xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision 8e4ee5e8)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "gem/i915_gem_context.h"
199 #include "gem/i915_gem_internal.h"
200 #include "gt/intel_engine_pm.h"
201 #include "gt/intel_engine_regs.h"
202 #include "gt/intel_engine_user.h"
203 #include "gt/intel_execlists_submission.h"
204 #include "gt/intel_gpu_commands.h"
205 #include "gt/intel_gt.h"
206 #include "gt/intel_gt_clock_utils.h"
207 #include "gt/intel_gt_mcr.h"
208 #include "gt/intel_gt_regs.h"
209 #include "gt/intel_lrc.h"
210 #include "gt/intel_lrc_reg.h"
211 #include "gt/intel_ring.h"
212 #include "gt/uc/intel_guc_slpc.h"
213 
214 #include "i915_drv.h"
215 #include "i915_file_private.h"
216 #include "i915_perf.h"
217 #include "i915_perf_oa_regs.h"
218 
219 /* HW requires this to be a power of two, between 128k and 16M, though driver
220  * is currently generally designed assuming the largest 16M size is used such
221  * that the overflow cases are unlikely in normal operation.
222  */
223 #define OA_BUFFER_SIZE		SZ_16M
224 
225 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
226 
227 /**
228  * DOC: OA Tail Pointer Race
229  *
230  * There's a HW race condition between OA unit tail pointer register updates and
231  * writes to memory whereby the tail pointer can sometimes get ahead of what's
232  * been written out to the OA buffer so far (in terms of what's visible to the
233  * CPU).
234  *
235  * Although this can be observed explicitly while copying reports to userspace
236  * by checking for a zeroed report-id field in tail reports, we want to account
237  * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
238  * redundant read() attempts.
239  *
240  * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
241  * in the OA buffer, starting from the tail reported by the HW until we find a
242  * report with its first 2 dwords not 0 meaning its previous report is
243  * completely in memory and ready to be read. Those dwords are also set to 0
244  * once read and the whole buffer is cleared upon OA buffer initialization. The
245  * first dword is the reason for this report while the second is the timestamp,
246  * making the chances of having those 2 fields at 0 fairly unlikely. A more
247  * detailed explanation is available in oa_buffer_check_unlocked().
248  *
249  * Most of the implementation details for this workaround are in
250  * oa_buffer_check_unlocked() and _append_oa_reports()
251  *
252  * Note for posterity: previously the driver used to define an effective tail
253  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
254  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
255  * This was flawed considering that the OA unit may also automatically generate
256  * non-periodic reports (such as on context switch) or the OA unit may be
257  * enabled without any periodic sampling.
258  */
259 #define OA_TAIL_MARGIN_NSEC	100000ULL
260 #define INVALID_TAIL_PTR	0xffffffff
261 
262 /* The default frequency for checking whether the OA unit has written new
263  * reports to the circular OA buffer...
264  */
265 #define DEFAULT_POLL_FREQUENCY_HZ 200
266 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
267 
268 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
269 static u32 i915_perf_stream_paranoid = true;
270 
271 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
272  * of the 64bit timestamp bits to trigger reports from) but there's currently
273  * no known use case for sampling as infrequently as once per 47 thousand years.
274  *
275  * Since the timestamps included in OA reports are only 32bits it seems
276  * reasonable to limit the OA exponent where it's still possible to account for
277  * overflow in OA report timestamps.
278  */
279 #define OA_EXPONENT_MAX 31
280 
281 #define INVALID_CTX_ID 0xffffffff
282 
283 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
284 #define OAREPORT_REASON_MASK           0x3f
285 #define OAREPORT_REASON_MASK_EXTENDED  0x7f
286 #define OAREPORT_REASON_SHIFT          19
287 #define OAREPORT_REASON_TIMER          (1<<0)
288 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
289 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
290 
291 #define HAS_MI_SET_PREDICATE(i915) (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
292 
293 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
294  *
295  * The highest sampling frequency we can theoretically program the OA unit
296  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
297  *
298  * Initialized just before we register the sysctl parameter.
299  */
300 static int oa_sample_rate_hard_limit;
301 
302 /* Theoretically we can program the OA unit to sample every 160ns but don't
303  * allow that by default unless root...
304  *
305  * The default threshold of 100000Hz is based on perf's similar
306  * kernel.perf_event_max_sample_rate sysctl parameter.
307  */
308 static u32 i915_oa_max_sample_rate = 100000;
309 
310 /* XXX: beware if future OA HW adds new report formats that the current
311  * code assumes all reports have a power-of-two size and ~(size - 1) can
312  * be used as a mask to align the OA tail pointer.
313  */
314 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
315 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
316 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
317 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
318 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
319 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
320 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
321 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
322 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
323 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
324 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
325 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
326 	[I915_OAR_FORMAT_A32u40_A4u32_B8_C8]    = { 5, 256 },
327 	[I915_OA_FORMAT_A24u40_A14u32_B8_C8]    = { 5, 256 },
328 };
329 
330 #define SAMPLE_OA_REPORT      (1<<0)
331 
332 /**
333  * struct perf_open_properties - for validated properties given to open a stream
334  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
335  * @single_context: Whether a single or all gpu contexts should be monitored
336  * @hold_preemption: Whether the preemption is disabled for the filtered
337  *                   context
338  * @ctx_handle: A gem ctx handle for use with @single_context
339  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
340  * @oa_format: An OA unit HW report format
341  * @oa_periodic: Whether to enable periodic OA unit sampling
342  * @oa_period_exponent: The OA unit sampling period is derived from this
343  * @engine: The engine (typically rcs0) being monitored by the OA unit
344  * @has_sseu: Whether @sseu was specified by userspace
345  * @sseu: internal SSEU configuration computed either from the userspace
346  *        specified configuration in the opening parameters or a default value
347  *        (see get_default_sseu_config())
348  * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
349  * data availability
350  *
351  * As read_properties_unlocked() enumerates and validates the properties given
352  * to open a stream of metrics the configuration is built up in the structure
353  * which starts out zero initialized.
354  */
355 struct perf_open_properties {
356 	u32 sample_flags;
357 
358 	u64 single_context:1;
359 	u64 hold_preemption:1;
360 	u64 ctx_handle;
361 
362 	/* OA sampling state */
363 	int metrics_set;
364 	int oa_format;
365 	bool oa_periodic;
366 	int oa_period_exponent;
367 
368 	struct intel_engine_cs *engine;
369 
370 	bool has_sseu;
371 	struct intel_sseu sseu;
372 
373 	u64 poll_oa_period;
374 };
375 
376 struct i915_oa_config_bo {
377 	struct llist_node node;
378 
379 	struct i915_oa_config *oa_config;
380 	struct i915_vma *vma;
381 };
382 
383 static struct ctl_table_header *sysctl_header;
384 
385 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
386 
387 void i915_oa_config_release(struct kref *ref)
388 {
389 	struct i915_oa_config *oa_config =
390 		container_of(ref, typeof(*oa_config), ref);
391 
392 	kfree(oa_config->flex_regs);
393 	kfree(oa_config->b_counter_regs);
394 	kfree(oa_config->mux_regs);
395 
396 	kfree_rcu(oa_config, rcu);
397 }
398 
399 struct i915_oa_config *
400 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
401 {
402 	struct i915_oa_config *oa_config;
403 
404 	rcu_read_lock();
405 	oa_config = idr_find(&perf->metrics_idr, metrics_set);
406 	if (oa_config)
407 		oa_config = i915_oa_config_get(oa_config);
408 	rcu_read_unlock();
409 
410 	return oa_config;
411 }
412 
413 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
414 {
415 	i915_oa_config_put(oa_bo->oa_config);
416 	i915_vma_put(oa_bo->vma);
417 	kfree(oa_bo);
418 }
419 
420 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
421 {
422 	struct intel_uncore *uncore = stream->uncore;
423 
424 	return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
425 	       GEN12_OAG_OATAILPTR_MASK;
426 }
427 
428 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
429 {
430 	struct intel_uncore *uncore = stream->uncore;
431 
432 	return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
433 }
434 
435 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
436 {
437 	struct intel_uncore *uncore = stream->uncore;
438 	u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
439 
440 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
441 }
442 
443 /**
444  * oa_buffer_check_unlocked - check for data and update tail ptr state
445  * @stream: i915 stream instance
446  *
447  * This is either called via fops (for blocking reads in user ctx) or the poll
448  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
449  * if there is data available for userspace to read.
450  *
451  * This function is central to providing a workaround for the OA unit tail
452  * pointer having a race with respect to what data is visible to the CPU.
453  * It is responsible for reading tail pointers from the hardware and giving
454  * the pointers time to 'age' before they are made available for reading.
455  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
456  *
457  * Besides returning true when there is data available to read() this function
458  * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
459  * object.
460  *
461  * Note: It's safe to read OA config state here unlocked, assuming that this is
462  * only called while the stream is enabled, while the global OA configuration
463  * can't be modified.
464  *
465  * Returns: %true if the OA buffer contains data, else %false
466  */
467 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
468 {
469 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
470 	int report_size = stream->oa_buffer.format->size;
471 	unsigned long flags;
472 	bool pollin;
473 	u32 hw_tail;
474 	u64 now;
475 
476 	/* We have to consider the (unlikely) possibility that read() errors
477 	 * could result in an OA buffer reset which might reset the head and
478 	 * tail state.
479 	 */
480 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
481 
482 	hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
483 
484 	/* The tail pointer increases in 64 byte increments,
485 	 * not in report_size steps...
486 	 */
487 	hw_tail &= ~(report_size - 1);
488 
489 	now = ktime_get_mono_fast_ns();
490 
491 	if (hw_tail == stream->oa_buffer.aging_tail &&
492 	    (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
493 		/* If the HW tail hasn't move since the last check and the HW
494 		 * tail has been aging for long enough, declare it the new
495 		 * tail.
496 		 */
497 		stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
498 	} else {
499 		u32 head, tail, aged_tail;
500 
501 		/* NB: The head we observe here might effectively be a little
502 		 * out of date. If a read() is in progress, the head could be
503 		 * anywhere between this head and stream->oa_buffer.tail.
504 		 */
505 		head = stream->oa_buffer.head - gtt_offset;
506 		aged_tail = stream->oa_buffer.tail - gtt_offset;
507 
508 		hw_tail -= gtt_offset;
509 		tail = hw_tail;
510 
511 		/* Walk the stream backward until we find a report with dword 0
512 		 * & 1 not at 0. Since the circular buffer pointers progress by
513 		 * increments of 64 bytes and that reports can be up to 256
514 		 * bytes long, we can't tell whether a report has fully landed
515 		 * in memory before the first 2 dwords of the following report
516 		 * have effectively landed.
517 		 *
518 		 * This is assuming that the writes of the OA unit land in
519 		 * memory in the order they were written to.
520 		 * If not : (╯°□°)╯︵ ┻━┻
521 		 */
522 		while (OA_TAKEN(tail, aged_tail) >= report_size) {
523 			u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
524 
525 			if (report32[0] != 0 || report32[1] != 0)
526 				break;
527 
528 			tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
529 		}
530 
531 		if (OA_TAKEN(hw_tail, tail) > report_size &&
532 		    __ratelimit(&stream->perf->tail_pointer_race))
533 			drm_notice(&stream->uncore->i915->drm,
534 				   "unlanded report(s) head=0x%x tail=0x%x hw_tail=0x%x\n",
535 				   head, tail, hw_tail);
536 
537 		stream->oa_buffer.tail = gtt_offset + tail;
538 		stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
539 		stream->oa_buffer.aging_timestamp = now;
540 	}
541 
542 	pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
543 			  stream->oa_buffer.head - gtt_offset) >= report_size;
544 
545 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
546 
547 	return pollin;
548 }
549 
550 /**
551  * append_oa_status - Appends a status record to a userspace read() buffer.
552  * @stream: An i915-perf stream opened for OA metrics
553  * @buf: destination buffer given by userspace
554  * @count: the number of bytes userspace wants to read
555  * @offset: (inout): the current position for writing into @buf
556  * @type: The kind of status to report to userspace
557  *
558  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
559  * into the userspace read() buffer.
560  *
561  * The @buf @offset will only be updated on success.
562  *
563  * Returns: 0 on success, negative error code on failure.
564  */
565 static int append_oa_status(struct i915_perf_stream *stream,
566 			    char __user *buf,
567 			    size_t count,
568 			    size_t *offset,
569 			    enum drm_i915_perf_record_type type)
570 {
571 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
572 
573 	if ((count - *offset) < header.size)
574 		return -ENOSPC;
575 
576 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
577 		return -EFAULT;
578 
579 	(*offset) += header.size;
580 
581 	return 0;
582 }
583 
584 /**
585  * append_oa_sample - Copies single OA report into userspace read() buffer.
586  * @stream: An i915-perf stream opened for OA metrics
587  * @buf: destination buffer given by userspace
588  * @count: the number of bytes userspace wants to read
589  * @offset: (inout): the current position for writing into @buf
590  * @report: A single OA report to (optionally) include as part of the sample
591  *
592  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
593  * properties when opening a stream, tracked as `stream->sample_flags`. This
594  * function copies the requested components of a single sample to the given
595  * read() @buf.
596  *
597  * The @buf @offset will only be updated on success.
598  *
599  * Returns: 0 on success, negative error code on failure.
600  */
601 static int append_oa_sample(struct i915_perf_stream *stream,
602 			    char __user *buf,
603 			    size_t count,
604 			    size_t *offset,
605 			    const u8 *report)
606 {
607 	int report_size = stream->oa_buffer.format->size;
608 	struct drm_i915_perf_record_header header;
609 
610 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
611 	header.pad = 0;
612 	header.size = stream->sample_size;
613 
614 	if ((count - *offset) < header.size)
615 		return -ENOSPC;
616 
617 	buf += *offset;
618 	if (copy_to_user(buf, &header, sizeof(header)))
619 		return -EFAULT;
620 	buf += sizeof(header);
621 
622 	if (copy_to_user(buf, report, report_size))
623 		return -EFAULT;
624 
625 	(*offset) += header.size;
626 
627 	return 0;
628 }
629 
630 /**
631  * gen8_append_oa_reports - Copies all buffered OA reports into
632  *			    userspace read() buffer.
633  * @stream: An i915-perf stream opened for OA metrics
634  * @buf: destination buffer given by userspace
635  * @count: the number of bytes userspace wants to read
636  * @offset: (inout): the current position for writing into @buf
637  *
638  * Notably any error condition resulting in a short read (-%ENOSPC or
639  * -%EFAULT) will be returned even though one or more records may
640  * have been successfully copied. In this case it's up to the caller
641  * to decide if the error should be squashed before returning to
642  * userspace.
643  *
644  * Note: reports are consumed from the head, and appended to the
645  * tail, so the tail chases the head?... If you think that's mad
646  * and back-to-front you're not alone, but this follows the
647  * Gen PRM naming convention.
648  *
649  * Returns: 0 on success, negative error code on failure.
650  */
651 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
652 				  char __user *buf,
653 				  size_t count,
654 				  size_t *offset)
655 {
656 	struct intel_uncore *uncore = stream->uncore;
657 	int report_size = stream->oa_buffer.format->size;
658 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
659 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
660 	u32 mask = (OA_BUFFER_SIZE - 1);
661 	size_t start_offset = *offset;
662 	unsigned long flags;
663 	u32 head, tail;
664 	int ret = 0;
665 
666 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
667 		return -EIO;
668 
669 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
670 
671 	head = stream->oa_buffer.head;
672 	tail = stream->oa_buffer.tail;
673 
674 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
675 
676 	/*
677 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
678 	 * while indexing relative to oa_buf_base.
679 	 */
680 	head -= gtt_offset;
681 	tail -= gtt_offset;
682 
683 	/*
684 	 * An out of bounds or misaligned head or tail pointer implies a driver
685 	 * bug since we validate + align the tail pointers we read from the
686 	 * hardware and we are in full control of the head pointer which should
687 	 * only be incremented by multiples of the report size (notably also
688 	 * all a power of two).
689 	 */
690 	if (drm_WARN_ONCE(&uncore->i915->drm,
691 			  head > OA_BUFFER_SIZE || head % report_size ||
692 			  tail > OA_BUFFER_SIZE || tail % report_size,
693 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
694 			  head, tail))
695 		return -EIO;
696 
697 
698 	for (/* none */;
699 	     OA_TAKEN(tail, head);
700 	     head = (head + report_size) & mask) {
701 		u8 *report = oa_buf_base + head;
702 		u32 *report32 = (void *)report;
703 		u32 ctx_id;
704 		u32 reason;
705 
706 		/*
707 		 * All the report sizes factor neatly into the buffer
708 		 * size so we never expect to see a report split
709 		 * between the beginning and end of the buffer.
710 		 *
711 		 * Given the initial alignment check a misalignment
712 		 * here would imply a driver bug that would result
713 		 * in an overrun.
714 		 */
715 		if (drm_WARN_ON(&uncore->i915->drm,
716 				(OA_BUFFER_SIZE - head) < report_size)) {
717 			drm_err(&uncore->i915->drm,
718 				"Spurious OA head ptr: non-integral report offset\n");
719 			break;
720 		}
721 
722 		/*
723 		 * The reason field includes flags identifying what
724 		 * triggered this specific report (mostly timer
725 		 * triggered or e.g. due to a context switch).
726 		 *
727 		 * This field is never expected to be zero so we can
728 		 * check that the report isn't invalid before copying
729 		 * it to userspace...
730 		 */
731 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
732 			  (GRAPHICS_VER(stream->perf->i915) == 12 ?
733 			   OAREPORT_REASON_MASK_EXTENDED :
734 			   OAREPORT_REASON_MASK));
735 
736 		ctx_id = report32[2] & stream->specific_ctx_id_mask;
737 
738 		/*
739 		 * Squash whatever is in the CTX_ID field if it's marked as
740 		 * invalid to be sure we avoid false-positive, single-context
741 		 * filtering below...
742 		 *
743 		 * Note: that we don't clear the valid_ctx_bit so userspace can
744 		 * understand that the ID has been squashed by the kernel.
745 		 */
746 		if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
747 		    GRAPHICS_VER(stream->perf->i915) <= 11)
748 			ctx_id = report32[2] = INVALID_CTX_ID;
749 
750 		/*
751 		 * NB: For Gen 8 the OA unit no longer supports clock gating
752 		 * off for a specific context and the kernel can't securely
753 		 * stop the counters from updating as system-wide / global
754 		 * values.
755 		 *
756 		 * Automatic reports now include a context ID so reports can be
757 		 * filtered on the cpu but it's not worth trying to
758 		 * automatically subtract/hide counter progress for other
759 		 * contexts while filtering since we can't stop userspace
760 		 * issuing MI_REPORT_PERF_COUNT commands which would still
761 		 * provide a side-band view of the real values.
762 		 *
763 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
764 		 * to normalize counters for a single filtered context then it
765 		 * needs be forwarded bookend context-switch reports so that it
766 		 * can track switches in between MI_REPORT_PERF_COUNT commands
767 		 * and can itself subtract/ignore the progress of counters
768 		 * associated with other contexts. Note that the hardware
769 		 * automatically triggers reports when switching to a new
770 		 * context which are tagged with the ID of the newly active
771 		 * context. To avoid the complexity (and likely fragility) of
772 		 * reading ahead while parsing reports to try and minimize
773 		 * forwarding redundant context switch reports (i.e. between
774 		 * other, unrelated contexts) we simply elect to forward them
775 		 * all.
776 		 *
777 		 * We don't rely solely on the reason field to identify context
778 		 * switches since it's not-uncommon for periodic samples to
779 		 * identify a switch before any 'context switch' report.
780 		 */
781 		if (!stream->ctx ||
782 		    stream->specific_ctx_id == ctx_id ||
783 		    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
784 		    reason & OAREPORT_REASON_CTX_SWITCH) {
785 
786 			/*
787 			 * While filtering for a single context we avoid
788 			 * leaking the IDs of other contexts.
789 			 */
790 			if (stream->ctx &&
791 			    stream->specific_ctx_id != ctx_id) {
792 				report32[2] = INVALID_CTX_ID;
793 			}
794 
795 			ret = append_oa_sample(stream, buf, count, offset,
796 					       report);
797 			if (ret)
798 				break;
799 
800 			stream->oa_buffer.last_ctx_id = ctx_id;
801 		}
802 
803 		/*
804 		 * Clear out the first 2 dword as a mean to detect unlanded
805 		 * reports.
806 		 */
807 		report32[0] = 0;
808 		report32[1] = 0;
809 	}
810 
811 	if (start_offset != *offset) {
812 		i915_reg_t oaheadptr;
813 
814 		oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
815 			    GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
816 
817 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
818 
819 		/*
820 		 * We removed the gtt_offset for the copy loop above, indexing
821 		 * relative to oa_buf_base so put back here...
