xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision 8dfb839c)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "i915_drv.h"
199 #include "i915_oa_hsw.h"
200 #include "i915_oa_bdw.h"
201 #include "i915_oa_chv.h"
202 #include "i915_oa_sklgt2.h"
203 #include "i915_oa_sklgt3.h"
204 #include "i915_oa_sklgt4.h"
205 #include "i915_oa_bxt.h"
206 #include "i915_oa_kblgt2.h"
207 #include "i915_oa_kblgt3.h"
208 #include "i915_oa_glk.h"
209 #include "i915_oa_cflgt2.h"
210 #include "i915_oa_cflgt3.h"
211 #include "i915_oa_cnl.h"
212 #include "i915_oa_icl.h"
213 #include "intel_lrc_reg.h"
214 
215 #define OA_TAKEN(tail, head)	(((tail) - (head)) & (dev_priv->perf.oa.oa_buffer.vma->size - 1))
216 
217 /**
218  * DOC: OA Tail Pointer Race
219  *
220  * There's a HW race condition between OA unit tail pointer register updates and
221  * writes to memory whereby the tail pointer can sometimes get ahead of what's
222  * been written out to the OA buffer so far (in terms of what's visible to the
223  * CPU).
224  *
225  * Although this can be observed explicitly while copying reports to userspace
226  * by checking for a zeroed report-id field in tail reports, we want to account
227  * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
228  * read() attempts.
229  *
230  * In effect we define a tail pointer for reading that lags the real tail
231  * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
232  * time for the corresponding reports to become visible to the CPU.
233  *
234  * To manage this we actually track two tail pointers:
235  *  1) An 'aging' tail with an associated timestamp that is tracked until we
236  *     can trust the corresponding data is visible to the CPU; at which point
237  *     it is considered 'aged'.
238  *  2) An 'aged' tail that can be used for read()ing.
239  *
240  * The two separate pointers let us decouple read()s from tail pointer aging.
241  *
242  * The tail pointers are checked and updated at a limited rate within a hrtimer
243  * callback (the same callback that is used for delivering EPOLLIN events)
244  *
245  * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
246  * indicates that an updated tail pointer is needed.
247  *
248  * Most of the implementation details for this workaround are in
249  * oa_buffer_check_unlocked() and _append_oa_reports()
250  *
251  * Note for posterity: previously the driver used to define an effective tail
252  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
253  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
254  * This was flawed considering that the OA unit may also automatically generate
255  * non-periodic reports (such as on context switch) or the OA unit may be
256  * enabled without any periodic sampling.
257  */
258 #define OA_TAIL_MARGIN_NSEC	100000ULL
259 #define INVALID_TAIL_PTR	0xffffffff
260 
261 /* frequency for checking whether the OA unit has written new reports to the
262  * circular OA buffer...
263  */
264 #define POLL_FREQUENCY 200
265 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
266 
267 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
268 static int zero;
269 static int one = 1;
270 static u32 i915_perf_stream_paranoid = true;
271 
272 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
273  * of the 64bit timestamp bits to trigger reports from) but there's currently
274  * no known use case for sampling as infrequently as once per 47 thousand years.
275  *
276  * Since the timestamps included in OA reports are only 32bits it seems
277  * reasonable to limit the OA exponent where it's still possible to account for
278  * overflow in OA report timestamps.
279  */
280 #define OA_EXPONENT_MAX 31
281 
282 #define INVALID_CTX_ID 0xffffffff
283 
284 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
285 #define OAREPORT_REASON_MASK           0x3f
286 #define OAREPORT_REASON_SHIFT          19
287 #define OAREPORT_REASON_TIMER          (1<<0)
288 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
289 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
290 
291 
292 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
293  *
294  * The highest sampling frequency we can theoretically program the OA unit
295  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
296  *
297  * Initialized just before we register the sysctl parameter.
298  */
299 static int oa_sample_rate_hard_limit;
300 
301 /* Theoretically we can program the OA unit to sample every 160ns but don't
302  * allow that by default unless root...
303  *
304  * The default threshold of 100000Hz is based on perf's similar
305  * kernel.perf_event_max_sample_rate sysctl parameter.
306  */
307 static u32 i915_oa_max_sample_rate = 100000;
308 
309 /* XXX: beware if future OA HW adds new report formats that the current
310  * code assumes all reports have a power-of-two size and ~(size - 1) can
311  * be used as a mask to align the OA tail pointer.
312  */
313 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
314 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
315 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
316 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
317 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
318 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
319 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
320 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
321 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
322 };
323 
324 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
325 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
326 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
327 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
328 	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
329 };
330 
331 #define SAMPLE_OA_REPORT      (1<<0)
332 
333 /**
334  * struct perf_open_properties - for validated properties given to open a stream
335  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
336  * @single_context: Whether a single or all gpu contexts should be monitored
337  * @ctx_handle: A gem ctx handle for use with @single_context
338  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
339  * @oa_format: An OA unit HW report format
340  * @oa_periodic: Whether to enable periodic OA unit sampling
341  * @oa_period_exponent: The OA unit sampling period is derived from this
342  * @oa_buffer_size_exponent: The OA buffer size is derived from this
343  *
344  * As read_properties_unlocked() enumerates and validates the properties given
345  * to open a stream of metrics the configuration is built up in the structure
346  * which starts out zero initialized.
347  */
348 struct perf_open_properties {
349 	u32 sample_flags;
350 
351 	u64 single_context:1;
352 	u64 ctx_handle;
353 
354 	/* OA sampling state */
355 	int metrics_set;
356 	int oa_format;
357 	bool oa_periodic;
358 	int oa_period_exponent;
359 	u32 oa_buffer_size_exponent;
360 };
361 
362 static void free_oa_config(struct drm_i915_private *dev_priv,
363 			   struct i915_oa_config *oa_config)
364 {
365 	if (!PTR_ERR(oa_config->flex_regs))
366 		kfree(oa_config->flex_regs);
367 	if (!PTR_ERR(oa_config->b_counter_regs))
368 		kfree(oa_config->b_counter_regs);
369 	if (!PTR_ERR(oa_config->mux_regs))
370 		kfree(oa_config->mux_regs);
371 	kfree(oa_config);
372 }
373 
374 static void put_oa_config(struct drm_i915_private *dev_priv,
375 			  struct i915_oa_config *oa_config)
376 {
377 	if (!atomic_dec_and_test(&oa_config->ref_count))
378 		return;
379 
380 	free_oa_config(dev_priv, oa_config);
381 }
382 
383 static int get_oa_config(struct drm_i915_private *dev_priv,
384 			 int metrics_set,
385 			 struct i915_oa_config **out_config)
386 {
387 	int ret;
388 
389 	if (metrics_set == 1) {
390 		*out_config = &dev_priv->perf.oa.test_config;
391 		atomic_inc(&dev_priv->perf.oa.test_config.ref_count);
392 		return 0;
393 	}
394 
395 	ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
396 	if (ret)
397 		return ret;
398 
399 	*out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
400 	if (!*out_config)
401 		ret = -EINVAL;
402 	else
403 		atomic_inc(&(*out_config)->ref_count);
404 
405 	mutex_unlock(&dev_priv->perf.metrics_lock);
406 
407 	return ret;
408 }
409 
410 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
411 {
412 	return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
413 }
414 
415 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
416 {
417 	u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
418 
419 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
420 }
421 
422 /**
423  * oa_buffer_check_unlocked - check for data and update tail ptr state
424  * @dev_priv: i915 device instance
425  *
426  * This is either called via fops (for blocking reads in user ctx) or the poll
427  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
428  * if there is data available for userspace to read.
429  *
430  * This function is central to providing a workaround for the OA unit tail
431  * pointer having a race with respect to what data is visible to the CPU.
432  * It is responsible for reading tail pointers from the hardware and giving
433  * the pointers time to 'age' before they are made available for reading.
434  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
435  *
436  * Besides returning true when there is data available to read() this function
437  * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
438  * and .aged_tail_idx state used for reading.
439  *
440  * Note: It's safe to read OA config state here unlocked, assuming that this is
441  * only called while the stream is enabled, while the global OA configuration
442  * can't be modified.
443  *
444  * Returns: %true if the OA buffer contains data, else %false
445  */
446 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
447 {
448 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
449 	unsigned long flags;
450 	unsigned int aged_idx;
451 	u32 head, hw_tail, aged_tail, aging_tail;
452 	u64 now;
453 
454 	/* We have to consider the (unlikely) possibility that read() errors
455 	 * could result in an OA buffer reset which might reset the head,
456 	 * tails[] and aged_tail state.
457 	 */
458 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
459 
460 	/* NB: The head we observe here might effectively be a little out of
461 	 * date (between head and tails[aged_idx].offset if there is currently
462 	 * a read() in progress.
463 	 */
464 	head = dev_priv->perf.oa.oa_buffer.head;
465 
466 	aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
467 	aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
468 	aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;
469 
470 	hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
471 
472 	/* The tail pointer increases in 64 byte increments,
473 	 * not in report_size steps...
474 	 */
475 	hw_tail &= ~(report_size - 1);
476 
477 	now = ktime_get_mono_fast_ns();
478 
479 	/* Update the aged tail
480 	 *
481 	 * Flip the tail pointer available for read()s once the aging tail is
482 	 * old enough to trust that the corresponding data will be visible to
483 	 * the CPU...
484 	 *
485 	 * Do this before updating the aging pointer in case we may be able to
486 	 * immediately start aging a new pointer too (if new data has become
487 	 * available) without needing to wait for a later hrtimer callback.
488 	 */
489 	if (aging_tail != INVALID_TAIL_PTR &&
490 	    ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
491 	     OA_TAIL_MARGIN_NSEC)) {
492 
493 		aged_idx ^= 1;
494 		dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;
495 
496 		aged_tail = aging_tail;
497 
498 		/* Mark that we need a new pointer to start aging... */
499 		dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
500 		aging_tail = INVALID_TAIL_PTR;
501 	}
502 
503 	/* Update the aging tail
504 	 *
505 	 * We throttle aging tail updates until we have a new tail that
506 	 * represents >= one report more data than is already available for
507 	 * reading. This ensures there will be enough data for a successful
508 	 * read once this new pointer has aged and ensures we will give the new
509 	 * pointer time to age.
510 	 */
511 	if (aging_tail == INVALID_TAIL_PTR &&
512 	    (aged_tail == INVALID_TAIL_PTR ||
513 	     OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
514 		struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
515 		u32 gtt_offset = i915_ggtt_offset(vma);
516 
517 		/* Be paranoid and do a bounds check on the pointer read back
518 		 * from hardware, just in case some spurious hardware condition
519 		 * could put the tail out of bounds...
520 		 */
521 		if (hw_tail >= gtt_offset &&
522 		    hw_tail < (gtt_offset + dev_priv->perf.oa.oa_buffer.vma->size)) {
523 			dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
524 				aging_tail = hw_tail;
525 			dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
526 		} else {
527 			DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
528 				  hw_tail);
529 		}
530 	}
531 
532 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
533 
534 	return aged_tail == INVALID_TAIL_PTR ?
535 		false : OA_TAKEN(aged_tail, head) >= report_size;
536 }
537 
538 /**
539  * append_oa_status - Appends a status record to a userspace read() buffer.
540  * @stream: An i915-perf stream opened for OA metrics
541  * @buf: destination buffer given by userspace
542  * @count: the number of bytes userspace wants to read
543  * @offset: (inout): the current position for writing into @buf
544  * @type: The kind of status to report to userspace
545  *
546  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
547  * into the userspace read() buffer.
548  *
549  * The @buf @offset will only be updated on success.
550  *
551  * Returns: 0 on success, negative error code on failure.
552  */
553 static int append_oa_status(struct i915_perf_stream *stream,
554 			    char __user *buf,
555 			    size_t count,
556 			    size_t *offset,
557 			    enum drm_i915_perf_record_type type)
558 {
559 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
560 
561 	if ((count - *offset) < header.size)
562 		return -ENOSPC;
563 
564 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
565 		return -EFAULT;
566 
567 	(*offset) += header.size;
568 
569 	return 0;
570 }
571 
572 /**
573  * append_oa_sample - Copies single OA report into userspace read() buffer.
574  * @stream: An i915-perf stream opened for OA metrics
575  * @buf: destination buffer given by userspace
576  * @count: the number of bytes userspace wants to read
577  * @offset: (inout): the current position for writing into @buf
578  * @report: A single OA report to (optionally) include as part of the sample
579  *
580  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
581  * properties when opening a stream, tracked as `stream->sample_flags`. This
582  * function copies the requested components of a single sample to the given
583  * read() @buf.
584  *
585  * The @buf @offset will only be updated on success.
586  *
587  * Returns: 0 on success, negative error code on failure.
588  */
589 static int append_oa_sample(struct i915_perf_stream *stream,
590 			    char __user *buf,
591 			    size_t count,
592 			    size_t *offset,
593 			    const u8 *report)
594 {
595 	struct drm_i915_private *dev_priv = stream->dev_priv;
596 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
597 	struct drm_i915_perf_record_header header;
598 	u32 sample_flags = stream->sample_flags;
599 
600 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
601 	header.pad = 0;
602 	header.size = stream->sample_size;
603 
604 	if ((count - *offset) < header.size)
605 		return -ENOSPC;
606 
607 	buf += *offset;
608 	if (copy_to_user(buf, &header, sizeof(header)))
609 		return -EFAULT;
610 	buf += sizeof(header);
611 
612 	if (sample_flags & SAMPLE_OA_REPORT) {
613 		if (copy_to_user(buf, report, report_size))
614 			return -EFAULT;
615 	}
616 
617 	(*offset) += header.size;
618 
619 	return 0;
620 }
621 
622 /**
623  * Copies all buffered OA reports into userspace read() buffer.
624  * @stream: An i915-perf stream opened for OA metrics
625  * @buf: destination buffer given by userspace
626  * @count: the number of bytes userspace wants to read
627  * @offset: (inout): the current position for writing into @buf
628  *
629  * Notably any error condition resulting in a short read (-%ENOSPC or
630  * -%EFAULT) will be returned even though one or more records may
631  * have been successfully copied. In this case it's up to the caller
632  * to decide if the error should be squashed before returning to
633  * userspace.
634  *
635  * Note: reports are consumed from the head, and appended to the
636  * tail, so the tail chases the head?... If you think that's mad
637  * and back-to-front you're not alone, but this follows the
638  * Gen PRM naming convention.
639  *
640  * Returns: 0 on success, negative error code on failure.
