1 /* 2 * Copyright © 2015-2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Robert Bragg <robert@sixbynine.org> 25 */ 26 27 28 /** 29 * DOC: i915 Perf Overview 30 * 31 * Gen graphics supports a large number of performance counters that can help 32 * driver and application developers understand and optimize their use of the 33 * GPU. 34 * 35 * This i915 perf interface enables userspace to configure and open a file 36 * descriptor representing a stream of GPU metrics which can then be read() as 37 * a stream of sample records. 38 * 39 * The interface is particularly suited to exposing buffered metrics that are 40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. 41 * 42 * Streams representing a single context are accessible to applications with a 43 * corresponding drm file descriptor, such that OpenGL can use the interface 44 * without special privileges. Access to system-wide metrics requires root 45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid 46 * sysctl option. 47 * 48 */ 49 50 /** 51 * DOC: i915 Perf History and Comparison with Core Perf 52 * 53 * The interface was initially inspired by the core Perf infrastructure but 54 * some notable differences are: 55 * 56 * i915 perf file descriptors represent a "stream" instead of an "event"; where 57 * a perf event primarily corresponds to a single 64bit value, while a stream 58 * might sample sets of tightly-coupled counters, depending on the 59 * configuration. For example the Gen OA unit isn't designed to support 60 * orthogonal configurations of individual counters; it's configured for a set 61 * of related counters. Samples for an i915 perf stream capturing OA metrics 62 * will include a set of counter values packed in a compact HW specific format. 63 * The OA unit supports a number of different packing formats which can be 64 * selected by the user opening the stream. Perf has support for grouping 65 * events, but each event in the group is configured, validated and 66 * authenticated individually with separate system calls. 67 * 68 * i915 perf stream configurations are provided as an array of u64 (key,value) 69 * pairs, instead of a fixed struct with multiple miscellaneous config members, 70 * interleaved with event-type specific members. 71 * 72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. 73 * The supported metrics are being written to memory by the GPU unsynchronized 74 * with the CPU, using HW specific packing formats for counter sets. Sometimes 75 * the constraints on HW configuration require reports to be filtered before it 76 * would be acceptable to expose them to unprivileged applications - to hide 77 * the metrics of other processes/contexts. For these use cases a read() based 78 * interface is a good fit, and provides an opportunity to filter data as it 79 * gets copied from the GPU mapped buffers to userspace buffers. 80 * 81 * 82 * Issues hit with first prototype based on Core Perf 83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 84 * 85 * The first prototype of this driver was based on the core perf 86 * infrastructure, and while we did make that mostly work, with some changes to 87 * perf, we found we were breaking or working around too many assumptions baked 88 * into perf's currently cpu centric design. 89 * 90 * In the end we didn't see a clear benefit to making perf's implementation and 91 * interface more complex by changing design assumptions while we knew we still 92 * wouldn't be able to use any existing perf based userspace tools. 93 * 94 * Also considering the Gen specific nature of the Observability hardware and 95 * how userspace will sometimes need to combine i915 perf OA metrics with 96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're 97 * expecting the interface to be used by a platform specific userspace such as 98 * OpenGL or tools. This is to say; we aren't inherently missing out on having 99 * a standard vendor/architecture agnostic interface by not using perf. 100 * 101 * 102 * For posterity, in case we might re-visit trying to adapt core perf to be 103 * better suited to exposing i915 metrics these were the main pain points we 104 * hit: 105 * 106 * - The perf based OA PMU driver broke some significant design assumptions: 107 * 108 * Existing perf pmus are used for profiling work on a cpu and we were 109 * introducing the idea of _IS_DEVICE pmus with different security 110 * implications, the need to fake cpu-related data (such as user/kernel 111 * registers) to fit with perf's current design, and adding _DEVICE records 112 * as a way to forward device-specific status records. 113 * 114 * The OA unit writes reports of counters into a circular buffer, without 115 * involvement from the CPU, making our PMU driver the first of a kind. 116 * 117 * Given the way we were periodically forward data from the GPU-mapped, OA 118 * buffer to perf's buffer, those bursts of sample writes looked to perf like 119 * we were sampling too fast and so we had to subvert its throttling checks. 120 * 121 * Perf supports groups of counters and allows those to be read via 122 * transactions internally but transactions currently seem designed to be 123 * explicitly initiated from the cpu (say in response to a userspace read()) 124 * and while we could pull a report out of the OA buffer we can't 125 * trigger a report from the cpu on demand. 126 * 127 * Related to being report based; the OA counters are configured in HW as a 128 * set while perf generally expects counter configurations to be orthogonal. 129 * Although counters can be associated with a group leader as they are 130 * opened, there's no clear precedent for being able to provide group-wide 131 * configuration attributes (for example we want to let userspace choose the 132 * OA unit report format used to capture all counters in a set, or specify a 133 * GPU context to filter metrics on). We avoided using perf's grouping 134 * feature and forwarded OA reports to userspace via perf's 'raw' sample 135 * field. This suited our userspace well considering how coupled the counters 136 * are when dealing with normalizing. It would be inconvenient to split 137 * counters up into separate events, only to require userspace to recombine 138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports 139 * for combining with the side-band raw reports it captures using 140 * MI_REPORT_PERF_COUNT commands. 141 * 142 * - As a side note on perf's grouping feature; there was also some concern 143 * that using PERF_FORMAT_GROUP as a way to pack together counter values 144 * would quite drastically inflate our sample sizes, which would likely 145 * lower the effective sampling resolutions we could use when the available 146 * memory bandwidth is limited. 147 * 148 * With the OA unit's report formats, counters are packed together as 32 149 * or 40bit values, with the largest report size being 256 bytes. 150 * 151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a 152 * documented ordering to the values, implying PERF_FORMAT_ID must also be 153 * used to add a 64bit ID before each value; giving 16 bytes per counter. 154 * 155 * Related to counter orthogonality; we can't time share the OA unit, while 156 * event scheduling is a central design idea within perf for allowing 157 * userspace to open + enable more events than can be configured in HW at any 158 * one time. The OA unit is not designed to allow re-configuration while in 159 * use. We can't reconfigure the OA unit without losing internal OA unit 160 * state which we can't access explicitly to save and restore. Reconfiguring 161 * the OA unit is also relatively slow, involving ~100 register writes. From 162 * userspace Mesa also depends on a stable OA configuration when emitting 163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be 164 * disabled while there are outstanding MI_RPC commands lest we hang the 165 * command streamer. 166 * 167 * The contents of sample records aren't extensible by device drivers (i.e. 168 * the sample_type bits). As an example; Sourab Gupta had been looking to 169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports 170 * into sample records by using the 'raw' field, but it's tricky to pack more 171 * than one thing into this field because events/core.c currently only lets a 172 * pmu give a single raw data pointer plus len which will be copied into the 173 * ring buffer. To include more than the OA report we'd have to copy the 174 * report into an intermediate larger buffer. I'd been considering allowing a 175 * vector of data+len values to be specified for copying the raw data, but 176 * it felt like a kludge to being using the raw field for this purpose. 177 * 178 * - It felt like our perf based PMU was making some technical compromises 179 * just for the sake of using perf: 180 * 181 * perf_event_open() requires events to either relate to a pid or a specific 182 * cpu core, while our device pmu related to neither. Events opened with a 183 * pid will be automatically enabled/disabled according to the scheduling of 184 * that process - so not appropriate for us. When an event is related to a 185 * cpu id, perf ensures pmu methods will be invoked via an inter process 186 * interrupt on that core. To avoid invasive changes our userspace opened OA 187 * perf events for a specific cpu. This was workable but it meant the 188 * majority of the OA driver ran in atomic context, including all OA report 189 * forwarding, which wasn't really necessary in our case and seems to make 190 * our locking requirements somewhat complex as we handled the interaction 191 * with the rest of the i915 driver. 192 */ 193 194 #include <linux/anon_inodes.h> 195 #include <linux/sizes.h> 196 #include <linux/uuid.h> 197 198 #include "gem/i915_gem_context.h" 199 #include "gt/intel_engine_pm.h" 200 #include "gt/intel_engine_user.h" 201 #include "gt/intel_gt.h" 202 #include "gt/intel_lrc_reg.h" 203 #include "gt/intel_ring.h" 204 205 #include "i915_drv.h" 206 #include "i915_perf.h" 207 208 /* HW requires this to be a power of two, between 128k and 16M, though driver 209 * is currently generally designed assuming the largest 16M size is used such 210 * that the overflow cases are unlikely in normal operation. 211 */ 212 #define OA_BUFFER_SIZE SZ_16M 213 214 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) 215 216 /** 217 * DOC: OA Tail Pointer Race 218 * 219 * There's a HW race condition between OA unit tail pointer register updates and 220 * writes to memory whereby the tail pointer can sometimes get ahead of what's 221 * been written out to the OA buffer so far (in terms of what's visible to the 222 * CPU). 223 * 224 * Although this can be observed explicitly while copying reports to userspace 225 * by checking for a zeroed report-id field in tail reports, we want to account 226 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of 227 * redundant read() attempts. 228 * 229 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports 230 * in the OA buffer, starting from the tail reported by the HW until we find a 231 * report with its first 2 dwords not 0 meaning its previous report is 232 * completely in memory and ready to be read. Those dwords are also set to 0 233 * once read and the whole buffer is cleared upon OA buffer initialization. The 234 * first dword is the reason for this report while the second is the timestamp, 235 * making the chances of having those 2 fields at 0 fairly unlikely. A more 236 * detailed explanation is available in oa_buffer_check_unlocked(). 237 * 238 * Most of the implementation details for this workaround are in 239 * oa_buffer_check_unlocked() and _append_oa_reports() 240 * 241 * Note for posterity: previously the driver used to define an effective tail 242 * pointer that lagged the real pointer by a 'tail margin' measured in bytes 243 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. 244 * This was flawed considering that the OA unit may also automatically generate 245 * non-periodic reports (such as on context switch) or the OA unit may be 246 * enabled without any periodic sampling. 247 */ 248 #define OA_TAIL_MARGIN_NSEC 100000ULL 249 #define INVALID_TAIL_PTR 0xffffffff 250 251 /* The default frequency for checking whether the OA unit has written new 252 * reports to the circular OA buffer... 253 */ 254 #define DEFAULT_POLL_FREQUENCY_HZ 200 255 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) 256 257 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ 258 static u32 i915_perf_stream_paranoid = true; 259 260 /* The maximum exponent the hardware accepts is 63 (essentially it selects one 261 * of the 64bit timestamp bits to trigger reports from) but there's currently 262 * no known use case for sampling as infrequently as once per 47 thousand years. 263 * 264 * Since the timestamps included in OA reports are only 32bits it seems 265 * reasonable to limit the OA exponent where it's still possible to account for 266 * overflow in OA report timestamps. 267 */ 268 #define OA_EXPONENT_MAX 31 269 270 #define INVALID_CTX_ID 0xffffffff 271 272 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ 273 #define OAREPORT_REASON_MASK 0x3f 274 #define OAREPORT_REASON_MASK_EXTENDED 0x7f 275 #define OAREPORT_REASON_SHIFT 19 276 #define OAREPORT_REASON_TIMER (1<<0) 277 #define OAREPORT_REASON_CTX_SWITCH (1<<3) 278 #define OAREPORT_REASON_CLK_RATIO (1<<5) 279 280 281 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate 282 * 283 * The highest sampling frequency we can theoretically program the OA unit 284 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. 285 * 286 * Initialized just before we register the sysctl parameter. 287 */ 288 static int oa_sample_rate_hard_limit; 289 290 /* Theoretically we can program the OA unit to sample every 160ns but don't 291 * allow that by default unless root... 292 * 293 * The default threshold of 100000Hz is based on perf's similar 294 * kernel.perf_event_max_sample_rate sysctl parameter. 295 */ 296 static u32 i915_oa_max_sample_rate = 100000; 297 298 /* XXX: beware if future OA HW adds new report formats that the current 299 * code assumes all reports have a power-of-two size and ~(size - 1) can 300 * be used as a mask to align the OA tail pointer. 301 */ 302 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { 303 [I915_OA_FORMAT_A13] = { 0, 64 }, 304 [I915_OA_FORMAT_A29] = { 1, 128 }, 305 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, 306 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ 307 [I915_OA_FORMAT_B4_C8] = { 4, 64 }, 308 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, 309 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, 310 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 311 }; 312 313 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { 314 [I915_OA_FORMAT_A12] = { 0, 64 }, 315 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, 316 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 317 [I915_OA_FORMAT_C4_B8] = { 7, 64 }, 318 }; 319 320 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = { 321 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, 322 }; 323 324 #define SAMPLE_OA_REPORT (1<<0) 325 326 /** 327 * struct perf_open_properties - for validated properties given to open a stream 328 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags 329 * @single_context: Whether a single or all gpu contexts should be monitored 330 * @hold_preemption: Whether the preemption is disabled for the filtered 331 * context 332 * @ctx_handle: A gem ctx handle for use with @single_context 333 * @metrics_set: An ID for an OA unit metric set advertised via sysfs 334 * @oa_format: An OA unit HW report format 335 * @oa_periodic: Whether to enable periodic OA unit sampling 336 * @oa_period_exponent: The OA unit sampling period is derived from this 337 * @engine: The engine (typically rcs0) being monitored by the OA unit 338 * @has_sseu: Whether @sseu was specified by userspace 339 * @sseu: internal SSEU configuration computed either from the userspace 340 * specified configuration in the opening parameters or a default value 341 * (see get_default_sseu_config()) 342 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA 343 * data availability 344 * 345 * As read_properties_unlocked() enumerates and validates the properties given 346 * to open a stream of metrics the configuration is built up in the structure 347 * which starts out zero initialized. 348 */ 349 struct perf_open_properties { 350 u32 sample_flags; 351 352 u64 single_context:1; 353 u64 hold_preemption:1; 354 u64 ctx_handle; 355 356 /* OA sampling state */ 357 int metrics_set; 358 int oa_format; 359 bool oa_periodic; 360 int oa_period_exponent; 361 362 struct intel_engine_cs *engine; 363 364 bool has_sseu; 365 struct intel_sseu sseu; 366 367 u64 poll_oa_period; 368 }; 369 370 struct i915_oa_config_bo { 371 struct llist_node node; 372 373 struct i915_oa_config *oa_config; 374 struct i915_vma *vma; 375 }; 376 377 static struct ctl_table_header *sysctl_header; 378 379 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); 380 381 void i915_oa_config_release(struct kref *ref) 382 { 383 struct i915_oa_config *oa_config = 384 container_of(ref, typeof(*oa_config), ref); 385 386 kfree(oa_config->flex_regs); 387 kfree(oa_config->b_counter_regs); 388 kfree(oa_config->mux_regs); 389 390 kfree_rcu(oa_config, rcu); 391 } 392 393 struct i915_oa_config * 394 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) 395 { 396 struct i915_oa_config *oa_config; 397 398 rcu_read_lock(); 399 oa_config = idr_find(&perf->metrics_idr, metrics_set); 400 if (oa_config) 401 oa_config = i915_oa_config_get(oa_config); 402 rcu_read_unlock(); 403 404 return oa_config; 405 } 406 407 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) 408 { 409 i915_oa_config_put(oa_bo->oa_config); 410 i915_vma_put(oa_bo->vma); 411 kfree(oa_bo); 412 } 413 414 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) 415 { 416 struct intel_uncore *uncore = stream->uncore; 417 418 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & 419 GEN12_OAG_OATAILPTR_MASK; 420 } 421 422 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) 423 { 424 struct intel_uncore *uncore = stream->uncore; 425 426 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; 427 } 428 429 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) 430 { 431 struct intel_uncore *uncore = stream->uncore; 432 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 433 434 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; 435 } 436 437 /** 438 * oa_buffer_check_unlocked - check for data and update tail ptr state 439 * @stream: i915 stream instance 440 * 441 * This is either called via fops (for blocking reads in user ctx) or the poll 442 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check 443 * if there is data available for userspace to read. 444 * 445 * This function is central to providing a workaround for the OA unit tail 446 * pointer having a race with respect to what data is visible to the CPU. 447 * It is responsible for reading tail pointers from the hardware and giving 448 * the pointers time to 'age' before they are made available for reading. 