822 		 */
823 		head += gtt_offset;
824 		intel_uncore_write(uncore, oaheadptr,
825 				   head & GEN12_OAG_OAHEADPTR_MASK);
826 		stream->oa_buffer.head = head;
827 
828 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
829 	}
830 
831 	return ret;
832 }
833 
834 /**
835  * gen8_oa_read - copy status records then buffered OA reports
836  * @stream: An i915-perf stream opened for OA metrics
837  * @buf: destination buffer given by userspace
838  * @count: the number of bytes userspace wants to read
839  * @offset: (inout): the current position for writing into @buf
840  *
841  * Checks OA unit status registers and if necessary appends corresponding
842  * status records for userspace (such as for a buffer full condition) and then
843  * initiate appending any buffered OA reports.
844  *
845  * Updates @offset according to the number of bytes successfully copied into
846  * the userspace buffer.
847  *
848  * NB: some data may be successfully copied to the userspace buffer
849  * even if an error is returned, and this is reflected in the
850  * updated @offset.
851  *
852  * Returns: zero on success or a negative error code
853  */
854 static int gen8_oa_read(struct i915_perf_stream *stream,
855 			char __user *buf,
856 			size_t count,
857 			size_t *offset)
858 {
859 	struct intel_uncore *uncore = stream->uncore;
860 	u32 oastatus;
861 	i915_reg_t oastatus_reg;
862 	int ret;
863 
864 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
865 		return -EIO;
866 
867 	oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
868 		       GEN12_OAG_OASTATUS : GEN8_OASTATUS;
869 
870 	oastatus = intel_uncore_read(uncore, oastatus_reg);
871 
872 	/*
873 	 * We treat OABUFFER_OVERFLOW as a significant error:
874 	 *
875 	 * Although theoretically we could handle this more gracefully
876 	 * sometimes, some Gens don't correctly suppress certain
877 	 * automatically triggered reports in this condition and so we
878 	 * have to assume that old reports are now being trampled
879 	 * over.
880 	 *
881 	 * Considering how we don't currently give userspace control
882 	 * over the OA buffer size and always configure a large 16MB
883 	 * buffer, then a buffer overflow does anyway likely indicate
884 	 * that something has gone quite badly wrong.
885 	 */
886 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
887 		ret = append_oa_status(stream, buf, count, offset,
888 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
889 		if (ret)
890 			return ret;
891 
892 		drm_dbg(&stream->perf->i915->drm,
893 			"OA buffer overflow (exponent = %d): force restart\n",
894 			stream->period_exponent);
895 
896 		stream->perf->ops.oa_disable(stream);
897 		stream->perf->ops.oa_enable(stream);
898 
899 		/*
900 		 * Note: .oa_enable() is expected to re-init the oabuffer and
901 		 * reset GEN8_OASTATUS for us
902 		 */
903 		oastatus = intel_uncore_read(uncore, oastatus_reg);
904 	}
905 
906 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
907 		ret = append_oa_status(stream, buf, count, offset,
908 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
909 		if (ret)
910 			return ret;
911 
912 		intel_uncore_rmw(uncore, oastatus_reg,
913 				 GEN8_OASTATUS_COUNTER_OVERFLOW |
914 				 GEN8_OASTATUS_REPORT_LOST,
915 				 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
916 				 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
917 				  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
918 	}
919 
920 	return gen8_append_oa_reports(stream, buf, count, offset);
921 }
922 
923 /**
924  * gen7_append_oa_reports - Copies all buffered OA reports into
925  *			    userspace read() buffer.
926  * @stream: An i915-perf stream opened for OA metrics
927  * @buf: destination buffer given by userspace
928  * @count: the number of bytes userspace wants to read
929  * @offset: (inout): the current position for writing into @buf
930  *
931  * Notably any error condition resulting in a short read (-%ENOSPC or
932  * -%EFAULT) will be returned even though one or more records may
933  * have been successfully copied. In this case it's up to the caller
934  * to decide if the error should be squashed before returning to
935  * userspace.
936  *
937  * Note: reports are consumed from the head, and appended to the
938  * tail, so the tail chases the head?... If you think that's mad
939  * and back-to-front you're not alone, but this follows the
940  * Gen PRM naming convention.
941  *
942  * Returns: 0 on success, negative error code on failure.
943  */
944 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
945 				  char __user *buf,
946 				  size_t count,
947 				  size_t *offset)
948 {
949 	struct intel_uncore *uncore = stream->uncore;
950 	int report_size = stream->oa_buffer.format->size;
951 	u8 *oa_buf_base = stream->oa_buffer.vaddr;
952 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
953 	u32 mask = (OA_BUFFER_SIZE - 1);
954 	size_t start_offset = *offset;
955 	unsigned long flags;
956 	u32 head, tail;
957 	int ret = 0;
958 
959 	if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
960 		return -EIO;
961 
962 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
963 
964 	head = stream->oa_buffer.head;
965 	tail = stream->oa_buffer.tail;
966 
967 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
968 
969 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
970 	 * while indexing relative to oa_buf_base.
971 	 */
972 	head -= gtt_offset;
973 	tail -= gtt_offset;
974 
975 	/* An out of bounds or misaligned head or tail pointer implies a driver
976 	 * bug since we validate + align the tail pointers we read from the
977 	 * hardware and we are in full control of the head pointer which should
978 	 * only be incremented by multiples of the report size (notably also
979 	 * all a power of two).
980 	 */
981 	if (drm_WARN_ONCE(&uncore->i915->drm,
982 			  head > OA_BUFFER_SIZE || head % report_size ||
983 			  tail > OA_BUFFER_SIZE || tail % report_size,
984 			  "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
985 			  head, tail))
986 		return -EIO;
987 
988 
989 	for (/* none */;
990 	     OA_TAKEN(tail, head);
991 	     head = (head + report_size) & mask) {
992 		u8 *report = oa_buf_base + head;
993 		u32 *report32 = (void *)report;
994 
995 		/* All the report sizes factor neatly into the buffer
996 		 * size so we never expect to see a report split
997 		 * between the beginning and end of the buffer.
998 		 *
999 		 * Given the initial alignment check a misalignment
1000 		 * here would imply a driver bug that would result
1001 		 * in an overrun.
1002 		 */
1003 		if (drm_WARN_ON(&uncore->i915->drm,
1004 				(OA_BUFFER_SIZE - head) < report_size)) {
1005 			drm_err(&uncore->i915->drm,
1006 				"Spurious OA head ptr: non-integral report offset\n");
1007 			break;
1008 		}
1009 
1010 		/* The report-ID field for periodic samples includes
1011 		 * some undocumented flags related to what triggered
1012 		 * the report and is never expected to be zero so we
1013 		 * can check that the report isn't invalid before
1014 		 * copying it to userspace...
1015 		 */
1016 		if (report32[0] == 0) {
1017 			if (__ratelimit(&stream->perf->spurious_report_rs))
1018 				drm_notice(&uncore->i915->drm,
1019 					   "Skipping spurious, invalid OA report\n");
1020 			continue;
1021 		}
1022 
1023 		ret = append_oa_sample(stream, buf, count, offset, report);
1024 		if (ret)
1025 			break;
1026 
1027 		/* Clear out the first 2 dwords as a mean to detect unlanded
1028 		 * reports.
1029 		 */
1030 		report32[0] = 0;
1031 		report32[1] = 0;
1032 	}
1033 
1034 	if (start_offset != *offset) {
1035 		spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1036 
1037 		/* We removed the gtt_offset for the copy loop above, indexing
1038 		 * relative to oa_buf_base so put back here...
1039 		 */
1040 		head += gtt_offset;
1041 
1042 		intel_uncore_write(uncore, GEN7_OASTATUS2,
1043 				   (head & GEN7_OASTATUS2_HEAD_MASK) |
1044 				   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1045 		stream->oa_buffer.head = head;
1046 
1047 		spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1048 	}
1049 
1050 	return ret;
1051 }
1052 
1053 /**
1054  * gen7_oa_read - copy status records then buffered OA reports
1055  * @stream: An i915-perf stream opened for OA metrics
1056  * @buf: destination buffer given by userspace
1057  * @count: the number of bytes userspace wants to read
1058  * @offset: (inout): the current position for writing into @buf
1059  *
1060  * Checks Gen 7 specific OA unit status registers and if necessary appends
1061  * corresponding status records for userspace (such as for a buffer full
1062  * condition) and then initiate appending any buffered OA reports.
1063  *
1064  * Updates @offset according to the number of bytes successfully copied into
1065  * the userspace buffer.
1066  *
1067  * Returns: zero on success or a negative error code
1068  */
1069 static int gen7_oa_read(struct i915_perf_stream *stream,
1070 			char __user *buf,
1071 			size_t count,
1072 			size_t *offset)
1073 {
1074 	struct intel_uncore *uncore = stream->uncore;
1075 	u32 oastatus1;
1076 	int ret;
1077 
1078 	if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1079 		return -EIO;
1080 
1081 	oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1082 
1083 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1084 	 * bits while the OA unit is enabled (while the tail pointer
1085 	 * may be updated asynchronously) so we ignore status bits
1086 	 * that have already been reported to userspace.
1087 	 */
1088 	oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1089 
1090 	/* We treat OABUFFER_OVERFLOW as a significant error:
1091 	 *
1092 	 * - The status can be interpreted to mean that the buffer is
1093 	 *   currently full (with a higher precedence than OA_TAKEN()
1094 	 *   which will start to report a near-empty buffer after an
1095 	 *   overflow) but it's awkward that we can't clear the status
1096 	 *   on Haswell, so without a reset we won't be able to catch
1097 	 *   the state again.
1098 	 *
1099 	 * - Since it also implies the HW has started overwriting old
1100 	 *   reports it may also affect our sanity checks for invalid
1101 	 *   reports when copying to userspace that assume new reports
1102 	 *   are being written to cleared memory.
1103 	 *
1104 	 * - In the future we may want to introduce a flight recorder
1105 	 *   mode where the driver will automatically maintain a safe
1106 	 *   guard band between head/tail, avoiding this overflow
1107 	 *   condition, but we avoid the added driver complexity for
1108 	 *   now.
1109 	 */
1110 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1111 		ret = append_oa_status(stream, buf, count, offset,
1112 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1113 		if (ret)
1114 			return ret;
1115 
1116 		drm_dbg(&stream->perf->i915->drm,
1117 			"OA buffer overflow (exponent = %d): force restart\n",
1118 			stream->period_exponent);
1119 
1120 		stream->perf->ops.oa_disable(stream);
1121 		stream->perf->ops.oa_enable(stream);
1122 
1123 		oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1124 	}
1125 
1126 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1127 		ret = append_oa_status(stream, buf, count, offset,
1128 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1129 		if (ret)
1130 			return ret;
1131 		stream->perf->gen7_latched_oastatus1 |=
1132 			GEN7_OASTATUS1_REPORT_LOST;
1133 	}
1134 
1135 	return gen7_append_oa_reports(stream, buf, count, offset);
1136 }
1137 
1138 /**
1139  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1140  * @stream: An i915-perf stream opened for OA metrics
1141  *
1142  * Called when userspace tries to read() from a blocking stream FD opened
1143  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1144  * OA buffer and wakes us.
1145  *
1146  * Note: it's acceptable to have this return with some false positives
1147  * since any subsequent read handling will return -EAGAIN if there isn't
1148  * really data ready for userspace yet.
1149  *
1150  * Returns: zero on success or a negative error code
1151  */
1152 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1153 {
1154 	/* We would wait indefinitely if periodic sampling is not enabled */
1155 	if (!stream->periodic)
1156 		return -EIO;
1157 
1158 	return wait_event_interruptible(stream->poll_wq,
1159 					oa_buffer_check_unlocked(stream));
1160 }
1161 
1162 /**
1163  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1164  * @stream: An i915-perf stream opened for OA metrics
1165  * @file: An i915 perf stream file
1166  * @wait: poll() state table
1167  *
1168  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1169  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1170  * when it sees data ready to read in the circular OA buffer.
1171  */
1172 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1173 			      struct file *file,
1174 			      poll_table *wait)
1175 {
1176 	poll_wait(file, &stream->poll_wq, wait);
1177 }
1178 
1179 /**
1180  * i915_oa_read - just calls through to &i915_oa_ops->read
1181  * @stream: An i915-perf stream opened for OA metrics
1182  * @buf: destination buffer given by userspace
1183  * @count: the number of bytes userspace wants to read
1184  * @offset: (inout): the current position for writing into @buf
1185  *
1186  * Updates @offset according to the number of bytes successfully copied into
1187  * the userspace buffer.
1188  *
1189  * Returns: zero on success or a negative error code
1190  */
1191 static int i915_oa_read(struct i915_perf_stream *stream,
1192 			char __user *buf,
1193 			size_t count,
1194 			size_t *offset)
1195 {
1196 	return stream->perf->ops.read(stream, buf, count, offset);
1197 }
1198 
1199 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1200 {
1201 	struct i915_gem_engines_iter it;
1202 	struct i915_gem_context *ctx = stream->ctx;
1203 	struct intel_context *ce;
1204 	struct i915_gem_ww_ctx ww;
1205 	int err = -ENODEV;
1206 
1207 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1208 		if (ce->engine != stream->engine) /* first match! */
1209 			continue;
1210 
1211 		err = 0;
1212 		break;
1213 	}
1214 	i915_gem_context_unlock_engines(ctx);
1215 
1216 	if (err)
1217 		return ERR_PTR(err);
1218 
1219 	i915_gem_ww_ctx_init(&ww, true);
1220 retry:
1221 	/*
1222 	 * As the ID is the gtt offset of the context's vma we
1223 	 * pin the vma to ensure the ID remains fixed.
1224 	 */
1225 	err = intel_context_pin_ww(ce, &ww);
1226 	if (err == -EDEADLK) {
1227 		err = i915_gem_ww_ctx_backoff(&ww);
1228 		if (!err)
1229 			goto retry;
1230 	}
1231 	i915_gem_ww_ctx_fini(&ww);
1232 
1233 	if (err)
1234 		return ERR_PTR(err);
1235 
1236 	stream->pinned_ctx = ce;
1237 	return stream->pinned_ctx;
1238 }
1239 
1240 static int
1241 __store_reg_to_mem(struct i915_request *rq, i915_reg_t reg, u32 ggtt_offset)
1242 {
1243 	u32 *cs, cmd;
1244 
1245 	cmd = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1246 	if (GRAPHICS_VER(rq->engine->i915) >= 8)
1247 		cmd++;
1248 
1249 	cs = intel_ring_begin(rq, 4);
1250 	if (IS_ERR(cs))
1251 		return PTR_ERR(cs);
1252 
1253 	*cs++ = cmd;
1254 	*cs++ = i915_mmio_reg_offset(reg);
1255 	*cs++ = ggtt_offset;
1256 	*cs++ = 0;
1257 
1258 	intel_ring_advance(rq, cs);
1259 
1260 	return 0;
1261 }
1262 
1263 static int
1264 __read_reg(struct intel_context *ce, i915_reg_t reg, u32 ggtt_offset)
1265 {
1266 	struct i915_request *rq;
1267 	int err;
1268 
1269 	rq = i915_request_create(ce);
1270 	if (IS_ERR(rq))
1271 		return PTR_ERR(rq);
1272 
1273 	i915_request_get(rq);
1274 
1275 	err = __store_reg_to_mem(rq, reg, ggtt_offset);
1276 
1277 	i915_request_add(rq);
1278 	if (!err && i915_request_wait(rq, 0, HZ / 2) < 0)
1279 		err = -ETIME;
1280 
1281 	i915_request_put(rq);
1282 
1283 	return err;
1284 }
1285 
1286 static int
1287 gen12_guc_sw_ctx_id(struct intel_context *ce, u32 *ctx_id)
1288 {
1289 	struct i915_vma *scratch;
1290 	u32 *val;
1291 	int err;
1292 
1293 	scratch = __vm_create_scratch_for_read_pinned(&ce->engine->gt->ggtt->vm, 4);
1294 	if (IS_ERR(scratch))
1295 		return PTR_ERR(scratch);
1296 
1297 	err = i915_vma_sync(scratch);
1298 	if (err)
1299 		goto err_scratch;
1300 
1301 	err = __read_reg(ce, RING_EXECLIST_STATUS_HI(ce->engine->mmio_base),
1302 			 i915_ggtt_offset(scratch));
1303 	if (err)
1304 		goto err_scratch;
1305 
1306 	val = i915_gem_object_pin_map_unlocked(scratch->obj, I915_MAP_WB);
1307 	if (IS_ERR(val)) {
1308 		err = PTR_ERR(val);
1309 		goto err_scratch;
1310 	}
1311 
1312 	*ctx_id = *val;
1313 	i915_gem_object_unpin_map(scratch->obj);
1314 
1315 err_scratch:
1316 	i915_vma_unpin_and_release(&scratch, 0);
1317 	return err;
1318 }
1319 
1320 /*
1321  * For execlist mode of submission, pick an unused context id
1322  * 0 - (NUM_CONTEXT_TAG -1) are used by other contexts
1323  * XXX_MAX_CONTEXT_HW_ID is used by idle context
1324  *
1325  * For GuC mode of submission read context id from the upper dword of the
1326  * EXECLIST_STATUS register. Note that we read this value only once and expect
1327  * that the value stays fixed for the entire OA use case. There are cases where
1328  * GuC KMD implementation may deregister a context to reuse it's context id, but
1329  * we prevent that from happening to the OA context by pinning it.
1330  */
1331 static int gen12_get_render_context_id(struct i915_perf_stream *stream)
1332 {
1333 	u32 ctx_id, mask;
1334 	int ret;
1335 
1336 	if (intel_engine_uses_guc(stream->engine)) {
1337 		ret = gen12_guc_sw_ctx_id(stream->pinned_ctx, &ctx_id);
1338 		if (ret)
1339 			return ret;
1340 
1341 		mask = ((1U << GEN12_GUC_SW_CTX_ID_WIDTH) - 1) <<
1342 			(GEN12_GUC_SW_CTX_ID_SHIFT - 32);
1343 	} else if (GRAPHICS_VER_FULL(stream->engine->i915) >= IP_VER(12, 50)) {
1344 		ctx_id = (XEHP_MAX_CONTEXT_HW_ID - 1) <<
1345 			(XEHP_SW_CTX_ID_SHIFT - 32);
1346 
1347 		mask = ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1348 			(XEHP_SW_CTX_ID_SHIFT - 32);
1349 	} else {
1350 		ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) <<
1351 			 (GEN11_SW_CTX_ID_SHIFT - 32);
1352 
1353 		mask = ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) <<
1354 			(GEN11_SW_CTX_ID_SHIFT - 32);
1355 	}
1356 	stream->specific_ctx_id = ctx_id & mask;
1357 	stream->specific_ctx_id_mask = mask;
1358 
1359 	return 0;
1360 }
1361 
1362 static bool oa_find_reg_in_lri(u32 *state, u32 reg, u32 *offset, u32 end)
1363 {
1364 	u32 idx = *offset;
1365 	u32 len = min(MI_LRI_LEN(state[idx]) + idx, end);
1366 	bool found = false;
1367 
1368 	idx++;
1369 	for (; idx < len; idx += 2) {
1370 		if (state[idx] == reg) {
1371 			found = true;
1372 			break;
1373 		}
1374 	}
1375 
1376 	*offset = idx;
1377 	return found;
1378 }
1379 
1380 static u32 oa_context_image_offset(struct intel_context *ce, u32 reg)
1381 {
1382 	u32 offset, len = (ce->engine->context_size - PAGE_SIZE) / 4;
1383 	u32 *state = ce->lrc_reg_state;
1384 
1385 	for (offset = 0; offset < len; ) {
1386 		if (IS_MI_LRI_CMD(state[offset])) {
1387 			/*
1388 			 * We expect reg-value pairs in MI_LRI command, so
1389 			 * MI_LRI_LEN() should be even, if not, issue a warning.
