xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision 8bd1369b)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "i915_drv.h"
199 #include "i915_oa_hsw.h"
200 #include "i915_oa_bdw.h"
201 #include "i915_oa_chv.h"
202 #include "i915_oa_sklgt2.h"
203 #include "i915_oa_sklgt3.h"
204 #include "i915_oa_sklgt4.h"
205 #include "i915_oa_bxt.h"
206 #include "i915_oa_kblgt2.h"
207 #include "i915_oa_kblgt3.h"
208 #include "i915_oa_glk.h"
209 #include "i915_oa_cflgt2.h"
210 #include "i915_oa_cflgt3.h"
211 #include "i915_oa_cnl.h"
212 #include "i915_oa_icl.h"
213 
214 /* HW requires this to be a power of two, between 128k and 16M, though driver
215  * is currently generally designed assuming the largest 16M size is used such
216  * that the overflow cases are unlikely in normal operation.
217  */
218 #define OA_BUFFER_SIZE		SZ_16M
219 
220 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
221 
222 /**
223  * DOC: OA Tail Pointer Race
224  *
225  * There's a HW race condition between OA unit tail pointer register updates and
226  * writes to memory whereby the tail pointer can sometimes get ahead of what's
227  * been written out to the OA buffer so far (in terms of what's visible to the
228  * CPU).
229  *
230  * Although this can be observed explicitly while copying reports to userspace
231  * by checking for a zeroed report-id field in tail reports, we want to account
232  * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
233  * read() attempts.
234  *
235  * In effect we define a tail pointer for reading that lags the real tail
236  * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
237  * time for the corresponding reports to become visible to the CPU.
238  *
239  * To manage this we actually track two tail pointers:
240  *  1) An 'aging' tail with an associated timestamp that is tracked until we
241  *     can trust the corresponding data is visible to the CPU; at which point
242  *     it is considered 'aged'.
243  *  2) An 'aged' tail that can be used for read()ing.
244  *
245  * The two separate pointers let us decouple read()s from tail pointer aging.
246  *
247  * The tail pointers are checked and updated at a limited rate within a hrtimer
248  * callback (the same callback that is used for delivering EPOLLIN events)
249  *
250  * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
251  * indicates that an updated tail pointer is needed.
252  *
253  * Most of the implementation details for this workaround are in
254  * oa_buffer_check_unlocked() and _append_oa_reports()
255  *
256  * Note for posterity: previously the driver used to define an effective tail
257  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
258  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
259  * This was flawed considering that the OA unit may also automatically generate
260  * non-periodic reports (such as on context switch) or the OA unit may be
261  * enabled without any periodic sampling.
262  */
263 #define OA_TAIL_MARGIN_NSEC	100000ULL
264 #define INVALID_TAIL_PTR	0xffffffff
265 
266 /* frequency for checking whether the OA unit has written new reports to the
267  * circular OA buffer...
268  */
269 #define POLL_FREQUENCY 200
270 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
271 
272 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
273 static int zero;
274 static int one = 1;
275 static u32 i915_perf_stream_paranoid = true;
276 
277 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
278  * of the 64bit timestamp bits to trigger reports from) but there's currently
279  * no known use case for sampling as infrequently as once per 47 thousand years.
280  *
281  * Since the timestamps included in OA reports are only 32bits it seems
282  * reasonable to limit the OA exponent where it's still possible to account for
283  * overflow in OA report timestamps.
284  */
285 #define OA_EXPONENT_MAX 31
286 
287 #define INVALID_CTX_ID 0xffffffff
288 
289 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
290 #define OAREPORT_REASON_MASK           0x3f
291 #define OAREPORT_REASON_SHIFT          19
292 #define OAREPORT_REASON_TIMER          (1<<0)
293 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
294 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
295 
296 
297 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
298  *
299  * The highest sampling frequency we can theoretically program the OA unit
300  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
301  *
302  * Initialized just before we register the sysctl parameter.
303  */
304 static int oa_sample_rate_hard_limit;
305 
306 /* Theoretically we can program the OA unit to sample every 160ns but don't
307  * allow that by default unless root...
308  *
309  * The default threshold of 100000Hz is based on perf's similar
310  * kernel.perf_event_max_sample_rate sysctl parameter.
311  */
312 static u32 i915_oa_max_sample_rate = 100000;
313 
314 /* XXX: beware if future OA HW adds new report formats that the current
315  * code assumes all reports have a power-of-two size and ~(size - 1) can
316  * be used as a mask to align the OA tail pointer.
317  */
318 static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
319 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
320 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
321 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
322 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
323 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
324 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
325 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
326 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
327 };
328 
329 static struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
330 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
331 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
332 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
333 	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
334 };
335 
336 #define SAMPLE_OA_REPORT      (1<<0)
337 
338 /**
339  * struct perf_open_properties - for validated properties given to open a stream
340  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
341  * @single_context: Whether a single or all gpu contexts should be monitored
342  * @ctx_handle: A gem ctx handle for use with @single_context
343  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
344  * @oa_format: An OA unit HW report format
345  * @oa_periodic: Whether to enable periodic OA unit sampling
346  * @oa_period_exponent: The OA unit sampling period is derived from this
347  *
348  * As read_properties_unlocked() enumerates and validates the properties given
349  * to open a stream of metrics the configuration is built up in the structure
350  * which starts out zero initialized.
351  */
352 struct perf_open_properties {
353 	u32 sample_flags;
354 
355 	u64 single_context:1;
356 	u64 ctx_handle;
357 
358 	/* OA sampling state */
359 	int metrics_set;
360 	int oa_format;
361 	bool oa_periodic;
362 	int oa_period_exponent;
363 };
364 
365 static void free_oa_config(struct drm_i915_private *dev_priv,
366 			   struct i915_oa_config *oa_config)
367 {
368 	if (!PTR_ERR(oa_config->flex_regs))
369 		kfree(oa_config->flex_regs);
370 	if (!PTR_ERR(oa_config->b_counter_regs))
371 		kfree(oa_config->b_counter_regs);
372 	if (!PTR_ERR(oa_config->mux_regs))
373 		kfree(oa_config->mux_regs);
374 	kfree(oa_config);
375 }
376 
377 static void put_oa_config(struct drm_i915_private *dev_priv,
378 			  struct i915_oa_config *oa_config)
379 {
380 	if (!atomic_dec_and_test(&oa_config->ref_count))
381 		return;
382 
383 	free_oa_config(dev_priv, oa_config);
384 }
385 
386 static int get_oa_config(struct drm_i915_private *dev_priv,
387 			 int metrics_set,
388 			 struct i915_oa_config **out_config)
389 {
390 	int ret;
391 
392 	if (metrics_set == 1) {
393 		*out_config = &dev_priv->perf.oa.test_config;
394 		atomic_inc(&dev_priv->perf.oa.test_config.ref_count);
395 		return 0;
396 	}
397 
398 	ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
399 	if (ret)
400 		return ret;
401 
402 	*out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
403 	if (!*out_config)
404 		ret = -EINVAL;
405 	else
406 		atomic_inc(&(*out_config)->ref_count);
407 
408 	mutex_unlock(&dev_priv->perf.metrics_lock);
409 
410 	return ret;
411 }
412 
413 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
414 {
415 	return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
416 }
417 
418 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
419 {
420 	u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
421 
422 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
423 }
424 
425 /**
426  * oa_buffer_check_unlocked - check for data and update tail ptr state
427  * @dev_priv: i915 device instance
428  *
429  * This is either called via fops (for blocking reads in user ctx) or the poll
430  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
431  * if there is data available for userspace to read.
432  *
433  * This function is central to providing a workaround for the OA unit tail
434  * pointer having a race with respect to what data is visible to the CPU.
435  * It is responsible for reading tail pointers from the hardware and giving
436  * the pointers time to 'age' before they are made available for reading.
437  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
438  *
439  * Besides returning true when there is data available to read() this function
440  * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
441  * and .aged_tail_idx state used for reading.
442  *
443  * Note: It's safe to read OA config state here unlocked, assuming that this is
444  * only called while the stream is enabled, while the global OA configuration
445  * can't be modified.
446  *
447  * Returns: %true if the OA buffer contains data, else %false
448  */
449 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
450 {
451 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
452 	unsigned long flags;
453 	unsigned int aged_idx;
454 	u32 head, hw_tail, aged_tail, aging_tail;
455 	u64 now;
456 
457 	/* We have to consider the (unlikely) possibility that read() errors
458 	 * could result in an OA buffer reset which might reset the head,
459 	 * tails[] and aged_tail state.
460 	 */
461 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
462 
463 	/* NB: The head we observe here might effectively be a little out of
464 	 * date (between head and tails[aged_idx].offset if there is currently
465 	 * a read() in progress.
466 	 */
467 	head = dev_priv->perf.oa.oa_buffer.head;
468 
469 	aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
470 	aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
471 	aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;
472 
473 	hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
474 
475 	/* The tail pointer increases in 64 byte increments,
476 	 * not in report_size steps...
477 	 */
478 	hw_tail &= ~(report_size - 1);
479 
480 	now = ktime_get_mono_fast_ns();
481 
482 	/* Update the aged tail
483 	 *
484 	 * Flip the tail pointer available for read()s once the aging tail is
485 	 * old enough to trust that the corresponding data will be visible to
486 	 * the CPU...
487 	 *
488 	 * Do this before updating the aging pointer in case we may be able to
489 	 * immediately start aging a new pointer too (if new data has become
490 	 * available) without needing to wait for a later hrtimer callback.
491 	 */
492 	if (aging_tail != INVALID_TAIL_PTR &&
493 	    ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
494 	     OA_TAIL_MARGIN_NSEC)) {
495 
496 		aged_idx ^= 1;
497 		dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;
498 
499 		aged_tail = aging_tail;
500 
501 		/* Mark that we need a new pointer to start aging... */
502 		dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
503 		aging_tail = INVALID_TAIL_PTR;
504 	}
505 
506 	/* Update the aging tail
507 	 *
508 	 * We throttle aging tail updates until we have a new tail that
509 	 * represents >= one report more data than is already available for
510 	 * reading. This ensures there will be enough data for a successful
511 	 * read once this new pointer has aged and ensures we will give the new
512 	 * pointer time to age.
513 	 */
514 	if (aging_tail == INVALID_TAIL_PTR &&
515 	    (aged_tail == INVALID_TAIL_PTR ||
516 	     OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
517 		struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
518 		u32 gtt_offset = i915_ggtt_offset(vma);
519 
520 		/* Be paranoid and do a bounds check on the pointer read back
521 		 * from hardware, just in case some spurious hardware condition
522 		 * could put the tail out of bounds...
523 		 */
524 		if (hw_tail >= gtt_offset &&
525 		    hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
526 			dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
527 				aging_tail = hw_tail;
528 			dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
529 		} else {
530 			DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
531 				  hw_tail);
532 		}
533 	}
534 
535 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
536 
537 	return aged_tail == INVALID_TAIL_PTR ?
538 		false : OA_TAKEN(aged_tail, head) >= report_size;
539 }
540 
541 /**
542  * append_oa_status - Appends a status record to a userspace read() buffer.
543  * @stream: An i915-perf stream opened for OA metrics
544  * @buf: destination buffer given by userspace
545  * @count: the number of bytes userspace wants to read
546  * @offset: (inout): the current position for writing into @buf
547  * @type: The kind of status to report to userspace
548  *
549  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
550  * into the userspace read() buffer.
551  *
552  * The @buf @offset will only be updated on success.
553  *
554  * Returns: 0 on success, negative error code on failure.
555  */
556 static int append_oa_status(struct i915_perf_stream *stream,
557 			    char __user *buf,
558 			    size_t count,
559 			    size_t *offset,
560 			    enum drm_i915_perf_record_type type)
561 {
562 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
563 
564 	if ((count - *offset) < header.size)
565 		return -ENOSPC;
566 
567 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
568 		return -EFAULT;
569 
570 	(*offset) += header.size;
571 
572 	return 0;
573 }
574 
575 /**
576  * append_oa_sample - Copies single OA report into userspace read() buffer.
577  * @stream: An i915-perf stream opened for OA metrics
578  * @buf: destination buffer given by userspace
579  * @count: the number of bytes userspace wants to read
580  * @offset: (inout): the current position for writing into @buf
581  * @report: A single OA report to (optionally) include as part of the sample
582  *
583  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
584  * properties when opening a stream, tracked as `stream->sample_flags`. This
585  * function copies the requested components of a single sample to the given
586  * read() @buf.
587  *
588  * The @buf @offset will only be updated on success.
589  *
590  * Returns: 0 on success, negative error code on failure.
591  */
592 static int append_oa_sample(struct i915_perf_stream *stream,
593 			    char __user *buf,
594 			    size_t count,
595 			    size_t *offset,
596 			    const u8 *report)
597 {
598 	struct drm_i915_private *dev_priv = stream->dev_priv;
599 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
600 	struct drm_i915_perf_record_header header;
601 	u32 sample_flags = stream->sample_flags;
602 
603 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
604 	header.pad = 0;
605 	header.size = stream->sample_size;
606 
607 	if ((count - *offset) < header.size)
608 		return -ENOSPC;
609 
610 	buf += *offset;
611 	if (copy_to_user(buf, &header, sizeof(header)))
612 		return -EFAULT;
613 	buf += sizeof(header);
614 
615 	if (sample_flags & SAMPLE_OA_REPORT) {
616 		if (copy_to_user(buf, report, report_size))
617 			return -EFAULT;
618 	}
619 
620 	(*offset) += header.size;
621 
622 	return 0;
623 }
624 
625 /**
626  * Copies all buffered OA reports into userspace read() buffer.
627  * @stream: An i915-perf stream opened for OA metrics
628  * @buf: destination buffer given by userspace
629  * @count: the number of bytes userspace wants to read
630  * @offset: (inout): the current position for writing into @buf
631  *
632  * Notably any error condition resulting in a short read (-%ENOSPC or
633  * -%EFAULT) will be returned even though one or more records may
634  * have been successfully copied. In this case it's up to the caller
635  * to decide if the error should be squashed before returning to
636  * userspace.
637  *
638  * Note: reports are consumed from the head, and appended to the
639  * tail, so the tail chases the head?... If you think that's mad
640  * and back-to-front you're not alone, but this follows the
641  * Gen PRM naming convention.
642  *
643  * Returns: 0 on success, negative error code on failure.