449 * (See description of OA_TAIL_MARGIN_NSEC above for further details.) 450 * 451 * Besides returning true when there is data available to read() this function 452 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer 453 * object. 454 * 455 * Note: It's safe to read OA config state here unlocked, assuming that this is 456 * only called while the stream is enabled, while the global OA configuration 457 * can't be modified. 458 * 459 * Returns: %true if the OA buffer contains data, else %false 460 */ 461 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) 462 { 463 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 464 int report_size = stream->oa_buffer.format_size; 465 unsigned long flags; 466 bool pollin; 467 u32 hw_tail; 468 u64 now; 469 470 /* We have to consider the (unlikely) possibility that read() errors 471 * could result in an OA buffer reset which might reset the head and 472 * tail state. 473 */ 474 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 475 476 hw_tail = stream->perf->ops.oa_hw_tail_read(stream); 477 478 /* The tail pointer increases in 64 byte increments, 479 * not in report_size steps... 480 */ 481 hw_tail &= ~(report_size - 1); 482 483 now = ktime_get_mono_fast_ns(); 484 485 if (hw_tail == stream->oa_buffer.aging_tail && 486 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) { 487 /* If the HW tail hasn't move since the last check and the HW 488 * tail has been aging for long enough, declare it the new 489 * tail. 490 */ 491 stream->oa_buffer.tail = stream->oa_buffer.aging_tail; 492 } else { 493 u32 head, tail, aged_tail; 494 495 /* NB: The head we observe here might effectively be a little 496 * out of date. If a read() is in progress, the head could be 497 * anywhere between this head and stream->oa_buffer.tail. 498 */ 499 head = stream->oa_buffer.head - gtt_offset; 500 aged_tail = stream->oa_buffer.tail - gtt_offset; 501 502 hw_tail -= gtt_offset; 503 tail = hw_tail; 504 505 /* Walk the stream backward until we find a report with dword 0 506 * & 1 not at 0. Since the circular buffer pointers progress by 507 * increments of 64 bytes and that reports can be up to 256 508 * bytes long, we can't tell whether a report has fully landed 509 * in memory before the first 2 dwords of the following report 510 * have effectively landed. 511 * 512 * This is assuming that the writes of the OA unit land in 513 * memory in the order they were written to. 514 * If not : (╯°□°)╯︵ ┻━┻ 515 */ 516 while (OA_TAKEN(tail, aged_tail) >= report_size) { 517 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail); 518 519 if (report32[0] != 0 || report32[1] != 0) 520 break; 521 522 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); 523 } 524 525 if (OA_TAKEN(hw_tail, tail) > report_size && 526 __ratelimit(&stream->perf->tail_pointer_race)) 527 DRM_NOTE("unlanded report(s) head=0x%x " 528 "tail=0x%x hw_tail=0x%x\n", 529 head, tail, hw_tail); 530 531 stream->oa_buffer.tail = gtt_offset + tail; 532 stream->oa_buffer.aging_tail = gtt_offset + hw_tail; 533 stream->oa_buffer.aging_timestamp = now; 534 } 535 536 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset, 537 stream->oa_buffer.head - gtt_offset) >= report_size; 538 539 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 540 541 return pollin; 542 } 543 544 /** 545 * append_oa_status - Appends a status record to a userspace read() buffer. 546 * @stream: An i915-perf stream opened for OA metrics 547 * @buf: destination buffer given by userspace 548 * @count: the number of bytes userspace wants to read 549 * @offset: (inout): the current position for writing into @buf 550 * @type: The kind of status to report to userspace 551 * 552 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) 553 * into the userspace read() buffer. 554 * 555 * The @buf @offset will only be updated on success. 556 * 557 * Returns: 0 on success, negative error code on failure. 558 */ 559 static int append_oa_status(struct i915_perf_stream *stream, 560 char __user *buf, 561 size_t count, 562 size_t *offset, 563 enum drm_i915_perf_record_type type) 564 { 565 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; 566 567 if ((count - *offset) < header.size) 568 return -ENOSPC; 569 570 if (copy_to_user(buf + *offset, &header, sizeof(header))) 571 return -EFAULT; 572 573 (*offset) += header.size; 574 575 return 0; 576 } 577 578 /** 579 * append_oa_sample - Copies single OA report into userspace read() buffer. 580 * @stream: An i915-perf stream opened for OA metrics 581 * @buf: destination buffer given by userspace 582 * @count: the number of bytes userspace wants to read 583 * @offset: (inout): the current position for writing into @buf 584 * @report: A single OA report to (optionally) include as part of the sample 585 * 586 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` 587 * properties when opening a stream, tracked as `stream->sample_flags`. This 588 * function copies the requested components of a single sample to the given 589 * read() @buf. 590 * 591 * The @buf @offset will only be updated on success. 592 * 593 * Returns: 0 on success, negative error code on failure. 594 */ 595 static int append_oa_sample(struct i915_perf_stream *stream, 596 char __user *buf, 597 size_t count, 598 size_t *offset, 599 const u8 *report) 600 { 601 int report_size = stream->oa_buffer.format_size; 602 struct drm_i915_perf_record_header header; 603 u32 sample_flags = stream->sample_flags; 604 605 header.type = DRM_I915_PERF_RECORD_SAMPLE; 606 header.pad = 0; 607 header.size = stream->sample_size; 608 609 if ((count - *offset) < header.size) 610 return -ENOSPC; 611 612 buf += *offset; 613 if (copy_to_user(buf, &header, sizeof(header))) 614 return -EFAULT; 615 buf += sizeof(header); 616 617 if (sample_flags & SAMPLE_OA_REPORT) { 618 if (copy_to_user(buf, report, report_size)) 619 return -EFAULT; 620 } 621 622 (*offset) += header.size; 623 624 return 0; 625 } 626 627 /** 628 * Copies all buffered OA reports into userspace read() buffer. 629 * @stream: An i915-perf stream opened for OA metrics 630 * @buf: destination buffer given by userspace 631 * @count: the number of bytes userspace wants to read 632 * @offset: (inout): the current position for writing into @buf 633 * 634 * Notably any error condition resulting in a short read (-%ENOSPC or 635 * -%EFAULT) will be returned even though one or more records may 636 * have been successfully copied. In this case it's up to the caller 637 * to decide if the error should be squashed before returning to 638 * userspace. 639 * 640 * Note: reports are consumed from the head, and appended to the 641 * tail, so the tail chases the head?... If you think that's mad 642 * and back-to-front you're not alone, but this follows the 643 * Gen PRM naming convention. 644 * 645 * Returns: 0 on success, negative error code on failure. 646 */ 647 static int gen8_append_oa_reports(struct i915_perf_stream *stream, 648 char __user *buf, 649 size_t count, 650 size_t *offset) 651 { 652 struct intel_uncore *uncore = stream->uncore; 653 int report_size = stream->oa_buffer.format_size; 654 u8 *oa_buf_base = stream->oa_buffer.vaddr; 655 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 656 u32 mask = (OA_BUFFER_SIZE - 1); 657 size_t start_offset = *offset; 658 unsigned long flags; 659 u32 head, tail; 660 u32 taken; 661 int ret = 0; 662 663 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 664 return -EIO; 665 666 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 667 668 head = stream->oa_buffer.head; 669 tail = stream->oa_buffer.tail; 670 671 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 672 673 /* 674 * NB: oa_buffer.head/tail include the gtt_offset which we don't want 675 * while indexing relative to oa_buf_base. 676 */ 677 head -= gtt_offset; 678 tail -= gtt_offset; 679 680 /* 681 * An out of bounds or misaligned head or tail pointer implies a driver 682 * bug since we validate + align the tail pointers we read from the 683 * hardware and we are in full control of the head pointer which should 684 * only be incremented by multiples of the report size (notably also 685 * all a power of two). 686 */ 687 if (drm_WARN_ONCE(&uncore->i915->drm, 688 head > OA_BUFFER_SIZE || head % report_size || 689 tail > OA_BUFFER_SIZE || tail % report_size, 690 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 691 head, tail)) 692 return -EIO; 693 694 695 for (/* none */; 696 (taken = OA_TAKEN(tail, head)); 697 head = (head + report_size) & mask) { 698 u8 *report = oa_buf_base + head; 699 u32 *report32 = (void *)report; 700 u32 ctx_id; 701 u32 reason; 702 703 /* 704 * All the report sizes factor neatly into the buffer 705 * size so we never expect to see a report split 706 * between the beginning and end of the buffer. 707 * 708 * Given the initial alignment check a misalignment 709 * here would imply a driver bug that would result 710 * in an overrun. 711 */ 712 if (drm_WARN_ON(&uncore->i915->drm, 713 (OA_BUFFER_SIZE - head) < report_size)) { 714 drm_err(&uncore->i915->drm, 715 "Spurious OA head ptr: non-integral report offset\n"); 716 break; 717 } 718 719 /* 720 * The reason field includes flags identifying what 721 * triggered this specific report (mostly timer 722 * triggered or e.g. due to a context switch). 723 * 724 * This field is never expected to be zero so we can 725 * check that the report isn't invalid before copying 726 * it to userspace... 727 */ 728 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & 729 (IS_GEN(stream->perf->i915, 12) ? 730 OAREPORT_REASON_MASK_EXTENDED : 731 OAREPORT_REASON_MASK)); 732 if (reason == 0) { 733 if (__ratelimit(&stream->perf->spurious_report_rs)) 734 DRM_NOTE("Skipping spurious, invalid OA report\n"); 735 continue; 736 } 737 738 ctx_id = report32[2] & stream->specific_ctx_id_mask; 739 740 /* 741 * Squash whatever is in the CTX_ID field if it's marked as 742 * invalid to be sure we avoid false-positive, single-context 743 * filtering below... 744 * 745 * Note: that we don't clear the valid_ctx_bit so userspace can 746 * understand that the ID has been squashed by the kernel. 747 */ 748 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && 749 INTEL_GEN(stream->perf->i915) <= 11) 750 ctx_id = report32[2] = INVALID_CTX_ID; 751 752 /* 753 * NB: For Gen 8 the OA unit no longer supports clock gating 754 * off for a specific context and the kernel can't securely 755 * stop the counters from updating as system-wide / global 756 * values. 757 * 758 * Automatic reports now include a context ID so reports can be 759 * filtered on the cpu but it's not worth trying to 760 * automatically subtract/hide counter progress for other 761 * contexts while filtering since we can't stop userspace 762 * issuing MI_REPORT_PERF_COUNT commands which would still 763 * provide a side-band view of the real values. 764 * 765 * To allow userspace (such as Mesa/GL_INTEL_performance_query) 766 * to normalize counters for a single filtered context then it 767 * needs be forwarded bookend context-switch reports so that it 768 * can track switches in between MI_REPORT_PERF_COUNT commands 769 * and can itself subtract/ignore the progress of counters 770 * associated with other contexts. Note that the hardware 771 * automatically triggers reports when switching to a new 772 * context which are tagged with the ID of the newly active 773 * context. To avoid the complexity (and likely fragility) of 774 * reading ahead while parsing reports to try and minimize 775 * forwarding redundant context switch reports (i.e. between 776 * other, unrelated contexts) we simply elect to forward them 777 * all. 778 * 779 * We don't rely solely on the reason field to identify context 780 * switches since it's not-uncommon for periodic samples to 781 * identify a switch before any 'context switch' report. 782 */ 783 if (!stream->perf->exclusive_stream->ctx || 784 stream->specific_ctx_id == ctx_id || 785 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || 786 reason & OAREPORT_REASON_CTX_SWITCH) { 787 788 /* 789 * While filtering for a single context we avoid 790 * leaking the IDs of other contexts. 791 */ 792 if (stream->perf->exclusive_stream->ctx && 793 stream->specific_ctx_id != ctx_id) { 794 report32[2] = INVALID_CTX_ID; 795 } 796 797 ret = append_oa_sample(stream, buf, count, offset, 798 report); 799 if (ret) 800 break; 801 802 stream->oa_buffer.last_ctx_id = ctx_id; 803 } 804 805 /* 806 * Clear out the first 2 dword as a mean to detect unlanded 807 * reports. 808 */ 809 report32[0] = 0; 810 report32[1] = 0; 811 } 812 813 if (start_offset != *offset) { 814 i915_reg_t oaheadptr; 815 816 oaheadptr = IS_GEN(stream->perf->i915, 12) ? 817 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; 818 819 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 820 821 /* 822 * We removed the gtt_offset for the copy loop above, indexing 823 * relative to oa_buf_base so put back here... 824 */ 825 head += gtt_offset; 826 intel_uncore_write(uncore, oaheadptr, 827 head & GEN12_OAG_OAHEADPTR_MASK); 828 stream->oa_buffer.head = head; 829 830 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 831 } 832 833 return ret; 834 } 835 836 /** 837 * gen8_oa_read - copy status records then buffered OA reports 838 * @stream: An i915-perf stream opened for OA metrics 839 * @buf: destination buffer given by userspace 840 * @count: the number of bytes userspace wants to read 841 * @offset: (inout): the current position for writing into @buf 842 * 843 * Checks OA unit status registers and if necessary appends corresponding 844 * status records for userspace (such as for a buffer full condition) and then 845 * initiate appending any buffered OA reports. 846 * 847 * Updates @offset according to the number of bytes successfully copied into 848 * the userspace buffer. 849 * 850 * NB: some data may be successfully copied to the userspace buffer 851 * even if an error is returned, and this is reflected in the 852 * updated @offset. 853 * 854 * Returns: zero on success or a negative error code 855 */ 856 static int gen8_oa_read(struct i915_perf_stream *stream, 857 char __user *buf, 858 size_t count, 859 size_t *offset) 860 { 861 struct intel_uncore *uncore = stream->uncore; 862 u32 oastatus; 863 i915_reg_t oastatus_reg; 864 int ret; 865 866 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 867 return -EIO; 868 869 oastatus_reg = IS_GEN(stream->perf->i915, 12) ? 870 GEN12_OAG_OASTATUS : GEN8_OASTATUS; 871 872 oastatus = intel_uncore_read(uncore, oastatus_reg); 873 874 /* 875 * We treat OABUFFER_OVERFLOW as a significant error: 876 * 877 * Although theoretically we could handle this more gracefully 878 * sometimes, some Gens don't correctly suppress certain 879 * automatically triggered reports in this condition and so we 880 * have to assume that old reports are now being trampled 881 * over. 882 * 883 * Considering how we don't currently give userspace control 884 * over the OA buffer size and always configure a large 16MB 885 * buffer, then a buffer overflow does anyway likely indicate 886 * that something has gone quite badly wrong. 887 */ 888 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { 889 ret = append_oa_status(stream, buf, count, offset, 890 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 891 if (ret) 892 return ret; 893 894 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 895 stream->period_exponent); 896 897 stream->perf->ops.oa_disable(stream); 898 stream->perf->ops.oa_enable(stream); 899 900 /* 901 * Note: .oa_enable() is expected to re-init the oabuffer and 902 * reset GEN8_OASTATUS for us 903 */ 904 oastatus = intel_uncore_read(uncore, oastatus_reg); 905 } 906 907 if (oastatus & GEN8_OASTATUS_REPORT_LOST) { 908 ret = append_oa_status(stream, buf, count, offset, 909 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 910 if (ret) 911 return ret; 912 913 intel_uncore_rmw(uncore, oastatus_reg, 914 GEN8_OASTATUS_COUNTER_OVERFLOW | 915 GEN8_OASTATUS_REPORT_LOST, 916 IS_GEN_RANGE(uncore->i915, 8, 10) ? 917 (GEN8_OASTATUS_HEAD_POINTER_WRAP | 918 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0); 919 } 920 921 return gen8_append_oa_reports(stream, buf, count, offset); 922 } 923 924 /** 925 * Copies all buffered OA reports into userspace read() buffer. 926 * @stream: An i915-perf stream opened for OA metrics 927 * @buf: destination buffer given by userspace 928 * @count: the number of bytes userspace wants to read 929 * @offset: (inout): the current position for writing into @buf 930 * 931 * Notably any error condition resulting in a short read (-%ENOSPC or 932 * -%EFAULT) will be returned even though one or more records may 933 * have been successfully copied. In this case it's up to the caller 934 * to decide if the error should be squashed before returning to 935 * userspace. 936 * 937 * Note: reports are consumed from the head, and appended to the 938 * tail, so the tail chases the head?... If you think that's mad 939 * and back-to-front you're not alone, but this follows the 940 * Gen PRM naming convention. 941 * 942 * Returns: 0 on success, negative error code on failure. 