1390 			 */
1391 			drm_WARN_ON(&ce->engine->i915->drm,
1392 				    MI_LRI_LEN(state[offset]) & 0x1);
1393 
1394 			if (oa_find_reg_in_lri(state, reg, &offset, len))
1395 				break;
1396 		} else {
1397 			offset++;
1398 		}
1399 	}
1400 
1401 	return offset < len ? offset : U32_MAX;
1402 }
1403 
1404 static int set_oa_ctx_ctrl_offset(struct intel_context *ce)
1405 {
1406 	i915_reg_t reg = GEN12_OACTXCONTROL(ce->engine->mmio_base);
1407 	struct i915_perf *perf = &ce->engine->i915->perf;
1408 	u32 offset = perf->ctx_oactxctrl_offset;
1409 
1410 	/* Do this only once. Failure is stored as offset of U32_MAX */
1411 	if (offset)
1412 		goto exit;
1413 
1414 	offset = oa_context_image_offset(ce, i915_mmio_reg_offset(reg));
1415 	perf->ctx_oactxctrl_offset = offset;
1416 
1417 	drm_dbg(&ce->engine->i915->drm,
1418 		"%s oa ctx control at 0x%08x dword offset\n",
1419 		ce->engine->name, offset);
1420 
1421 exit:
1422 	return offset && offset != U32_MAX ? 0 : -ENODEV;
1423 }
1424 
1425 static bool engine_supports_mi_query(struct intel_engine_cs *engine)
1426 {
1427 	return engine->class == RENDER_CLASS;
1428 }
1429 
1430 /**
1431  * oa_get_render_ctx_id - determine and hold ctx hw id
1432  * @stream: An i915-perf stream opened for OA metrics
1433  *
1434  * Determine the render context hw id, and ensure it remains fixed for the
1435  * lifetime of the stream. This ensures that we don't have to worry about
1436  * updating the context ID in OACONTROL on the fly.
1437  *
1438  * Returns: zero on success or a negative error code
1439  */
1440 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1441 {
1442 	struct intel_context *ce;
1443 	int ret = 0;
1444 
1445 	ce = oa_pin_context(stream);
1446 	if (IS_ERR(ce))
1447 		return PTR_ERR(ce);
1448 
1449 	if (engine_supports_mi_query(stream->engine)) {
1450 		/*
1451 		 * We are enabling perf query here. If we don't find the context
1452 		 * offset here, just return an error.
1453 		 */
1454 		ret = set_oa_ctx_ctrl_offset(ce);
1455 		if (ret) {
1456 			intel_context_unpin(ce);
1457 			drm_err(&stream->perf->i915->drm,
1458 				"Enabling perf query failed for %s\n",
1459 				stream->engine->name);
1460 			return ret;
1461 		}
1462 	}
1463 
1464 	switch (GRAPHICS_VER(ce->engine->i915)) {
1465 	case 7: {
1466 		/*
1467 		 * On Haswell we don't do any post processing of the reports
1468 		 * and don't need to use the mask.
1469 		 */
1470 		stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1471 		stream->specific_ctx_id_mask = 0;
1472 		break;
1473 	}
1474 
1475 	case 8:
1476 	case 9:
1477 		if (intel_engine_uses_guc(ce->engine)) {
1478 			/*
1479 			 * When using GuC, the context descriptor we write in
1480 			 * i915 is read by GuC and rewritten before it's
1481 			 * actually written into the hardware. The LRCA is
1482 			 * what is put into the context id field of the
1483 			 * context descriptor by GuC. Because it's aligned to
1484 			 * a page, the lower 12bits are always at 0 and
1485 			 * dropped by GuC. They won't be part of the context
1486 			 * ID in the OA reports, so squash those lower bits.
1487 			 */
1488 			stream->specific_ctx_id = ce->lrc.lrca >> 12;
1489 
1490 			/*
1491 			 * GuC uses the top bit to signal proxy submission, so
1492 			 * ignore that bit.
1493 			 */
1494 			stream->specific_ctx_id_mask =
1495 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1496 		} else {
1497 			stream->specific_ctx_id_mask =
1498 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1499 			stream->specific_ctx_id = stream->specific_ctx_id_mask;
1500 		}
1501 		break;
1502 
1503 	case 11:
1504 	case 12:
1505 		ret = gen12_get_render_context_id(stream);
1506 		break;
1507 
1508 	default:
1509 		MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1510 	}
1511 
1512 	ce->tag = stream->specific_ctx_id;
1513 
1514 	drm_dbg(&stream->perf->i915->drm,
1515 		"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1516 		stream->specific_ctx_id,
1517 		stream->specific_ctx_id_mask);
1518 
1519 	return ret;
1520 }
1521 
1522 /**
1523  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1524  * @stream: An i915-perf stream opened for OA metrics
1525  *
1526  * In case anything needed doing to ensure the context HW ID would remain valid
1527  * for the lifetime of the stream, then that can be undone here.
1528  */
1529 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1530 {
1531 	struct intel_context *ce;
1532 
1533 	ce = fetch_and_zero(&stream->pinned_ctx);
1534 	if (ce) {
1535 		ce->tag = 0; /* recomputed on next submission after parking */
1536 		intel_context_unpin(ce);
1537 	}
1538 
1539 	stream->specific_ctx_id = INVALID_CTX_ID;
1540 	stream->specific_ctx_id_mask = 0;
1541 }
1542 
1543 static void
1544 free_oa_buffer(struct i915_perf_stream *stream)
1545 {
1546 	i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1547 				   I915_VMA_RELEASE_MAP);
1548 
1549 	stream->oa_buffer.vaddr = NULL;
1550 }
1551 
1552 static void
1553 free_oa_configs(struct i915_perf_stream *stream)
1554 {
1555 	struct i915_oa_config_bo *oa_bo, *tmp;
1556 
1557 	i915_oa_config_put(stream->oa_config);
1558 	llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1559 		free_oa_config_bo(oa_bo);
1560 }
1561 
1562 static void
1563 free_noa_wait(struct i915_perf_stream *stream)
1564 {
1565 	i915_vma_unpin_and_release(&stream->noa_wait, 0);
1566 }
1567 
1568 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1569 {
1570 	struct i915_perf *perf = stream->perf;
1571 	struct intel_gt *gt = stream->engine->gt;
1572 
1573 	if (WARN_ON(stream != gt->perf.exclusive_stream))
1574 		return;
1575 
1576 	/*
1577 	 * Unset exclusive_stream first, it will be checked while disabling
1578 	 * the metric set on gen8+.
1579 	 *
1580 	 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1581 	 */
1582 	WRITE_ONCE(gt->perf.exclusive_stream, NULL);
1583 	perf->ops.disable_metric_set(stream);
1584 
1585 	free_oa_buffer(stream);
1586 
1587 	/*
1588 	 * Wa_16011777198:dg2: Unset the override of GUCRC mode to enable rc6.
1589 	 */
1590 	if (intel_uc_uses_guc_rc(&gt->uc) &&
1591 	    (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
1592 	     IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0)))
1593 		drm_WARN_ON(&gt->i915->drm,
1594 			    intel_guc_slpc_unset_gucrc_mode(&gt->uc.guc.slpc));
1595 
1596 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1597 	intel_engine_pm_put(stream->engine);
1598 
1599 	if (stream->ctx)
1600 		oa_put_render_ctx_id(stream);
1601 
1602 	free_oa_configs(stream);
1603 	free_noa_wait(stream);
1604 
1605 	if (perf->spurious_report_rs.missed) {
1606 		drm_notice(&gt->i915->drm,
1607 			   "%d spurious OA report notices suppressed due to ratelimiting\n",
1608 			   perf->spurious_report_rs.missed);
1609 	}
1610 }
1611 
1612 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1613 {
1614 	struct intel_uncore *uncore = stream->uncore;
1615 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1616 	unsigned long flags;
1617 
1618 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1619 
1620 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1621 	 * before OASTATUS1, but after OASTATUS2
1622 	 */
1623 	intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1624 			   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1625 	stream->oa_buffer.head = gtt_offset;
1626 
1627 	intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1628 
1629 	intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1630 			   gtt_offset | OABUFFER_SIZE_16M);
1631 
1632 	/* Mark that we need updated tail pointers to read from... */
1633 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1634 	stream->oa_buffer.tail = gtt_offset;
1635 
1636 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1637 
1638 	/* On Haswell we have to track which OASTATUS1 flags we've
1639 	 * already seen since they can't be cleared while periodic
1640 	 * sampling is enabled.
1641 	 */
1642 	stream->perf->gen7_latched_oastatus1 = 0;
1643 
1644 	/* NB: although the OA buffer will initially be allocated
1645 	 * zeroed via shmfs (and so this memset is redundant when
1646 	 * first allocating), we may re-init the OA buffer, either
1647 	 * when re-enabling a stream or in error/reset paths.
1648 	 *
1649 	 * The reason we clear the buffer for each re-init is for the
1650 	 * sanity check in gen7_append_oa_reports() that looks at the
1651 	 * report-id field to make sure it's non-zero which relies on
1652 	 * the assumption that new reports are being written to zeroed
1653 	 * memory...
1654 	 */
1655 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1656 }
1657 
1658 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1659 {
1660 	struct intel_uncore *uncore = stream->uncore;
1661 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1662 	unsigned long flags;
1663 
1664 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1665 
1666 	intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1667 	intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1668 	stream->oa_buffer.head = gtt_offset;
1669 
1670 	intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1671 
1672 	/*
1673 	 * PRM says:
1674 	 *
1675 	 *  "This MMIO must be set before the OATAILPTR
1676 	 *  register and after the OAHEADPTR register. This is
1677 	 *  to enable proper functionality of the overflow
1678 	 *  bit."
1679 	 */
1680 	intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1681 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1682 	intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1683 
1684 	/* Mark that we need updated tail pointers to read from... */
1685 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1686 	stream->oa_buffer.tail = gtt_offset;
1687 
1688 	/*
1689 	 * Reset state used to recognise context switches, affecting which
1690 	 * reports we will forward to userspace while filtering for a single
1691 	 * context.
1692 	 */
1693 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1694 
1695 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1696 
1697 	/*
1698 	 * NB: although the OA buffer will initially be allocated
1699 	 * zeroed via shmfs (and so this memset is redundant when
1700 	 * first allocating), we may re-init the OA buffer, either
1701 	 * when re-enabling a stream or in error/reset paths.
1702 	 *
1703 	 * The reason we clear the buffer for each re-init is for the
1704 	 * sanity check in gen8_append_oa_reports() that looks at the
1705 	 * reason field to make sure it's non-zero which relies on
1706 	 * the assumption that new reports are being written to zeroed
1707 	 * memory...
1708 	 */
1709 	memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1710 }
1711 
1712 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1713 {
1714 	struct intel_uncore *uncore = stream->uncore;
1715 	u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1716 	unsigned long flags;
1717 
1718 	spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1719 
1720 	intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1721 	intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1722 			   gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1723 	stream->oa_buffer.head = gtt_offset;
1724 
1725 	/*
1726 	 * PRM says:
1727 	 *
1728 	 *  "This MMIO must be set before the OATAILPTR
1729 	 *  register and after the OAHEADPTR register. This is
1730 	 *  to enable proper functionality of the overflow
1731 	 *  bit."
1732 	 */
1733 	intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1734 			   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1735 	intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1736 			   gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1737 
1738 	/* Mark that we need updated tail pointers to read from... */
1739 	stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1740 	stream->oa_buffer.tail = gtt_offset;
1741 
1742 	/*
1743 	 * Reset state used to recognise context switches, affecting which
1744 	 * reports we will forward to userspace while filtering for a single
1745 	 * context.
1746 	 */
1747 	stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1748 
1749 	spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1750 
1751 	/*
1752 	 * NB: although the OA buffer will initially be allocated
1753 	 * zeroed via shmfs (and so this memset is redundant when
1754 	 * first allocating), we may re-init the OA buffer, either
1755 	 * when re-enabling a stream or in error/reset paths.
1756 	 *
1757 	 * The reason we clear the buffer for each re-init is for the
1758 	 * sanity check in gen8_append_oa_reports() that looks at the
1759 	 * reason field to make sure it's non-zero which relies on
1760 	 * the assumption that new reports are being written to zeroed
1761 	 * memory...
1762 	 */
1763 	memset(stream->oa_buffer.vaddr, 0,
1764 	       stream->oa_buffer.vma->size);
1765 }
1766 
1767 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1768 {
1769 	struct drm_i915_private *i915 = stream->perf->i915;
1770 	struct intel_gt *gt = stream->engine->gt;
1771 	struct drm_i915_gem_object *bo;
1772 	struct i915_vma *vma;
1773 	int ret;
1774 
1775 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1776 		return -ENODEV;
1777 
1778 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1779 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1780 
1781 	bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1782 	if (IS_ERR(bo)) {
1783 		drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1784 		return PTR_ERR(bo);
1785 	}
1786 
1787 	i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1788 
1789 	/* PreHSW required 512K alignment, HSW requires 16M */
1790 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1791 	if (IS_ERR(vma)) {
1792 		ret = PTR_ERR(vma);
1793 		goto err_unref;
1794 	}
1795 
1796 	/*
1797 	 * PreHSW required 512K alignment.
1798 	 * HSW and onwards, align to requested size of OA buffer.
1799 	 */
1800 	ret = i915_vma_pin(vma, 0, SZ_16M, PIN_GLOBAL | PIN_HIGH);
1801 	if (ret) {
1802 		drm_err(&gt->i915->drm, "Failed to pin OA buffer %d\n", ret);
1803 		goto err_unref;
1804 	}
1805 
1806 	stream->oa_buffer.vma = vma;
1807 
1808 	stream->oa_buffer.vaddr =
1809 		i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1810 	if (IS_ERR(stream->oa_buffer.vaddr)) {
1811 		ret = PTR_ERR(stream->oa_buffer.vaddr);
1812 		goto err_unpin;
1813 	}
1814 
1815 	return 0;
1816 
1817 err_unpin:
1818 	__i915_vma_unpin(vma);
1819 
1820 err_unref:
1821 	i915_gem_object_put(bo);
1822 
1823 	stream->oa_buffer.vaddr = NULL;
1824 	stream->oa_buffer.vma = NULL;
1825 
1826 	return ret;
1827 }
1828 
1829 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1830 				  bool save, i915_reg_t reg, u32 offset,
1831 				  u32 dword_count)
1832 {
1833 	u32 cmd;
1834 	u32 d;
1835 
1836 	cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1837 	cmd |= MI_SRM_LRM_GLOBAL_GTT;
1838 	if (GRAPHICS_VER(stream->perf->i915) >= 8)
1839 		cmd++;
1840 
1841 	for (d = 0; d < dword_count; d++) {
1842 		*cs++ = cmd;
1843 		*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1844 		*cs++ = intel_gt_scratch_offset(stream->engine->gt,
1845 						offset) + 4 * d;
1846 		*cs++ = 0;
1847 	}
1848 
1849 	return cs;
1850 }
1851 
1852 static int alloc_noa_wait(struct i915_perf_stream *stream)
1853 {
1854 	struct drm_i915_private *i915 = stream->perf->i915;
1855 	struct intel_gt *gt = stream->engine->gt;
1856 	struct drm_i915_gem_object *bo;
1857 	struct i915_vma *vma;
1858 	const u64 delay_ticks = 0xffffffffffffffff -
1859 		intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1860 		atomic64_read(&stream->perf->noa_programming_delay));
1861 	const u32 base = stream->engine->mmio_base;
1862 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1863 	u32 *batch, *ts0, *cs, *jump;
1864 	struct i915_gem_ww_ctx ww;
1865 	int ret, i;
1866 	enum {
1867 		START_TS,
1868 		NOW_TS,
1869 		DELTA_TS,
1870 		JUMP_PREDICATE,
1871 		DELTA_TARGET,
1872 		N_CS_GPR
1873 	};
1874 	i915_reg_t mi_predicate_result = HAS_MI_SET_PREDICATE(i915) ?
1875 					  MI_PREDICATE_RESULT_2_ENGINE(base) :
1876 					  MI_PREDICATE_RESULT_1(RENDER_RING_BASE);
1877 
1878 	bo = i915_gem_object_create_internal(i915, 4096);
1879 	if (IS_ERR(bo)) {
1880 		drm_err(&i915->drm,
1881 			"Failed to allocate NOA wait batchbuffer\n");
1882 		return PTR_ERR(bo);
1883 	}
1884 
1885 	i915_gem_ww_ctx_init(&ww, true);
1886 retry:
1887 	ret = i915_gem_object_lock(bo, &ww);
1888 	if (ret)
1889 		goto out_ww;
1890 
1891 	/*
1892 	 * We pin in GGTT because we jump into this buffer now because
1893 	 * multiple OA config BOs will have a jump to this address and it
1894 	 * needs to be fixed during the lifetime of the i915/perf stream.
1895 	 */
1896 	vma = i915_vma_instance(bo, &gt->ggtt->vm, NULL);
1897 	if (IS_ERR(vma)) {
1898 		ret = PTR_ERR(vma);
1899 		goto out_ww;
1900 	}
1901 
1902 	ret = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1903 	if (ret)
1904 		goto out_ww;
1905 
1906 	batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1907 	if (IS_ERR(batch)) {
1908 		ret = PTR_ERR(batch);
1909 		goto err_unpin;
1910 	}
1911 
1912 	/* Save registers. */
1913 	for (i = 0; i < N_CS_GPR; i++)
1914 		cs = save_restore_register(
1915 			stream, cs, true /* save */, CS_GPR(i),
1916 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1917 	cs = save_restore_register(
1918 		stream, cs, true /* save */, mi_predicate_result,
1919 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1920 
1921 	/* First timestamp snapshot location. */
1922 	ts0 = cs;
1923 
1924 	/*
1925 	 * Initial snapshot of the timestamp register to implement the wait.
1926 	 * We work with 32b values, so clear out the top 32b bits of the
1927 	 * register because the ALU works 64bits.
1928 	 */
1929 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1930 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1931 	*cs++ = 0;
1932 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1933 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1934 	*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1935 
1936 	/*
1937 	 * This is the location we're going to jump back into until the
1938 	 * required amount of time has passed.
1939 	 */
1940 	jump = cs;
1941 
1942 	/*
1943 	 * Take another snapshot of the timestamp register. Take care to clear
1944 	 * up the top 32bits of CS_GPR(1) as we're using it for other
1945 	 * operations below.
1946 	 */
1947 	*cs++ = MI_LOAD_REGISTER_IMM(1);
1948 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1949 	*cs++ = 0;
1950 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1951 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1952 	*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1953 
1954 	/*
1955 	 * Do a diff between the 2 timestamps and store the result back into
1956 	 * CS_GPR(1).
1957 	 */
1958 	*cs++ = MI_MATH(5);
1959 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1960 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1961 	*cs++ = MI_MATH_SUB;
1962 	*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1963 	*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1964 
1965 	/*
1966 	 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1967 	 * timestamp have rolled over the 32bits) into the predicate register
1968 	 * to be used for the predicated jump.
1969 	 */
1970 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1971 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1972 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
1973 
1974 	if (HAS_MI_SET_PREDICATE(i915))
1975 		*cs++ = MI_SET_PREDICATE | 1;
1976 
1977 	/* Restart from the beginning if we had timestamps roll over. */
1978 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
1979 		 MI_BATCH_BUFFER_START :
1980 		 MI_BATCH_BUFFER_START_GEN8) |
1981 		MI_BATCH_PREDICATE;
1982 	*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1983 	*cs++ = 0;
1984 
1985 	if (HAS_MI_SET_PREDICATE(i915))
1986 		*cs++ = MI_SET_PREDICATE;
1987 
1988 	/*
1989 	 * Now add the diff between to previous timestamps and add it to :
1990 	 *      (((1 * << 64) - 1) - delay_ns)
1991 	 *
1992 	 * When the Carry Flag contains 1 this means the elapsed time is
1993 	 * longer than the expected delay, and we can exit the wait loop.
1994 	 */
1995 	*cs++ = MI_LOAD_REGISTER_IMM(2);
1996 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1997 	*cs++ = lower_32_bits(delay_ticks);
1998 	*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1999 	*cs++ = upper_32_bits(delay_ticks);
2000 
2001 	*cs++ = MI_MATH(4);
2002 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
2003 	*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
2004 	*cs++ = MI_MATH_ADD;
2005 	*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
2006 
2007 	*cs++ = MI_ARB_CHECK;
2008 
2009 	/*
2010 	 * Transfer the result into the predicate register to be used for the
2011 	 * predicated jump.
2012 	 */
2013 	*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
2014 	*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
2015 	*cs++ = i915_mmio_reg_offset(mi_predicate_result);
2016 
2017 	if (HAS_MI_SET_PREDICATE(i915))
2018 		*cs++ = MI_SET_PREDICATE | 1;
2019 
2020 	/* Predicate the jump.  */
2021 	*cs++ = (GRAPHICS_VER(i915) < 8 ?