644  */
645 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
646 				  char __user *buf,
647 				  size_t count,
648 				  size_t *offset)
649 {
650 	struct drm_i915_private *dev_priv = stream->dev_priv;
651 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
652 	u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
653 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
654 	u32 mask = (OA_BUFFER_SIZE - 1);
655 	size_t start_offset = *offset;
656 	unsigned long flags;
657 	unsigned int aged_tail_idx;
658 	u32 head, tail;
659 	u32 taken;
660 	int ret = 0;
661 
662 	if (WARN_ON(!stream->enabled))
663 		return -EIO;
664 
665 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
666 
667 	head = dev_priv->perf.oa.oa_buffer.head;
668 	aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
669 	tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
670 
671 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
672 
673 	/*
674 	 * An invalid tail pointer here means we're still waiting for the poll
675 	 * hrtimer callback to give us a pointer
676 	 */
677 	if (tail == INVALID_TAIL_PTR)
678 		return -EAGAIN;
679 
680 	/*
681 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
682 	 * while indexing relative to oa_buf_base.
683 	 */
684 	head -= gtt_offset;
685 	tail -= gtt_offset;
686 
687 	/*
688 	 * An out of bounds or misaligned head or tail pointer implies a driver
689 	 * bug since we validate + align the tail pointers we read from the
690 	 * hardware and we are in full control of the head pointer which should
691 	 * only be incremented by multiples of the report size (notably also
692 	 * all a power of two).
693 	 */
694 	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
695 		      tail > OA_BUFFER_SIZE || tail % report_size,
696 		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
697 		      head, tail))
698 		return -EIO;
699 
700 
701 	for (/* none */;
702 	     (taken = OA_TAKEN(tail, head));
703 	     head = (head + report_size) & mask) {
704 		u8 *report = oa_buf_base + head;
705 		u32 *report32 = (void *)report;
706 		u32 ctx_id;
707 		u32 reason;
708 
709 		/*
710 		 * All the report sizes factor neatly into the buffer
711 		 * size so we never expect to see a report split
712 		 * between the beginning and end of the buffer.
713 		 *
714 		 * Given the initial alignment check a misalignment
715 		 * here would imply a driver bug that would result
716 		 * in an overrun.
717 		 */
718 		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
719 			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
720 			break;
721 		}
722 
723 		/*
724 		 * The reason field includes flags identifying what
725 		 * triggered this specific report (mostly timer
726 		 * triggered or e.g. due to a context switch).
727 		 *
728 		 * This field is never expected to be zero so we can
729 		 * check that the report isn't invalid before copying
730 		 * it to userspace...
731 		 */
732 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
733 			  OAREPORT_REASON_MASK);
734 		if (reason == 0) {
735 			if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
736 				DRM_NOTE("Skipping spurious, invalid OA report\n");
737 			continue;
738 		}
739 
740 		/*
741 		 * XXX: Just keep the lower 21 bits for now since I'm not
742 		 * entirely sure if the HW touches any of the higher bits in
743 		 * this field
744 		 */
745 		ctx_id = report32[2] & 0x1fffff;
746 
747 		/*
748 		 * Squash whatever is in the CTX_ID field if it's marked as
749 		 * invalid to be sure we avoid false-positive, single-context
750 		 * filtering below...
751 		 *
752 		 * Note: that we don't clear the valid_ctx_bit so userspace can
753 		 * understand that the ID has been squashed by the kernel.
754 		 */
755 		if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
756 			ctx_id = report32[2] = INVALID_CTX_ID;
757 
758 		/*
759 		 * NB: For Gen 8 the OA unit no longer supports clock gating
760 		 * off for a specific context and the kernel can't securely
761 		 * stop the counters from updating as system-wide / global
762 		 * values.
763 		 *
764 		 * Automatic reports now include a context ID so reports can be
765 		 * filtered on the cpu but it's not worth trying to
766 		 * automatically subtract/hide counter progress for other
767 		 * contexts while filtering since we can't stop userspace
768 		 * issuing MI_REPORT_PERF_COUNT commands which would still
769 		 * provide a side-band view of the real values.
770 		 *
771 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
772 		 * to normalize counters for a single filtered context then it
773 		 * needs be forwarded bookend context-switch reports so that it
774 		 * can track switches in between MI_REPORT_PERF_COUNT commands
775 		 * and can itself subtract/ignore the progress of counters
776 		 * associated with other contexts. Note that the hardware
777 		 * automatically triggers reports when switching to a new
778 		 * context which are tagged with the ID of the newly active
779 		 * context. To avoid the complexity (and likely fragility) of
780 		 * reading ahead while parsing reports to try and minimize
781 		 * forwarding redundant context switch reports (i.e. between
782 		 * other, unrelated contexts) we simply elect to forward them
783 		 * all.
784 		 *
785 		 * We don't rely solely on the reason field to identify context
786 		 * switches since it's not-uncommon for periodic samples to
787 		 * identify a switch before any 'context switch' report.
788 		 */
789 		if (!dev_priv->perf.oa.exclusive_stream->ctx ||
790 		    dev_priv->perf.oa.specific_ctx_id == ctx_id ||
791 		    (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
792 		     dev_priv->perf.oa.specific_ctx_id) ||
793 		    reason & OAREPORT_REASON_CTX_SWITCH) {
794 
795 			/*
796 			 * While filtering for a single context we avoid
797 			 * leaking the IDs of other contexts.
798 			 */
799 			if (dev_priv->perf.oa.exclusive_stream->ctx &&
800 			    dev_priv->perf.oa.specific_ctx_id != ctx_id) {
801 				report32[2] = INVALID_CTX_ID;
802 			}
803 
804 			ret = append_oa_sample(stream, buf, count, offset,
805 					       report);
806 			if (ret)
807 				break;
808 
809 			dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
810 		}
811 
812 		/*
813 		 * The above reason field sanity check is based on
814 		 * the assumption that the OA buffer is initially
815 		 * zeroed and we reset the field after copying so the
816 		 * check is still meaningful once old reports start
817 		 * being overwritten.
818 		 */
819 		report32[0] = 0;
820 	}
821 
822 	if (start_offset != *offset) {
823 		spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
824 
825 		/*
826 		 * We removed the gtt_offset for the copy loop above, indexing
827 		 * relative to oa_buf_base so put back here...
828 		 */
829 		head += gtt_offset;
830 
831 		I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
832 		dev_priv->perf.oa.oa_buffer.head = head;
833 
834 		spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
835 	}
836 
837 	return ret;
838 }
839 
840 /**
841  * gen8_oa_read - copy status records then buffered OA reports
842  * @stream: An i915-perf stream opened for OA metrics
843  * @buf: destination buffer given by userspace
844  * @count: the number of bytes userspace wants to read
845  * @offset: (inout): the current position for writing into @buf
846  *
847  * Checks OA unit status registers and if necessary appends corresponding
848  * status records for userspace (such as for a buffer full condition) and then
849  * initiate appending any buffered OA reports.
850  *
851  * Updates @offset according to the number of bytes successfully copied into
852  * the userspace buffer.
853  *
854  * NB: some data may be successfully copied to the userspace buffer
855  * even if an error is returned, and this is reflected in the
856  * updated @offset.
857  *
858  * Returns: zero on success or a negative error code
859  */
860 static int gen8_oa_read(struct i915_perf_stream *stream,
861 			char __user *buf,
862 			size_t count,
863 			size_t *offset)
864 {
865 	struct drm_i915_private *dev_priv = stream->dev_priv;
866 	u32 oastatus;
867 	int ret;
868 
869 	if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
870 		return -EIO;
871 
872 	oastatus = I915_READ(GEN8_OASTATUS);
873 
874 	/*
875 	 * We treat OABUFFER_OVERFLOW as a significant error:
876 	 *
877 	 * Although theoretically we could handle this more gracefully
878 	 * sometimes, some Gens don't correctly suppress certain
879 	 * automatically triggered reports in this condition and so we
880 	 * have to assume that old reports are now being trampled
881 	 * over.
882 	 *
883 	 * Considering how we don't currently give userspace control
884 	 * over the OA buffer size and always configure a large 16MB
885 	 * buffer, then a buffer overflow does anyway likely indicate
886 	 * that something has gone quite badly wrong.
887 	 */
888 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
889 		ret = append_oa_status(stream, buf, count, offset,
890 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
891 		if (ret)
892 			return ret;
893 
894 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
895 			  dev_priv->perf.oa.period_exponent);
896 
897 		dev_priv->perf.oa.ops.oa_disable(dev_priv);
898 		dev_priv->perf.oa.ops.oa_enable(dev_priv);
899 
900 		/*
901 		 * Note: .oa_enable() is expected to re-init the oabuffer and
902 		 * reset GEN8_OASTATUS for us
903 		 */
904 		oastatus = I915_READ(GEN8_OASTATUS);
905 	}
906 
907 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
908 		ret = append_oa_status(stream, buf, count, offset,
909 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
910 		if (ret)
911 			return ret;
912 		I915_WRITE(GEN8_OASTATUS,
913 			   oastatus & ~GEN8_OASTATUS_REPORT_LOST);
914 	}
915 
916 	return gen8_append_oa_reports(stream, buf, count, offset);
917 }
918 
919 /**
920  * Copies all buffered OA reports into userspace read() buffer.
921  * @stream: An i915-perf stream opened for OA metrics
922  * @buf: destination buffer given by userspace
923  * @count: the number of bytes userspace wants to read
924  * @offset: (inout): the current position for writing into @buf
925  *
926  * Notably any error condition resulting in a short read (-%ENOSPC or
927  * -%EFAULT) will be returned even though one or more records may
928  * have been successfully copied. In this case it's up to the caller
929  * to decide if the error should be squashed before returning to
930  * userspace.
931  *
932  * Note: reports are consumed from the head, and appended to the
933  * tail, so the tail chases the head?... If you think that's mad
934  * and back-to-front you're not alone, but this follows the
935  * Gen PRM naming convention.
936  *
937  * Returns: 0 on success, negative error code on failure.
938  */
939 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
940 				  char __user *buf,
941 				  size_t count,
942 				  size_t *offset)
943 {
944 	struct drm_i915_private *dev_priv = stream->dev_priv;
945 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
946 	u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
947 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
948 	u32 mask = (OA_BUFFER_SIZE - 1);
949 	size_t start_offset = *offset;
950 	unsigned long flags;
951 	unsigned int aged_tail_idx;
952 	u32 head, tail;
953 	u32 taken;
954 	int ret = 0;
955 
956 	if (WARN_ON(!stream->enabled))
957 		return -EIO;
958 
959 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
960 
961 	head = dev_priv->perf.oa.oa_buffer.head;
962 	aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
963 	tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
964 
965 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
966 
967 	/* An invalid tail pointer here means we're still waiting for the poll
968 	 * hrtimer callback to give us a pointer
969 	 */
970 	if (tail == INVALID_TAIL_PTR)
971 		return -EAGAIN;
972 
973 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
974 	 * while indexing relative to oa_buf_base.
975 	 */
976 	head -= gtt_offset;
977 	tail -= gtt_offset;
978 
979 	/* An out of bounds or misaligned head or tail pointer implies a driver
980 	 * bug since we validate + align the tail pointers we read from the
981 	 * hardware and we are in full control of the head pointer which should
982 	 * only be incremented by multiples of the report size (notably also
983 	 * all a power of two).
984 	 */
985 	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
986 		      tail > OA_BUFFER_SIZE || tail % report_size,
987 		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
988 		      head, tail))
989 		return -EIO;
990 
991 
992 	for (/* none */;
993 	     (taken = OA_TAKEN(tail, head));
994 	     head = (head + report_size) & mask) {
995 		u8 *report = oa_buf_base + head;
996 		u32 *report32 = (void *)report;
997 
998 		/* All the report sizes factor neatly into the buffer
999 		 * size so we never expect to see a report split
1000 		 * between the beginning and end of the buffer.
1001 		 *
1002 		 * Given the initial alignment check a misalignment
1003 		 * here would imply a driver bug that would result
1004 		 * in an overrun.
1005 		 */
1006 		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1007 			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1008 			break;
1009 		}
1010 
1011 		/* The report-ID field for periodic samples includes
1012 		 * some undocumented flags related to what triggered
1013 		 * the report and is never expected to be zero so we
1014 		 * can check that the report isn't invalid before
1015 		 * copying it to userspace...
1016 		 */
1017 		if (report32[0] == 0) {
1018 			if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
1019 				DRM_NOTE("Skipping spurious, invalid OA report\n");
1020 			continue;
1021 		}
1022 
1023 		ret = append_oa_sample(stream, buf, count, offset, report);
1024 		if (ret)
1025 			break;
1026 
1027 		/* The above report-id field sanity check is based on
1028 		 * the assumption that the OA buffer is initially
1029 		 * zeroed and we reset the field after copying so the
1030 		 * check is still meaningful once old reports start
1031 		 * being overwritten.
1032 		 */
1033 		report32[0] = 0;
1034 	}
1035 
1036 	if (start_offset != *offset) {
1037 		spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1038 
1039 		/* We removed the gtt_offset for the copy loop above, indexing
1040 		 * relative to oa_buf_base so put back here...
1041 		 */
1042 		head += gtt_offset;
1043 
1044 		I915_WRITE(GEN7_OASTATUS2,
1045 			   ((head & GEN7_OASTATUS2_HEAD_MASK) |
1046 			    GEN7_OASTATUS2_MEM_SELECT_GGTT));
1047 		dev_priv->perf.oa.oa_buffer.head = head;
1048 
1049 		spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1050 	}
1051 
1052 	return ret;
1053 }
1054 
1055 /**
1056  * gen7_oa_read - copy status records then buffered OA reports
1057  * @stream: An i915-perf stream opened for OA metrics
1058  * @buf: destination buffer given by userspace
1059  * @count: the number of bytes userspace wants to read
1060  * @offset: (inout): the current position for writing into @buf
1061  *
1062  * Checks Gen 7 specific OA unit status registers and if necessary appends
1063  * corresponding status records for userspace (such as for a buffer full
1064  * condition) and then initiate appending any buffered OA reports.
1065  *
1066  * Updates @offset according to the number of bytes successfully copied into
1067  * the userspace buffer.