943 */ 944 static int gen7_append_oa_reports(struct i915_perf_stream *stream, 945 char __user *buf, 946 size_t count, 947 size_t *offset) 948 { 949 struct intel_uncore *uncore = stream->uncore; 950 int report_size = stream->oa_buffer.format_size; 951 u8 *oa_buf_base = stream->oa_buffer.vaddr; 952 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 953 u32 mask = (OA_BUFFER_SIZE - 1); 954 size_t start_offset = *offset; 955 unsigned long flags; 956 u32 head, tail; 957 u32 taken; 958 int ret = 0; 959 960 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) 961 return -EIO; 962 963 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 964 965 head = stream->oa_buffer.head; 966 tail = stream->oa_buffer.tail; 967 968 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 969 970 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want 971 * while indexing relative to oa_buf_base. 972 */ 973 head -= gtt_offset; 974 tail -= gtt_offset; 975 976 /* An out of bounds or misaligned head or tail pointer implies a driver 977 * bug since we validate + align the tail pointers we read from the 978 * hardware and we are in full control of the head pointer which should 979 * only be incremented by multiples of the report size (notably also 980 * all a power of two). 981 */ 982 if (drm_WARN_ONCE(&uncore->i915->drm, 983 head > OA_BUFFER_SIZE || head % report_size || 984 tail > OA_BUFFER_SIZE || tail % report_size, 985 "Inconsistent OA buffer pointers: head = %u, tail = %u\n", 986 head, tail)) 987 return -EIO; 988 989 990 for (/* none */; 991 (taken = OA_TAKEN(tail, head)); 992 head = (head + report_size) & mask) { 993 u8 *report = oa_buf_base + head; 994 u32 *report32 = (void *)report; 995 996 /* All the report sizes factor neatly into the buffer 997 * size so we never expect to see a report split 998 * between the beginning and end of the buffer. 999 * 1000 * Given the initial alignment check a misalignment 1001 * here would imply a driver bug that would result 1002 * in an overrun. 1003 */ 1004 if (drm_WARN_ON(&uncore->i915->drm, 1005 (OA_BUFFER_SIZE - head) < report_size)) { 1006 drm_err(&uncore->i915->drm, 1007 "Spurious OA head ptr: non-integral report offset\n"); 1008 break; 1009 } 1010 1011 /* The report-ID field for periodic samples includes 1012 * some undocumented flags related to what triggered 1013 * the report and is never expected to be zero so we 1014 * can check that the report isn't invalid before 1015 * copying it to userspace... 1016 */ 1017 if (report32[0] == 0) { 1018 if (__ratelimit(&stream->perf->spurious_report_rs)) 1019 DRM_NOTE("Skipping spurious, invalid OA report\n"); 1020 continue; 1021 } 1022 1023 ret = append_oa_sample(stream, buf, count, offset, report); 1024 if (ret) 1025 break; 1026 1027 /* Clear out the first 2 dwords as a mean to detect unlanded 1028 * reports. 1029 */ 1030 report32[0] = 0; 1031 report32[1] = 0; 1032 } 1033 1034 if (start_offset != *offset) { 1035 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1036 1037 /* We removed the gtt_offset for the copy loop above, indexing 1038 * relative to oa_buf_base so put back here... 1039 */ 1040 head += gtt_offset; 1041 1042 intel_uncore_write(uncore, GEN7_OASTATUS2, 1043 (head & GEN7_OASTATUS2_HEAD_MASK) | 1044 GEN7_OASTATUS2_MEM_SELECT_GGTT); 1045 stream->oa_buffer.head = head; 1046 1047 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1048 } 1049 1050 return ret; 1051 } 1052 1053 /** 1054 * gen7_oa_read - copy status records then buffered OA reports 1055 * @stream: An i915-perf stream opened for OA metrics 1056 * @buf: destination buffer given by userspace 1057 * @count: the number of bytes userspace wants to read 1058 * @offset: (inout): the current position for writing into @buf 1059 * 1060 * Checks Gen 7 specific OA unit status registers and if necessary appends 1061 * corresponding status records for userspace (such as for a buffer full 1062 * condition) and then initiate appending any buffered OA reports. 1063 * 1064 * Updates @offset according to the number of bytes successfully copied into 1065 * the userspace buffer. 1066 * 1067 * Returns: zero on success or a negative error code 1068 */ 1069 static int gen7_oa_read(struct i915_perf_stream *stream, 1070 char __user *buf, 1071 size_t count, 1072 size_t *offset) 1073 { 1074 struct intel_uncore *uncore = stream->uncore; 1075 u32 oastatus1; 1076 int ret; 1077 1078 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) 1079 return -EIO; 1080 1081 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1082 1083 /* XXX: On Haswell we don't have a safe way to clear oastatus1 1084 * bits while the OA unit is enabled (while the tail pointer 1085 * may be updated asynchronously) so we ignore status bits 1086 * that have already been reported to userspace. 1087 */ 1088 oastatus1 &= ~stream->perf->gen7_latched_oastatus1; 1089 1090 /* We treat OABUFFER_OVERFLOW as a significant error: 1091 * 1092 * - The status can be interpreted to mean that the buffer is 1093 * currently full (with a higher precedence than OA_TAKEN() 1094 * which will start to report a near-empty buffer after an 1095 * overflow) but it's awkward that we can't clear the status 1096 * on Haswell, so without a reset we won't be able to catch 1097 * the state again. 1098 * 1099 * - Since it also implies the HW has started overwriting old 1100 * reports it may also affect our sanity checks for invalid 1101 * reports when copying to userspace that assume new reports 1102 * are being written to cleared memory. 1103 * 1104 * - In the future we may want to introduce a flight recorder 1105 * mode where the driver will automatically maintain a safe 1106 * guard band between head/tail, avoiding this overflow 1107 * condition, but we avoid the added driver complexity for 1108 * now. 1109 */ 1110 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { 1111 ret = append_oa_status(stream, buf, count, offset, 1112 DRM_I915_PERF_RECORD_OA_BUFFER_LOST); 1113 if (ret) 1114 return ret; 1115 1116 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", 1117 stream->period_exponent); 1118 1119 stream->perf->ops.oa_disable(stream); 1120 stream->perf->ops.oa_enable(stream); 1121 1122 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); 1123 } 1124 1125 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { 1126 ret = append_oa_status(stream, buf, count, offset, 1127 DRM_I915_PERF_RECORD_OA_REPORT_LOST); 1128 if (ret) 1129 return ret; 1130 stream->perf->gen7_latched_oastatus1 |= 1131 GEN7_OASTATUS1_REPORT_LOST; 1132 } 1133 1134 return gen7_append_oa_reports(stream, buf, count, offset); 1135 } 1136 1137 /** 1138 * i915_oa_wait_unlocked - handles blocking IO until OA data available 1139 * @stream: An i915-perf stream opened for OA metrics 1140 * 1141 * Called when userspace tries to read() from a blocking stream FD opened 1142 * for OA metrics. It waits until the hrtimer callback finds a non-empty 1143 * OA buffer and wakes us. 1144 * 1145 * Note: it's acceptable to have this return with some false positives 1146 * since any subsequent read handling will return -EAGAIN if there isn't 1147 * really data ready for userspace yet. 1148 * 1149 * Returns: zero on success or a negative error code 1150 */ 1151 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) 1152 { 1153 /* We would wait indefinitely if periodic sampling is not enabled */ 1154 if (!stream->periodic) 1155 return -EIO; 1156 1157 return wait_event_interruptible(stream->poll_wq, 1158 oa_buffer_check_unlocked(stream)); 1159 } 1160 1161 /** 1162 * i915_oa_poll_wait - call poll_wait() for an OA stream poll() 1163 * @stream: An i915-perf stream opened for OA metrics 1164 * @file: An i915 perf stream file 1165 * @wait: poll() state table 1166 * 1167 * For handling userspace polling on an i915 perf stream opened for OA metrics, 1168 * this starts a poll_wait with the wait queue that our hrtimer callback wakes 1169 * when it sees data ready to read in the circular OA buffer. 1170 */ 1171 static void i915_oa_poll_wait(struct i915_perf_stream *stream, 1172 struct file *file, 1173 poll_table *wait) 1174 { 1175 poll_wait(file, &stream->poll_wq, wait); 1176 } 1177 1178 /** 1179 * i915_oa_read - just calls through to &i915_oa_ops->read 1180 * @stream: An i915-perf stream opened for OA metrics 1181 * @buf: destination buffer given by userspace 1182 * @count: the number of bytes userspace wants to read 1183 * @offset: (inout): the current position for writing into @buf 1184 * 1185 * Updates @offset according to the number of bytes successfully copied into 1186 * the userspace buffer. 1187 * 1188 * Returns: zero on success or a negative error code 1189 */ 1190 static int i915_oa_read(struct i915_perf_stream *stream, 1191 char __user *buf, 1192 size_t count, 1193 size_t *offset) 1194 { 1195 return stream->perf->ops.read(stream, buf, count, offset); 1196 } 1197 1198 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) 1199 { 1200 struct i915_gem_engines_iter it; 1201 struct i915_gem_context *ctx = stream->ctx; 1202 struct intel_context *ce; 1203 struct i915_gem_ww_ctx ww; 1204 int err = -ENODEV; 1205 1206 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 1207 if (ce->engine != stream->engine) /* first match! */ 1208 continue; 1209 1210 err = 0; 1211 break; 1212 } 1213 i915_gem_context_unlock_engines(ctx); 1214 1215 if (err) 1216 return ERR_PTR(err); 1217 1218 i915_gem_ww_ctx_init(&ww, true); 1219 retry: 1220 /* 1221 * As the ID is the gtt offset of the context's vma we 1222 * pin the vma to ensure the ID remains fixed. 1223 */ 1224 err = intel_context_pin_ww(ce, &ww); 1225 if (err == -EDEADLK) { 1226 err = i915_gem_ww_ctx_backoff(&ww); 1227 if (!err) 1228 goto retry; 1229 } 1230 i915_gem_ww_ctx_fini(&ww); 1231 1232 if (err) 1233 return ERR_PTR(err); 1234 1235 stream->pinned_ctx = ce; 1236 return stream->pinned_ctx; 1237 } 1238 1239 /** 1240 * oa_get_render_ctx_id - determine and hold ctx hw id 1241 * @stream: An i915-perf stream opened for OA metrics 1242 * 1243 * Determine the render context hw id, and ensure it remains fixed for the 1244 * lifetime of the stream. This ensures that we don't have to worry about 1245 * updating the context ID in OACONTROL on the fly. 1246 * 1247 * Returns: zero on success or a negative error code 1248 */ 1249 static int oa_get_render_ctx_id(struct i915_perf_stream *stream) 1250 { 1251 struct intel_context *ce; 1252 1253 ce = oa_pin_context(stream); 1254 if (IS_ERR(ce)) 1255 return PTR_ERR(ce); 1256 1257 switch (INTEL_GEN(ce->engine->i915)) { 1258 case 7: { 1259 /* 1260 * On Haswell we don't do any post processing of the reports 1261 * and don't need to use the mask. 1262 */ 1263 stream->specific_ctx_id = i915_ggtt_offset(ce->state); 1264 stream->specific_ctx_id_mask = 0; 1265 break; 1266 } 1267 1268 case 8: 1269 case 9: 1270 case 10: 1271 if (intel_engine_in_execlists_submission_mode(ce->engine)) { 1272 stream->specific_ctx_id_mask = 1273 (1U << GEN8_CTX_ID_WIDTH) - 1; 1274 stream->specific_ctx_id = stream->specific_ctx_id_mask; 1275 } else { 1276 /* 1277 * When using GuC, the context descriptor we write in 1278 * i915 is read by GuC and rewritten before it's 1279 * actually written into the hardware. The LRCA is 1280 * what is put into the context id field of the 1281 * context descriptor by GuC. Because it's aligned to 1282 * a page, the lower 12bits are always at 0 and 1283 * dropped by GuC. They won't be part of the context 1284 * ID in the OA reports, so squash those lower bits. 1285 */ 1286 stream->specific_ctx_id = ce->lrc.lrca >> 12; 1287 1288 /* 1289 * GuC uses the top bit to signal proxy submission, so 1290 * ignore that bit. 1291 */ 1292 stream->specific_ctx_id_mask = 1293 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; 1294 } 1295 break; 1296 1297 case 11: 1298 case 12: { 1299 stream->specific_ctx_id_mask = 1300 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1301 /* 1302 * Pick an unused context id 1303 * 0 - BITS_PER_LONG are used by other contexts 1304 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context 1305 */ 1306 stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); 1307 break; 1308 } 1309 1310 default: 1311 MISSING_CASE(INTEL_GEN(ce->engine->i915)); 1312 } 1313 1314 ce->tag = stream->specific_ctx_id; 1315 1316 drm_dbg(&stream->perf->i915->drm, 1317 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", 1318 stream->specific_ctx_id, 1319 stream->specific_ctx_id_mask); 1320 1321 return 0; 1322 } 1323 1324 /** 1325 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold 1326 * @stream: An i915-perf stream opened for OA metrics 1327 * 1328 * In case anything needed doing to ensure the context HW ID would remain valid 1329 * for the lifetime of the stream, then that can be undone here. 1330 */ 1331 static void oa_put_render_ctx_id(struct i915_perf_stream *stream) 1332 { 1333 struct intel_context *ce; 1334 1335 ce = fetch_and_zero(&stream->pinned_ctx); 1336 if (ce) { 1337 ce->tag = 0; /* recomputed on next submission after parking */ 1338 intel_context_unpin(ce); 1339 } 1340 1341 stream->specific_ctx_id = INVALID_CTX_ID; 1342 stream->specific_ctx_id_mask = 0; 1343 } 1344 1345 static void 1346 free_oa_buffer(struct i915_perf_stream *stream) 1347 { 1348 i915_vma_unpin_and_release(&stream->oa_buffer.vma, 1349 I915_VMA_RELEASE_MAP); 1350 1351 stream->oa_buffer.vaddr = NULL; 1352 } 1353 1354 static void 1355 free_oa_configs(struct i915_perf_stream *stream) 1356 { 1357 struct i915_oa_config_bo *oa_bo, *tmp; 1358 1359 i915_oa_config_put(stream->oa_config); 1360 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) 1361 free_oa_config_bo(oa_bo); 1362 } 1363 1364 static void 1365 free_noa_wait(struct i915_perf_stream *stream) 1366 { 1367 i915_vma_unpin_and_release(&stream->noa_wait, 0); 1368 } 1369 1370 static void i915_oa_stream_destroy(struct i915_perf_stream *stream) 1371 { 1372 struct i915_perf *perf = stream->perf; 1373 1374 BUG_ON(stream != perf->exclusive_stream); 1375 1376 /* 1377 * Unset exclusive_stream first, it will be checked while disabling 1378 * the metric set on gen8+. 1379 * 1380 * See i915_oa_init_reg_state() and lrc_configure_all_contexts() 1381 */ 1382 WRITE_ONCE(perf->exclusive_stream, NULL); 1383 perf->ops.disable_metric_set(stream); 1384 1385 free_oa_buffer(stream); 1386 1387 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 1388 intel_engine_pm_put(stream->engine); 1389 1390 if (stream->ctx) 1391 oa_put_render_ctx_id(stream); 1392 1393 free_oa_configs(stream); 1394 free_noa_wait(stream); 1395 1396 if (perf->spurious_report_rs.missed) { 1397 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", 1398 perf->spurious_report_rs.missed); 1399 } 1400 } 1401 1402 static void gen7_init_oa_buffer(struct i915_perf_stream *stream) 1403 { 1404 struct intel_uncore *uncore = stream->uncore; 1405 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1406 unsigned long flags; 1407 1408 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1409 1410 /* Pre-DevBDW: OABUFFER must be set with counters off, 1411 * before OASTATUS1, but after OASTATUS2 1412 */ 1413 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ 1414 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); 1415 stream->oa_buffer.head = gtt_offset; 1416 1417 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); 1418 1419 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ 1420 gtt_offset | OABUFFER_SIZE_16M); 1421 1422 /* Mark that we need updated tail pointers to read from... */ 1423 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1424 stream->oa_buffer.tail = gtt_offset; 1425 1426 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1427 1428 /* On Haswell we have to track which OASTATUS1 flags we've 1429 * already seen since they can't be cleared while periodic 1430 * sampling is enabled. 1431 */ 1432 stream->perf->gen7_latched_oastatus1 = 0; 1433 1434 /* NB: although the OA buffer will initially be allocated 1435 * zeroed via shmfs (and so this memset is redundant when 1436 * first allocating), we may re-init the OA buffer, either 1437 * when re-enabling a stream or in error/reset paths. 1438 * 1439 * The reason we clear the buffer for each re-init is for the 1440 * sanity check in gen7_append_oa_reports() that looks at the 1441 * report-id field to make sure it's non-zero which relies on 1442 * the assumption that new reports are being written to zeroed 1443 * memory... 1444 */ 1445 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1446 } 1447 1448 static void gen8_init_oa_buffer(struct i915_perf_stream *stream) 1449 { 1450 struct intel_uncore *uncore = stream->uncore; 1451 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1452 unsigned long flags; 1453 1454 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1455 1456 intel_uncore_write(uncore, GEN8_OASTATUS, 0); 1457 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); 1458 stream->oa_buffer.head = gtt_offset; 1459 1460 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); 1461 1462 /* 1463 * PRM says: 1464 * 1465 * "This MMIO must be set before the OATAILPTR 1466 * register and after the OAHEADPTR register. This is 1467 * to enable proper functionality of the overflow 1468 * bit." 1469 */ 1470 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | 1471 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1472 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); 1473 1474 /* Mark that we need updated tail pointers to read from... */ 1475 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1476 stream->oa_buffer.tail = gtt_offset; 1477 1478 /* 1479 * Reset state used to recognise context switches, affecting which 1480 * reports we will forward to userspace while filtering for a single 1481 * context. 1482 */ 1483 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1484 1485 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1486 1487 /* 1488 * NB: although the OA buffer will initially be allocated 1489 * zeroed via shmfs (and so this memset is redundant when 1490 * first allocating), we may re-init the OA buffer, either 1491 * when re-enabling a stream or in error/reset paths. 1492 * 1493 * The reason we clear the buffer for each re-init is for the 1494 * sanity check in gen8_append_oa_reports() that looks at the 1495 * reason field to make sure it's non-zero which relies on 1496 * the assumption that new reports are being written to zeroed 1497 * memory... 