2022 		 MI_BATCH_BUFFER_START :
2023 		 MI_BATCH_BUFFER_START_GEN8) |
2024 		MI_BATCH_PREDICATE;
2025 	*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
2026 	*cs++ = 0;
2027 
2028 	if (HAS_MI_SET_PREDICATE(i915))
2029 		*cs++ = MI_SET_PREDICATE;
2030 
2031 	/* Restore registers. */
2032 	for (i = 0; i < N_CS_GPR; i++)
2033 		cs = save_restore_register(
2034 			stream, cs, false /* restore */, CS_GPR(i),
2035 			INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
2036 	cs = save_restore_register(
2037 		stream, cs, false /* restore */, mi_predicate_result,
2038 		INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
2039 
2040 	/* And return to the ring. */
2041 	*cs++ = MI_BATCH_BUFFER_END;
2042 
2043 	GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
2044 
2045 	i915_gem_object_flush_map(bo);
2046 	__i915_gem_object_release_map(bo);
2047 
2048 	stream->noa_wait = vma;
2049 	goto out_ww;
2050 
2051 err_unpin:
2052 	i915_vma_unpin_and_release(&vma, 0);
2053 out_ww:
2054 	if (ret == -EDEADLK) {
2055 		ret = i915_gem_ww_ctx_backoff(&ww);
2056 		if (!ret)
2057 			goto retry;
2058 	}
2059 	i915_gem_ww_ctx_fini(&ww);
2060 	if (ret)
2061 		i915_gem_object_put(bo);
2062 	return ret;
2063 }
2064 
2065 static u32 *write_cs_mi_lri(u32 *cs,
2066 			    const struct i915_oa_reg *reg_data,
2067 			    u32 n_regs)
2068 {
2069 	u32 i;
2070 
2071 	for (i = 0; i < n_regs; i++) {
2072 		if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
2073 			u32 n_lri = min_t(u32,
2074 					  n_regs - i,
2075 					  MI_LOAD_REGISTER_IMM_MAX_REGS);
2076 
2077 			*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
2078 		}
2079 		*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
2080 		*cs++ = reg_data[i].value;
2081 	}
2082 
2083 	return cs;
2084 }
2085 
2086 static int num_lri_dwords(int num_regs)
2087 {
2088 	int count = 0;
2089 
2090 	if (num_regs > 0) {
2091 		count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
2092 		count += num_regs * 2;
2093 	}
2094 
2095 	return count;
2096 }
2097 
2098 static struct i915_oa_config_bo *
2099 alloc_oa_config_buffer(struct i915_perf_stream *stream,
2100 		       struct i915_oa_config *oa_config)
2101 {
2102 	struct drm_i915_gem_object *obj;
2103 	struct i915_oa_config_bo *oa_bo;
2104 	struct i915_gem_ww_ctx ww;
2105 	size_t config_length = 0;
2106 	u32 *cs;
2107 	int err;
2108 
2109 	oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
2110 	if (!oa_bo)
2111 		return ERR_PTR(-ENOMEM);
2112 
2113 	config_length += num_lri_dwords(oa_config->mux_regs_len);
2114 	config_length += num_lri_dwords(oa_config->b_counter_regs_len);
2115 	config_length += num_lri_dwords(oa_config->flex_regs_len);
2116 	config_length += 3; /* MI_BATCH_BUFFER_START */
2117 	config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
2118 
2119 	obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
2120 	if (IS_ERR(obj)) {
2121 		err = PTR_ERR(obj);
2122 		goto err_free;
2123 	}
2124 
2125 	i915_gem_ww_ctx_init(&ww, true);
2126 retry:
2127 	err = i915_gem_object_lock(obj, &ww);
2128 	if (err)
2129 		goto out_ww;
2130 
2131 	cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
2132 	if (IS_ERR(cs)) {
2133 		err = PTR_ERR(cs);
2134 		goto out_ww;
2135 	}
2136 
2137 	cs = write_cs_mi_lri(cs,
2138 			     oa_config->mux_regs,
2139 			     oa_config->mux_regs_len);
2140 	cs = write_cs_mi_lri(cs,
2141 			     oa_config->b_counter_regs,
2142 			     oa_config->b_counter_regs_len);
2143 	cs = write_cs_mi_lri(cs,
2144 			     oa_config->flex_regs,
2145 			     oa_config->flex_regs_len);
2146 
2147 	/* Jump into the active wait. */
2148 	*cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
2149 		 MI_BATCH_BUFFER_START :
2150 		 MI_BATCH_BUFFER_START_GEN8);
2151 	*cs++ = i915_ggtt_offset(stream->noa_wait);
2152 	*cs++ = 0;
2153 
2154 	i915_gem_object_flush_map(obj);
2155 	__i915_gem_object_release_map(obj);
2156 
2157 	oa_bo->vma = i915_vma_instance(obj,
2158 				       &stream->engine->gt->ggtt->vm,
2159 				       NULL);
2160 	if (IS_ERR(oa_bo->vma)) {
2161 		err = PTR_ERR(oa_bo->vma);
2162 		goto out_ww;
2163 	}
2164 
2165 	oa_bo->oa_config = i915_oa_config_get(oa_config);
2166 	llist_add(&oa_bo->node, &stream->oa_config_bos);
2167 
2168 out_ww:
2169 	if (err == -EDEADLK) {
2170 		err = i915_gem_ww_ctx_backoff(&ww);
2171 		if (!err)
2172 			goto retry;
2173 	}
2174 	i915_gem_ww_ctx_fini(&ww);
2175 
2176 	if (err)
2177 		i915_gem_object_put(obj);
2178 err_free:
2179 	if (err) {
2180 		kfree(oa_bo);
2181 		return ERR_PTR(err);
2182 	}
2183 	return oa_bo;
2184 }
2185 
2186 static struct i915_vma *
2187 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
2188 {
2189 	struct i915_oa_config_bo *oa_bo;
2190 
2191 	/*
2192 	 * Look for the buffer in the already allocated BOs attached
2193 	 * to the stream.
2194 	 */
2195 	llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
2196 		if (oa_bo->oa_config == oa_config &&
2197 		    memcmp(oa_bo->oa_config->uuid,
2198 			   oa_config->uuid,
2199 			   sizeof(oa_config->uuid)) == 0)
2200 			goto out;
2201 	}
2202 
2203 	oa_bo = alloc_oa_config_buffer(stream, oa_config);
2204 	if (IS_ERR(oa_bo))
2205 		return ERR_CAST(oa_bo);
2206 
2207 out:
2208 	return i915_vma_get(oa_bo->vma);
2209 }
2210 
2211 static int
2212 emit_oa_config(struct i915_perf_stream *stream,
2213 	       struct i915_oa_config *oa_config,
2214 	       struct intel_context *ce,
2215 	       struct i915_active *active)
2216 {
2217 	struct i915_request *rq;
2218 	struct i915_vma *vma;
2219 	struct i915_gem_ww_ctx ww;
2220 	int err;
2221 
2222 	vma = get_oa_vma(stream, oa_config);
2223 	if (IS_ERR(vma))
2224 		return PTR_ERR(vma);
2225 
2226 	i915_gem_ww_ctx_init(&ww, true);
2227 retry:
2228 	err = i915_gem_object_lock(vma->obj, &ww);
2229 	if (err)
2230 		goto err;
2231 
2232 	err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
2233 	if (err)
2234 		goto err;
2235 
2236 	intel_engine_pm_get(ce->engine);
2237 	rq = i915_request_create(ce);
2238 	intel_engine_pm_put(ce->engine);
2239 	if (IS_ERR(rq)) {
2240 		err = PTR_ERR(rq);
2241 		goto err_vma_unpin;
2242 	}
2243 
2244 	if (!IS_ERR_OR_NULL(active)) {
2245 		/* After all individual context modifications */
2246 		err = i915_request_await_active(rq, active,
2247 						I915_ACTIVE_AWAIT_ACTIVE);
2248 		if (err)
2249 			goto err_add_request;
2250 
2251 		err = i915_active_add_request(active, rq);
2252 		if (err)
2253 			goto err_add_request;
2254 	}
2255 
2256 	err = i915_vma_move_to_active(vma, rq, 0);
2257 	if (err)
2258 		goto err_add_request;
2259 
2260 	err = rq->engine->emit_bb_start(rq,
2261 					i915_vma_offset(vma), 0,
2262 					I915_DISPATCH_SECURE);
2263 	if (err)
2264 		goto err_add_request;
2265 
2266 err_add_request:
2267 	i915_request_add(rq);
2268 err_vma_unpin:
2269 	i915_vma_unpin(vma);
2270 err:
2271 	if (err == -EDEADLK) {
2272 		err = i915_gem_ww_ctx_backoff(&ww);
2273 		if (!err)
2274 			goto retry;
2275 	}
2276 
2277 	i915_gem_ww_ctx_fini(&ww);
2278 	i915_vma_put(vma);
2279 	return err;
2280 }
2281 
2282 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2283 {
2284 	return stream->pinned_ctx ?: stream->engine->kernel_context;
2285 }
2286 
2287 static int
2288 hsw_enable_metric_set(struct i915_perf_stream *stream,
2289 		      struct i915_active *active)
2290 {
2291 	struct intel_uncore *uncore = stream->uncore;
2292 
2293 	/*
2294 	 * PRM:
2295 	 *
2296 	 * OA unit is using “crclk” for its functionality. When trunk
2297 	 * level clock gating takes place, OA clock would be gated,
2298 	 * unable to count the events from non-render clock domain.
2299 	 * Render clock gating must be disabled when OA is enabled to
2300 	 * count the events from non-render domain. Unit level clock
2301 	 * gating for RCS should also be disabled.
2302 	 */
2303 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2304 			 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2305 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2306 			 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2307 
2308 	return emit_oa_config(stream,
2309 			      stream->oa_config, oa_context(stream),
2310 			      active);
2311 }
2312 
2313 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2314 {
2315 	struct intel_uncore *uncore = stream->uncore;
2316 
2317 	intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2318 			 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2319 	intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2320 			 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2321 
2322 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2323 }
2324 
2325 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2326 			      i915_reg_t reg)
2327 {
2328 	u32 mmio = i915_mmio_reg_offset(reg);
2329 	int i;
2330 
2331 	/*
2332 	 * This arbitrary default will select the 'EU FPU0 Pipeline
2333 	 * Active' event. In the future it's anticipated that there
2334 	 * will be an explicit 'No Event' we can select, but not yet...
2335 	 */
2336 	if (!oa_config)
2337 		return 0;
2338 
2339 	for (i = 0; i < oa_config->flex_regs_len; i++) {
2340 		if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2341 			return oa_config->flex_regs[i].value;
2342 	}
2343 
2344 	return 0;
2345 }
2346 /*
2347  * NB: It must always remain pointer safe to run this even if the OA unit
2348  * has been disabled.
2349  *
2350  * It's fine to put out-of-date values into these per-context registers
2351  * in the case that the OA unit has been disabled.
2352  */
2353 static void
2354 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2355 			       const struct i915_perf_stream *stream)
2356 {
2357 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2358 	u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2359 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2360 	static const i915_reg_t flex_regs[] = {
2361 		EU_PERF_CNTL0,
2362 		EU_PERF_CNTL1,
2363 		EU_PERF_CNTL2,
2364 		EU_PERF_CNTL3,
2365 		EU_PERF_CNTL4,
2366 		EU_PERF_CNTL5,
2367 		EU_PERF_CNTL6,
2368 	};
2369 	u32 *reg_state = ce->lrc_reg_state;
2370 	int i;
2371 
2372 	reg_state[ctx_oactxctrl + 1] =
2373 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2374 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2375 		GEN8_OA_COUNTER_RESUME;
2376 
2377 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2378 		reg_state[ctx_flexeu0 + i * 2 + 1] =
2379 			oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2380 }
2381 
2382 struct flex {
2383 	i915_reg_t reg;
2384 	u32 offset;
2385 	u32 value;
2386 };
2387 
2388 static int
2389 gen8_store_flex(struct i915_request *rq,
2390 		struct intel_context *ce,
2391 		const struct flex *flex, unsigned int count)
2392 {
2393 	u32 offset;
2394 	u32 *cs;
2395 
2396 	cs = intel_ring_begin(rq, 4 * count);
2397 	if (IS_ERR(cs))
2398 		return PTR_ERR(cs);
2399 
2400 	offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2401 	do {
2402 		*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2403 		*cs++ = offset + flex->offset * sizeof(u32);
2404 		*cs++ = 0;
2405 		*cs++ = flex->value;
2406 	} while (flex++, --count);
2407 
2408 	intel_ring_advance(rq, cs);
2409 
2410 	return 0;
2411 }
2412 
2413 static int
2414 gen8_load_flex(struct i915_request *rq,
2415 	       struct intel_context *ce,
2416 	       const struct flex *flex, unsigned int count)
2417 {
2418 	u32 *cs;
2419 
2420 	GEM_BUG_ON(!count || count > 63);
2421 
2422 	cs = intel_ring_begin(rq, 2 * count + 2);
2423 	if (IS_ERR(cs))
2424 		return PTR_ERR(cs);
2425 
2426 	*cs++ = MI_LOAD_REGISTER_IMM(count);
2427 	do {
2428 		*cs++ = i915_mmio_reg_offset(flex->reg);
2429 		*cs++ = flex->value;
2430 	} while (flex++, --count);
2431 	*cs++ = MI_NOOP;
2432 
2433 	intel_ring_advance(rq, cs);
2434 
2435 	return 0;
2436 }
2437 
2438 static int gen8_modify_context(struct intel_context *ce,
2439 			       const struct flex *flex, unsigned int count)
2440 {
2441 	struct i915_request *rq;
2442 	int err;
2443 
2444 	rq = intel_engine_create_kernel_request(ce->engine);
2445 	if (IS_ERR(rq))
2446 		return PTR_ERR(rq);
2447 
2448 	/* Serialise with the remote context */
2449 	err = intel_context_prepare_remote_request(ce, rq);
2450 	if (err == 0)
2451 		err = gen8_store_flex(rq, ce, flex, count);
2452 
2453 	i915_request_add(rq);
2454 	return err;
2455 }
2456 
2457 static int
2458 gen8_modify_self(struct intel_context *ce,
2459 		 const struct flex *flex, unsigned int count,
2460 		 struct i915_active *active)
2461 {
2462 	struct i915_request *rq;
2463 	int err;
2464 
2465 	intel_engine_pm_get(ce->engine);
2466 	rq = i915_request_create(ce);
2467 	intel_engine_pm_put(ce->engine);
2468 	if (IS_ERR(rq))
2469 		return PTR_ERR(rq);
2470 
2471 	if (!IS_ERR_OR_NULL(active)) {
2472 		err = i915_active_add_request(active, rq);
2473 		if (err)
2474 			goto err_add_request;
2475 	}
2476 
2477 	err = gen8_load_flex(rq, ce, flex, count);
2478 	if (err)
2479 		goto err_add_request;
2480 
2481 err_add_request:
2482 	i915_request_add(rq);
2483 	return err;
2484 }
2485 
2486 static int gen8_configure_context(struct i915_gem_context *ctx,
2487 				  struct flex *flex, unsigned int count)
2488 {
2489 	struct i915_gem_engines_iter it;
2490 	struct intel_context *ce;
2491 	int err = 0;
2492 
2493 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2494 		GEM_BUG_ON(ce == ce->engine->kernel_context);
2495 
2496 		if (ce->engine->class != RENDER_CLASS)
2497 			continue;
2498 
2499 		/* Otherwise OA settings will be set upon first use */
2500 		if (!intel_context_pin_if_active(ce))
2501 			continue;
2502 
2503 		flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2504 		err = gen8_modify_context(ce, flex, count);
2505 
2506 		intel_context_unpin(ce);
2507 		if (err)
2508 			break;
2509 	}
2510 	i915_gem_context_unlock_engines(ctx);
2511 
2512 	return err;
2513 }
2514 
2515 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2516 				       struct i915_active *active)
2517 {
2518 	int err;
2519 	struct intel_context *ce = stream->pinned_ctx;
2520 	u32 format = stream->oa_buffer.format->format;
2521 	u32 offset = stream->perf->ctx_oactxctrl_offset;
2522 	struct flex regs_context[] = {
2523 		{
2524 			GEN8_OACTXCONTROL,
2525 			offset + 1,
2526 			active ? GEN8_OA_COUNTER_RESUME : 0,
2527 		},
2528 	};
2529 	/* Offsets in regs_lri are not used since this configuration is only
2530 	 * applied using LRI. Initialize the correct offsets for posterity.
2531 	 */
2532 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2533 	struct flex regs_lri[] = {
2534 		{
2535 			GEN12_OAR_OACONTROL,
2536 			GEN12_OAR_OACONTROL_OFFSET + 1,
2537 			(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2538 			(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2539 		},
2540 		{
2541 			RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2542 			CTX_CONTEXT_CONTROL,
2543 			_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2544 				      active ?
2545 				      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2546 				      0)
2547 		},
2548 	};
2549 
2550 	/* Modify the context image of pinned context with regs_context */
2551 	err = intel_context_lock_pinned(ce);
2552 	if (err)
2553 		return err;
2554 
2555 	err = gen8_modify_context(ce, regs_context,
2556 				  ARRAY_SIZE(regs_context));
2557 	intel_context_unlock_pinned(ce);
2558 	if (err)
2559 		return err;
2560 
2561 	/* Apply regs_lri using LRI with pinned context */
2562 	return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2563 }
2564 
2565 /*
2566  * Manages updating the per-context aspects of the OA stream
2567  * configuration across all contexts.
2568  *
2569  * The awkward consideration here is that OACTXCONTROL controls the
2570  * exponent for periodic sampling which is primarily used for system
2571  * wide profiling where we'd like a consistent sampling period even in
2572  * the face of context switches.
2573  *
2574  * Our approach of updating the register state context (as opposed to
2575  * say using a workaround batch buffer) ensures that the hardware
2576  * won't automatically reload an out-of-date timer exponent even
2577  * transiently before a WA BB could be parsed.
2578  *
2579  * This function needs to:
2580  * - Ensure the currently running context's per-context OA state is
2581  *   updated
2582  * - Ensure that all existing contexts will have the correct per-context
2583  *   OA state if they are scheduled for use.
2584  * - Ensure any new contexts will be initialized with the correct
2585  *   per-context OA state.
2586  *
2587  * Note: it's only the RCS/Render context that has any OA state.
2588  * Note: the first flex register passed must always be R_PWR_CLK_STATE
2589  */
2590 static int
2591 oa_configure_all_contexts(struct i915_perf_stream *stream,
2592 			  struct flex *regs,
2593 			  size_t num_regs,
2594 			  struct i915_active *active)
2595 {
2596 	struct drm_i915_private *i915 = stream->perf->i915;
2597 	struct intel_engine_cs *engine;
2598 	struct intel_gt *gt = stream->engine->gt;
2599 	struct i915_gem_context *ctx, *cn;
2600 	int err;
2601 
2602 	lockdep_assert_held(&gt->perf.lock);
2603 
2604 	/*
2605 	 * The OA register config is setup through the context image. This image
2606 	 * might be written to by the GPU on context switch (in particular on
2607 	 * lite-restore). This means we can't safely update a context's image,
2608 	 * if this context is scheduled/submitted to run on the GPU.
2609 	 *
2610 	 * We could emit the OA register config through the batch buffer but
2611 	 * this might leave small interval of time where the OA unit is
2612 	 * configured at an invalid sampling period.
2613 	 *
2614 	 * Note that since we emit all requests from a single ring, there
2615 	 * is still an implicit global barrier here that may cause a high
2616 	 * priority context to wait for an otherwise independent low priority
2617 	 * context. Contexts idle at the time of reconfiguration are not
2618 	 * trapped behind the barrier.
2619 	 */
2620 	spin_lock(&i915->gem.contexts.lock);
2621 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2622 		if (!kref_get_unless_zero(&ctx->ref))
2623 			continue;
2624 
2625 		spin_unlock(&i915->gem.contexts.lock);
2626 
2627 		err = gen8_configure_context(ctx, regs, num_regs);
2628 		if (err) {
2629 			i915_gem_context_put(ctx);
2630 			return err;
2631 		}
2632 
2633 		spin_lock(&i915->gem.contexts.lock);
2634 		list_safe_reset_next(ctx, cn, link);
2635 		i915_gem_context_put(ctx);
2636 	}
2637 	spin_unlock(&i915->gem.contexts.lock);
2638 
2639 	/*
2640 	 * After updating all other contexts, we need to modify ourselves.
2641 	 * If we don't modify the kernel_context, we do not get events while
2642 	 * idle.
