632  * gen8_append_oa_reports - Copies all buffered OA reports into
633  *			    userspace read() buffer.
634  * @stream: An i915-perf stream opened for OA metrics
635  * @buf: destination buffer given by userspace
636  * @count: the number of bytes userspace wants to read
637  * @offset: (inout): the current position for writing into @buf
638  *
639  * Notably any error condition resulting in a short read (-%ENOSPC or
640  * -%EFAULT) will be returned even though one or more records may
641  * have been successfully copied. In this case it's up to the caller
642  * to decide if the error should be squashed before returning to
643  * userspace.
644  *
645  * Note: reports are consumed from the head, and appended to the
646  * tail, so the tail chases the head?... If you think that's mad
647  * and back-to-front you're not alone, but this follows the
648  * Gen PRM naming convention.
649  *
650  * Returns: 0 on success, negative error code on failure.
651  */
652 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
653 				  char __user *buf,
654 				  size_t count,
655 				  size_t *offset)
656 {
657 	struct intel_uncore *uncore = stream->uncore;
658 	int report_size = stream->oa_buffer.format->size;
659 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
660 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
661 	u32 mask = (OA_BUFFER_SIZE - 1);
662 	size_t start_offset = *offset;
663 	unsigned long flags;
664 	u32 head, tail;
665 	int ret = 0;
666 
667 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
668 		return -EIO;
669 
670 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
671 
672 	head = stream->oa_buffer.head;
673 	tail = stream->oa_buffer.tail;
674 
675 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
676 
677 	/*
678 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
679 	 * while indexing relative to oa_buf_base.
680 	 */
681 	head -= gtt_offset;
682 	tail -= gtt_offset;
683 
684 	/*
685 	 * An out of bounds or misaligned head or tail pointer implies a driver
686 	 * bug since we validate + align the tail pointers we read from the
687 	 * hardware and we are in full control of the head pointer which should
688 	 * only be incremented by multiples of the report size (notably also
689 	 * all a power of two).
690 	 */
691 	if (drm_WARN_ONCE(&uncore->i915->drm,
692 			  head > OA_BUFFER_SIZE || head % report_size ||
693 			  tail > OA_BUFFER_SIZE || tail % report_size,
694 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
695 			  head, tail))
696 		return -EIO;
697 
698 
699 	for (/* none */;
700 	     OA_TAKEN(tail, head);
701 	     head = (head + report_size) & mask) {
702 		u8 *report = oa_buf_base + head;
703 		u32 *report32 = (void *)report;
704 		u32 ctx_id;
705 		u32 reason;
706 
707 		/*
708 		 * All the report sizes factor neatly into the buffer
709 		 * size so we never expect to see a report split
710 		 * between the beginning and end of the buffer.
711 		 *
712 		 * Given the initial alignment check a misalignment
713 		 * here would imply a driver bug that would result
714 		 * in an overrun.
715 		 */
716 		if (drm_WARN_ON(&uncore->i915->drm,
717 				(OA_BUFFER_SIZE - head) < report_size)) {
718 			drm_err(&uncore->i915->drm,
719 				"Spurious OA head ptr: non-integral report offset\n");
720 			break;
721 		}
722 
723 		/*
724 		 * The reason field includes flags identifying what
725 		 * triggered this specific report (mostly timer
726 		 * triggered or e.g. due to a context switch).
727 		 *
728 		 * This field is never expected to be zero so we can
729 		 * check that the report isn't invalid before copying
730 		 * it to userspace...
731 		 */
732 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
733 			  (GRAPHICS_VER(stream->perf->i915) == 12 ?
734 			   OAREPORT_REASON_MASK_EXTENDED :
735 			   OAREPORT_REASON_MASK));
736 
737 		ctx_id = report32[2] & stream->specific_ctx_id_mask;
738 
739 		/*
740 		 * Squash whatever is in the CTX_ID field if it's marked as
741 		 * invalid to be sure we avoid false-positive, single-context
742 		 * filtering below...
743 		 *
744 		 * Note: that we don't clear the valid_ctx_bit so userspace can
745 		 * understand that the ID has been squashed by the kernel.
746 		 */
747 		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
748 		    GRAPHICS_VER(stream->perf->i915) <= 11)
749 			ctx_id = report32[2] = INVALID_CTX_ID;
750 
751 		/*
752 		 * NB: For Gen 8 the OA unit no longer supports clock gating
753 		 * off for a specific context and the kernel can't securely
754 		 * stop the counters from updating as system-wide / global
755 		 * values.
756 		 *
757 		 * Automatic reports now include a context ID so reports can be
758 		 * filtered on the cpu but it's not worth trying to
759 		 * automatically subtract/hide counter progress for other
760 		 * contexts while filtering since we can't stop userspace
761 		 * issuing MI_REPORT_PERF_COUNT commands which would still
762 		 * provide a side-band view of the real values.
763 		 *
764 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
765 		 * to normalize counters for a single filtered context then it
766 		 * needs be forwarded bookend context-switch reports so that it
767 		 * can track switches in between MI_REPORT_PERF_COUNT commands
768 		 * and can itself subtract/ignore the progress of counters
769 		 * associated with other contexts. Note that the hardware
770 		 * automatically triggers reports when switching to a new
771 		 * context which are tagged with the ID of the newly active
772 		 * context. To avoid the complexity (and likely fragility) of
773 		 * reading ahead while parsing reports to try and minimize
774 		 * forwarding redundant context switch reports (i.e. between
775 		 * other, unrelated contexts) we simply elect to forward them
776 		 * all.
777 		 *
778 		 * We don't rely solely on the reason field to identify context
779 		 * switches since it's not-uncommon for periodic samples to
780 		 * identify a switch before any 'context switch' report.
781 		 */
782 		if (!stream->ctx ||
783 		    stream->specific_ctx_id == ctx_id ||
784 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
785 		    reason & OAREPORT_REASON_CTX_SWITCH) {
786 
787 			/*
788 			 * While filtering for a single context we avoid
789 			 * leaking the IDs of other contexts.
790 			 */
791 			if (stream->ctx &&
792 			    stream->specific_ctx_id != ctx_id) {
793 				report32[2] = INVALID_CTX_ID;
794 			}
795 
796 			ret = append_oa_sample(stream, buf, count, offset,
797 					       report);
798 			if (ret)
799 				break;
800 
801 			stream->oa_buffer.last_ctx_id = ctx_id;
802 		}
803 
804 		/*
805 		 * Clear out the first 2 dword as a mean to detect unlanded
806 		 * reports.
807 		 */
808 		report32[0] = 0;
809 		report32[1] = 0;
810 	}
811 
812 	if (start_offset != *offset) {
813 		i915_reg_t oaheadptr;
814 
815 		oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
816 			    GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
817 
818 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
819 
820 		/*
821 		 * We removed the gtt_offset for the copy loop above, indexing
822 		 * relative to oa_buf_base so put back here...
823 		 */
824 		head += gtt_offset;
825 		intel_uncore_write(uncore, oaheadptr,
826 				   head & GEN12_OAG_OAHEADPTR_MASK);
827 		stream->oa_buffer.head = head;
828 
829 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
830 	}
831 
832 	return ret;
833 }
834 
835 /**
836  * gen8_oa_read - copy status records then buffered OA reports
837  * @stream: An i915-perf stream opened for OA metrics
838  * @buf: destination buffer given by userspace
839  * @count: the number of bytes userspace wants to read
840  * @offset: (inout): the current position for writing into @buf
841  *
842  * Checks OA unit status registers and if necessary appends corresponding
843  * status records for userspace (such as for a buffer full condition) and then
844  * initiate appending any buffered OA reports.
845  *
846  * Updates @offset according to the number of bytes successfully copied into
847  * the userspace buffer.
848  *
849  * NB: some data may be successfully copied to the userspace buffer
850  * even if an error is returned, and this is reflected in the
851  * updated @offset.
852  *
853  * Returns: zero on success or a negative error code
854  */
855 static int gen8_oa_read(struct i915_perf_stream *stream,
856 			char __user *buf,
857 			size_t count,
858 			size_t *offset)
859 {
860 	struct intel_uncore *uncore = stream->uncore;
861 	u32 oastatus;
862 	i915_reg_t oastatus_reg;
863 	int ret;
864 
865 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
866 		return -EIO;
867 
868 	oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
869 		       GEN12_OAG_OASTATUS : GEN8_OASTATUS;
870 
871 	oastatus = intel_uncore_read(uncore, oastatus_reg);
872 
873 	/*
874 	 * We treat OABUFFER_OVERFLOW as a significant error:
875 	 *
876 	 * Although theoretically we could handle this more gracefully
877 	 * sometimes, some Gens don't correctly suppress certain
878 	 * automatically triggered reports in this condition and so we
879 	 * have to assume that old reports are now being trampled
880 	 * over.
881 	 *
882 	 * Considering how we don't currently give userspace control
883 	 * over the OA buffer size and always configure a large 16MB
884 	 * buffer, then a buffer overflow does anyway likely indicate
885 	 * that something has gone quite badly wrong.
886 	 */
887 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
888 		ret = append_oa_status(stream, buf, count, offset,
889 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
890 		if (ret)
891 			return ret;
892 
893 		drm_dbg(&stream->perf->i915->drm,
894 			"OA buffer overflow (exponent = %d): force restart\n",
895 			stream->period_exponent);
896 
897 		stream->perf->ops.oa_disable(stream);
898 		stream->perf->ops.oa_enable(stream);
899 
900 		/*
901 		 * Note: .oa_enable() is expected to re-init the oabuffer and
902 		 * reset GEN8_OASTATUS for us
903 		 */
904 		oastatus = intel_uncore_read(uncore, oastatus_reg);
905 	}
906 
907 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
908 		ret = append_oa_status(stream, buf, count, offset,
909 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
910 		if (ret)
911 			return ret;
912 
913 		intel_uncore_rmw(uncore, oastatus_reg,
914 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
915 				 GEN8_OASTATUS_REPORT_LOST,
916 				 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
917 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
918 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
919 	}
920 
921 	return gen8_append_oa_reports(stream, buf, count, offset);
922 }
923 
924 /**
925  * gen7_append_oa_reports - Copies all buffered OA reports into
926  *			    userspace read() buffer.
927  * @stream: An i915-perf stream opened for OA metrics
928  * @buf: destination buffer given by userspace
929  * @count: the number of bytes userspace wants to read
930  * @offset: (inout): the current position for writing into @buf
931  *
932  * Notably any error condition resulting in a short read (-%ENOSPC or
933  * -%EFAULT) will be returned even though one or more records may
934  * have been successfully copied. In this case it's up to the caller
935  * to decide if the error should be squashed before returning to
936  * userspace.
937  *
938  * Note: reports are consumed from the head, and appended to the
939  * tail, so the tail chases the head?... If you think that's mad
940  * and back-to-front you're not alone, but this follows the
941  * Gen PRM naming convention.
942  *
943  * Returns: 0 on success, negative error code on failure.
944  */
945 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
946 				  char __user *buf,
947 				  size_t count,
948 				  size_t *offset)
949 {
950 	struct intel_uncore *uncore = stream->uncore;
951 	int report_size = stream->oa_buffer.format->size;
952 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
953 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
954 	u32 mask = (OA_BUFFER_SIZE - 1);
955 	size_t start_offset = *offset;
956 	unsigned long flags;
957 	u32 head, tail;
958 	int ret = 0;
959 
960 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
961 		return -EIO;
962 
963 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
964 
965 	head = stream->oa_buffer.head;
966 	tail = stream->oa_buffer.tail;
967 
968 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
969 
970 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
971 	 * while indexing relative to oa_buf_base.
972 	 */
973 	head -= gtt_offset;
974 	tail -= gtt_offset;
975 
976 	/* An out of bounds or misaligned head or tail pointer implies a driver
977 	 * bug since we validate + align the tail pointers we read from the
978 	 * hardware and we are in full control of the head pointer which should
979 	 * only be incremented by multiples of the report size (notably also
980 	 * all a power of two).
981 	 */
982 	if (drm_WARN_ONCE(&uncore->i915->drm,
983 			  head > OA_BUFFER_SIZE || head % report_size ||
984 			  tail > OA_BUFFER_SIZE || tail % report_size,
985 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
986 			  head, tail))
987 		return -EIO;
988 
989 
990 	for (/* none */;
991 	     OA_TAKEN(tail, head);
992 	     head = (head + report_size) & mask) {
993 		u8 *report = oa_buf_base + head;
994 		u32 *report32 = (void *)report;
995 
996 		/* All the report sizes factor neatly into the buffer
997 		 * size so we never expect to see a report split
998 		 * between the beginning and end of the buffer.
999 		 *
1000 		 * Given the initial alignment check a misalignment
1001 		 * here would imply a driver bug that would result
1002 		 * in an overrun.
1003 		 */
1004 		if (drm_WARN_ON(&uncore->i915->drm,
1005 				(OA_BUFFER_SIZE - head) < report_size)) {
1006 			drm_err(&uncore->i915->drm,
1007 				"Spurious OA head ptr: non-integral report offset\n");
1008 			break;
1009 		}
1010 
1011 		/* The report-ID field for periodic samples includes
1012 		 * some undocumented flags related to what triggered
1013 		 * the report and is never expected to be zero so we
1014 		 * can check that the report isn't invalid before
1015 		 * copying it to userspace...
1016 		 */
1017 		if (report32[0] == 0) {
1018 			if (__ratelimit(&stream->perf->spurious_report_rs))
1019 				drm_notice(&uncore->i915->drm,
1020 					   "Skipping spurious, invalid OA report\n");
1021 			continue;
1022 		}
1023 
1024 		ret = append_oa_sample(stream, buf, count, offset, report);
1025 		if (ret)
1026 			break;
1027 
1028 		/* Clear out the first 2 dwords as a mean to detect unlanded
1029 		 * reports.
1030 		 */
1031 		report32[0] = 0;
1032 		report32[1] = 0;
1033 	}
1034 
1035 	if (start_offset != *offset) {
1036 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1037 
1038 		/* We removed the gtt_offset for the copy loop above, indexing
1039 		 * relative to oa_buf_base so put back here...
1040 		 */
1041 		head += gtt_offset;
1042 
1043 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1044 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1045 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1046 		stream->oa_buffer.head = head;
1047 
1048 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1049 	}
1050 
1051 	return ret;
1052 }
1053 
1054 /**
1055  * gen7_oa_read - copy status records then buffered OA reports
1056  * @stream: An i915-perf stream opened for OA metrics
1057  * @buf: destination buffer given by userspace
1058  * @count: the number of bytes userspace wants to read
1059  * @offset: (inout): the current position for writing into @buf
1060  *
1061  * Checks Gen 7 specific OA unit status registers and if necessary appends
1062  * corresponding status records for userspace (such as for a buffer full
1063  * condition) and then initiate appending any buffered OA reports.
1064  *
1065  * Updates @offset according to the number of bytes successfully copied into
1066  * the userspace buffer.
1067  *
1068  * Returns: zero on success or a negative error code
1069  */
1070 static int gen7_oa_read(struct i915_perf_stream *stream,
1071 			char __user *buf,
1072 			size_t count,
1073 			size_t *offset)
1074 {
1075 	struct intel_uncore *uncore = stream->uncore;
1076 	u32 oastatus1;
1077 	int ret;
1078 
1079 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1080 		return -EIO;
1081 
1082 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1083 
1084 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1085 	 * bits while the OA unit is enabled (while the tail pointer
1086 	 * may be updated asynchronously) so we ignore status bits
1087 	 * that have already been reported to userspace.
1088 	 */
1089 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1090 
1091 	/* We treat OABUFFER_OVERFLOW as a significant error:
1092 	 *
1093 	 * - The status can be interpreted to mean that the buffer is
1094 	 *   currently full (with a higher precedence than OA_TAKEN()
1095 	 *   which will start to report a near-empty buffer after an
1096 	 *   overflow) but it's awkward that we can't clear the status
1097 	 *   on Haswell, so without a reset we won't be able to catch
1098 	 *   the state again.
1099 	 *
1100 	 * - Since it also implies the HW has started overwriting old
1101 	 *   reports it may also affect our sanity checks for invalid
1102 	 *   reports when copying to userspace that assume new reports
1103 	 *   are being written to cleared memory.
1104 	 *
1105 	 * - In the future we may want to introduce a flight recorder
1106 	 *   mode where the driver will automatically maintain a safe
1107 	 *   guard band between head/tail, avoiding this overflow
1108 	 *   condition, but we avoid the added driver complexity for
1109 	 *   now.
1110 	 */
1111 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1112 		ret = append_oa_status(stream, buf, count, offset,
1113 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1114 		if (ret)
1115 			return ret;
1116 
1117 		drm_dbg(&stream->perf->i915->drm,
1118 			"OA buffer overflow (exponent = %d): force restart\n",
1119 			stream->period_exponent);
1120 
1121 		stream->perf->ops.oa_disable(stream);
1122 		stream->perf->ops.oa_enable(stream);
1123 
1124 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1125 	}
1126 
1127 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1128 		ret = append_oa_status(stream, buf, count, offset,
1129 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1130 		if (ret)
1131 			return ret;
1132 		stream->perf->gen7_latched_oastatus1 |=
1133 			GEN7_OASTATUS1_REPORT_LOST;
1134 	}
1135 
1136 	return gen7_append_oa_reports(stream, buf, count, offset);
1137 }
1138 
1139 /**
1140  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1141  * @stream: An i915-perf stream opened for OA metrics
1142  *
1143  * Called when userspace tries to read() from a blocking stream FD opened
1144  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1145  * OA buffer and wakes us.
1146  *
1147  * Note: it's acceptable to have this return with some false positives
1148  * since any subsequent read handling will return -EAGAIN if there isn't
1149  * really data ready for userspace yet.