1498 */ 1499 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); 1500 } 1501 1502 static void gen12_init_oa_buffer(struct i915_perf_stream *stream) 1503 { 1504 struct intel_uncore *uncore = stream->uncore; 1505 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); 1506 unsigned long flags; 1507 1508 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); 1509 1510 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); 1511 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, 1512 gtt_offset & GEN12_OAG_OAHEADPTR_MASK); 1513 stream->oa_buffer.head = gtt_offset; 1514 1515 /* 1516 * PRM says: 1517 * 1518 * "This MMIO must be set before the OATAILPTR 1519 * register and after the OAHEADPTR register. This is 1520 * to enable proper functionality of the overflow 1521 * bit." 1522 */ 1523 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | 1524 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); 1525 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, 1526 gtt_offset & GEN12_OAG_OATAILPTR_MASK); 1527 1528 /* Mark that we need updated tail pointers to read from... */ 1529 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; 1530 stream->oa_buffer.tail = gtt_offset; 1531 1532 /* 1533 * Reset state used to recognise context switches, affecting which 1534 * reports we will forward to userspace while filtering for a single 1535 * context. 1536 */ 1537 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; 1538 1539 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); 1540 1541 /* 1542 * NB: although the OA buffer will initially be allocated 1543 * zeroed via shmfs (and so this memset is redundant when 1544 * first allocating), we may re-init the OA buffer, either 1545 * when re-enabling a stream or in error/reset paths. 1546 * 1547 * The reason we clear the buffer for each re-init is for the 1548 * sanity check in gen8_append_oa_reports() that looks at the 1549 * reason field to make sure it's non-zero which relies on 1550 * the assumption that new reports are being written to zeroed 1551 * memory... 1552 */ 1553 memset(stream->oa_buffer.vaddr, 0, 1554 stream->oa_buffer.vma->size); 1555 } 1556 1557 static int alloc_oa_buffer(struct i915_perf_stream *stream) 1558 { 1559 struct drm_i915_private *i915 = stream->perf->i915; 1560 struct drm_i915_gem_object *bo; 1561 struct i915_vma *vma; 1562 int ret; 1563 1564 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) 1565 return -ENODEV; 1566 1567 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); 1568 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); 1569 1570 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); 1571 if (IS_ERR(bo)) { 1572 drm_err(&i915->drm, "Failed to allocate OA buffer\n"); 1573 return PTR_ERR(bo); 1574 } 1575 1576 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); 1577 1578 /* PreHSW required 512K alignment, HSW requires 16M */ 1579 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); 1580 if (IS_ERR(vma)) { 1581 ret = PTR_ERR(vma); 1582 goto err_unref; 1583 } 1584 stream->oa_buffer.vma = vma; 1585 1586 stream->oa_buffer.vaddr = 1587 i915_gem_object_pin_map(bo, I915_MAP_WB); 1588 if (IS_ERR(stream->oa_buffer.vaddr)) { 1589 ret = PTR_ERR(stream->oa_buffer.vaddr); 1590 goto err_unpin; 1591 } 1592 1593 return 0; 1594 1595 err_unpin: 1596 __i915_vma_unpin(vma); 1597 1598 err_unref: 1599 i915_gem_object_put(bo); 1600 1601 stream->oa_buffer.vaddr = NULL; 1602 stream->oa_buffer.vma = NULL; 1603 1604 return ret; 1605 } 1606 1607 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, 1608 bool save, i915_reg_t reg, u32 offset, 1609 u32 dword_count) 1610 { 1611 u32 cmd; 1612 u32 d; 1613 1614 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; 1615 cmd |= MI_SRM_LRM_GLOBAL_GTT; 1616 if (INTEL_GEN(stream->perf->i915) >= 8) 1617 cmd++; 1618 1619 for (d = 0; d < dword_count; d++) { 1620 *cs++ = cmd; 1621 *cs++ = i915_mmio_reg_offset(reg) + 4 * d; 1622 *cs++ = intel_gt_scratch_offset(stream->engine->gt, 1623 offset) + 4 * d; 1624 *cs++ = 0; 1625 } 1626 1627 return cs; 1628 } 1629 1630 static int alloc_noa_wait(struct i915_perf_stream *stream) 1631 { 1632 struct drm_i915_private *i915 = stream->perf->i915; 1633 struct drm_i915_gem_object *bo; 1634 struct i915_vma *vma; 1635 const u64 delay_ticks = 0xffffffffffffffff - 1636 i915_cs_timestamp_ns_to_ticks(i915, atomic64_read(&stream->perf->noa_programming_delay)); 1637 const u32 base = stream->engine->mmio_base; 1638 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) 1639 u32 *batch, *ts0, *cs, *jump; 1640 int ret, i; 1641 enum { 1642 START_TS, 1643 NOW_TS, 1644 DELTA_TS, 1645 JUMP_PREDICATE, 1646 DELTA_TARGET, 1647 N_CS_GPR 1648 }; 1649 1650 bo = i915_gem_object_create_internal(i915, 4096); 1651 if (IS_ERR(bo)) { 1652 drm_err(&i915->drm, 1653 "Failed to allocate NOA wait batchbuffer\n"); 1654 return PTR_ERR(bo); 1655 } 1656 1657 /* 1658 * We pin in GGTT because we jump into this buffer now because 1659 * multiple OA config BOs will have a jump to this address and it 1660 * needs to be fixed during the lifetime of the i915/perf stream. 1661 */ 1662 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH); 1663 if (IS_ERR(vma)) { 1664 ret = PTR_ERR(vma); 1665 goto err_unref; 1666 } 1667 1668 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); 1669 if (IS_ERR(batch)) { 1670 ret = PTR_ERR(batch); 1671 goto err_unpin; 1672 } 1673 1674 /* Save registers. */ 1675 for (i = 0; i < N_CS_GPR; i++) 1676 cs = save_restore_register( 1677 stream, cs, true /* save */, CS_GPR(i), 1678 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1679 cs = save_restore_register( 1680 stream, cs, true /* save */, MI_PREDICATE_RESULT_1, 1681 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1682 1683 /* First timestamp snapshot location. */ 1684 ts0 = cs; 1685 1686 /* 1687 * Initial snapshot of the timestamp register to implement the wait. 1688 * We work with 32b values, so clear out the top 32b bits of the 1689 * register because the ALU works 64bits. 1690 */ 1691 *cs++ = MI_LOAD_REGISTER_IMM(1); 1692 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; 1693 *cs++ = 0; 1694 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1695 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1696 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); 1697 1698 /* 1699 * This is the location we're going to jump back into until the 1700 * required amount of time has passed. 1701 */ 1702 jump = cs; 1703 1704 /* 1705 * Take another snapshot of the timestamp register. Take care to clear 1706 * up the top 32bits of CS_GPR(1) as we're using it for other 1707 * operations below. 1708 */ 1709 *cs++ = MI_LOAD_REGISTER_IMM(1); 1710 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; 1711 *cs++ = 0; 1712 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1713 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); 1714 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); 1715 1716 /* 1717 * Do a diff between the 2 timestamps and store the result back into 1718 * CS_GPR(1). 1719 */ 1720 *cs++ = MI_MATH(5); 1721 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); 1722 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); 1723 *cs++ = MI_MATH_SUB; 1724 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); 1725 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1726 1727 /* 1728 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the 1729 * timestamp have rolled over the 32bits) into the predicate register 1730 * to be used for the predicated jump. 1731 */ 1732 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1733 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1734 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1735 1736 /* Restart from the beginning if we had timestamps roll over. */ 1737 *cs++ = (INTEL_GEN(i915) < 8 ? 1738 MI_BATCH_BUFFER_START : 1739 MI_BATCH_BUFFER_START_GEN8) | 1740 MI_BATCH_PREDICATE; 1741 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; 1742 *cs++ = 0; 1743 1744 /* 1745 * Now add the diff between to previous timestamps and add it to : 1746 * (((1 * << 64) - 1) - delay_ns) 1747 * 1748 * When the Carry Flag contains 1 this means the elapsed time is 1749 * longer than the expected delay, and we can exit the wait loop. 1750 */ 1751 *cs++ = MI_LOAD_REGISTER_IMM(2); 1752 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); 1753 *cs++ = lower_32_bits(delay_ticks); 1754 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; 1755 *cs++ = upper_32_bits(delay_ticks); 1756 1757 *cs++ = MI_MATH(4); 1758 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); 1759 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); 1760 *cs++ = MI_MATH_ADD; 1761 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); 1762 1763 *cs++ = MI_ARB_CHECK; 1764 1765 /* 1766 * Transfer the result into the predicate register to be used for the 1767 * predicated jump. 1768 */ 1769 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); 1770 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); 1771 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); 1772 1773 /* Predicate the jump. */ 1774 *cs++ = (INTEL_GEN(i915) < 8 ? 1775 MI_BATCH_BUFFER_START : 1776 MI_BATCH_BUFFER_START_GEN8) | 1777 MI_BATCH_PREDICATE; 1778 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; 1779 *cs++ = 0; 1780 1781 /* Restore registers. */ 1782 for (i = 0; i < N_CS_GPR; i++) 1783 cs = save_restore_register( 1784 stream, cs, false /* restore */, CS_GPR(i), 1785 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); 1786 cs = save_restore_register( 1787 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1, 1788 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); 1789 1790 /* And return to the ring. */ 1791 *cs++ = MI_BATCH_BUFFER_END; 1792 1793 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); 1794 1795 i915_gem_object_flush_map(bo); 1796 __i915_gem_object_release_map(bo); 1797 1798 stream->noa_wait = vma; 1799 return 0; 1800 1801 err_unpin: 1802 i915_vma_unpin_and_release(&vma, 0); 1803 err_unref: 1804 i915_gem_object_put(bo); 1805 return ret; 1806 } 1807 1808 static u32 *write_cs_mi_lri(u32 *cs, 1809 const struct i915_oa_reg *reg_data, 1810 u32 n_regs) 1811 { 1812 u32 i; 1813 1814 for (i = 0; i < n_regs; i++) { 1815 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { 1816 u32 n_lri = min_t(u32, 1817 n_regs - i, 1818 MI_LOAD_REGISTER_IMM_MAX_REGS); 1819 1820 *cs++ = MI_LOAD_REGISTER_IMM(n_lri); 1821 } 1822 *cs++ = i915_mmio_reg_offset(reg_data[i].addr); 1823 *cs++ = reg_data[i].value; 1824 } 1825 1826 return cs; 1827 } 1828 1829 static int num_lri_dwords(int num_regs) 1830 { 1831 int count = 0; 1832 1833 if (num_regs > 0) { 1834 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); 1835 count += num_regs * 2; 1836 } 1837 1838 return count; 1839 } 1840 1841 static struct i915_oa_config_bo * 1842 alloc_oa_config_buffer(struct i915_perf_stream *stream, 1843 struct i915_oa_config *oa_config) 1844 { 1845 struct drm_i915_gem_object *obj; 1846 struct i915_oa_config_bo *oa_bo; 1847 size_t config_length = 0; 1848 u32 *cs; 1849 int err; 1850 1851 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); 1852 if (!oa_bo) 1853 return ERR_PTR(-ENOMEM); 1854 1855 config_length += num_lri_dwords(oa_config->mux_regs_len); 1856 config_length += num_lri_dwords(oa_config->b_counter_regs_len); 1857 config_length += num_lri_dwords(oa_config->flex_regs_len); 1858 config_length += 3; /* MI_BATCH_BUFFER_START */ 1859 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); 1860 1861 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); 1862 if (IS_ERR(obj)) { 1863 err = PTR_ERR(obj); 1864 goto err_free; 1865 } 1866 1867 cs = i915_gem_object_pin_map(obj, I915_MAP_WB); 1868 if (IS_ERR(cs)) { 1869 err = PTR_ERR(cs); 1870 goto err_oa_bo; 1871 } 1872 1873 cs = write_cs_mi_lri(cs, 1874 oa_config->mux_regs, 1875 oa_config->mux_regs_len); 1876 cs = write_cs_mi_lri(cs, 1877 oa_config->b_counter_regs, 1878 oa_config->b_counter_regs_len); 1879 cs = write_cs_mi_lri(cs, 1880 oa_config->flex_regs, 1881 oa_config->flex_regs_len); 1882 1883 /* Jump into the active wait. */ 1884 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ? 1885 MI_BATCH_BUFFER_START : 1886 MI_BATCH_BUFFER_START_GEN8); 1887 *cs++ = i915_ggtt_offset(stream->noa_wait); 1888 *cs++ = 0; 1889 1890 i915_gem_object_flush_map(obj); 1891 __i915_gem_object_release_map(obj); 1892 1893 oa_bo->vma = i915_vma_instance(obj, 1894 &stream->engine->gt->ggtt->vm, 1895 NULL); 1896 if (IS_ERR(oa_bo->vma)) { 1897 err = PTR_ERR(oa_bo->vma); 1898 goto err_oa_bo; 1899 } 1900 1901 oa_bo->oa_config = i915_oa_config_get(oa_config); 1902 llist_add(&oa_bo->node, &stream->oa_config_bos); 1903 1904 return oa_bo; 1905 1906 err_oa_bo: 1907 i915_gem_object_put(obj); 1908 err_free: 1909 kfree(oa_bo); 1910 return ERR_PTR(err); 1911 } 1912 1913 static struct i915_vma * 1914 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) 1915 { 1916 struct i915_oa_config_bo *oa_bo; 1917 1918 /* 1919 * Look for the buffer in the already allocated BOs attached 1920 * to the stream. 1921 */ 1922 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { 1923 if (oa_bo->oa_config == oa_config && 1924 memcmp(oa_bo->oa_config->uuid, 1925 oa_config->uuid, 1926 sizeof(oa_config->uuid)) == 0) 1927 goto out; 1928 } 1929 1930 oa_bo = alloc_oa_config_buffer(stream, oa_config); 1931 if (IS_ERR(oa_bo)) 1932 return ERR_CAST(oa_bo); 1933 1934 out: 1935 return i915_vma_get(oa_bo->vma); 1936 } 1937 1938 static int 1939 emit_oa_config(struct i915_perf_stream *stream, 1940 struct i915_oa_config *oa_config, 1941 struct intel_context *ce, 1942 struct i915_active *active) 1943 { 1944 struct i915_request *rq; 1945 struct i915_vma *vma; 1946 struct i915_gem_ww_ctx ww; 1947 int err; 1948 1949 vma = get_oa_vma(stream, oa_config); 1950 if (IS_ERR(vma)) 1951 return PTR_ERR(vma); 1952 1953 i915_gem_ww_ctx_init(&ww, true); 1954 retry: 1955 err = i915_gem_object_lock(vma->obj, &ww); 1956 if (err) 1957 goto err; 1958 1959 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH); 1960 if (err) 1961 goto err; 1962 1963 intel_engine_pm_get(ce->engine); 1964 rq = i915_request_create(ce); 1965 intel_engine_pm_put(ce->engine); 1966 if (IS_ERR(rq)) { 1967 err = PTR_ERR(rq); 1968 goto err_vma_unpin; 1969 } 1970 1971 if (!IS_ERR_OR_NULL(active)) { 1972 /* After all individual context modifications */ 1973 err = i915_request_await_active(rq, active, 1974 I915_ACTIVE_AWAIT_ACTIVE); 1975 if (err) 1976 goto err_add_request; 1977 1978 err = i915_active_add_request(active, rq); 1979 if (err) 1980 goto err_add_request; 1981 } 1982 1983 err = i915_request_await_object(rq, vma->obj, 0); 1984 if (!err) 1985 err = i915_vma_move_to_active(vma, rq, 0); 1986 if (err) 1987 goto err_add_request; 1988 1989 err = rq->engine->emit_bb_start(rq, 1990 vma->node.start, 0, 1991 I915_DISPATCH_SECURE); 1992 if (err) 1993 goto err_add_request; 1994 1995 err_add_request: 1996 i915_request_add(rq); 1997 err_vma_unpin: 1998 i915_vma_unpin(vma); 1999 err: 2000 if (err == -EDEADLK) { 2001 err = i915_gem_ww_ctx_backoff(&ww); 2002 if (!err) 2003 goto retry; 2004 } 2005 2006 i915_gem_ww_ctx_fini(&ww); 2007 i915_vma_put(vma); 2008 return err; 2009 } 2010 2011 static struct intel_context *oa_context(struct i915_perf_stream *stream) 2012 { 2013 return stream->pinned_ctx ?: stream->engine->kernel_context; 2014 } 2015 2016 static int 2017 hsw_enable_metric_set(struct i915_perf_stream *stream, 2018 struct i915_active *active) 2019 { 2020 struct intel_uncore *uncore = stream->uncore; 2021 2022 /* 2023 * PRM: 2024 * 2025 * OA unit is using “crclk” for its functionality. When trunk 2026 * level clock gating takes place, OA clock would be gated, 2027 * unable to count the events from non-render clock domain. 2028 * Render clock gating must be disabled when OA is enabled to 2029 * count the events from non-render domain. Unit level clock 2030 * gating for RCS should also be disabled. 2031 */ 2032 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2033 GEN7_DOP_CLOCK_GATE_ENABLE, 0); 2034 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2035 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); 2036 2037 return emit_oa_config(stream, 2038 stream->oa_config, oa_context(stream), 2039 active); 2040 } 2041 2042 static void hsw_disable_metric_set(struct i915_perf_stream *stream) 2043 { 2044 struct intel_uncore *uncore = stream->uncore; 2045 2046 intel_uncore_rmw(uncore, GEN6_UCGCTL1, 2047 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); 2048 intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 2049 0, GEN7_DOP_CLOCK_GATE_ENABLE); 2050 2051 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2052 } 2053 2054 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, 2055 i915_reg_t reg) 2056 { 2057 u32 mmio = i915_mmio_reg_offset(reg); 2058 int i; 2059 2060 /* 2061 * This arbitrary default will select the 'EU FPU0 Pipeline 2062 * Active' event. In the future it's anticipated that there 2063 * will be an explicit 'No Event' we can select, but not yet... 2064 */ 2065 if (!oa_config) 2066 return 0; 2067 2068 for (i = 0; i < oa_config->flex_regs_len; i++) { 2069 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) 2070 return oa_config->flex_regs[i].value; 2071 } 2072 2073 return 0; 2074 } 2075 /* 2076 * NB: It must always remain pointer safe to run this even if the OA unit 2077 * has been disabled. 2078 * 2079 * It's fine to put out-of-date values into these per-context registers 2080 * in the case that the OA unit has been disabled. 