641  */
642 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
643 				  char __user *buf,
644 				  size_t count,
645 				  size_t *offset)
646 {
647 	struct drm_i915_private *dev_priv = stream->dev_priv;
648 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
649 	u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
650 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
651 	u32 mask = (dev_priv->perf.oa.oa_buffer.vma->size - 1);
652 	size_t start_offset = *offset;
653 	unsigned long flags;
654 	unsigned int aged_tail_idx;
655 	u32 head, tail;
656 	u32 taken;
657 	int ret = 0;
658 
659 	if (WARN_ON(!stream->enabled))
660 		return -EIO;
661 
662 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
663 
664 	head = dev_priv->perf.oa.oa_buffer.head;
665 	aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
666 	tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
667 
668 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
669 
670 	/*
671 	 * An invalid tail pointer here means we're still waiting for the poll
672 	 * hrtimer callback to give us a pointer
673 	 */
674 	if (tail == INVALID_TAIL_PTR)
675 		return -EAGAIN;
676 
677 	/*
678 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
679 	 * while indexing relative to oa_buf_base.
680 	 */
681 	head -= gtt_offset;
682 	tail -= gtt_offset;
683 
684 	/*
685 	 * An out of bounds or misaligned head or tail pointer implies a driver
686 	 * bug since we validate + align the tail pointers we read from the
687 	 * hardware and we are in full control of the head pointer which should
688 	 * only be incremented by multiples of the report size (notably also
689 	 * all a power of two).
690 	 */
691 	if (WARN_ONCE(head > dev_priv->perf.oa.oa_buffer.vma->size || head % report_size ||
692 		      tail > dev_priv->perf.oa.oa_buffer.vma->size || tail % report_size,
693 		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
694 		      head, tail))
695 		return -EIO;
696 
697 
698 	for (/* none */;
699 	     (taken = OA_TAKEN(tail, head));
700 	     head = (head + report_size) & mask) {
701 		u8 *report = oa_buf_base + head;
702 		u32 *report32 = (void *)report;
703 		u32 ctx_id;
704 		u32 reason;
705 
706 		/*
707 		 * All the report sizes factor neatly into the buffer
708 		 * size so we never expect to see a report split
709 		 * between the beginning and end of the buffer.
710 		 *
711 		 * Given the initial alignment check a misalignment
712 		 * here would imply a driver bug that would result
713 		 * in an overrun.
714 		 */
715 		if (WARN_ON((dev_priv->perf.oa.oa_buffer.vma->size - head) < report_size)) {
716 			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
717 			break;
718 		}
719 
720 		/*
721 		 * The reason field includes flags identifying what
722 		 * triggered this specific report (mostly timer
723 		 * triggered or e.g. due to a context switch).
724 		 *
725 		 * This field is never expected to be zero so we can
726 		 * check that the report isn't invalid before copying
727 		 * it to userspace...
728 		 */
729 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
730 			  OAREPORT_REASON_MASK);
731 		if (reason == 0) {
732 			if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
733 				DRM_NOTE("Skipping spurious, invalid OA report\n");
734 			continue;
735 		}
736 
737 		ctx_id = report32[2] & dev_priv->perf.oa.specific_ctx_id_mask;
738 
739 		/*
740 		 * Squash whatever is in the CTX_ID field if it's marked as
741 		 * invalid to be sure we avoid false-positive, single-context
742 		 * filtering below...
743 		 *
744 		 * Note: that we don't clear the valid_ctx_bit so userspace can
745 		 * understand that the ID has been squashed by the kernel.
746 		 */
747 		if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
748 			ctx_id = report32[2] = INVALID_CTX_ID;
749 
750 		/*
751 		 * NB: For Gen 8 the OA unit no longer supports clock gating
752 		 * off for a specific context and the kernel can't securely
753 		 * stop the counters from updating as system-wide / global
754 		 * values.
755 		 *
756 		 * Automatic reports now include a context ID so reports can be
757 		 * filtered on the cpu but it's not worth trying to
758 		 * automatically subtract/hide counter progress for other
759 		 * contexts while filtering since we can't stop userspace
760 		 * issuing MI_REPORT_PERF_COUNT commands which would still
761 		 * provide a side-band view of the real values.
762 		 *
763 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
764 		 * to normalize counters for a single filtered context then it
765 		 * needs be forwarded bookend context-switch reports so that it
766 		 * can track switches in between MI_REPORT_PERF_COUNT commands
767 		 * and can itself subtract/ignore the progress of counters
768 		 * associated with other contexts. Note that the hardware
769 		 * automatically triggers reports when switching to a new
770 		 * context which are tagged with the ID of the newly active
771 		 * context. To avoid the complexity (and likely fragility) of
772 		 * reading ahead while parsing reports to try and minimize
773 		 * forwarding redundant context switch reports (i.e. between
774 		 * other, unrelated contexts) we simply elect to forward them
775 		 * all.
776 		 *
777 		 * We don't rely solely on the reason field to identify context
778 		 * switches since it's not-uncommon for periodic samples to
779 		 * identify a switch before any 'context switch' report.
780 		 */
781 		if (!dev_priv->perf.oa.exclusive_stream->ctx ||
782 		    dev_priv->perf.oa.specific_ctx_id == ctx_id ||
783 		    (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
784 		     dev_priv->perf.oa.specific_ctx_id) ||
785 		    reason & OAREPORT_REASON_CTX_SWITCH) {
786 
787 			/*
788 			 * While filtering for a single context we avoid
789 			 * leaking the IDs of other contexts.
790 			 */
791 			if (dev_priv->perf.oa.exclusive_stream->ctx &&
792 			    dev_priv->perf.oa.specific_ctx_id != ctx_id) {
793 				report32[2] = INVALID_CTX_ID;
794 			}
795 
796 			ret = append_oa_sample(stream, buf, count, offset,
797 					       report);
798 			if (ret)
799 				break;
800 
801 			dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
802 		}
803 
804 		/*
805 		 * The above reason field sanity check is based on
806 		 * the assumption that the OA buffer is initially
807 		 * zeroed and we reset the field after copying so the
808 		 * check is still meaningful once old reports start
809 		 * being overwritten.
810 		 */
811 		report32[0] = 0;
812 	}
813 
814 	if (start_offset != *offset) {
815 		spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
816 
817 		/*
818 		 * We removed the gtt_offset for the copy loop above, indexing
819 		 * relative to oa_buf_base so put back here...
820 		 */
821 		head += gtt_offset;
822 
823 		I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
824 		dev_priv->perf.oa.oa_buffer.head = head;
825 
826 		spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
827 	}
828 
829 	return ret;
830 }
831 
832 /**
833  * gen8_oa_read - copy status records then buffered OA reports
834  * @stream: An i915-perf stream opened for OA metrics
835  * @buf: destination buffer given by userspace
836  * @count: the number of bytes userspace wants to read
837  * @offset: (inout): the current position for writing into @buf
838  *
839  * Checks OA unit status registers and if necessary appends corresponding
840  * status records for userspace (such as for a buffer full condition) and then
841  * initiate appending any buffered OA reports.
842  *
843  * Updates @offset according to the number of bytes successfully copied into
844  * the userspace buffer.
845  *
846  * NB: some data may be successfully copied to the userspace buffer
847  * even if an error is returned, and this is reflected in the
848  * updated @offset.
849  *
850  * Returns: zero on success or a negative error code
851  */
852 static int gen8_oa_read(struct i915_perf_stream *stream,
853 			char __user *buf,
854 			size_t count,
855 			size_t *offset)
856 {
857 	struct drm_i915_private *dev_priv = stream->dev_priv;
858 	u32 oastatus;
859 	int ret;
860 
861 	if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
862 		return -EIO;
863 
864 	oastatus = I915_READ(GEN8_OASTATUS);
865 
866 	/*
867 	 * We treat OABUFFER_OVERFLOW as a significant error:
868 	 *
869 	 * Although theoretically we could handle this more gracefully
870 	 * sometimes, some Gens don't correctly suppress certain
871 	 * automatically triggered reports in this condition and so we
872 	 * have to assume that old reports are now being trampled
873 	 * over.
874 	 */
875 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
876 		ret = append_oa_status(stream, buf, count, offset,
877 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
878 		if (ret)
879 			return ret;
880 
881 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
882 			  dev_priv->perf.oa.period_exponent);
883 
884 		dev_priv->perf.oa.ops.oa_disable(stream);
885 		dev_priv->perf.oa.ops.oa_enable(stream);
886 
887 		/*
888 		 * Note: .oa_enable() is expected to re-init the oabuffer and
889 		 * reset GEN8_OASTATUS for us
890 		 */
891 		oastatus = I915_READ(GEN8_OASTATUS);
892 	}
893 
894 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
895 		ret = append_oa_status(stream, buf, count, offset,
896 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
897 		if (ret)
898 			return ret;
899 		I915_WRITE(GEN8_OASTATUS,
900 			   oastatus & ~GEN8_OASTATUS_REPORT_LOST);
901 	}
902 
903 	return gen8_append_oa_reports(stream, buf, count, offset);
904 }
905 
906 /**
907  * Copies all buffered OA reports into userspace read() buffer.
908  * @stream: An i915-perf stream opened for OA metrics
909  * @buf: destination buffer given by userspace
910  * @count: the number of bytes userspace wants to read
911  * @offset: (inout): the current position for writing into @buf
912  *
913  * Notably any error condition resulting in a short read (-%ENOSPC or
914  * -%EFAULT) will be returned even though one or more records may
915  * have been successfully copied. In this case it's up to the caller
916  * to decide if the error should be squashed before returning to
917  * userspace.
918  *
919  * Note: reports are consumed from the head, and appended to the
920  * tail, so the tail chases the head?... If you think that's mad
921  * and back-to-front you're not alone, but this follows the
922  * Gen PRM naming convention.
923  *
924  * Returns: 0 on success, negative error code on failure.
925  */
926 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
927 				  char __user *buf,
928 				  size_t count,
929 				  size_t *offset)
930 {
931 	struct drm_i915_private *dev_priv = stream->dev_priv;
932 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
933 	u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
934 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
935 	u32 mask = (dev_priv->perf.oa.oa_buffer.vma->size - 1);
936 	size_t start_offset = *offset;
937 	unsigned long flags;
938 	unsigned int aged_tail_idx;
939 	u32 head, tail;
940 	u32 taken;
941 	int ret = 0;
942 
943 	if (WARN_ON(!stream->enabled))
944 		return -EIO;
945 
946 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
947 
948 	head = dev_priv->perf.oa.oa_buffer.head;
949 	aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
950 	tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
951 
952 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
953 
954 	/* An invalid tail pointer here means we're still waiting for the poll
955 	 * hrtimer callback to give us a pointer
956 	 */
957 	if (tail == INVALID_TAIL_PTR)
958 		return -EAGAIN;
959 
960 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
961 	 * while indexing relative to oa_buf_base.
962 	 */
963 	head -= gtt_offset;
964 	tail -= gtt_offset;
965 
966 	/* An out of bounds or misaligned head or tail pointer implies a driver
967 	 * bug since we validate + align the tail pointers we read from the
968 	 * hardware and we are in full control of the head pointer which should
969 	 * only be incremented by multiples of the report size (notably also
970 	 * all a power of two).
971 	 */
972 	if (WARN_ONCE(head > dev_priv->perf.oa.oa_buffer.vma->size || head % report_size ||
973 		      tail > dev_priv->perf.oa.oa_buffer.vma->size || tail % report_size,
974 		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
975 		      head, tail))
976 		return -EIO;
977 
978 
979 	for (/* none */;
980 	     (taken = OA_TAKEN(tail, head));
981 	     head = (head + report_size) & mask) {
982 		u8 *report = oa_buf_base + head;
983 		u32 *report32 = (void *)report;
984 
985 		/* All the report sizes factor neatly into the buffer
986 		 * size so we never expect to see a report split
987 		 * between the beginning and end of the buffer.
988 		 *
989 		 * Given the initial alignment check a misalignment
990 		 * here would imply a driver bug that would result
991 		 * in an overrun.
992 		 */
993 		if (WARN_ON((dev_priv->perf.oa.oa_buffer.vma->size - head) < report_size)) {
994 			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
995 			break;
996 		}
997 
998 		/* The report-ID field for periodic samples includes
999 		 * some undocumented flags related to what triggered
1000 		 * the report and is never expected to be zero so we
1001 		 * can check that the report isn't invalid before
1002 		 * copying it to userspace...
1003 		 */
1004 		if (report32[0] == 0) {
1005 			if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
1006 				DRM_NOTE("Skipping spurious, invalid OA report\n");
1007 			continue;
1008 		}
1009 
1010 		ret = append_oa_sample(stream, buf, count, offset, report);
1011 		if (ret)
1012 			break;
1013 
1014 		/* The above report-id field sanity check is based on
1015 		 * the assumption that the OA buffer is initially
1016 		 * zeroed and we reset the field after copying so the
1017 		 * check is still meaningful once old reports start
1018 		 * being overwritten.
1019 		 */
1020 		report32[0] = 0;
1021 	}
1022 
1023 	if (start_offset != *offset) {
1024 		spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1025 
1026 		/* We removed the gtt_offset for the copy loop above, indexing
1027 		 * relative to oa_buf_base so put back here...
1028 		 */
1029 		head += gtt_offset;
1030 
1031 		I915_WRITE(GEN7_OASTATUS2,
1032 			   ((head & GEN7_OASTATUS2_HEAD_MASK) |
1033 			    GEN7_OASTATUS2_MEM_SELECT_GGTT));
1034 		dev_priv->perf.oa.oa_buffer.head = head;
1035 
1036 		spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1037 	}
1038 
1039 	return ret;
1040 }
1041 
1042 /**
1043  * gen7_oa_read - copy status records then buffered OA reports
1044  * @stream: An i915-perf stream opened for OA metrics
1045  * @buf: destination buffer given by userspace
1046  * @count: the number of bytes userspace wants to read
1047  * @offset: (inout): the current position for writing into @buf
1048  *
1049  * Checks Gen 7 specific OA unit status registers and if necessary appends
1050  * corresponding status records for userspace (such as for a buffer full
1051  * condition) and then initiate appending any buffered OA reports.
1052  *
1053  * Updates @offset according to the number of bytes successfully copied into
1054  * the userspace buffer.
1055  *
1056  * Returns: zero on success or a negative error code
1057  */
1058 static int gen7_oa_read(struct i915_perf_stream *stream,
1059 			char __user *buf,
1060 			size_t count,
1061 			size_t *offset)
1062 {
1063 	struct drm_i915_private *dev_priv = stream->dev_priv;
1064 	u32 oastatus1;
1065 	int ret;
1066 
1067 	if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
1068 		return -EIO;
1069 
1070 	oastatus1 = I915_READ(GEN7_OASTATUS1);
1071 
1072 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1073 	 * bits while the OA unit is enabled (while the tail pointer
1074 	 * may be updated asynchronously) so we ignore status bits
1075 	 * that have already been reported to userspace.