1150  *
1151  * Returns: zero on success or a negative error code
1152  */
1153 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1154 {
1155 	/* We would wait indefinitely if periodic sampling is not enabled */
1156 	if (!stream->periodic)
1157 		return -EIO;
1158 
1159 	return wait_event_interruptible(stream->poll_wq,
1160 					oa_buffer_check_unlocked(stream));
1161 }
1162 
1163 /**
1164  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1165  * @stream: An i915-perf stream opened for OA metrics
1166  * @file: An i915 perf stream file
1167  * @wait: poll() state table
1168  *
1169  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1170  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1171  * when it sees data ready to read in the circular OA buffer.
1172  */
1173 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1174 			      struct file *file,
1175 			      poll_table *wait)
1176 {
1177 	poll_wait(file, &stream->poll_wq, wait);
1178 }
1179 
1180 /**
1181  * i915_oa_read - just calls through to &i915_oa_ops->read
1182  * @stream: An i915-perf stream opened for OA metrics
1183  * @buf: destination buffer given by userspace
1184  * @count: the number of bytes userspace wants to read
1185  * @offset: (inout): the current position for writing into @buf
1186  *
1187  * Updates @offset according to the number of bytes successfully copied into
1188  * the userspace buffer.
1189  *
1190  * Returns: zero on success or a negative error code
1191  */
1192 static int i915_oa_read(struct i915_perf_stream *stream,
1193 			char __user *buf,
1194 			size_t count,
1195 			size_t *offset)
1196 {
1197 	return stream->perf->ops.read(stream, buf, count, offset);
1198 }
1199 
1200 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1201 {
1202 	struct i915_gem_engines_iter it;
1203 	struct i915_gem_context *ctx = stream->ctx;
1204 	struct intel_context *ce;
1205 	struct i915_gem_ww_ctx ww;
1206 	int err = -ENODEV;
1207 
1208 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1209 		if (ce->engine != stream->engine) /* first match! */
1210 			continue;
1211 
1212 		err = 0;
1213 		break;
1214 	}
1215 	i915_gem_context_unlock_engines(ctx);
1216 
1217 	if (err)
1218 		return ERR_PTR(err);
1219 
1220 	i915_gem_ww_ctx_init(&ww, true);
1221 retry:
1222 	/*
1223 	 * As the ID is the gtt offset of the context's vma we
1224 	 * pin the vma to ensure the ID remains fixed.
1225 	 */
1226 	err = intel_context_pin_ww(ce, &ww);
1227 	if (err == -EDEADLK) {
1228 		err = i915_gem_ww_ctx_backoff(&ww);
1229 		if (!err)
1230 			goto retry;
1231 	}
1232 	i915_gem_ww_ctx_fini(&ww);
1233 
1234 	if (err)
1235 		return ERR_PTR(err);
1236 
1237 	stream->pinned_ctx = ce;
1238 	return stream->pinned_ctx;
1239 }
1240 
1241 static int
1242 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset)
1243 {
1244 	u32 *cs, cmd;
1245 
1246 	cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1247 	if (GRAPHICS_VER(rq->engine->i915) >= 8)
1248 		cmd++;
1249 
1250 	cs = intel_ring_begin(rq, 4);
1251 	if (IS_ERR(cs))
1252 		return PTR_ERR(cs);
1253 
1254 	*cs++ = cmd;
1255 	*cs++ = i915_mmio_reg_offset(reg);
1256 	*cs++ = ggtt_offset;
1257 	*cs++ = 0;
1258 
1259 	intel_ring_advance(rq, cs);
1260 
1261 	return 0;
1262 }
1263 
1264 static int
1265 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset)
1266 {
1267 	struct i915_request *rq;
1268 	int err;
1269 
1270 	rq = i915_request_create(ce);
1271 	if (IS_ERR(rq))
1272 		return PTR_ERR(rq);
1273 
1274 	i915_request_get(rq);
1275 
1276 	err = __store_reg_to_mem(rq, reg, ggtt_offset);
1277 
1278 	i915_request_add(rq);
1279 	if (!err && i915_request_wait(rq, 0, HZ / 2) < 0)
1280 		err = -ETIME;
1281 
1282 	i915_request_put(rq);
1283 
1284 	return err;
1285 }
1286 
1287 static int
1288 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id)
1289 {
1290 	struct i915_vma *scratch;
1291 	u32 *val;
1292 	int err;
1293 
1294 	scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4);
1295 	if (IS_ERR(scratch))
1296 		return PTR_ERR(scratch);
1297 
1298 	err = i915_vma_sync(scratch);
1299 	if (err)
1300 		goto err_scratch;
1301 
1302 	err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base),
1303 			 i915_ggtt_offset(scratch));
1304 	if (err)
1305 		goto err_scratch;
1306 
1307 	val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB);
1308 	if (IS_ERR(val)) {
1309 		err = PTR_ERR(val);
1310 		goto err_scratch;
1311 	}
1312 
1313 	*ctx_id = *val;
1314 	i915_gem_object_unpin_map(scratch->obj);
1315 
1316 err_scratch:
1317 	i915_vma_unpin_and_release(&scratch, 0);
1318 	return err;
1319 }
1320 
1321 /*
1322  * For execlist mode of submission, pick an unused context id
1323  * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts
1324  * XXX_MAX_CONTEXT_HW_ID is used by idle context
1325  *
1326  * For GuC mode of submission read context id from the upper dword of the
1327  * EXECLIST_STATUS register. Note that we read this value only once and expect
1328  * that the value stays fixed for the entire OA use case. There are cases where
1329  * GuC KMD implementation may deregister a context to reuse it's context id, but
1330  * we prevent that from happening to the OA context by pinning it.
1331  */
1332 static int gen12_get_render_context_id(struct i915_perf_stream *stream)
1333 {
1334 	u32 ctx_id, mask;
1335 	int ret;
1336 
1337 	if (intel_engine_uses_guc(stream->engine)) {
1338 		ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id);
1339 		if (ret)
1340 			return ret;
1341 
1342 		mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) <<
1343 			(GEN12_GUC_SW_CTX_ID_SHIFT - 32);
1344 	} else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) {
1345 		ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) <<
1346 			(XEHP_SW_CTX_ID_SHIFT - 32);
1347 
1348 		mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1349 			(XEHP_SW_CTX_ID_SHIFT - 32);
1350 	} else {
1351 		ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) <<
1352 			 (GEN11_SW_CTX_ID_SHIFT - 32);
1353 
1354 		mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) <<
1355 			(GEN11_SW_CTX_ID_SHIFT - 32);
1356 	}
1357 	stream->specific_ctx_id = ctx_id & mask;
1358 	stream->specific_ctx_id_mask = mask;
1359 
1360 	return 0;
1361 }
1362 
1363 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end)
1364 {
1365 	u32 idx = *offset;
1366 	u32 len = min(MI_LRI_LEN(state[idx]) + idx, end);
1367 	bool found = false;
1368 
1369 	idx++;
1370 	for (; idx < len; idx += 2) {
1371 		if (state[idx] == reg) {
1372 			found = true;
1373 			break;
1374 		}
1375 	}
1376 
1377 	*offset = idx;
1378 	return found;
1379 }
1380 
1381 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg)
1382 {
1383 	u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4;
1384 	u32 *state = ce->lrc_reg_state;
1385 
1386 	if (drm_WARN_ON(&ce->engine->i915->drm, !state))
1387 		return U32_MAX;
1388 
1389 	for (offset = 0; offset < len; ) {
1390 		if (IS_MI_LRI_CMD(state[offset])) {
1391 			/*
1392 			 * We expect reg-value pairs in MI_LRI command, so
1393 			 * MI_LRI_LEN() should be even, if not, issue a warning.
1394 			 */
1395 			drm_WARN_ON(&ce->engine->i915->drm,
1396 				    MI_LRI_LEN(state[offset]) & 0x1);
1397 
1398 			if (oa_find_reg_in_lri(state, reg, &offset, len))
1399 				break;
1400 		} else {
1401 			offset++;
1402 		}
1403 	}
1404 
1405 	return offset < len ? offset : U32_MAX;
1406 }
1407 
1408 static int set_oa_ctx_ctrl_offset(struct intel_context *ce)
1409 {
1410 	i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base);
1411 	struct i915_perf *perf = &ce->engine->i915->perf;
1412 	u32 offset = perf->ctx_oactxctrl_offset;
1413 
1414 	/* Do this only once. Failure is stored as offset of U32_MAX */
1415 	if (offset)
1416 		goto exit;
1417 
1418 	offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg));
1419 	perf->ctx_oactxctrl_offset = offset;
1420 
1421 	drm_dbg(&ce->engine->i915->drm,
1422 		"%s oa ctx control at 0x%08x dword offset\n",
1423 		ce->engine->name, offset);
1424 
1425 exit:
1426 	return offset && offset != U32_MAX ? 0 : -ENODEV;
1427 }
1428 
1429 static bool engine_supports_mi_query(struct intel_engine_cs *engine)
1430 {
1431 	return engine->class == RENDER_CLASS;
1432 }
1433 
1434 /**
1435  * oa_get_render_ctx_id - determine and hold ctx hw id
1436  * @stream: An i915-perf stream opened for OA metrics
1437  *
1438  * Determine the render context hw id, and ensure it remains fixed for the
1439  * lifetime of the stream. This ensures that we don't have to worry about
1440  * updating the context ID in OACONTROL on the fly.
1441  *
1442  * Returns: zero on success or a negative error code
1443  */
1444 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1445 {
1446 	struct intel_context *ce;
1447 	int ret = 0;
1448 
1449 	ce = oa_pin_context(stream);
1450 	if (IS_ERR(ce))
1451 		return PTR_ERR(ce);
1452 
1453 	if (engine_supports_mi_query(stream->engine) &&
1454 	    HAS_LOGICAL_RING_CONTEXTS(stream->perf->i915)) {
1455 		/*
1456 		 * We are enabling perf query here. If we don't find the context
1457 		 * offset here, just return an error.
1458 		 */
1459 		ret = set_oa_ctx_ctrl_offset(ce);
1460 		if (ret) {
1461 			intel_context_unpin(ce);
1462 			drm_err(&stream->perf->i915->drm,
1463 				"Enabling perf query failed for %s\n",
1464 				stream->engine->name);
1465 			return ret;
1466 		}
1467 	}
1468 
1469 	switch (GRAPHICS_VER(ce->engine->i915)) {
1470 	case 7: {
1471 		/*
1472 		 * On Haswell we don't do any post processing of the reports
1473 		 * and don't need to use the mask.
1474 		 */
1475 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1476 		stream->specific_ctx_id_mask = 0;
1477 		break;
1478 	}
1479 
1480 	case 8:
1481 	case 9:
1482 		if (intel_engine_uses_guc(ce->engine)) {
1483 			/*
1484 			 * When using GuC, the context descriptor we write in
1485 			 * i915 is read by GuC and rewritten before it's
1486 			 * actually written into the hardware. The LRCA is
1487 			 * what is put into the context id field of the
1488 			 * context descriptor by GuC. Because it's aligned to
1489 			 * a page, the lower 12bits are always at 0 and
1490 			 * dropped by GuC. They won't be part of the context
1491 			 * ID in the OA reports, so squash those lower bits.
1492 			 */
1493 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1494 
1495 			/*
1496 			 * GuC uses the top bit to signal proxy submission, so
1497 			 * ignore that bit.
1498 			 */
1499 			stream->specific_ctx_id_mask =
1500 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1501 		} else {
1502 			stream->specific_ctx_id_mask =
1503 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1504 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1505 		}
1506 		break;
1507 
1508 	case 11:
1509 	case 12:
1510 		ret = gen12_get_render_context_id(stream);
1511 		break;
1512 
1513 	default:
1514 		MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1515 	}
1516 
1517 	ce->tag = stream->specific_ctx_id;
1518 
1519 	drm_dbg(&stream->perf->i915->drm,
1520 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1521 		stream->specific_ctx_id,
1522 		stream->specific_ctx_id_mask);
1523 
1524 	return ret;
1525 }
1526 
1527 /**
1528  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1529  * @stream: An i915-perf stream opened for OA metrics
1530  *
1531  * In case anything needed doing to ensure the context HW ID would remain valid
1532  * for the lifetime of the stream, then that can be undone here.
1533  */
1534 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1535 {
1536 	struct intel_context *ce;
1537 
1538 	ce = fetch_and_zero(&stream->pinned_ctx);
1539 	if (ce) {
1540 		ce->tag = 0; /* recomputed on next submission after parking */
1541 		intel_context_unpin(ce);
1542 	}
1543 
1544 	stream->specific_ctx_id = INVALID_CTX_ID;
1545 	stream->specific_ctx_id_mask = 0;
1546 }
1547 
1548 static void
1549 free_oa_buffer(struct i915_perf_stream *stream)
1550 {
1551 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1552 				   I915_VMA_RELEASE_MAP);
1553 
1554 	stream->oa_buffer.vaddr = NULL;
1555 }
1556 
1557 static void
1558 free_oa_configs(struct i915_perf_stream *stream)
1559 {
1560 	struct i915_oa_config_bo *oa_bo, *tmp;
1561 
1562 	i915_oa_config_put(stream->oa_config);
1563 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1564 		free_oa_config_bo(oa_bo);
1565 }
1566 
1567 static void
1568 free_noa_wait(struct i915_perf_stream *stream)
1569 {
1570 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1571 }
1572 
1573 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1574 {
1575 	struct i915_perf *perf = stream->perf;
1576 	struct intel_gt *gt = stream->engine->gt;
1577 
1578 	if (WARN_ON(stream != gt->perf.exclusive_stream))
1579 		return;
1580 
1581 	/*
1582 	 * Unset exclusive_stream first, it will be checked while disabling
1583 	 * the metric set on gen8+.
1584 	 *
1585 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1586 	 */
1587 	WRITE_ONCE(gt->perf.exclusive_stream, NULL);
1588 	perf->ops.disable_metric_set(stream);
1589 
1590 	free_oa_buffer(stream);
1591 
1592 	/*
1593 	 * Wa_16011777198:dg2: Unset the override of GUCRC mode to enable rc6.
1594 	 */
1595 	if (intel_uc_uses_guc_rc(&gt->uc) &&
1596 	    (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
1597 	     IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0)))
1598 		drm_WARN_ON(&gt->i915->drm,
1599 			    intel_guc_slpc_unset_gucrc_mode(&gt->uc.guc.slpc));
1600 
1601 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1602 	intel_engine_pm_put(stream->engine);
1603 
1604 	if (stream->ctx)
1605 		oa_put_render_ctx_id(stream);
1606 
1607 	free_oa_configs(stream);
1608 	free_noa_wait(stream);
1609 
1610 	if (perf->spurious_report_rs.missed) {
1611 		drm_notice(&gt->i915->drm,
1612 			   "%d spurious OA report notices suppressed due to ratelimiting\n",
1613 			   perf->spurious_report_rs.missed);
1614 	}
1615 }
1616 
1617 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1618 {
1619 	struct intel_uncore *uncore = stream->uncore;
1620 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1621 	unsigned long flags;
1622 
1623 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1624 
1625 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1626 	 * before OASTATUS1, but after OASTATUS2
1627 	 */
1628 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1629 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1630 	stream->oa_buffer.head = gtt_offset;
1631 
1632 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1633 
1634 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1635 			   gtt_offset | OABUFFER_SIZE_16M);
1636 
1637 	/* Mark that we need updated tail pointers to read from... */
1638 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1639 	stream->oa_buffer.tail = gtt_offset;
1640 
1641 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1642 
1643 	/* On Haswell we have to track which OASTATUS1 flags we've
1644 	 * already seen since they can't be cleared while periodic
1645 	 * sampling is enabled.
1646 	 */
1647 	stream->perf->gen7_latched_oastatus1 = 0;
1648 
1649 	/* NB: although the OA buffer will initially be allocated
1650 	 * zeroed via shmfs (and so this memset is redundant when
1651 	 * first allocating), we may re-init the OA buffer, either
1652 	 * when re-enabling a stream or in error/reset paths.
1653 	 *
1654 	 * The reason we clear the buffer for each re-init is for the
1655 	 * sanity check in gen7_append_oa_reports() that looks at the
1656 	 * report-id field to make sure it's non-zero which relies on
1657 	 * the assumption that new reports are being written to zeroed
1658 	 * memory...
1659 	 */
1660 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1661 }
1662 
1663 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1664 {
1665 	struct intel_uncore *uncore = stream->uncore;
1666 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1667 	unsigned long flags;
1668 
1669 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1670 
1671 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1672 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1673 	stream->oa_buffer.head = gtt_offset;
1674 
1675 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1676 
1677 	/*
1678 	 * PRM says:
1679 	 *
1680 	 *  "This MMIO must be set before the OATAILPTR
1681 	 *  register and after the OAHEADPTR register. This is
1682 	 *  to enable proper functionality of the overflow
1683 	 *  bit."
1684 	 */
1685 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1686 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1687 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1688 
1689 	/* Mark that we need updated tail pointers to read from... */
1690 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1691 	stream->oa_buffer.tail = gtt_offset;
1692 
1693 	/*
1694 	 * Reset state used to recognise context switches, affecting which
1695 	 * reports we will forward to userspace while filtering for a single
1696 	 * context.
1697 	 */
1698 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1699 
1700 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1701 
1702 	/*
1703 	 * NB: although the OA buffer will initially be allocated
1704 	 * zeroed via shmfs (and so this memset is redundant when
1705 	 * first allocating), we may re-init the OA buffer, either
1706 	 * when re-enabling a stream or in error/reset paths.
1707 	 *
1708 	 * The reason we clear the buffer for each re-init is for the
1709 	 * sanity check in gen8_append_oa_reports() that looks at the
1710 	 * reason field to make sure it's non-zero which relies on
1711 	 * the assumption that new reports are being written to zeroed
1712 	 * memory...
1713 	 */
1714 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1715 }
1716 
1717 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1718 {
1719 	struct intel_uncore *uncore = stream->uncore;
1720 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1721 	unsigned long flags;
1722 
1723 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1724 
1725 	intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1726 	intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1727 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1728 	stream->oa_buffer.head = gtt_offset;
1729 
1730 	/*
1731 	 * PRM says:
1732 	 *
1733 	 *  "This MMIO must be set before the OATAILPTR
1734 	 *  register and after the OAHEADPTR register. This is
1735 	 *  to enable proper functionality of the overflow
1736 	 *  bit."