2081 */ 2082 static void 2083 gen8_update_reg_state_unlocked(const struct intel_context *ce, 2084 const struct i915_perf_stream *stream) 2085 { 2086 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; 2087 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2088 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2089 i915_reg_t flex_regs[] = { 2090 EU_PERF_CNTL0, 2091 EU_PERF_CNTL1, 2092 EU_PERF_CNTL2, 2093 EU_PERF_CNTL3, 2094 EU_PERF_CNTL4, 2095 EU_PERF_CNTL5, 2096 EU_PERF_CNTL6, 2097 }; 2098 u32 *reg_state = ce->lrc_reg_state; 2099 int i; 2100 2101 reg_state[ctx_oactxctrl + 1] = 2102 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2103 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2104 GEN8_OA_COUNTER_RESUME; 2105 2106 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) 2107 reg_state[ctx_flexeu0 + i * 2 + 1] = 2108 oa_config_flex_reg(stream->oa_config, flex_regs[i]); 2109 } 2110 2111 struct flex { 2112 i915_reg_t reg; 2113 u32 offset; 2114 u32 value; 2115 }; 2116 2117 static int 2118 gen8_store_flex(struct i915_request *rq, 2119 struct intel_context *ce, 2120 const struct flex *flex, unsigned int count) 2121 { 2122 u32 offset; 2123 u32 *cs; 2124 2125 cs = intel_ring_begin(rq, 4 * count); 2126 if (IS_ERR(cs)) 2127 return PTR_ERR(cs); 2128 2129 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; 2130 do { 2131 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 2132 *cs++ = offset + flex->offset * sizeof(u32); 2133 *cs++ = 0; 2134 *cs++ = flex->value; 2135 } while (flex++, --count); 2136 2137 intel_ring_advance(rq, cs); 2138 2139 return 0; 2140 } 2141 2142 static int 2143 gen8_load_flex(struct i915_request *rq, 2144 struct intel_context *ce, 2145 const struct flex *flex, unsigned int count) 2146 { 2147 u32 *cs; 2148 2149 GEM_BUG_ON(!count || count > 63); 2150 2151 cs = intel_ring_begin(rq, 2 * count + 2); 2152 if (IS_ERR(cs)) 2153 return PTR_ERR(cs); 2154 2155 *cs++ = MI_LOAD_REGISTER_IMM(count); 2156 do { 2157 *cs++ = i915_mmio_reg_offset(flex->reg); 2158 *cs++ = flex->value; 2159 } while (flex++, --count); 2160 *cs++ = MI_NOOP; 2161 2162 intel_ring_advance(rq, cs); 2163 2164 return 0; 2165 } 2166 2167 static int gen8_modify_context(struct intel_context *ce, 2168 const struct flex *flex, unsigned int count) 2169 { 2170 struct i915_request *rq; 2171 int err; 2172 2173 rq = intel_engine_create_kernel_request(ce->engine); 2174 if (IS_ERR(rq)) 2175 return PTR_ERR(rq); 2176 2177 /* Serialise with the remote context */ 2178 err = intel_context_prepare_remote_request(ce, rq); 2179 if (err == 0) 2180 err = gen8_store_flex(rq, ce, flex, count); 2181 2182 i915_request_add(rq); 2183 return err; 2184 } 2185 2186 static int 2187 gen8_modify_self(struct intel_context *ce, 2188 const struct flex *flex, unsigned int count, 2189 struct i915_active *active) 2190 { 2191 struct i915_request *rq; 2192 int err; 2193 2194 intel_engine_pm_get(ce->engine); 2195 rq = i915_request_create(ce); 2196 intel_engine_pm_put(ce->engine); 2197 if (IS_ERR(rq)) 2198 return PTR_ERR(rq); 2199 2200 if (!IS_ERR_OR_NULL(active)) { 2201 err = i915_active_add_request(active, rq); 2202 if (err) 2203 goto err_add_request; 2204 } 2205 2206 err = gen8_load_flex(rq, ce, flex, count); 2207 if (err) 2208 goto err_add_request; 2209 2210 err_add_request: 2211 i915_request_add(rq); 2212 return err; 2213 } 2214 2215 static int gen8_configure_context(struct i915_gem_context *ctx, 2216 struct flex *flex, unsigned int count) 2217 { 2218 struct i915_gem_engines_iter it; 2219 struct intel_context *ce; 2220 int err = 0; 2221 2222 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 2223 GEM_BUG_ON(ce == ce->engine->kernel_context); 2224 2225 if (ce->engine->class != RENDER_CLASS) 2226 continue; 2227 2228 /* Otherwise OA settings will be set upon first use */ 2229 if (!intel_context_pin_if_active(ce)) 2230 continue; 2231 2232 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); 2233 err = gen8_modify_context(ce, flex, count); 2234 2235 intel_context_unpin(ce); 2236 if (err) 2237 break; 2238 } 2239 i915_gem_context_unlock_engines(ctx); 2240 2241 return err; 2242 } 2243 2244 static int gen12_configure_oar_context(struct i915_perf_stream *stream, 2245 struct i915_active *active) 2246 { 2247 int err; 2248 struct intel_context *ce = stream->pinned_ctx; 2249 u32 format = stream->oa_buffer.format; 2250 struct flex regs_context[] = { 2251 { 2252 GEN8_OACTXCONTROL, 2253 stream->perf->ctx_oactxctrl_offset + 1, 2254 active ? GEN8_OA_COUNTER_RESUME : 0, 2255 }, 2256 }; 2257 /* Offsets in regs_lri are not used since this configuration is only 2258 * applied using LRI. Initialize the correct offsets for posterity. 2259 */ 2260 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 2261 struct flex regs_lri[] = { 2262 { 2263 GEN12_OAR_OACONTROL, 2264 GEN12_OAR_OACONTROL_OFFSET + 1, 2265 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | 2266 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) 2267 }, 2268 { 2269 RING_CONTEXT_CONTROL(ce->engine->mmio_base), 2270 CTX_CONTEXT_CONTROL, 2271 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, 2272 active ? 2273 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : 2274 0) 2275 }, 2276 }; 2277 2278 /* Modify the context image of pinned context with regs_context*/ 2279 err = intel_context_lock_pinned(ce); 2280 if (err) 2281 return err; 2282 2283 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context)); 2284 intel_context_unlock_pinned(ce); 2285 if (err) 2286 return err; 2287 2288 /* Apply regs_lri using LRI with pinned context */ 2289 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); 2290 } 2291 2292 /* 2293 * Manages updating the per-context aspects of the OA stream 2294 * configuration across all contexts. 2295 * 2296 * The awkward consideration here is that OACTXCONTROL controls the 2297 * exponent for periodic sampling which is primarily used for system 2298 * wide profiling where we'd like a consistent sampling period even in 2299 * the face of context switches. 2300 * 2301 * Our approach of updating the register state context (as opposed to 2302 * say using a workaround batch buffer) ensures that the hardware 2303 * won't automatically reload an out-of-date timer exponent even 2304 * transiently before a WA BB could be parsed. 2305 * 2306 * This function needs to: 2307 * - Ensure the currently running context's per-context OA state is 2308 * updated 2309 * - Ensure that all existing contexts will have the correct per-context 2310 * OA state if they are scheduled for use. 2311 * - Ensure any new contexts will be initialized with the correct 2312 * per-context OA state. 2313 * 2314 * Note: it's only the RCS/Render context that has any OA state. 2315 * Note: the first flex register passed must always be R_PWR_CLK_STATE 2316 */ 2317 static int 2318 oa_configure_all_contexts(struct i915_perf_stream *stream, 2319 struct flex *regs, 2320 size_t num_regs, 2321 struct i915_active *active) 2322 { 2323 struct drm_i915_private *i915 = stream->perf->i915; 2324 struct intel_engine_cs *engine; 2325 struct i915_gem_context *ctx, *cn; 2326 int err; 2327 2328 lockdep_assert_held(&stream->perf->lock); 2329 2330 /* 2331 * The OA register config is setup through the context image. This image 2332 * might be written to by the GPU on context switch (in particular on 2333 * lite-restore). This means we can't safely update a context's image, 2334 * if this context is scheduled/submitted to run on the GPU. 2335 * 2336 * We could emit the OA register config through the batch buffer but 2337 * this might leave small interval of time where the OA unit is 2338 * configured at an invalid sampling period. 2339 * 2340 * Note that since we emit all requests from a single ring, there 2341 * is still an implicit global barrier here that may cause a high 2342 * priority context to wait for an otherwise independent low priority 2343 * context. Contexts idle at the time of reconfiguration are not 2344 * trapped behind the barrier. 2345 */ 2346 spin_lock(&i915->gem.contexts.lock); 2347 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 2348 if (!kref_get_unless_zero(&ctx->ref)) 2349 continue; 2350 2351 spin_unlock(&i915->gem.contexts.lock); 2352 2353 err = gen8_configure_context(ctx, regs, num_regs); 2354 if (err) { 2355 i915_gem_context_put(ctx); 2356 return err; 2357 } 2358 2359 spin_lock(&i915->gem.contexts.lock); 2360 list_safe_reset_next(ctx, cn, link); 2361 i915_gem_context_put(ctx); 2362 } 2363 spin_unlock(&i915->gem.contexts.lock); 2364 2365 /* 2366 * After updating all other contexts, we need to modify ourselves. 2367 * If we don't modify the kernel_context, we do not get events while 2368 * idle. 2369 */ 2370 for_each_uabi_engine(engine, i915) { 2371 struct intel_context *ce = engine->kernel_context; 2372 2373 if (engine->class != RENDER_CLASS) 2374 continue; 2375 2376 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); 2377 2378 err = gen8_modify_self(ce, regs, num_regs, active); 2379 if (err) 2380 return err; 2381 } 2382 2383 return 0; 2384 } 2385 2386 static int 2387 gen12_configure_all_contexts(struct i915_perf_stream *stream, 2388 const struct i915_oa_config *oa_config, 2389 struct i915_active *active) 2390 { 2391 struct flex regs[] = { 2392 { 2393 GEN8_R_PWR_CLK_STATE, 2394 CTX_R_PWR_CLK_STATE, 2395 }, 2396 }; 2397 2398 return oa_configure_all_contexts(stream, 2399 regs, ARRAY_SIZE(regs), 2400 active); 2401 } 2402 2403 static int 2404 lrc_configure_all_contexts(struct i915_perf_stream *stream, 2405 const struct i915_oa_config *oa_config, 2406 struct i915_active *active) 2407 { 2408 /* The MMIO offsets for Flex EU registers aren't contiguous */ 2409 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; 2410 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) 2411 struct flex regs[] = { 2412 { 2413 GEN8_R_PWR_CLK_STATE, 2414 CTX_R_PWR_CLK_STATE, 2415 }, 2416 { 2417 GEN8_OACTXCONTROL, 2418 stream->perf->ctx_oactxctrl_offset + 1, 2419 }, 2420 { EU_PERF_CNTL0, ctx_flexeuN(0) }, 2421 { EU_PERF_CNTL1, ctx_flexeuN(1) }, 2422 { EU_PERF_CNTL2, ctx_flexeuN(2) }, 2423 { EU_PERF_CNTL3, ctx_flexeuN(3) }, 2424 { EU_PERF_CNTL4, ctx_flexeuN(4) }, 2425 { EU_PERF_CNTL5, ctx_flexeuN(5) }, 2426 { EU_PERF_CNTL6, ctx_flexeuN(6) }, 2427 }; 2428 #undef ctx_flexeuN 2429 int i; 2430 2431 regs[1].value = 2432 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | 2433 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | 2434 GEN8_OA_COUNTER_RESUME; 2435 2436 for (i = 2; i < ARRAY_SIZE(regs); i++) 2437 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); 2438 2439 return oa_configure_all_contexts(stream, 2440 regs, ARRAY_SIZE(regs), 2441 active); 2442 } 2443 2444 static int 2445 gen8_enable_metric_set(struct i915_perf_stream *stream, 2446 struct i915_active *active) 2447 { 2448 struct intel_uncore *uncore = stream->uncore; 2449 struct i915_oa_config *oa_config = stream->oa_config; 2450 int ret; 2451 2452 /* 2453 * We disable slice/unslice clock ratio change reports on SKL since 2454 * they are too noisy. The HW generates a lot of redundant reports 2455 * where the ratio hasn't really changed causing a lot of redundant 2456 * work to processes and increasing the chances we'll hit buffer 2457 * overruns. 2458 * 2459 * Although we don't currently use the 'disable overrun' OABUFFER 2460 * feature it's worth noting that clock ratio reports have to be 2461 * disabled before considering to use that feature since the HW doesn't 2462 * correctly block these reports. 2463 * 2464 * Currently none of the high-level metrics we have depend on knowing 2465 * this ratio to normalize. 2466 * 2467 * Note: This register is not power context saved and restored, but 2468 * that's OK considering that we disable RC6 while the OA unit is 2469 * enabled. 2470 * 2471 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to 2472 * be read back from automatically triggered reports, as part of the 2473 * RPT_ID field. 2474 */ 2475 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) { 2476 intel_uncore_write(uncore, GEN8_OA_DEBUG, 2477 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2478 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); 2479 } 2480 2481 /* 2482 * Update all contexts prior writing the mux configurations as we need 2483 * to make sure all slices/subslices are ON before writing to NOA 2484 * registers. 2485 */ 2486 ret = lrc_configure_all_contexts(stream, oa_config, active); 2487 if (ret) 2488 return ret; 2489 2490 return emit_oa_config(stream, 2491 stream->oa_config, oa_context(stream), 2492 active); 2493 } 2494 2495 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) 2496 { 2497 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, 2498 (stream->sample_flags & SAMPLE_OA_REPORT) ? 2499 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); 2500 } 2501 2502 static int 2503 gen12_enable_metric_set(struct i915_perf_stream *stream, 2504 struct i915_active *active) 2505 { 2506 struct intel_uncore *uncore = stream->uncore; 2507 struct i915_oa_config *oa_config = stream->oa_config; 2508 bool periodic = stream->periodic; 2509 u32 period_exponent = stream->period_exponent; 2510 int ret; 2511 2512 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, 2513 /* Disable clk ratio reports, like previous Gens. */ 2514 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | 2515 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | 2516 /* 2517 * If the user didn't require OA reports, instruct 2518 * the hardware not to emit ctx switch reports. 2519 */ 2520 oag_report_ctx_switches(stream)); 2521 2522 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? 2523 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | 2524 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | 2525 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) 2526 : 0); 2527 2528 /* 2529 * Update all contexts prior writing the mux configurations as we need 2530 * to make sure all slices/subslices are ON before writing to NOA 2531 * registers. 2532 */ 2533 ret = gen12_configure_all_contexts(stream, oa_config, active); 2534 if (ret) 2535 return ret; 2536 2537 /* 2538 * For Gen12, performance counters are context 2539 * saved/restored. Only enable it for the context that 2540 * requested this. 2541 */ 2542 if (stream->ctx) { 2543 ret = gen12_configure_oar_context(stream, active); 2544 if (ret) 2545 return ret; 2546 } 2547 2548 return emit_oa_config(stream, 2549 stream->oa_config, oa_context(stream), 2550 active); 2551 } 2552 2553 static void gen8_disable_metric_set(struct i915_perf_stream *stream) 2554 { 2555 struct intel_uncore *uncore = stream->uncore; 2556 2557 /* Reset all contexts' slices/subslices configurations. */ 2558 lrc_configure_all_contexts(stream, NULL, NULL); 2559 2560 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); 2561 } 2562 2563 static void gen10_disable_metric_set(struct i915_perf_stream *stream) 2564 { 2565 struct intel_uncore *uncore = stream->uncore; 2566 2567 /* Reset all contexts' slices/subslices configurations. */ 2568 lrc_configure_all_contexts(stream, NULL, NULL); 2569 2570 /* Make sure we disable noa to save power. */ 2571 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2572 } 2573 2574 static void gen12_disable_metric_set(struct i915_perf_stream *stream) 2575 { 2576 struct intel_uncore *uncore = stream->uncore; 2577 2578 /* Reset all contexts' slices/subslices configurations. */ 2579 gen12_configure_all_contexts(stream, NULL, NULL); 2580 2581 /* disable the context save/restore or OAR counters */ 2582 if (stream->ctx) 2583 gen12_configure_oar_context(stream, NULL); 2584 2585 /* Make sure we disable noa to save power. */ 2586 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); 2587 } 2588 2589 static void gen7_oa_enable(struct i915_perf_stream *stream) 2590 { 2591 struct intel_uncore *uncore = stream->uncore; 2592 struct i915_gem_context *ctx = stream->ctx; 2593 u32 ctx_id = stream->specific_ctx_id; 2594 bool periodic = stream->periodic; 2595 u32 period_exponent = stream->period_exponent; 2596 u32 report_format = stream->oa_buffer.format; 2597 2598 /* 2599 * Reset buf pointers so we don't forward reports from before now. 2600 * 2601 * Think carefully if considering trying to avoid this, since it 2602 * also ensures status flags and the buffer itself are cleared 2603 * in error paths, and we have checks for invalid reports based 2604 * on the assumption that certain fields are written to zeroed 2605 * memory which this helps maintains. 2606 */ 2607 gen7_init_oa_buffer(stream); 2608 2609 intel_uncore_write(uncore, GEN7_OACONTROL, 2610 (ctx_id & GEN7_OACONTROL_CTX_MASK) | 2611 (period_exponent << 2612 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | 2613 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | 2614 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | 2615 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | 2616 GEN7_OACONTROL_ENABLE); 2617 } 2618 2619 static void gen8_oa_enable(struct i915_perf_stream *stream) 2620 { 2621 struct intel_uncore *uncore = stream->uncore; 2622 u32 report_format = stream->oa_buffer.format; 2623 2624 /* 2625 * Reset buf pointers so we don't forward reports from before now. 2626 * 2627 * Think carefully if considering trying to avoid this, since it 2628 * also ensures status flags and the buffer itself are cleared 2629 * in error paths, and we have checks for invalid reports based 2630 * on the assumption that certain fields are written to zeroed 2631 * memory which this helps maintains. 2632 */ 2633 gen8_init_oa_buffer(stream); 2634 2635 /* 2636 * Note: we don't rely on the hardware to perform single context 2637 * filtering and instead filter on the cpu based on the context-id 2638 * field of reports 2639 */ 2640 intel_uncore_write(uncore, GEN8_OACONTROL, 2641 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | 2642 GEN8_OA_COUNTER_ENABLE); 2643 } 2644 2645 static void gen12_oa_enable(struct i915_perf_stream *stream) 2646 { 2647 struct intel_uncore *uncore = stream->uncore; 2648 u32 report_format = stream->oa_buffer.format; 2649 2650 /* 2651 * If we don't want OA reports from the OA buffer, then we don't even 2652 * need to program the OAG unit. 2653 */ 2654 if (!(stream->sample_flags & SAMPLE_OA_REPORT)) 2655 return; 2656 2657 gen12_init_oa_buffer(stream); 2658 2659 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 2660 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | 2661 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); 2662 } 2663 2664 /** 2665 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream 2666 * @stream: An i915 perf stream opened for OA metrics 2667 * 2668 * [Re]enables hardware periodic sampling according to the period configured 2669 * when opening the stream. This also starts a hrtimer that will periodically 2670 * check for data in the circular OA buffer for notifying userspace (e.g. 2671 * during a read() or poll()). 