1068  *
1069  * Returns: zero on success or a negative error code
1070  */
1071 static int gen7_oa_read(struct i915_perf_stream *stream,
1072 			char __user *buf,
1073 			size_t count,
1074 			size_t *offset)
1075 {
1076 	struct drm_i915_private *dev_priv = stream->dev_priv;
1077 	u32 oastatus1;
1078 	int ret;
1079 
1080 	if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
1081 		return -EIO;
1082 
1083 	oastatus1 = I915_READ(GEN7_OASTATUS1);
1084 
1085 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1086 	 * bits while the OA unit is enabled (while the tail pointer
1087 	 * may be updated asynchronously) so we ignore status bits
1088 	 * that have already been reported to userspace.
1089 	 */
1090 	oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
1091 
1092 	/* We treat OABUFFER_OVERFLOW as a significant error:
1093 	 *
1094 	 * - The status can be interpreted to mean that the buffer is
1095 	 *   currently full (with a higher precedence than OA_TAKEN()
1096 	 *   which will start to report a near-empty buffer after an
1097 	 *   overflow) but it's awkward that we can't clear the status
1098 	 *   on Haswell, so without a reset we won't be able to catch
1099 	 *   the state again.
1100 	 *
1101 	 * - Since it also implies the HW has started overwriting old
1102 	 *   reports it may also affect our sanity checks for invalid
1103 	 *   reports when copying to userspace that assume new reports
1104 	 *   are being written to cleared memory.
1105 	 *
1106 	 * - In the future we may want to introduce a flight recorder
1107 	 *   mode where the driver will automatically maintain a safe
1108 	 *   guard band between head/tail, avoiding this overflow
1109 	 *   condition, but we avoid the added driver complexity for
1110 	 *   now.
1111 	 */
1112 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1113 		ret = append_oa_status(stream, buf, count, offset,
1114 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1115 		if (ret)
1116 			return ret;
1117 
1118 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1119 			  dev_priv->perf.oa.period_exponent);
1120 
1121 		dev_priv->perf.oa.ops.oa_disable(dev_priv);
1122 		dev_priv->perf.oa.ops.oa_enable(dev_priv);
1123 
1124 		oastatus1 = I915_READ(GEN7_OASTATUS1);
1125 	}
1126 
1127 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1128 		ret = append_oa_status(stream, buf, count, offset,
1129 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1130 		if (ret)
1131 			return ret;
1132 		dev_priv->perf.oa.gen7_latched_oastatus1 |=
1133 			GEN7_OASTATUS1_REPORT_LOST;
1134 	}
1135 
1136 	return gen7_append_oa_reports(stream, buf, count, offset);
1137 }
1138 
1139 /**
1140  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1141  * @stream: An i915-perf stream opened for OA metrics
1142  *
1143  * Called when userspace tries to read() from a blocking stream FD opened
1144  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1145  * OA buffer and wakes us.
1146  *
1147  * Note: it's acceptable to have this return with some false positives
1148  * since any subsequent read handling will return -EAGAIN if there isn't
1149  * really data ready for userspace yet.
1150  *
1151  * Returns: zero on success or a negative error code
1152  */
1153 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1154 {
1155 	struct drm_i915_private *dev_priv = stream->dev_priv;
1156 
1157 	/* We would wait indefinitely if periodic sampling is not enabled */
1158 	if (!dev_priv->perf.oa.periodic)
1159 		return -EIO;
1160 
1161 	return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
1162 					oa_buffer_check_unlocked(dev_priv));
1163 }
1164 
1165 /**
1166  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1167  * @stream: An i915-perf stream opened for OA metrics
1168  * @file: An i915 perf stream file
1169  * @wait: poll() state table
1170  *
1171  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1172  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1173  * when it sees data ready to read in the circular OA buffer.
1174  */
1175 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1176 			      struct file *file,
1177 			      poll_table *wait)
1178 {
1179 	struct drm_i915_private *dev_priv = stream->dev_priv;
1180 
1181 	poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
1182 }
1183 
1184 /**
1185  * i915_oa_read - just calls through to &i915_oa_ops->read
1186  * @stream: An i915-perf stream opened for OA metrics
1187  * @buf: destination buffer given by userspace
1188  * @count: the number of bytes userspace wants to read
1189  * @offset: (inout): the current position for writing into @buf
1190  *
1191  * Updates @offset according to the number of bytes successfully copied into
1192  * the userspace buffer.
1193  *
1194  * Returns: zero on success or a negative error code
1195  */
1196 static int i915_oa_read(struct i915_perf_stream *stream,
1197 			char __user *buf,
1198 			size_t count,
1199 			size_t *offset)
1200 {
1201 	struct drm_i915_private *dev_priv = stream->dev_priv;
1202 
1203 	return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
1204 }
1205 
1206 /**
1207  * oa_get_render_ctx_id - determine and hold ctx hw id
1208  * @stream: An i915-perf stream opened for OA metrics
1209  *
1210  * Determine the render context hw id, and ensure it remains fixed for the
1211  * lifetime of the stream. This ensures that we don't have to worry about
1212  * updating the context ID in OACONTROL on the fly.
1213  *
1214  * Returns: zero on success or a negative error code
1215  */
1216 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1217 {
1218 	struct drm_i915_private *dev_priv = stream->dev_priv;
1219 
1220 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
1221 		dev_priv->perf.oa.specific_ctx_id = stream->ctx->hw_id;
1222 	} else {
1223 		struct intel_engine_cs *engine = dev_priv->engine[RCS];
1224 		struct intel_ring *ring;
1225 		int ret;
1226 
1227 		ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1228 		if (ret)
1229 			return ret;
1230 
1231 		/*
1232 		 * As the ID is the gtt offset of the context's vma we
1233 		 * pin the vma to ensure the ID remains fixed.
1234 		 *
1235 		 * NB: implied RCS engine...
1236 		 */
1237 		ring = intel_context_pin(stream->ctx, engine);
1238 		mutex_unlock(&dev_priv->drm.struct_mutex);
1239 		if (IS_ERR(ring))
1240 			return PTR_ERR(ring);
1241 
1242 
1243 		/*
1244 		 * Explicitly track the ID (instead of calling
1245 		 * i915_ggtt_offset() on the fly) considering the difference
1246 		 * with gen8+ and execlists
1247 		 */
1248 		dev_priv->perf.oa.specific_ctx_id =
1249 			i915_ggtt_offset(to_intel_context(stream->ctx, engine)->state);
1250 	}
1251 
1252 	return 0;
1253 }
1254 
1255 /**
1256  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1257  * @stream: An i915-perf stream opened for OA metrics
1258  *
1259  * In case anything needed doing to ensure the context HW ID would remain valid
1260  * for the lifetime of the stream, then that can be undone here.
1261  */
1262 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1263 {
1264 	struct drm_i915_private *dev_priv = stream->dev_priv;
1265 
1266 	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
1267 		dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1268 	} else {
1269 		struct intel_engine_cs *engine = dev_priv->engine[RCS];
1270 
1271 		mutex_lock(&dev_priv->drm.struct_mutex);
1272 
1273 		dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1274 		intel_context_unpin(stream->ctx, engine);
1275 
1276 		mutex_unlock(&dev_priv->drm.struct_mutex);
1277 	}
1278 }
1279 
1280 static void
1281 free_oa_buffer(struct drm_i915_private *i915)
1282 {
1283 	mutex_lock(&i915->drm.struct_mutex);
1284 
1285 	i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj);
1286 	i915_vma_unpin(i915->perf.oa.oa_buffer.vma);
1287 	i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj);
1288 
1289 	i915->perf.oa.oa_buffer.vma = NULL;
1290 	i915->perf.oa.oa_buffer.vaddr = NULL;
1291 
1292 	mutex_unlock(&i915->drm.struct_mutex);
1293 }
1294 
1295 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1296 {
1297 	struct drm_i915_private *dev_priv = stream->dev_priv;
1298 
1299 	BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
1300 
1301 	/*
1302 	 * Unset exclusive_stream first, it will be checked while disabling
1303 	 * the metric set on gen8+.
1304 	 */
1305 	mutex_lock(&dev_priv->drm.struct_mutex);
1306 	dev_priv->perf.oa.exclusive_stream = NULL;
1307 	dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
1308 	mutex_unlock(&dev_priv->drm.struct_mutex);
1309 
1310 	free_oa_buffer(dev_priv);
1311 
1312 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1313 	intel_runtime_pm_put(dev_priv);
1314 
1315 	if (stream->ctx)
1316 		oa_put_render_ctx_id(stream);
1317 
1318 	put_oa_config(dev_priv, stream->oa_config);
1319 
1320 	if (dev_priv->perf.oa.spurious_report_rs.missed) {
1321 		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1322 			 dev_priv->perf.oa.spurious_report_rs.missed);
1323 	}
1324 }
1325 
1326 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
1327 {
1328 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1329 	unsigned long flags;
1330 
1331 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1332 
1333 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1334 	 * before OASTATUS1, but after OASTATUS2
1335 	 */
1336 	I915_WRITE(GEN7_OASTATUS2,
1337 		   gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); /* head */
1338 	dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1339 
1340 	I915_WRITE(GEN7_OABUFFER, gtt_offset);
1341 
1342 	I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1343 
1344 	/* Mark that we need updated tail pointers to read from... */
1345 	dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1346 	dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1347 
1348 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1349 
1350 	/* On Haswell we have to track which OASTATUS1 flags we've
1351 	 * already seen since they can't be cleared while periodic
1352 	 * sampling is enabled.
1353 	 */
1354 	dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
1355 
1356 	/* NB: although the OA buffer will initially be allocated
1357 	 * zeroed via shmfs (and so this memset is redundant when
1358 	 * first allocating), we may re-init the OA buffer, either
1359 	 * when re-enabling a stream or in error/reset paths.
1360 	 *
1361 	 * The reason we clear the buffer for each re-init is for the
1362 	 * sanity check in gen7_append_oa_reports() that looks at the
1363 	 * report-id field to make sure it's non-zero which relies on
1364 	 * the assumption that new reports are being written to zeroed
1365 	 * memory...
1366 	 */
1367 	memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1368 
1369 	/* Maybe make ->pollin per-stream state if we support multiple
1370 	 * concurrent streams in the future.
1371 	 */
1372 	dev_priv->perf.oa.pollin = false;
1373 }
1374 
1375 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
1376 {
1377 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1378 	unsigned long flags;
1379 
1380 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1381 
1382 	I915_WRITE(GEN8_OASTATUS, 0);
1383 	I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1384 	dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1385 
1386 	I915_WRITE(GEN8_OABUFFER_UDW, 0);
1387 
1388 	/*
1389 	 * PRM says:
1390 	 *
1391 	 *  "This MMIO must be set before the OATAILPTR
1392 	 *  register and after the OAHEADPTR register. This is
1393 	 *  to enable proper functionality of the overflow
1394 	 *  bit."
1395 	 */
1396 	I915_WRITE(GEN8_OABUFFER, gtt_offset |
1397 		   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1398 	I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1399 
1400 	/* Mark that we need updated tail pointers to read from... */
1401 	dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1402 	dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1403 
1404 	/*
1405 	 * Reset state used to recognise context switches, affecting which
1406 	 * reports we will forward to userspace while filtering for a single
1407 	 * context.
1408 	 */
1409 	dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;
1410 
1411 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1412 
1413 	/*
1414 	 * NB: although the OA buffer will initially be allocated
1415 	 * zeroed via shmfs (and so this memset is redundant when
1416 	 * first allocating), we may re-init the OA buffer, either
1417 	 * when re-enabling a stream or in error/reset paths.
1418 	 *
1419 	 * The reason we clear the buffer for each re-init is for the
1420 	 * sanity check in gen8_append_oa_reports() that looks at the
1421 	 * reason field to make sure it's non-zero which relies on
1422 	 * the assumption that new reports are being written to zeroed
1423 	 * memory...
1424 	 */
1425 	memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1426 
1427 	/*
1428 	 * Maybe make ->pollin per-stream state if we support multiple
1429 	 * concurrent streams in the future.
1430 	 */
1431 	dev_priv->perf.oa.pollin = false;
1432 }
1433 
1434 static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
1435 {
1436 	struct drm_i915_gem_object *bo;
1437 	struct i915_vma *vma;
1438 	int ret;
1439 
1440 	if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
1441 		return -ENODEV;
1442 
1443 	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1444 	if (ret)
1445 		return ret;
1446 
1447 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1448 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1449 
1450 	bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE);
1451 	if (IS_ERR(bo)) {
1452 		DRM_ERROR("Failed to allocate OA buffer\n");
1453 		ret = PTR_ERR(bo);
1454 		goto unlock;
1455 	}
1456 
1457 	ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
1458 	if (ret)
1459 		goto err_unref;
1460 
1461 	/* PreHSW required 512K alignment, HSW requires 16M */
1462 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1463 	if (IS_ERR(vma)) {
1464 		ret = PTR_ERR(vma);
1465 		goto err_unref;
1466 	}
1467 	dev_priv->perf.oa.oa_buffer.vma = vma;
1468 
1469 	dev_priv->perf.oa.oa_buffer.vaddr =
1470 		i915_gem_object_pin_map(bo, I915_MAP_WB);
1471 	if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
1472 		ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
1473 		goto err_unpin;
1474 	}
1475 
1476 	dev_priv->perf.oa.ops.init_oa_buffer(dev_priv);
1477 
1478 	DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1479 			 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
1480 			 dev_priv->perf.oa.oa_buffer.vaddr);
1481 
1482 	goto unlock;
1483 
1484 err_unpin:
1485 	__i915_vma_unpin(vma);
1486 
1487 err_unref:
1488 	i915_gem_object_put(bo);
1489 
1490 	dev_priv->perf.oa.oa_buffer.vaddr = NULL;
1491 	dev_priv->perf.oa.oa_buffer.vma = NULL;
1492 
1493 unlock:
1494 	mutex_unlock(&dev_priv->drm.struct_mutex);
1495 	return ret;
1496 }
1497 
1498 static void config_oa_regs(struct drm_i915_private *dev_priv,
1499 			   const struct i915_oa_reg *regs,
1500 			   u32 n_regs)
1501 {
1502 	u32 i;
1503 
1504 	for (i = 0; i < n_regs; i++) {
1505 		const struct i915_oa_reg *reg = regs + i;
1506 
1507 		I915_WRITE(reg->addr, reg->value);
1508 	}
1509 }
1510 
1511 static int hsw_enable_metric_set(struct drm_i915_private *dev_priv,
1512 				 const struct i915_oa_config *oa_config)
1513 {
1514 	/* PRM:
1515 	 *
1516 	 * OA unit is using “crclk” for its functionality. When trunk
1517 	 * level clock gating takes place, OA clock would be gated,
1518 	 * unable to count the events from non-render clock domain.