1737 	 */
1738 	intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1739 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1740 	intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1741 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1742 
1743 	/* Mark that we need updated tail pointers to read from... */
1744 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1745 	stream->oa_buffer.tail = gtt_offset;
1746 
1747 	/*
1748 	 * Reset state used to recognise context switches, affecting which
1749 	 * reports we will forward to userspace while filtering for a single
1750 	 * context.
1751 	 */
1752 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1753 
1754 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1755 
1756 	/*
1757 	 * NB: although the OA buffer will initially be allocated
1758 	 * zeroed via shmfs (and so this memset is redundant when
1759 	 * first allocating), we may re-init the OA buffer, either
1760 	 * when re-enabling a stream or in error/reset paths.
1761 	 *
1762 	 * The reason we clear the buffer for each re-init is for the
1763 	 * sanity check in gen8_append_oa_reports() that looks at the
1764 	 * reason field to make sure it's non-zero which relies on
1765 	 * the assumption that new reports are being written to zeroed
1766 	 * memory...
1767 	 */
1768 	memset(stream->oa_buffer.vaddr, 0,
1769 	       stream->oa_buffer.vma->size);
1770 }
1771 
1772 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1773 {
1774 	struct drm_i915_private *i915 = stream->perf->i915;
1775 	struct intel_gt *gt = stream->engine->gt;
1776 	struct drm_i915_gem_object *bo;
1777 	struct i915_vma *vma;
1778 	int ret;
1779 
1780 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1781 		return -ENODEV;
1782 
1783 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1784 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1785 
1786 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1787 	if (IS_ERR(bo)) {
1788 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1789 		return PTR_ERR(bo);
1790 	}
1791 
1792 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1793 
1794 	/* PreHSW required 512K alignment, HSW requires 16M */
1795 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1796 	if (IS_ERR(vma)) {
1797 		ret = PTR_ERR(vma);
1798 		goto err_unref;
1799 	}
1800 
1801 	/*
1802 	 * PreHSW required 512K alignment.
1803 	 * HSW and onwards, align to requested size of OA buffer.
1804 	 */
1805 	ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH);
1806 	if (ret) {
1807 		drm_err(&gt->i915->drm, "Failed to pin OA buffer %d\n", ret);
1808 		goto err_unref;
1809 	}
1810 
1811 	stream->oa_buffer.vma = vma;
1812 
1813 	stream->oa_buffer.vaddr =
1814 		i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1815 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1816 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1817 		goto err_unpin;
1818 	}
1819 
1820 	return 0;
1821 
1822 err_unpin:
1823 	__i915_vma_unpin(vma);
1824 
1825 err_unref:
1826 	i915_gem_object_put(bo);
1827 
1828 	stream->oa_buffer.vaddr = NULL;
1829 	stream->oa_buffer.vma = NULL;
1830 
1831 	return ret;
1832 }
1833 
1834 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1835 				  bool save, i915_reg_t reg, u32 offset,
1836 				  u32 dword_count)
1837 {
1838 	u32 cmd;
1839 	u32 d;
1840 
1841 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1842 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1843 	if (GRAPHICS_VER(stream->perf->i915) >= 8)
1844 		cmd++;
1845 
1846 	for (d = 0; d < dword_count; d++) {
1847 		*cs++ = cmd;
1848 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1849 		*cs++ = intel_gt_scratch_offset(stream->engine->gt,
1850 						offset) + 4 * d;
1851 		*cs++ = 0;
1852 	}
1853 
1854 	return cs;
1855 }
1856 
1857 static int alloc_noa_wait(struct i915_perf_stream *stream)
1858 {
1859 	struct drm_i915_private *i915 = stream->perf->i915;
1860 	struct intel_gt *gt = stream->engine->gt;
1861 	struct drm_i915_gem_object *bo;
1862 	struct i915_vma *vma;
1863 	const u64 delay_ticks = 0xffffffffffffffff -
1864 		intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1865 		atomic64_read(&stream->perf->noa_programming_delay));
1866 	const u32 base = stream->engine->mmio_base;
1867 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1868 	u32 *batch, *ts0, *cs, *jump;
1869 	struct i915_gem_ww_ctx ww;
1870 	int ret, i;
1871 	enum {
1872 		START_TS,
1873 		NOW_TS,
1874 		DELTA_TS,
1875 		JUMP_PREDICATE,
1876 		DELTA_TARGET,
1877 		N_CS_GPR
1878 	};
1879 	i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ?
1880 					  MI_PREDICATE_RESULT_2_ENGINE(base) :
1881 					  MI_PREDICATE_RESULT_1(RENDER_RING_BASE);
1882 
1883 	bo = i915_gem_object_create_internal(i915, 4096);
1884 	if (IS_ERR(bo)) {
1885 		drm_err(&i915->drm,
1886 			"Failed to allocate NOA wait batchbuffer\n");
1887 		return PTR_ERR(bo);
1888 	}
1889 
1890 	i915_gem_ww_ctx_init(&ww, true);
1891 retry:
1892 	ret = i915_gem_object_lock(bo, &ww);
1893 	if (ret)
1894 		goto out_ww;
1895 
1896 	/*
1897 	 * We pin in GGTT because we jump into this buffer now because
1898 	 * multiple OA config BOs will have a jump to this address and it
1899 	 * needs to be fixed during the lifetime of the i915/perf stream.
1900 	 */
1901 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1902 	if (IS_ERR(vma)) {
1903 		ret = PTR_ERR(vma);
1904 		goto out_ww;
1905 	}
1906 
1907 	ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1908 	if (ret)
1909 		goto out_ww;
1910 
1911 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1912 	if (IS_ERR(batch)) {
1913 		ret = PTR_ERR(batch);
1914 		goto err_unpin;
1915 	}
1916 
1917 	/* Save registers. */
1918 	for (i = 0; i < N_CS_GPR; i++)
1919 		cs = save_restore_register(
1920 			stream, cs, true /* save */, CS_GPR(i),
1921 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1922 	cs = save_restore_register(
1923 		stream, cs, true /* save */, mi_predicate_result,
1924 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1925 
1926 	/* First timestamp snapshot location. */
1927 	ts0 = cs;
1928 
1929 	/*
1930 	 * Initial snapshot of the timestamp register to implement the wait.
1931 	 * We work with 32b values, so clear out the top 32b bits of the
1932 	 * register because the ALU works 64bits.
1933 	 */
1934 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1935 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1936 	*cs++ = 0;
1937 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1938 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1939 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1940 
1941 	/*
1942 	 * This is the location we're going to jump back into until the
1943 	 * required amount of time has passed.
1944 	 */
1945 	jump = cs;
1946 
1947 	/*
1948 	 * Take another snapshot of the timestamp register. Take care to clear
1949 	 * up the top 32bits of CS_GPR(1) as we're using it for other
1950 	 * operations below.
1951 	 */
1952 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1953 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1954 	*cs++ = 0;
1955 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1956 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1957 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1958 
1959 	/*
1960 	 * Do a diff between the 2 timestamps and store the result back into
1961 	 * CS_GPR(1).
1962 	 */
1963 	*cs++ = MI_MATH(5);
1964 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1965 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1966 	*cs++ = MI_MATH_SUB;
1967 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1968 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1969 
1970 	/*
1971 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1972 	 * timestamp have rolled over the 32bits) into the predicate register
1973 	 * to be used for the predicated jump.
1974 	 */
1975 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1976 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1977 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
1978 
1979 	if (HAS_MI_SET_PREDICATE(i915))
1980 		*cs++ = MI_SET_PREDICATE | 1;
1981 
1982 	/* Restart from the beginning if we had timestamps roll over. */
1983 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
1984 		 MI_BATCH_BUFFER_START :
1985 		 MI_BATCH_BUFFER_START_GEN8) |
1986 		MI_BATCH_PREDICATE;
1987 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1988 	*cs++ = 0;
1989 
1990 	if (HAS_MI_SET_PREDICATE(i915))
1991 		*cs++ = MI_SET_PREDICATE;
1992 
1993 	/*
1994 	 * Now add the diff between to previous timestamps and add it to :
1995 	 *      (((1 * << 64) - 1) - delay_ns)
1996 	 *
1997 	 * When the Carry Flag contains 1 this means the elapsed time is
1998 	 * longer than the expected delay, and we can exit the wait loop.
1999 	 */
2000 	*cs++ = MI_LOAD_REGISTER_IMM(2);
2001 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
2002 	*cs++ = lower_32_bits(delay_ticks);
2003 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
2004 	*cs++ = upper_32_bits(delay_ticks);
2005 
2006 	*cs++ = MI_MATH(4);
2007 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
2008 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
2009 	*cs++ = MI_MATH_ADD;
2010 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2011 
2012 	*cs++ = MI_ARB_CHECK;
2013 
2014 	/*
2015 	 * Transfer the result into the predicate register to be used for the
2016 	 * predicated jump.
2017 	 */
2018 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2019 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2020 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2021 
2022 	if (HAS_MI_SET_PREDICATE(i915))
2023 		*cs++ = MI_SET_PREDICATE | 1;
2024 
2025 	/* Predicate the jump.  */
2026 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2027 		 MI_BATCH_BUFFER_START :
2028 		 MI_BATCH_BUFFER_START_GEN8) |
2029 		MI_BATCH_PREDICATE;
2030 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
2031 	*cs++ = 0;
2032 
2033 	if (HAS_MI_SET_PREDICATE(i915))
2034 		*cs++ = MI_SET_PREDICATE;
2035 
2036 	/* Restore registers. */
2037 	for (i = 0; i < N_CS_GPR; i++)
2038 		cs = save_restore_register(
2039 			stream, cs, false /* restore */, CS_GPR(i),
2040 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
2041 	cs = save_restore_register(
2042 		stream, cs, false /* restore */, mi_predicate_result,
2043 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
2044 
2045 	/* And return to the ring. */
2046 	*cs++ = MI_BATCH_BUFFER_END;
2047 
2048 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
2049 
2050 	i915_gem_object_flush_map(bo);
2051 	__i915_gem_object_release_map(bo);
2052 
2053 	stream->noa_wait = vma;
2054 	goto out_ww;
2055 
2056 err_unpin:
2057 	i915_vma_unpin_and_release(&vma, 0);
2058 out_ww:
2059 	if (ret == -EDEADLK) {
2060 		ret = i915_gem_ww_ctx_backoff(&ww);
2061 		if (!ret)
2062 			goto retry;
2063 	}
2064 	i915_gem_ww_ctx_fini(&ww);
2065 	if (ret)
2066 		i915_gem_object_put(bo);
2067 	return ret;
2068 }
2069 
2070 static u32 *write_cs_mi_lri(u32 *cs,
2071 			    const struct i915_oa_reg *reg_data,
2072 			    u32 n_regs)
2073 {
2074 	u32 i;
2075 
2076 	for (i = 0; i < n_regs; i++) {
2077 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
2078 			u32 n_lri = min_t(u32,
2079 					  n_regs - i,
2080 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
2081 
2082 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
2083 		}
2084 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
2085 		*cs++ = reg_data[i].value;
2086 	}
2087 
2088 	return cs;
2089 }
2090 
2091 static int num_lri_dwords(int num_regs)
2092 {
2093 	int count = 0;
2094 
2095 	if (num_regs > 0) {
2096 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
2097 		count += num_regs * 2;
2098 	}
2099 
2100 	return count;
2101 }
2102 
2103 static struct i915_oa_config_bo *
2104 alloc_oa_config_buffer(struct i915_perf_stream *stream,
2105 		       struct i915_oa_config *oa_config)
2106 {
2107 	struct drm_i915_gem_object *obj;
2108 	struct i915_oa_config_bo *oa_bo;
2109 	struct i915_gem_ww_ctx ww;
2110 	size_t config_length = 0;
2111 	u32 *cs;
2112 	int err;
2113 
2114 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
2115 	if (!oa_bo)
2116 		return ERR_PTR(-ENOMEM);
2117 
2118 	config_length += num_lri_dwords(oa_config->mux_regs_len);
2119 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
2120 	config_length += num_lri_dwords(oa_config->flex_regs_len);
2121 	config_length += 3; /* MI_BATCH_BUFFER_START */
2122 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
2123 
2124 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
2125 	if (IS_ERR(obj)) {
2126 		err = PTR_ERR(obj);
2127 		goto err_free;
2128 	}
2129 
2130 	i915_gem_ww_ctx_init(&ww, true);
2131 retry:
2132 	err = i915_gem_object_lock(obj, &ww);
2133 	if (err)
2134 		goto out_ww;
2135 
2136 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
2137 	if (IS_ERR(cs)) {
2138 		err = PTR_ERR(cs);
2139 		goto out_ww;
2140 	}
2141 
2142 	cs = write_cs_mi_lri(cs,
2143 			     oa_config->mux_regs,
2144 			     oa_config->mux_regs_len);
2145 	cs = write_cs_mi_lri(cs,
2146 			     oa_config->b_counter_regs,
2147 			     oa_config->b_counter_regs_len);
2148 	cs = write_cs_mi_lri(cs,
2149 			     oa_config->flex_regs,
2150 			     oa_config->flex_regs_len);
2151 
2152 	/* Jump into the active wait. */
2153 	*cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
2154 		 MI_BATCH_BUFFER_START :
2155 		 MI_BATCH_BUFFER_START_GEN8);
2156 	*cs++ = i915_ggtt_offset(stream->noa_wait);
2157 	*cs++ = 0;
2158 
2159 	i915_gem_object_flush_map(obj);
2160 	__i915_gem_object_release_map(obj);
2161 
2162 	oa_bo->vma = i915_vma_instance(obj,
2163 				       &stream->engine->gt->ggtt->vm,
2164 				       NULL);
2165 	if (IS_ERR(oa_bo->vma)) {
2166 		err = PTR_ERR(oa_bo->vma);
2167 		goto out_ww;
2168 	}
2169 
2170 	oa_bo->oa_config = i915_oa_config_get(oa_config);
2171 	llist_add(&oa_bo->node, &stream->oa_config_bos);
2172 
2173 out_ww:
2174 	if (err == -EDEADLK) {
2175 		err = i915_gem_ww_ctx_backoff(&ww);
2176 		if (!err)
2177 			goto retry;
2178 	}
2179 	i915_gem_ww_ctx_fini(&ww);
2180 
2181 	if (err)
2182 		i915_gem_object_put(obj);
2183 err_free:
2184 	if (err) {
2185 		kfree(oa_bo);
2186 		return ERR_PTR(err);
2187 	}
2188 	return oa_bo;
2189 }
2190 
2191 static struct i915_vma *
2192 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
2193 {
2194 	struct i915_oa_config_bo *oa_bo;
2195 
2196 	/*
2197 	 * Look for the buffer in the already allocated BOs attached
2198 	 * to the stream.
2199 	 */
2200 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
2201 		if (oa_bo->oa_config == oa_config &&
2202 		    memcmp(oa_bo->oa_config->uuid,
2203 			   oa_config->uuid,
2204 			   sizeof(oa_config->uuid)) == 0)
2205 			goto out;
2206 	}
2207 
2208 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
2209 	if (IS_ERR(oa_bo))
2210 		return ERR_CAST(oa_bo);
2211 
2212 out:
2213 	return i915_vma_get(oa_bo->vma);
2214 }
2215 
2216 static int
2217 emit_oa_config(struct i915_perf_stream *stream,
2218 	       struct i915_oa_config *oa_config,
2219 	       struct intel_context *ce,
2220 	       struct i915_active *active)
2221 {
2222 	struct i915_request *rq;
2223 	struct i915_vma *vma;
2224 	struct i915_gem_ww_ctx ww;
2225 	int err;
2226 
2227 	vma = get_oa_vma(stream, oa_config);
2228 	if (IS_ERR(vma))
2229 		return PTR_ERR(vma);
2230 
2231 	i915_gem_ww_ctx_init(&ww, true);
2232 retry:
2233 	err = i915_gem_object_lock(vma->obj, &ww);
2234 	if (err)
2235 		goto err;
2236 
2237 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
2238 	if (err)
2239 		goto err;
2240 
2241 	intel_engine_pm_get(ce->engine);
2242 	rq = i915_request_create(ce);
2243 	intel_engine_pm_put(ce->engine);
2244 	if (IS_ERR(rq)) {
2245 		err = PTR_ERR(rq);
2246 		goto err_vma_unpin;
2247 	}
2248 
2249 	if (!IS_ERR_OR_NULL(active)) {
2250 		/* After all individual context modifications */
2251 		err = i915_request_await_active(rq, active,
2252 						I915_ACTIVE_AWAIT_ACTIVE);
2253 		if (err)
2254 			goto err_add_request;
2255 
2256 		err = i915_active_add_request(active, rq);
2257 		if (err)
2258 			goto err_add_request;
2259 	}
2260 
2261 	err = i915_vma_move_to_active(vma, rq, 0);
2262 	if (err)
2263 		goto err_add_request;
2264 
2265 	err = rq->engine->emit_bb_start(rq,
2266 					vma->node.start, 0,
2267 					I915_DISPATCH_SECURE);
2268 	if (err)
2269 		goto err_add_request;
2270 
2271 err_add_request:
2272 	i915_request_add(rq);
2273 err_vma_unpin:
2274 	i915_vma_unpin(vma);
2275 err:
2276 	if (err == -EDEADLK) {
2277 		err = i915_gem_ww_ctx_backoff(&ww);
2278 		if (!err)
2279 			goto retry;
2280 	}
2281 
2282 	i915_gem_ww_ctx_fini(&ww);
2283 	i915_vma_put(vma);
2284 	return err;
2285 }
2286 
2287 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2288 {
2289 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2290 }
2291 
2292 static int
2293 hsw_enable_metric_set(struct i915_perf_stream *stream,
2294 		      struct i915_active *active)
2295 {
2296 	struct intel_uncore *uncore = stream->uncore;
2297 
2298 	/*
2299 	 * PRM:
2300 	 *
2301 	 * OA unit is using “crclk” for its functionality. When trunk
2302 	 * level clock gating takes place, OA clock would be gated,
2303 	 * unable to count the events from non-render clock domain.