2643 	 */
2644 	for_each_uabi_engine(engine, i915) {
2645 		struct intel_context *ce = engine->kernel_context;
2646 
2647 		if (engine->class != RENDER_CLASS)
2648 			continue;
2649 
2650 		regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2651 
2652 		err = gen8_modify_self(ce, regs, num_regs, active);
2653 		if (err)
2654 			return err;
2655 	}
2656 
2657 	return 0;
2658 }
2659 
2660 static int
2661 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2662 			     const struct i915_oa_config *oa_config,
2663 			     struct i915_active *active)
2664 {
2665 	struct flex regs[] = {
2666 		{
2667 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2668 			CTX_R_PWR_CLK_STATE,
2669 		},
2670 	};
2671 
2672 	return oa_configure_all_contexts(stream,
2673 					 regs, ARRAY_SIZE(regs),
2674 					 active);
2675 }
2676 
2677 static int
2678 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2679 			   const struct i915_oa_config *oa_config,
2680 			   struct i915_active *active)
2681 {
2682 	u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2683 	/* The MMIO offsets for Flex EU registers aren't contiguous */
2684 	const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2685 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2686 	struct flex regs[] = {
2687 		{
2688 			GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2689 			CTX_R_PWR_CLK_STATE,
2690 		},
2691 		{
2692 			GEN8_OACTXCONTROL,
2693 			ctx_oactxctrl + 1,
2694 		},
2695 		{ EU_PERF_CNTL0, ctx_flexeuN(0) },
2696 		{ EU_PERF_CNTL1, ctx_flexeuN(1) },
2697 		{ EU_PERF_CNTL2, ctx_flexeuN(2) },
2698 		{ EU_PERF_CNTL3, ctx_flexeuN(3) },
2699 		{ EU_PERF_CNTL4, ctx_flexeuN(4) },
2700 		{ EU_PERF_CNTL5, ctx_flexeuN(5) },
2701 		{ EU_PERF_CNTL6, ctx_flexeuN(6) },
2702 	};
2703 #undef ctx_flexeuN
2704 	int i;
2705 
2706 	regs[1].value =
2707 		(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2708 		(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2709 		GEN8_OA_COUNTER_RESUME;
2710 
2711 	for (i = 2; i < ARRAY_SIZE(regs); i++)
2712 		regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2713 
2714 	return oa_configure_all_contexts(stream,
2715 					 regs, ARRAY_SIZE(regs),
2716 					 active);
2717 }
2718 
2719 static int
2720 gen8_enable_metric_set(struct i915_perf_stream *stream,
2721 		       struct i915_active *active)
2722 {
2723 	struct intel_uncore *uncore = stream->uncore;
2724 	struct i915_oa_config *oa_config = stream->oa_config;
2725 	int ret;
2726 
2727 	/*
2728 	 * We disable slice/unslice clock ratio change reports on SKL since
2729 	 * they are too noisy. The HW generates a lot of redundant reports
2730 	 * where the ratio hasn't really changed causing a lot of redundant
2731 	 * work to processes and increasing the chances we'll hit buffer
2732 	 * overruns.
2733 	 *
2734 	 * Although we don't currently use the 'disable overrun' OABUFFER
2735 	 * feature it's worth noting that clock ratio reports have to be
2736 	 * disabled before considering to use that feature since the HW doesn't
2737 	 * correctly block these reports.
2738 	 *
2739 	 * Currently none of the high-level metrics we have depend on knowing
2740 	 * this ratio to normalize.
2741 	 *
2742 	 * Note: This register is not power context saved and restored, but
2743 	 * that's OK considering that we disable RC6 while the OA unit is
2744 	 * enabled.
2745 	 *
2746 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2747 	 * be read back from automatically triggered reports, as part of the
2748 	 * RPT_ID field.
2749 	 */
2750 	if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2751 		intel_uncore_write(uncore, GEN8_OA_DEBUG,
2752 				   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2753 						      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2754 	}
2755 
2756 	/*
2757 	 * Update all contexts prior writing the mux configurations as we need
2758 	 * to make sure all slices/subslices are ON before writing to NOA
2759 	 * registers.
2760 	 */
2761 	ret = lrc_configure_all_contexts(stream, oa_config, active);
2762 	if (ret)
2763 		return ret;
2764 
2765 	return emit_oa_config(stream,
2766 			      stream->oa_config, oa_context(stream),
2767 			      active);
2768 }
2769 
2770 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2771 {
2772 	return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2773 			     (stream->sample_flags & SAMPLE_OA_REPORT) ?
2774 			     0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2775 }
2776 
2777 static int
2778 gen12_enable_metric_set(struct i915_perf_stream *stream,
2779 			struct i915_active *active)
2780 {
2781 	struct drm_i915_private *i915 = stream->perf->i915;
2782 	struct intel_uncore *uncore = stream->uncore;
2783 	struct i915_oa_config *oa_config = stream->oa_config;
2784 	bool periodic = stream->periodic;
2785 	u32 period_exponent = stream->period_exponent;
2786 	u32 sqcnt1;
2787 	int ret;
2788 
2789 	/*
2790 	 * Wa_1508761755:xehpsdv, dg2
2791 	 * EU NOA signals behave incorrectly if EU clock gating is enabled.
2792 	 * Disable thread stall DOP gating and EU DOP gating.
2793 	 */
2794 	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2795 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2796 					     _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
2797 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2798 				   _MASKED_BIT_ENABLE(GEN12_DISABLE_DOP_GATING));
2799 	}
2800 
2801 	intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2802 			   /* Disable clk ratio reports, like previous Gens. */
2803 			   _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2804 					      GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2805 			   /*
2806 			    * If the user didn't require OA reports, instruct
2807 			    * the hardware not to emit ctx switch reports.
2808 			    */
2809 			   oag_report_ctx_switches(stream));
2810 
2811 	intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2812 			   (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2813 			    GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2814 			    (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2815 			    : 0);
2816 
2817 	/*
2818 	 * Initialize Super Queue Internal Cnt Register
2819 	 * Set PMON Enable in order to collect valid metrics.
2820 	 * Enable byets per clock reporting in OA for XEHPSDV onward.
2821 	 */
2822 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2823 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2824 
2825 	intel_uncore_rmw(uncore, GEN12_SQCNT1, 0, sqcnt1);
2826 
2827 	/*
2828 	 * Update all contexts prior writing the mux configurations as we need
2829 	 * to make sure all slices/subslices are ON before writing to NOA
2830 	 * registers.
2831 	 */
2832 	ret = gen12_configure_all_contexts(stream, oa_config, active);
2833 	if (ret)
2834 		return ret;
2835 
2836 	/*
2837 	 * For Gen12, performance counters are context
2838 	 * saved/restored. Only enable it for the context that
2839 	 * requested this.
2840 	 */
2841 	if (stream->ctx) {
2842 		ret = gen12_configure_oar_context(stream, active);
2843 		if (ret)
2844 			return ret;
2845 	}
2846 
2847 	return emit_oa_config(stream,
2848 			      stream->oa_config, oa_context(stream),
2849 			      active);
2850 }
2851 
2852 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2853 {
2854 	struct intel_uncore *uncore = stream->uncore;
2855 
2856 	/* Reset all contexts' slices/subslices configurations. */
2857 	lrc_configure_all_contexts(stream, NULL, NULL);
2858 
2859 	intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2860 }
2861 
2862 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2863 {
2864 	struct intel_uncore *uncore = stream->uncore;
2865 
2866 	/* Reset all contexts' slices/subslices configurations. */
2867 	lrc_configure_all_contexts(stream, NULL, NULL);
2868 
2869 	/* Make sure we disable noa to save power. */
2870 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2871 }
2872 
2873 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2874 {
2875 	struct intel_uncore *uncore = stream->uncore;
2876 	struct drm_i915_private *i915 = stream->perf->i915;
2877 	u32 sqcnt1;
2878 
2879 	/*
2880 	 * Wa_1508761755:xehpsdv, dg2
2881 	 * Enable thread stall DOP gating and EU DOP gating.
2882 	 */
2883 	if (IS_XEHPSDV(i915) || IS_DG2(i915)) {
2884 		intel_gt_mcr_multicast_write(uncore->gt, GEN8_ROW_CHICKEN,
2885 					     _MASKED_BIT_DISABLE(STALL_DOP_GATING_DISABLE));
2886 		intel_uncore_write(uncore, GEN7_ROW_CHICKEN2,
2887 				   _MASKED_BIT_DISABLE(GEN12_DISABLE_DOP_GATING));
2888 	}
2889 
2890 	/* Reset all contexts' slices/subslices configurations. */
2891 	gen12_configure_all_contexts(stream, NULL, NULL);
2892 
2893 	/* disable the context save/restore or OAR counters */
2894 	if (stream->ctx)
2895 		gen12_configure_oar_context(stream, NULL);
2896 
2897 	/* Make sure we disable noa to save power. */
2898 	intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2899 
2900 	sqcnt1 = GEN12_SQCNT1_PMON_ENABLE |
2901 		 (HAS_OA_BPC_REPORTING(i915) ? GEN12_SQCNT1_OABPC : 0);
2902 
2903 	/* Reset PMON Enable to save power. */
2904 	intel_uncore_rmw(uncore, GEN12_SQCNT1, sqcnt1, 0);
2905 }
2906 
2907 static void gen7_oa_enable(struct i915_perf_stream *stream)
2908 {
2909 	struct intel_uncore *uncore = stream->uncore;
2910 	struct i915_gem_context *ctx = stream->ctx;
2911 	u32 ctx_id = stream->specific_ctx_id;
2912 	bool periodic = stream->periodic;
2913 	u32 period_exponent = stream->period_exponent;
2914 	u32 report_format = stream->oa_buffer.format->format;
2915 
2916 	/*
2917 	 * Reset buf pointers so we don't forward reports from before now.
2918 	 *
2919 	 * Think carefully if considering trying to avoid this, since it
2920 	 * also ensures status flags and the buffer itself are cleared
2921 	 * in error paths, and we have checks for invalid reports based
2922 	 * on the assumption that certain fields are written to zeroed
2923 	 * memory which this helps maintains.
2924 	 */
2925 	gen7_init_oa_buffer(stream);
2926 
2927 	intel_uncore_write(uncore, GEN7_OACONTROL,
2928 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2929 			   (period_exponent <<
2930 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2931 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2932 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2933 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2934 			   GEN7_OACONTROL_ENABLE);
2935 }
2936 
2937 static void gen8_oa_enable(struct i915_perf_stream *stream)
2938 {
2939 	struct intel_uncore *uncore = stream->uncore;
2940 	u32 report_format = stream->oa_buffer.format->format;
2941 
2942 	/*
2943 	 * Reset buf pointers so we don't forward reports from before now.
2944 	 *
2945 	 * Think carefully if considering trying to avoid this, since it
2946 	 * also ensures status flags and the buffer itself are cleared
2947 	 * in error paths, and we have checks for invalid reports based
2948 	 * on the assumption that certain fields are written to zeroed
2949 	 * memory which this helps maintains.
2950 	 */
2951 	gen8_init_oa_buffer(stream);
2952 
2953 	/*
2954 	 * Note: we don't rely on the hardware to perform single context
2955 	 * filtering and instead filter on the cpu based on the context-id
2956 	 * field of reports
2957 	 */
2958 	intel_uncore_write(uncore, GEN8_OACONTROL,
2959 			   (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2960 			   GEN8_OA_COUNTER_ENABLE);
2961 }
2962 
2963 static void gen12_oa_enable(struct i915_perf_stream *stream)
2964 {
2965 	struct intel_uncore *uncore = stream->uncore;
2966 	u32 report_format = stream->oa_buffer.format->format;
2967 
2968 	/*
2969 	 * If we don't want OA reports from the OA buffer, then we don't even
2970 	 * need to program the OAG unit.
2971 	 */
2972 	if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2973 		return;
2974 
2975 	gen12_init_oa_buffer(stream);
2976 
2977 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2978 			   (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2979 			   GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2980 }
2981 
2982 /**
2983  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2984  * @stream: An i915 perf stream opened for OA metrics
2985  *
2986  * [Re]enables hardware periodic sampling according to the period configured
2987  * when opening the stream. This also starts a hrtimer that will periodically
2988  * check for data in the circular OA buffer for notifying userspace (e.g.
2989  * during a read() or poll()).
2990  */
2991 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2992 {
2993 	stream->pollin = false;
2994 
2995 	stream->perf->ops.oa_enable(stream);
2996 
2997 	if (stream->sample_flags & SAMPLE_OA_REPORT)
2998 		hrtimer_start(&stream->poll_check_timer,
2999 			      ns_to_ktime(stream->poll_oa_period),
3000 			      HRTIMER_MODE_REL_PINNED);
3001 }
3002 
3003 static void gen7_oa_disable(struct i915_perf_stream *stream)
3004 {
3005 	struct intel_uncore *uncore = stream->uncore;
3006 
3007 	intel_uncore_write(uncore, GEN7_OACONTROL, 0);
3008 	if (intel_wait_for_register(uncore,
3009 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
3010 				    50))
3011 		drm_err(&stream->perf->i915->drm,
3012 			"wait for OA to be disabled timed out\n");
3013 }
3014 
3015 static void gen8_oa_disable(struct i915_perf_stream *stream)
3016 {
3017 	struct intel_uncore *uncore = stream->uncore;
3018 
3019 	intel_uncore_write(uncore, GEN8_OACONTROL, 0);
3020 	if (intel_wait_for_register(uncore,
3021 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
3022 				    50))
3023 		drm_err(&stream->perf->i915->drm,
3024 			"wait for OA to be disabled timed out\n");
3025 }
3026 
3027 static void gen12_oa_disable(struct i915_perf_stream *stream)
3028 {
3029 	struct intel_uncore *uncore = stream->uncore;
3030 
3031 	intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
3032 	if (intel_wait_for_register(uncore,
3033 				    GEN12_OAG_OACONTROL,
3034 				    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
3035 				    50))
3036 		drm_err(&stream->perf->i915->drm,
3037 			"wait for OA to be disabled timed out\n");
3038 
3039 	intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
3040 	if (intel_wait_for_register(uncore,
3041 				    GEN12_OA_TLB_INV_CR,
3042 				    1, 0,
3043 				    50))
3044 		drm_err(&stream->perf->i915->drm,
3045 			"wait for OA tlb invalidate timed out\n");
3046 }
3047 
3048 /**
3049  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
3050  * @stream: An i915 perf stream opened for OA metrics
3051  *
3052  * Stops the OA unit from periodically writing counter reports into the
3053  * circular OA buffer. This also stops the hrtimer that periodically checks for
3054  * data in the circular OA buffer, for notifying userspace.
3055  */
3056 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
3057 {
3058 	stream->perf->ops.oa_disable(stream);
3059 
3060 	if (stream->sample_flags & SAMPLE_OA_REPORT)
3061 		hrtimer_cancel(&stream->poll_check_timer);
3062 }
3063 
3064 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
3065 	.destroy = i915_oa_stream_destroy,
3066 	.enable = i915_oa_stream_enable,
3067 	.disable = i915_oa_stream_disable,
3068 	.wait_unlocked = i915_oa_wait_unlocked,
3069 	.poll_wait = i915_oa_poll_wait,
3070 	.read = i915_oa_read,
3071 };
3072 
3073 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
3074 {
3075 	struct i915_active *active;
3076 	int err;
3077 
3078 	active = i915_active_create();
3079 	if (!active)
3080 		return -ENOMEM;
3081 
3082 	err = stream->perf->ops.enable_metric_set(stream, active);
3083 	if (err == 0)
3084 		__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
3085 
3086 	i915_active_put(active);
3087 	return err;
3088 }
3089 
3090 static void
3091 get_default_sseu_config(struct intel_sseu *out_sseu,
3092 			struct intel_engine_cs *engine)
3093 {
3094 	const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
3095 
3096 	*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
3097 
3098 	if (GRAPHICS_VER(engine->i915) == 11) {
3099 		/*
3100 		 * We only need subslice count so it doesn't matter which ones
3101 		 * we select - just turn off low bits in the amount of half of
3102 		 * all available subslices per slice.
3103 		 */
3104 		out_sseu->subslice_mask =
3105 			~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
3106 		out_sseu->slice_mask = 0x1;
3107 	}
3108 }
3109 
3110 static int
3111 get_sseu_config(struct intel_sseu *out_sseu,
3112 		struct intel_engine_cs *engine,
3113 		const struct drm_i915_gem_context_param_sseu *drm_sseu)
3114 {
3115 	if (drm_sseu->engine.engine_class != engine->uabi_class ||
3116 	    drm_sseu->engine.engine_instance != engine->uabi_instance)
3117 		return -EINVAL;
3118 
3119 	return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
3120 }
3121 
3122 /*
3123  * OA timestamp frequency = CS timestamp frequency in most platforms. On some
3124  * platforms OA unit ignores the CTC_SHIFT and the 2 timestamps differ. In such
3125  * cases, return the adjusted CS timestamp frequency to the user.
3126  */
3127 u32 i915_perf_oa_timestamp_frequency(struct drm_i915_private *i915)
3128 {
3129 	/* Wa_18013179988:dg2 */
3130 	if (IS_DG2(i915)) {
3131 		intel_wakeref_t wakeref;
3132 		u32 reg, shift;
3133 
3134 		with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref)
3135 			reg = intel_uncore_read(to_gt(i915)->uncore, RPM_CONFIG0);
3136 
3137 		shift = REG_FIELD_GET(GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK,
3138 				      reg);
3139 
3140 		return to_gt(i915)->clock_frequency << (3 - shift);
3141 	}
3142 
3143 	return to_gt(i915)->clock_frequency;
3144 }
3145 
3146 /**
3147  * i915_oa_stream_init - validate combined props for OA stream and init
3148  * @stream: An i915 perf stream
3149  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
3150  * @props: The property state that configures stream (individually validated)
3151  *
3152  * While read_properties_unlocked() validates properties in isolation it
3153  * doesn't ensure that the combination necessarily makes sense.
3154  *
3155  * At this point it has been determined that userspace wants a stream of
3156  * OA metrics, but still we need to further validate the combined
3157  * properties are OK.
3158  *
3159  * If the configuration makes sense then we can allocate memory for
3160  * a circular OA buffer and apply the requested metric set configuration.
3161  *
3162  * Returns: zero on success or a negative error code.
3163  */
3164 static int i915_oa_stream_init(struct i915_perf_stream *stream,
3165 			       struct drm_i915_perf_open_param *param,
3166 			       struct perf_open_properties *props)
3167 {
3168 	struct drm_i915_private *i915 = stream->perf->i915;
3169 	struct i915_perf *perf = stream->perf;
3170 	struct intel_gt *gt;
3171 	int ret;
3172 
3173 	if (!props->engine) {
3174 		drm_dbg(&stream->perf->i915->drm,
3175 			"OA engine not specified\n");
3176 		return -EINVAL;
3177 	}
3178 	gt = props->engine->gt;
3179 
3180 	/*
3181 	 * If the sysfs metrics/ directory wasn't registered for some
3182 	 * reason then don't let userspace try their luck with config
3183 	 * IDs
3184 	 */
3185 	if (!perf->metrics_kobj) {
3186 		drm_dbg(&stream->perf->i915->drm,
3187 			"OA metrics weren't advertised via sysfs\n");
3188 		return -EINVAL;
3189 	}
3190 
3191 	if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
3192 	    (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
3193 		drm_dbg(&stream->perf->i915->drm,
3194 			"Only OA report sampling supported\n");
3195 		return -EINVAL;
3196 	}
3197 
3198 	if (!perf->ops.enable_metric_set) {
3199 		drm_dbg(&stream->perf->i915->drm,
3200 			"OA unit not supported\n");
3201 		return -ENODEV;
3202 	}
3203 
3204 	/*
3205 	 * To avoid the complexity of having to accurately filter
3206 	 * counter reports and marshal to the appropriate client
3207 	 * we currently only allow exclusive access
3208 	 */
3209 	if (gt->perf.exclusive_stream) {
3210 		drm_dbg(&stream->perf->i915->drm,
3211 			"OA unit already in use\n");
3212 		return -EBUSY;
3213 	}
3214 
3215 	if (!props->oa_format) {
3216 		drm_dbg(&stream->perf->i915->drm,
3217 			"OA report format not specified\n");
3218 		return -EINVAL;
3219 	}
3220 
3221 	stream->engine = props->engine;
3222 	stream->uncore = stream->engine->gt->uncore;
3223 
3224 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
3225 
3226 	stream->oa_buffer.format = &perf->oa_formats[props->oa_format];
3227 	if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format->size == 0))
3228 		return -EINVAL;
3229 
3230 	stream->sample_flags = props->sample_flags;
3231 	stream->sample_size += stream->oa_buffer.format->size;
3232 
3233 	stream->hold_preemption = props->hold_preemption;
3234 
3235 	stream->periodic = props->oa_periodic;
3236 	if (stream->periodic)
3237 		stream->period_exponent = props->oa_period_exponent;
3238 
3239 	if (stream->ctx) {
3240 		ret = oa_get_render_ctx_id(stream);
3241 		if (ret) {
3242 			drm_dbg(&stream->perf->i915->drm,
3243 				"Invalid context id to filter with\n");
3244 			return ret;
3245 		}
3246 	}
3247 
3248 	ret = alloc_noa_wait(stream);
3249 	if (ret) {
3250 		drm_dbg(&stream->perf->i915->drm,
3251 			"Unable to allocate NOA wait batch buffer\n");
3252 		goto err_noa_wait_alloc;
3253 	}
3254 
3255 	stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
3256 	if (!stream->oa_config) {
3257 		drm_dbg(&stream->perf->i915->drm,
3258 			"Invalid OA config id=%i\n", props->metrics_set);
3259 		ret = -EINVAL;
3260 		goto err_config;
3261 	}
3262 
3263 	/* PRM - observability performance counters:
3264 	 *
3265 	 *   OACONTROL, performance counter enable, note:
3266 	 *
3267 	 *   "When this bit is set, in order to have coherent counts,
3268 	 *   RC6 power state and trunk clock gating must be disabled.