1519 	 * Render clock gating must be disabled when OA is enabled to
1520 	 * count the events from non-render domain. Unit level clock
1521 	 * gating for RCS should also be disabled.
1522 	 */
1523 	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1524 				    ~GEN7_DOP_CLOCK_GATE_ENABLE));
1525 	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1526 				  GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1527 
1528 	config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1529 
1530 	/* It apparently takes a fairly long time for a new MUX
1531 	 * configuration to be be applied after these register writes.
1532 	 * This delay duration was derived empirically based on the
1533 	 * render_basic config but hopefully it covers the maximum
1534 	 * configuration latency.
1535 	 *
1536 	 * As a fallback, the checks in _append_oa_reports() to skip
1537 	 * invalid OA reports do also seem to work to discard reports
1538 	 * generated before this config has completed - albeit not
1539 	 * silently.
1540 	 *
1541 	 * Unfortunately this is essentially a magic number, since we
1542 	 * don't currently know of a reliable mechanism for predicting
1543 	 * how long the MUX config will take to apply and besides
1544 	 * seeing invalid reports we don't know of a reliable way to
1545 	 * explicitly check that the MUX config has landed.
1546 	 *
1547 	 * It's even possible we've miss characterized the underlying
1548 	 * problem - it just seems like the simplest explanation why
1549 	 * a delay at this location would mitigate any invalid reports.
1550 	 */
1551 	usleep_range(15000, 20000);
1552 
1553 	config_oa_regs(dev_priv, oa_config->b_counter_regs,
1554 		       oa_config->b_counter_regs_len);
1555 
1556 	return 0;
1557 }
1558 
1559 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1560 {
1561 	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1562 				  ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1563 	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1564 				    GEN7_DOP_CLOCK_GATE_ENABLE));
1565 
1566 	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1567 				      ~GT_NOA_ENABLE));
1568 }
1569 
1570 /*
1571  * NB: It must always remain pointer safe to run this even if the OA unit
1572  * has been disabled.
1573  *
1574  * It's fine to put out-of-date values into these per-context registers
1575  * in the case that the OA unit has been disabled.
1576  */
1577 static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx,
1578 					   u32 *reg_state,
1579 					   const struct i915_oa_config *oa_config)
1580 {
1581 	struct drm_i915_private *dev_priv = ctx->i915;
1582 	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
1583 	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
1584 	/* The MMIO offsets for Flex EU registers aren't contiguous */
1585 	u32 flex_mmio[] = {
1586 		i915_mmio_reg_offset(EU_PERF_CNTL0),
1587 		i915_mmio_reg_offset(EU_PERF_CNTL1),
1588 		i915_mmio_reg_offset(EU_PERF_CNTL2),
1589 		i915_mmio_reg_offset(EU_PERF_CNTL3),
1590 		i915_mmio_reg_offset(EU_PERF_CNTL4),
1591 		i915_mmio_reg_offset(EU_PERF_CNTL5),
1592 		i915_mmio_reg_offset(EU_PERF_CNTL6),
1593 	};
1594 	int i;
1595 
1596 	reg_state[ctx_oactxctrl] = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1597 	reg_state[ctx_oactxctrl+1] = (dev_priv->perf.oa.period_exponent <<
1598 				      GEN8_OA_TIMER_PERIOD_SHIFT) |
1599 				     (dev_priv->perf.oa.periodic ?
1600 				      GEN8_OA_TIMER_ENABLE : 0) |
1601 				     GEN8_OA_COUNTER_RESUME;
1602 
1603 	for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1604 		u32 state_offset = ctx_flexeu0 + i * 2;
1605 		u32 mmio = flex_mmio[i];
1606 
1607 		/*
1608 		 * This arbitrary default will select the 'EU FPU0 Pipeline
1609 		 * Active' event. In the future it's anticipated that there
1610 		 * will be an explicit 'No Event' we can select, but not yet...
1611 		 */
1612 		u32 value = 0;
1613 
1614 		if (oa_config) {
1615 			u32 j;
1616 
1617 			for (j = 0; j < oa_config->flex_regs_len; j++) {
1618 				if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1619 					value = oa_config->flex_regs[j].value;
1620 					break;
1621 				}
1622 			}
1623 		}
1624 
1625 		reg_state[state_offset] = mmio;
1626 		reg_state[state_offset+1] = value;
1627 	}
1628 }
1629 
1630 /*
1631  * Same as gen8_update_reg_state_unlocked only through the batchbuffer. This
1632  * is only used by the kernel context.
1633  */
1634 static int gen8_emit_oa_config(struct i915_request *rq,
1635 			       const struct i915_oa_config *oa_config)
1636 {
1637 	struct drm_i915_private *dev_priv = rq->i915;
1638 	/* The MMIO offsets for Flex EU registers aren't contiguous */
1639 	u32 flex_mmio[] = {
1640 		i915_mmio_reg_offset(EU_PERF_CNTL0),
1641 		i915_mmio_reg_offset(EU_PERF_CNTL1),
1642 		i915_mmio_reg_offset(EU_PERF_CNTL2),
1643 		i915_mmio_reg_offset(EU_PERF_CNTL3),
1644 		i915_mmio_reg_offset(EU_PERF_CNTL4),
1645 		i915_mmio_reg_offset(EU_PERF_CNTL5),
1646 		i915_mmio_reg_offset(EU_PERF_CNTL6),
1647 	};
1648 	u32 *cs;
1649 	int i;
1650 
1651 	cs = intel_ring_begin(rq, ARRAY_SIZE(flex_mmio) * 2 + 4);
1652 	if (IS_ERR(cs))
1653 		return PTR_ERR(cs);
1654 
1655 	*cs++ = MI_LOAD_REGISTER_IMM(ARRAY_SIZE(flex_mmio) + 1);
1656 
1657 	*cs++ = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1658 	*cs++ = (dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1659 		(dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1660 		GEN8_OA_COUNTER_RESUME;
1661 
1662 	for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1663 		u32 mmio = flex_mmio[i];
1664 
1665 		/*
1666 		 * This arbitrary default will select the 'EU FPU0 Pipeline
1667 		 * Active' event. In the future it's anticipated that there
1668 		 * will be an explicit 'No Event' we can select, but not
1669 		 * yet...
1670 		 */
1671 		u32 value = 0;
1672 
1673 		if (oa_config) {
1674 			u32 j;
1675 
1676 			for (j = 0; j < oa_config->flex_regs_len; j++) {
1677 				if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1678 					value = oa_config->flex_regs[j].value;
1679 					break;
1680 				}
1681 			}
1682 		}
1683 
1684 		*cs++ = mmio;
1685 		*cs++ = value;
1686 	}
1687 
1688 	*cs++ = MI_NOOP;
1689 	intel_ring_advance(rq, cs);
1690 
1691 	return 0;
1692 }
1693 
1694 static int gen8_switch_to_updated_kernel_context(struct drm_i915_private *dev_priv,
1695 						 const struct i915_oa_config *oa_config)
1696 {
1697 	struct intel_engine_cs *engine = dev_priv->engine[RCS];
1698 	struct i915_timeline *timeline;
1699 	struct i915_request *rq;
1700 	int ret;
1701 
1702 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
1703 
1704 	i915_retire_requests(dev_priv);
1705 
1706 	rq = i915_request_alloc(engine, dev_priv->kernel_context);
1707 	if (IS_ERR(rq))
1708 		return PTR_ERR(rq);
1709 
1710 	ret = gen8_emit_oa_config(rq, oa_config);
1711 	if (ret) {
1712 		i915_request_add(rq);
1713 		return ret;
1714 	}
1715 
1716 	/* Queue this switch after all other activity */
1717 	list_for_each_entry(timeline, &dev_priv->gt.timelines, link) {
1718 		struct i915_request *prev;
1719 
1720 		prev = i915_gem_active_raw(&timeline->last_request,
1721 					   &dev_priv->drm.struct_mutex);
1722 		if (prev)
1723 			i915_request_await_dma_fence(rq, &prev->fence);
1724 	}
1725 
1726 	i915_request_add(rq);
1727 
1728 	return 0;
1729 }
1730 
1731 /*
1732  * Manages updating the per-context aspects of the OA stream
1733  * configuration across all contexts.
1734  *
1735  * The awkward consideration here is that OACTXCONTROL controls the
1736  * exponent for periodic sampling which is primarily used for system
1737  * wide profiling where we'd like a consistent sampling period even in
1738  * the face of context switches.
1739  *
1740  * Our approach of updating the register state context (as opposed to
1741  * say using a workaround batch buffer) ensures that the hardware
1742  * won't automatically reload an out-of-date timer exponent even
1743  * transiently before a WA BB could be parsed.
1744  *
1745  * This function needs to:
1746  * - Ensure the currently running context's per-context OA state is
1747  *   updated
1748  * - Ensure that all existing contexts will have the correct per-context
1749  *   OA state if they are scheduled for use.
1750  * - Ensure any new contexts will be initialized with the correct
1751  *   per-context OA state.
1752  *
1753  * Note: it's only the RCS/Render context that has any OA state.
1754  */
1755 static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
1756 				       const struct i915_oa_config *oa_config)
1757 {
1758 	struct intel_engine_cs *engine = dev_priv->engine[RCS];
1759 	struct i915_gem_context *ctx;
1760 	int ret;
1761 	unsigned int wait_flags = I915_WAIT_LOCKED;
1762 
1763 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
1764 
1765 	/* Switch away from any user context. */
1766 	ret = gen8_switch_to_updated_kernel_context(dev_priv, oa_config);
1767 	if (ret)
1768 		goto out;
1769 
1770 	/*
1771 	 * The OA register config is setup through the context image. This image
1772 	 * might be written to by the GPU on context switch (in particular on
1773 	 * lite-restore). This means we can't safely update a context's image,
1774 	 * if this context is scheduled/submitted to run on the GPU.
1775 	 *
1776 	 * We could emit the OA register config through the batch buffer but
1777 	 * this might leave small interval of time where the OA unit is
1778 	 * configured at an invalid sampling period.
1779 	 *
1780 	 * So far the best way to work around this issue seems to be draining
1781 	 * the GPU from any submitted work.
1782 	 */
1783 	ret = i915_gem_wait_for_idle(dev_priv, wait_flags);
1784 	if (ret)
1785 		goto out;
1786 
1787 	/* Update all contexts now that we've stalled the submission. */
1788 	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1789 		struct intel_context *ce = to_intel_context(ctx, engine);
1790 		u32 *regs;
1791 
1792 		/* OA settings will be set upon first use */
1793 		if (!ce->state)
1794 			continue;
1795 
1796 		regs = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1797 		if (IS_ERR(regs)) {
1798 			ret = PTR_ERR(regs);
1799 			goto out;
1800 		}
1801 
1802 		ce->state->obj->mm.dirty = true;
1803 		regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);
1804 
1805 		gen8_update_reg_state_unlocked(ctx, regs, oa_config);
1806 
1807 		i915_gem_object_unpin_map(ce->state->obj);
1808 	}
1809 
1810  out:
1811 	return ret;
1812 }
1813 
1814 static int gen8_enable_metric_set(struct drm_i915_private *dev_priv,
1815 				  const struct i915_oa_config *oa_config)
1816 {
1817 	int ret;
1818 
1819 	/*
1820 	 * We disable slice/unslice clock ratio change reports on SKL since
1821 	 * they are too noisy. The HW generates a lot of redundant reports
1822 	 * where the ratio hasn't really changed causing a lot of redundant
1823 	 * work to processes and increasing the chances we'll hit buffer
1824 	 * overruns.
1825 	 *
1826 	 * Although we don't currently use the 'disable overrun' OABUFFER
1827 	 * feature it's worth noting that clock ratio reports have to be
1828 	 * disabled before considering to use that feature since the HW doesn't
1829 	 * correctly block these reports.
1830 	 *
1831 	 * Currently none of the high-level metrics we have depend on knowing
1832 	 * this ratio to normalize.
1833 	 *
1834 	 * Note: This register is not power context saved and restored, but
1835 	 * that's OK considering that we disable RC6 while the OA unit is
1836 	 * enabled.
1837 	 *
1838 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1839 	 * be read back from automatically triggered reports, as part of the
1840 	 * RPT_ID field.
1841 	 */
1842 	if (IS_GEN(dev_priv, 9, 11)) {
1843 		I915_WRITE(GEN8_OA_DEBUG,
1844 			   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1845 					      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1846 	}
1847 
1848 	/*
1849 	 * Update all contexts prior writing the mux configurations as we need
1850 	 * to make sure all slices/subslices are ON before writing to NOA
1851 	 * registers.
1852 	 */
1853 	ret = gen8_configure_all_contexts(dev_priv, oa_config);
1854 	if (ret)
1855 		return ret;
1856 
1857 	config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1858 
1859 	config_oa_regs(dev_priv, oa_config->b_counter_regs,
1860 		       oa_config->b_counter_regs_len);
1861 
1862 	return 0;
1863 }
1864 
1865 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
1866 {
1867 	/* Reset all contexts' slices/subslices configurations. */
1868 	gen8_configure_all_contexts(dev_priv, NULL);
1869 
1870 	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1871 				      ~GT_NOA_ENABLE));
1872 }
1873 
1874 static void gen10_disable_metric_set(struct drm_i915_private *dev_priv)
1875 {
1876 	/* Reset all contexts' slices/subslices configurations. */
1877 	gen8_configure_all_contexts(dev_priv, NULL);
1878 
1879 	/* Make sure we disable noa to save power. */
1880 	I915_WRITE(RPM_CONFIG1,
1881 		   I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE);
1882 }
1883 
1884 static void gen7_oa_enable(struct drm_i915_private *dev_priv)
1885 {
1886 	struct i915_gem_context *ctx =
1887 			dev_priv->perf.oa.exclusive_stream->ctx;
1888 	u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1889 	bool periodic = dev_priv->perf.oa.periodic;
1890 	u32 period_exponent = dev_priv->perf.oa.period_exponent;
1891 	u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1892 
1893 	/*
1894 	 * Reset buf pointers so we don't forward reports from before now.