1076 	 */
1077 	oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
1078 
1079 	/* We treat OABUFFER_OVERFLOW as a significant error:
1080 	 *
1081 	 * - The status can be interpreted to mean that the buffer is
1082 	 *   currently full (with a higher precedence than OA_TAKEN()
1083 	 *   which will start to report a near-empty buffer after an
1084 	 *   overflow) but it's awkward that we can't clear the status
1085 	 *   on Haswell, so without a reset we won't be able to catch
1086 	 *   the state again.
1087 	 *
1088 	 * - Since it also implies the HW has started overwriting old
1089 	 *   reports it may also affect our sanity checks for invalid
1090 	 *   reports when copying to userspace that assume new reports
1091 	 *   are being written to cleared memory.
1092 	 *
1093 	 * - In the future we may want to introduce a flight recorder
1094 	 *   mode where the driver will automatically maintain a safe
1095 	 *   guard band between head/tail, avoiding this overflow
1096 	 *   condition, but we avoid the added driver complexity for
1097 	 *   now.
1098 	 */
1099 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1100 		ret = append_oa_status(stream, buf, count, offset,
1101 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1102 		if (ret)
1103 			return ret;
1104 
1105 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1106 			  dev_priv->perf.oa.period_exponent);
1107 
1108 		dev_priv->perf.oa.ops.oa_disable(stream);
1109 		dev_priv->perf.oa.ops.oa_enable(stream);
1110 
1111 		oastatus1 = I915_READ(GEN7_OASTATUS1);
1112 	}
1113 
1114 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1115 		ret = append_oa_status(stream, buf, count, offset,
1116 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1117 		if (ret)
1118 			return ret;
1119 		dev_priv->perf.oa.gen7_latched_oastatus1 |=
1120 			GEN7_OASTATUS1_REPORT_LOST;
1121 	}
1122 
1123 	return gen7_append_oa_reports(stream, buf, count, offset);
1124 }
1125 
1126 /**
1127  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1128  * @stream: An i915-perf stream opened for OA metrics
1129  *
1130  * Called when userspace tries to read() from a blocking stream FD opened
1131  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1132  * OA buffer and wakes us.
1133  *
1134  * Note: it's acceptable to have this return with some false positives
1135  * since any subsequent read handling will return -EAGAIN if there isn't
1136  * really data ready for userspace yet.
1137  *
1138  * Returns: zero on success or a negative error code
1139  */
1140 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1141 {
1142 	struct drm_i915_private *dev_priv = stream->dev_priv;
1143 
1144 	/* We would wait indefinitely if periodic sampling is not enabled */
1145 	if (!dev_priv->perf.oa.periodic)
1146 		return -EIO;
1147 
1148 	return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
1149 					oa_buffer_check_unlocked(dev_priv));
1150 }
1151 
1152 /**
1153  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1154  * @stream: An i915-perf stream opened for OA metrics
1155  * @file: An i915 perf stream file
1156  * @wait: poll() state table
1157  *
1158  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1159  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1160  * when it sees data ready to read in the circular OA buffer.
1161  */
1162 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1163 			      struct file *file,
1164 			      poll_table *wait)
1165 {
1166 	struct drm_i915_private *dev_priv = stream->dev_priv;
1167 
1168 	poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
1169 }
1170 
1171 /**
1172  * i915_oa_read - just calls through to &i915_oa_ops->read
1173  * @stream: An i915-perf stream opened for OA metrics
1174  * @buf: destination buffer given by userspace
1175  * @count: the number of bytes userspace wants to read
1176  * @offset: (inout): the current position for writing into @buf
1177  *
1178  * Updates @offset according to the number of bytes successfully copied into
1179  * the userspace buffer.
1180  *
1181  * Returns: zero on success or a negative error code
1182  */
1183 static int i915_oa_read(struct i915_perf_stream *stream,
1184 			char __user *buf,
1185 			size_t count,
1186 			size_t *offset)
1187 {
1188 	struct drm_i915_private *dev_priv = stream->dev_priv;
1189 
1190 	return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
1191 }
1192 
1193 static struct intel_context *oa_pin_context(struct drm_i915_private *i915,
1194 					    struct i915_gem_context *ctx)
1195 {
1196 	struct intel_engine_cs *engine = i915->engine[RCS];
1197 	struct intel_context *ce;
1198 	int ret;
1199 
1200 	ret = i915_mutex_lock_interruptible(&i915->drm);
1201 	if (ret)
1202 		return ERR_PTR(ret);
1203 
1204 	/*
1205 	 * As the ID is the gtt offset of the context's vma we
1206 	 * pin the vma to ensure the ID remains fixed.
1207 	 *
1208 	 * NB: implied RCS engine...
1209 	 */
1210 	ce = intel_context_pin(ctx, engine);
1211 	mutex_unlock(&i915->drm.struct_mutex);
1212 	if (IS_ERR(ce))
1213 		return ce;
1214 
1215 	i915->perf.oa.pinned_ctx = ce;
1216 
1217 	return ce;
1218 }
1219 
1220 /**
1221  * oa_get_render_ctx_id - determine and hold ctx hw id
1222  * @stream: An i915-perf stream opened for OA metrics
1223  *
1224  * Determine the render context hw id, and ensure it remains fixed for the
1225  * lifetime of the stream. This ensures that we don't have to worry about
1226  * updating the context ID in OACONTROL on the fly.
1227  *
1228  * Returns: zero on success or a negative error code
1229  */
1230 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1231 {
1232 	struct drm_i915_private *i915 = stream->dev_priv;
1233 	struct intel_context *ce;
1234 
1235 	ce = oa_pin_context(i915, stream->ctx);
1236 	if (IS_ERR(ce))
1237 		return PTR_ERR(ce);
1238 
1239 	switch (INTEL_GEN(i915)) {
1240 	case 7: {
1241 		/*
1242 		 * On Haswell we don't do any post processing of the reports
1243 		 * and don't need to use the mask.
1244 		 */
1245 		i915->perf.oa.specific_ctx_id = i915_ggtt_offset(ce->state);
1246 		i915->perf.oa.specific_ctx_id_mask = 0;
1247 		break;
1248 	}
1249 
1250 	case 8:
1251 	case 9:
1252 	case 10:
1253 		if (USES_GUC_SUBMISSION(i915)) {
1254 			/*
1255 			 * When using GuC, the context descriptor we write in
1256 			 * i915 is read by GuC and rewritten before it's
1257 			 * actually written into the hardware. The LRCA is
1258 			 * what is put into the context id field of the
1259 			 * context descriptor by GuC. Because it's aligned to
1260 			 * a page, the lower 12bits are always at 0 and
1261 			 * dropped by GuC. They won't be part of the context
1262 			 * ID in the OA reports, so squash those lower bits.
1263 			 */
1264 			i915->perf.oa.specific_ctx_id =
1265 				lower_32_bits(ce->lrc_desc) >> 12;
1266 
1267 			/*
1268 			 * GuC uses the top bit to signal proxy submission, so
1269 			 * ignore that bit.
1270 			 */
1271 			i915->perf.oa.specific_ctx_id_mask =
1272 				(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1273 		} else {
1274 			i915->perf.oa.specific_ctx_id_mask =
1275 				(1U << GEN8_CTX_ID_WIDTH) - 1;
1276 			i915->perf.oa.specific_ctx_id =
1277 				upper_32_bits(ce->lrc_desc);
1278 			i915->perf.oa.specific_ctx_id &=
1279 				i915->perf.oa.specific_ctx_id_mask;
1280 		}
1281 		break;
1282 
1283 	case 11: {
1284 		i915->perf.oa.specific_ctx_id_mask =
1285 			((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32) |
1286 			((1U << GEN11_ENGINE_INSTANCE_WIDTH) - 1) << (GEN11_ENGINE_INSTANCE_SHIFT - 32) |
1287 			((1 << GEN11_ENGINE_CLASS_WIDTH) - 1) << (GEN11_ENGINE_CLASS_SHIFT - 32);
1288 		i915->perf.oa.specific_ctx_id = upper_32_bits(ce->lrc_desc);
1289 		i915->perf.oa.specific_ctx_id &=
1290 			i915->perf.oa.specific_ctx_id_mask;
1291 		break;
1292 	}
1293 
1294 	default:
1295 		MISSING_CASE(INTEL_GEN(i915));
1296 	}
1297 
1298 	DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1299 			 i915->perf.oa.specific_ctx_id,
1300 			 i915->perf.oa.specific_ctx_id_mask);
1301 
1302 	return 0;
1303 }
1304 
1305 /**
1306  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1307  * @stream: An i915-perf stream opened for OA metrics
1308  *
1309  * In case anything needed doing to ensure the context HW ID would remain valid
1310  * for the lifetime of the stream, then that can be undone here.
1311  */
1312 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1313 {
1314 	struct drm_i915_private *dev_priv = stream->dev_priv;
1315 	struct intel_context *ce;
1316 
1317 	dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1318 	dev_priv->perf.oa.specific_ctx_id_mask = 0;
1319 
1320 	ce = fetch_and_zero(&dev_priv->perf.oa.pinned_ctx);
1321 	if (ce) {
1322 		mutex_lock(&dev_priv->drm.struct_mutex);
1323 		intel_context_unpin(ce);
1324 		mutex_unlock(&dev_priv->drm.struct_mutex);
1325 	}
1326 }
1327 
1328 static void
1329 free_oa_buffer(struct drm_i915_private *i915)
1330 {
1331 	mutex_lock(&i915->drm.struct_mutex);
1332 
1333 	i915_vma_unpin_and_release(&i915->perf.oa.oa_buffer.vma,
1334 				   I915_VMA_RELEASE_MAP);
1335 
1336 	mutex_unlock(&i915->drm.struct_mutex);
1337 
1338 	i915->perf.oa.oa_buffer.vaddr = NULL;
1339 }
1340 
1341 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1342 {
1343 	struct drm_i915_private *dev_priv = stream->dev_priv;
1344 
1345 	BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
1346 
1347 	/*
1348 	 * Unset exclusive_stream first, it will be checked while disabling
1349 	 * the metric set on gen8+.
1350 	 */
1351 	mutex_lock(&dev_priv->drm.struct_mutex);
1352 	dev_priv->perf.oa.exclusive_stream = NULL;
1353 	dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
1354 	mutex_unlock(&dev_priv->drm.struct_mutex);
1355 
1356 	free_oa_buffer(dev_priv);
1357 
1358 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1359 	intel_runtime_pm_put(dev_priv);
1360 
1361 	if (stream->ctx)
1362 		oa_put_render_ctx_id(stream);
1363 
1364 	put_oa_config(dev_priv, stream->oa_config);
1365 
1366 	if (dev_priv->perf.oa.spurious_report_rs.missed) {
1367 		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1368 			 dev_priv->perf.oa.spurious_report_rs.missed);
1369 	}
1370 }
1371 
1372 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
1373 {
1374 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1375 	unsigned long flags;
1376 
1377 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1378 
1379 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1380 	 * before OASTATUS1, but after OASTATUS2
1381 	 */
1382 	I915_WRITE(GEN7_OASTATUS2,
1383 		   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); /* head */
1384 	dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1385 
1386 	I915_WRITE(GEN7_OABUFFER, gtt_offset);
1387 
1388 	I915_WRITE(GEN7_OASTATUS1, gtt_offset |
1389 		   ((dev_priv->perf.oa.oa_buffer.size_exponent - 17) <<
1390 		    GEN7_OASTATUS1_BUFFER_SIZE_SHIFT)); /* tail */
1391 
1392 	/* Mark that we need updated tail pointers to read from... */
1393 	dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1394 	dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1395 
1396 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1397 
1398 	/* On Haswell we have to track which OASTATUS1 flags we've
1399 	 * already seen since they can't be cleared while periodic
1400 	 * sampling is enabled.
1401 	 */
1402 	dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
1403 
1404 	/* NB: although the OA buffer will initially be allocated
1405 	 * zeroed via shmfs (and so this memset is redundant when
1406 	 * first allocating), we may re-init the OA buffer, either
1407 	 * when re-enabling a stream or in error/reset paths.
1408 	 *
1409 	 * The reason we clear the buffer for each re-init is for the
1410 	 * sanity check in gen7_append_oa_reports() that looks at the
1411 	 * report-id field to make sure it's non-zero which relies on
1412 	 * the assumption that new reports are being written to zeroed
1413 	 * memory...
1414 	 */
1415 	memset(dev_priv->perf.oa.oa_buffer.vaddr, 0,
1416 	       dev_priv->perf.oa.oa_buffer.vma->size);
1417 
1418 	/* Maybe make ->pollin per-stream state if we support multiple
1419 	 * concurrent streams in the future.
1420 	 */
1421 	dev_priv->perf.oa.pollin = false;
1422 }
1423 
1424 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
1425 {
1426 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1427 	unsigned long flags;
1428 
1429 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1430 
1431 	I915_WRITE(GEN8_OASTATUS, 0);
1432 	I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1433 	dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1434 
1435 	I915_WRITE(GEN8_OABUFFER_UDW, 0);
1436 
1437 	/*
1438 	 * PRM says:
1439 	 *
1440 	 *  "This MMIO must be set before the OATAILPTR
1441 	 *  register and after the OAHEADPTR register. This is
1442 	 *  to enable proper functionality of the overflow
1443 	 *  bit."
1444 	 */
1445 	I915_WRITE(GEN8_OABUFFER, gtt_offset |
1446 		   ((dev_priv->perf.oa.oa_buffer.size_exponent - 17) <<
1447 		    GEN8_OABUFFER_BUFFER_SIZE_SHIFT) |
1448 		   GEN8_OABUFFER_MEM_SELECT_GGTT);
1449 	I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1450 
1451 	/* Mark that we need updated tail pointers to read from... */
1452 	dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1453 	dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1454 
1455 	/*
1456 	 * Reset state used to recognise context switches, affecting which
1457 	 * reports we will forward to userspace while filtering for a single
1458 	 * context.
1459 	 */
1460 	dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;
1461 
1462 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1463 
1464 	/*
1465 	 * NB: although the OA buffer will initially be allocated
1466 	 * zeroed via shmfs (and so this memset is redundant when
1467 	 * first allocating), we may re-init the OA buffer, either
1468 	 * when re-enabling a stream or in error/reset paths.