2304 	 * Render clock gating must be disabled when OA is enabled to
2305 	 * count the events from non-render domain. Unit level clock
2306 	 * gating for RCS should also be disabled.
2307 	 */
2308 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2309 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2310 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2311 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2312 
2313 	return emit_oa_config(stream,
2314 			      stream->oa_config, oa_context(stream),
2315 			      active);
2316 }
2317 
2318 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2319 {
2320 	struct intel_uncore *uncore = stream->uncore;
2321 
2322 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2323 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2324 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2325 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2326 
2327 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2328 }
2329 
2330 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2331 			      i915_reg_t reg)
2332 {
2333 	u32 mmio = i915_mmio_reg_offset(reg);
2334 	int i;
2335 
2336 	/*
2337 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2338 	 * Active' event. In the future it's anticipated that there
2339 	 * will be an explicit 'No Event' we can select, but not yet...
2340 	 */
2341 	if (!oa_config)
2342 		return 0;
2343 
2344 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2345 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2346 			return oa_config->flex_regs[i].value;
2347 	}
2348 
2349 	return 0;
2350 }
2351 /*
2352  * NB: It must always remain pointer safe to run this even if the OA unit
2353  * has been disabled.
2354  *
2355  * It's fine to put out-of-date values into these per-context registers
2356  * in the case that the OA unit has been disabled.
2357  */
2358 static void
2359 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2360 			       const struct i915_perf_stream *stream)
2361 {
2362 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2363 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2364 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2365 	static const i915_reg_t flex_regs[] = {
2366 		EU_PERF_CNTL0,
2367 		EU_PERF_CNTL1,
2368 		EU_PERF_CNTL2,
2369 		EU_PERF_CNTL3,
2370 		EU_PERF_CNTL4,
2371 		EU_PERF_CNTL5,
2372 		EU_PERF_CNTL6,
2373 	};
2374 	u32 *reg_state = ce->lrc_reg_state;
2375 	int i;
2376 
2377 	reg_state[ctx_oactxctrl + 1] =
2378 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2379 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2380 		GEN8_OA_COUNTER_RESUME;
2381 
2382 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2383 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2384 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2385 }
2386 
2387 struct flex {
2388 	i915_reg_t reg;
2389 	u32 offset;
2390 	u32 value;
2391 };
2392 
2393 static int
2394 gen8_store_flex(struct i915_request *rq,
2395 		struct intel_context *ce,
2396 		const struct flex *flex, unsigned int count)
2397 {
2398 	u32 offset;
2399 	u32 *cs;
2400 
2401 	cs = intel_ring_begin(rq, 4 * count);
2402 	if (IS_ERR(cs))
2403 		return PTR_ERR(cs);
2404 
2405 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2406 	do {
2407 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2408 		*cs++ = offset + flex->offset * sizeof(u32);
2409 		*cs++ = 0;
2410 		*cs++ = flex->value;
2411 	} while (flex++, --count);
2412 
2413 	intel_ring_advance(rq, cs);
2414 
2415 	return 0;
2416 }
2417 
2418 static int
2419 gen8_load_flex(struct i915_request *rq,
2420 	       struct intel_context *ce,
2421 	       const struct flex *flex, unsigned int count)
2422 {
2423 	u32 *cs;
2424 
2425 	GEM_BUG_ON(!count || count > 63);
2426 
2427 	cs = intel_ring_begin(rq, 2 * count + 2);
2428 	if (IS_ERR(cs))
2429 		return PTR_ERR(cs);
2430 
2431 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2432 	do {
2433 		*cs++ = i915_mmio_reg_offset(flex->reg);
2434 		*cs++ = flex->value;
2435 	} while (flex++, --count);
2436 	*cs++ = MI_NOOP;
2437 
2438 	intel_ring_advance(rq, cs);
2439 
2440 	return 0;
2441 }
2442 
2443 static int gen8_modify_context(struct intel_context *ce,
2444 			       const struct flex *flex, unsigned int count)
2445 {
2446 	struct i915_request *rq;
2447 	int err;
2448 
2449 	rq = intel_engine_create_kernel_request(ce->engine);
2450 	if (IS_ERR(rq))
2451 		return PTR_ERR(rq);
2452 
2453 	/* Serialise with the remote context */
2454 	err = intel_context_prepare_remote_request(ce, rq);
2455 	if (err == 0)
2456 		err = gen8_store_flex(rq, ce, flex, count);
2457 
2458 	i915_request_add(rq);
2459 	return err;
2460 }
2461 
2462 static int
2463 gen8_modify_self(struct intel_context *ce,
2464 		 const struct flex *flex, unsigned int count,
2465 		 struct i915_active *active)
2466 {
2467 	struct i915_request *rq;
2468 	int err;
2469 
2470 	intel_engine_pm_get(ce->engine);
2471 	rq = i915_request_create(ce);
2472 	intel_engine_pm_put(ce->engine);
2473 	if (IS_ERR(rq))
2474 		return PTR_ERR(rq);
2475 
2476 	if (!IS_ERR_OR_NULL(active)) {
2477 		err = i915_active_add_request(active, rq);
2478 		if (err)
2479 			goto err_add_request;
2480 	}
2481 
2482 	err = gen8_load_flex(rq, ce, flex, count);
2483 	if (err)
2484 		goto err_add_request;
2485 
2486 err_add_request:
2487 	i915_request_add(rq);
2488 	return err;
2489 }
2490 
2491 static int gen8_configure_context(struct i915_gem_context *ctx,
2492 				  struct flex *flex, unsigned int count)
2493 {
2494 	struct i915_gem_engines_iter it;
2495 	struct intel_context *ce;
2496 	int err = 0;
2497 
2498 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2499 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2500 
2501 		if (ce->engine->class != RENDER_CLASS)
2502 			continue;
2503 
2504 		/* Otherwise OA settings will be set upon first use */
2505 		if (!intel_context_pin_if_active(ce))
2506 			continue;
2507 
2508 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2509 		err = gen8_modify_context(ce, flex, count);
2510 
2511 		intel_context_unpin(ce);
2512 		if (err)
2513 			break;
2514 	}
2515 	i915_gem_context_unlock_engines(ctx);
2516 
2517 	return err;
2518 }
2519 
2520 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2521 				       struct i915_active *active)
2522 {
2523 	int err;
2524 	struct intel_context *ce = stream->pinned_ctx;
2525 	u32 format = stream->oa_buffer.format->format;
2526 	u32 offset = stream->perf->ctx_oactxctrl_offset;
2527 	struct flex regs_context[] = {
2528 		{
2529 			GEN8_OACTXCONTROL,
2530 			offset + 1,
2531 			active ? GEN8_OA_COUNTER_RESUME : 0,
2532 		},
2533 	};
2534 	/* Offsets in regs_lri are not used since this configuration is only
2535 	 * applied using LRI. Initialize the correct offsets for posterity.
2536 	 */
2537 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2538 	struct flex regs_lri[] = {
2539 		{
2540 			GEN12_OAR_OACONTROL,
2541 			GEN12_OAR_OACONTROL_OFFSET + 1,
2542 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2543 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2544 		},
2545 		{
2546 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2547 			CTX_CONTEXT_CONTROL,
2548 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2549 				      active ?
2550 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2551 				      0)
2552 		},
2553 	};
2554 
2555 	/* Modify the context image of pinned context with regs_context */
2556 	err = intel_context_lock_pinned(ce);
2557 	if (err)
2558 		return err;
2559 
2560 	err = gen8_modify_context(ce, regs_context,
2561 				  ARRAY_SIZE(regs_context));
2562 	intel_context_unlock_pinned(ce);
2563 	if (err)
2564 		return err;
2565 
2566 	/* Apply regs_lri using LRI with pinned context */
2567 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2568 }
2569 
2570 /*
2571  * Manages updating the per-context aspects of the OA stream
2572  * configuration across all contexts.
2573  *
2574  * The awkward consideration here is that OACTXCONTROL controls the
2575  * exponent for periodic sampling which is primarily used for system
2576  * wide profiling where we'd like a consistent sampling period even in
2577  * the face of context switches.
2578  *
2579  * Our approach of updating the register state context (as opposed to
2580  * say using a workaround batch buffer) ensures that the hardware
2581  * won't automatically reload an out-of-date timer exponent even
2582  * transiently before a WA BB could be parsed.
2583  *
2584  * This function needs to:
2585  * - Ensure the currently running context's per-context OA state is
2586  *   updated
2587  * - Ensure that all existing contexts will have the correct per-context
2588  *   OA state if they are scheduled for use.
2589  * - Ensure any new contexts will be initialized with the correct
2590  *   per-context OA state.
2591  *
2592  * Note: it's only the RCS/Render context that has any OA state.
2593  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2594  */
2595 static int
2596 oa_configure_all_contexts(struct i915_perf_stream *stream,
2597 			  struct flex *regs,
2598 			  size_t num_regs,
2599 			  struct i915_active *active)
2600 {
2601 	struct drm_i915_private *i915 = stream->perf->i915;
2602 	struct intel_engine_cs *engine;
2603 	struct intel_gt *gt = stream->engine->gt;
2604 	struct i915_gem_context *ctx, *cn;
2605 	int err;
2606 
2607 	lockdep_assert_held(&gt->perf.lock);
2608 
2609 	/*
2610 	 * The OA register config is setup through the context image. This image
2611 	 * might be written to by the GPU on context switch (in particular on
2612 	 * lite-restore). This means we can't safely update a context's image,
2613 	 * if this context is scheduled/submitted to run on the GPU.
2614 	 *
2615 	 * We could emit the OA register config through the batch buffer but
2616 	 * this might leave small interval of time where the OA unit is
2617 	 * configured at an invalid sampling period.
2618 	 *
2619 	 * Note that since we emit all requests from a single ring, there
2620 	 * is still an implicit global barrier here that may cause a high
2621 	 * priority context to wait for an otherwise independent low priority
2622 	 * context. Contexts idle at the time of reconfiguration are not
2623 	 * trapped behind the barrier.
2624 	 */
2625 	spin_lock(&i915->gem.contexts.lock);
2626 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2627 		if (!kref_get_unless_zero(&ctx->ref))
2628 			continue;
2629 
2630 		spin_unlock(&i915->gem.contexts.lock);
2631 
2632 		err = gen8_configure_context(ctx, regs, num_regs);
2633 		if (err) {
2634 			i915_gem_context_put(ctx);
2635 			return err;
2636 		}
2637 
2638 		spin_lock(&i915->gem.contexts.lock);
2639 		list_safe_reset_next(ctx, cn, link);
2640 		i915_gem_context_put(ctx);
2641 	}
2642 	spin_unlock(&i915->gem.contexts.lock);
2643 
2644 	/*
2645 	 * After updating all other contexts, we need to modify ourselves.
2646 	 * If we don't modify the kernel_context, we do not get events while
2647 	 * idle.
2648 	 */
2649 	for_each_uabi_engine(engine, i915) {
2650 		struct intel_context *ce = engine->kernel_context;
2651 
2652 		if (engine->class != RENDER_CLASS)
2653 			continue;
2654 
2655 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2656 
2657 		err = gen8_modify_self(ce, regs, num_regs, active);
2658 		if (err)
2659 			return err;
2660 	}
2661 
2662 	return 0;
2663 }
2664 
2665 static int
2666 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2667 			     const struct i915_oa_config *oa_config,
2668 			     struct i915_active *active)
2669 {
2670 	struct flex regs[] = {
2671 		{
2672 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2673 			CTX_R_PWR_CLK_STATE,
2674 		},
2675 	};
2676 
2677 	return oa_configure_all_contexts(stream,
2678 					 regs, ARRAY_SIZE(regs),
2679 					 active);
2680 }
2681 
2682 static int
2683 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2684 			   const struct i915_oa_config *oa_config,
2685 			   struct i915_active *active)
2686 {
2687 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2688 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2689 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2690 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2691 	struct flex regs[] = {
2692 		{
2693 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2694 			CTX_R_PWR_CLK_STATE,
2695 		},
2696 		{
2697 			GEN8_OACTXCONTROL,
2698 			ctx_oactxctrl + 1,
2699 		},
2700 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2701 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2702 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2703 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2704 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2705 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2706 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2707 	};
2708 #undef ctx_flexeuN
2709 	int i;
2710 
2711 	regs[1].value =
2712 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2713 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2714 		GEN8_OA_COUNTER_RESUME;
2715 
2716 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2717 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2718 
2719 	return oa_configure_all_contexts(stream,
2720 					 regs, ARRAY_SIZE(regs),
2721 					 active);
2722 }
2723 
2724 static int
2725 gen8_enable_metric_set(struct i915_perf_stream *stream,
2726 		       struct i915_active *active)
2727 {
2728 	struct intel_uncore *uncore = stream->uncore;
2729 	struct i915_oa_config *oa_config = stream->oa_config;
2730 	int ret;
2731 
2732 	/*
2733 	 * We disable slice/unslice clock ratio change reports on SKL since
2734 	 * they are too noisy. The HW generates a lot of redundant reports
2735 	 * where the ratio hasn't really changed causing a lot of redundant
2736 	 * work to processes and increasing the chances we'll hit buffer
2737 	 * overruns.
2738 	 *
2739 	 * Although we don't currently use the 'disable overrun' OABUFFER
2740 	 * feature it's worth noting that clock ratio reports have to be
2741 	 * disabled before considering to use that feature since the HW doesn't
2742 	 * correctly block these reports.
2743 	 *
2744 	 * Currently none of the high-level metrics we have depend on knowing
2745 	 * this ratio to normalize.
2746 	 *
2747 	 * Note: This register is not power context saved and restored, but
2748 	 * that's OK considering that we disable RC6 while the OA unit is
2749 	 * enabled.
2750 	 *
2751 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2752 	 * be read back from automatically triggered reports, as part of the
2753 	 * RPT_ID field.
2754 	 */
2755 	if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2756 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2757 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2758 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2759 	}
2760 
2761 	/*
2762 	 * Update all contexts prior writing the mux configurations as we need
2763 	 * to make sure all slices/subslices are ON before writing to NOA
2764 	 * registers.
2765 	 */
2766 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2767 	if (ret)
2768 		return ret;
2769 
2770 	return emit_oa_config(stream,
2771 			      stream->oa_config, oa_context(stream),
2772 			      active);
2773 }
2774 
2775 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2776 {
2777 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2778 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2779 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2780 }
2781 
2782 static int
2783 gen12_enable_metric_set(struct i915_perf_stream *stream,
2784 			struct i915_active *active)
2785 {
2786 	struct drm_i915_private *i915 = stream->perf->i915;
2787 	struct intel_uncore *uncore = stream->uncore;
2788 	struct i915_oa_config *oa_config = stream->oa_config;
2789 	bool periodic = stream->periodic;
2790 	u32 period_exponent = stream->period_exponent;
2791 	u32 sqcnt1;
2792 	int ret;
2793 
2794 	/*
2795 	 * Wa_1508761755:xehpsdv, dg2
2796 	 * EU NOA signals behave incorrectly if EU clock gating is enabled.
2797 	 * Disable thread stall DOP gating and EU DOP gating.
2798 	 */
2799 	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2800 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2801 					     _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
2802 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2803 				   _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING));
2804 	}
2805 
2806 	intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2807 			   /* Disable clk ratio reports, like previous Gens. */
2808 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2809 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2810 			   /*
2811 			    * If the user didn't require OA reports, instruct
2812 			    * the hardware not to emit ctx switch reports.
2813 			    */
2814 			   oag_report_ctx_switches(stream));
2815 
2816 	intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2817 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2818 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2819 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2820 			    : 0);
2821 
2822 	/*
2823 	 * Initialize Super Queue Internal Cnt Register
2824 	 * Set PMON Enable in order to collect valid metrics.
2825 	 * Enable byets per clock reporting in OA for XEHPSDV onward.
2826 	 */
2827 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2828 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2829 
2830 	intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1);
2831 
2832 	/*
2833 	 * Update all contexts prior writing the mux configurations as we need
2834 	 * to make sure all slices/subslices are ON before writing to NOA
2835 	 * registers.
2836 	 */
2837 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2838 	if (ret)
2839 		return ret;
2840 
2841 	/*
2842 	 * For Gen12, performance counters are context
2843 	 * saved/restored. Only enable it for the context that
2844 	 * requested this.
2845 	 */
2846 	if (stream->ctx) {
2847 		ret = gen12_configure_oar_context(stream, active);
2848 		if (ret)
2849 			return ret;
2850 	}
2851 
2852 	return emit_oa_config(stream,
2853 			      stream->oa_config, oa_context(stream),
2854 			      active);
2855 }
2856 
2857 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2858 {
2859 	struct intel_uncore *uncore = stream->uncore;
2860 
2861 	/* Reset all contexts' slices/subslices configurations. */
2862 	lrc_configure_all_contexts(stream, NULL, NULL);
2863 
2864 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2865 }
2866 
2867 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2868 {
2869 	struct intel_uncore *uncore = stream->uncore;
2870 
2871 	/* Reset all contexts' slices/subslices configurations. */
2872 	lrc_configure_all_contexts(stream, NULL, NULL);
2873 
2874 	/* Make sure we disable noa to save power. */
2875 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2876 }
2877 
2878 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2879 {
2880 	struct intel_uncore *uncore = stream->uncore;
2881 	struct drm_i915_private *i915 = stream->perf->i915;
2882 	u32 sqcnt1;
2883 
2884 	/*
2885 	 * Wa_1508761755:xehpsdv, dg2
2886 	 * Enable thread stall DOP gating and EU DOP gating.