1895 	 *
1896 	 * Think carefully if considering trying to avoid this, since it
1897 	 * also ensures status flags and the buffer itself are cleared
1898 	 * in error paths, and we have checks for invalid reports based
1899 	 * on the assumption that certain fields are written to zeroed
1900 	 * memory which this helps maintains.
1901 	 */
1902 	gen7_init_oa_buffer(dev_priv);
1903 
1904 	I915_WRITE(GEN7_OACONTROL,
1905 		   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1906 		   (period_exponent <<
1907 		    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1908 		   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1909 		   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1910 		   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1911 		   GEN7_OACONTROL_ENABLE);
1912 }
1913 
1914 static void gen8_oa_enable(struct drm_i915_private *dev_priv)
1915 {
1916 	u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1917 
1918 	/*
1919 	 * Reset buf pointers so we don't forward reports from before now.
1920 	 *
1921 	 * Think carefully if considering trying to avoid this, since it
1922 	 * also ensures status flags and the buffer itself are cleared
1923 	 * in error paths, and we have checks for invalid reports based
1924 	 * on the assumption that certain fields are written to zeroed
1925 	 * memory which this helps maintains.
1926 	 */
1927 	gen8_init_oa_buffer(dev_priv);
1928 
1929 	/*
1930 	 * Note: we don't rely on the hardware to perform single context
1931 	 * filtering and instead filter on the cpu based on the context-id
1932 	 * field of reports
1933 	 */
1934 	I915_WRITE(GEN8_OACONTROL, (report_format <<
1935 				    GEN8_OA_REPORT_FORMAT_SHIFT) |
1936 				   GEN8_OA_COUNTER_ENABLE);
1937 }
1938 
1939 /**
1940  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1941  * @stream: An i915 perf stream opened for OA metrics
1942  *
1943  * [Re]enables hardware periodic sampling according to the period configured
1944  * when opening the stream. This also starts a hrtimer that will periodically
1945  * check for data in the circular OA buffer for notifying userspace (e.g.
1946  * during a read() or poll()).
1947  */
1948 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
1949 {
1950 	struct drm_i915_private *dev_priv = stream->dev_priv;
1951 
1952 	dev_priv->perf.oa.ops.oa_enable(dev_priv);
1953 
1954 	if (dev_priv->perf.oa.periodic)
1955 		hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
1956 			      ns_to_ktime(POLL_PERIOD),
1957 			      HRTIMER_MODE_REL_PINNED);
1958 }
1959 
1960 static void gen7_oa_disable(struct drm_i915_private *dev_priv)
1961 {
1962 	I915_WRITE(GEN7_OACONTROL, 0);
1963 	if (intel_wait_for_register(dev_priv,
1964 				    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
1965 				    50))
1966 		DRM_ERROR("wait for OA to be disabled timed out\n");
1967 }
1968 
1969 static void gen8_oa_disable(struct drm_i915_private *dev_priv)
1970 {
1971 	I915_WRITE(GEN8_OACONTROL, 0);
1972 	if (intel_wait_for_register(dev_priv,
1973 				    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
1974 				    50))
1975 		DRM_ERROR("wait for OA to be disabled timed out\n");
1976 }
1977 
1978 /**
1979  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1980  * @stream: An i915 perf stream opened for OA metrics
1981  *
1982  * Stops the OA unit from periodically writing counter reports into the
1983  * circular OA buffer. This also stops the hrtimer that periodically checks for
1984  * data in the circular OA buffer, for notifying userspace.
1985  */
1986 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
1987 {
1988 	struct drm_i915_private *dev_priv = stream->dev_priv;
1989 
1990 	dev_priv->perf.oa.ops.oa_disable(dev_priv);
1991 
1992 	if (dev_priv->perf.oa.periodic)
1993 		hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
1994 }
1995 
1996 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
1997 	.destroy = i915_oa_stream_destroy,
1998 	.enable = i915_oa_stream_enable,
1999 	.disable = i915_oa_stream_disable,
2000 	.wait_unlocked = i915_oa_wait_unlocked,
2001 	.poll_wait = i915_oa_poll_wait,
2002 	.read = i915_oa_read,
2003 };
2004 
2005 /**
2006  * i915_oa_stream_init - validate combined props for OA stream and init
2007  * @stream: An i915 perf stream
2008  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2009  * @props: The property state that configures stream (individually validated)
2010  *
2011  * While read_properties_unlocked() validates properties in isolation it
2012  * doesn't ensure that the combination necessarily makes sense.
2013  *
2014  * At this point it has been determined that userspace wants a stream of
2015  * OA metrics, but still we need to further validate the combined
2016  * properties are OK.
2017  *
2018  * If the configuration makes sense then we can allocate memory for
2019  * a circular OA buffer and apply the requested metric set configuration.
2020  *
2021  * Returns: zero on success or a negative error code.
2022  */
2023 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2024 			       struct drm_i915_perf_open_param *param,
2025 			       struct perf_open_properties *props)
2026 {
2027 	struct drm_i915_private *dev_priv = stream->dev_priv;
2028 	int format_size;
2029 	int ret;
2030 
2031 	/* If the sysfs metrics/ directory wasn't registered for some
2032 	 * reason then don't let userspace try their luck with config
2033 	 * IDs
2034 	 */
2035 	if (!dev_priv->perf.metrics_kobj) {
2036 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2037 		return -EINVAL;
2038 	}
2039 
2040 	if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2041 		DRM_DEBUG("Only OA report sampling supported\n");
2042 		return -EINVAL;
2043 	}
2044 
2045 	if (!dev_priv->perf.oa.ops.init_oa_buffer) {
2046 		DRM_DEBUG("OA unit not supported\n");
2047 		return -ENODEV;
2048 	}
2049 
2050 	/* To avoid the complexity of having to accurately filter
2051 	 * counter reports and marshal to the appropriate client
2052 	 * we currently only allow exclusive access
2053 	 */
2054 	if (dev_priv->perf.oa.exclusive_stream) {
2055 		DRM_DEBUG("OA unit already in use\n");
2056 		return -EBUSY;
2057 	}
2058 
2059 	if (!props->oa_format) {
2060 		DRM_DEBUG("OA report format not specified\n");
2061 		return -EINVAL;
2062 	}
2063 
2064 	/* We set up some ratelimit state to potentially throttle any _NOTES
2065 	 * about spurious, invalid OA reports which we don't forward to
2066 	 * userspace.
2067 	 *
2068 	 * The initialization is associated with opening the stream (not driver
2069 	 * init) considering we print a _NOTE about any throttling when closing
2070 	 * the stream instead of waiting until driver _fini which no one would
2071 	 * ever see.
2072 	 *
2073 	 * Using the same limiting factors as printk_ratelimit()
2074 	 */
2075 	ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
2076 			     5 * HZ, 10);
2077 	/* Since we use a DRM_NOTE for spurious reports it would be
2078 	 * inconsistent to let __ratelimit() automatically print a warning for
2079 	 * throttling.
2080 	 */
2081 	ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
2082 			    RATELIMIT_MSG_ON_RELEASE);
2083 
2084 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2085 
2086 	format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
2087 
2088 	stream->sample_flags |= SAMPLE_OA_REPORT;
2089 	stream->sample_size += format_size;
2090 
2091 	dev_priv->perf.oa.oa_buffer.format_size = format_size;
2092 	if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
2093 		return -EINVAL;
2094 
2095 	dev_priv->perf.oa.oa_buffer.format =
2096 		dev_priv->perf.oa.oa_formats[props->oa_format].format;
2097 
2098 	dev_priv->perf.oa.periodic = props->oa_periodic;
2099 	if (dev_priv->perf.oa.periodic)
2100 		dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
2101 
2102 	if (stream->ctx) {
2103 		ret = oa_get_render_ctx_id(stream);
2104 		if (ret) {
2105 			DRM_DEBUG("Invalid context id to filter with\n");
2106 			return ret;
2107 		}
2108 	}
2109 
2110 	ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2111 	if (ret) {
2112 		DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2113 		goto err_config;
2114 	}
2115 
2116 	/* PRM - observability performance counters:
2117 	 *
2118 	 *   OACONTROL, performance counter enable, note:
2119 	 *
2120 	 *   "When this bit is set, in order to have coherent counts,
2121 	 *   RC6 power state and trunk clock gating must be disabled.
2122 	 *   This can be achieved by programming MMIO registers as
2123 	 *   0xA094=0 and 0xA090[31]=1"
2124 	 *
2125 	 *   In our case we are expecting that taking pm + FORCEWAKE
2126 	 *   references will effectively disable RC6.
2127 	 */
2128 	intel_runtime_pm_get(dev_priv);
2129 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2130 
2131 	ret = alloc_oa_buffer(dev_priv);
2132 	if (ret)
2133 		goto err_oa_buf_alloc;
2134 
2135 	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2136 	if (ret)
2137 		goto err_lock;
2138 
2139 	ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv,
2140 						      stream->oa_config);
2141 	if (ret) {
2142 		DRM_DEBUG("Unable to enable metric set\n");
2143 		goto err_enable;
2144 	}
2145 
2146 	stream->ops = &i915_oa_stream_ops;
2147 
2148 	dev_priv->perf.oa.exclusive_stream = stream;
2149 
2150 	mutex_unlock(&dev_priv->drm.struct_mutex);
2151 
2152 	return 0;
2153 
2154 err_enable:
2155 	dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
2156 	mutex_unlock(&dev_priv->drm.struct_mutex);
2157 
2158 err_lock:
2159 	free_oa_buffer(dev_priv);
2160 
2161 err_oa_buf_alloc:
2162 	put_oa_config(dev_priv, stream->oa_config);
2163 
2164 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2165 	intel_runtime_pm_put(dev_priv);
2166 
2167 err_config:
2168 	if (stream->ctx)
2169 		oa_put_render_ctx_id(stream);
2170 
2171 	return ret;
2172 }
2173 
2174 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2175 			    struct i915_gem_context *ctx,
2176 			    u32 *reg_state)
2177 {
2178 	struct i915_perf_stream *stream;
2179 
2180 	if (engine->id != RCS)
2181 		return;
2182 
2183 	stream = engine->i915->perf.oa.exclusive_stream;
2184 	if (stream)
2185 		gen8_update_reg_state_unlocked(ctx, reg_state, stream->oa_config);
2186 }
2187 
2188 /**
2189  * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2190  * @stream: An i915 perf stream
2191  * @file: An i915 perf stream file
2192  * @buf: destination buffer given by userspace
2193  * @count: the number of bytes userspace wants to read
2194  * @ppos: (inout) file seek position (unused)
2195  *
2196  * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2197  * ensure that if we've successfully copied any data then reporting that takes
2198  * precedence over any internal error status, so the data isn't lost.
2199  *
2200  * For example ret will be -ENOSPC whenever there is more buffered data than
2201  * can be copied to userspace, but that's only interesting if we weren't able
2202  * to copy some data because it implies the userspace buffer is too small to
2203  * receive a single record (and we never split records).
2204  *
2205  * Another case with ret == -EFAULT is more of a grey area since it would seem
2206  * like bad form for userspace to ask us to overrun its buffer, but the user
2207  * knows best:
2208  *
2209  *   http://yarchive.net/comp/linux/partial_reads_writes.html
2210  *
2211  * Returns: The number of bytes copied or a negative error code on failure.
2212  */
2213 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2214 				     struct file *file,
2215 				     char __user *buf,
2216 				     size_t count,
2217 				     loff_t *ppos)
2218 {
2219 	/* Note we keep the offset (aka bytes read) separate from any
2220 	 * error status so that the final check for whether we return
2221 	 * the bytes read with a higher precedence than any error (see
2222 	 * comment below) doesn't need to be handled/duplicated in
2223 	 * stream->ops->read() implementations.
2224 	 */
2225 	size_t offset = 0;
2226 	int ret = stream->ops->read(stream, buf, count, &offset);
2227 
2228 	return offset ?: (ret ?: -EAGAIN);
2229 }
2230 
2231 /**
2232  * i915_perf_read - handles read() FOP for i915 perf stream FDs
2233  * @file: An i915 perf stream file
2234  * @buf: destination buffer given by userspace
2235  * @count: the number of bytes userspace wants to read
2236  * @ppos: (inout) file seek position (unused)
2237  *
2238  * The entry point for handling a read() on a stream file descriptor from
2239  * userspace. Most of the work is left to the i915_perf_read_locked() and
2240  * &i915_perf_stream_ops->read but to save having stream implementations (of
2241  * which we might have multiple later) we handle blocking read here.
2242  *
2243  * We can also consistently treat trying to read from a disabled stream
2244  * as an IO error so implementations can assume the stream is enabled
2245  * while reading.
2246  *
2247  * Returns: The number of bytes copied or a negative error code on failure.
2248  */
2249 static ssize_t i915_perf_read(struct file *file,
2250 			      char __user *buf,
2251 			      size_t count,
2252 			      loff_t *ppos)
2253 {
2254 	struct i915_perf_stream *stream = file->private_data;
2255 	struct drm_i915_private *dev_priv = stream->dev_priv;
2256 	ssize_t ret;
2257 
2258 	/* To ensure it's handled consistently we simply treat all reads of a
2259 	 * disabled stream as an error. In particular it might otherwise lead
2260 	 * to a deadlock for blocking file descriptors...
2261 	 */
2262 	if (!stream->enabled)
2263 		return -EIO;
2264 
2265 	if (!(file->f_flags & O_NONBLOCK)) {
2266 		/* There's the small chance of false positives from
2267 		 * stream->ops->wait_unlocked.
2268 		 *
2269 		 * E.g. with single context filtering since we only wait until
2270 		 * oabuffer has >= 1 report we don't immediately know whether
2271 		 * any reports really belong to the current context
2272 		 */
2273 		do {
2274 			ret = stream->ops->wait_unlocked(stream);
2275 			if (ret)
2276 				return ret;
2277 
2278 			mutex_lock(&dev_priv->perf.lock);
2279 			ret = i915_perf_read_locked(stream, file,
2280 						    buf, count, ppos);
2281 			mutex_unlock(&dev_priv->perf.lock);
2282 		} while (ret == -EAGAIN);
2283 	} else {
2284 		mutex_lock(&dev_priv->perf.lock);
2285 		ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2286 		mutex_unlock(&dev_priv->perf.lock);
2287 	}
2288 
2289 	/* We allow the poll checking to sometimes report false positive EPOLLIN
2290 	 * events where we might actually report EAGAIN on read() if there's
2291 	 * not really any data available. In this situation though we don't
2292 	 * want to enter a busy loop between poll() reporting a EPOLLIN event
2293 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2294 	 * effectively ensures we back off until the next hrtimer callback
2295 	 * before reporting another EPOLLIN event.