1469 	 *
1470 	 * The reason we clear the buffer for each re-init is for the
1471 	 * sanity check in gen8_append_oa_reports() that looks at the
1472 	 * reason field to make sure it's non-zero which relies on
1473 	 * the assumption that new reports are being written to zeroed
1474 	 * memory...
1475 	 */
1476 	memset(dev_priv->perf.oa.oa_buffer.vaddr, 0,
1477 	       dev_priv->perf.oa.oa_buffer.vma->size);
1478 
1479 	/*
1480 	 * Maybe make ->pollin per-stream state if we support multiple
1481 	 * concurrent streams in the future.
1482 	 */
1483 	dev_priv->perf.oa.pollin = false;
1484 }
1485 
1486 static int alloc_oa_buffer(struct drm_i915_private *dev_priv, int size_exponent)
1487 {
1488 	struct drm_i915_gem_object *bo;
1489 	struct i915_vma *vma;
1490 	size_t size = 1U << size_exponent;
1491 	int ret;
1492 
1493 	if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
1494 		return -ENODEV;
1495 
1496 	if (WARN_ON(size < SZ_128K || size > SZ_16M))
1497 		return -EINVAL;
1498 
1499 	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1500 	if (ret)
1501 		return ret;
1502 
1503 	bo = i915_gem_object_create(dev_priv, size);
1504 	if (IS_ERR(bo)) {
1505 		DRM_ERROR("Failed to allocate OA buffer\n");
1506 		ret = PTR_ERR(bo);
1507 		goto unlock;
1508 	}
1509 
1510 	ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
1511 	if (ret)
1512 		goto err_unref;
1513 
1514 	/* PreHSW required 512K alignment, HSW requires 16M */
1515 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1516 	if (IS_ERR(vma)) {
1517 		ret = PTR_ERR(vma);
1518 		goto err_unref;
1519 	}
1520 	dev_priv->perf.oa.oa_buffer.vma = vma;
1521 	dev_priv->perf.oa.oa_buffer.size_exponent = size_exponent;
1522 
1523 	dev_priv->perf.oa.oa_buffer.vaddr =
1524 		i915_gem_object_pin_map(bo, I915_MAP_WB);
1525 	if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
1526 		ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
1527 		goto err_unpin;
1528 	}
1529 
1530 	DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p, size = %llu\n",
1531 			 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
1532 			 dev_priv->perf.oa.oa_buffer.vaddr,
1533 			 dev_priv->perf.oa.oa_buffer.vma->size);
1534 
1535 	goto unlock;
1536 
1537 err_unpin:
1538 	__i915_vma_unpin(vma);
1539 
1540 err_unref:
1541 	i915_gem_object_put(bo);
1542 
1543 	dev_priv->perf.oa.oa_buffer.vaddr = NULL;
1544 	dev_priv->perf.oa.oa_buffer.vma = NULL;
1545 
1546 unlock:
1547 	mutex_unlock(&dev_priv->drm.struct_mutex);
1548 	return ret;
1549 }
1550 
1551 static void config_oa_regs(struct drm_i915_private *dev_priv,
1552 			   const struct i915_oa_reg *regs,
1553 			   u32 n_regs)
1554 {
1555 	u32 i;
1556 
1557 	for (i = 0; i < n_regs; i++) {
1558 		const struct i915_oa_reg *reg = regs + i;
1559 
1560 		I915_WRITE(reg->addr, reg->value);
1561 	}
1562 }
1563 
1564 static int hsw_enable_metric_set(struct i915_perf_stream *stream)
1565 {
1566 	struct drm_i915_private *dev_priv = stream->dev_priv;
1567 	const struct i915_oa_config *oa_config = stream->oa_config;
1568 
1569 	/* PRM:
1570 	 *
1571 	 * OA unit is using “crclk” for its functionality. When trunk
1572 	 * level clock gating takes place, OA clock would be gated,
1573 	 * unable to count the events from non-render clock domain.
1574 	 * Render clock gating must be disabled when OA is enabled to
1575 	 * count the events from non-render domain. Unit level clock
1576 	 * gating for RCS should also be disabled.
1577 	 */
1578 	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1579 				    ~GEN7_DOP_CLOCK_GATE_ENABLE));
1580 	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1581 				  GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1582 
1583 	config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1584 
1585 	/* It apparently takes a fairly long time for a new MUX
1586 	 * configuration to be be applied after these register writes.
1587 	 * This delay duration was derived empirically based on the
1588 	 * render_basic config but hopefully it covers the maximum
1589 	 * configuration latency.
1590 	 *
1591 	 * As a fallback, the checks in _append_oa_reports() to skip
1592 	 * invalid OA reports do also seem to work to discard reports
1593 	 * generated before this config has completed - albeit not
1594 	 * silently.
1595 	 *
1596 	 * Unfortunately this is essentially a magic number, since we
1597 	 * don't currently know of a reliable mechanism for predicting
1598 	 * how long the MUX config will take to apply and besides
1599 	 * seeing invalid reports we don't know of a reliable way to
1600 	 * explicitly check that the MUX config has landed.
1601 	 *
1602 	 * It's even possible we've miss characterized the underlying
1603 	 * problem - it just seems like the simplest explanation why
1604 	 * a delay at this location would mitigate any invalid reports.
1605 	 */
1606 	usleep_range(15000, 20000);
1607 
1608 	config_oa_regs(dev_priv, oa_config->b_counter_regs,
1609 		       oa_config->b_counter_regs_len);
1610 
1611 	return 0;
1612 }
1613 
1614 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1615 {
1616 	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1617 				  ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1618 	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1619 				    GEN7_DOP_CLOCK_GATE_ENABLE));
1620 
1621 	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1622 				      ~GT_NOA_ENABLE));
1623 }
1624 
1625 /*
1626  * NB: It must always remain pointer safe to run this even if the OA unit
1627  * has been disabled.
1628  *
1629  * It's fine to put out-of-date values into these per-context registers
1630  * in the case that the OA unit has been disabled.
1631  */
1632 static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx,
1633 					   u32 *reg_state,
1634 					   const struct i915_oa_config *oa_config)
1635 {
1636 	struct drm_i915_private *dev_priv = ctx->i915;
1637 	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
1638 	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
1639 	/* The MMIO offsets for Flex EU registers aren't contiguous */
1640 	i915_reg_t flex_regs[] = {
1641 		EU_PERF_CNTL0,
1642 		EU_PERF_CNTL1,
1643 		EU_PERF_CNTL2,
1644 		EU_PERF_CNTL3,
1645 		EU_PERF_CNTL4,
1646 		EU_PERF_CNTL5,
1647 		EU_PERF_CNTL6,
1648 	};
1649 	int i;
1650 
1651 	CTX_REG(reg_state, ctx_oactxctrl, GEN8_OACTXCONTROL,
1652 		(dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1653 		(dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1654 		GEN8_OA_COUNTER_RESUME);
1655 
1656 	for (i = 0; i < ARRAY_SIZE(flex_regs); i++) {
1657 		u32 state_offset = ctx_flexeu0 + i * 2;
1658 		u32 mmio = i915_mmio_reg_offset(flex_regs[i]);
1659 
1660 		/*
1661 		 * This arbitrary default will select the 'EU FPU0 Pipeline
1662 		 * Active' event. In the future it's anticipated that there
1663 		 * will be an explicit 'No Event' we can select, but not yet...
1664 		 */
1665 		u32 value = 0;
1666 
1667 		if (oa_config) {
1668 			u32 j;
1669 
1670 			for (j = 0; j < oa_config->flex_regs_len; j++) {
1671 				if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1672 					value = oa_config->flex_regs[j].value;
1673 					break;
1674 				}
1675 			}
1676 		}
1677 
1678 		CTX_REG(reg_state, state_offset, flex_regs[i], value);
1679 	}
1680 }
1681 
1682 /*
1683  * Manages updating the per-context aspects of the OA stream
1684  * configuration across all contexts.
1685  *
1686  * The awkward consideration here is that OACTXCONTROL controls the
1687  * exponent for periodic sampling which is primarily used for system
1688  * wide profiling where we'd like a consistent sampling period even in
1689  * the face of context switches.
1690  *
1691  * Our approach of updating the register state context (as opposed to
1692  * say using a workaround batch buffer) ensures that the hardware
1693  * won't automatically reload an out-of-date timer exponent even
1694  * transiently before a WA BB could be parsed.
1695  *
1696  * This function needs to:
1697  * - Ensure the currently running context's per-context OA state is
1698  *   updated
1699  * - Ensure that all existing contexts will have the correct per-context
1700  *   OA state if they are scheduled for use.
1701  * - Ensure any new contexts will be initialized with the correct
1702  *   per-context OA state.
1703  *
1704  * Note: it's only the RCS/Render context that has any OA state.
1705  */
1706 static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
1707 				       const struct i915_oa_config *oa_config)
1708 {
1709 	struct intel_engine_cs *engine = dev_priv->engine[RCS];
1710 	unsigned int map_type = i915_coherent_map_type(dev_priv);
1711 	struct i915_gem_context *ctx;
1712 	struct i915_request *rq;
1713 	int ret;
1714 
1715 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
1716 
1717 	/*
1718 	 * The OA register config is setup through the context image. This image
1719 	 * might be written to by the GPU on context switch (in particular on
1720 	 * lite-restore). This means we can't safely update a context's image,
1721 	 * if this context is scheduled/submitted to run on the GPU.
1722 	 *
1723 	 * We could emit the OA register config through the batch buffer but
1724 	 * this might leave small interval of time where the OA unit is
1725 	 * configured at an invalid sampling period.
1726 	 *
1727 	 * So far the best way to work around this issue seems to be draining
1728 	 * the GPU from any submitted work.
1729 	 */
1730 	ret = i915_gem_wait_for_idle(dev_priv,
1731 				     I915_WAIT_LOCKED,
1732 				     MAX_SCHEDULE_TIMEOUT);
1733 	if (ret)
1734 		return ret;
1735 
1736 	/* Update all contexts now that we've stalled the submission. */
1737 	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1738 		struct intel_context *ce = to_intel_context(ctx, engine);
1739 		u32 *regs;
1740 
1741 		/* OA settings will be set upon first use */
1742 		if (!ce->state)
1743 			continue;
1744 
1745 		regs = i915_gem_object_pin_map(ce->state->obj, map_type);
1746 		if (IS_ERR(regs))
1747 			return PTR_ERR(regs);
1748 
1749 		ce->state->obj->mm.dirty = true;
1750 		regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);
1751 
1752 		gen8_update_reg_state_unlocked(ctx, regs, oa_config);
1753 
1754 		i915_gem_object_unpin_map(ce->state->obj);
1755 	}
1756 
1757 	/*
1758 	 * Apply the configuration by doing one context restore of the edited
1759 	 * context image.
1760 	 */
1761 	rq = i915_request_alloc(engine, dev_priv->kernel_context);
1762 	if (IS_ERR(rq))
1763 		return PTR_ERR(rq);
1764 
1765 	i915_request_add(rq);
1766 
1767 	return 0;
1768 }
1769 
1770 static int gen8_enable_metric_set(struct i915_perf_stream *stream)
1771 {
1772 	struct drm_i915_private *dev_priv = stream->dev_priv;
1773 	const struct i915_oa_config *oa_config = stream->oa_config;
1774 	int ret;
1775 
1776 	/*
1777 	 * We disable slice/unslice clock ratio change reports on SKL since
1778 	 * they are too noisy. The HW generates a lot of redundant reports
1779 	 * where the ratio hasn't really changed causing a lot of redundant
1780 	 * work to processes and increasing the chances we'll hit buffer
1781 	 * overruns.
1782 	 *
1783 	 * Although we don't currently use the 'disable overrun' OABUFFER
1784 	 * feature it's worth noting that clock ratio reports have to be
1785 	 * disabled before considering to use that feature since the HW doesn't
1786 	 * correctly block these reports.
1787 	 *
1788 	 * Currently none of the high-level metrics we have depend on knowing
1789 	 * this ratio to normalize.
1790 	 *
1791 	 * Note: This register is not power context saved and restored, but
1792 	 * that's OK considering that we disable RC6 while the OA unit is
1793 	 * enabled.
1794 	 *
1795 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1796 	 * be read back from automatically triggered reports, as part of the
1797 	 * RPT_ID field.
1798 	 */
1799 	if (IS_GEN(dev_priv, 9, 11)) {
1800 		I915_WRITE(GEN8_OA_DEBUG,
1801 			   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1802 					      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1803 	}
1804 
1805 	/*
1806 	 * Update all contexts prior writing the mux configurations as we need
1807 	 * to make sure all slices/subslices are ON before writing to NOA
1808 	 * registers.
1809 	 */
1810 	ret = gen8_configure_all_contexts(dev_priv, oa_config);
1811 	if (ret)
1812 		return ret;
1813 
1814 	config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1815 
1816 	config_oa_regs(dev_priv, oa_config->b_counter_regs,
1817 		       oa_config->b_counter_regs_len);
1818 
1819 	return 0;
1820 }
1821 
1822 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
1823 {
1824 	/* Reset all contexts' slices/subslices configurations. */
1825 	gen8_configure_all_contexts(dev_priv, NULL);
1826 
1827 	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1828 				      ~GT_NOA_ENABLE));
1829 }
1830 
1831 static void gen10_disable_metric_set(struct drm_i915_private *dev_priv)
1832 {
1833 	/* Reset all contexts' slices/subslices configurations. */
1834 	gen8_configure_all_contexts(dev_priv, NULL);
1835 
1836 	/* Make sure we disable noa to save power. */
1837 	I915_WRITE(RPM_CONFIG1,
1838 		   I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE);
1839 }
1840 
1841 static void gen7_oa_enable(struct i915_perf_stream *stream)
1842 {
1843 	struct drm_i915_private *dev_priv = stream->dev_priv;
1844 	struct i915_gem_context *ctx = stream->ctx;
1845 	u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1846 	bool periodic = dev_priv->perf.oa.periodic;
1847 	u32 period_exponent = dev_priv->perf.oa.period_exponent;
1848 	u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1849 
1850 	/*
1851 	 * Reset buf pointers so we don't forward reports from before now.
1852 	 *
1853 	 * Think carefully if considering trying to avoid this, since it
1854 	 * also ensures status flags and the buffer itself are cleared
1855 	 * in error paths, and we have checks for invalid reports based
1856 	 * on the assumption that certain fields are written to zeroed
1857 	 * memory which this helps maintains.