3269 	 *   This can be achieved by programming MMIO registers as
3270 	 *   0xA094=0 and 0xA090[31]=1"
3271 	 *
3272 	 *   In our case we are expecting that taking pm + FORCEWAKE
3273 	 *   references will effectively disable RC6.
3274 	 */
3275 	intel_engine_pm_get(stream->engine);
3276 	intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
3277 
3278 	/*
3279 	 * Wa_16011777198:dg2: GuC resets render as part of the Wa. This causes
3280 	 * OA to lose the configuration state. Prevent this by overriding GUCRC
3281 	 * mode.
3282 	 */
3283 	if (intel_uc_uses_guc_rc(&gt->uc) &&
3284 	    (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
3285 	     IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))) {
3286 		ret = intel_guc_slpc_override_gucrc_mode(&gt->uc.guc.slpc,
3287 							 SLPC_GUCRC_MODE_GUCRC_NO_RC6);
3288 		if (ret) {
3289 			drm_dbg(&stream->perf->i915->drm,
3290 				"Unable to override gucrc mode\n");
3291 			goto err_config;
3292 		}
3293 	}
3294 
3295 	ret = alloc_oa_buffer(stream);
3296 	if (ret)
3297 		goto err_oa_buf_alloc;
3298 
3299 	stream->ops = &i915_oa_stream_ops;
3300 
3301 	stream->engine->gt->perf.sseu = props->sseu;
3302 	WRITE_ONCE(gt->perf.exclusive_stream, stream);
3303 
3304 	ret = i915_perf_stream_enable_sync(stream);
3305 	if (ret) {
3306 		drm_dbg(&stream->perf->i915->drm,
3307 			"Unable to enable metric set\n");
3308 		goto err_enable;
3309 	}
3310 
3311 	drm_dbg(&stream->perf->i915->drm,
3312 		"opening stream oa config uuid=%s\n",
3313 		  stream->oa_config->uuid);
3314 
3315 	hrtimer_init(&stream->poll_check_timer,
3316 		     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3317 	stream->poll_check_timer.function = oa_poll_check_timer_cb;
3318 	init_waitqueue_head(&stream->poll_wq);
3319 	spin_lock_init(&stream->oa_buffer.ptr_lock);
3320 	mutex_init(&stream->lock);
3321 
3322 	return 0;
3323 
3324 err_enable:
3325 	WRITE_ONCE(gt->perf.exclusive_stream, NULL);
3326 	perf->ops.disable_metric_set(stream);
3327 
3328 	free_oa_buffer(stream);
3329 
3330 err_oa_buf_alloc:
3331 	free_oa_configs(stream);
3332 
3333 	intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3334 	intel_engine_pm_put(stream->engine);
3335 
3336 err_config:
3337 	free_noa_wait(stream);
3338 
3339 err_noa_wait_alloc:
3340 	if (stream->ctx)
3341 		oa_put_render_ctx_id(stream);
3342 
3343 	return ret;
3344 }
3345 
3346 void i915_oa_init_reg_state(const struct intel_context *ce,
3347 			    const struct intel_engine_cs *engine)
3348 {
3349 	struct i915_perf_stream *stream;
3350 
3351 	if (engine->class != RENDER_CLASS)
3352 		return;
3353 
3354 	/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3355 	stream = READ_ONCE(engine->gt->perf.exclusive_stream);
3356 	if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3357 		gen8_update_reg_state_unlocked(ce, stream);
3358 }
3359 
3360 /**
3361  * i915_perf_read - handles read() FOP for i915 perf stream FDs
3362  * @file: An i915 perf stream file
3363  * @buf: destination buffer given by userspace
3364  * @count: the number of bytes userspace wants to read
3365  * @ppos: (inout) file seek position (unused)
3366  *
3367  * The entry point for handling a read() on a stream file descriptor from
3368  * userspace. Most of the work is left to the i915_perf_read_locked() and
3369  * &i915_perf_stream_ops->read but to save having stream implementations (of
3370  * which we might have multiple later) we handle blocking read here.
3371  *
3372  * We can also consistently treat trying to read from a disabled stream
3373  * as an IO error so implementations can assume the stream is enabled
3374  * while reading.
3375  *
3376  * Returns: The number of bytes copied or a negative error code on failure.
3377  */
3378 static ssize_t i915_perf_read(struct file *file,
3379 			      char __user *buf,
3380 			      size_t count,
3381 			      loff_t *ppos)
3382 {
3383 	struct i915_perf_stream *stream = file->private_data;
3384 	size_t offset = 0;
3385 	int ret;
3386 
3387 	/* To ensure it's handled consistently we simply treat all reads of a
3388 	 * disabled stream as an error. In particular it might otherwise lead
3389 	 * to a deadlock for blocking file descriptors...
3390 	 */
3391 	if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3392 		return -EIO;
3393 
3394 	if (!(file->f_flags & O_NONBLOCK)) {
3395 		/* There's the small chance of false positives from
3396 		 * stream->ops->wait_unlocked.
3397 		 *
3398 		 * E.g. with single context filtering since we only wait until
3399 		 * oabuffer has >= 1 report we don't immediately know whether
3400 		 * any reports really belong to the current context
3401 		 */
3402 		do {
3403 			ret = stream->ops->wait_unlocked(stream);
3404 			if (ret)
3405 				return ret;
3406 
3407 			mutex_lock(&stream->lock);
3408 			ret = stream->ops->read(stream, buf, count, &offset);
3409 			mutex_unlock(&stream->lock);
3410 		} while (!offset && !ret);
3411 	} else {
3412 		mutex_lock(&stream->lock);
3413 		ret = stream->ops->read(stream, buf, count, &offset);
3414 		mutex_unlock(&stream->lock);
3415 	}
3416 
3417 	/* We allow the poll checking to sometimes report false positive EPOLLIN
3418 	 * events where we might actually report EAGAIN on read() if there's
3419 	 * not really any data available. In this situation though we don't
3420 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
3421 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3422 	 * effectively ensures we back off until the next hrtimer callback
3423 	 * before reporting another EPOLLIN event.
3424 	 * The exception to this is if ops->read() returned -ENOSPC which means
3425 	 * that more OA data is available than could fit in the user provided
3426 	 * buffer. In this case we want the next poll() call to not block.
3427 	 */
3428 	if (ret != -ENOSPC)
3429 		stream->pollin = false;
3430 
3431 	/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3432 	return offset ?: (ret ?: -EAGAIN);
3433 }
3434 
3435 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3436 {
3437 	struct i915_perf_stream *stream =
3438 		container_of(hrtimer, typeof(*stream), poll_check_timer);
3439 
3440 	if (oa_buffer_check_unlocked(stream)) {
3441 		stream->pollin = true;
3442 		wake_up(&stream->poll_wq);
3443 	}
3444 
3445 	hrtimer_forward_now(hrtimer,
3446 			    ns_to_ktime(stream->poll_oa_period));
3447 
3448 	return HRTIMER_RESTART;
3449 }
3450 
3451 /**
3452  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3453  * @stream: An i915 perf stream
3454  * @file: An i915 perf stream file
3455  * @wait: poll() state table
3456  *
3457  * For handling userspace polling on an i915 perf stream, this calls through to
3458  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3459  * will be woken for new stream data.
3460  *
3461  * Returns: any poll events that are ready without sleeping
3462  */
3463 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3464 				      struct file *file,
3465 				      poll_table *wait)
3466 {
3467 	__poll_t events = 0;
3468 
3469 	stream->ops->poll_wait(stream, file, wait);
3470 
3471 	/* Note: we don't explicitly check whether there's something to read
3472 	 * here since this path may be very hot depending on what else
3473 	 * userspace is polling, or on the timeout in use. We rely solely on
3474 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3475 	 * samples to read.
3476 	 */
3477 	if (stream->pollin)
3478 		events |= EPOLLIN;
3479 
3480 	return events;
3481 }
3482 
3483 /**
3484  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3485  * @file: An i915 perf stream file
3486  * @wait: poll() state table
3487  *
3488  * For handling userspace polling on an i915 perf stream, this ensures
3489  * poll_wait() gets called with a wait queue that will be woken for new stream
3490  * data.
3491  *
3492  * Note: Implementation deferred to i915_perf_poll_locked()
3493  *
3494  * Returns: any poll events that are ready without sleeping
3495  */
3496 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3497 {
3498 	struct i915_perf_stream *stream = file->private_data;
3499 	__poll_t ret;
3500 
3501 	mutex_lock(&stream->lock);
3502 	ret = i915_perf_poll_locked(stream, file, wait);
3503 	mutex_unlock(&stream->lock);
3504 
3505 	return ret;
3506 }
3507 
3508 /**
3509  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3510  * @stream: A disabled i915 perf stream
3511  *
3512  * [Re]enables the associated capture of data for this stream.
3513  *
3514  * If a stream was previously enabled then there's currently no intention
3515  * to provide userspace any guarantee about the preservation of previously
3516  * buffered data.
3517  */
3518 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3519 {
3520 	if (stream->enabled)
3521 		return;
3522 
3523 	/* Allow stream->ops->enable() to refer to this */
3524 	stream->enabled = true;
3525 
3526 	if (stream->ops->enable)
3527 		stream->ops->enable(stream);
3528 
3529 	if (stream->hold_preemption)
3530 		intel_context_set_nopreempt(stream->pinned_ctx);
3531 }
3532 
3533 /**
3534  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3535  * @stream: An enabled i915 perf stream
3536  *
3537  * Disables the associated capture of data for this stream.
3538  *
3539  * The intention is that disabling an re-enabling a stream will ideally be
3540  * cheaper than destroying and re-opening a stream with the same configuration,
3541  * though there are no formal guarantees about what state or buffered data
3542  * must be retained between disabling and re-enabling a stream.
3543  *
3544  * Note: while a stream is disabled it's considered an error for userspace
3545  * to attempt to read from the stream (-EIO).
3546  */
3547 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3548 {
3549 	if (!stream->enabled)
3550 		return;
3551 
3552 	/* Allow stream->ops->disable() to refer to this */
3553 	stream->enabled = false;
3554 
3555 	if (stream->hold_preemption)
3556 		intel_context_clear_nopreempt(stream->pinned_ctx);
3557 
3558 	if (stream->ops->disable)
3559 		stream->ops->disable(stream);
3560 }
3561 
3562 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3563 				    unsigned long metrics_set)
3564 {
3565 	struct i915_oa_config *config;
3566 	long ret = stream->oa_config->id;
3567 
3568 	config = i915_perf_get_oa_config(stream->perf, metrics_set);
3569 	if (!config)
3570 		return -EINVAL;
3571 
3572 	if (config != stream->oa_config) {
3573 		int err;
3574 
3575 		/*
3576 		 * If OA is bound to a specific context, emit the
3577 		 * reconfiguration inline from that context. The update
3578 		 * will then be ordered with respect to submission on that
3579 		 * context.
3580 		 *
3581 		 * When set globally, we use a low priority kernel context,
3582 		 * so it will effectively take effect when idle.
3583 		 */
3584 		err = emit_oa_config(stream, config, oa_context(stream), NULL);
3585 		if (!err)
3586 			config = xchg(&stream->oa_config, config);
3587 		else
3588 			ret = err;
3589 	}
3590 
3591 	i915_oa_config_put(config);
3592 
3593 	return ret;
3594 }
3595 
3596 /**
3597  * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3598  * @stream: An i915 perf stream
3599  * @cmd: the ioctl request
3600  * @arg: the ioctl data
3601  *
3602  * Returns: zero on success or a negative error code. Returns -EINVAL for
3603  * an unknown ioctl request.
3604  */
3605 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3606 				   unsigned int cmd,
3607 				   unsigned long arg)
3608 {
3609 	switch (cmd) {
3610 	case I915_PERF_IOCTL_ENABLE:
3611 		i915_perf_enable_locked(stream);
3612 		return 0;
3613 	case I915_PERF_IOCTL_DISABLE:
3614 		i915_perf_disable_locked(stream);
3615 		return 0;
3616 	case I915_PERF_IOCTL_CONFIG:
3617 		return i915_perf_config_locked(stream, arg);
3618 	}
3619 
3620 	return -EINVAL;
3621 }
3622 
3623 /**
3624  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3625  * @file: An i915 perf stream file
3626  * @cmd: the ioctl request
3627  * @arg: the ioctl data
3628  *
3629  * Implementation deferred to i915_perf_ioctl_locked().
3630  *
3631  * Returns: zero on success or a negative error code. Returns -EINVAL for
3632  * an unknown ioctl request.
3633  */
3634 static long i915_perf_ioctl(struct file *file,
3635 			    unsigned int cmd,
3636 			    unsigned long arg)
3637 {
3638 	struct i915_perf_stream *stream = file->private_data;
3639 	long ret;
3640 
3641 	mutex_lock(&stream->lock);
3642 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
3643 	mutex_unlock(&stream->lock);
3644 
3645 	return ret;
3646 }
3647 
3648 /**
3649  * i915_perf_destroy_locked - destroy an i915 perf stream
3650  * @stream: An i915 perf stream
3651  *
3652  * Frees all resources associated with the given i915 perf @stream, disabling
3653  * any associated data capture in the process.
3654  *
3655  * Note: The &gt->perf.lock mutex has been taken to serialize
3656  * with any non-file-operation driver hooks.
3657  */
3658 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3659 {
3660 	if (stream->enabled)
3661 		i915_perf_disable_locked(stream);
3662 
3663 	if (stream->ops->destroy)
3664 		stream->ops->destroy(stream);
3665 
3666 	if (stream->ctx)
3667 		i915_gem_context_put(stream->ctx);
3668 
3669 	kfree(stream);
3670 }
3671 
3672 /**
3673  * i915_perf_release - handles userspace close() of a stream file
3674  * @inode: anonymous inode associated with file
3675  * @file: An i915 perf stream file
3676  *
3677  * Cleans up any resources associated with an open i915 perf stream file.
3678  *
3679  * NB: close() can't really fail from the userspace point of view.
3680  *
3681  * Returns: zero on success or a negative error code.
3682  */
3683 static int i915_perf_release(struct inode *inode, struct file *file)
3684 {
3685 	struct i915_perf_stream *stream = file->private_data;
3686 	struct i915_perf *perf = stream->perf;
3687 	struct intel_gt *gt = stream->engine->gt;
3688 
3689 	/*
3690 	 * Within this call, we know that the fd is being closed and we have no
3691 	 * other user of stream->lock. Use the perf lock to destroy the stream
3692 	 * here.
3693 	 */
3694 	mutex_lock(&gt->perf.lock);
3695 	i915_perf_destroy_locked(stream);
3696 	mutex_unlock(&gt->perf.lock);
3697 
3698 	/* Release the reference the perf stream kept on the driver. */
3699 	drm_dev_put(&perf->i915->drm);
3700 
3701 	return 0;
3702 }
3703 
3704 
3705 static const struct file_operations fops = {
3706 	.owner		= THIS_MODULE,
3707 	.llseek		= no_llseek,
3708 	.release	= i915_perf_release,
3709 	.poll		= i915_perf_poll,
3710 	.read		= i915_perf_read,
3711 	.unlocked_ioctl	= i915_perf_ioctl,
3712 	/* Our ioctl have no arguments, so it's safe to use the same function
3713 	 * to handle 32bits compatibility.
3714 	 */
3715 	.compat_ioctl   = i915_perf_ioctl,
3716 };
3717 
3718 
3719 /**
3720  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3721  * @perf: i915 perf instance
3722  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3723  * @props: individually validated u64 property value pairs
3724  * @file: drm file
3725  *
3726  * See i915_perf_ioctl_open() for interface details.
3727  *
3728  * Implements further stream config validation and stream initialization on
3729  * behalf of i915_perf_open_ioctl() with the &gt->perf.lock mutex
3730  * taken to serialize with any non-file-operation driver hooks.
3731  *
3732  * Note: at this point the @props have only been validated in isolation and
3733  * it's still necessary to validate that the combination of properties makes
3734  * sense.
3735  *
3736  * In the case where userspace is interested in OA unit metrics then further
3737  * config validation and stream initialization details will be handled by
3738  * i915_oa_stream_init(). The code here should only validate config state that
3739  * will be relevant to all stream types / backends.
3740  *
3741  * Returns: zero on success or a negative error code.
3742  */
3743 static int
3744 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3745 			    struct drm_i915_perf_open_param *param,
3746 			    struct perf_open_properties *props,
3747 			    struct drm_file *file)
3748 {
3749 	struct i915_gem_context *specific_ctx = NULL;
3750 	struct i915_perf_stream *stream = NULL;
3751 	unsigned long f_flags = 0;
3752 	bool privileged_op = true;
3753 	int stream_fd;
3754 	int ret;
3755 
3756 	if (props->single_context) {
3757 		u32 ctx_handle = props->ctx_handle;
3758 		struct drm_i915_file_private *file_priv = file->driver_priv;
3759 
3760 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3761 		if (IS_ERR(specific_ctx)) {
3762 			drm_dbg(&perf->i915->drm,
3763 				"Failed to look up context with ID %u for opening perf stream\n",
3764 				  ctx_handle);
3765 			ret = PTR_ERR(specific_ctx);
3766 			goto err;
3767 		}
3768 	}
3769 
3770 	/*
3771 	 * On Haswell the OA unit supports clock gating off for a specific
3772 	 * context and in this mode there's no visibility of metrics for the
3773 	 * rest of the system, which we consider acceptable for a
3774 	 * non-privileged client.
3775 	 *
3776 	 * For Gen8->11 the OA unit no longer supports clock gating off for a
3777 	 * specific context and the kernel can't securely stop the counters
3778 	 * from updating as system-wide / global values. Even though we can
3779 	 * filter reports based on the included context ID we can't block
3780 	 * clients from seeing the raw / global counter values via
3781 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3782 	 * enable the OA unit by default.
3783 	 *
3784 	 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3785 	 * per context basis. So we can relax requirements there if the user
3786 	 * doesn't request global stream access (i.e. query based sampling
3787 	 * using MI_RECORD_PERF_COUNT.
3788 	 */
3789 	if (IS_HASWELL(perf->i915) && specific_ctx)
3790 		privileged_op = false;
3791 	else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3792 		 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3793 		privileged_op = false;
3794 
3795 	if (props->hold_preemption) {
3796 		if (!props->single_context) {
3797 			drm_dbg(&perf->i915->drm,
3798 				"preemption disable with no context\n");
3799 			ret = -EINVAL;
3800 			goto err;
3801 		}
3802 		privileged_op = true;
3803 	}
3804 
3805 	/*
3806 	 * Asking for SSEU configuration is a priviliged operation.
3807 	 */
3808 	if (props->has_sseu)
3809 		privileged_op = true;
3810 	else
3811 		get_default_sseu_config(&props->sseu, props->engine);
3812 
3813 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3814 	 * we check a dev.i915.perf_stream_paranoid sysctl option
3815 	 * to determine if it's ok to access system wide OA counters
3816 	 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3817 	 */
3818 	if (privileged_op &&
3819 	    i915_perf_stream_paranoid && !perfmon_capable()) {
3820 		drm_dbg(&perf->i915->drm,
3821 			"Insufficient privileges to open i915 perf stream\n");
3822 		ret = -EACCES;
3823 		goto err_ctx;
3824 	}
3825 
3826 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3827 	if (!stream) {
3828 		ret = -ENOMEM;
3829 		goto err_ctx;
3830 	}
3831 
3832 	stream->perf = perf;
3833 	stream->ctx = specific_ctx;
3834 	stream->poll_oa_period = props->poll_oa_period;
3835 
3836 	ret = i915_oa_stream_init(stream, param, props);
3837 	if (ret)
3838 		goto err_alloc;
3839 
3840 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
3841 	 * to have _stream_init check the combination of sample flags more
3842 	 * thoroughly, but still this is the expected result at this point.