2672 */ 2673 static void i915_oa_stream_enable(struct i915_perf_stream *stream) 2674 { 2675 stream->pollin = false; 2676 2677 stream->perf->ops.oa_enable(stream); 2678 2679 if (stream->periodic) 2680 hrtimer_start(&stream->poll_check_timer, 2681 ns_to_ktime(stream->poll_oa_period), 2682 HRTIMER_MODE_REL_PINNED); 2683 } 2684 2685 static void gen7_oa_disable(struct i915_perf_stream *stream) 2686 { 2687 struct intel_uncore *uncore = stream->uncore; 2688 2689 intel_uncore_write(uncore, GEN7_OACONTROL, 0); 2690 if (intel_wait_for_register(uncore, 2691 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, 2692 50)) 2693 drm_err(&stream->perf->i915->drm, 2694 "wait for OA to be disabled timed out\n"); 2695 } 2696 2697 static void gen8_oa_disable(struct i915_perf_stream *stream) 2698 { 2699 struct intel_uncore *uncore = stream->uncore; 2700 2701 intel_uncore_write(uncore, GEN8_OACONTROL, 0); 2702 if (intel_wait_for_register(uncore, 2703 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, 2704 50)) 2705 drm_err(&stream->perf->i915->drm, 2706 "wait for OA to be disabled timed out\n"); 2707 } 2708 2709 static void gen12_oa_disable(struct i915_perf_stream *stream) 2710 { 2711 struct intel_uncore *uncore = stream->uncore; 2712 2713 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); 2714 if (intel_wait_for_register(uncore, 2715 GEN12_OAG_OACONTROL, 2716 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, 2717 50)) 2718 drm_err(&stream->perf->i915->drm, 2719 "wait for OA to be disabled timed out\n"); 2720 2721 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); 2722 if (intel_wait_for_register(uncore, 2723 GEN12_OA_TLB_INV_CR, 2724 1, 0, 2725 50)) 2726 drm_err(&stream->perf->i915->drm, 2727 "wait for OA tlb invalidate timed out\n"); 2728 } 2729 2730 /** 2731 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream 2732 * @stream: An i915 perf stream opened for OA metrics 2733 * 2734 * Stops the OA unit from periodically writing counter reports into the 2735 * circular OA buffer. This also stops the hrtimer that periodically checks for 2736 * data in the circular OA buffer, for notifying userspace. 2737 */ 2738 static void i915_oa_stream_disable(struct i915_perf_stream *stream) 2739 { 2740 stream->perf->ops.oa_disable(stream); 2741 2742 if (stream->periodic) 2743 hrtimer_cancel(&stream->poll_check_timer); 2744 } 2745 2746 static const struct i915_perf_stream_ops i915_oa_stream_ops = { 2747 .destroy = i915_oa_stream_destroy, 2748 .enable = i915_oa_stream_enable, 2749 .disable = i915_oa_stream_disable, 2750 .wait_unlocked = i915_oa_wait_unlocked, 2751 .poll_wait = i915_oa_poll_wait, 2752 .read = i915_oa_read, 2753 }; 2754 2755 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) 2756 { 2757 struct i915_active *active; 2758 int err; 2759 2760 active = i915_active_create(); 2761 if (!active) 2762 return -ENOMEM; 2763 2764 err = stream->perf->ops.enable_metric_set(stream, active); 2765 if (err == 0) 2766 __i915_active_wait(active, TASK_UNINTERRUPTIBLE); 2767 2768 i915_active_put(active); 2769 return err; 2770 } 2771 2772 static void 2773 get_default_sseu_config(struct intel_sseu *out_sseu, 2774 struct intel_engine_cs *engine) 2775 { 2776 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; 2777 2778 *out_sseu = intel_sseu_from_device_info(devinfo_sseu); 2779 2780 if (IS_GEN(engine->i915, 11)) { 2781 /* 2782 * We only need subslice count so it doesn't matter which ones 2783 * we select - just turn off low bits in the amount of half of 2784 * all available subslices per slice. 2785 */ 2786 out_sseu->subslice_mask = 2787 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); 2788 out_sseu->slice_mask = 0x1; 2789 } 2790 } 2791 2792 static int 2793 get_sseu_config(struct intel_sseu *out_sseu, 2794 struct intel_engine_cs *engine, 2795 const struct drm_i915_gem_context_param_sseu *drm_sseu) 2796 { 2797 if (drm_sseu->engine.engine_class != engine->uabi_class || 2798 drm_sseu->engine.engine_instance != engine->uabi_instance) 2799 return -EINVAL; 2800 2801 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); 2802 } 2803 2804 /** 2805 * i915_oa_stream_init - validate combined props for OA stream and init 2806 * @stream: An i915 perf stream 2807 * @param: The open parameters passed to `DRM_I915_PERF_OPEN` 2808 * @props: The property state that configures stream (individually validated) 2809 * 2810 * While read_properties_unlocked() validates properties in isolation it 2811 * doesn't ensure that the combination necessarily makes sense. 2812 * 2813 * At this point it has been determined that userspace wants a stream of 2814 * OA metrics, but still we need to further validate the combined 2815 * properties are OK. 2816 * 2817 * If the configuration makes sense then we can allocate memory for 2818 * a circular OA buffer and apply the requested metric set configuration. 2819 * 2820 * Returns: zero on success or a negative error code. 2821 */ 2822 static int i915_oa_stream_init(struct i915_perf_stream *stream, 2823 struct drm_i915_perf_open_param *param, 2824 struct perf_open_properties *props) 2825 { 2826 struct drm_i915_private *i915 = stream->perf->i915; 2827 struct i915_perf *perf = stream->perf; 2828 int format_size; 2829 int ret; 2830 2831 if (!props->engine) { 2832 DRM_DEBUG("OA engine not specified\n"); 2833 return -EINVAL; 2834 } 2835 2836 /* 2837 * If the sysfs metrics/ directory wasn't registered for some 2838 * reason then don't let userspace try their luck with config 2839 * IDs 2840 */ 2841 if (!perf->metrics_kobj) { 2842 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 2843 return -EINVAL; 2844 } 2845 2846 if (!(props->sample_flags & SAMPLE_OA_REPORT) && 2847 (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) { 2848 DRM_DEBUG("Only OA report sampling supported\n"); 2849 return -EINVAL; 2850 } 2851 2852 if (!perf->ops.enable_metric_set) { 2853 DRM_DEBUG("OA unit not supported\n"); 2854 return -ENODEV; 2855 } 2856 2857 /* 2858 * To avoid the complexity of having to accurately filter 2859 * counter reports and marshal to the appropriate client 2860 * we currently only allow exclusive access 2861 */ 2862 if (perf->exclusive_stream) { 2863 DRM_DEBUG("OA unit already in use\n"); 2864 return -EBUSY; 2865 } 2866 2867 if (!props->oa_format) { 2868 DRM_DEBUG("OA report format not specified\n"); 2869 return -EINVAL; 2870 } 2871 2872 stream->engine = props->engine; 2873 stream->uncore = stream->engine->gt->uncore; 2874 2875 stream->sample_size = sizeof(struct drm_i915_perf_record_header); 2876 2877 format_size = perf->oa_formats[props->oa_format].size; 2878 2879 stream->sample_flags = props->sample_flags; 2880 stream->sample_size += format_size; 2881 2882 stream->oa_buffer.format_size = format_size; 2883 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0)) 2884 return -EINVAL; 2885 2886 stream->hold_preemption = props->hold_preemption; 2887 2888 stream->oa_buffer.format = 2889 perf->oa_formats[props->oa_format].format; 2890 2891 stream->periodic = props->oa_periodic; 2892 if (stream->periodic) 2893 stream->period_exponent = props->oa_period_exponent; 2894 2895 if (stream->ctx) { 2896 ret = oa_get_render_ctx_id(stream); 2897 if (ret) { 2898 DRM_DEBUG("Invalid context id to filter with\n"); 2899 return ret; 2900 } 2901 } 2902 2903 ret = alloc_noa_wait(stream); 2904 if (ret) { 2905 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n"); 2906 goto err_noa_wait_alloc; 2907 } 2908 2909 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); 2910 if (!stream->oa_config) { 2911 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); 2912 ret = -EINVAL; 2913 goto err_config; 2914 } 2915 2916 /* PRM - observability performance counters: 2917 * 2918 * OACONTROL, performance counter enable, note: 2919 * 2920 * "When this bit is set, in order to have coherent counts, 2921 * RC6 power state and trunk clock gating must be disabled. 2922 * This can be achieved by programming MMIO registers as 2923 * 0xA094=0 and 0xA090[31]=1" 2924 * 2925 * In our case we are expecting that taking pm + FORCEWAKE 2926 * references will effectively disable RC6. 2927 */ 2928 intel_engine_pm_get(stream->engine); 2929 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); 2930 2931 ret = alloc_oa_buffer(stream); 2932 if (ret) 2933 goto err_oa_buf_alloc; 2934 2935 stream->ops = &i915_oa_stream_ops; 2936 2937 perf->sseu = props->sseu; 2938 WRITE_ONCE(perf->exclusive_stream, stream); 2939 2940 ret = i915_perf_stream_enable_sync(stream); 2941 if (ret) { 2942 DRM_DEBUG("Unable to enable metric set\n"); 2943 goto err_enable; 2944 } 2945 2946 DRM_DEBUG("opening stream oa config uuid=%s\n", 2947 stream->oa_config->uuid); 2948 2949 hrtimer_init(&stream->poll_check_timer, 2950 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2951 stream->poll_check_timer.function = oa_poll_check_timer_cb; 2952 init_waitqueue_head(&stream->poll_wq); 2953 spin_lock_init(&stream->oa_buffer.ptr_lock); 2954 2955 return 0; 2956 2957 err_enable: 2958 WRITE_ONCE(perf->exclusive_stream, NULL); 2959 perf->ops.disable_metric_set(stream); 2960 2961 free_oa_buffer(stream); 2962 2963 err_oa_buf_alloc: 2964 free_oa_configs(stream); 2965 2966 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); 2967 intel_engine_pm_put(stream->engine); 2968 2969 err_config: 2970 free_noa_wait(stream); 2971 2972 err_noa_wait_alloc: 2973 if (stream->ctx) 2974 oa_put_render_ctx_id(stream); 2975 2976 return ret; 2977 } 2978 2979 void i915_oa_init_reg_state(const struct intel_context *ce, 2980 const struct intel_engine_cs *engine) 2981 { 2982 struct i915_perf_stream *stream; 2983 2984 if (engine->class != RENDER_CLASS) 2985 return; 2986 2987 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ 2988 stream = READ_ONCE(engine->i915->perf.exclusive_stream); 2989 if (stream && INTEL_GEN(stream->perf->i915) < 12) 2990 gen8_update_reg_state_unlocked(ce, stream); 2991 } 2992 2993 /** 2994 * i915_perf_read - handles read() FOP for i915 perf stream FDs 2995 * @file: An i915 perf stream file 2996 * @buf: destination buffer given by userspace 2997 * @count: the number of bytes userspace wants to read 2998 * @ppos: (inout) file seek position (unused) 2999 * 3000 * The entry point for handling a read() on a stream file descriptor from 3001 * userspace. Most of the work is left to the i915_perf_read_locked() and 3002 * &i915_perf_stream_ops->read but to save having stream implementations (of 3003 * which we might have multiple later) we handle blocking read here. 3004 * 3005 * We can also consistently treat trying to read from a disabled stream 3006 * as an IO error so implementations can assume the stream is enabled 3007 * while reading. 3008 * 3009 * Returns: The number of bytes copied or a negative error code on failure. 3010 */ 3011 static ssize_t i915_perf_read(struct file *file, 3012 char __user *buf, 3013 size_t count, 3014 loff_t *ppos) 3015 { 3016 struct i915_perf_stream *stream = file->private_data; 3017 struct i915_perf *perf = stream->perf; 3018 size_t offset = 0; 3019 int ret; 3020 3021 /* To ensure it's handled consistently we simply treat all reads of a 3022 * disabled stream as an error. In particular it might otherwise lead 3023 * to a deadlock for blocking file descriptors... 3024 */ 3025 if (!stream->enabled) 3026 return -EIO; 3027 3028 if (!(file->f_flags & O_NONBLOCK)) { 3029 /* There's the small chance of false positives from 3030 * stream->ops->wait_unlocked. 3031 * 3032 * E.g. with single context filtering since we only wait until 3033 * oabuffer has >= 1 report we don't immediately know whether 3034 * any reports really belong to the current context 3035 */ 3036 do { 3037 ret = stream->ops->wait_unlocked(stream); 3038 if (ret) 3039 return ret; 3040 3041 mutex_lock(&perf->lock); 3042 ret = stream->ops->read(stream, buf, count, &offset); 3043 mutex_unlock(&perf->lock); 3044 } while (!offset && !ret); 3045 } else { 3046 mutex_lock(&perf->lock); 3047 ret = stream->ops->read(stream, buf, count, &offset); 3048 mutex_unlock(&perf->lock); 3049 } 3050 3051 /* We allow the poll checking to sometimes report false positive EPOLLIN 3052 * events where we might actually report EAGAIN on read() if there's 3053 * not really any data available. In this situation though we don't 3054 * want to enter a busy loop between poll() reporting a EPOLLIN event 3055 * and read() returning -EAGAIN. Clearing the oa.pollin state here 3056 * effectively ensures we back off until the next hrtimer callback 3057 * before reporting another EPOLLIN event. 3058 * The exception to this is if ops->read() returned -ENOSPC which means 3059 * that more OA data is available than could fit in the user provided 3060 * buffer. In this case we want the next poll() call to not block. 3061 */ 3062 if (ret != -ENOSPC) 3063 stream->pollin = false; 3064 3065 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ 3066 return offset ?: (ret ?: -EAGAIN); 3067 } 3068 3069 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) 3070 { 3071 struct i915_perf_stream *stream = 3072 container_of(hrtimer, typeof(*stream), poll_check_timer); 3073 3074 if (oa_buffer_check_unlocked(stream)) { 3075 stream->pollin = true; 3076 wake_up(&stream->poll_wq); 3077 } 3078 3079 hrtimer_forward_now(hrtimer, 3080 ns_to_ktime(stream->poll_oa_period)); 3081 3082 return HRTIMER_RESTART; 3083 } 3084 3085 /** 3086 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream 3087 * @stream: An i915 perf stream 3088 * @file: An i915 perf stream file 3089 * @wait: poll() state table 3090 * 3091 * For handling userspace polling on an i915 perf stream, this calls through to 3092 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that 3093 * will be woken for new stream data. 3094 * 3095 * Note: The &perf->lock mutex has been taken to serialize 3096 * with any non-file-operation driver hooks. 3097 * 3098 * Returns: any poll events that are ready without sleeping 3099 */ 3100 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, 3101 struct file *file, 3102 poll_table *wait) 3103 { 3104 __poll_t events = 0; 3105 3106 stream->ops->poll_wait(stream, file, wait); 3107 3108 /* Note: we don't explicitly check whether there's something to read 3109 * here since this path may be very hot depending on what else 3110 * userspace is polling, or on the timeout in use. We rely solely on 3111 * the hrtimer/oa_poll_check_timer_cb to notify us when there are 3112 * samples to read. 3113 */ 3114 if (stream->pollin) 3115 events |= EPOLLIN; 3116 3117 return events; 3118 } 3119 3120 /** 3121 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream 3122 * @file: An i915 perf stream file 3123 * @wait: poll() state table 3124 * 3125 * For handling userspace polling on an i915 perf stream, this ensures 3126 * poll_wait() gets called with a wait queue that will be woken for new stream 3127 * data. 3128 * 3129 * Note: Implementation deferred to i915_perf_poll_locked() 3130 * 3131 * Returns: any poll events that are ready without sleeping 3132 */ 3133 static __poll_t i915_perf_poll(struct file *file, poll_table *wait) 3134 { 3135 struct i915_perf_stream *stream = file->private_data; 3136 struct i915_perf *perf = stream->perf; 3137 __poll_t ret; 3138 3139 mutex_lock(&perf->lock); 3140 ret = i915_perf_poll_locked(stream, file, wait); 3141 mutex_unlock(&perf->lock); 3142 3143 return ret; 3144 } 3145 3146 /** 3147 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl 3148 * @stream: A disabled i915 perf stream 3149 * 3150 * [Re]enables the associated capture of data for this stream. 3151 * 3152 * If a stream was previously enabled then there's currently no intention 3153 * to provide userspace any guarantee about the preservation of previously 3154 * buffered data. 3155 */ 3156 static void i915_perf_enable_locked(struct i915_perf_stream *stream) 3157 { 3158 if (stream->enabled) 3159 return; 3160 3161 /* Allow stream->ops->enable() to refer to this */ 3162 stream->enabled = true; 3163 3164 if (stream->ops->enable) 3165 stream->ops->enable(stream); 3166 3167 if (stream->hold_preemption) 3168 intel_context_set_nopreempt(stream->pinned_ctx); 3169 } 3170 3171 /** 3172 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl 3173 * @stream: An enabled i915 perf stream 3174 * 3175 * Disables the associated capture of data for this stream. 3176 * 3177 * The intention is that disabling an re-enabling a stream will ideally be 3178 * cheaper than destroying and re-opening a stream with the same configuration, 3179 * though there are no formal guarantees about what state or buffered data 3180 * must be retained between disabling and re-enabling a stream. 3181 * 3182 * Note: while a stream is disabled it's considered an error for userspace 3183 * to attempt to read from the stream (-EIO). 3184 */ 3185 static void i915_perf_disable_locked(struct i915_perf_stream *stream) 3186 { 3187 if (!stream->enabled) 3188 return; 3189 3190 /* Allow stream->ops->disable() to refer to this */ 3191 stream->enabled = false; 3192 3193 if (stream->hold_preemption) 3194 intel_context_clear_nopreempt(stream->pinned_ctx); 3195 3196 if (stream->ops->disable) 3197 stream->ops->disable(stream); 3198 } 3199 3200 static long i915_perf_config_locked(struct i915_perf_stream *stream, 3201 unsigned long metrics_set) 3202 { 3203 struct i915_oa_config *config; 3204 long ret = stream->oa_config->id; 3205 3206 config = i915_perf_get_oa_config(stream->perf, metrics_set); 3207 if (!config) 3208 return -EINVAL; 3209 3210 if (config != stream->oa_config) { 3211 int err; 3212 3213 /* 3214 * If OA is bound to a specific context, emit the 3215 * reconfiguration inline from that context. The update 3216 * will then be ordered with respect to submission on that 3217 * context. 3218 * 3219 * When set globally, we use a low priority kernel context, 3220 * so it will effectively take effect when idle. 3221 */ 3222 err = emit_oa_config(stream, config, oa_context(stream), NULL); 3223 if (!err) 3224 config = xchg(&stream->oa_config, config); 3225 else 3226 ret = err; 3227 } 3228 3229 i915_oa_config_put(config); 3230 3231 return ret; 3232 } 3233 3234 /** 3235 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3236 * @stream: An i915 perf stream 3237 * @cmd: the ioctl request 3238 * @arg: the ioctl data 3239 * 3240 * Note: The &perf->lock mutex has been taken to serialize 3241 * with any non-file-operation driver hooks. 3242 * 3243 * Returns: zero on success or a negative error code. Returns -EINVAL for 3244 * an unknown ioctl request. 3245 */ 3246 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, 3247 unsigned int cmd, 3248 unsigned long arg) 3249 { 3250 switch (cmd) { 3251 case I915_PERF_IOCTL_ENABLE: 3252 i915_perf_enable_locked(stream); 3253 return 0; 3254 case I915_PERF_IOCTL_DISABLE: 3255 i915_perf_disable_locked(stream); 3256 return 0; 3257 case I915_PERF_IOCTL_CONFIG: 3258 return i915_perf_config_locked(stream, arg); 3259 } 3260 3261 return -EINVAL; 3262 } 3263 3264 /** 3265 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs 3266 * @file: An i915 perf stream file 3267 * @cmd: the ioctl request 3268 * @arg: the ioctl data 3269 * 3270 * Implementation deferred to i915_perf_ioctl_locked(). 3271 * 3272 * Returns: zero on success or a negative error code. Returns -EINVAL for 3273 * an unknown ioctl request. 