2887 	 */
2888 	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2889 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2890 					     _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE));
2891 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2892 				   _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING));
2893 	}
2894 
2895 	/* Reset all contexts' slices/subslices configurations. */
2896 	gen12_configure_all_contexts(stream, NULL, NULL);
2897 
2898 	/* disable the context save/restore or OAR counters */
2899 	if (stream->ctx)
2900 		gen12_configure_oar_context(stream, NULL);
2901 
2902 	/* Make sure we disable noa to save power. */
2903 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2904 
2905 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2906 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2907 
2908 	/* Reset PMON Enable to save power. */
2909 	intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0);
2910 }
2911 
2912 static void gen7_oa_enable(struct i915_perf_stream *stream)
2913 {
2914 	struct intel_uncore *uncore = stream->uncore;
2915 	struct i915_gem_context *ctx = stream->ctx;
2916 	u32 ctx_id = stream->specific_ctx_id;
2917 	bool periodic = stream->periodic;
2918 	u32 period_exponent = stream->period_exponent;
2919 	u32 report_format = stream->oa_buffer.format->format;
2920 
2921 	/*
2922 	 * Reset buf pointers so we don't forward reports from before now.
2923 	 *
2924 	 * Think carefully if considering trying to avoid this, since it
2925 	 * also ensures status flags and the buffer itself are cleared
2926 	 * in error paths, and we have checks for invalid reports based
2927 	 * on the assumption that certain fields are written to zeroed
2928 	 * memory which this helps maintains.
2929 	 */
2930 	gen7_init_oa_buffer(stream);
2931 
2932 	intel_uncore_write(uncore, GEN7_OACONTROL,
2933 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2934 			   (period_exponent <<
2935 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2936 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2937 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2938 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2939 			   GEN7_OACONTROL_ENABLE);
2940 }
2941 
2942 static void gen8_oa_enable(struct i915_perf_stream *stream)
2943 {
2944 	struct intel_uncore *uncore = stream->uncore;
2945 	u32 report_format = stream->oa_buffer.format->format;
2946 
2947 	/*
2948 	 * Reset buf pointers so we don't forward reports from before now.
2949 	 *
2950 	 * Think carefully if considering trying to avoid this, since it
2951 	 * also ensures status flags and the buffer itself are cleared
2952 	 * in error paths, and we have checks for invalid reports based
2953 	 * on the assumption that certain fields are written to zeroed
2954 	 * memory which this helps maintains.
2955 	 */
2956 	gen8_init_oa_buffer(stream);
2957 
2958 	/*
2959 	 * Note: we don't rely on the hardware to perform single context
2960 	 * filtering and instead filter on the cpu based on the context-id
2961 	 * field of reports
2962 	 */
2963 	intel_uncore_write(uncore, GEN8_OACONTROL,
2964 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2965 			   GEN8_OA_COUNTER_ENABLE);
2966 }
2967 
2968 static void gen12_oa_enable(struct i915_perf_stream *stream)
2969 {
2970 	struct intel_uncore *uncore = stream->uncore;
2971 	u32 report_format = stream->oa_buffer.format->format;
2972 
2973 	/*
2974 	 * If we don't want OA reports from the OA buffer, then we don't even
2975 	 * need to program the OAG unit.
2976 	 */
2977 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2978 		return;
2979 
2980 	gen12_init_oa_buffer(stream);
2981 
2982 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2983 			   (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2984 			   GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2985 }
2986 
2987 /**
2988  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2989  * @stream: An i915 perf stream opened for OA metrics
2990  *
2991  * [Re]enables hardware periodic sampling according to the period configured
2992  * when opening the stream. This also starts a hrtimer that will periodically
2993  * check for data in the circular OA buffer for notifying userspace (e.g.
2994  * during a read() or poll()).
2995  */
2996 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2997 {
2998 	stream->pollin = false;
2999 
3000 	stream->perf->ops.oa_enable(stream);
3001 
3002 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3003 		hrtimer_start(&stream->poll_check_timer,
3004 			      ns_to_ktime(stream->poll_oa_period),
3005 			      HRTIMER_MODE_REL_PINNED);
3006 }
3007 
3008 static void gen7_oa_disable(struct i915_perf_stream *stream)
3009 {
3010 	struct intel_uncore *uncore = stream->uncore;
3011 
3012 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
3013 	if (intel_wait_for_register(uncore,
3014 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
3015 				    50))
3016 		drm_err(&stream->perf->i915->drm,
3017 			"wait for OA to be disabled timed out\n");
3018 }
3019 
3020 static void gen8_oa_disable(struct i915_perf_stream *stream)
3021 {
3022 	struct intel_uncore *uncore = stream->uncore;
3023 
3024 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
3025 	if (intel_wait_for_register(uncore,
3026 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
3027 				    50))
3028 		drm_err(&stream->perf->i915->drm,
3029 			"wait for OA to be disabled timed out\n");
3030 }
3031 
3032 static void gen12_oa_disable(struct i915_perf_stream *stream)
3033 {
3034 	struct intel_uncore *uncore = stream->uncore;
3035 
3036 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
3037 	if (intel_wait_for_register(uncore,
3038 				    GEN12_OAG_OACONTROL,
3039 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
3040 				    50))
3041 		drm_err(&stream->perf->i915->drm,
3042 			"wait for OA to be disabled timed out\n");
3043 
3044 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
3045 	if (intel_wait_for_register(uncore,
3046 				    GEN12_OA_TLB_INV_CR,
3047 				    1, 0,
3048 				    50))
3049 		drm_err(&stream->perf->i915->drm,
3050 			"wait for OA tlb invalidate timed out\n");
3051 }
3052 
3053 /**
3054  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
3055  * @stream: An i915 perf stream opened for OA metrics
3056  *
3057  * Stops the OA unit from periodically writing counter reports into the
3058  * circular OA buffer. This also stops the hrtimer that periodically checks for
3059  * data in the circular OA buffer, for notifying userspace.
3060  */
3061 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
3062 {
3063 	stream->perf->ops.oa_disable(stream);
3064 
3065 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3066 		hrtimer_cancel(&stream->poll_check_timer);
3067 }
3068 
3069 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
3070 	.destroy = i915_oa_stream_destroy,
3071 	.enable = i915_oa_stream_enable,
3072 	.disable = i915_oa_stream_disable,
3073 	.wait_unlocked = i915_oa_wait_unlocked,
3074 	.poll_wait = i915_oa_poll_wait,
3075 	.read = i915_oa_read,
3076 };
3077 
3078 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
3079 {
3080 	struct i915_active *active;
3081 	int err;
3082 
3083 	active = i915_active_create();
3084 	if (!active)
3085 		return -ENOMEM;
3086 
3087 	err = stream->perf->ops.enable_metric_set(stream, active);
3088 	if (err == 0)
3089 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
3090 
3091 	i915_active_put(active);
3092 	return err;
3093 }
3094 
3095 static void
3096 get_default_sseu_config(struct intel_sseu *out_sseu,
3097 			struct intel_engine_cs *engine)
3098 {
3099 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
3100 
3101 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
3102 
3103 	if (GRAPHICS_VER(engine->i915) == 11) {
3104 		/*
3105 		 * We only need subslice count so it doesn't matter which ones
3106 		 * we select - just turn off low bits in the amount of half of
3107 		 * all available subslices per slice.
3108 		 */
3109 		out_sseu->subslice_mask =
3110 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
3111 		out_sseu->slice_mask = 0x1;
3112 	}
3113 }
3114 
3115 static int
3116 get_sseu_config(struct intel_sseu *out_sseu,
3117 		struct intel_engine_cs *engine,
3118 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
3119 {
3120 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
3121 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
3122 		return -EINVAL;
3123 
3124 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
3125 }
3126 
3127 /*
3128  * OA timestamp frequency = CS timestamp frequency in most platforms. On some
3129  * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such
3130  * cases, return the adjusted CS timestamp frequency to the user.
3131  */
3132 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915)
3133 {
3134 	/* Wa_18013179988:dg2 */
3135 	if (IS_DG2(i915)) {
3136 		intel_wakeref_t wakeref;
3137 		u32 reg, shift;
3138 
3139 		with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref)
3140 			reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0);
3141 
3142 		shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK,
3143 				      reg);
3144 
3145 		return to_gt(i915)->clock_frequency << (3 - shift);
3146 	}
3147 
3148 	return to_gt(i915)->clock_frequency;
3149 }
3150 
3151 /**
3152  * i915_oa_stream_init - validate combined props for OA stream and init
3153  * @stream: An i915 perf stream
3154  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
3155  * @props: The property state that configures stream (individually validated)
3156  *
3157  * While read_properties_unlocked() validates properties in isolation it
3158  * doesn't ensure that the combination necessarily makes sense.
3159  *
3160  * At this point it has been determined that userspace wants a stream of
3161  * OA metrics, but still we need to further validate the combined
3162  * properties are OK.
3163  *
3164  * If the configuration makes sense then we can allocate memory for
3165  * a circular OA buffer and apply the requested metric set configuration.
3166  *
3167  * Returns: zero on success or a negative error code.
3168  */
3169 static int i915_oa_stream_init(struct i915_perf_stream *stream,
3170 			       struct drm_i915_perf_open_param *param,
3171 			       struct perf_open_properties *props)
3172 {
3173 	struct drm_i915_private *i915 = stream->perf->i915;
3174 	struct i915_perf *perf = stream->perf;
3175 	struct intel_gt *gt;
3176 	int ret;
3177 
3178 	if (!props->engine) {
3179 		drm_dbg(&stream->perf->i915->drm,
3180 			"OA engine not specified\n");
3181 		return -EINVAL;
3182 	}
3183 	gt = props->engine->gt;
3184 
3185 	/*
3186 	 * If the sysfs metrics/ directory wasn't registered for some
3187 	 * reason then don't let userspace try their luck with config
3188 	 * IDs
3189 	 */
3190 	if (!perf->metrics_kobj) {
3191 		drm_dbg(&stream->perf->i915->drm,
3192 			"OA metrics weren't advertised via sysfs\n");
3193 		return -EINVAL;
3194 	}
3195 
3196 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
3197 	    (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
3198 		drm_dbg(&stream->perf->i915->drm,
3199 			"Only OA report sampling supported\n");
3200 		return -EINVAL;
3201 	}
3202 
3203 	if (!perf->ops.enable_metric_set) {
3204 		drm_dbg(&stream->perf->i915->drm,
3205 			"OA unit not supported\n");
3206 		return -ENODEV;
3207 	}
3208 
3209 	/*
3210 	 * To avoid the complexity of having to accurately filter
3211 	 * counter reports and marshal to the appropriate client
3212 	 * we currently only allow exclusive access
3213 	 */
3214 	if (gt->perf.exclusive_stream) {
3215 		drm_dbg(&stream->perf->i915->drm,
3216 			"OA unit already in use\n");
3217 		return -EBUSY;
3218 	}
3219 
3220 	if (!props->oa_format) {
3221 		drm_dbg(&stream->perf->i915->drm,
3222 			"OA report format not specified\n");
3223 		return -EINVAL;
3224 	}
3225 
3226 	stream->engine = props->engine;
3227 	stream->uncore = stream->engine->gt->uncore;
3228 
3229 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
3230 
3231 	stream->oa_buffer.format = &perf->oa_formats[props->oa_format];
3232 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0))
3233 		return -EINVAL;
3234 
3235 	stream->sample_flags = props->sample_flags;
3236 	stream->sample_size += stream->oa_buffer.format->size;
3237 
3238 	stream->hold_preemption = props->hold_preemption;
3239 
3240 	stream->periodic = props->oa_periodic;
3241 	if (stream->periodic)
3242 		stream->period_exponent = props->oa_period_exponent;
3243 
3244 	if (stream->ctx) {
3245 		ret = oa_get_render_ctx_id(stream);
3246 		if (ret) {
3247 			drm_dbg(&stream->perf->i915->drm,
3248 				"Invalid context id to filter with\n");
3249 			return ret;
3250 		}
3251 	}
3252 
3253 	ret = alloc_noa_wait(stream);
3254 	if (ret) {
3255 		drm_dbg(&stream->perf->i915->drm,
3256 			"Unable to allocate NOA wait batch buffer\n");
3257 		goto err_noa_wait_alloc;
3258 	}
3259 
3260 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
3261 	if (!stream->oa_config) {
3262 		drm_dbg(&stream->perf->i915->drm,
3263 			"Invalid OA config id=%i\n", props->metrics_set);
3264 		ret = -EINVAL;
3265 		goto err_config;
3266 	}
3267 
3268 	/* PRM - observability performance counters:
3269 	 *
3270 	 *   OACONTROL, performance counter enable, note:
3271 	 *
3272 	 *   "When this bit is set, in order to have coherent counts,
3273 	 *   RC6 power state and trunk clock gating must be disabled.
3274 	 *   This can be achieved by programming MMIO registers as
3275 	 *   0xA094=0 and 0xA090[31]=1"
3276 	 *
3277 	 *   In our case we are expecting that taking pm + FORCEWAKE
3278 	 *   references will effectively disable RC6.
3279 	 */
3280 	intel_engine_pm_get(stream->engine);
3281 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
3282 
3283 	/*
3284 	 * Wa_16011777198:dg2: GuC resets render as part of the Wa. This causes
3285 	 * OA to lose the configuration state. Prevent this by overriding GUCRC
3286 	 * mode.
3287 	 */
3288 	if (intel_uc_uses_guc_rc(&gt->uc) &&
3289 	    (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
3290 	     IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))) {
3291 		ret = intel_guc_slpc_override_gucrc_mode(&gt->uc.guc.slpc,
3292 							 SLPC_GUCRC_MODE_GUCRC_NO_RC6);
3293 		if (ret) {
3294 			drm_dbg(&stream->perf->i915->drm,
3295 				"Unable to override gucrc mode\n");
3296 			goto err_config;
3297 		}
3298 	}
3299 
3300 	ret = alloc_oa_buffer(stream);
3301 	if (ret)
3302 		goto err_oa_buf_alloc;
3303 
3304 	stream->ops = &i915_oa_stream_ops;
3305 
3306 	stream->engine->gt->perf.sseu = props->sseu;
3307 	WRITE_ONCE(gt->perf.exclusive_stream, stream);
3308 
3309 	ret = i915_perf_stream_enable_sync(stream);
3310 	if (ret) {
3311 		drm_dbg(&stream->perf->i915->drm,
3312 			"Unable to enable metric set\n");
3313 		goto err_enable;
3314 	}
3315 
3316 	drm_dbg(&stream->perf->i915->drm,
3317 		"opening stream oa config uuid=%s\n",
3318 		  stream->oa_config->uuid);
3319 
3320 	hrtimer_init(&stream->poll_check_timer,
3321 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3322 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
3323 	init_waitqueue_head(&stream->poll_wq);
3324 	spin_lock_init(&stream->oa_buffer.ptr_lock);
3325 	mutex_init(&stream->lock);
3326 
3327 	return 0;
3328 
3329 err_enable:
3330 	WRITE_ONCE(gt->perf.exclusive_stream, NULL);
3331 	perf->ops.disable_metric_set(stream);
3332 
3333 	free_oa_buffer(stream);
3334 
3335 err_oa_buf_alloc:
3336 	free_oa_configs(stream);
3337 
3338 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3339 	intel_engine_pm_put(stream->engine);
3340 
3341 err_config:
3342 	free_noa_wait(stream);
3343 
3344 err_noa_wait_alloc:
3345 	if (stream->ctx)
3346 		oa_put_render_ctx_id(stream);
3347 
3348 	return ret;
3349 }
3350 
3351 void i915_oa_init_reg_state(const struct intel_context *ce,
3352 			    const struct intel_engine_cs *engine)
3353 {
3354 	struct i915_perf_stream *stream;
3355 
3356 	if (engine->class != RENDER_CLASS)
3357 		return;
3358 
3359 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3360 	stream = READ_ONCE(engine->gt->perf.exclusive_stream);
3361 	if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3362 		gen8_update_reg_state_unlocked(ce, stream);
3363 }
3364 
3365 /**
3366  * i915_perf_read - handles read() FOP for i915 perf stream FDs
3367  * @file: An i915 perf stream file
3368  * @buf: destination buffer given by userspace
3369  * @count: the number of bytes userspace wants to read
3370  * @ppos: (inout) file seek position (unused)
3371  *
3372  * The entry point for handling a read() on a stream file descriptor from
3373  * userspace. Most of the work is left to the i915_perf_read_locked() and
3374  * &i915_perf_stream_ops->read but to save having stream implementations (of
3375  * which we might have multiple later) we handle blocking read here.
3376  *
3377  * We can also consistently treat trying to read from a disabled stream
3378  * as an IO error so implementations can assume the stream is enabled
3379  * while reading.
3380  *
3381  * Returns: The number of bytes copied or a negative error code on failure.
3382  */
3383 static ssize_t i915_perf_read(struct file *file,
3384 			      char __user *buf,
3385 			      size_t count,
3386 			      loff_t *ppos)
3387 {
3388 	struct i915_perf_stream *stream = file->private_data;
3389 	size_t offset = 0;
3390 	int ret;
3391 
3392 	/* To ensure it's handled consistently we simply treat all reads of a
3393 	 * disabled stream as an error. In particular it might otherwise lead
3394 	 * to a deadlock for blocking file descriptors...
3395 	 */
3396 	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3397 		return -EIO;
3398 
3399 	if (!(file->f_flags & O_NONBLOCK)) {
3400 		/* There's the small chance of false positives from
3401 		 * stream->ops->wait_unlocked.
3402 		 *
3403 		 * E.g. with single context filtering since we only wait until
3404 		 * oabuffer has >= 1 report we don't immediately know whether
3405 		 * any reports really belong to the current context
3406 		 */
3407 		do {
3408 			ret = stream->ops->wait_unlocked(stream);
3409 			if (ret)
3410 				return ret;
3411 
3412 			mutex_lock(&stream->lock);
3413 			ret = stream->ops->read(stream, buf, count, &offset);
3414 			mutex_unlock(&stream->lock);
3415 		} while (!offset && !ret);
3416 	} else {
3417 		mutex_lock(&stream->lock);
3418 		ret = stream->ops->read(stream, buf, count, &offset);
3419 		mutex_unlock(&stream->lock);
3420 	}
3421 
3422 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3423 	 * events where we might actually report EAGAIN on read() if there's
3424 	 * not really any data available. In this situation though we don't
3425 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3426 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3427 	 * effectively ensures we back off until the next hrtimer callback
3428 	 * before reporting another EPOLLIN event.