2296 	 */
2297 	if (ret >= 0 || ret == -EAGAIN) {
2298 		/* Maybe make ->pollin per-stream state if we support multiple
2299 		 * concurrent streams in the future.
2300 		 */
2301 		dev_priv->perf.oa.pollin = false;
2302 	}
2303 
2304 	return ret;
2305 }
2306 
2307 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2308 {
2309 	struct drm_i915_private *dev_priv =
2310 		container_of(hrtimer, typeof(*dev_priv),
2311 			     perf.oa.poll_check_timer);
2312 
2313 	if (oa_buffer_check_unlocked(dev_priv)) {
2314 		dev_priv->perf.oa.pollin = true;
2315 		wake_up(&dev_priv->perf.oa.poll_wq);
2316 	}
2317 
2318 	hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2319 
2320 	return HRTIMER_RESTART;
2321 }
2322 
2323 /**
2324  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2325  * @dev_priv: i915 device instance
2326  * @stream: An i915 perf stream
2327  * @file: An i915 perf stream file
2328  * @wait: poll() state table
2329  *
2330  * For handling userspace polling on an i915 perf stream, this calls through to
2331  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2332  * will be woken for new stream data.
2333  *
2334  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2335  * with any non-file-operation driver hooks.
2336  *
2337  * Returns: any poll events that are ready without sleeping
2338  */
2339 static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2340 					  struct i915_perf_stream *stream,
2341 					  struct file *file,
2342 					  poll_table *wait)
2343 {
2344 	__poll_t events = 0;
2345 
2346 	stream->ops->poll_wait(stream, file, wait);
2347 
2348 	/* Note: we don't explicitly check whether there's something to read
2349 	 * here since this path may be very hot depending on what else
2350 	 * userspace is polling, or on the timeout in use. We rely solely on
2351 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2352 	 * samples to read.
2353 	 */
2354 	if (dev_priv->perf.oa.pollin)
2355 		events |= EPOLLIN;
2356 
2357 	return events;
2358 }
2359 
2360 /**
2361  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2362  * @file: An i915 perf stream file
2363  * @wait: poll() state table
2364  *
2365  * For handling userspace polling on an i915 perf stream, this ensures
2366  * poll_wait() gets called with a wait queue that will be woken for new stream
2367  * data.
2368  *
2369  * Note: Implementation deferred to i915_perf_poll_locked()
2370  *
2371  * Returns: any poll events that are ready without sleeping
2372  */
2373 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
2374 {
2375 	struct i915_perf_stream *stream = file->private_data;
2376 	struct drm_i915_private *dev_priv = stream->dev_priv;
2377 	__poll_t ret;
2378 
2379 	mutex_lock(&dev_priv->perf.lock);
2380 	ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2381 	mutex_unlock(&dev_priv->perf.lock);
2382 
2383 	return ret;
2384 }
2385 
2386 /**
2387  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2388  * @stream: A disabled i915 perf stream
2389  *
2390  * [Re]enables the associated capture of data for this stream.
2391  *
2392  * If a stream was previously enabled then there's currently no intention
2393  * to provide userspace any guarantee about the preservation of previously
2394  * buffered data.
2395  */
2396 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2397 {
2398 	if (stream->enabled)
2399 		return;
2400 
2401 	/* Allow stream->ops->enable() to refer to this */
2402 	stream->enabled = true;
2403 
2404 	if (stream->ops->enable)
2405 		stream->ops->enable(stream);
2406 }
2407 
2408 /**
2409  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2410  * @stream: An enabled i915 perf stream
2411  *
2412  * Disables the associated capture of data for this stream.
2413  *
2414  * The intention is that disabling an re-enabling a stream will ideally be
2415  * cheaper than destroying and re-opening a stream with the same configuration,
2416  * though there are no formal guarantees about what state or buffered data
2417  * must be retained between disabling and re-enabling a stream.
2418  *
2419  * Note: while a stream is disabled it's considered an error for userspace
2420  * to attempt to read from the stream (-EIO).
2421  */
2422 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2423 {
2424 	if (!stream->enabled)
2425 		return;
2426 
2427 	/* Allow stream->ops->disable() to refer to this */
2428 	stream->enabled = false;
2429 
2430 	if (stream->ops->disable)
2431 		stream->ops->disable(stream);
2432 }
2433 
2434 /**
2435  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2436  * @stream: An i915 perf stream
2437  * @cmd: the ioctl request
2438  * @arg: the ioctl data
2439  *
2440  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2441  * with any non-file-operation driver hooks.
2442  *
2443  * Returns: zero on success or a negative error code. Returns -EINVAL for
2444  * an unknown ioctl request.
2445  */
2446 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2447 				   unsigned int cmd,
2448 				   unsigned long arg)
2449 {
2450 	switch (cmd) {
2451 	case I915_PERF_IOCTL_ENABLE:
2452 		i915_perf_enable_locked(stream);
2453 		return 0;
2454 	case I915_PERF_IOCTL_DISABLE:
2455 		i915_perf_disable_locked(stream);
2456 		return 0;
2457 	}
2458 
2459 	return -EINVAL;
2460 }
2461 
2462 /**
2463  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2464  * @file: An i915 perf stream file
2465  * @cmd: the ioctl request
2466  * @arg: the ioctl data
2467  *
2468  * Implementation deferred to i915_perf_ioctl_locked().
2469  *
2470  * Returns: zero on success or a negative error code. Returns -EINVAL for
2471  * an unknown ioctl request.
2472  */
2473 static long i915_perf_ioctl(struct file *file,
2474 			    unsigned int cmd,
2475 			    unsigned long arg)
2476 {
2477 	struct i915_perf_stream *stream = file->private_data;
2478 	struct drm_i915_private *dev_priv = stream->dev_priv;
2479 	long ret;
2480 
2481 	mutex_lock(&dev_priv->perf.lock);
2482 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
2483 	mutex_unlock(&dev_priv->perf.lock);
2484 
2485 	return ret;
2486 }
2487 
2488 /**
2489  * i915_perf_destroy_locked - destroy an i915 perf stream
2490  * @stream: An i915 perf stream
2491  *
2492  * Frees all resources associated with the given i915 perf @stream, disabling
2493  * any associated data capture in the process.
2494  *
2495  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2496  * with any non-file-operation driver hooks.
2497  */
2498 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2499 {
2500 	if (stream->enabled)
2501 		i915_perf_disable_locked(stream);
2502 
2503 	if (stream->ops->destroy)
2504 		stream->ops->destroy(stream);
2505 
2506 	list_del(&stream->link);
2507 
2508 	if (stream->ctx)
2509 		i915_gem_context_put(stream->ctx);
2510 
2511 	kfree(stream);
2512 }
2513 
2514 /**
2515  * i915_perf_release - handles userspace close() of a stream file
2516  * @inode: anonymous inode associated with file
2517  * @file: An i915 perf stream file
2518  *
2519  * Cleans up any resources associated with an open i915 perf stream file.
2520  *
2521  * NB: close() can't really fail from the userspace point of view.
2522  *
2523  * Returns: zero on success or a negative error code.
2524  */
2525 static int i915_perf_release(struct inode *inode, struct file *file)
2526 {
2527 	struct i915_perf_stream *stream = file->private_data;
2528 	struct drm_i915_private *dev_priv = stream->dev_priv;
2529 
2530 	mutex_lock(&dev_priv->perf.lock);
2531 	i915_perf_destroy_locked(stream);
2532 	mutex_unlock(&dev_priv->perf.lock);
2533 
2534 	return 0;
2535 }
2536 
2537 
2538 static const struct file_operations fops = {
2539 	.owner		= THIS_MODULE,
2540 	.llseek		= no_llseek,
2541 	.release	= i915_perf_release,
2542 	.poll		= i915_perf_poll,
2543 	.read		= i915_perf_read,
2544 	.unlocked_ioctl	= i915_perf_ioctl,
2545 	/* Our ioctl have no arguments, so it's safe to use the same function
2546 	 * to handle 32bits compatibility.
2547 	 */
2548 	.compat_ioctl   = i915_perf_ioctl,
2549 };
2550 
2551 
2552 /**
2553  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2554  * @dev_priv: i915 device instance
2555  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2556  * @props: individually validated u64 property value pairs
2557  * @file: drm file
2558  *
2559  * See i915_perf_ioctl_open() for interface details.
2560  *
2561  * Implements further stream config validation and stream initialization on
2562  * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2563  * taken to serialize with any non-file-operation driver hooks.
2564  *
2565  * Note: at this point the @props have only been validated in isolation and
2566  * it's still necessary to validate that the combination of properties makes
2567  * sense.
2568  *
2569  * In the case where userspace is interested in OA unit metrics then further
2570  * config validation and stream initialization details will be handled by
2571  * i915_oa_stream_init(). The code here should only validate config state that
2572  * will be relevant to all stream types / backends.
2573  *
2574  * Returns: zero on success or a negative error code.
2575  */
2576 static int
2577 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2578 			    struct drm_i915_perf_open_param *param,
2579 			    struct perf_open_properties *props,
2580 			    struct drm_file *file)
2581 {
2582 	struct i915_gem_context *specific_ctx = NULL;
2583 	struct i915_perf_stream *stream = NULL;
2584 	unsigned long f_flags = 0;
2585 	bool privileged_op = true;
2586 	int stream_fd;
2587 	int ret;
2588 
2589 	if (props->single_context) {
2590 		u32 ctx_handle = props->ctx_handle;
2591 		struct drm_i915_file_private *file_priv = file->driver_priv;
2592 
2593 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2594 		if (!specific_ctx) {
2595 			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2596 				  ctx_handle);
2597 			ret = -ENOENT;
2598 			goto err;
2599 		}
2600 	}
2601 
2602 	/*
2603 	 * On Haswell the OA unit supports clock gating off for a specific
2604 	 * context and in this mode there's no visibility of metrics for the
2605 	 * rest of the system, which we consider acceptable for a
2606 	 * non-privileged client.
2607 	 *
2608 	 * For Gen8+ the OA unit no longer supports clock gating off for a
2609 	 * specific context and the kernel can't securely stop the counters
2610 	 * from updating as system-wide / global values. Even though we can
2611 	 * filter reports based on the included context ID we can't block
2612 	 * clients from seeing the raw / global counter values via
2613 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2614 	 * enable the OA unit by default.
2615 	 */
2616 	if (IS_HASWELL(dev_priv) && specific_ctx)
2617 		privileged_op = false;
2618 
2619 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2620 	 * we check a dev.i915.perf_stream_paranoid sysctl option
2621 	 * to determine if it's ok to access system wide OA counters
2622 	 * without CAP_SYS_ADMIN privileges.
2623 	 */
2624 	if (privileged_op &&
2625 	    i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2626 		DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2627 		ret = -EACCES;
2628 		goto err_ctx;
2629 	}
2630 
2631 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2632 	if (!stream) {
2633 		ret = -ENOMEM;
2634 		goto err_ctx;
2635 	}
2636 
2637 	stream->dev_priv = dev_priv;
2638 	stream->ctx = specific_ctx;
2639 
2640 	ret = i915_oa_stream_init(stream, param, props);
2641 	if (ret)
2642 		goto err_alloc;
2643 
2644 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
2645 	 * to have _stream_init check the combination of sample flags more
2646 	 * thoroughly, but still this is the expected result at this point.
2647 	 */
2648 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2649 		ret = -ENODEV;
2650 		goto err_flags;
2651 	}
2652 
2653 	list_add(&stream->link, &dev_priv->perf.streams);
2654 
2655 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2656 		f_flags |= O_CLOEXEC;
2657 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2658 		f_flags |= O_NONBLOCK;
2659 
2660 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2661 	if (stream_fd < 0) {
2662 		ret = stream_fd;
2663 		goto err_open;
2664 	}
2665 
2666 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
2667 		i915_perf_enable_locked(stream);
2668 
2669 	return stream_fd;
2670 
2671 err_open:
2672 	list_del(&stream->link);
2673 err_flags:
2674 	if (stream->ops->destroy)
2675 		stream->ops->destroy(stream);
2676 err_alloc:
2677 	kfree(stream);
2678 err_ctx:
2679 	if (specific_ctx)
2680 		i915_gem_context_put(specific_ctx);
2681 err:
2682 	return ret;
2683 }
2684 
2685 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2686 {
2687 	return div64_u64(1000000000ULL * (2ULL << exponent),
2688 			 1000ULL * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz);
2689 }
2690 
2691 /**
2692  * read_properties_unlocked - validate + copy userspace stream open properties
2693  * @dev_priv: i915 device instance
2694  * @uprops: The array of u64 key value pairs given by userspace
2695  * @n_props: The number of key value pairs expected in @uprops
2696  * @props: The stream configuration built up while validating properties
2697  *
2698  * Note this function only validates properties in isolation it doesn't
2699  * validate that the combination of properties makes sense or that all
2700  * properties necessary for a particular kind of stream have been set.
2701  *
2702  * Note that there currently aren't any ordering requirements for properties so
2703  * we shouldn't validate or assume anything about ordering here. This doesn't
2704  * rule out defining new properties with ordering requirements in the future.
2705  */
2706 static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2707 				    u64 __user *uprops,
2708 				    u32 n_props,
2709 				    struct perf_open_properties *props)
2710 {
2711 	u64 __user *uprop = uprops;
2712 	u32 i;
2713 
2714 	memset(props, 0, sizeof(struct perf_open_properties));
2715 
2716 	if (!n_props) {
2717 		DRM_DEBUG("No i915 perf properties given\n");
2718 		return -EINVAL;
2719 	}
2720 
2721 	/* Considering that ID = 0 is reserved and assuming that we don't
2722 	 * (currently) expect any configurations to ever specify duplicate
2723 	 * values for a particular property ID then the last _PROP_MAX value is
2724 	 * one greater than the maximum number of properties we expect to get
2725 	 * from userspace.