3274 */ 3275 static long i915_perf_ioctl(struct file *file, 3276 unsigned int cmd, 3277 unsigned long arg) 3278 { 3279 struct i915_perf_stream *stream = file->private_data; 3280 struct i915_perf *perf = stream->perf; 3281 long ret; 3282 3283 mutex_lock(&perf->lock); 3284 ret = i915_perf_ioctl_locked(stream, cmd, arg); 3285 mutex_unlock(&perf->lock); 3286 3287 return ret; 3288 } 3289 3290 /** 3291 * i915_perf_destroy_locked - destroy an i915 perf stream 3292 * @stream: An i915 perf stream 3293 * 3294 * Frees all resources associated with the given i915 perf @stream, disabling 3295 * any associated data capture in the process. 3296 * 3297 * Note: The &perf->lock mutex has been taken to serialize 3298 * with any non-file-operation driver hooks. 3299 */ 3300 static void i915_perf_destroy_locked(struct i915_perf_stream *stream) 3301 { 3302 if (stream->enabled) 3303 i915_perf_disable_locked(stream); 3304 3305 if (stream->ops->destroy) 3306 stream->ops->destroy(stream); 3307 3308 if (stream->ctx) 3309 i915_gem_context_put(stream->ctx); 3310 3311 kfree(stream); 3312 } 3313 3314 /** 3315 * i915_perf_release - handles userspace close() of a stream file 3316 * @inode: anonymous inode associated with file 3317 * @file: An i915 perf stream file 3318 * 3319 * Cleans up any resources associated with an open i915 perf stream file. 3320 * 3321 * NB: close() can't really fail from the userspace point of view. 3322 * 3323 * Returns: zero on success or a negative error code. 3324 */ 3325 static int i915_perf_release(struct inode *inode, struct file *file) 3326 { 3327 struct i915_perf_stream *stream = file->private_data; 3328 struct i915_perf *perf = stream->perf; 3329 3330 mutex_lock(&perf->lock); 3331 i915_perf_destroy_locked(stream); 3332 mutex_unlock(&perf->lock); 3333 3334 /* Release the reference the perf stream kept on the driver. */ 3335 drm_dev_put(&perf->i915->drm); 3336 3337 return 0; 3338 } 3339 3340 3341 static const struct file_operations fops = { 3342 .owner = THIS_MODULE, 3343 .llseek = no_llseek, 3344 .release = i915_perf_release, 3345 .poll = i915_perf_poll, 3346 .read = i915_perf_read, 3347 .unlocked_ioctl = i915_perf_ioctl, 3348 /* Our ioctl have no arguments, so it's safe to use the same function 3349 * to handle 32bits compatibility. 3350 */ 3351 .compat_ioctl = i915_perf_ioctl, 3352 }; 3353 3354 3355 /** 3356 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD 3357 * @perf: i915 perf instance 3358 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` 3359 * @props: individually validated u64 property value pairs 3360 * @file: drm file 3361 * 3362 * See i915_perf_ioctl_open() for interface details. 3363 * 3364 * Implements further stream config validation and stream initialization on 3365 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex 3366 * taken to serialize with any non-file-operation driver hooks. 3367 * 3368 * Note: at this point the @props have only been validated in isolation and 3369 * it's still necessary to validate that the combination of properties makes 3370 * sense. 3371 * 3372 * In the case where userspace is interested in OA unit metrics then further 3373 * config validation and stream initialization details will be handled by 3374 * i915_oa_stream_init(). The code here should only validate config state that 3375 * will be relevant to all stream types / backends. 3376 * 3377 * Returns: zero on success or a negative error code. 3378 */ 3379 static int 3380 i915_perf_open_ioctl_locked(struct i915_perf *perf, 3381 struct drm_i915_perf_open_param *param, 3382 struct perf_open_properties *props, 3383 struct drm_file *file) 3384 { 3385 struct i915_gem_context *specific_ctx = NULL; 3386 struct i915_perf_stream *stream = NULL; 3387 unsigned long f_flags = 0; 3388 bool privileged_op = true; 3389 int stream_fd; 3390 int ret; 3391 3392 if (props->single_context) { 3393 u32 ctx_handle = props->ctx_handle; 3394 struct drm_i915_file_private *file_priv = file->driver_priv; 3395 3396 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); 3397 if (!specific_ctx) { 3398 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", 3399 ctx_handle); 3400 ret = -ENOENT; 3401 goto err; 3402 } 3403 } 3404 3405 /* 3406 * On Haswell the OA unit supports clock gating off for a specific 3407 * context and in this mode there's no visibility of metrics for the 3408 * rest of the system, which we consider acceptable for a 3409 * non-privileged client. 3410 * 3411 * For Gen8->11 the OA unit no longer supports clock gating off for a 3412 * specific context and the kernel can't securely stop the counters 3413 * from updating as system-wide / global values. Even though we can 3414 * filter reports based on the included context ID we can't block 3415 * clients from seeing the raw / global counter values via 3416 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to 3417 * enable the OA unit by default. 3418 * 3419 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a 3420 * per context basis. So we can relax requirements there if the user 3421 * doesn't request global stream access (i.e. query based sampling 3422 * using MI_RECORD_PERF_COUNT. 3423 */ 3424 if (IS_HASWELL(perf->i915) && specific_ctx) 3425 privileged_op = false; 3426 else if (IS_GEN(perf->i915, 12) && specific_ctx && 3427 (props->sample_flags & SAMPLE_OA_REPORT) == 0) 3428 privileged_op = false; 3429 3430 if (props->hold_preemption) { 3431 if (!props->single_context) { 3432 DRM_DEBUG("preemption disable with no context\n"); 3433 ret = -EINVAL; 3434 goto err; 3435 } 3436 privileged_op = true; 3437 } 3438 3439 /* 3440 * Asking for SSEU configuration is a priviliged operation. 3441 */ 3442 if (props->has_sseu) 3443 privileged_op = true; 3444 else 3445 get_default_sseu_config(&props->sseu, props->engine); 3446 3447 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option 3448 * we check a dev.i915.perf_stream_paranoid sysctl option 3449 * to determine if it's ok to access system wide OA counters 3450 * without CAP_PERFMON or CAP_SYS_ADMIN privileges. 3451 */ 3452 if (privileged_op && 3453 i915_perf_stream_paranoid && !perfmon_capable()) { 3454 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n"); 3455 ret = -EACCES; 3456 goto err_ctx; 3457 } 3458 3459 stream = kzalloc(sizeof(*stream), GFP_KERNEL); 3460 if (!stream) { 3461 ret = -ENOMEM; 3462 goto err_ctx; 3463 } 3464 3465 stream->perf = perf; 3466 stream->ctx = specific_ctx; 3467 stream->poll_oa_period = props->poll_oa_period; 3468 3469 ret = i915_oa_stream_init(stream, param, props); 3470 if (ret) 3471 goto err_alloc; 3472 3473 /* we avoid simply assigning stream->sample_flags = props->sample_flags 3474 * to have _stream_init check the combination of sample flags more 3475 * thoroughly, but still this is the expected result at this point. 3476 */ 3477 if (WARN_ON(stream->sample_flags != props->sample_flags)) { 3478 ret = -ENODEV; 3479 goto err_flags; 3480 } 3481 3482 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) 3483 f_flags |= O_CLOEXEC; 3484 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) 3485 f_flags |= O_NONBLOCK; 3486 3487 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); 3488 if (stream_fd < 0) { 3489 ret = stream_fd; 3490 goto err_flags; 3491 } 3492 3493 if (!(param->flags & I915_PERF_FLAG_DISABLED)) 3494 i915_perf_enable_locked(stream); 3495 3496 /* Take a reference on the driver that will be kept with stream_fd 3497 * until its release. 3498 */ 3499 drm_dev_get(&perf->i915->drm); 3500 3501 return stream_fd; 3502 3503 err_flags: 3504 if (stream->ops->destroy) 3505 stream->ops->destroy(stream); 3506 err_alloc: 3507 kfree(stream); 3508 err_ctx: 3509 if (specific_ctx) 3510 i915_gem_context_put(specific_ctx); 3511 err: 3512 return ret; 3513 } 3514 3515 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) 3516 { 3517 return i915_cs_timestamp_ticks_to_ns(perf->i915, 2ULL << exponent); 3518 } 3519 3520 /** 3521 * read_properties_unlocked - validate + copy userspace stream open properties 3522 * @perf: i915 perf instance 3523 * @uprops: The array of u64 key value pairs given by userspace 3524 * @n_props: The number of key value pairs expected in @uprops 3525 * @props: The stream configuration built up while validating properties 3526 * 3527 * Note this function only validates properties in isolation it doesn't 3528 * validate that the combination of properties makes sense or that all 3529 * properties necessary for a particular kind of stream have been set. 3530 * 3531 * Note that there currently aren't any ordering requirements for properties so 3532 * we shouldn't validate or assume anything about ordering here. This doesn't 3533 * rule out defining new properties with ordering requirements in the future. 3534 */ 3535 static int read_properties_unlocked(struct i915_perf *perf, 3536 u64 __user *uprops, 3537 u32 n_props, 3538 struct perf_open_properties *props) 3539 { 3540 u64 __user *uprop = uprops; 3541 u32 i; 3542 int ret; 3543 3544 memset(props, 0, sizeof(struct perf_open_properties)); 3545 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; 3546 3547 if (!n_props) { 3548 DRM_DEBUG("No i915 perf properties given\n"); 3549 return -EINVAL; 3550 } 3551 3552 /* At the moment we only support using i915-perf on the RCS. */ 3553 props->engine = intel_engine_lookup_user(perf->i915, 3554 I915_ENGINE_CLASS_RENDER, 3555 0); 3556 if (!props->engine) { 3557 DRM_DEBUG("No RENDER-capable engines\n"); 3558 return -EINVAL; 3559 } 3560 3561 /* Considering that ID = 0 is reserved and assuming that we don't 3562 * (currently) expect any configurations to ever specify duplicate 3563 * values for a particular property ID then the last _PROP_MAX value is 3564 * one greater than the maximum number of properties we expect to get 3565 * from userspace. 3566 */ 3567 if (n_props >= DRM_I915_PERF_PROP_MAX) { 3568 DRM_DEBUG("More i915 perf properties specified than exist\n"); 3569 return -EINVAL; 3570 } 3571 3572 for (i = 0; i < n_props; i++) { 3573 u64 oa_period, oa_freq_hz; 3574 u64 id, value; 3575 3576 ret = get_user(id, uprop); 3577 if (ret) 3578 return ret; 3579 3580 ret = get_user(value, uprop + 1); 3581 if (ret) 3582 return ret; 3583 3584 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { 3585 DRM_DEBUG("Unknown i915 perf property ID\n"); 3586 return -EINVAL; 3587 } 3588 3589 switch ((enum drm_i915_perf_property_id)id) { 3590 case DRM_I915_PERF_PROP_CTX_HANDLE: 3591 props->single_context = 1; 3592 props->ctx_handle = value; 3593 break; 3594 case DRM_I915_PERF_PROP_SAMPLE_OA: 3595 if (value) 3596 props->sample_flags |= SAMPLE_OA_REPORT; 3597 break; 3598 case DRM_I915_PERF_PROP_OA_METRICS_SET: 3599 if (value == 0) { 3600 DRM_DEBUG("Unknown OA metric set ID\n"); 3601 return -EINVAL; 3602 } 3603 props->metrics_set = value; 3604 break; 3605 case DRM_I915_PERF_PROP_OA_FORMAT: 3606 if (value == 0 || value >= I915_OA_FORMAT_MAX) { 3607 DRM_DEBUG("Out-of-range OA report format %llu\n", 3608 value); 3609 return -EINVAL; 3610 } 3611 if (!perf->oa_formats[value].size) { 3612 DRM_DEBUG("Unsupported OA report format %llu\n", 3613 value); 3614 return -EINVAL; 3615 } 3616 props->oa_format = value; 3617 break; 3618 case DRM_I915_PERF_PROP_OA_EXPONENT: 3619 if (value > OA_EXPONENT_MAX) { 3620 DRM_DEBUG("OA timer exponent too high (> %u)\n", 3621 OA_EXPONENT_MAX); 3622 return -EINVAL; 3623 } 3624 3625 /* Theoretically we can program the OA unit to sample 3626 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns 3627 * for BXT. We don't allow such high sampling 3628 * frequencies by default unless root. 3629 */ 3630 3631 BUILD_BUG_ON(sizeof(oa_period) != 8); 3632 oa_period = oa_exponent_to_ns(perf, value); 3633 3634 /* This check is primarily to ensure that oa_period <= 3635 * UINT32_MAX (before passing to do_div which only 3636 * accepts a u32 denominator), but we can also skip 3637 * checking anything < 1Hz which implicitly can't be 3638 * limited via an integer oa_max_sample_rate. 3639 */ 3640 if (oa_period <= NSEC_PER_SEC) { 3641 u64 tmp = NSEC_PER_SEC; 3642 do_div(tmp, oa_period); 3643 oa_freq_hz = tmp; 3644 } else 3645 oa_freq_hz = 0; 3646 3647 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { 3648 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", 3649 i915_oa_max_sample_rate); 3650 return -EACCES; 3651 } 3652 3653 props->oa_periodic = true; 3654 props->oa_period_exponent = value; 3655 break; 3656 case DRM_I915_PERF_PROP_HOLD_PREEMPTION: 3657 props->hold_preemption = !!value; 3658 break; 3659 case DRM_I915_PERF_PROP_GLOBAL_SSEU: { 3660 struct drm_i915_gem_context_param_sseu user_sseu; 3661 3662 if (copy_from_user(&user_sseu, 3663 u64_to_user_ptr(value), 3664 sizeof(user_sseu))) { 3665 DRM_DEBUG("Unable to copy global sseu parameter\n"); 3666 return -EFAULT; 3667 } 3668 3669 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); 3670 if (ret) { 3671 DRM_DEBUG("Invalid SSEU configuration\n"); 3672 return ret; 3673 } 3674 props->has_sseu = true; 3675 break; 3676 } 3677 case DRM_I915_PERF_PROP_POLL_OA_PERIOD: 3678 if (value < 100000 /* 100us */) { 3679 DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n", 3680 value); 3681 return -EINVAL; 3682 } 3683 props->poll_oa_period = value; 3684 break; 3685 case DRM_I915_PERF_PROP_MAX: 3686 MISSING_CASE(id); 3687 return -EINVAL; 3688 } 3689 3690 uprop += 2; 3691 } 3692 3693 return 0; 3694 } 3695 3696 /** 3697 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD 3698 * @dev: drm device 3699 * @data: ioctl data copied from userspace (unvalidated) 3700 * @file: drm file 3701 * 3702 * Validates the stream open parameters given by userspace including flags 3703 * and an array of u64 key, value pair properties. 3704 * 3705 * Very little is assumed up front about the nature of the stream being 3706 * opened (for instance we don't assume it's for periodic OA unit metrics). An 3707 * i915-perf stream is expected to be a suitable interface for other forms of 3708 * buffered data written by the GPU besides periodic OA metrics. 3709 * 3710 * Note we copy the properties from userspace outside of the i915 perf 3711 * mutex to avoid an awkward lockdep with mmap_lock. 3712 * 3713 * Most of the implementation details are handled by 3714 * i915_perf_open_ioctl_locked() after taking the &perf->lock 3715 * mutex for serializing with any non-file-operation driver hooks. 3716 * 3717 * Return: A newly opened i915 Perf stream file descriptor or negative 3718 * error code on failure. 3719 */ 3720 int i915_perf_open_ioctl(struct drm_device *dev, void *data, 3721 struct drm_file *file) 3722 { 3723 struct i915_perf *perf = &to_i915(dev)->perf; 3724 struct drm_i915_perf_open_param *param = data; 3725 struct perf_open_properties props; 3726 u32 known_open_flags; 3727 int ret; 3728 3729 if (!perf->i915) { 3730 DRM_DEBUG("i915 perf interface not available for this system\n"); 3731 return -ENOTSUPP; 3732 } 3733 3734 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | 3735 I915_PERF_FLAG_FD_NONBLOCK | 3736 I915_PERF_FLAG_DISABLED; 3737 if (param->flags & ~known_open_flags) { 3738 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); 3739 return -EINVAL; 3740 } 3741 3742 ret = read_properties_unlocked(perf, 3743 u64_to_user_ptr(param->properties_ptr), 3744 param->num_properties, 3745 &props); 3746 if (ret) 3747 return ret; 3748 3749 mutex_lock(&perf->lock); 3750 ret = i915_perf_open_ioctl_locked(perf, param, &props, file); 3751 mutex_unlock(&perf->lock); 3752 3753 return ret; 3754 } 3755 3756 /** 3757 * i915_perf_register - exposes i915-perf to userspace 3758 * @i915: i915 device instance 3759 * 3760 * In particular OA metric sets are advertised under a sysfs metrics/ 3761 * directory allowing userspace to enumerate valid IDs that can be 3762 * used to open an i915-perf stream. 3763 */ 3764 void i915_perf_register(struct drm_i915_private *i915) 3765 { 3766 struct i915_perf *perf = &i915->perf; 3767 3768 if (!perf->i915) 3769 return; 3770 3771 /* To be sure we're synchronized with an attempted 3772 * i915_perf_open_ioctl(); considering that we register after 3773 * being exposed to userspace. 3774 */ 3775 mutex_lock(&perf->lock); 3776 3777 perf->metrics_kobj = 3778 kobject_create_and_add("metrics", 3779 &i915->drm.primary->kdev->kobj); 3780 3781 mutex_unlock(&perf->lock); 3782 } 3783 3784 /** 3785 * i915_perf_unregister - hide i915-perf from userspace 3786 * @i915: i915 device instance 3787 * 3788 * i915-perf state cleanup is split up into an 'unregister' and 3789 * 'deinit' phase where the interface is first hidden from 3790 * userspace by i915_perf_unregister() before cleaning up 3791 * remaining state in i915_perf_fini(). 3792 */ 3793 void i915_perf_unregister(struct drm_i915_private *i915) 3794 { 3795 struct i915_perf *perf = &i915->perf; 3796 3797 if (!perf->metrics_kobj) 3798 return; 3799 3800 kobject_put(perf->metrics_kobj); 3801 perf->metrics_kobj = NULL; 3802 } 3803 3804 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) 3805 { 3806 static const i915_reg_t flex_eu_regs[] = { 3807 EU_PERF_CNTL0, 3808 EU_PERF_CNTL1, 3809 EU_PERF_CNTL2, 3810 EU_PERF_CNTL3, 3811 EU_PERF_CNTL4, 3812 EU_PERF_CNTL5, 3813 EU_PERF_CNTL6, 3814 }; 3815 int i; 3816 3817 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { 3818 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) 3819 return true; 3820 } 3821 return false; 3822 } 3823 3824 #define ADDR_IN_RANGE(addr, start, end) \ 3825 ((addr) >= (start) && \ 3826 (addr) <= (end)) 3827 3828 #define REG_IN_RANGE(addr, start, end) \ 3829 ((addr) >= i915_mmio_reg_offset(start) && \ 3830 (addr) <= i915_mmio_reg_offset(end)) 3831 3832 #define REG_EQUAL(addr, mmio) \ 3833 ((addr) == i915_mmio_reg_offset(mmio)) 3834 3835 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3836 { 3837 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) || 3838 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) || 3839 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1); 3840 } 3841 3842 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3843 { 3844 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) || 3845 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) || 3846 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) || 3847 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI); 3848 } 3849 3850 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3851 { 3852 return gen7_is_valid_mux_addr(perf, addr) || 3853 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3854 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8)); 3855 } 3856 3857 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3858 { 3859 return gen8_is_valid_mux_addr(perf, addr) || 3860 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3861 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI); 3862 } 3863 3864 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3865 { 3866 return gen7_is_valid_mux_addr(perf, addr) || 3867 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) || 3868 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) || 3869 REG_EQUAL(addr, HSW_MBVID2_MISR0); 3870 } 3871 3872 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3873 { 3874 return gen7_is_valid_mux_addr(perf, addr) || 3875 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4); 3876 } 3877 3878 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) 3879 { 3880 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) || 3881 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) || 3882 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) || 3883 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) || 3884 REG_EQUAL(addr, GEN12_OAA_DBG_REG) || 3885 REG_EQUAL(addr, GEN12_OAG_OA_PESS) || 3886 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF); 3887 } 3888 3889 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) 3890 { 3891 return REG_EQUAL(addr, NOA_WRITE) || 3892 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || 3893 REG_EQUAL(addr, GDT_CHICKEN_BITS) || 3894 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || 3895 REG_EQUAL(addr, RPM_CONFIG0) || 3896 REG_EQUAL(addr, RPM_CONFIG1) || 3897 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8)); 3898 } 3899 3900 static u32 mask_reg_value(u32 reg, u32 val) 3901 { 3902 /* HALF_SLICE_CHICKEN2 is programmed with a the 3903 * WaDisableSTUnitPowerOptimization workaround. Make sure the value 3904 * programmed by userspace doesn't change this. 3905 */ 3906 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) 3907 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); 3908 3909 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function 3910 * indicated by its name and a bunch of selection fields used by OA 3911 * configs. 