1858 	 */
1859 	gen7_init_oa_buffer(dev_priv);
1860 
1861 	I915_WRITE(GEN7_OACONTROL,
1862 		   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1863 		   (period_exponent <<
1864 		    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1865 		   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1866 		   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1867 		   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1868 		   GEN7_OACONTROL_ENABLE);
1869 }
1870 
1871 static void gen8_oa_enable(struct i915_perf_stream *stream)
1872 {
1873 	struct drm_i915_private *dev_priv = stream->dev_priv;
1874 	u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1875 
1876 	/*
1877 	 * Reset buf pointers so we don't forward reports from before now.
1878 	 *
1879 	 * Think carefully if considering trying to avoid this, since it
1880 	 * also ensures status flags and the buffer itself are cleared
1881 	 * in error paths, and we have checks for invalid reports based
1882 	 * on the assumption that certain fields are written to zeroed
1883 	 * memory which this helps maintains.
1884 	 */
1885 	gen8_init_oa_buffer(dev_priv);
1886 
1887 	/*
1888 	 * Note: we don't rely on the hardware to perform single context
1889 	 * filtering and instead filter on the cpu based on the context-id
1890 	 * field of reports
1891 	 */
1892 	I915_WRITE(GEN8_OACONTROL, (report_format <<
1893 				    GEN8_OA_REPORT_FORMAT_SHIFT) |
1894 				   GEN8_OA_COUNTER_ENABLE);
1895 }
1896 
1897 /**
1898  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1899  * @stream: An i915 perf stream opened for OA metrics
1900  *
1901  * [Re]enables hardware periodic sampling according to the period configured
1902  * when opening the stream. This also starts a hrtimer that will periodically
1903  * check for data in the circular OA buffer for notifying userspace (e.g.
1904  * during a read() or poll()).
1905  */
1906 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
1907 {
1908 	struct drm_i915_private *dev_priv = stream->dev_priv;
1909 
1910 	dev_priv->perf.oa.ops.oa_enable(stream);
1911 
1912 	if (dev_priv->perf.oa.periodic)
1913 		hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
1914 			      ns_to_ktime(POLL_PERIOD),
1915 			      HRTIMER_MODE_REL_PINNED);
1916 }
1917 
1918 static void gen7_oa_disable(struct i915_perf_stream *stream)
1919 {
1920 	struct drm_i915_private *dev_priv = stream->dev_priv;
1921 
1922 	I915_WRITE(GEN7_OACONTROL, 0);
1923 	if (intel_wait_for_register(dev_priv,
1924 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
1925 				    50))
1926 		DRM_ERROR("wait for OA to be disabled timed out\n");
1927 }
1928 
1929 static void gen8_oa_disable(struct i915_perf_stream *stream)
1930 {
1931 	struct drm_i915_private *dev_priv = stream->dev_priv;
1932 
1933 	I915_WRITE(GEN8_OACONTROL, 0);
1934 	if (intel_wait_for_register(dev_priv,
1935 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
1936 				    50))
1937 		DRM_ERROR("wait for OA to be disabled timed out\n");
1938 }
1939 
1940 /**
1941  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1942  * @stream: An i915 perf stream opened for OA metrics
1943  *
1944  * Stops the OA unit from periodically writing counter reports into the
1945  * circular OA buffer. This also stops the hrtimer that periodically checks for
1946  * data in the circular OA buffer, for notifying userspace.
1947  */
1948 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
1949 {
1950 	struct drm_i915_private *dev_priv = stream->dev_priv;
1951 
1952 	dev_priv->perf.oa.ops.oa_disable(stream);
1953 
1954 	if (dev_priv->perf.oa.periodic)
1955 		hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
1956 }
1957 
1958 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
1959 	.destroy = i915_oa_stream_destroy,
1960 	.enable = i915_oa_stream_enable,
1961 	.disable = i915_oa_stream_disable,
1962 	.wait_unlocked = i915_oa_wait_unlocked,
1963 	.poll_wait = i915_oa_poll_wait,
1964 	.read = i915_oa_read,
1965 };
1966 
1967 /**
1968  * i915_oa_stream_init - validate combined props for OA stream and init
1969  * @stream: An i915 perf stream
1970  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
1971  * @props: The property state that configures stream (individually validated)
1972  *
1973  * While read_properties_unlocked() validates properties in isolation it
1974  * doesn't ensure that the combination necessarily makes sense.
1975  *
1976  * At this point it has been determined that userspace wants a stream of
1977  * OA metrics, but still we need to further validate the combined
1978  * properties are OK.
1979  *
1980  * If the configuration makes sense then we can allocate memory for
1981  * a circular OA buffer and apply the requested metric set configuration.
1982  *
1983  * Returns: zero on success or a negative error code.
1984  */
1985 static int i915_oa_stream_init(struct i915_perf_stream *stream,
1986 			       struct drm_i915_perf_open_param *param,
1987 			       struct perf_open_properties *props)
1988 {
1989 	struct drm_i915_private *dev_priv = stream->dev_priv;
1990 	int format_size;
1991 	int ret;
1992 
1993 	/* If the sysfs metrics/ directory wasn't registered for some
1994 	 * reason then don't let userspace try their luck with config
1995 	 * IDs
1996 	 */
1997 	if (!dev_priv->perf.metrics_kobj) {
1998 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
1999 		return -EINVAL;
2000 	}
2001 
2002 	if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2003 		DRM_DEBUG("Only OA report sampling supported\n");
2004 		return -EINVAL;
2005 	}
2006 
2007 	if (!dev_priv->perf.oa.ops.enable_metric_set) {
2008 		DRM_DEBUG("OA unit not supported\n");
2009 		return -ENODEV;
2010 	}
2011 
2012 	/* To avoid the complexity of having to accurately filter
2013 	 * counter reports and marshal to the appropriate client
2014 	 * we currently only allow exclusive access
2015 	 */
2016 	if (dev_priv->perf.oa.exclusive_stream) {
2017 		DRM_DEBUG("OA unit already in use\n");
2018 		return -EBUSY;
2019 	}
2020 
2021 	if (!props->oa_format) {
2022 		DRM_DEBUG("OA report format not specified\n");
2023 		return -EINVAL;
2024 	}
2025 
2026 	/* We set up some ratelimit state to potentially throttle any _NOTES
2027 	 * about spurious, invalid OA reports which we don't forward to
2028 	 * userspace.
2029 	 *
2030 	 * The initialization is associated with opening the stream (not driver
2031 	 * init) considering we print a _NOTE about any throttling when closing
2032 	 * the stream instead of waiting until driver _fini which no one would
2033 	 * ever see.
2034 	 *
2035 	 * Using the same limiting factors as printk_ratelimit()
2036 	 */
2037 	ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
2038 			     5 * HZ, 10);
2039 	/* Since we use a DRM_NOTE for spurious reports it would be
2040 	 * inconsistent to let __ratelimit() automatically print a warning for
2041 	 * throttling.
2042 	 */
2043 	ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
2044 			    RATELIMIT_MSG_ON_RELEASE);
2045 
2046 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2047 
2048 	format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
2049 
2050 	stream->sample_flags |= SAMPLE_OA_REPORT;
2051 	stream->sample_size += format_size;
2052 
2053 	dev_priv->perf.oa.oa_buffer.format_size = format_size;
2054 	if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
2055 		return -EINVAL;
2056 
2057 	dev_priv->perf.oa.oa_buffer.format =
2058 		dev_priv->perf.oa.oa_formats[props->oa_format].format;
2059 
2060 	dev_priv->perf.oa.periodic = props->oa_periodic;
2061 	if (dev_priv->perf.oa.periodic)
2062 		dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
2063 
2064 	if (stream->ctx) {
2065 		ret = oa_get_render_ctx_id(stream);
2066 		if (ret) {
2067 			DRM_DEBUG("Invalid context id to filter with\n");
2068 			return ret;
2069 		}
2070 	}
2071 
2072 	ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2073 	if (ret) {
2074 		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2075 		goto err_config;
2076 	}
2077 
2078 	/* PRM - observability performance counters:
2079 	 *
2080 	 *   OACONTROL, performance counter enable, note:
2081 	 *
2082 	 *   "When this bit is set, in order to have coherent counts,
2083 	 *   RC6 power state and trunk clock gating must be disabled.
2084 	 *   This can be achieved by programming MMIO registers as
2085 	 *   0xA094=0 and 0xA090[31]=1"
2086 	 *
2087 	 *   In our case we are expecting that taking pm + FORCEWAKE
2088 	 *   references will effectively disable RC6.
2089 	 */
2090 	intel_runtime_pm_get(dev_priv);
2091 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2092 
2093 	ret = alloc_oa_buffer(dev_priv, props->oa_buffer_size_exponent);
2094 	if (ret)
2095 		goto err_oa_buf_alloc;
2096 
2097 	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2098 	if (ret)
2099 		goto err_lock;
2100 
2101 	ret = dev_priv->perf.oa.ops.enable_metric_set(stream);
2102 	if (ret) {
2103 		DRM_DEBUG("Unable to enable metric set\n");
2104 		goto err_enable;
2105 	}
2106 
2107 	stream->ops = &i915_oa_stream_ops;
2108 
2109 	dev_priv->perf.oa.exclusive_stream = stream;
2110 
2111 	mutex_unlock(&dev_priv->drm.struct_mutex);
2112 
2113 	return 0;
2114 
2115 err_enable:
2116 	dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
2117 	mutex_unlock(&dev_priv->drm.struct_mutex);
2118 
2119 err_lock:
2120 	free_oa_buffer(dev_priv);
2121 
2122 err_oa_buf_alloc:
2123 	put_oa_config(dev_priv, stream->oa_config);
2124 
2125 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2126 	intel_runtime_pm_put(dev_priv);
2127 
2128 err_config:
2129 	if (stream->ctx)
2130 		oa_put_render_ctx_id(stream);
2131 
2132 	return ret;
2133 }
2134 
2135 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2136 			    struct i915_gem_context *ctx,
2137 			    u32 *reg_state)
2138 {
2139 	struct i915_perf_stream *stream;
2140 
2141 	if (engine->id != RCS)
2142 		return;
2143 
2144 	stream = engine->i915->perf.oa.exclusive_stream;
2145 	if (stream)
2146 		gen8_update_reg_state_unlocked(ctx, reg_state, stream->oa_config);
2147 }
2148 
2149 /**
2150  * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2151  * @stream: An i915 perf stream
2152  * @file: An i915 perf stream file
2153  * @buf: destination buffer given by userspace
2154  * @count: the number of bytes userspace wants to read
2155  * @ppos: (inout) file seek position (unused)
2156  *
2157  * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2158  * ensure that if we've successfully copied any data then reporting that takes
2159  * precedence over any internal error status, so the data isn't lost.
2160  *
2161  * For example ret will be -ENOSPC whenever there is more buffered data than
2162  * can be copied to userspace, but that's only interesting if we weren't able
2163  * to copy some data because it implies the userspace buffer is too small to
2164  * receive a single record (and we never split records).
2165  *
2166  * Another case with ret == -EFAULT is more of a grey area since it would seem
2167  * like bad form for userspace to ask us to overrun its buffer, but the user
2168  * knows best:
2169  *
2170  *   http://yarchive.net/comp/linux/partial_reads_writes.html
2171  *
2172  * Returns: The number of bytes copied or a negative error code on failure.
2173  */
2174 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2175 				     struct file *file,
2176 				     char __user *buf,
2177 				     size_t count,
2178 				     loff_t *ppos)
2179 {
2180 	/* Note we keep the offset (aka bytes read) separate from any
2181 	 * error status so that the final check for whether we return
2182 	 * the bytes read with a higher precedence than any error (see
2183 	 * comment below) doesn't need to be handled/duplicated in
2184 	 * stream->ops->read() implementations.
2185 	 */
2186 	size_t offset = 0;
2187 	int ret = stream->ops->read(stream, buf, count, &offset);
2188 
2189 	return offset ?: (ret ?: -EAGAIN);
2190 }
2191 
2192 /**
2193  * i915_perf_read - handles read() FOP for i915 perf stream FDs
2194  * @file: An i915 perf stream file
2195  * @buf: destination buffer given by userspace
2196  * @count: the number of bytes userspace wants to read
2197  * @ppos: (inout) file seek position (unused)
2198  *
2199  * The entry point for handling a read() on a stream file descriptor from
2200  * userspace. Most of the work is left to the i915_perf_read_locked() and
2201  * &i915_perf_stream_ops->read but to save having stream implementations (of
2202  * which we might have multiple later) we handle blocking read here.
2203  *
2204  * We can also consistently treat trying to read from a disabled stream
2205  * as an IO error so implementations can assume the stream is enabled
2206  * while reading.
2207  *
2208  * Returns: The number of bytes copied or a negative error code on failure.
2209  */
2210 static ssize_t i915_perf_read(struct file *file,
2211 			      char __user *buf,
2212 			      size_t count,
2213 			      loff_t *ppos)
2214 {
2215 	struct i915_perf_stream *stream = file->private_data;
2216 	struct drm_i915_private *dev_priv = stream->dev_priv;
2217 	ssize_t ret;
2218 
2219 	/* To ensure it's handled consistently we simply treat all reads of a
2220 	 * disabled stream as an error. In particular it might otherwise lead
2221 	 * to a deadlock for blocking file descriptors...
2222 	 */
2223 	if (!stream->enabled)
2224 		return -EIO;
2225 
2226 	if (!(file->f_flags & O_NONBLOCK)) {
2227 		/* There's the small chance of false positives from
2228 		 * stream->ops->wait_unlocked.
2229 		 *
2230 		 * E.g. with single context filtering since we only wait until
2231 		 * oabuffer has >= 1 report we don't immediately know whether
2232 		 * any reports really belong to the current context
2233 		 */
2234 		do {
2235 			ret = stream->ops->wait_unlocked(stream);
2236 			if (ret)
2237 				return ret;
2238 
2239 			mutex_lock(&dev_priv->perf.lock);
2240 			ret = i915_perf_read_locked(stream, file,
2241 						    buf, count, ppos);
2242 			mutex_unlock(&dev_priv->perf.lock);
2243 		} while (ret == -EAGAIN);
2244 	} else {
2245 		mutex_lock(&dev_priv->perf.lock);
2246 		ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2247 		mutex_unlock(&dev_priv->perf.lock);
2248 	}
2249 
2250 	/* We allow the poll checking to sometimes report false positive EPOLLIN
2251 	 * events where we might actually report EAGAIN on read() if there's
2252 	 * not really any data available. In this situation though we don't
2253 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
2254 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2255 	 * effectively ensures we back off until the next hrtimer callback
2256 	 * before reporting another EPOLLIN event.