2726 	 */
2727 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
2728 		DRM_DEBUG("More i915 perf properties specified than exist\n");
2729 		return -EINVAL;
2730 	}
2731 
2732 	for (i = 0; i < n_props; i++) {
2733 		u64 oa_period, oa_freq_hz;
2734 		u64 id, value;
2735 		int ret;
2736 
2737 		ret = get_user(id, uprop);
2738 		if (ret)
2739 			return ret;
2740 
2741 		ret = get_user(value, uprop + 1);
2742 		if (ret)
2743 			return ret;
2744 
2745 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2746 			DRM_DEBUG("Unknown i915 perf property ID\n");
2747 			return -EINVAL;
2748 		}
2749 
2750 		switch ((enum drm_i915_perf_property_id)id) {
2751 		case DRM_I915_PERF_PROP_CTX_HANDLE:
2752 			props->single_context = 1;
2753 			props->ctx_handle = value;
2754 			break;
2755 		case DRM_I915_PERF_PROP_SAMPLE_OA:
2756 			if (value)
2757 				props->sample_flags |= SAMPLE_OA_REPORT;
2758 			break;
2759 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
2760 			if (value == 0) {
2761 				DRM_DEBUG("Unknown OA metric set ID\n");
2762 				return -EINVAL;
2763 			}
2764 			props->metrics_set = value;
2765 			break;
2766 		case DRM_I915_PERF_PROP_OA_FORMAT:
2767 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2768 				DRM_DEBUG("Out-of-range OA report format %llu\n",
2769 					  value);
2770 				return -EINVAL;
2771 			}
2772 			if (!dev_priv->perf.oa.oa_formats[value].size) {
2773 				DRM_DEBUG("Unsupported OA report format %llu\n",
2774 					  value);
2775 				return -EINVAL;
2776 			}
2777 			props->oa_format = value;
2778 			break;
2779 		case DRM_I915_PERF_PROP_OA_EXPONENT:
2780 			if (value > OA_EXPONENT_MAX) {
2781 				DRM_DEBUG("OA timer exponent too high (> %u)\n",
2782 					 OA_EXPONENT_MAX);
2783 				return -EINVAL;
2784 			}
2785 
2786 			/* Theoretically we can program the OA unit to sample
2787 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2788 			 * for BXT. We don't allow such high sampling
2789 			 * frequencies by default unless root.
2790 			 */
2791 
2792 			BUILD_BUG_ON(sizeof(oa_period) != 8);
2793 			oa_period = oa_exponent_to_ns(dev_priv, value);
2794 
2795 			/* This check is primarily to ensure that oa_period <=
2796 			 * UINT32_MAX (before passing to do_div which only
2797 			 * accepts a u32 denominator), but we can also skip
2798 			 * checking anything < 1Hz which implicitly can't be
2799 			 * limited via an integer oa_max_sample_rate.
2800 			 */
2801 			if (oa_period <= NSEC_PER_SEC) {
2802 				u64 tmp = NSEC_PER_SEC;
2803 				do_div(tmp, oa_period);
2804 				oa_freq_hz = tmp;
2805 			} else
2806 				oa_freq_hz = 0;
2807 
2808 			if (oa_freq_hz > i915_oa_max_sample_rate &&
2809 			    !capable(CAP_SYS_ADMIN)) {
2810 				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2811 					  i915_oa_max_sample_rate);
2812 				return -EACCES;
2813 			}
2814 
2815 			props->oa_periodic = true;
2816 			props->oa_period_exponent = value;
2817 			break;
2818 		case DRM_I915_PERF_PROP_MAX:
2819 			MISSING_CASE(id);
2820 			return -EINVAL;
2821 		}
2822 
2823 		uprop += 2;
2824 	}
2825 
2826 	return 0;
2827 }
2828 
2829 /**
2830  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2831  * @dev: drm device
2832  * @data: ioctl data copied from userspace (unvalidated)
2833  * @file: drm file
2834  *
2835  * Validates the stream open parameters given by userspace including flags
2836  * and an array of u64 key, value pair properties.
2837  *
2838  * Very little is assumed up front about the nature of the stream being
2839  * opened (for instance we don't assume it's for periodic OA unit metrics). An
2840  * i915-perf stream is expected to be a suitable interface for other forms of
2841  * buffered data written by the GPU besides periodic OA metrics.
2842  *
2843  * Note we copy the properties from userspace outside of the i915 perf
2844  * mutex to avoid an awkward lockdep with mmap_sem.
2845  *
2846  * Most of the implementation details are handled by
2847  * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2848  * mutex for serializing with any non-file-operation driver hooks.
2849  *
2850  * Return: A newly opened i915 Perf stream file descriptor or negative
2851  * error code on failure.
2852  */
2853 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2854 			 struct drm_file *file)
2855 {
2856 	struct drm_i915_private *dev_priv = dev->dev_private;
2857 	struct drm_i915_perf_open_param *param = data;
2858 	struct perf_open_properties props;
2859 	u32 known_open_flags;
2860 	int ret;
2861 
2862 	if (!dev_priv->perf.initialized) {
2863 		DRM_DEBUG("i915 perf interface not available for this system\n");
2864 		return -ENOTSUPP;
2865 	}
2866 
2867 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
2868 			   I915_PERF_FLAG_FD_NONBLOCK |
2869 			   I915_PERF_FLAG_DISABLED;
2870 	if (param->flags & ~known_open_flags) {
2871 		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
2872 		return -EINVAL;
2873 	}
2874 
2875 	ret = read_properties_unlocked(dev_priv,
2876 				       u64_to_user_ptr(param->properties_ptr),
2877 				       param->num_properties,
2878 				       &props);
2879 	if (ret)
2880 		return ret;
2881 
2882 	mutex_lock(&dev_priv->perf.lock);
2883 	ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
2884 	mutex_unlock(&dev_priv->perf.lock);
2885 
2886 	return ret;
2887 }
2888 
2889 /**
2890  * i915_perf_register - exposes i915-perf to userspace
2891  * @dev_priv: i915 device instance
2892  *
2893  * In particular OA metric sets are advertised under a sysfs metrics/
2894  * directory allowing userspace to enumerate valid IDs that can be
2895  * used to open an i915-perf stream.
2896  */
2897 void i915_perf_register(struct drm_i915_private *dev_priv)
2898 {
2899 	int ret;
2900 
2901 	if (!dev_priv->perf.initialized)
2902 		return;
2903 
2904 	/* To be sure we're synchronized with an attempted
2905 	 * i915_perf_open_ioctl(); considering that we register after
2906 	 * being exposed to userspace.
2907 	 */
2908 	mutex_lock(&dev_priv->perf.lock);
2909 
2910 	dev_priv->perf.metrics_kobj =
2911 		kobject_create_and_add("metrics",
2912 				       &dev_priv->drm.primary->kdev->kobj);
2913 	if (!dev_priv->perf.metrics_kobj)
2914 		goto exit;
2915 
2916 	sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr);
2917 
2918 	if (IS_HASWELL(dev_priv)) {
2919 		i915_perf_load_test_config_hsw(dev_priv);
2920 	} else if (IS_BROADWELL(dev_priv)) {
2921 		i915_perf_load_test_config_bdw(dev_priv);
2922 	} else if (IS_CHERRYVIEW(dev_priv)) {
2923 		i915_perf_load_test_config_chv(dev_priv);
2924 	} else if (IS_SKYLAKE(dev_priv)) {
2925 		if (IS_SKL_GT2(dev_priv))
2926 			i915_perf_load_test_config_sklgt2(dev_priv);
2927 		else if (IS_SKL_GT3(dev_priv))
2928 			i915_perf_load_test_config_sklgt3(dev_priv);
2929 		else if (IS_SKL_GT4(dev_priv))
2930 			i915_perf_load_test_config_sklgt4(dev_priv);
2931 	} else if (IS_BROXTON(dev_priv)) {
2932 		i915_perf_load_test_config_bxt(dev_priv);
2933 	} else if (IS_KABYLAKE(dev_priv)) {
2934 		if (IS_KBL_GT2(dev_priv))
2935 			i915_perf_load_test_config_kblgt2(dev_priv);
2936 		else if (IS_KBL_GT3(dev_priv))
2937 			i915_perf_load_test_config_kblgt3(dev_priv);
2938 	} else if (IS_GEMINILAKE(dev_priv)) {
2939 		i915_perf_load_test_config_glk(dev_priv);
2940 	} else if (IS_COFFEELAKE(dev_priv)) {
2941 		if (IS_CFL_GT2(dev_priv))
2942 			i915_perf_load_test_config_cflgt2(dev_priv);
2943 		if (IS_CFL_GT3(dev_priv))
2944 			i915_perf_load_test_config_cflgt3(dev_priv);
2945 	} else if (IS_CANNONLAKE(dev_priv)) {
2946 		i915_perf_load_test_config_cnl(dev_priv);
2947 	} else if (IS_ICELAKE(dev_priv)) {
2948 		i915_perf_load_test_config_icl(dev_priv);
2949 	}
2950 
2951 	if (dev_priv->perf.oa.test_config.id == 0)
2952 		goto sysfs_error;
2953 
2954 	ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
2955 				 &dev_priv->perf.oa.test_config.sysfs_metric);
2956 	if (ret)
2957 		goto sysfs_error;
2958 
2959 	atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1);
2960 
2961 	goto exit;
2962 
2963 sysfs_error:
2964 	kobject_put(dev_priv->perf.metrics_kobj);
2965 	dev_priv->perf.metrics_kobj = NULL;
2966 
2967 exit:
2968 	mutex_unlock(&dev_priv->perf.lock);
2969 }
2970 
2971 /**
2972  * i915_perf_unregister - hide i915-perf from userspace
2973  * @dev_priv: i915 device instance
2974  *
2975  * i915-perf state cleanup is split up into an 'unregister' and
2976  * 'deinit' phase where the interface is first hidden from
2977  * userspace by i915_perf_unregister() before cleaning up
2978  * remaining state in i915_perf_fini().
2979  */
2980 void i915_perf_unregister(struct drm_i915_private *dev_priv)
2981 {
2982 	if (!dev_priv->perf.metrics_kobj)
2983 		return;
2984 
2985 	sysfs_remove_group(dev_priv->perf.metrics_kobj,
2986 			   &dev_priv->perf.oa.test_config.sysfs_metric);
2987 
2988 	kobject_put(dev_priv->perf.metrics_kobj);
2989 	dev_priv->perf.metrics_kobj = NULL;
2990 }
2991 
2992 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
2993 {
2994 	static const i915_reg_t flex_eu_regs[] = {
2995 		EU_PERF_CNTL0,
2996 		EU_PERF_CNTL1,
2997 		EU_PERF_CNTL2,
2998 		EU_PERF_CNTL3,
2999 		EU_PERF_CNTL4,
3000 		EU_PERF_CNTL5,
3001 		EU_PERF_CNTL6,
3002 	};
3003 	int i;
3004 
3005 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3006 		if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3007 			return true;
3008 	}
3009 	return false;
3010 }
3011 
3012 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
3013 {
3014 	return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) &&
3015 		addr <= i915_mmio_reg_offset(OASTARTTRIG8)) ||
3016 		(addr >= i915_mmio_reg_offset(OAREPORTTRIG1) &&
3017 		 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) ||
3018 		(addr >= i915_mmio_reg_offset(OACEC0_0) &&
3019 		 addr <= i915_mmio_reg_offset(OACEC7_1));
3020 }
3021 
3022 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3023 {
3024 	return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) ||
3025 		(addr >= i915_mmio_reg_offset(MICRO_BP0_0) &&
3026 		 addr <= i915_mmio_reg_offset(NOA_WRITE)) ||
3027 		(addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) &&
3028 		 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) ||
3029 		(addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) &&
3030 		 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI));
3031 }
3032 
3033 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3034 {
3035 	return gen7_is_valid_mux_addr(dev_priv, addr) ||
3036 		addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) ||
3037 		(addr >= i915_mmio_reg_offset(RPM_CONFIG0) &&
3038 		 addr <= i915_mmio_reg_offset(NOA_CONFIG(8)));
3039 }
3040 
3041 static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3042 {
3043 	return gen8_is_valid_mux_addr(dev_priv, addr) ||
3044 		(addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) &&
3045 		 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI));
3046 }
3047 
3048 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3049 {
3050 	return gen7_is_valid_mux_addr(dev_priv, addr) ||
3051 		(addr >= 0x25100 && addr <= 0x2FF90) ||
3052 		(addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) &&
3053 		 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) ||
3054 		addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0);
3055 }
3056 
3057 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3058 {
3059 	return gen7_is_valid_mux_addr(dev_priv, addr) ||
3060 		(addr >= 0x182300 && addr <= 0x1823A4);
3061 }
3062 
3063 static uint32_t mask_reg_value(u32 reg, u32 val)
3064 {
3065 	/* HALF_SLICE_CHICKEN2 is programmed with a the
3066 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3067 	 * programmed by userspace doesn't change this.
3068 	 */
3069 	if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg)
3070 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3071 
3072 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3073 	 * indicated by its name and a bunch of selection fields used by OA
3074 	 * configs.