3429 	 * The exception to this is if ops->read() returned -ENOSPC which means
3430 	 * that more OA data is available than could fit in the user provided
3431 	 * buffer. In this case we want the next poll() call to not block.
3432 	 */
3433 	if (ret != -ENOSPC)
3434 		stream->pollin = false;
3435 
3436 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3437 	return offset ?: (ret ?: -EAGAIN);
3438 }
3439 
3440 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3441 {
3442 	struct i915_perf_stream *stream =
3443 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3444 
3445 	if (oa_buffer_check_unlocked(stream)) {
3446 		stream->pollin = true;
3447 		wake_up(&stream->poll_wq);
3448 	}
3449 
3450 	hrtimer_forward_now(hrtimer,
3451 			    ns_to_ktime(stream->poll_oa_period));
3452 
3453 	return HRTIMER_RESTART;
3454 }
3455 
3456 /**
3457  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3458  * @stream: An i915 perf stream
3459  * @file: An i915 perf stream file
3460  * @wait: poll() state table
3461  *
3462  * For handling userspace polling on an i915 perf stream, this calls through to
3463  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3464  * will be woken for new stream data.
3465  *
3466  * Returns: any poll events that are ready without sleeping
3467  */
3468 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3469 				      struct file *file,
3470 				      poll_table *wait)
3471 {
3472 	__poll_t events = 0;
3473 
3474 	stream->ops->poll_wait(stream, file, wait);
3475 
3476 	/* Note: we don't explicitly check whether there's something to read
3477 	 * here since this path may be very hot depending on what else
3478 	 * userspace is polling, or on the timeout in use. We rely solely on
3479 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3480 	 * samples to read.
3481 	 */
3482 	if (stream->pollin)
3483 		events |= EPOLLIN;
3484 
3485 	return events;
3486 }
3487 
3488 /**
3489  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3490  * @file: An i915 perf stream file
3491  * @wait: poll() state table
3492  *
3493  * For handling userspace polling on an i915 perf stream, this ensures
3494  * poll_wait() gets called with a wait queue that will be woken for new stream
3495  * data.
3496  *
3497  * Note: Implementation deferred to i915_perf_poll_locked()
3498  *
3499  * Returns: any poll events that are ready without sleeping
3500  */
3501 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3502 {
3503 	struct i915_perf_stream *stream = file->private_data;
3504 	__poll_t ret;
3505 
3506 	mutex_lock(&stream->lock);
3507 	ret = i915_perf_poll_locked(stream, file, wait);
3508 	mutex_unlock(&stream->lock);
3509 
3510 	return ret;
3511 }
3512 
3513 /**
3514  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3515  * @stream: A disabled i915 perf stream
3516  *
3517  * [Re]enables the associated capture of data for this stream.
3518  *
3519  * If a stream was previously enabled then there's currently no intention
3520  * to provide userspace any guarantee about the preservation of previously
3521  * buffered data.
3522  */
3523 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3524 {
3525 	if (stream->enabled)
3526 		return;
3527 
3528 	/* Allow stream->ops->enable() to refer to this */
3529 	stream->enabled = true;
3530 
3531 	if (stream->ops->enable)
3532 		stream->ops->enable(stream);
3533 
3534 	if (stream->hold_preemption)
3535 		intel_context_set_nopreempt(stream->pinned_ctx);
3536 }
3537 
3538 /**
3539  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3540  * @stream: An enabled i915 perf stream
3541  *
3542  * Disables the associated capture of data for this stream.
3543  *
3544  * The intention is that disabling an re-enabling a stream will ideally be
3545  * cheaper than destroying and re-opening a stream with the same configuration,
3546  * though there are no formal guarantees about what state or buffered data
3547  * must be retained between disabling and re-enabling a stream.
3548  *
3549  * Note: while a stream is disabled it's considered an error for userspace
3550  * to attempt to read from the stream (-EIO).
3551  */
3552 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3553 {
3554 	if (!stream->enabled)
3555 		return;
3556 
3557 	/* Allow stream->ops->disable() to refer to this */
3558 	stream->enabled = false;
3559 
3560 	if (stream->hold_preemption)
3561 		intel_context_clear_nopreempt(stream->pinned_ctx);
3562 
3563 	if (stream->ops->disable)
3564 		stream->ops->disable(stream);
3565 }
3566 
3567 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3568 				    unsigned long metrics_set)
3569 {
3570 	struct i915_oa_config *config;
3571 	long ret = stream->oa_config->id;
3572 
3573 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3574 	if (!config)
3575 		return -EINVAL;
3576 
3577 	if (config != stream->oa_config) {
3578 		int err;
3579 
3580 		/*
3581 		 * If OA is bound to a specific context, emit the
3582 		 * reconfiguration inline from that context. The update
3583 		 * will then be ordered with respect to submission on that
3584 		 * context.
3585 		 *
3586 		 * When set globally, we use a low priority kernel context,
3587 		 * so it will effectively take effect when idle.
3588 		 */
3589 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3590 		if (!err)
3591 			config = xchg(&stream->oa_config, config);
3592 		else
3593 			ret = err;
3594 	}
3595 
3596 	i915_oa_config_put(config);
3597 
3598 	return ret;
3599 }
3600 
3601 /**
3602  * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3603  * @stream: An i915 perf stream
3604  * @cmd: the ioctl request
3605  * @arg: the ioctl data
3606  *
3607  * Returns: zero on success or a negative error code. Returns -EINVAL for
3608  * an unknown ioctl request.
3609  */
3610 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3611 				   unsigned int cmd,
3612 				   unsigned long arg)
3613 {
3614 	switch (cmd) {
3615 	case I915_PERF_IOCTL_ENABLE:
3616 		i915_perf_enable_locked(stream);
3617 		return 0;
3618 	case I915_PERF_IOCTL_DISABLE:
3619 		i915_perf_disable_locked(stream);
3620 		return 0;
3621 	case I915_PERF_IOCTL_CONFIG:
3622 		return i915_perf_config_locked(stream, arg);
3623 	}
3624 
3625 	return -EINVAL;
3626 }
3627 
3628 /**
3629  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3630  * @file: An i915 perf stream file
3631  * @cmd: the ioctl request
3632  * @arg: the ioctl data
3633  *
3634  * Implementation deferred to i915_perf_ioctl_locked().
3635  *
3636  * Returns: zero on success or a negative error code. Returns -EINVAL for
3637  * an unknown ioctl request.
3638  */
3639 static long i915_perf_ioctl(struct file *file,
3640 			    unsigned int cmd,
3641 			    unsigned long arg)
3642 {
3643 	struct i915_perf_stream *stream = file->private_data;
3644 	long ret;
3645 
3646 	mutex_lock(&stream->lock);
3647 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3648 	mutex_unlock(&stream->lock);
3649 
3650 	return ret;
3651 }
3652 
3653 /**
3654  * i915_perf_destroy_locked - destroy an i915 perf stream
3655  * @stream: An i915 perf stream
3656  *
3657  * Frees all resources associated with the given i915 perf @stream, disabling
3658  * any associated data capture in the process.
3659  *
3660  * Note: The &gt->perf.lock mutex has been taken to serialize
3661  * with any non-file-operation driver hooks.
3662  */
3663 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3664 {
3665 	if (stream->enabled)
3666 		i915_perf_disable_locked(stream);
3667 
3668 	if (stream->ops->destroy)
3669 		stream->ops->destroy(stream);
3670 
3671 	if (stream->ctx)
3672 		i915_gem_context_put(stream->ctx);
3673 
3674 	kfree(stream);
3675 }
3676 
3677 /**
3678  * i915_perf_release - handles userspace close() of a stream file
3679  * @inode: anonymous inode associated with file
3680  * @file: An i915 perf stream file
3681  *
3682  * Cleans up any resources associated with an open i915 perf stream file.
3683  *
3684  * NB: close() can't really fail from the userspace point of view.
3685  *
3686  * Returns: zero on success or a negative error code.
3687  */
3688 static int i915_perf_release(struct inode *inode, struct file *file)
3689 {
3690 	struct i915_perf_stream *stream = file->private_data;
3691 	struct i915_perf *perf = stream->perf;
3692 	struct intel_gt *gt = stream->engine->gt;
3693 
3694 	/*
3695 	 * Within this call, we know that the fd is being closed and we have no
3696 	 * other user of stream->lock. Use the perf lock to destroy the stream
3697 	 * here.
3698 	 */
3699 	mutex_lock(&gt->perf.lock);
3700 	i915_perf_destroy_locked(stream);
3701 	mutex_unlock(&gt->perf.lock);
3702 
3703 	/* Release the reference the perf stream kept on the driver. */
3704 	drm_dev_put(&perf->i915->drm);
3705 
3706 	return 0;
3707 }
3708 
3709 
3710 static const struct file_operations fops = {
3711 	.owner		= THIS_MODULE,
3712 	.llseek		= no_llseek,
3713 	.release	= i915_perf_release,
3714 	.poll		= i915_perf_poll,
3715 	.read		= i915_perf_read,
3716 	.unlocked_ioctl	= i915_perf_ioctl,
3717 	/* Our ioctl have no arguments, so it's safe to use the same function
3718 	 * to handle 32bits compatibility.
3719 	 */
3720 	.compat_ioctl   = i915_perf_ioctl,
3721 };
3722 
3723 
3724 /**
3725  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3726  * @perf: i915 perf instance
3727  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3728  * @props: individually validated u64 property value pairs
3729  * @file: drm file
3730  *
3731  * See i915_perf_ioctl_open() for interface details.
3732  *
3733  * Implements further stream config validation and stream initialization on
3734  * behalf of i915_perf_open_ioctl() with the &gt->perf.lock mutex
3735  * taken to serialize with any non-file-operation driver hooks.
3736  *
3737  * Note: at this point the @props have only been validated in isolation and
3738  * it's still necessary to validate that the combination of properties makes
3739  * sense.
3740  *
3741  * In the case where userspace is interested in OA unit metrics then further
3742  * config validation and stream initialization details will be handled by
3743  * i915_oa_stream_init(). The code here should only validate config state that
3744  * will be relevant to all stream types / backends.
3745  *
3746  * Returns: zero on success or a negative error code.
3747  */
3748 static int
3749 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3750 			    struct drm_i915_perf_open_param *param,
3751 			    struct perf_open_properties *props,
3752 			    struct drm_file *file)
3753 {
3754 	struct i915_gem_context *specific_ctx = NULL;
3755 	struct i915_perf_stream *stream = NULL;
3756 	unsigned long f_flags = 0;
3757 	bool privileged_op = true;
3758 	int stream_fd;
3759 	int ret;
3760 
3761 	if (props->single_context) {
3762 		u32 ctx_handle = props->ctx_handle;
3763 		struct drm_i915_file_private *file_priv = file->driver_priv;
3764 
3765 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3766 		if (IS_ERR(specific_ctx)) {
3767 			drm_dbg(&perf->i915->drm,
3768 				"Failed to look up context with ID %u for opening perf stream\n",
3769 				  ctx_handle);
3770 			ret = PTR_ERR(specific_ctx);
3771 			goto err;
3772 		}
3773 	}
3774 
3775 	/*
3776 	 * On Haswell the OA unit supports clock gating off for a specific
3777 	 * context and in this mode there's no visibility of metrics for the
3778 	 * rest of the system, which we consider acceptable for a
3779 	 * non-privileged client.
3780 	 *
3781 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3782 	 * specific context and the kernel can't securely stop the counters
3783 	 * from updating as system-wide / global values. Even though we can
3784 	 * filter reports based on the included context ID we can't block
3785 	 * clients from seeing the raw / global counter values via
3786 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3787 	 * enable the OA unit by default.
3788 	 *
3789 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3790 	 * per context basis. So we can relax requirements there if the user
3791 	 * doesn't request global stream access (i.e. query based sampling
3792 	 * using MI_RECORD_PERF_COUNT.
3793 	 */
3794 	if (IS_HASWELL(perf->i915) && specific_ctx)
3795 		privileged_op = false;
3796 	else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3797 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3798 		privileged_op = false;
3799 
3800 	if (props->hold_preemption) {
3801 		if (!props->single_context) {
3802 			drm_dbg(&perf->i915->drm,
3803 				"preemption disable with no context\n");
3804 			ret = -EINVAL;
3805 			goto err;
3806 		}
3807 		privileged_op = true;
3808 	}
3809 
3810 	/*
3811 	 * Asking for SSEU configuration is a priviliged operation.
3812 	 */
3813 	if (props->has_sseu)
3814 		privileged_op = true;
3815 	else
3816 		get_default_sseu_config(&props->sseu, props->engine);
3817 
3818 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3819 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3820 	 * to determine if it's ok to access system wide OA counters
3821 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3822 	 */
3823 	if (privileged_op &&
3824 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3825 		drm_dbg(&perf->i915->drm,
3826 			"Insufficient privileges to open i915 perf stream\n");
3827 		ret = -EACCES;
3828 		goto err_ctx;
3829 	}
3830 
3831 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3832 	if (!stream) {
3833 		ret = -ENOMEM;
3834 		goto err_ctx;
3835 	}
3836 
3837 	stream->perf = perf;
3838 	stream->ctx = specific_ctx;
3839 	stream->poll_oa_period = props->poll_oa_period;
3840 
3841 	ret = i915_oa_stream_init(stream, param, props);
3842 	if (ret)
3843 		goto err_alloc;
3844 
3845 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3846 	 * to have _stream_init check the combination of sample flags more
3847 	 * thoroughly, but still this is the expected result at this point.
3848 	 */
3849 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3850 		ret = -ENODEV;
3851 		goto err_flags;
3852 	}
3853 
3854 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3855 		f_flags |= O_CLOEXEC;
3856 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3857 		f_flags |= O_NONBLOCK;
3858 
3859 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3860 	if (stream_fd < 0) {
3861 		ret = stream_fd;
3862 		goto err_flags;
3863 	}
3864 
3865 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3866 		i915_perf_enable_locked(stream);
3867 
3868 	/* Take a reference on the driver that will be kept with stream_fd
3869 	 * until its release.
3870 	 */
3871 	drm_dev_get(&perf->i915->drm);
3872 
3873 	return stream_fd;
3874 
3875 err_flags:
3876 	if (stream->ops->destroy)
3877 		stream->ops->destroy(stream);
3878 err_alloc:
3879 	kfree(stream);
3880 err_ctx:
3881 	if (specific_ctx)
3882 		i915_gem_context_put(specific_ctx);
3883 err:
3884 	return ret;
3885 }
3886 
3887 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3888 {
3889 	u64 nom = (2ULL << exponent) * NSEC_PER_SEC;
3890 	u32 den = i915_perf_oa_timestamp_frequency(perf->i915);
3891 
3892 	return div_u64(nom + den - 1, den);
3893 }
3894 
3895 static __always_inline bool
3896 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
3897 {
3898 	return test_bit(format, perf->format_mask);
3899 }
3900 
3901 static __always_inline void
3902 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
3903 {
3904 	__set_bit(format, perf->format_mask);
3905 }
3906 
3907 /**
3908  * read_properties_unlocked - validate + copy userspace stream open properties
3909  * @perf: i915 perf instance
3910  * @uprops: The array of u64 key value pairs given by userspace
3911  * @n_props: The number of key value pairs expected in @uprops
3912  * @props: The stream configuration built up while validating properties
3913  *
3914  * Note this function only validates properties in isolation it doesn't
3915  * validate that the combination of properties makes sense or that all
3916  * properties necessary for a particular kind of stream have been set.
3917  *
3918  * Note that there currently aren't any ordering requirements for properties so
3919  * we shouldn't validate or assume anything about ordering here. This doesn't
3920  * rule out defining new properties with ordering requirements in the future.
3921  */
3922 static int read_properties_unlocked(struct i915_perf *perf,
3923 				    u64 __user *uprops,
3924 				    u32 n_props,
3925 				    struct perf_open_properties *props)
3926 {
3927 	u64 __user *uprop = uprops;
3928 	u32 i;
3929 	int ret;
3930 
3931 	memset(props, 0, sizeof(struct perf_open_properties));
3932 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3933 
3934 	if (!n_props) {
3935 		drm_dbg(&perf->i915->drm,
3936 			"No i915 perf properties given\n");
3937 		return -EINVAL;
3938 	}
3939 
3940 	/* At the moment we only support using i915-perf on the RCS. */
3941 	props->engine = intel_engine_lookup_user(perf->i915,
3942 						 I915_ENGINE_CLASS_RENDER,
3943 						 0);
3944 	if (!props->engine) {
3945 		drm_dbg(&perf->i915->drm,
3946 			"No RENDER-capable engines\n");
3947 		return -EINVAL;
3948 	}
3949 
3950 	/* Considering that ID = 0 is reserved and assuming that we don't
3951 	 * (currently) expect any configurations to ever specify duplicate
3952 	 * values for a particular property ID then the last _PROP_MAX value is
3953 	 * one greater than the maximum number of properties we expect to get
3954 	 * from userspace.