2257 	 */
2258 	if (ret >= 0 || ret == -EAGAIN) {
2259 		/* Maybe make ->pollin per-stream state if we support multiple
2260 		 * concurrent streams in the future.
2261 		 */
2262 		dev_priv->perf.oa.pollin = false;
2263 	}
2264 
2265 	return ret;
2266 }
2267 
2268 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2269 {
2270 	struct drm_i915_private *dev_priv =
2271 		container_of(hrtimer, typeof(*dev_priv),
2272 			     perf.oa.poll_check_timer);
2273 
2274 	if (oa_buffer_check_unlocked(dev_priv)) {
2275 		dev_priv->perf.oa.pollin = true;
2276 		wake_up(&dev_priv->perf.oa.poll_wq);
2277 	}
2278 
2279 	hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2280 
2281 	return HRTIMER_RESTART;
2282 }
2283 
2284 /**
2285  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2286  * @dev_priv: i915 device instance
2287  * @stream: An i915 perf stream
2288  * @file: An i915 perf stream file
2289  * @wait: poll() state table
2290  *
2291  * For handling userspace polling on an i915 perf stream, this calls through to
2292  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2293  * will be woken for new stream data.
2294  *
2295  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2296  * with any non-file-operation driver hooks.
2297  *
2298  * Returns: any poll events that are ready without sleeping
2299  */
2300 static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2301 					  struct i915_perf_stream *stream,
2302 					  struct file *file,
2303 					  poll_table *wait)
2304 {
2305 	__poll_t events = 0;
2306 
2307 	stream->ops->poll_wait(stream, file, wait);
2308 
2309 	/* Note: we don't explicitly check whether there's something to read
2310 	 * here since this path may be very hot depending on what else
2311 	 * userspace is polling, or on the timeout in use. We rely solely on
2312 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2313 	 * samples to read.
2314 	 */
2315 	if (dev_priv->perf.oa.pollin)
2316 		events |= EPOLLIN;
2317 
2318 	return events;
2319 }
2320 
2321 /**
2322  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2323  * @file: An i915 perf stream file
2324  * @wait: poll() state table
2325  *
2326  * For handling userspace polling on an i915 perf stream, this ensures
2327  * poll_wait() gets called with a wait queue that will be woken for new stream
2328  * data.
2329  *
2330  * Note: Implementation deferred to i915_perf_poll_locked()
2331  *
2332  * Returns: any poll events that are ready without sleeping
2333  */
2334 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
2335 {
2336 	struct i915_perf_stream *stream = file->private_data;
2337 	struct drm_i915_private *dev_priv = stream->dev_priv;
2338 	__poll_t ret;
2339 
2340 	mutex_lock(&dev_priv->perf.lock);
2341 	ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2342 	mutex_unlock(&dev_priv->perf.lock);
2343 
2344 	return ret;
2345 }
2346 
2347 /**
2348  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2349  * @stream: A disabled i915 perf stream
2350  *
2351  * [Re]enables the associated capture of data for this stream.
2352  *
2353  * If a stream was previously enabled then there's currently no intention
2354  * to provide userspace any guarantee about the preservation of previously
2355  * buffered data.
2356  */
2357 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2358 {
2359 	if (stream->enabled)
2360 		return;
2361 
2362 	/* Allow stream->ops->enable() to refer to this */
2363 	stream->enabled = true;
2364 
2365 	if (stream->ops->enable)
2366 		stream->ops->enable(stream);
2367 }
2368 
2369 /**
2370  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2371  * @stream: An enabled i915 perf stream
2372  *
2373  * Disables the associated capture of data for this stream.
2374  *
2375  * The intention is that disabling an re-enabling a stream will ideally be
2376  * cheaper than destroying and re-opening a stream with the same configuration,
2377  * though there are no formal guarantees about what state or buffered data
2378  * must be retained between disabling and re-enabling a stream.
2379  *
2380  * Note: while a stream is disabled it's considered an error for userspace
2381  * to attempt to read from the stream (-EIO).
2382  */
2383 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2384 {
2385 	if (!stream->enabled)
2386 		return;
2387 
2388 	/* Allow stream->ops->disable() to refer to this */
2389 	stream->enabled = false;
2390 
2391 	if (stream->ops->disable)
2392 		stream->ops->disable(stream);
2393 }
2394 
2395 /**
2396  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2397  * @stream: An i915 perf stream
2398  * @cmd: the ioctl request
2399  * @arg: the ioctl data
2400  *
2401  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2402  * with any non-file-operation driver hooks.
2403  *
2404  * Returns: zero on success or a negative error code. Returns -EINVAL for
2405  * an unknown ioctl request.
2406  */
2407 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2408 				   unsigned int cmd,
2409 				   unsigned long arg)
2410 {
2411 	switch (cmd) {
2412 	case I915_PERF_IOCTL_ENABLE:
2413 		i915_perf_enable_locked(stream);
2414 		return 0;
2415 	case I915_PERF_IOCTL_DISABLE:
2416 		i915_perf_disable_locked(stream);
2417 		return 0;
2418 	}
2419 
2420 	return -EINVAL;
2421 }
2422 
2423 /**
2424  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2425  * @file: An i915 perf stream file
2426  * @cmd: the ioctl request
2427  * @arg: the ioctl data
2428  *
2429  * Implementation deferred to i915_perf_ioctl_locked().
2430  *
2431  * Returns: zero on success or a negative error code. Returns -EINVAL for
2432  * an unknown ioctl request.
2433  */
2434 static long i915_perf_ioctl(struct file *file,
2435 			    unsigned int cmd,
2436 			    unsigned long arg)
2437 {
2438 	struct i915_perf_stream *stream = file->private_data;
2439 	struct drm_i915_private *dev_priv = stream->dev_priv;
2440 	long ret;
2441 
2442 	mutex_lock(&dev_priv->perf.lock);
2443 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
2444 	mutex_unlock(&dev_priv->perf.lock);
2445 
2446 	return ret;
2447 }
2448 
2449 /**
2450  * i915_perf_destroy_locked - destroy an i915 perf stream
2451  * @stream: An i915 perf stream
2452  *
2453  * Frees all resources associated with the given i915 perf @stream, disabling
2454  * any associated data capture in the process.
2455  *
2456  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2457  * with any non-file-operation driver hooks.
2458  */
2459 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2460 {
2461 	if (stream->enabled)
2462 		i915_perf_disable_locked(stream);
2463 
2464 	if (stream->ops->destroy)
2465 		stream->ops->destroy(stream);
2466 
2467 	list_del(&stream->link);
2468 
2469 	if (stream->ctx)
2470 		i915_gem_context_put(stream->ctx);
2471 
2472 	kfree(stream);
2473 }
2474 
2475 /**
2476  * i915_perf_release - handles userspace close() of a stream file
2477  * @inode: anonymous inode associated with file
2478  * @file: An i915 perf stream file
2479  *
2480  * Cleans up any resources associated with an open i915 perf stream file.
2481  *
2482  * NB: close() can't really fail from the userspace point of view.
2483  *
2484  * Returns: zero on success or a negative error code.
2485  */
2486 static int i915_perf_release(struct inode *inode, struct file *file)
2487 {
2488 	struct i915_perf_stream *stream = file->private_data;
2489 	struct drm_i915_private *dev_priv = stream->dev_priv;
2490 
2491 	mutex_lock(&dev_priv->perf.lock);
2492 	i915_perf_destroy_locked(stream);
2493 	mutex_unlock(&dev_priv->perf.lock);
2494 
2495 	return 0;
2496 }
2497 
2498 
2499 static const struct file_operations fops = {
2500 	.owner		= THIS_MODULE,
2501 	.llseek		= no_llseek,
2502 	.release	= i915_perf_release,
2503 	.poll		= i915_perf_poll,
2504 	.read		= i915_perf_read,
2505 	.unlocked_ioctl	= i915_perf_ioctl,
2506 	/* Our ioctl have no arguments, so it's safe to use the same function
2507 	 * to handle 32bits compatibility.
2508 	 */
2509 	.compat_ioctl   = i915_perf_ioctl,
2510 };
2511 
2512 
2513 /**
2514  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2515  * @dev_priv: i915 device instance
2516  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2517  * @props: individually validated u64 property value pairs
2518  * @file: drm file
2519  *
2520  * See i915_perf_ioctl_open() for interface details.
2521  *
2522  * Implements further stream config validation and stream initialization on
2523  * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2524  * taken to serialize with any non-file-operation driver hooks.
2525  *
2526  * Note: at this point the @props have only been validated in isolation and
2527  * it's still necessary to validate that the combination of properties makes
2528  * sense.
2529  *
2530  * In the case where userspace is interested in OA unit metrics then further
2531  * config validation and stream initialization details will be handled by
2532  * i915_oa_stream_init(). The code here should only validate config state that
2533  * will be relevant to all stream types / backends.
2534  *
2535  * Returns: zero on success or a negative error code.
2536  */
2537 static int
2538 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2539 			    struct drm_i915_perf_open_param *param,
2540 			    struct perf_open_properties *props,
2541 			    struct drm_file *file)
2542 {
2543 	struct i915_gem_context *specific_ctx = NULL;
2544 	struct i915_perf_stream *stream = NULL;
2545 	unsigned long f_flags = 0;
2546 	bool privileged_op = true;
2547 	int stream_fd;
2548 	int ret;
2549 
2550 	if (props->single_context) {
2551 		u32 ctx_handle = props->ctx_handle;
2552 		struct drm_i915_file_private *file_priv = file->driver_priv;
2553 
2554 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2555 		if (!specific_ctx) {
2556 			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2557 				  ctx_handle);
2558 			ret = -ENOENT;
2559 			goto err;
2560 		}
2561 	}
2562 
2563 	/*
2564 	 * On Haswell the OA unit supports clock gating off for a specific
2565 	 * context and in this mode there's no visibility of metrics for the
2566 	 * rest of the system, which we consider acceptable for a
2567 	 * non-privileged client.
2568 	 *
2569 	 * For Gen8+ the OA unit no longer supports clock gating off for a
2570 	 * specific context and the kernel can't securely stop the counters
2571 	 * from updating as system-wide / global values. Even though we can
2572 	 * filter reports based on the included context ID we can't block
2573 	 * clients from seeing the raw / global counter values via
2574 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2575 	 * enable the OA unit by default.
2576 	 */
2577 	if (IS_HASWELL(dev_priv) && specific_ctx)
2578 		privileged_op = false;
2579 
2580 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2581 	 * we check a dev.i915.perf_stream_paranoid sysctl option
2582 	 * to determine if it's ok to access system wide OA counters
2583 	 * without CAP_SYS_ADMIN privileges.
2584 	 */
2585 	if (privileged_op &&
2586 	    i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2587 		DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2588 		ret = -EACCES;
2589 		goto err_ctx;
2590 	}
2591 
2592 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2593 	if (!stream) {
2594 		ret = -ENOMEM;
2595 		goto err_ctx;
2596 	}
2597 
2598 	stream->dev_priv = dev_priv;
2599 	stream->ctx = specific_ctx;
2600 
2601 	ret = i915_oa_stream_init(stream, param, props);
2602 	if (ret)
2603 		goto err_alloc;
2604 
2605 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
2606 	 * to have _stream_init check the combination of sample flags more
2607 	 * thoroughly, but still this is the expected result at this point.
2608 	 */
2609 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2610 		ret = -ENODEV;
2611 		goto err_flags;
2612 	}
2613 
2614 	list_add(&stream->link, &dev_priv->perf.streams);
2615 
2616 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2617 		f_flags |= O_CLOEXEC;
2618 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2619 		f_flags |= O_NONBLOCK;
2620 
2621 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2622 	if (stream_fd < 0) {
2623 		ret = stream_fd;
2624 		goto err_open;
2625 	}
2626 
2627 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
2628 		i915_perf_enable_locked(stream);
2629 
2630 	return stream_fd;
2631 
2632 err_open:
2633 	list_del(&stream->link);
2634 err_flags:
2635 	if (stream->ops->destroy)
2636 		stream->ops->destroy(stream);
2637 err_alloc:
2638 	kfree(stream);
2639 err_ctx:
2640 	if (specific_ctx)
2641 		i915_gem_context_put(specific_ctx);
2642 err:
2643 	return ret;
2644 }
2645 
2646 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2647 {
2648 	return div64_u64(1000000000ULL * (2ULL << exponent),
2649 			 1000ULL * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz);
2650 }
2651 
2652 static int
2653 select_oa_buffer_exponent(struct drm_i915_private *i915,
2654 			  u64 requested_size)
2655 {
2656 	int order;
2657 
2658 	/*
2659 	 * When no size is specified, use the largest size supported by all
2660 	 * generations.
2661 	 */
2662 	if (!requested_size)
2663 		return order_base_2(SZ_16M);
2664 
2665 	order = order_base_2(clamp_t(u64, requested_size, SZ_128K, SZ_16M));
2666 	if (requested_size != (1UL << order))
2667 		return -EINVAL;
2668 
2669 	return order;
2670 }
2671 
2672 /**
2673  * read_properties_unlocked - validate + copy userspace stream open properties
2674  * @dev_priv: i915 device instance
2675  * @uprops: The array of u64 key value pairs given by userspace
2676  * @n_props: The number of key value pairs expected in @uprops
2677  * @props: The stream configuration built up while validating properties
2678  *
2679  * Note this function only validates properties in isolation it doesn't
2680  * validate that the combination of properties makes sense or that all
2681  * properties necessary for a particular kind of stream have been set.
2682  *
2683  * Note that there currently aren't any ordering requirements for properties so
2684  * we shouldn't validate or assume anything about ordering here. This doesn't
2685  * rule out defining new properties with ordering requirements in the future.
2686  */
2687 static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2688 				    u64 __user *uprops,
2689 				    u32 n_props,
2690 				    struct perf_open_properties *props)
2691 {
2692 	u64 __user *uprop = uprops;
2693 	u32 i;
2694 
2695 	memset(props, 0, sizeof(struct perf_open_properties));
2696 
2697 	if (!n_props) {
2698 		DRM_DEBUG("No i915 perf properties given\n");
2699 		return -EINVAL;
2700 	}
2701 
2702 	/* Considering that ID = 0 is reserved and assuming that we don't
2703 	 * (currently) expect any configurations to ever specify duplicate
2704 	 * values for a particular property ID then the last _PROP_MAX value is
2705 	 * one greater than the maximum number of properties we expect to get
2706 	 * from userspace.