3075 	 */
3076 	if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg)
3077 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3078 
3079 	return val;
3080 }
3081 
3082 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3083 					 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3084 					 u32 __user *regs,
3085 					 u32 n_regs)
3086 {
3087 	struct i915_oa_reg *oa_regs;
3088 	int err;
3089 	u32 i;
3090 
3091 	if (!n_regs)
3092 		return NULL;
3093 
3094 	if (!access_ok(VERIFY_READ, regs, n_regs * sizeof(u32) * 2))
3095 		return ERR_PTR(-EFAULT);
3096 
3097 	/* No is_valid function means we're not allowing any register to be programmed. */
3098 	GEM_BUG_ON(!is_valid);
3099 	if (!is_valid)
3100 		return ERR_PTR(-EINVAL);
3101 
3102 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3103 	if (!oa_regs)
3104 		return ERR_PTR(-ENOMEM);
3105 
3106 	for (i = 0; i < n_regs; i++) {
3107 		u32 addr, value;
3108 
3109 		err = get_user(addr, regs);
3110 		if (err)
3111 			goto addr_err;
3112 
3113 		if (!is_valid(dev_priv, addr)) {
3114 			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3115 			err = -EINVAL;
3116 			goto addr_err;
3117 		}
3118 
3119 		err = get_user(value, regs + 1);
3120 		if (err)
3121 			goto addr_err;
3122 
3123 		oa_regs[i].addr = _MMIO(addr);
3124 		oa_regs[i].value = mask_reg_value(addr, value);
3125 
3126 		regs += 2;
3127 	}
3128 
3129 	return oa_regs;
3130 
3131 addr_err:
3132 	kfree(oa_regs);
3133 	return ERR_PTR(err);
3134 }
3135 
3136 static ssize_t show_dynamic_id(struct device *dev,
3137 			       struct device_attribute *attr,
3138 			       char *buf)
3139 {
3140 	struct i915_oa_config *oa_config =
3141 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
3142 
3143 	return sprintf(buf, "%d\n", oa_config->id);
3144 }
3145 
3146 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3147 					 struct i915_oa_config *oa_config)
3148 {
3149 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3150 	oa_config->sysfs_metric_id.attr.name = "id";
3151 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3152 	oa_config->sysfs_metric_id.show = show_dynamic_id;
3153 	oa_config->sysfs_metric_id.store = NULL;
3154 
3155 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3156 	oa_config->attrs[1] = NULL;
3157 
3158 	oa_config->sysfs_metric.name = oa_config->uuid;
3159 	oa_config->sysfs_metric.attrs = oa_config->attrs;
3160 
3161 	return sysfs_create_group(dev_priv->perf.metrics_kobj,
3162 				  &oa_config->sysfs_metric);
3163 }
3164 
3165 /**
3166  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3167  * @dev: drm device
3168  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3169  *        userspace (unvalidated)
3170  * @file: drm file
3171  *
3172  * Validates the submitted OA register to be saved into a new OA config that
3173  * can then be used for programming the OA unit and its NOA network.
3174  *
3175  * Returns: A new allocated config number to be used with the perf open ioctl
3176  * or a negative error code on failure.
3177  */
3178 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3179 			       struct drm_file *file)
3180 {
3181 	struct drm_i915_private *dev_priv = dev->dev_private;
3182 	struct drm_i915_perf_oa_config *args = data;
3183 	struct i915_oa_config *oa_config, *tmp;
3184 	int err, id;
3185 
3186 	if (!dev_priv->perf.initialized) {
3187 		DRM_DEBUG("i915 perf interface not available for this system\n");
3188 		return -ENOTSUPP;
3189 	}
3190 
3191 	if (!dev_priv->perf.metrics_kobj) {
3192 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3193 		return -EINVAL;
3194 	}
3195 
3196 	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3197 		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3198 		return -EACCES;
3199 	}
3200 
3201 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3202 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3203 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
3204 		DRM_DEBUG("No OA registers given\n");
3205 		return -EINVAL;
3206 	}
3207 
3208 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3209 	if (!oa_config) {
3210 		DRM_DEBUG("Failed to allocate memory for the OA config\n");
3211 		return -ENOMEM;
3212 	}
3213 
3214 	atomic_set(&oa_config->ref_count, 1);
3215 
3216 	if (!uuid_is_valid(args->uuid)) {
3217 		DRM_DEBUG("Invalid uuid format for OA config\n");
3218 		err = -EINVAL;
3219 		goto reg_err;
3220 	}
3221 
3222 	/* Last character in oa_config->uuid will be 0 because oa_config is
3223 	 * kzalloc.
3224 	 */
3225 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3226 
3227 	oa_config->mux_regs_len = args->n_mux_regs;
3228 	oa_config->mux_regs =
3229 		alloc_oa_regs(dev_priv,
3230 			      dev_priv->perf.oa.ops.is_valid_mux_reg,
3231 			      u64_to_user_ptr(args->mux_regs_ptr),
3232 			      args->n_mux_regs);
3233 
3234 	if (IS_ERR(oa_config->mux_regs)) {
3235 		DRM_DEBUG("Failed to create OA config for mux_regs\n");
3236 		err = PTR_ERR(oa_config->mux_regs);
3237 		goto reg_err;
3238 	}
3239 
3240 	oa_config->b_counter_regs_len = args->n_boolean_regs;
3241 	oa_config->b_counter_regs =
3242 		alloc_oa_regs(dev_priv,
3243 			      dev_priv->perf.oa.ops.is_valid_b_counter_reg,
3244 			      u64_to_user_ptr(args->boolean_regs_ptr),
3245 			      args->n_boolean_regs);
3246 
3247 	if (IS_ERR(oa_config->b_counter_regs)) {
3248 		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3249 		err = PTR_ERR(oa_config->b_counter_regs);
3250 		goto reg_err;
3251 	}
3252 
3253 	if (INTEL_GEN(dev_priv) < 8) {
3254 		if (args->n_flex_regs != 0) {
3255 			err = -EINVAL;
3256 			goto reg_err;
3257 		}
3258 	} else {
3259 		oa_config->flex_regs_len = args->n_flex_regs;
3260 		oa_config->flex_regs =
3261 			alloc_oa_regs(dev_priv,
3262 				      dev_priv->perf.oa.ops.is_valid_flex_reg,
3263 				      u64_to_user_ptr(args->flex_regs_ptr),
3264 				      args->n_flex_regs);
3265 
3266 		if (IS_ERR(oa_config->flex_regs)) {
3267 			DRM_DEBUG("Failed to create OA config for flex_regs\n");
3268 			err = PTR_ERR(oa_config->flex_regs);
3269 			goto reg_err;
3270 		}
3271 	}
3272 
3273 	err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3274 	if (err)
3275 		goto reg_err;
3276 
3277 	/* We shouldn't have too many configs, so this iteration shouldn't be
3278 	 * too costly.
3279 	 */
3280 	idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3281 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
3282 			DRM_DEBUG("OA config already exists with this uuid\n");
3283 			err = -EADDRINUSE;
3284 			goto sysfs_err;
3285 		}
3286 	}
3287 
3288 	err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3289 	if (err) {
3290 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3291 		goto sysfs_err;
3292 	}
3293 
3294 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
3295 	oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3296 				  oa_config, 2,
3297 				  0, GFP_KERNEL);
3298 	if (oa_config->id < 0) {
3299 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3300 		err = oa_config->id;
3301 		goto sysfs_err;
3302 	}
3303 
3304 	mutex_unlock(&dev_priv->perf.metrics_lock);
3305 
3306 	DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
3307 
3308 	return oa_config->id;
3309 
3310 sysfs_err:
3311 	mutex_unlock(&dev_priv->perf.metrics_lock);
3312 reg_err:
3313 	put_oa_config(dev_priv, oa_config);
3314 	DRM_DEBUG("Failed to add new OA config\n");
3315 	return err;
3316 }
3317 
3318 /**
3319  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3320  * @dev: drm device
3321  * @data: ioctl data (pointer to u64 integer) copied from userspace
3322  * @file: drm file
3323  *
3324  * Configs can be removed while being used, the will stop appearing in sysfs
3325  * and their content will be freed when the stream using the config is closed.
3326  *
3327  * Returns: 0 on success or a negative error code on failure.
3328  */
3329 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3330 				  struct drm_file *file)
3331 {
3332 	struct drm_i915_private *dev_priv = dev->dev_private;
3333 	u64 *arg = data;
3334 	struct i915_oa_config *oa_config;
3335 	int ret;
3336 
3337 	if (!dev_priv->perf.initialized) {
3338 		DRM_DEBUG("i915 perf interface not available for this system\n");
3339 		return -ENOTSUPP;
3340 	}
3341 
3342 	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3343 		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3344 		return -EACCES;
3345 	}
3346 
3347 	ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3348 	if (ret)
3349 		goto lock_err;
3350 
3351 	oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3352 	if (!oa_config) {
3353 		DRM_DEBUG("Failed to remove unknown OA config\n");
3354 		ret = -ENOENT;
3355 		goto config_err;
3356 	}
3357 
3358 	GEM_BUG_ON(*arg != oa_config->id);
3359 
3360 	sysfs_remove_group(dev_priv->perf.metrics_kobj,
3361 			   &oa_config->sysfs_metric);
3362 
3363 	idr_remove(&dev_priv->perf.metrics_idr, *arg);
3364 
3365 	DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
3366 
3367 	put_oa_config(dev_priv, oa_config);
3368 
3369 config_err:
3370 	mutex_unlock(&dev_priv->perf.metrics_lock);
3371 lock_err:
3372 	return ret;
3373 }
3374 
3375 static struct ctl_table oa_table[] = {
3376 	{
3377 	 .procname = "perf_stream_paranoid",
3378 	 .data = &i915_perf_stream_paranoid,
3379 	 .maxlen = sizeof(i915_perf_stream_paranoid),
3380 	 .mode = 0644,
3381 	 .proc_handler = proc_dointvec_minmax,
3382 	 .extra1 = &zero,
3383 	 .extra2 = &one,
3384 	 },
3385 	{
3386 	 .procname = "oa_max_sample_rate",
3387 	 .data = &i915_oa_max_sample_rate,
3388 	 .maxlen = sizeof(i915_oa_max_sample_rate),
3389 	 .mode = 0644,
3390 	 .proc_handler = proc_dointvec_minmax,
3391 	 .extra1 = &zero,
3392 	 .extra2 = &oa_sample_rate_hard_limit,
3393 	 },
3394 	{}
3395 };
3396 
3397 static struct ctl_table i915_root[] = {
3398 	{
3399 	 .procname = "i915",
3400 	 .maxlen = 0,
3401 	 .mode = 0555,
3402 	 .child = oa_table,
3403 	 },
3404 	{}
3405 };
3406 
3407 static struct ctl_table dev_root[] = {
3408 	{
3409 	 .procname = "dev",
3410 	 .maxlen = 0,
3411 	 .mode = 0555,
3412 	 .child = i915_root,
3413 	 },
3414 	{}
3415 };
3416 
3417 /**
3418  * i915_perf_init - initialize i915-perf state on module load
3419  * @dev_priv: i915 device instance
3420  *
3421  * Initializes i915-perf state without exposing anything to userspace.
3422  *
3423  * Note: i915-perf initialization is split into an 'init' and 'register'
3424  * phase with the i915_perf_register() exposing state to userspace.
3425  */
3426 void i915_perf_init(struct drm_i915_private *dev_priv)
3427 {
3428 	if (IS_HASWELL(dev_priv)) {
3429 		dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3430 			gen7_is_valid_b_counter_addr;
3431 		dev_priv->perf.oa.ops.is_valid_mux_reg =
3432 			hsw_is_valid_mux_addr;
3433 		dev_priv->perf.oa.ops.is_valid_flex_reg = NULL;
3434 		dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer;
3435 		dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
3436 		dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
3437 		dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
3438 		dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
3439 		dev_priv->perf.oa.ops.read = gen7_oa_read;
3440 		dev_priv->perf.oa.ops.oa_hw_tail_read =
3441 			gen7_oa_hw_tail_read;
3442 
3443 		dev_priv->perf.oa.oa_formats = hsw_oa_formats;
3444 	} else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
3445 		/* Note: that although we could theoretically also support the
3446 		 * legacy ringbuffer mode on BDW (and earlier iterations of
3447 		 * this driver, before upstreaming did this) it didn't seem
3448 		 * worth the complexity to maintain now that BDW+ enable
3449 		 * execlist mode by default.
3450 		 */
3451 		dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
3452 
3453 		dev_priv->perf.oa.ops.init_oa_buffer = gen8_init_oa_buffer;
3454 		dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
3455 		dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
3456 		dev_priv->perf.oa.ops.read = gen8_oa_read;
3457 		dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3458 
3459 		if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv)) {
3460 			dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3461 				gen7_is_valid_b_counter_addr;
3462 			dev_priv->perf.oa.ops.is_valid_mux_reg =
3463 				gen8_is_valid_mux_addr;
3464 			dev_priv->perf.oa.ops.is_valid_flex_reg =
3465 				gen8_is_valid_flex_addr;
3466 
3467 			if (IS_CHERRYVIEW(dev_priv)) {
3468 				dev_priv->perf.oa.ops.is_valid_mux_reg =
3469 					chv_is_valid_mux_addr;
3470 			}
3471 
3472 			dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3473 			dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set;
3474 
3475 			if (IS_GEN8(dev_priv)) {
3476 				dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
3477 				dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
3478 
3479 				dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);
3480 			} else {
3481 				dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3482 				dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3483 
3484 				dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3485 			}
3486 		} else if (IS_GEN(dev_priv, 10, 11)) {
3487 			dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3488 				gen7_is_valid_b_counter_addr;
3489 			dev_priv->perf.oa.ops.is_valid_mux_reg =
3490 				gen10_is_valid_mux_addr;
3491 			dev_priv->perf.oa.ops.is_valid_flex_reg =
3492 				gen8_is_valid_flex_addr;
3493 
3494 			dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3495 			dev_priv->perf.oa.ops.disable_metric_set = gen10_disable_metric_set;
3496 
3497 			dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3498 			dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3499 
3500 			dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3501 		}
3502 	}
3503 
3504 	if (dev_priv->perf.oa.ops.enable_metric_set) {
3505 		hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
3506 				CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3507 		dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
3508 		init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
3509 
3510 		INIT_LIST_HEAD(&dev_priv->perf.streams);
3511 		mutex_init(&dev_priv->perf.lock);
3512 		spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
3513 
3514 		oa_sample_rate_hard_limit = 1000 *
3515 			(INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz / 2);
3516 		dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3517 
3518 		mutex_init(&dev_priv->perf.metrics_lock);
3519 		idr_init(&dev_priv->perf.metrics_idr);
3520 
3521 		dev_priv->perf.initialized = true;
3522 	}
3523 }
3524 
3525 static int destroy_config(int id, void *p, void *data)
3526 {
3527 	struct drm_i915_private *dev_priv = data;
3528 	struct i915_oa_config *oa_config = p;
3529 
3530 	put_oa_config(dev_priv, oa_config);
3531 
3532 	return 0;
3533 }
3534 
3535 /**
3536  * i915_perf_fini - Counter part to i915_perf_init()
3537  * @dev_priv: i915 device instance
3538  */
3539 void i915_perf_fini(struct drm_i915_private *dev_priv)
3540 {
3541 	if (!dev_priv->perf.initialized)
3542 		return;
3543 
3544 	idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3545 	idr_destroy(&dev_priv->perf.metrics_idr);
3546 
3547 	unregister_sysctl_table(dev_priv->perf.sysctl_header);
3548 
3549 	memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
3550 
3551 	dev_priv->perf.initialized = false;
3552 }
3553