3912 */ 3913 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) 3914 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); 3915 3916 return val; 3917 } 3918 3919 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, 3920 bool (*is_valid)(struct i915_perf *perf, u32 addr), 3921 u32 __user *regs, 3922 u32 n_regs) 3923 { 3924 struct i915_oa_reg *oa_regs; 3925 int err; 3926 u32 i; 3927 3928 if (!n_regs) 3929 return NULL; 3930 3931 /* No is_valid function means we're not allowing any register to be programmed. */ 3932 GEM_BUG_ON(!is_valid); 3933 if (!is_valid) 3934 return ERR_PTR(-EINVAL); 3935 3936 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); 3937 if (!oa_regs) 3938 return ERR_PTR(-ENOMEM); 3939 3940 for (i = 0; i < n_regs; i++) { 3941 u32 addr, value; 3942 3943 err = get_user(addr, regs); 3944 if (err) 3945 goto addr_err; 3946 3947 if (!is_valid(perf, addr)) { 3948 DRM_DEBUG("Invalid oa_reg address: %X\n", addr); 3949 err = -EINVAL; 3950 goto addr_err; 3951 } 3952 3953 err = get_user(value, regs + 1); 3954 if (err) 3955 goto addr_err; 3956 3957 oa_regs[i].addr = _MMIO(addr); 3958 oa_regs[i].value = mask_reg_value(addr, value); 3959 3960 regs += 2; 3961 } 3962 3963 return oa_regs; 3964 3965 addr_err: 3966 kfree(oa_regs); 3967 return ERR_PTR(err); 3968 } 3969 3970 static ssize_t show_dynamic_id(struct device *dev, 3971 struct device_attribute *attr, 3972 char *buf) 3973 { 3974 struct i915_oa_config *oa_config = 3975 container_of(attr, typeof(*oa_config), sysfs_metric_id); 3976 3977 return sprintf(buf, "%d\n", oa_config->id); 3978 } 3979 3980 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, 3981 struct i915_oa_config *oa_config) 3982 { 3983 sysfs_attr_init(&oa_config->sysfs_metric_id.attr); 3984 oa_config->sysfs_metric_id.attr.name = "id"; 3985 oa_config->sysfs_metric_id.attr.mode = S_IRUGO; 3986 oa_config->sysfs_metric_id.show = show_dynamic_id; 3987 oa_config->sysfs_metric_id.store = NULL; 3988 3989 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; 3990 oa_config->attrs[1] = NULL; 3991 3992 oa_config->sysfs_metric.name = oa_config->uuid; 3993 oa_config->sysfs_metric.attrs = oa_config->attrs; 3994 3995 return sysfs_create_group(perf->metrics_kobj, 3996 &oa_config->sysfs_metric); 3997 } 3998 3999 /** 4000 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config 4001 * @dev: drm device 4002 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from 4003 * userspace (unvalidated) 4004 * @file: drm file 4005 * 4006 * Validates the submitted OA register to be saved into a new OA config that 4007 * can then be used for programming the OA unit and its NOA network. 4008 * 4009 * Returns: A new allocated config number to be used with the perf open ioctl 4010 * or a negative error code on failure. 4011 */ 4012 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, 4013 struct drm_file *file) 4014 { 4015 struct i915_perf *perf = &to_i915(dev)->perf; 4016 struct drm_i915_perf_oa_config *args = data; 4017 struct i915_oa_config *oa_config, *tmp; 4018 struct i915_oa_reg *regs; 4019 int err, id; 4020 4021 if (!perf->i915) { 4022 DRM_DEBUG("i915 perf interface not available for this system\n"); 4023 return -ENOTSUPP; 4024 } 4025 4026 if (!perf->metrics_kobj) { 4027 DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); 4028 return -EINVAL; 4029 } 4030 4031 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4032 DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); 4033 return -EACCES; 4034 } 4035 4036 if ((!args->mux_regs_ptr || !args->n_mux_regs) && 4037 (!args->boolean_regs_ptr || !args->n_boolean_regs) && 4038 (!args->flex_regs_ptr || !args->n_flex_regs)) { 4039 DRM_DEBUG("No OA registers given\n"); 4040 return -EINVAL; 4041 } 4042 4043 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); 4044 if (!oa_config) { 4045 DRM_DEBUG("Failed to allocate memory for the OA config\n"); 4046 return -ENOMEM; 4047 } 4048 4049 oa_config->perf = perf; 4050 kref_init(&oa_config->ref); 4051 4052 if (!uuid_is_valid(args->uuid)) { 4053 DRM_DEBUG("Invalid uuid format for OA config\n"); 4054 err = -EINVAL; 4055 goto reg_err; 4056 } 4057 4058 /* Last character in oa_config->uuid will be 0 because oa_config is 4059 * kzalloc. 4060 */ 4061 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); 4062 4063 oa_config->mux_regs_len = args->n_mux_regs; 4064 regs = alloc_oa_regs(perf, 4065 perf->ops.is_valid_mux_reg, 4066 u64_to_user_ptr(args->mux_regs_ptr), 4067 args->n_mux_regs); 4068 4069 if (IS_ERR(regs)) { 4070 DRM_DEBUG("Failed to create OA config for mux_regs\n"); 4071 err = PTR_ERR(regs); 4072 goto reg_err; 4073 } 4074 oa_config->mux_regs = regs; 4075 4076 oa_config->b_counter_regs_len = args->n_boolean_regs; 4077 regs = alloc_oa_regs(perf, 4078 perf->ops.is_valid_b_counter_reg, 4079 u64_to_user_ptr(args->boolean_regs_ptr), 4080 args->n_boolean_regs); 4081 4082 if (IS_ERR(regs)) { 4083 DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); 4084 err = PTR_ERR(regs); 4085 goto reg_err; 4086 } 4087 oa_config->b_counter_regs = regs; 4088 4089 if (INTEL_GEN(perf->i915) < 8) { 4090 if (args->n_flex_regs != 0) { 4091 err = -EINVAL; 4092 goto reg_err; 4093 } 4094 } else { 4095 oa_config->flex_regs_len = args->n_flex_regs; 4096 regs = alloc_oa_regs(perf, 4097 perf->ops.is_valid_flex_reg, 4098 u64_to_user_ptr(args->flex_regs_ptr), 4099 args->n_flex_regs); 4100 4101 if (IS_ERR(regs)) { 4102 DRM_DEBUG("Failed to create OA config for flex_regs\n"); 4103 err = PTR_ERR(regs); 4104 goto reg_err; 4105 } 4106 oa_config->flex_regs = regs; 4107 } 4108 4109 err = mutex_lock_interruptible(&perf->metrics_lock); 4110 if (err) 4111 goto reg_err; 4112 4113 /* We shouldn't have too many configs, so this iteration shouldn't be 4114 * too costly. 4115 */ 4116 idr_for_each_entry(&perf->metrics_idr, tmp, id) { 4117 if (!strcmp(tmp->uuid, oa_config->uuid)) { 4118 DRM_DEBUG("OA config already exists with this uuid\n"); 4119 err = -EADDRINUSE; 4120 goto sysfs_err; 4121 } 4122 } 4123 4124 err = create_dynamic_oa_sysfs_entry(perf, oa_config); 4125 if (err) { 4126 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4127 goto sysfs_err; 4128 } 4129 4130 /* Config id 0 is invalid, id 1 for kernel stored test config. */ 4131 oa_config->id = idr_alloc(&perf->metrics_idr, 4132 oa_config, 2, 4133 0, GFP_KERNEL); 4134 if (oa_config->id < 0) { 4135 DRM_DEBUG("Failed to create sysfs entry for OA config\n"); 4136 err = oa_config->id; 4137 goto sysfs_err; 4138 } 4139 4140 mutex_unlock(&perf->metrics_lock); 4141 4142 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); 4143 4144 return oa_config->id; 4145 4146 sysfs_err: 4147 mutex_unlock(&perf->metrics_lock); 4148 reg_err: 4149 i915_oa_config_put(oa_config); 4150 DRM_DEBUG("Failed to add new OA config\n"); 4151 return err; 4152 } 4153 4154 /** 4155 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config 4156 * @dev: drm device 4157 * @data: ioctl data (pointer to u64 integer) copied from userspace 4158 * @file: drm file 4159 * 4160 * Configs can be removed while being used, the will stop appearing in sysfs 4161 * and their content will be freed when the stream using the config is closed. 4162 * 4163 * Returns: 0 on success or a negative error code on failure. 4164 */ 4165 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, 4166 struct drm_file *file) 4167 { 4168 struct i915_perf *perf = &to_i915(dev)->perf; 4169 u64 *arg = data; 4170 struct i915_oa_config *oa_config; 4171 int ret; 4172 4173 if (!perf->i915) { 4174 DRM_DEBUG("i915 perf interface not available for this system\n"); 4175 return -ENOTSUPP; 4176 } 4177 4178 if (i915_perf_stream_paranoid && !perfmon_capable()) { 4179 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); 4180 return -EACCES; 4181 } 4182 4183 ret = mutex_lock_interruptible(&perf->metrics_lock); 4184 if (ret) 4185 return ret; 4186 4187 oa_config = idr_find(&perf->metrics_idr, *arg); 4188 if (!oa_config) { 4189 DRM_DEBUG("Failed to remove unknown OA config\n"); 4190 ret = -ENOENT; 4191 goto err_unlock; 4192 } 4193 4194 GEM_BUG_ON(*arg != oa_config->id); 4195 4196 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); 4197 4198 idr_remove(&perf->metrics_idr, *arg); 4199 4200 mutex_unlock(&perf->metrics_lock); 4201 4202 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); 4203 4204 i915_oa_config_put(oa_config); 4205 4206 return 0; 4207 4208 err_unlock: 4209 mutex_unlock(&perf->metrics_lock); 4210 return ret; 4211 } 4212 4213 static struct ctl_table oa_table[] = { 4214 { 4215 .procname = "perf_stream_paranoid", 4216 .data = &i915_perf_stream_paranoid, 4217 .maxlen = sizeof(i915_perf_stream_paranoid), 4218 .mode = 0644, 4219 .proc_handler = proc_dointvec_minmax, 4220 .extra1 = SYSCTL_ZERO, 4221 .extra2 = SYSCTL_ONE, 4222 }, 4223 { 4224 .procname = "oa_max_sample_rate", 4225 .data = &i915_oa_max_sample_rate, 4226 .maxlen = sizeof(i915_oa_max_sample_rate), 4227 .mode = 0644, 4228 .proc_handler = proc_dointvec_minmax, 4229 .extra1 = SYSCTL_ZERO, 4230 .extra2 = &oa_sample_rate_hard_limit, 4231 }, 4232 {} 4233 }; 4234 4235 static struct ctl_table i915_root[] = { 4236 { 4237 .procname = "i915", 4238 .maxlen = 0, 4239 .mode = 0555, 4240 .child = oa_table, 4241 }, 4242 {} 4243 }; 4244 4245 static struct ctl_table dev_root[] = { 4246 { 4247 .procname = "dev", 4248 .maxlen = 0, 4249 .mode = 0555, 4250 .child = i915_root, 4251 }, 4252 {} 4253 }; 4254 4255 /** 4256 * i915_perf_init - initialize i915-perf state on module bind 4257 * @i915: i915 device instance 4258 * 4259 * Initializes i915-perf state without exposing anything to userspace. 4260 * 4261 * Note: i915-perf initialization is split into an 'init' and 'register' 4262 * phase with the i915_perf_register() exposing state to userspace. 4263 */ 4264 void i915_perf_init(struct drm_i915_private *i915) 4265 { 4266 struct i915_perf *perf = &i915->perf; 4267 4268 /* XXX const struct i915_perf_ops! */ 4269 4270 if (IS_HASWELL(i915)) { 4271 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; 4272 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; 4273 perf->ops.is_valid_flex_reg = NULL; 4274 perf->ops.enable_metric_set = hsw_enable_metric_set; 4275 perf->ops.disable_metric_set = hsw_disable_metric_set; 4276 perf->ops.oa_enable = gen7_oa_enable; 4277 perf->ops.oa_disable = gen7_oa_disable; 4278 perf->ops.read = gen7_oa_read; 4279 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; 4280 4281 perf->oa_formats = hsw_oa_formats; 4282 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { 4283 /* Note: that although we could theoretically also support the 4284 * legacy ringbuffer mode on BDW (and earlier iterations of 4285 * this driver, before upstreaming did this) it didn't seem 4286 * worth the complexity to maintain now that BDW+ enable 4287 * execlist mode by default. 4288 */ 4289 perf->ops.read = gen8_oa_read; 4290 4291 if (IS_GEN_RANGE(i915, 8, 9)) { 4292 perf->oa_formats = gen8_plus_oa_formats; 4293 4294 perf->ops.is_valid_b_counter_reg = 4295 gen7_is_valid_b_counter_addr; 4296 perf->ops.is_valid_mux_reg = 4297 gen8_is_valid_mux_addr; 4298 perf->ops.is_valid_flex_reg = 4299 gen8_is_valid_flex_addr; 4300 4301 if (IS_CHERRYVIEW(i915)) { 4302 perf->ops.is_valid_mux_reg = 4303 chv_is_valid_mux_addr; 4304 } 4305 4306 perf->ops.oa_enable = gen8_oa_enable; 4307 perf->ops.oa_disable = gen8_oa_disable; 4308 perf->ops.enable_metric_set = gen8_enable_metric_set; 4309 perf->ops.disable_metric_set = gen8_disable_metric_set; 4310 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4311 4312 if (IS_GEN(i915, 8)) { 4313 perf->ctx_oactxctrl_offset = 0x120; 4314 perf->ctx_flexeu0_offset = 0x2ce; 4315 4316 perf->gen8_valid_ctx_bit = BIT(25); 4317 } else { 4318 perf->ctx_oactxctrl_offset = 0x128; 4319 perf->ctx_flexeu0_offset = 0x3de; 4320 4321 perf->gen8_valid_ctx_bit = BIT(16); 4322 } 4323 } else if (IS_GEN_RANGE(i915, 10, 11)) { 4324 perf->oa_formats = gen8_plus_oa_formats; 4325 4326 perf->ops.is_valid_b_counter_reg = 4327 gen7_is_valid_b_counter_addr; 4328 perf->ops.is_valid_mux_reg = 4329 gen10_is_valid_mux_addr; 4330 perf->ops.is_valid_flex_reg = 4331 gen8_is_valid_flex_addr; 4332 4333 perf->ops.oa_enable = gen8_oa_enable; 4334 perf->ops.oa_disable = gen8_oa_disable; 4335 perf->ops.enable_metric_set = gen8_enable_metric_set; 4336 perf->ops.disable_metric_set = gen10_disable_metric_set; 4337 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; 4338 4339 if (IS_GEN(i915, 10)) { 4340 perf->ctx_oactxctrl_offset = 0x128; 4341 perf->ctx_flexeu0_offset = 0x3de; 4342 } else { 4343 perf->ctx_oactxctrl_offset = 0x124; 4344 perf->ctx_flexeu0_offset = 0x78e; 4345 } 4346 perf->gen8_valid_ctx_bit = BIT(16); 4347 } else if (IS_GEN(i915, 12)) { 4348 perf->oa_formats = gen12_oa_formats; 4349 4350 perf->ops.is_valid_b_counter_reg = 4351 gen12_is_valid_b_counter_addr; 4352 perf->ops.is_valid_mux_reg = 4353 gen12_is_valid_mux_addr; 4354 perf->ops.is_valid_flex_reg = 4355 gen8_is_valid_flex_addr; 4356 4357 perf->ops.oa_enable = gen12_oa_enable; 4358 perf->ops.oa_disable = gen12_oa_disable; 4359 perf->ops.enable_metric_set = gen12_enable_metric_set; 4360 perf->ops.disable_metric_set = gen12_disable_metric_set; 4361 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; 4362 4363 perf->ctx_flexeu0_offset = 0; 4364 perf->ctx_oactxctrl_offset = 0x144; 4365 } 4366 } 4367 4368 if (perf->ops.enable_metric_set) { 4369 mutex_init(&perf->lock); 4370 4371 oa_sample_rate_hard_limit = 4372 RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 2; 4373 4374 mutex_init(&perf->metrics_lock); 4375 idr_init(&perf->metrics_idr); 4376 4377 /* We set up some ratelimit state to potentially throttle any 4378 * _NOTES about spurious, invalid OA reports which we don't 4379 * forward to userspace. 4380 * 4381 * We print a _NOTE about any throttling when closing the 4382 * stream instead of waiting until driver _fini which no one 4383 * would ever see. 4384 * 4385 * Using the same limiting factors as printk_ratelimit() 4386 */ 4387 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); 4388 /* Since we use a DRM_NOTE for spurious reports it would be 4389 * inconsistent to let __ratelimit() automatically print a 4390 * warning for throttling. 4391 */ 4392 ratelimit_set_flags(&perf->spurious_report_rs, 4393 RATELIMIT_MSG_ON_RELEASE); 4394 4395 ratelimit_state_init(&perf->tail_pointer_race, 4396 5 * HZ, 10); 4397 ratelimit_set_flags(&perf->tail_pointer_race, 4398 RATELIMIT_MSG_ON_RELEASE); 4399 4400 atomic64_set(&perf->noa_programming_delay, 4401 500 * 1000 /* 500us */); 4402 4403 perf->i915 = i915; 4404 } 4405 } 4406 4407 static int destroy_config(int id, void *p, void *data) 4408 { 4409 i915_oa_config_put(p); 4410 return 0; 4411 } 4412 4413 void i915_perf_sysctl_register(void) 4414 { 4415 sysctl_header = register_sysctl_table(dev_root); 4416 } 4417 4418 void i915_perf_sysctl_unregister(void) 4419 { 4420 unregister_sysctl_table(sysctl_header); 4421 } 4422 4423 /** 4424 * i915_perf_fini - Counter part to i915_perf_init() 4425 * @i915: i915 device instance 4426 */ 4427 void i915_perf_fini(struct drm_i915_private *i915) 4428 { 4429 struct i915_perf *perf = &i915->perf; 4430 4431 if (!perf->i915) 4432 return; 4433 4434 idr_for_each(&perf->metrics_idr, destroy_config, perf); 4435 idr_destroy(&perf->metrics_idr); 4436 4437 memset(&perf->ops, 0, sizeof(perf->ops)); 4438 perf->i915 = NULL; 4439 } 4440 4441 /** 4442 * i915_perf_ioctl_version - Version of the i915-perf subsystem 4443 * 4444 * This version number is used by userspace to detect available features. 4445 */ 4446 int i915_perf_ioctl_version(void) 4447 { 4448 /* 4449 * 1: Initial version 4450 * I915_PERF_IOCTL_ENABLE 4451 * I915_PERF_IOCTL_DISABLE 4452 * 4453 * 2: Added runtime modification of OA config. 4454 * I915_PERF_IOCTL_CONFIG 4455 * 4456 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold 4457 * preemption on a particular context so that performance data is 4458 * accessible from a delta of MI_RPC reports without looking at the 4459 * OA buffer. 4460 * 4461 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can 4462 * be run for the duration of the performance recording based on 4463 * their SSEU configuration. 4464 * 4465 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the 4466 * interval for the hrtimer used to check for OA data. 4467 */ 4468 return 5; 4469 } 4470 4471 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4472 #include "selftests/i915_perf.c" 4473 #endif 4474