3843 	 */
3844 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3845 		ret = -ENODEV;
3846 		goto err_flags;
3847 	}
3848 
3849 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3850 		f_flags |= O_CLOEXEC;
3851 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3852 		f_flags |= O_NONBLOCK;
3853 
3854 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3855 	if (stream_fd < 0) {
3856 		ret = stream_fd;
3857 		goto err_flags;
3858 	}
3859 
3860 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
3861 		i915_perf_enable_locked(stream);
3862 
3863 	/* Take a reference on the driver that will be kept with stream_fd
3864 	 * until its release.
3865 	 */
3866 	drm_dev_get(&perf->i915->drm);
3867 
3868 	return stream_fd;
3869 
3870 err_flags:
3871 	if (stream->ops->destroy)
3872 		stream->ops->destroy(stream);
3873 err_alloc:
3874 	kfree(stream);
3875 err_ctx:
3876 	if (specific_ctx)
3877 		i915_gem_context_put(specific_ctx);
3878 err:
3879 	return ret;
3880 }
3881 
3882 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3883 {
3884 	u64 nom = (2ULL << exponent) * NSEC_PER_SEC;
3885 	u32 den = i915_perf_oa_timestamp_frequency(perf->i915);
3886 
3887 	return div_u64(nom + den - 1, den);
3888 }
3889 
3890 static __always_inline bool
3891 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
3892 {
3893 	return test_bit(format, perf->format_mask);
3894 }
3895 
3896 static __always_inline void
3897 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
3898 {
3899 	__set_bit(format, perf->format_mask);
3900 }
3901 
3902 /**
3903  * read_properties_unlocked - validate + copy userspace stream open properties
3904  * @perf: i915 perf instance
3905  * @uprops: The array of u64 key value pairs given by userspace
3906  * @n_props: The number of key value pairs expected in @uprops
3907  * @props: The stream configuration built up while validating properties
3908  *
3909  * Note this function only validates properties in isolation it doesn't
3910  * validate that the combination of properties makes sense or that all
3911  * properties necessary for a particular kind of stream have been set.
3912  *
3913  * Note that there currently aren't any ordering requirements for properties so
3914  * we shouldn't validate or assume anything about ordering here. This doesn't
3915  * rule out defining new properties with ordering requirements in the future.
3916  */
3917 static int read_properties_unlocked(struct i915_perf *perf,
3918 				    u64 __user *uprops,
3919 				    u32 n_props,
3920 				    struct perf_open_properties *props)
3921 {
3922 	u64 __user *uprop = uprops;
3923 	u32 i;
3924 	int ret;
3925 
3926 	memset(props, 0, sizeof(struct perf_open_properties));
3927 	props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3928 
3929 	if (!n_props) {
3930 		drm_dbg(&perf->i915->drm,
3931 			"No i915 perf properties given\n");
3932 		return -EINVAL;
3933 	}
3934 
3935 	/* At the moment we only support using i915-perf on the RCS. */
3936 	props->engine = intel_engine_lookup_user(perf->i915,
3937 						 I915_ENGINE_CLASS_RENDER,
3938 						 0);
3939 	if (!props->engine) {
3940 		drm_dbg(&perf->i915->drm,
3941 			"No RENDER-capable engines\n");
3942 		return -EINVAL;
3943 	}
3944 
3945 	/* Considering that ID = 0 is reserved and assuming that we don't
3946 	 * (currently) expect any configurations to ever specify duplicate
3947 	 * values for a particular property ID then the last _PROP_MAX value is
3948 	 * one greater than the maximum number of properties we expect to get
3949 	 * from userspace.
3950 	 */
3951 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
3952 		drm_dbg(&perf->i915->drm,
3953 			"More i915 perf properties specified than exist\n");
3954 		return -EINVAL;
3955 	}
3956 
3957 	for (i = 0; i < n_props; i++) {
3958 		u64 oa_period, oa_freq_hz;
3959 		u64 id, value;
3960 
3961 		ret = get_user(id, uprop);
3962 		if (ret)
3963 			return ret;
3964 
3965 		ret = get_user(value, uprop + 1);
3966 		if (ret)
3967 			return ret;
3968 
3969 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3970 			drm_dbg(&perf->i915->drm,
3971 				"Unknown i915 perf property ID\n");
3972 			return -EINVAL;
3973 		}
3974 
3975 		switch ((enum drm_i915_perf_property_id)id) {
3976 		case DRM_I915_PERF_PROP_CTX_HANDLE:
3977 			props->single_context = 1;
3978 			props->ctx_handle = value;
3979 			break;
3980 		case DRM_I915_PERF_PROP_SAMPLE_OA:
3981 			if (value)
3982 				props->sample_flags |= SAMPLE_OA_REPORT;
3983 			break;
3984 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
3985 			if (value == 0) {
3986 				drm_dbg(&perf->i915->drm,
3987 					"Unknown OA metric set ID\n");
3988 				return -EINVAL;
3989 			}
3990 			props->metrics_set = value;
3991 			break;
3992 		case DRM_I915_PERF_PROP_OA_FORMAT:
3993 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3994 				drm_dbg(&perf->i915->drm,
3995 					"Out-of-range OA report format %llu\n",
3996 					  value);
3997 				return -EINVAL;
3998 			}
3999 			if (!oa_format_valid(perf, value)) {
4000 				drm_dbg(&perf->i915->drm,
4001 					"Unsupported OA report format %llu\n",
4002 					  value);
4003 				return -EINVAL;
4004 			}
4005 			props->oa_format = value;
4006 			break;
4007 		case DRM_I915_PERF_PROP_OA_EXPONENT:
4008 			if (value > OA_EXPONENT_MAX) {
4009 				drm_dbg(&perf->i915->drm,
4010 					"OA timer exponent too high (> %u)\n",
4011 					 OA_EXPONENT_MAX);
4012 				return -EINVAL;
4013 			}
4014 
4015 			/* Theoretically we can program the OA unit to sample
4016 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
4017 			 * for BXT. We don't allow such high sampling
4018 			 * frequencies by default unless root.
4019 			 */
4020 
4021 			BUILD_BUG_ON(sizeof(oa_period) != 8);
4022 			oa_period = oa_exponent_to_ns(perf, value);
4023 
4024 			/* This check is primarily to ensure that oa_period <=
4025 			 * UINT32_MAX (before passing to do_div which only
4026 			 * accepts a u32 denominator), but we can also skip
4027 			 * checking anything < 1Hz which implicitly can't be
4028 			 * limited via an integer oa_max_sample_rate.
4029 			 */
4030 			if (oa_period <= NSEC_PER_SEC) {
4031 				u64 tmp = NSEC_PER_SEC;
4032 				do_div(tmp, oa_period);
4033 				oa_freq_hz = tmp;
4034 			} else
4035 				oa_freq_hz = 0;
4036 
4037 			if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
4038 				drm_dbg(&perf->i915->drm,
4039 					"OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
4040 					  i915_oa_max_sample_rate);
4041 				return -EACCES;
4042 			}
4043 
4044 			props->oa_periodic = true;
4045 			props->oa_period_exponent = value;
4046 			break;
4047 		case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
4048 			props->hold_preemption = !!value;
4049 			break;
4050 		case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
4051 			struct drm_i915_gem_context_param_sseu user_sseu;
4052 
4053 			if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) {
4054 				drm_dbg(&perf->i915->drm,
4055 					"SSEU config not supported on gfx %x\n",
4056 					GRAPHICS_VER_FULL(perf->i915));
4057 				return -ENODEV;
4058 			}
4059 
4060 			if (copy_from_user(&user_sseu,
4061 					   u64_to_user_ptr(value),
4062 					   sizeof(user_sseu))) {
4063 				drm_dbg(&perf->i915->drm,
4064 					"Unable to copy global sseu parameter\n");
4065 				return -EFAULT;
4066 			}
4067 
4068 			ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
4069 			if (ret) {
4070 				drm_dbg(&perf->i915->drm,
4071 					"Invalid SSEU configuration\n");
4072 				return ret;
4073 			}
4074 			props->has_sseu = true;
4075 			break;
4076 		}
4077 		case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
4078 			if (value < 100000 /* 100us */) {
4079 				drm_dbg(&perf->i915->drm,
4080 					"OA availability timer too small (%lluns < 100us)\n",
4081 					  value);
4082 				return -EINVAL;
4083 			}
4084 			props->poll_oa_period = value;
4085 			break;
4086 		case DRM_I915_PERF_PROP_MAX:
4087 			MISSING_CASE(id);
4088 			return -EINVAL;
4089 		}
4090 
4091 		uprop += 2;
4092 	}
4093 
4094 	return 0;
4095 }
4096 
4097 /**
4098  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
4099  * @dev: drm device
4100  * @data: ioctl data copied from userspace (unvalidated)
4101  * @file: drm file
4102  *
4103  * Validates the stream open parameters given by userspace including flags
4104  * and an array of u64 key, value pair properties.
4105  *
4106  * Very little is assumed up front about the nature of the stream being
4107  * opened (for instance we don't assume it's for periodic OA unit metrics). An
4108  * i915-perf stream is expected to be a suitable interface for other forms of
4109  * buffered data written by the GPU besides periodic OA metrics.
4110  *
4111  * Note we copy the properties from userspace outside of the i915 perf
4112  * mutex to avoid an awkward lockdep with mmap_lock.
4113  *
4114  * Most of the implementation details are handled by
4115  * i915_perf_open_ioctl_locked() after taking the &gt->perf.lock
4116  * mutex for serializing with any non-file-operation driver hooks.
4117  *
4118  * Return: A newly opened i915 Perf stream file descriptor or negative
4119  * error code on failure.
4120  */
4121 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
4122 			 struct drm_file *file)
4123 {
4124 	struct i915_perf *perf = &to_i915(dev)->perf;
4125 	struct drm_i915_perf_open_param *param = data;
4126 	struct intel_gt *gt;
4127 	struct perf_open_properties props;
4128 	u32 known_open_flags;
4129 	int ret;
4130 
4131 	if (!perf->i915) {
4132 		drm_dbg(&perf->i915->drm,
4133 			"i915 perf interface not available for this system\n");
4134 		return -ENOTSUPP;
4135 	}
4136 
4137 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
4138 			   I915_PERF_FLAG_FD_NONBLOCK |
4139 			   I915_PERF_FLAG_DISABLED;
4140 	if (param->flags & ~known_open_flags) {
4141 		drm_dbg(&perf->i915->drm,
4142 			"Unknown drm_i915_perf_open_param flag\n");
4143 		return -EINVAL;
4144 	}
4145 
4146 	ret = read_properties_unlocked(perf,
4147 				       u64_to_user_ptr(param->properties_ptr),
4148 				       param->num_properties,
4149 				       &props);
4150 	if (ret)
4151 		return ret;
4152 
4153 	gt = props.engine->gt;
4154 
4155 	mutex_lock(&gt->perf.lock);
4156 	ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
4157 	mutex_unlock(&gt->perf.lock);
4158 
4159 	return ret;
4160 }
4161 
4162 /**
4163  * i915_perf_register - exposes i915-perf to userspace
4164  * @i915: i915 device instance
4165  *
4166  * In particular OA metric sets are advertised under a sysfs metrics/
4167  * directory allowing userspace to enumerate valid IDs that can be
4168  * used to open an i915-perf stream.
4169  */
4170 void i915_perf_register(struct drm_i915_private *i915)
4171 {
4172 	struct i915_perf *perf = &i915->perf;
4173 	struct intel_gt *gt = to_gt(i915);
4174 
4175 	if (!perf->i915)
4176 		return;
4177 
4178 	/* To be sure we're synchronized with an attempted
4179 	 * i915_perf_open_ioctl(); considering that we register after
4180 	 * being exposed to userspace.
4181 	 */
4182 	mutex_lock(&gt->perf.lock);
4183 
4184 	perf->metrics_kobj =
4185 		kobject_create_and_add("metrics",
4186 				       &i915->drm.primary->kdev->kobj);
4187 
4188 	mutex_unlock(&gt->perf.lock);
4189 }
4190 
4191 /**
4192  * i915_perf_unregister - hide i915-perf from userspace
4193  * @i915: i915 device instance
4194  *
4195  * i915-perf state cleanup is split up into an 'unregister' and
4196  * 'deinit' phase where the interface is first hidden from
4197  * userspace by i915_perf_unregister() before cleaning up
4198  * remaining state in i915_perf_fini().
4199  */
4200 void i915_perf_unregister(struct drm_i915_private *i915)
4201 {
4202 	struct i915_perf *perf = &i915->perf;
4203 
4204 	if (!perf->metrics_kobj)
4205 		return;
4206 
4207 	kobject_put(perf->metrics_kobj);
4208 	perf->metrics_kobj = NULL;
4209 }
4210 
4211 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
4212 {
4213 	static const i915_reg_t flex_eu_regs[] = {
4214 		EU_PERF_CNTL0,
4215 		EU_PERF_CNTL1,
4216 		EU_PERF_CNTL2,
4217 		EU_PERF_CNTL3,
4218 		EU_PERF_CNTL4,
4219 		EU_PERF_CNTL5,
4220 		EU_PERF_CNTL6,
4221 	};
4222 	int i;
4223 
4224 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
4225 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
4226 			return true;
4227 	}
4228 	return false;
4229 }
4230 
4231 static bool reg_in_range_table(u32 addr, const struct i915_range *table)
4232 {
4233 	while (table->start || table->end) {
4234 		if (addr >= table->start && addr <= table->end)
4235 			return true;
4236 
4237 		table++;
4238 	}
4239 
4240 	return false;
4241 }
4242 
4243 #define REG_EQUAL(addr, mmio) \
4244 	((addr) == i915_mmio_reg_offset(mmio))
4245 
4246 static const struct i915_range gen7_oa_b_counters[] = {
4247 	{ .start = 0x2710, .end = 0x272c },	/* OASTARTTRIG[1-8] */
4248 	{ .start = 0x2740, .end = 0x275c },	/* OAREPORTTRIG[1-8] */
4249 	{ .start = 0x2770, .end = 0x27ac },	/* OACEC[0-7][0-1] */
4250 	{}
4251 };
4252 
4253 static const struct i915_range gen12_oa_b_counters[] = {
4254 	{ .start = 0x2b2c, .end = 0x2b2c },	/* GEN12_OAG_OA_PESS */
4255 	{ .start = 0xd900, .end = 0xd91c },	/* GEN12_OAG_OASTARTTRIG[1-8] */
4256 	{ .start = 0xd920, .end = 0xd93c },	/* GEN12_OAG_OAREPORTTRIG1[1-8] */
4257 	{ .start = 0xd940, .end = 0xd97c },	/* GEN12_OAG_CEC[0-7][0-1] */
4258 	{ .start = 0xdc00, .end = 0xdc3c },	/* GEN12_OAG_SCEC[0-7][0-1] */
4259 	{ .start = 0xdc40, .end = 0xdc40 },	/* GEN12_OAG_SPCTR_CNF */
4260 	{ .start = 0xdc44, .end = 0xdc44 },	/* GEN12_OAA_DBG_REG */
4261 	{}
4262 };
4263 
4264 static const struct i915_range xehp_oa_b_counters[] = {
4265 	{ .start = 0xdc48, .end = 0xdc48 },	/* OAA_ENABLE_REG */
4266 	{ .start = 0xdd00, .end = 0xdd48 },	/* OAG_LCE0_0 - OAA_LENABLE_REG */
4267 };
4268 
4269 static const struct i915_range gen7_oa_mux_regs[] = {
4270 	{ .start = 0x91b8, .end = 0x91cc },	/* OA_PERFCNT[1-2], OA_PERFMATRIX */
4271 	{ .start = 0x9800, .end = 0x9888 },	/* MICRO_BP0_0 - NOA_WRITE */
4272 	{ .start = 0xe180, .end = 0xe180 },	/* HALF_SLICE_CHICKEN2 */
4273 	{}
4274 };
4275 
4276 static const struct i915_range hsw_oa_mux_regs[] = {
4277 	{ .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
4278 	{ .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
4279 	{ .start = 0x25100, .end = 0x2ff90 },
4280 	{}
4281 };
4282 
4283 static const struct i915_range chv_oa_mux_regs[] = {
4284 	{ .start = 0x182300, .end = 0x1823a4 },
4285 	{}
4286 };
4287 
4288 static const struct i915_range gen8_oa_mux_regs[] = {
4289 	{ .start = 0x0d00, .end = 0x0d2c },	/* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
4290 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4291 	{}
4292 };
4293 
4294 static const struct i915_range gen11_oa_mux_regs[] = {
4295 	{ .start = 0x91c8, .end = 0x91dc },	/* OA_PERFCNT[3-4] */
4296 	{}
4297 };
4298 
4299 static const struct i915_range gen12_oa_mux_regs[] = {
4300 	{ .start = 0x0d00, .end = 0x0d04 },     /* RPM_CONFIG[0-1] */
4301 	{ .start = 0x0d0c, .end = 0x0d2c },     /* NOA_CONFIG[0-8] */
4302 	{ .start = 0x9840, .end = 0x9840 },	/* GDT_CHICKEN_BITS */
4303 	{ .start = 0x9884, .end = 0x9888 },	/* NOA_WRITE */
4304 	{ .start = 0x20cc, .end = 0x20cc },	/* WAIT_FOR_RC6_EXIT */
4305 	{}
4306 };
4307 
4308 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4309 {
4310 	return reg_in_range_table(addr, gen7_oa_b_counters);
4311 }
4312 
4313 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4314 {
4315 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4316 		reg_in_range_table(addr, gen8_oa_mux_regs);
4317 }
4318 
4319 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4320 {
4321 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4322 		reg_in_range_table(addr, gen8_oa_mux_regs) ||
4323 		reg_in_range_table(addr, gen11_oa_mux_regs);
4324 }
4325 
4326 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4327 {
4328 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4329 		reg_in_range_table(addr, hsw_oa_mux_regs);
4330 }
4331 
4332 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4333 {
4334 	return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4335 		reg_in_range_table(addr, chv_oa_mux_regs);
4336 }
4337 
4338 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4339 {
4340 	return reg_in_range_table(addr, gen12_oa_b_counters);
4341 }
4342 
4343 static bool xehp_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4344 {
4345 	return reg_in_range_table(addr, xehp_oa_b_counters) ||
4346 		reg_in_range_table(addr, gen12_oa_b_counters);
4347 }
4348 
4349 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4350 {
4351 	return reg_in_range_table(addr, gen12_oa_mux_regs);
4352 }
4353 
4354 static u32 mask_reg_value(u32 reg, u32 val)
4355 {
4356 	/* HALF_SLICE_CHICKEN2 is programmed with a the
4357 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4358 	 * programmed by userspace doesn't change this.
4359 	 */
4360 	if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4361 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4362 
4363 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
4364 	 * indicated by its name and a bunch of selection fields used by OA
4365 	 * configs.
4366 	 */
4367 	if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4368 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4369 
4370 	return val;
4371 }
4372 
4373 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4374 					 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4375 					 u32 __user *regs,
4376 					 u32 n_regs)
4377 {
4378 	struct i915_oa_reg *oa_regs;
4379 	int err;
4380 	u32 i;
4381 
4382 	if (!n_regs)
4383 		return NULL;
4384 
4385 	/* No is_valid function means we're not allowing any register to be programmed. */
4386 	GEM_BUG_ON(!is_valid);
4387 	if (!is_valid)
4388 		return ERR_PTR(-EINVAL);
4389 
4390 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4391 	if (!oa_regs)
4392 		return ERR_PTR(-ENOMEM);
4393 
4394 	for (i = 0; i < n_regs; i++) {
4395 		u32 addr, value;
4396 
4397 		err = get_user(addr, regs);
4398 		if (err)
4399 			goto addr_err;
4400 
4401 		if (!is_valid(perf, addr)) {
4402 			drm_dbg(&perf->i915->drm,
4403 				"Invalid oa_reg address: %X\n", addr);
4404 			err = -EINVAL;
4405 			goto addr_err;
4406 		}
4407 
4408 		err = get_user(value, regs + 1);
4409 		if (err)
4410 			goto addr_err;
4411 
4412 		oa_regs[i].addr = _MMIO(addr);
4413 		oa_regs[i].value = mask_reg_value(addr, value);
4414 
4415 		regs += 2;
4416 	}
4417 
4418 	return oa_regs;
4419 
4420 addr_err:
4421 	kfree(oa_regs);
4422 	return ERR_PTR(err);
4423 }
4424 
4425 static ssize_t show_dynamic_id(struct kobject *kobj,
4426 			       struct kobj_attribute *attr,
4427 			       char *buf)
4428 {
4429 	struct i915_oa_config *oa_config =
4430 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
4431 
4432 	return sprintf(buf, "%d\n", oa_config->id);
4433 }
4434 
4435 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4436 					 struct i915_oa_config *oa_config)
4437 {
4438 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4439 	oa_config->sysfs_metric_id.attr.name = "id";
4440 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4441 	oa_config->sysfs_metric_id.show = show_dynamic_id;
4442 	oa_config->sysfs_metric_id.store = NULL;
4443 
4444 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4445 	oa_config->attrs[1] = NULL;
4446 
4447 	oa_config->sysfs_metric.name = oa_config->uuid;
4448 	oa_config->sysfs_metric.attrs = oa_config->attrs;
4449 
4450 	return sysfs_create_group(perf->metrics_kobj,
4451 				  &oa_config->sysfs_metric);
4452 }
4453 
4454 /**
4455  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4456  * @dev: drm device
4457  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4458  *        userspace (unvalidated)
4459  * @file: drm file
4460  *
4461  * Validates the submitted OA register to be saved into a new OA config that
4462  * can then be used for programming the OA unit and its NOA network.