2707 	 */
2708 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
2709 		DRM_DEBUG("More i915 perf properties specified than exist\n");
2710 		return -EINVAL;
2711 	}
2712 
2713 	for (i = 0; i < n_props; i++) {
2714 		u64 oa_period, oa_freq_hz;
2715 		u64 id, value;
2716 		int ret;
2717 
2718 		ret = get_user(id, uprop);
2719 		if (ret)
2720 			return ret;
2721 
2722 		ret = get_user(value, uprop + 1);
2723 		if (ret)
2724 			return ret;
2725 
2726 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2727 			DRM_DEBUG("Unknown i915 perf property ID\n");
2728 			return -EINVAL;
2729 		}
2730 
2731 		switch ((enum drm_i915_perf_property_id)id) {
2732 		case DRM_I915_PERF_PROP_CTX_HANDLE:
2733 			props->single_context = 1;
2734 			props->ctx_handle = value;
2735 			break;
2736 		case DRM_I915_PERF_PROP_SAMPLE_OA:
2737 			if (value)
2738 				props->sample_flags |= SAMPLE_OA_REPORT;
2739 			break;
2740 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
2741 			if (value == 0) {
2742 				DRM_DEBUG("Unknown OA metric set ID\n");
2743 				return -EINVAL;
2744 			}
2745 			props->metrics_set = value;
2746 			break;
2747 		case DRM_I915_PERF_PROP_OA_FORMAT:
2748 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2749 				DRM_DEBUG("Out-of-range OA report format %llu\n",
2750 					  value);
2751 				return -EINVAL;
2752 			}
2753 			if (!dev_priv->perf.oa.oa_formats[value].size) {
2754 				DRM_DEBUG("Unsupported OA report format %llu\n",
2755 					  value);
2756 				return -EINVAL;
2757 			}
2758 			props->oa_format = value;
2759 			break;
2760 		case DRM_I915_PERF_PROP_OA_EXPONENT:
2761 			if (value > OA_EXPONENT_MAX) {
2762 				DRM_DEBUG("OA timer exponent too high (> %u)\n",
2763 					 OA_EXPONENT_MAX);
2764 				return -EINVAL;
2765 			}
2766 
2767 			/* Theoretically we can program the OA unit to sample
2768 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2769 			 * for BXT. We don't allow such high sampling
2770 			 * frequencies by default unless root.
2771 			 */
2772 
2773 			BUILD_BUG_ON(sizeof(oa_period) != 8);
2774 			oa_period = oa_exponent_to_ns(dev_priv, value);
2775 
2776 			/* This check is primarily to ensure that oa_period <=
2777 			 * UINT32_MAX (before passing to do_div which only
2778 			 * accepts a u32 denominator), but we can also skip
2779 			 * checking anything < 1Hz which implicitly can't be
2780 			 * limited via an integer oa_max_sample_rate.
2781 			 */
2782 			if (oa_period <= NSEC_PER_SEC) {
2783 				u64 tmp = NSEC_PER_SEC;
2784 				do_div(tmp, oa_period);
2785 				oa_freq_hz = tmp;
2786 			} else
2787 				oa_freq_hz = 0;
2788 
2789 			if (oa_freq_hz > i915_oa_max_sample_rate &&
2790 			    !capable(CAP_SYS_ADMIN)) {
2791 				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2792 					  i915_oa_max_sample_rate);
2793 				return -EACCES;
2794 			}
2795 
2796 			props->oa_periodic = true;
2797 			props->oa_period_exponent = value;
2798 			break;
2799 		case DRM_I915_PERF_PROP_OA_BUFFER_SIZE:
2800 			ret = select_oa_buffer_exponent(dev_priv, value);
2801 			if (ret < 0) {
2802 				DRM_DEBUG("OA buffer size invalid %llu\n", value);
2803 				return ret;
2804 			}
2805 			props->oa_buffer_size_exponent = ret;
2806 			break;
2807 		case DRM_I915_PERF_PROP_MAX:
2808 			MISSING_CASE(id);
2809 			return -EINVAL;
2810 		}
2811 
2812 		uprop += 2;
2813 	}
2814 
2815 	/* If no buffer size was requested, select the default one. */
2816 	if (!props->oa_buffer_size_exponent) {
2817 		props->oa_buffer_size_exponent =
2818 			select_oa_buffer_exponent(dev_priv, 0);
2819 	}
2820 
2821 	return 0;
2822 }
2823 
2824 /**
2825  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2826  * @dev: drm device
2827  * @data: ioctl data copied from userspace (unvalidated)
2828  * @file: drm file
2829  *
2830  * Validates the stream open parameters given by userspace including flags
2831  * and an array of u64 key, value pair properties.
2832  *
2833  * Very little is assumed up front about the nature of the stream being
2834  * opened (for instance we don't assume it's for periodic OA unit metrics). An
2835  * i915-perf stream is expected to be a suitable interface for other forms of
2836  * buffered data written by the GPU besides periodic OA metrics.
2837  *
2838  * Note we copy the properties from userspace outside of the i915 perf
2839  * mutex to avoid an awkward lockdep with mmap_sem.
2840  *
2841  * Most of the implementation details are handled by
2842  * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2843  * mutex for serializing with any non-file-operation driver hooks.
2844  *
2845  * Return: A newly opened i915 Perf stream file descriptor or negative
2846  * error code on failure.
2847  */
2848 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2849 			 struct drm_file *file)
2850 {
2851 	struct drm_i915_private *dev_priv = dev->dev_private;
2852 	struct drm_i915_perf_open_param *param = data;
2853 	struct perf_open_properties props;
2854 	u32 known_open_flags;
2855 	int ret;
2856 
2857 	if (!dev_priv->perf.initialized) {
2858 		DRM_DEBUG("i915 perf interface not available for this system\n");
2859 		return -ENOTSUPP;
2860 	}
2861 
2862 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
2863 			   I915_PERF_FLAG_FD_NONBLOCK |
2864 			   I915_PERF_FLAG_DISABLED;
2865 	if (param->flags & ~known_open_flags) {
2866 		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
2867 		return -EINVAL;
2868 	}
2869 
2870 	ret = read_properties_unlocked(dev_priv,
2871 				       u64_to_user_ptr(param->properties_ptr),
2872 				       param->num_properties,
2873 				       &props);
2874 	if (ret)
2875 		return ret;
2876 
2877 	mutex_lock(&dev_priv->perf.lock);
2878 	ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
2879 	mutex_unlock(&dev_priv->perf.lock);
2880 
2881 	return ret;
2882 }
2883 
2884 /**
2885  * i915_perf_register - exposes i915-perf to userspace
2886  * @dev_priv: i915 device instance
2887  *
2888  * In particular OA metric sets are advertised under a sysfs metrics/
2889  * directory allowing userspace to enumerate valid IDs that can be
2890  * used to open an i915-perf stream.
2891  */
2892 void i915_perf_register(struct drm_i915_private *dev_priv)
2893 {
2894 	int ret;
2895 
2896 	if (!dev_priv->perf.initialized)
2897 		return;
2898 
2899 	/* To be sure we're synchronized with an attempted
2900 	 * i915_perf_open_ioctl(); considering that we register after
2901 	 * being exposed to userspace.
2902 	 */
2903 	mutex_lock(&dev_priv->perf.lock);
2904 
2905 	dev_priv->perf.metrics_kobj =
2906 		kobject_create_and_add("metrics",
2907 				       &dev_priv->drm.primary->kdev->kobj);
2908 	if (!dev_priv->perf.metrics_kobj)
2909 		goto exit;
2910 
2911 	sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr);
2912 
2913 	if (IS_HASWELL(dev_priv)) {
2914 		i915_perf_load_test_config_hsw(dev_priv);
2915 	} else if (IS_BROADWELL(dev_priv)) {
2916 		i915_perf_load_test_config_bdw(dev_priv);
2917 	} else if (IS_CHERRYVIEW(dev_priv)) {
2918 		i915_perf_load_test_config_chv(dev_priv);
2919 	} else if (IS_SKYLAKE(dev_priv)) {
2920 		if (IS_SKL_GT2(dev_priv))
2921 			i915_perf_load_test_config_sklgt2(dev_priv);
2922 		else if (IS_SKL_GT3(dev_priv))
2923 			i915_perf_load_test_config_sklgt3(dev_priv);
2924 		else if (IS_SKL_GT4(dev_priv))
2925 			i915_perf_load_test_config_sklgt4(dev_priv);
2926 	} else if (IS_BROXTON(dev_priv)) {
2927 		i915_perf_load_test_config_bxt(dev_priv);
2928 	} else if (IS_KABYLAKE(dev_priv)) {
2929 		if (IS_KBL_GT2(dev_priv))
2930 			i915_perf_load_test_config_kblgt2(dev_priv);
2931 		else if (IS_KBL_GT3(dev_priv))
2932 			i915_perf_load_test_config_kblgt3(dev_priv);
2933 	} else if (IS_GEMINILAKE(dev_priv)) {
2934 		i915_perf_load_test_config_glk(dev_priv);
2935 	} else if (IS_COFFEELAKE(dev_priv)) {
2936 		if (IS_CFL_GT2(dev_priv))
2937 			i915_perf_load_test_config_cflgt2(dev_priv);
2938 		if (IS_CFL_GT3(dev_priv))
2939 			i915_perf_load_test_config_cflgt3(dev_priv);
2940 	} else if (IS_CANNONLAKE(dev_priv)) {
2941 		i915_perf_load_test_config_cnl(dev_priv);
2942 	} else if (IS_ICELAKE(dev_priv)) {
2943 		i915_perf_load_test_config_icl(dev_priv);
2944 	}
2945 
2946 	if (dev_priv->perf.oa.test_config.id == 0)
2947 		goto sysfs_error;
2948 
2949 	ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
2950 				 &dev_priv->perf.oa.test_config.sysfs_metric);
2951 	if (ret)
2952 		goto sysfs_error;
2953 
2954 	atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1);
2955 
2956 	goto exit;
2957 
2958 sysfs_error:
2959 	kobject_put(dev_priv->perf.metrics_kobj);
2960 	dev_priv->perf.metrics_kobj = NULL;
2961 
2962 exit:
2963 	mutex_unlock(&dev_priv->perf.lock);
2964 }
2965 
2966 /**
2967  * i915_perf_unregister - hide i915-perf from userspace
2968  * @dev_priv: i915 device instance
2969  *
2970  * i915-perf state cleanup is split up into an 'unregister' and
2971  * 'deinit' phase where the interface is first hidden from
2972  * userspace by i915_perf_unregister() before cleaning up
2973  * remaining state in i915_perf_fini().
2974  */
2975 void i915_perf_unregister(struct drm_i915_private *dev_priv)
2976 {
2977 	if (!dev_priv->perf.metrics_kobj)
2978 		return;
2979 
2980 	sysfs_remove_group(dev_priv->perf.metrics_kobj,
2981 			   &dev_priv->perf.oa.test_config.sysfs_metric);
2982 
2983 	kobject_put(dev_priv->perf.metrics_kobj);
2984 	dev_priv->perf.metrics_kobj = NULL;
2985 }
2986 
2987 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
2988 {
2989 	static const i915_reg_t flex_eu_regs[] = {
2990 		EU_PERF_CNTL0,
2991 		EU_PERF_CNTL1,
2992 		EU_PERF_CNTL2,
2993 		EU_PERF_CNTL3,
2994 		EU_PERF_CNTL4,
2995 		EU_PERF_CNTL5,
2996 		EU_PERF_CNTL6,
2997 	};
2998 	int i;
2999 
3000 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3001 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3002 			return true;
3003 	}
3004 	return false;
3005 }
3006 
3007 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
3008 {
3009 	return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) &&
3010 		addr <= i915_mmio_reg_offset(OASTARTTRIG8)) ||
3011 		(addr >= i915_mmio_reg_offset(OAREPORTTRIG1) &&
3012 		 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) ||
3013 		(addr >= i915_mmio_reg_offset(OACEC0_0) &&
3014 		 addr <= i915_mmio_reg_offset(OACEC7_1));
3015 }
3016 
3017 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3018 {
3019 	return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) ||
3020 		(addr >= i915_mmio_reg_offset(MICRO_BP0_0) &&
3021 		 addr <= i915_mmio_reg_offset(NOA_WRITE)) ||
3022 		(addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) &&
3023 		 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) ||
3024 		(addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) &&
3025 		 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI));
3026 }
3027 
3028 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3029 {
3030 	return gen7_is_valid_mux_addr(dev_priv, addr) ||
3031 		addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) ||
3032 		(addr >= i915_mmio_reg_offset(RPM_CONFIG0) &&
3033 		 addr <= i915_mmio_reg_offset(NOA_CONFIG(8)));
3034 }
3035 
3036 static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3037 {
3038 	return gen8_is_valid_mux_addr(dev_priv, addr) ||
3039 		(addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) &&
3040 		 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI));
3041 }
3042 
3043 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3044 {
3045 	return gen7_is_valid_mux_addr(dev_priv, addr) ||
3046 		(addr >= 0x25100 && addr <= 0x2FF90) ||
3047 		(addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) &&
3048 		 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) ||
3049 		addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0);
3050 }
3051 
3052 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3053 {
3054 	return gen7_is_valid_mux_addr(dev_priv, addr) ||
3055 		(addr >= 0x182300 && addr <= 0x1823A4);
3056 }
3057 
3058 static uint32_t mask_reg_value(u32 reg, u32 val)
3059 {
3060 	/* HALF_SLICE_CHICKEN2 is programmed with a the
3061 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3062 	 * programmed by userspace doesn't change this.
3063 	 */
3064 	if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg)
3065 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3066 
3067 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3068 	 * indicated by its name and a bunch of selection fields used by OA
3069 	 * configs.