3955 	 */
3956 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
3957 		drm_dbg(&perf->i915->drm,
3958 			"More i915 perf properties specified than exist\n");
3959 		return -EINVAL;
3960 	}
3961 
3962 	for (i = 0; i < n_props; i++) {
3963 		u64 oa_period, oa_freq_hz;
3964 		u64 id, value;
3965 
3966 		ret = get_user(id, uprop);
3967 		if (ret)
3968 			return ret;
3969 
3970 		ret = get_user(value, uprop + 1);
3971 		if (ret)
3972 			return ret;
3973 
3974 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3975 			drm_dbg(&perf->i915->drm,
3976 				"Unknown i915 perf property ID\n");
3977 			return -EINVAL;
3978 		}
3979 
3980 		switch ((enum drm_i915_perf_property_id)id) {
3981 		case DRM_I915_PERF_PROP_CTX_HANDLE:
3982 			props->single_context = 1;
3983 			props->ctx_handle = value;
3984 			break;
3985 		case DRM_I915_PERF_PROP_SAMPLE_OA:
3986 			if (value)
3987 				props->sample_flags |= SAMPLE_OA_REPORT;
3988 			break;
3989 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
3990 			if (value == 0) {
3991 				drm_dbg(&perf->i915->drm,
3992 					"Unknown OA metric set ID\n");
3993 				return -EINVAL;
3994 			}
3995 			props->metrics_set = value;
3996 			break;
3997 		case DRM_I915_PERF_PROP_OA_FORMAT:
3998 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3999 				drm_dbg(&perf->i915->drm,
4000 					"Out-of-range OA report format %llu\n",
4001 					  value);
4002 				return -EINVAL;
4003 			}
4004 			if (!oa_format_valid(perf, value)) {
4005 				drm_dbg(&perf->i915->drm,
4006 					"Unsupported OA report format %llu\n",
4007 					  value);
4008 				return -EINVAL;
4009 			}
4010 			props->oa_format = value;
4011 			break;
4012 		case DRM_I915_PERF_PROP_OA_EXPONENT:
4013 			if (value > OA_EXPONENT_MAX) {
4014 				drm_dbg(&perf->i915->drm,
4015 					"OA timer exponent too high (> %u)\n",
4016 					 OA_EXPONENT_MAX);
4017 				return -EINVAL;
4018 			}
4019 
4020 			/* Theoretically we can program the OA unit to sample
4021 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
4022 			 * for BXT. We don't allow such high sampling
4023 			 * frequencies by default unless root.
4024 			 */
4025 
4026 			BUILD_BUG_ON(sizeof(oa_period) != 8);
4027 			oa_period = oa_exponent_to_ns(perf, value);
4028 
4029 			/* This check is primarily to ensure that oa_period <=
4030 			 * UINT32_MAX (before passing to do_div which only
4031 			 * accepts a u32 denominator), but we can also skip
4032 			 * checking anything < 1Hz which implicitly can't be
4033 			 * limited via an integer oa_max_sample_rate.
4034 			 */
4035 			if (oa_period <= NSEC_PER_SEC) {
4036 				u64 tmp = NSEC_PER_SEC;
4037 				do_div(tmp, oa_period);
4038 				oa_freq_hz = tmp;
4039 			} else
4040 				oa_freq_hz = 0;
4041 
4042 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
4043 				drm_dbg(&perf->i915->drm,
4044 					"OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
4045 					  i915_oa_max_sample_rate);
4046 				return -EACCES;
4047 			}
4048 
4049 			props->oa_periodic = true;
4050 			props->oa_period_exponent = value;
4051 			break;
4052 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
4053 			props->hold_preemption = !!value;
4054 			break;
4055 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
4056 			struct drm_i915_gem_context_param_sseu user_sseu;
4057 
4058 			if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) {
4059 				drm_dbg(&perf->i915->drm,
4060 					"SSEU config not supported on gfx %x\n",
4061 					GRAPHICS_VER_FULL(perf->i915));
4062 				return -ENODEV;
4063 			}
4064 
4065 			if (copy_from_user(&user_sseu,
4066 					   u64_to_user_ptr(value),
4067 					   sizeof(user_sseu))) {
4068 				drm_dbg(&perf->i915->drm,
4069 					"Unable to copy global sseu parameter\n");
4070 				return -EFAULT;
4071 			}
4072 
4073 			ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
4074 			if (ret) {
4075 				drm_dbg(&perf->i915->drm,
4076 					"Invalid SSEU configuration\n");
4077 				return ret;
4078 			}
4079 			props->has_sseu = true;
4080 			break;
4081 		}
4082 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
4083 			if (value < 100000 /* 100us */) {
4084 				drm_dbg(&perf->i915->drm,
4085 					"OA availability timer too small (%lluns < 100us)\n",
4086 					  value);
4087 				return -EINVAL;
4088 			}
4089 			props->poll_oa_period = value;
4090 			break;
4091 		case DRM_I915_PERF_PROP_MAX:
4092 			MISSING_CASE(id);
4093 			return -EINVAL;
4094 		}
4095 
4096 		uprop += 2;
4097 	}
4098 
4099 	return 0;
4100 }
4101 
4102 /**
4103  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
4104  * @dev: drm device
4105  * @data: ioctl data copied from userspace (unvalidated)
4106  * @file: drm file
4107  *
4108  * Validates the stream open parameters given by userspace including flags
4109  * and an array of u64 key, value pair properties.
4110  *
4111  * Very little is assumed up front about the nature of the stream being
4112  * opened (for instance we don't assume it's for periodic OA unit metrics). An
4113  * i915-perf stream is expected to be a suitable interface for other forms of
4114  * buffered data written by the GPU besides periodic OA metrics.
4115  *
4116  * Note we copy the properties from userspace outside of the i915 perf
4117  * mutex to avoid an awkward lockdep with mmap_lock.
4118  *
4119  * Most of the implementation details are handled by
4120  * i915_perf_open_ioctl_locked() after taking the &gt->perf.lock
4121  * mutex for serializing with any non-file-operation driver hooks.
4122  *
4123  * Return: A newly opened i915 Perf stream file descriptor or negative
4124  * error code on failure.
4125  */
4126 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
4127 			 struct drm_file *file)
4128 {
4129 	struct i915_perf *perf = &to_i915(dev)->perf;
4130 	struct drm_i915_perf_open_param *param = data;
4131 	struct intel_gt *gt;
4132 	struct perf_open_properties props;
4133 	u32 known_open_flags;
4134 	int ret;
4135 
4136 	if (!perf->i915) {
4137 		drm_dbg(&perf->i915->drm,
4138 			"i915 perf interface not available for this system\n");
4139 		return -ENOTSUPP;
4140 	}
4141 
4142 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
4143 			   I915_PERF_FLAG_FD_NONBLOCK |
4144 			   I915_PERF_FLAG_DISABLED;
4145 	if (param->flags & ~known_open_flags) {
4146 		drm_dbg(&perf->i915->drm,
4147 			"Unknown drm_i915_perf_open_param flag\n");
4148 		return -EINVAL;
4149 	}
4150 
4151 	ret = read_properties_unlocked(perf,
4152 				       u64_to_user_ptr(param->properties_ptr),
4153 				       param->num_properties,
4154 				       &props);
4155 	if (ret)
4156 		return ret;
4157 
4158 	gt = props.engine->gt;
4159 
4160 	mutex_lock(&gt->perf.lock);
4161 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
4162 	mutex_unlock(&gt->perf.lock);
4163 
4164 	return ret;
4165 }
4166 
4167 /**
4168  * i915_perf_register - exposes i915-perf to userspace
4169  * @i915: i915 device instance
4170  *
4171  * In particular OA metric sets are advertised under a sysfs metrics/
4172  * directory allowing userspace to enumerate valid IDs that can be
4173  * used to open an i915-perf stream.
4174  */
4175 void i915_perf_register(struct drm_i915_private *i915)
4176 {
4177 	struct i915_perf *perf = &i915->perf;
4178 	struct intel_gt *gt = to_gt(i915);
4179 
4180 	if (!perf->i915)
4181 		return;
4182 
4183 	/* To be sure we're synchronized with an attempted
4184 	 * i915_perf_open_ioctl(); considering that we register after
4185 	 * being exposed to userspace.
4186 	 */
4187 	mutex_lock(&gt->perf.lock);
4188 
4189 	perf->metrics_kobj =
4190 		kobject_create_and_add("metrics",
4191 				       &i915->drm.primary->kdev->kobj);
4192 
4193 	mutex_unlock(&gt->perf.lock);
4194 }
4195 
4196 /**
4197  * i915_perf_unregister - hide i915-perf from userspace
4198  * @i915: i915 device instance
4199  *
4200  * i915-perf state cleanup is split up into an 'unregister' and
4201  * 'deinit' phase where the interface is first hidden from
4202  * userspace by i915_perf_unregister() before cleaning up
4203  * remaining state in i915_perf_fini().
4204  */
4205 void i915_perf_unregister(struct drm_i915_private *i915)
4206 {
4207 	struct i915_perf *perf = &i915->perf;
4208 
4209 	if (!perf->metrics_kobj)
4210 		return;
4211 
4212 	kobject_put(perf->metrics_kobj);
4213 	perf->metrics_kobj = NULL;
4214 }
4215 
4216 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
4217 {
4218 	static const i915_reg_t flex_eu_regs[] = {
4219 		EU_PERF_CNTL0,
4220 		EU_PERF_CNTL1,
4221 		EU_PERF_CNTL2,
4222 		EU_PERF_CNTL3,
4223 		EU_PERF_CNTL4,
4224 		EU_PERF_CNTL5,
4225 		EU_PERF_CNTL6,
4226 	};
4227 	int i;
4228 
4229 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
4230 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
4231 			return true;
4232 	}
4233 	return false;
4234 }
4235 
4236 static bool reg_in_range_table(u32 addr, const struct i915_range *table)
4237 {
4238 	while (table->start || table->end) {
4239 		if (addr >= table->start && addr <= table->end)
4240 			return true;
4241 
4242 		table++;
4243 	}
4244 
4245 	return false;
4246 }
4247 
4248 #define REG_EQUAL(addr, mmio) \
4249 	((addr) == i915_mmio_reg_offset(mmio))
4250 
4251 static const struct i915_range gen7_oa_b_counters[] = {
4252 	{ .start = 0x2710, .end = 0x272c },	/* OASTARTTRIG[1-8] */
4253 	{ .start = 0x2740, .end = 0x275c },	/* OAREPORTTRIG[1-8] */
4254 	{ .start = 0x2770, .end = 0x27ac },	/* OACEC[0-7][0-1] */
4255 	{}
4256 };
4257 
4258 static const struct i915_range gen12_oa_b_counters[] = {
4259 	{ .start = 0x2b2c, .end = 0x2b2c },	/* GEN12_OAG_OA_PESS */
4260 	{ .start = 0xd900, .end = 0xd91c },	/* GEN12_OAG_OASTARTTRIG[1-8] */
4261 	{ .start = 0xd920, .end = 0xd93c },	/* GEN12_OAG_OAREPORTTRIG1[1-8] */
4262 	{ .start = 0xd940, .end = 0xd97c },	/* GEN12_OAG_CEC[0-7][0-1] */
4263 	{ .start = 0xdc00, .end = 0xdc3c },	/* GEN12_OAG_SCEC[0-7][0-1] */
4264 	{ .start = 0xdc40, .end = 0xdc40 },	/* GEN12_OAG_SPCTR_CNF */
4265 	{ .start = 0xdc44, .end = 0xdc44 },	/* GEN12_OAA_DBG_REG */
4266 	{}
4267 };
4268 
4269 static const struct i915_range xehp_oa_b_counters[] = {
4270 	{ .start = 0xdc48, .end = 0xdc48 },	/* OAA_ENABLE_REG */
4271 	{ .start = 0xdd00, .end = 0xdd48 },	/* OAG_LCE0_0 - OAA_LENABLE_REG */
4272 };
4273 
4274 static const struct i915_range gen7_oa_mux_regs[] = {
4275 	{ .start = 0x91b8, .end = 0x91cc },	/* OA_PERFCNT[1-2], OA_PERFMATRIX */
4276 	{ .start = 0x9800, .end = 0x9888 },	/* MICRO_BP0_0 - NOA_WRITE */
4277 	{ .start = 0xe180, .end = 0xe180 },	/* HALF_SLICE_CHICKEN2 */
4278 	{}
4279 };
4280 
4281 static const struct i915_range hsw_oa_mux_regs[] = {
4282 	{ .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
4283 	{ .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
4284 	{ .start = 0x25100, .end = 0x2ff90 },
4285 	{}
4286 };
4287 
4288 static const struct i915_range chv_oa_mux_regs[] = {
4289 	{ .start = 0x182300, .end = 0x1823a4 },
4290 	{}
4291 };
4292 
4293 static const struct i915_range gen8_oa_mux_regs[] = {
4294 	{ .start = 0x0d00, .end = 0x0d2c },	/* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
4295 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4296 	{}
4297 };
4298 
4299 static const struct i915_range gen11_oa_mux_regs[] = {
4300 	{ .start = 0x91c8, .end = 0x91dc },	/* OA_PERFCNT[3-4] */
4301 	{}
4302 };
4303 
4304 static const struct i915_range gen12_oa_mux_regs[] = {
4305 	{ .start = 0x0d00, .end = 0x0d04 },     /* RPM_CONFIG[0-1] */
4306 	{ .start = 0x0d0c, .end = 0x0d2c },     /* NOA_CONFIG[0-8] */
4307 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4308 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4309 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4310 	{}
4311 };
4312 
4313 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4314 {
4315 	return reg_in_range_table(addr, gen7_oa_b_counters);
4316 }
4317 
4318 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4319 {
4320 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4321 		reg_in_range_table(addr, gen8_oa_mux_regs);
4322 }
4323 
4324 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4325 {
4326 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4327 		reg_in_range_table(addr, gen8_oa_mux_regs) ||
4328 		reg_in_range_table(addr, gen11_oa_mux_regs);
4329 }
4330 
4331 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4332 {
4333 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4334 		reg_in_range_table(addr, hsw_oa_mux_regs);
4335 }
4336 
4337 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4338 {
4339 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4340 		reg_in_range_table(addr, chv_oa_mux_regs);
4341 }
4342 
4343 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4344 {
4345 	return reg_in_range_table(addr, gen12_oa_b_counters);
4346 }
4347 
4348 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4349 {
4350 	return reg_in_range_table(addr, xehp_oa_b_counters) ||
4351 		reg_in_range_table(addr, gen12_oa_b_counters);
4352 }
4353 
4354 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4355 {
4356 	return reg_in_range_table(addr, gen12_oa_mux_regs);
4357 }
4358 
4359 static u32 mask_reg_value(u32 reg, u32 val)
4360 {
4361 	/* HALF_SLICE_CHICKEN2 is programmed with a the
4362 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4363 	 * programmed by userspace doesn't change this.
4364 	 */
4365 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4366 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4367 
4368 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
4369 	 * indicated by its name and a bunch of selection fields used by OA
4370 	 * configs.
4371 	 */
4372 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4373 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4374 
4375 	return val;
4376 }
4377 
4378 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4379 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4380 					 u32 __user *regs,
4381 					 u32 n_regs)
4382 {
4383 	struct i915_oa_reg *oa_regs;
4384 	int err;
4385 	u32 i;
4386 
4387 	if (!n_regs)
4388 		return NULL;
4389 
4390 	/* No is_valid function means we're not allowing any register to be programmed. */
4391 	GEM_BUG_ON(!is_valid);
4392 	if (!is_valid)
4393 		return ERR_PTR(-EINVAL);
4394 
4395 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4396 	if (!oa_regs)
4397 		return ERR_PTR(-ENOMEM);
4398 
4399 	for (i = 0; i < n_regs; i++) {
4400 		u32 addr, value;
4401 
4402 		err = get_user(addr, regs);
4403 		if (err)
4404 			goto addr_err;
4405 
4406 		if (!is_valid(perf, addr)) {
4407 			drm_dbg(&perf->i915->drm,
4408 				"Invalid oa_reg address: %X\n", addr);
4409 			err = -EINVAL;
4410 			goto addr_err;
4411 		}
4412 
4413 		err = get_user(value, regs + 1);
4414 		if (err)
4415 			goto addr_err;
4416 
4417 		oa_regs[i].addr = _MMIO(addr);
4418 		oa_regs[i].value = mask_reg_value(addr, value);
4419 
4420 		regs += 2;
4421 	}
4422 
4423 	return oa_regs;
4424 
4425 addr_err:
4426 	kfree(oa_regs);
4427 	return ERR_PTR(err);
4428 }
4429 
4430 static ssize_t show_dynamic_id(struct kobject *kobj,
4431 			       struct kobj_attribute *attr,
4432 			       char *buf)
4433 {
4434 	struct i915_oa_config *oa_config =
4435 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
4436 
4437 	return sprintf(buf, "%d\n", oa_config->id);
4438 }
4439 
4440 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4441 					 struct i915_oa_config *oa_config)
4442 {
4443 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4444 	oa_config->sysfs_metric_id.attr.name = "id";
4445 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4446 	oa_config->sysfs_metric_id.show = show_dynamic_id;
4447 	oa_config->sysfs_metric_id.store = NULL;
4448 
4449 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4450 	oa_config->attrs[1] = NULL;
4451 
4452 	oa_config->sysfs_metric.name = oa_config->uuid;
4453 	oa_config->sysfs_metric.attrs = oa_config->attrs;
4454 
4455 	return sysfs_create_group(perf->metrics_kobj,
4456 				  &oa_config->sysfs_metric);
4457 }
4458 
4459 /**
4460  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4461  * @dev: drm device
4462  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4463  *        userspace (unvalidated)
4464  * @file: drm file
4465  *
4466  * Validates the submitted OA register to be saved into a new OA config that
4467  * can then be used for programming the OA unit and its NOA network.
4468  *
4469  * Returns: A new allocated config number to be used with the perf open ioctl
4470  * or a negative error code on failure.