4463  *
4464  * Returns: A new allocated config number to be used with the perf open ioctl
4465  * or a negative error code on failure.
4466  */
4467 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4468 			       struct drm_file *file)
4469 {
4470 	struct i915_perf *perf = &to_i915(dev)->perf;
4471 	struct drm_i915_perf_oa_config *args = data;
4472 	struct i915_oa_config *oa_config, *tmp;
4473 	struct i915_oa_reg *regs;
4474 	int err, id;
4475 
4476 	if (!perf->i915) {
4477 		drm_dbg(&perf->i915->drm,
4478 			"i915 perf interface not available for this system\n");
4479 		return -ENOTSUPP;
4480 	}
4481 
4482 	if (!perf->metrics_kobj) {
4483 		drm_dbg(&perf->i915->drm,
4484 			"OA metrics weren't advertised via sysfs\n");
4485 		return -EINVAL;
4486 	}
4487 
4488 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4489 		drm_dbg(&perf->i915->drm,
4490 			"Insufficient privileges to add i915 OA config\n");
4491 		return -EACCES;
4492 	}
4493 
4494 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4495 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4496 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
4497 		drm_dbg(&perf->i915->drm,
4498 			"No OA registers given\n");
4499 		return -EINVAL;
4500 	}
4501 
4502 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4503 	if (!oa_config) {
4504 		drm_dbg(&perf->i915->drm,
4505 			"Failed to allocate memory for the OA config\n");
4506 		return -ENOMEM;
4507 	}
4508 
4509 	oa_config->perf = perf;
4510 	kref_init(&oa_config->ref);
4511 
4512 	if (!uuid_is_valid(args->uuid)) {
4513 		drm_dbg(&perf->i915->drm,
4514 			"Invalid uuid format for OA config\n");
4515 		err = -EINVAL;
4516 		goto reg_err;
4517 	}
4518 
4519 	/* Last character in oa_config->uuid will be 0 because oa_config is
4520 	 * kzalloc.
4521 	 */
4522 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4523 
4524 	oa_config->mux_regs_len = args->n_mux_regs;
4525 	regs = alloc_oa_regs(perf,
4526 			     perf->ops.is_valid_mux_reg,
4527 			     u64_to_user_ptr(args->mux_regs_ptr),
4528 			     args->n_mux_regs);
4529 
4530 	if (IS_ERR(regs)) {
4531 		drm_dbg(&perf->i915->drm,
4532 			"Failed to create OA config for mux_regs\n");
4533 		err = PTR_ERR(regs);
4534 		goto reg_err;
4535 	}
4536 	oa_config->mux_regs = regs;
4537 
4538 	oa_config->b_counter_regs_len = args->n_boolean_regs;
4539 	regs = alloc_oa_regs(perf,
4540 			     perf->ops.is_valid_b_counter_reg,
4541 			     u64_to_user_ptr(args->boolean_regs_ptr),
4542 			     args->n_boolean_regs);
4543 
4544 	if (IS_ERR(regs)) {
4545 		drm_dbg(&perf->i915->drm,
4546 			"Failed to create OA config for b_counter_regs\n");
4547 		err = PTR_ERR(regs);
4548 		goto reg_err;
4549 	}
4550 	oa_config->b_counter_regs = regs;
4551 
4552 	if (GRAPHICS_VER(perf->i915) < 8) {
4553 		if (args->n_flex_regs != 0) {
4554 			err = -EINVAL;
4555 			goto reg_err;
4556 		}
4557 	} else {
4558 		oa_config->flex_regs_len = args->n_flex_regs;
4559 		regs = alloc_oa_regs(perf,
4560 				     perf->ops.is_valid_flex_reg,
4561 				     u64_to_user_ptr(args->flex_regs_ptr),
4562 				     args->n_flex_regs);
4563 
4564 		if (IS_ERR(regs)) {
4565 			drm_dbg(&perf->i915->drm,
4566 				"Failed to create OA config for flex_regs\n");
4567 			err = PTR_ERR(regs);
4568 			goto reg_err;
4569 		}
4570 		oa_config->flex_regs = regs;
4571 	}
4572 
4573 	err = mutex_lock_interruptible(&perf->metrics_lock);
4574 	if (err)
4575 		goto reg_err;
4576 
4577 	/* We shouldn't have too many configs, so this iteration shouldn't be
4578 	 * too costly.
4579 	 */
4580 	idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4581 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
4582 			drm_dbg(&perf->i915->drm,
4583 				"OA config already exists with this uuid\n");
4584 			err = -EADDRINUSE;
4585 			goto sysfs_err;
4586 		}
4587 	}
4588 
4589 	err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4590 	if (err) {
4591 		drm_dbg(&perf->i915->drm,
4592 			"Failed to create sysfs entry for OA config\n");
4593 		goto sysfs_err;
4594 	}
4595 
4596 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
4597 	oa_config->id = idr_alloc(&perf->metrics_idr,
4598 				  oa_config, 2,
4599 				  0, GFP_KERNEL);
4600 	if (oa_config->id < 0) {
4601 		drm_dbg(&perf->i915->drm,
4602 			"Failed to create sysfs entry for OA config\n");
4603 		err = oa_config->id;
4604 		goto sysfs_err;
4605 	}
4606 
4607 	mutex_unlock(&perf->metrics_lock);
4608 
4609 	drm_dbg(&perf->i915->drm,
4610 		"Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4611 
4612 	return oa_config->id;
4613 
4614 sysfs_err:
4615 	mutex_unlock(&perf->metrics_lock);
4616 reg_err:
4617 	i915_oa_config_put(oa_config);
4618 	drm_dbg(&perf->i915->drm,
4619 		"Failed to add new OA config\n");
4620 	return err;
4621 }
4622 
4623 /**
4624  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4625  * @dev: drm device
4626  * @data: ioctl data (pointer to u64 integer) copied from userspace
4627  * @file: drm file
4628  *
4629  * Configs can be removed while being used, the will stop appearing in sysfs
4630  * and their content will be freed when the stream using the config is closed.
4631  *
4632  * Returns: 0 on success or a negative error code on failure.
4633  */
4634 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4635 				  struct drm_file *file)
4636 {
4637 	struct i915_perf *perf = &to_i915(dev)->perf;
4638 	u64 *arg = data;
4639 	struct i915_oa_config *oa_config;
4640 	int ret;
4641 
4642 	if (!perf->i915) {
4643 		drm_dbg(&perf->i915->drm,
4644 			"i915 perf interface not available for this system\n");
4645 		return -ENOTSUPP;
4646 	}
4647 
4648 	if (i915_perf_stream_paranoid && !perfmon_capable()) {
4649 		drm_dbg(&perf->i915->drm,
4650 			"Insufficient privileges to remove i915 OA config\n");
4651 		return -EACCES;
4652 	}
4653 
4654 	ret = mutex_lock_interruptible(&perf->metrics_lock);
4655 	if (ret)
4656 		return ret;
4657 
4658 	oa_config = idr_find(&perf->metrics_idr, *arg);
4659 	if (!oa_config) {
4660 		drm_dbg(&perf->i915->drm,
4661 			"Failed to remove unknown OA config\n");
4662 		ret = -ENOENT;
4663 		goto err_unlock;
4664 	}
4665 
4666 	GEM_BUG_ON(*arg != oa_config->id);
4667 
4668 	sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4669 
4670 	idr_remove(&perf->metrics_idr, *arg);
4671 
4672 	mutex_unlock(&perf->metrics_lock);
4673 
4674 	drm_dbg(&perf->i915->drm,
4675 		"Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4676 
4677 	i915_oa_config_put(oa_config);
4678 
4679 	return 0;
4680 
4681 err_unlock:
4682 	mutex_unlock(&perf->metrics_lock);
4683 	return ret;
4684 }
4685 
4686 static struct ctl_table oa_table[] = {
4687 	{
4688 	 .procname = "perf_stream_paranoid",
4689 	 .data = &i915_perf_stream_paranoid,
4690 	 .maxlen = sizeof(i915_perf_stream_paranoid),
4691 	 .mode = 0644,
4692 	 .proc_handler = proc_dointvec_minmax,
4693 	 .extra1 = SYSCTL_ZERO,
4694 	 .extra2 = SYSCTL_ONE,
4695 	 },
4696 	{
4697 	 .procname = "oa_max_sample_rate",
4698 	 .data = &i915_oa_max_sample_rate,
4699 	 .maxlen = sizeof(i915_oa_max_sample_rate),
4700 	 .mode = 0644,
4701 	 .proc_handler = proc_dointvec_minmax,
4702 	 .extra1 = SYSCTL_ZERO,
4703 	 .extra2 = &oa_sample_rate_hard_limit,
4704 	 },
4705 	{}
4706 };
4707 
4708 static void oa_init_supported_formats(struct i915_perf *perf)
4709 {
4710 	struct drm_i915_private *i915 = perf->i915;
4711 	enum intel_platform platform = INTEL_INFO(i915)->platform;
4712 
4713 	switch (platform) {
4714 	case INTEL_HASWELL:
4715 		oa_format_add(perf, I915_OA_FORMAT_A13);
4716 		oa_format_add(perf, I915_OA_FORMAT_A13);
4717 		oa_format_add(perf, I915_OA_FORMAT_A29);
4718 		oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
4719 		oa_format_add(perf, I915_OA_FORMAT_B4_C8);
4720 		oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
4721 		oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
4722 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4723 		break;
4724 
4725 	case INTEL_BROADWELL:
4726 	case INTEL_CHERRYVIEW:
4727 	case INTEL_SKYLAKE:
4728 	case INTEL_BROXTON:
4729 	case INTEL_KABYLAKE:
4730 	case INTEL_GEMINILAKE:
4731 	case INTEL_COFFEELAKE:
4732 	case INTEL_COMETLAKE:
4733 	case INTEL_ICELAKE:
4734 	case INTEL_ELKHARTLAKE:
4735 	case INTEL_JASPERLAKE:
4736 	case INTEL_TIGERLAKE:
4737 	case INTEL_ROCKETLAKE:
4738 	case INTEL_DG1:
4739 	case INTEL_ALDERLAKE_S:
4740 	case INTEL_ALDERLAKE_P:
4741 		oa_format_add(perf, I915_OA_FORMAT_A12);
4742 		oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
4743 		oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
4744 		oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4745 		break;
4746 
4747 	case INTEL_DG2:
4748 		oa_format_add(perf, I915_OAR_FORMAT_A32u40_A4u32_B8_C8);
4749 		oa_format_add(perf, I915_OA_FORMAT_A24u40_A14u32_B8_C8);
4750 		break;
4751 
4752 	default:
4753 		MISSING_CASE(platform);
4754 	}
4755 }
4756 
4757 static void i915_perf_init_info(struct drm_i915_private *i915)
4758 {
4759 	struct i915_perf *perf = &i915->perf;
4760 
4761 	switch (GRAPHICS_VER(i915)) {
4762 	case 8:
4763 		perf->ctx_oactxctrl_offset = 0x120;
4764 		perf->ctx_flexeu0_offset = 0x2ce;
4765 		perf->gen8_valid_ctx_bit = BIT(25);
4766 		break;
4767 	case 9:
4768 		perf->ctx_oactxctrl_offset = 0x128;
4769 		perf->ctx_flexeu0_offset = 0x3de;
4770 		perf->gen8_valid_ctx_bit = BIT(16);
4771 		break;
4772 	case 11:
4773 		perf->ctx_oactxctrl_offset = 0x124;
4774 		perf->ctx_flexeu0_offset = 0x78e;
4775 		perf->gen8_valid_ctx_bit = BIT(16);
4776 		break;
4777 	case 12:
4778 		/*
4779 		 * Calculate offset at runtime in oa_pin_context for gen12 and
4780 		 * cache the value in perf->ctx_oactxctrl_offset.
4781 		 */
4782 		break;
4783 	default:
4784 		MISSING_CASE(GRAPHICS_VER(i915));
4785 	}
4786 }
4787 
4788 /**
4789  * i915_perf_init - initialize i915-perf state on module bind
4790  * @i915: i915 device instance
4791  *
4792  * Initializes i915-perf state without exposing anything to userspace.
4793  *
4794  * Note: i915-perf initialization is split into an 'init' and 'register'
4795  * phase with the i915_perf_register() exposing state to userspace.
4796  */
4797 void i915_perf_init(struct drm_i915_private *i915)
4798 {
4799 	struct i915_perf *perf = &i915->perf;
4800 
4801 	perf->oa_formats = oa_formats;
4802 	if (IS_HASWELL(i915)) {
4803 		perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4804 		perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4805 		perf->ops.is_valid_flex_reg = NULL;
4806 		perf->ops.enable_metric_set = hsw_enable_metric_set;
4807 		perf->ops.disable_metric_set = hsw_disable_metric_set;
4808 		perf->ops.oa_enable = gen7_oa_enable;
4809 		perf->ops.oa_disable = gen7_oa_disable;
4810 		perf->ops.read = gen7_oa_read;
4811 		perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4812 	} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4813 		/* Note: that although we could theoretically also support the
4814 		 * legacy ringbuffer mode on BDW (and earlier iterations of
4815 		 * this driver, before upstreaming did this) it didn't seem
4816 		 * worth the complexity to maintain now that BDW+ enable
4817 		 * execlist mode by default.
4818 		 */
4819 		perf->ops.read = gen8_oa_read;
4820 		i915_perf_init_info(i915);
4821 
4822 		if (IS_GRAPHICS_VER(i915, 8, 9)) {
4823 			perf->ops.is_valid_b_counter_reg =
4824 				gen7_is_valid_b_counter_addr;
4825 			perf->ops.is_valid_mux_reg =
4826 				gen8_is_valid_mux_addr;
4827 			perf->ops.is_valid_flex_reg =
4828 				gen8_is_valid_flex_addr;
4829 
4830 			if (IS_CHERRYVIEW(i915)) {
4831 				perf->ops.is_valid_mux_reg =
4832 					chv_is_valid_mux_addr;
4833 			}
4834 
4835 			perf->ops.oa_enable = gen8_oa_enable;
4836 			perf->ops.oa_disable = gen8_oa_disable;
4837 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4838 			perf->ops.disable_metric_set = gen8_disable_metric_set;
4839 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4840 		} else if (GRAPHICS_VER(i915) == 11) {
4841 			perf->ops.is_valid_b_counter_reg =
4842 				gen7_is_valid_b_counter_addr;
4843 			perf->ops.is_valid_mux_reg =
4844 				gen11_is_valid_mux_addr;
4845 			perf->ops.is_valid_flex_reg =
4846 				gen8_is_valid_flex_addr;
4847 
4848 			perf->ops.oa_enable = gen8_oa_enable;
4849 			perf->ops.oa_disable = gen8_oa_disable;
4850 			perf->ops.enable_metric_set = gen8_enable_metric_set;
4851 			perf->ops.disable_metric_set = gen11_disable_metric_set;
4852 			perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4853 		} else if (GRAPHICS_VER(i915) == 12) {
4854 			perf->ops.is_valid_b_counter_reg =
4855 				HAS_OA_SLICE_CONTRIB_LIMITS(i915) ?
4856 				xehp_is_valid_b_counter_addr :
4857 				gen12_is_valid_b_counter_addr;
4858 			perf->ops.is_valid_mux_reg =
4859 				gen12_is_valid_mux_addr;
4860 			perf->ops.is_valid_flex_reg =
4861 				gen8_is_valid_flex_addr;
4862 
4863 			perf->ops.oa_enable = gen12_oa_enable;
4864 			perf->ops.oa_disable = gen12_oa_disable;
4865 			perf->ops.enable_metric_set = gen12_enable_metric_set;
4866 			perf->ops.disable_metric_set = gen12_disable_metric_set;
4867 			perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4868 		}
4869 	}
4870 
4871 	if (perf->ops.enable_metric_set) {
4872 		struct intel_gt *gt;
4873 		int i;
4874 
4875 		for_each_gt(gt, i915, i)
4876 			mutex_init(&gt->perf.lock);
4877 
4878 		/* Choose a representative limit */
4879 		oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
4880 
4881 		mutex_init(&perf->metrics_lock);
4882 		idr_init_base(&perf->metrics_idr, 1);
4883 
4884 		/* We set up some ratelimit state to potentially throttle any
4885 		 * _NOTES about spurious, invalid OA reports which we don't
4886 		 * forward to userspace.
4887 		 *
4888 		 * We print a _NOTE about any throttling when closing the
4889 		 * stream instead of waiting until driver _fini which no one
4890 		 * would ever see.
4891 		 *
4892 		 * Using the same limiting factors as printk_ratelimit()
4893 		 */
4894 		ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4895 		/* Since we use a DRM_NOTE for spurious reports it would be
4896 		 * inconsistent to let __ratelimit() automatically print a
4897 		 * warning for throttling.
4898 		 */
4899 		ratelimit_set_flags(&perf->spurious_report_rs,
4900 				    RATELIMIT_MSG_ON_RELEASE);
4901 
4902 		ratelimit_state_init(&perf->tail_pointer_race,
4903 				     5 * HZ, 10);
4904 		ratelimit_set_flags(&perf->tail_pointer_race,
4905 				    RATELIMIT_MSG_ON_RELEASE);
4906 
4907 		atomic64_set(&perf->noa_programming_delay,
4908 			     500 * 1000 /* 500us */);
4909 
4910 		perf->i915 = i915;
4911 
4912 		oa_init_supported_formats(perf);
4913 	}
4914 }
4915 
4916 static int destroy_config(int id, void *p, void *data)
4917 {
4918 	i915_oa_config_put(p);
4919 	return 0;
4920 }
4921 
4922 int i915_perf_sysctl_register(void)
4923 {
4924 	sysctl_header = register_sysctl("dev/i915", oa_table);
4925 	return 0;
4926 }
4927 
4928 void i915_perf_sysctl_unregister(void)
4929 {
4930 	unregister_sysctl_table(sysctl_header);
4931 }
4932 
4933 /**
4934  * i915_perf_fini - Counter part to i915_perf_init()
4935  * @i915: i915 device instance
4936  */
4937 void i915_perf_fini(struct drm_i915_private *i915)
4938 {
4939 	struct i915_perf *perf = &i915->perf;
4940 
4941 	if (!perf->i915)
4942 		return;
4943 
4944 	idr_for_each(&perf->metrics_idr, destroy_config, perf);
4945 	idr_destroy(&perf->metrics_idr);
4946 
4947 	memset(&perf->ops, 0, sizeof(perf->ops));
4948 	perf->i915 = NULL;
4949 }
4950 
4951 /**
4952  * i915_perf_ioctl_version - Version of the i915-perf subsystem
4953  *
4954  * This version number is used by userspace to detect available features.
4955  */
4956 int i915_perf_ioctl_version(void)
4957 {
4958 	/*
4959 	 * 1: Initial version
4960 	 *   I915_PERF_IOCTL_ENABLE
4961 	 *   I915_PERF_IOCTL_DISABLE
4962 	 *
4963 	 * 2: Added runtime modification of OA config.
4964 	 *   I915_PERF_IOCTL_CONFIG
4965 	 *
4966 	 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4967 	 *    preemption on a particular context so that performance data is
4968 	 *    accessible from a delta of MI_RPC reports without looking at the
4969 	 *    OA buffer.
4970 	 *
4971 	 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4972 	 *    be run for the duration of the performance recording based on
4973 	 *    their SSEU configuration.
4974 	 *
4975 	 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4976 	 *    interval for the hrtimer used to check for OA data.
4977 	 */
4978 	return 5;
4979 }
4980 
4981 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4982 #include "selftests/i915_perf.c"
4983 #endif
4984