3070 	 */
3071 	if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg)
3072 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3073 
3074 	return val;
3075 }
3076 
3077 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3078 					 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3079 					 u32 __user *regs,
3080 					 u32 n_regs)
3081 {
3082 	struct i915_oa_reg *oa_regs;
3083 	int err;
3084 	u32 i;
3085 
3086 	if (!n_regs)
3087 		return NULL;
3088 
3089 	if (!access_ok(VERIFY_READ, regs, n_regs * sizeof(u32) * 2))
3090 		return ERR_PTR(-EFAULT);
3091 
3092 	/* No is_valid function means we're not allowing any register to be programmed. */
3093 	GEM_BUG_ON(!is_valid);
3094 	if (!is_valid)
3095 		return ERR_PTR(-EINVAL);
3096 
3097 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3098 	if (!oa_regs)
3099 		return ERR_PTR(-ENOMEM);
3100 
3101 	for (i = 0; i < n_regs; i++) {
3102 		u32 addr, value;
3103 
3104 		err = get_user(addr, regs);
3105 		if (err)
3106 			goto addr_err;
3107 
3108 		if (!is_valid(dev_priv, addr)) {
3109 			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3110 			err = -EINVAL;
3111 			goto addr_err;
3112 		}
3113 
3114 		err = get_user(value, regs + 1);
3115 		if (err)
3116 			goto addr_err;
3117 
3118 		oa_regs[i].addr = _MMIO(addr);
3119 		oa_regs[i].value = mask_reg_value(addr, value);
3120 
3121 		regs += 2;
3122 	}
3123 
3124 	return oa_regs;
3125 
3126 addr_err:
3127 	kfree(oa_regs);
3128 	return ERR_PTR(err);
3129 }
3130 
3131 static ssize_t show_dynamic_id(struct device *dev,
3132 			       struct device_attribute *attr,
3133 			       char *buf)
3134 {
3135 	struct i915_oa_config *oa_config =
3136 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
3137 
3138 	return sprintf(buf, "%d\n", oa_config->id);
3139 }
3140 
3141 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3142 					 struct i915_oa_config *oa_config)
3143 {
3144 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3145 	oa_config->sysfs_metric_id.attr.name = "id";
3146 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3147 	oa_config->sysfs_metric_id.show = show_dynamic_id;
3148 	oa_config->sysfs_metric_id.store = NULL;
3149 
3150 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3151 	oa_config->attrs[1] = NULL;
3152 
3153 	oa_config->sysfs_metric.name = oa_config->uuid;
3154 	oa_config->sysfs_metric.attrs = oa_config->attrs;
3155 
3156 	return sysfs_create_group(dev_priv->perf.metrics_kobj,
3157 				  &oa_config->sysfs_metric);
3158 }
3159 
3160 /**
3161  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3162  * @dev: drm device
3163  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3164  *        userspace (unvalidated)
3165  * @file: drm file
3166  *
3167  * Validates the submitted OA register to be saved into a new OA config that
3168  * can then be used for programming the OA unit and its NOA network.
3169  *
3170  * Returns: A new allocated config number to be used with the perf open ioctl
3171  * or a negative error code on failure.
3172  */
3173 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3174 			       struct drm_file *file)
3175 {
3176 	struct drm_i915_private *dev_priv = dev->dev_private;
3177 	struct drm_i915_perf_oa_config *args = data;
3178 	struct i915_oa_config *oa_config, *tmp;
3179 	int err, id;
3180 
3181 	if (!dev_priv->perf.initialized) {
3182 		DRM_DEBUG("i915 perf interface not available for this system\n");
3183 		return -ENOTSUPP;
3184 	}
3185 
3186 	if (!dev_priv->perf.metrics_kobj) {
3187 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3188 		return -EINVAL;
3189 	}
3190 
3191 	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3192 		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3193 		return -EACCES;
3194 	}
3195 
3196 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3197 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3198 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
3199 		DRM_DEBUG("No OA registers given\n");
3200 		return -EINVAL;
3201 	}
3202 
3203 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3204 	if (!oa_config) {
3205 		DRM_DEBUG("Failed to allocate memory for the OA config\n");
3206 		return -ENOMEM;
3207 	}
3208 
3209 	atomic_set(&oa_config->ref_count, 1);
3210 
3211 	if (!uuid_is_valid(args->uuid)) {
3212 		DRM_DEBUG("Invalid uuid format for OA config\n");
3213 		err = -EINVAL;
3214 		goto reg_err;
3215 	}
3216 
3217 	/* Last character in oa_config->uuid will be 0 because oa_config is
3218 	 * kzalloc.
3219 	 */
3220 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3221 
3222 	oa_config->mux_regs_len = args->n_mux_regs;
3223 	oa_config->mux_regs =
3224 		alloc_oa_regs(dev_priv,
3225 			      dev_priv->perf.oa.ops.is_valid_mux_reg,
3226 			      u64_to_user_ptr(args->mux_regs_ptr),
3227 			      args->n_mux_regs);
3228 
3229 	if (IS_ERR(oa_config->mux_regs)) {
3230 		DRM_DEBUG("Failed to create OA config for mux_regs\n");
3231 		err = PTR_ERR(oa_config->mux_regs);
3232 		goto reg_err;
3233 	}
3234 
3235 	oa_config->b_counter_regs_len = args->n_boolean_regs;
3236 	oa_config->b_counter_regs =
3237 		alloc_oa_regs(dev_priv,
3238 			      dev_priv->perf.oa.ops.is_valid_b_counter_reg,
3239 			      u64_to_user_ptr(args->boolean_regs_ptr),
3240 			      args->n_boolean_regs);
3241 
3242 	if (IS_ERR(oa_config->b_counter_regs)) {
3243 		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3244 		err = PTR_ERR(oa_config->b_counter_regs);
3245 		goto reg_err;
3246 	}
3247 
3248 	if (INTEL_GEN(dev_priv) < 8) {
3249 		if (args->n_flex_regs != 0) {
3250 			err = -EINVAL;
3251 			goto reg_err;
3252 		}
3253 	} else {
3254 		oa_config->flex_regs_len = args->n_flex_regs;
3255 		oa_config->flex_regs =
3256 			alloc_oa_regs(dev_priv,
3257 				      dev_priv->perf.oa.ops.is_valid_flex_reg,
3258 				      u64_to_user_ptr(args->flex_regs_ptr),
3259 				      args->n_flex_regs);
3260 
3261 		if (IS_ERR(oa_config->flex_regs)) {
3262 			DRM_DEBUG("Failed to create OA config for flex_regs\n");
3263 			err = PTR_ERR(oa_config->flex_regs);
3264 			goto reg_err;
3265 		}
3266 	}
3267 
3268 	err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3269 	if (err)
3270 		goto reg_err;
3271 
3272 	/* We shouldn't have too many configs, so this iteration shouldn't be
3273 	 * too costly.
3274 	 */
3275 	idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3276 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
3277 			DRM_DEBUG("OA config already exists with this uuid\n");
3278 			err = -EADDRINUSE;
3279 			goto sysfs_err;
3280 		}
3281 	}
3282 
3283 	err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3284 	if (err) {
3285 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3286 		goto sysfs_err;
3287 	}
3288 
3289 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
3290 	oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3291 				  oa_config, 2,
3292 				  0, GFP_KERNEL);
3293 	if (oa_config->id < 0) {
3294 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3295 		err = oa_config->id;
3296 		goto sysfs_err;
3297 	}
3298 
3299 	mutex_unlock(&dev_priv->perf.metrics_lock);
3300 
3301 	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
3302 
3303 	return oa_config->id;
3304 
3305 sysfs_err:
3306 	mutex_unlock(&dev_priv->perf.metrics_lock);
3307 reg_err:
3308 	put_oa_config(dev_priv, oa_config);
3309 	DRM_DEBUG("Failed to add new OA config\n");
3310 	return err;
3311 }
3312 
3313 /**
3314  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3315  * @dev: drm device
3316  * @data: ioctl data (pointer to u64 integer) copied from userspace
3317  * @file: drm file
3318  *
3319  * Configs can be removed while being used, the will stop appearing in sysfs
3320  * and their content will be freed when the stream using the config is closed.
3321  *
3322  * Returns: 0 on success or a negative error code on failure.
3323  */
3324 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3325 				  struct drm_file *file)
3326 {
3327 	struct drm_i915_private *dev_priv = dev->dev_private;
3328 	u64 *arg = data;
3329 	struct i915_oa_config *oa_config;
3330 	int ret;
3331 
3332 	if (!dev_priv->perf.initialized) {
3333 		DRM_DEBUG("i915 perf interface not available for this system\n");
3334 		return -ENOTSUPP;
3335 	}
3336 
3337 	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3338 		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3339 		return -EACCES;
3340 	}
3341 
3342 	ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3343 	if (ret)
3344 		goto lock_err;
3345 
3346 	oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3347 	if (!oa_config) {
3348 		DRM_DEBUG("Failed to remove unknown OA config\n");
3349 		ret = -ENOENT;
3350 		goto config_err;
3351 	}
3352 
3353 	GEM_BUG_ON(*arg != oa_config->id);
3354 
3355 	sysfs_remove_group(dev_priv->perf.metrics_kobj,
3356 			   &oa_config->sysfs_metric);
3357 
3358 	idr_remove(&dev_priv->perf.metrics_idr, *arg);
3359 
3360 	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
3361 
3362 	put_oa_config(dev_priv, oa_config);
3363 
3364 config_err:
3365 	mutex_unlock(&dev_priv->perf.metrics_lock);
3366 lock_err:
3367 	return ret;
3368 }
3369 
3370 static struct ctl_table oa_table[] = {
3371 	{
3372 	 .procname = "perf_stream_paranoid",
3373 	 .data = &i915_perf_stream_paranoid,
3374 	 .maxlen = sizeof(i915_perf_stream_paranoid),
3375 	 .mode = 0644,
3376 	 .proc_handler = proc_dointvec_minmax,
3377 	 .extra1 = &zero,
3378 	 .extra2 = &one,
3379 	 },
3380 	{
3381 	 .procname = "oa_max_sample_rate",
3382 	 .data = &i915_oa_max_sample_rate,
3383 	 .maxlen = sizeof(i915_oa_max_sample_rate),
3384 	 .mode = 0644,
3385 	 .proc_handler = proc_dointvec_minmax,
3386 	 .extra1 = &zero,
3387 	 .extra2 = &oa_sample_rate_hard_limit,
3388 	 },
3389 	{}
3390 };
3391 
3392 static struct ctl_table i915_root[] = {
3393 	{
3394 	 .procname = "i915",
3395 	 .maxlen = 0,
3396 	 .mode = 0555,
3397 	 .child = oa_table,
3398 	 },
3399 	{}
3400 };
3401 
3402 static struct ctl_table dev_root[] = {
3403 	{
3404 	 .procname = "dev",
3405 	 .maxlen = 0,
3406 	 .mode = 0555,
3407 	 .child = i915_root,
3408 	 },
3409 	{}
3410 };
3411 
3412 /**
3413  * i915_perf_init - initialize i915-perf state on module load
3414  * @dev_priv: i915 device instance
3415  *
3416  * Initializes i915-perf state without exposing anything to userspace.
3417  *
3418  * Note: i915-perf initialization is split into an 'init' and 'register'
3419  * phase with the i915_perf_register() exposing state to userspace.
3420  */
3421 void i915_perf_init(struct drm_i915_private *dev_priv)
3422 {
3423 	if (IS_HASWELL(dev_priv)) {
3424 		dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3425 			gen7_is_valid_b_counter_addr;
3426 		dev_priv->perf.oa.ops.is_valid_mux_reg =
3427 			hsw_is_valid_mux_addr;
3428 		dev_priv->perf.oa.ops.is_valid_flex_reg = NULL;
3429 		dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
3430 		dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
3431 		dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
3432 		dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
3433 		dev_priv->perf.oa.ops.read = gen7_oa_read;
3434 		dev_priv->perf.oa.ops.oa_hw_tail_read =
3435 			gen7_oa_hw_tail_read;
3436 
3437 		dev_priv->perf.oa.oa_formats = hsw_oa_formats;
3438 	} else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
3439 		/* Note: that although we could theoretically also support the
3440 		 * legacy ringbuffer mode on BDW (and earlier iterations of
3441 		 * this driver, before upstreaming did this) it didn't seem
3442 		 * worth the complexity to maintain now that BDW+ enable
3443 		 * execlist mode by default.
3444 		 */
3445 		dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
3446 
3447 		dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
3448 		dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
3449 		dev_priv->perf.oa.ops.read = gen8_oa_read;
3450 		dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3451 
3452 		if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv)) {
3453 			dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3454 				gen7_is_valid_b_counter_addr;
3455 			dev_priv->perf.oa.ops.is_valid_mux_reg =
3456 				gen8_is_valid_mux_addr;
3457 			dev_priv->perf.oa.ops.is_valid_flex_reg =
3458 				gen8_is_valid_flex_addr;
3459 
3460 			if (IS_CHERRYVIEW(dev_priv)) {
3461 				dev_priv->perf.oa.ops.is_valid_mux_reg =
3462 					chv_is_valid_mux_addr;
3463 			}
3464 
3465 			dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3466 			dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set;
3467 
3468 			if (IS_GEN8(dev_priv)) {
3469 				dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
3470 				dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
3471 
3472 				dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);
3473 			} else {
3474 				dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3475 				dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3476 
3477 				dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3478 			}
3479 		} else if (IS_GEN(dev_priv, 10, 11)) {
3480 			dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3481 				gen7_is_valid_b_counter_addr;
3482 			dev_priv->perf.oa.ops.is_valid_mux_reg =
3483 				gen10_is_valid_mux_addr;
3484 			dev_priv->perf.oa.ops.is_valid_flex_reg =
3485 				gen8_is_valid_flex_addr;
3486 
3487 			dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3488 			dev_priv->perf.oa.ops.disable_metric_set = gen10_disable_metric_set;
3489 
3490 			dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3491 			dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3492 
3493 			dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3494 		}
3495 	}
3496 
3497 	if (dev_priv->perf.oa.ops.enable_metric_set) {
3498 		hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
3499 				CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3500 		dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
3501 		init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
3502 
3503 		INIT_LIST_HEAD(&dev_priv->perf.streams);
3504 		mutex_init(&dev_priv->perf.lock);
3505 		spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
3506 
3507 		oa_sample_rate_hard_limit = 1000 *
3508 			(INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz / 2);
3509 		dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3510 
3511 		mutex_init(&dev_priv->perf.metrics_lock);
3512 		idr_init(&dev_priv->perf.metrics_idr);
3513 
3514 		dev_priv->perf.initialized = true;
3515 	}
3516 }
3517 
3518 static int destroy_config(int id, void *p, void *data)
3519 {
3520 	struct drm_i915_private *dev_priv = data;
3521 	struct i915_oa_config *oa_config = p;
3522 
3523 	put_oa_config(dev_priv, oa_config);
3524 
3525 	return 0;
3526 }
3527 
3528 /**
3529  * i915_perf_fini - Counter part to i915_perf_init()
3530  * @dev_priv: i915 device instance
3531  */
3532 void i915_perf_fini(struct drm_i915_private *dev_priv)
3533 {
3534 	if (!dev_priv->perf.initialized)
3535 		return;
3536 
3537 	idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3538 	idr_destroy(&dev_priv->perf.metrics_idr);
3539 
3540 	unregister_sysctl_table(dev_priv->perf.sysctl_header);
3541 
3542 	memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
3543 
3544 	dev_priv->perf.initialized = false;
3545 }
3546