4471  */
4472 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4473 			       struct drm_file *file)
4474 {
4475 	struct i915_perf *perf = &to_i915(dev)->perf;
4476 	struct drm_i915_perf_oa_config *args = data;
4477 	struct i915_oa_config *oa_config, *tmp;
4478 	struct i915_oa_reg *regs;
4479 	int err, id;
4480 
4481 	if (!perf->i915) {
4482 		drm_dbg(&perf->i915->drm,
4483 			"i915 perf interface not available for this system\n");
4484 		return -ENOTSUPP;
4485 	}
4486 
4487 	if (!perf->metrics_kobj) {
4488 		drm_dbg(&perf->i915->drm,
4489 			"OA metrics weren't advertised via sysfs\n");
4490 		return -EINVAL;
4491 	}
4492 
4493 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4494 		drm_dbg(&perf->i915->drm,
4495 			"Insufficient privileges to add i915 OA config\n");
4496 		return -EACCES;
4497 	}
4498 
4499 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4500 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4501 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4502 		drm_dbg(&perf->i915->drm,
4503 			"No OA registers given\n");
4504 		return -EINVAL;
4505 	}
4506 
4507 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4508 	if (!oa_config) {
4509 		drm_dbg(&perf->i915->drm,
4510 			"Failed to allocate memory for the OA config\n");
4511 		return -ENOMEM;
4512 	}
4513 
4514 	oa_config->perf = perf;
4515 	kref_init(&oa_config->ref);
4516 
4517 	if (!uuid_is_valid(args->uuid)) {
4518 		drm_dbg(&perf->i915->drm,
4519 			"Invalid uuid format for OA config\n");
4520 		err = -EINVAL;
4521 		goto reg_err;
4522 	}
4523 
4524 	/* Last character in oa_config->uuid will be 0 because oa_config is
4525 	 * kzalloc.
4526 	 */
4527 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4528 
4529 	oa_config->mux_regs_len = args->n_mux_regs;
4530 	regs = alloc_oa_regs(perf,
4531 			     perf->ops.is_valid_mux_reg,
4532 			     u64_to_user_ptr(args->mux_regs_ptr),
4533 			     args->n_mux_regs);
4534 
4535 	if (IS_ERR(regs)) {
4536 		drm_dbg(&perf->i915->drm,
4537 			"Failed to create OA config for mux_regs\n");
4538 		err = PTR_ERR(regs);
4539 		goto reg_err;
4540 	}
4541 	oa_config->mux_regs = regs;
4542 
4543 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4544 	regs = alloc_oa_regs(perf,
4545 			     perf->ops.is_valid_b_counter_reg,
4546 			     u64_to_user_ptr(args->boolean_regs_ptr),
4547 			     args->n_boolean_regs);
4548 
4549 	if (IS_ERR(regs)) {
4550 		drm_dbg(&perf->i915->drm,
4551 			"Failed to create OA config for b_counter_regs\n");
4552 		err = PTR_ERR(regs);
4553 		goto reg_err;
4554 	}
4555 	oa_config->b_counter_regs = regs;
4556 
4557 	if (GRAPHICS_VER(perf->i915) < 8) {
4558 		if (args->n_flex_regs != 0) {
4559 			err = -EINVAL;
4560 			goto reg_err;
4561 		}
4562 	} else {
4563 		oa_config->flex_regs_len = args->n_flex_regs;
4564 		regs = alloc_oa_regs(perf,
4565 				     perf->ops.is_valid_flex_reg,
4566 				     u64_to_user_ptr(args->flex_regs_ptr),
4567 				     args->n_flex_regs);
4568 
4569 		if (IS_ERR(regs)) {
4570 			drm_dbg(&perf->i915->drm,
4571 				"Failed to create OA config for flex_regs\n");
4572 			err = PTR_ERR(regs);
4573 			goto reg_err;
4574 		}
4575 		oa_config->flex_regs = regs;
4576 	}
4577 
4578 	err = mutex_lock_interruptible(&perf->metrics_lock);
4579 	if (err)
4580 		goto reg_err;
4581 
4582 	/* We shouldn't have too many configs, so this iteration shouldn't be
4583 	 * too costly.
4584 	 */
4585 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4586 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4587 			drm_dbg(&perf->i915->drm,
4588 				"OA config already exists with this uuid\n");
4589 			err = -EADDRINUSE;
4590 			goto sysfs_err;
4591 		}
4592 	}
4593 
4594 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4595 	if (err) {
4596 		drm_dbg(&perf->i915->drm,
4597 			"Failed to create sysfs entry for OA config\n");
4598 		goto sysfs_err;
4599 	}
4600 
4601 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4602 	oa_config->id = idr_alloc(&perf->metrics_idr,
4603 				  oa_config, 2,
4604 				  0, GFP_KERNEL);
4605 	if (oa_config->id < 0) {
4606 		drm_dbg(&perf->i915->drm,
4607 			"Failed to create sysfs entry for OA config\n");
4608 		err = oa_config->id;
4609 		goto sysfs_err;
4610 	}
4611 
4612 	mutex_unlock(&perf->metrics_lock);
4613 
4614 	drm_dbg(&perf->i915->drm,
4615 		"Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4616 
4617 	return oa_config->id;
4618 
4619 sysfs_err:
4620 	mutex_unlock(&perf->metrics_lock);
4621 reg_err:
4622 	i915_oa_config_put(oa_config);
4623 	drm_dbg(&perf->i915->drm,
4624 		"Failed to add new OA config\n");
4625 	return err;
4626 }
4627 
4628 /**
4629  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4630  * @dev: drm device
4631  * @data: ioctl data (pointer to u64 integer) copied from userspace
4632  * @file: drm file
4633  *
4634  * Configs can be removed while being used, the will stop appearing in sysfs
4635  * and their content will be freed when the stream using the config is closed.
4636  *
4637  * Returns: 0 on success or a negative error code on failure.
4638  */
4639 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4640 				  struct drm_file *file)
4641 {
4642 	struct i915_perf *perf = &to_i915(dev)->perf;
4643 	u64 *arg = data;
4644 	struct i915_oa_config *oa_config;
4645 	int ret;
4646 
4647 	if (!perf->i915) {
4648 		drm_dbg(&perf->i915->drm,
4649 			"i915 perf interface not available for this system\n");
4650 		return -ENOTSUPP;
4651 	}
4652 
4653 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4654 		drm_dbg(&perf->i915->drm,
4655 			"Insufficient privileges to remove i915 OA config\n");
4656 		return -EACCES;
4657 	}
4658 
4659 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4660 	if (ret)
4661 		return ret;
4662 
4663 	oa_config = idr_find(&perf->metrics_idr, *arg);
4664 	if (!oa_config) {
4665 		drm_dbg(&perf->i915->drm,
4666 			"Failed to remove unknown OA config\n");
4667 		ret = -ENOENT;
4668 		goto err_unlock;
4669 	}
4670 
4671 	GEM_BUG_ON(*arg != oa_config->id);
4672 
4673 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4674 
4675 	idr_remove(&perf->metrics_idr, *arg);
4676 
4677 	mutex_unlock(&perf->metrics_lock);
4678 
4679 	drm_dbg(&perf->i915->drm,
4680 		"Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4681 
4682 	i915_oa_config_put(oa_config);
4683 
4684 	return 0;
4685 
4686 err_unlock:
4687 	mutex_unlock(&perf->metrics_lock);
4688 	return ret;
4689 }
4690 
4691 static struct ctl_table oa_table[] = {
4692 	{
4693 	 .procname = "perf_stream_paranoid",
4694 	 .data = &i915_perf_stream_paranoid,
4695 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4696 	 .mode = 0644,
4697 	 .proc_handler = proc_dointvec_minmax,
4698 	 .extra1 = SYSCTL_ZERO,
4699 	 .extra2 = SYSCTL_ONE,
4700 	 },
4701 	{
4702 	 .procname = "oa_max_sample_rate",
4703 	 .data = &i915_oa_max_sample_rate,
4704 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4705 	 .mode = 0644,
4706 	 .proc_handler = proc_dointvec_minmax,
4707 	 .extra1 = SYSCTL_ZERO,
4708 	 .extra2 = &oa_sample_rate_hard_limit,
4709 	 },
4710 	{}
4711 };
4712 
4713 static void oa_init_supported_formats(struct i915_perf *perf)
4714 {
4715 	struct drm_i915_private *i915 = perf->i915;
4716 	enum intel_platform platform = INTEL_INFO(i915)->platform;
4717 
4718 	switch (platform) {
4719 	case INTEL_HASWELL:
4720 		oa_format_add(perf, I915_OA_FORMAT_A13);
4721 		oa_format_add(perf, I915_OA_FORMAT_A13);
4722 		oa_format_add(perf, I915_OA_FORMAT_A29);
4723 		oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
4724 		oa_format_add(perf, I915_OA_FORMAT_B4_C8);
4725 		oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
4726 		oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
4727 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4728 		break;
4729 
4730 	case INTEL_BROADWELL:
4731 	case INTEL_CHERRYVIEW:
4732 	case INTEL_SKYLAKE:
4733 	case INTEL_BROXTON:
4734 	case INTEL_KABYLAKE:
4735 	case INTEL_GEMINILAKE:
4736 	case INTEL_COFFEELAKE:
4737 	case INTEL_COMETLAKE:
4738 	case INTEL_ICELAKE:
4739 	case INTEL_ELKHARTLAKE:
4740 	case INTEL_JASPERLAKE:
4741 	case INTEL_TIGERLAKE:
4742 	case INTEL_ROCKETLAKE:
4743 	case INTEL_DG1:
4744 	case INTEL_ALDERLAKE_S:
4745 	case INTEL_ALDERLAKE_P:
4746 		oa_format_add(perf, I915_OA_FORMAT_A12);
4747 		oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
4748 		oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
4749 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4750 		break;
4751 
4752 	case INTEL_DG2:
4753 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
4754 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
4755 		break;
4756 
4757 	default:
4758 		MISSING_CASE(platform);
4759 	}
4760 }
4761 
4762 static void i915_perf_init_info(struct drm_i915_private *i915)
4763 {
4764 	struct i915_perf *perf = &i915->perf;
4765 
4766 	switch (GRAPHICS_VER(i915)) {
4767 	case 8:
4768 		perf->ctx_oactxctrl_offset = 0x120;
4769 		perf->ctx_flexeu0_offset = 0x2ce;
4770 		perf->gen8_valid_ctx_bit = BIT(25);
4771 		break;
4772 	case 9:
4773 		perf->ctx_oactxctrl_offset = 0x128;
4774 		perf->ctx_flexeu0_offset = 0x3de;
4775 		perf->gen8_valid_ctx_bit = BIT(16);
4776 		break;
4777 	case 11:
4778 		perf->ctx_oactxctrl_offset = 0x124;
4779 		perf->ctx_flexeu0_offset = 0x78e;
4780 		perf->gen8_valid_ctx_bit = BIT(16);
4781 		break;
4782 	case 12:
4783 		/*
4784 		 * Calculate offset at runtime in oa_pin_context for gen12 and
4785 		 * cache the value in perf->ctx_oactxctrl_offset.
4786 		 */
4787 		break;
4788 	default:
4789 		MISSING_CASE(GRAPHICS_VER(i915));
4790 	}
4791 }
4792 
4793 /**
4794  * i915_perf_init - initialize i915-perf state on module bind
4795  * @i915: i915 device instance
4796  *
4797  * Initializes i915-perf state without exposing anything to userspace.
4798  *
4799  * Note: i915-perf initialization is split into an 'init' and 'register'
4800  * phase with the i915_perf_register() exposing state to userspace.
4801  */
4802 void i915_perf_init(struct drm_i915_private *i915)
4803 {
4804 	struct i915_perf *perf = &i915->perf;
4805 
4806 	perf->oa_formats = oa_formats;
4807 	if (IS_HASWELL(i915)) {
4808 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4809 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4810 		perf->ops.is_valid_flex_reg = NULL;
4811 		perf->ops.enable_metric_set = hsw_enable_metric_set;
4812 		perf->ops.disable_metric_set = hsw_disable_metric_set;
4813 		perf->ops.oa_enable = gen7_oa_enable;
4814 		perf->ops.oa_disable = gen7_oa_disable;
4815 		perf->ops.read = gen7_oa_read;
4816 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4817 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4818 		/* Note: that although we could theoretically also support the
4819 		 * legacy ringbuffer mode on BDW (and earlier iterations of
4820 		 * this driver, before upstreaming did this) it didn't seem
4821 		 * worth the complexity to maintain now that BDW+ enable
4822 		 * execlist mode by default.
4823 		 */
4824 		perf->ops.read = gen8_oa_read;
4825 		i915_perf_init_info(i915);
4826 
4827 		if (IS_GRAPHICS_VER(i915, 8, 9)) {
4828 			perf->ops.is_valid_b_counter_reg =
4829 				gen7_is_valid_b_counter_addr;
4830 			perf->ops.is_valid_mux_reg =
4831 				gen8_is_valid_mux_addr;
4832 			perf->ops.is_valid_flex_reg =
4833 				gen8_is_valid_flex_addr;
4834 
4835 			if (IS_CHERRYVIEW(i915)) {
4836 				perf->ops.is_valid_mux_reg =
4837 					chv_is_valid_mux_addr;
4838 			}
4839 
4840 			perf->ops.oa_enable = gen8_oa_enable;
4841 			perf->ops.oa_disable = gen8_oa_disable;
4842 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4843 			perf->ops.disable_metric_set = gen8_disable_metric_set;
4844 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4845 		} else if (GRAPHICS_VER(i915) == 11) {
4846 			perf->ops.is_valid_b_counter_reg =
4847 				gen7_is_valid_b_counter_addr;
4848 			perf->ops.is_valid_mux_reg =
4849 				gen11_is_valid_mux_addr;
4850 			perf->ops.is_valid_flex_reg =
4851 				gen8_is_valid_flex_addr;
4852 
4853 			perf->ops.oa_enable = gen8_oa_enable;
4854 			perf->ops.oa_disable = gen8_oa_disable;
4855 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4856 			perf->ops.disable_metric_set = gen11_disable_metric_set;
4857 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4858 		} else if (GRAPHICS_VER(i915) == 12) {
4859 			perf->ops.is_valid_b_counter_reg =
4860 				HAS_OA_SLICE_CONTRIB_LIMITS(i915) ?
4861 				xehp_is_valid_b_counter_addr :
4862 				gen12_is_valid_b_counter_addr;
4863 			perf->ops.is_valid_mux_reg =
4864 				gen12_is_valid_mux_addr;
4865 			perf->ops.is_valid_flex_reg =
4866 				gen8_is_valid_flex_addr;
4867 
4868 			perf->ops.oa_enable = gen12_oa_enable;
4869 			perf->ops.oa_disable = gen12_oa_disable;
4870 			perf->ops.enable_metric_set = gen12_enable_metric_set;
4871 			perf->ops.disable_metric_set = gen12_disable_metric_set;
4872 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4873 		}
4874 	}
4875 
4876 	if (perf->ops.enable_metric_set) {
4877 		struct intel_gt *gt;
4878 		int i;
4879 
4880 		for_each_gt(gt, i915, i)
4881 			mutex_init(&gt->perf.lock);
4882 
4883 		/* Choose a representative limit */
4884 		oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
4885 
4886 		mutex_init(&perf->metrics_lock);
4887 		idr_init_base(&perf->metrics_idr, 1);
4888 
4889 		/* We set up some ratelimit state to potentially throttle any
4890 		 * _NOTES about spurious, invalid OA reports which we don't
4891 		 * forward to userspace.
4892 		 *
4893 		 * We print a _NOTE about any throttling when closing the
4894 		 * stream instead of waiting until driver _fini which no one
4895 		 * would ever see.
4896 		 *
4897 		 * Using the same limiting factors as printk_ratelimit()
4898 		 */
4899 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4900 		/* Since we use a DRM_NOTE for spurious reports it would be
4901 		 * inconsistent to let __ratelimit() automatically print a
4902 		 * warning for throttling.
4903 		 */
4904 		ratelimit_set_flags(&perf->spurious_report_rs,
4905 				    RATELIMIT_MSG_ON_RELEASE);
4906 
4907 		ratelimit_state_init(&perf->tail_pointer_race,
4908 				     5 * HZ, 10);
4909 		ratelimit_set_flags(&perf->tail_pointer_race,
4910 				    RATELIMIT_MSG_ON_RELEASE);
4911 
4912 		atomic64_set(&perf->noa_programming_delay,
4913 			     500 * 1000 /* 500us */);
4914 
4915 		perf->i915 = i915;
4916 
4917 		oa_init_supported_formats(perf);
4918 	}
4919 }
4920 
4921 static int destroy_config(int id, void *p, void *data)
4922 {
4923 	i915_oa_config_put(p);
4924 	return 0;
4925 }
4926 
4927 int i915_perf_sysctl_register(void)
4928 {
4929 	sysctl_header = register_sysctl("dev/i915", oa_table);
4930 	return 0;
4931 }
4932 
4933 void i915_perf_sysctl_unregister(void)
4934 {
4935 	unregister_sysctl_table(sysctl_header);
4936 }
4937 
4938 /**
4939  * i915_perf_fini - Counter part to i915_perf_init()
4940  * @i915: i915 device instance
4941  */
4942 void i915_perf_fini(struct drm_i915_private *i915)
4943 {
4944 	struct i915_perf *perf = &i915->perf;
4945 
4946 	if (!perf->i915)
4947 		return;
4948 
4949 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
4950 	idr_destroy(&perf->metrics_idr);
4951 
4952 	memset(&perf->ops, 0, sizeof(perf->ops));
4953 	perf->i915 = NULL;
4954 }
4955 
4956 /**
4957  * i915_perf_ioctl_version - Version of the i915-perf subsystem
4958  *
4959  * This version number is used by userspace to detect available features.
4960  */
4961 int i915_perf_ioctl_version(void)
4962 {
4963 	/*
4964 	 * 1: Initial version
4965 	 *   I915_PERF_IOCTL_ENABLE
4966 	 *   I915_PERF_IOCTL_DISABLE
4967 	 *
4968 	 * 2: Added runtime modification of OA config.
4969 	 *   I915_PERF_IOCTL_CONFIG
4970 	 *
4971 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4972 	 *    preemption on a particular context so that performance data is
4973 	 *    accessible from a delta of MI_RPC reports without looking at the
4974 	 *    OA buffer.
4975 	 *
4976 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4977 	 *    be run for the duration of the performance recording based on
4978 	 *    their SSEU configuration.
4979 	 *
4980 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4981 	 *    interval for the hrtimer used to check for OA data.
4982 	 */
4983 	return 5;
4984 }
4985 
4986 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4987 #include "selftests/i915_perf.c"
4988 #endif
4989