xref: /openbmc/linux/drivers/gpu/drm/i915/i915_perf.c (revision 812f77b749a8ae11f58dacf0d3ed65e7ede47458)
1 /*
2  * Copyright © 2015-2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *   Robert Bragg <robert@sixbynine.org>
25  */
26 
27 
28 /**
29  * DOC: i915 Perf Overview
30  *
31  * Gen graphics supports a large number of performance counters that can help
32  * driver and application developers understand and optimize their use of the
33  * GPU.
34  *
35  * This i915 perf interface enables userspace to configure and open a file
36  * descriptor representing a stream of GPU metrics which can then be read() as
37  * a stream of sample records.
38  *
39  * The interface is particularly suited to exposing buffered metrics that are
40  * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41  *
42  * Streams representing a single context are accessible to applications with a
43  * corresponding drm file descriptor, such that OpenGL can use the interface
44  * without special privileges. Access to system-wide metrics requires root
45  * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46  * sysctl option.
47  *
48  */
49 
50 /**
51  * DOC: i915 Perf History and Comparison with Core Perf
52  *
53  * The interface was initially inspired by the core Perf infrastructure but
54  * some notable differences are:
55  *
56  * i915 perf file descriptors represent a "stream" instead of an "event"; where
57  * a perf event primarily corresponds to a single 64bit value, while a stream
58  * might sample sets of tightly-coupled counters, depending on the
59  * configuration.  For example the Gen OA unit isn't designed to support
60  * orthogonal configurations of individual counters; it's configured for a set
61  * of related counters. Samples for an i915 perf stream capturing OA metrics
62  * will include a set of counter values packed in a compact HW specific format.
63  * The OA unit supports a number of different packing formats which can be
64  * selected by the user opening the stream. Perf has support for grouping
65  * events, but each event in the group is configured, validated and
66  * authenticated individually with separate system calls.
67  *
68  * i915 perf stream configurations are provided as an array of u64 (key,value)
69  * pairs, instead of a fixed struct with multiple miscellaneous config members,
70  * interleaved with event-type specific members.
71  *
72  * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73  * The supported metrics are being written to memory by the GPU unsynchronized
74  * with the CPU, using HW specific packing formats for counter sets. Sometimes
75  * the constraints on HW configuration require reports to be filtered before it
76  * would be acceptable to expose them to unprivileged applications - to hide
77  * the metrics of other processes/contexts. For these use cases a read() based
78  * interface is a good fit, and provides an opportunity to filter data as it
79  * gets copied from the GPU mapped buffers to userspace buffers.
80  *
81  *
82  * Issues hit with first prototype based on Core Perf
83  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84  *
85  * The first prototype of this driver was based on the core perf
86  * infrastructure, and while we did make that mostly work, with some changes to
87  * perf, we found we were breaking or working around too many assumptions baked
88  * into perf's currently cpu centric design.
89  *
90  * In the end we didn't see a clear benefit to making perf's implementation and
91  * interface more complex by changing design assumptions while we knew we still
92  * wouldn't be able to use any existing perf based userspace tools.
93  *
94  * Also considering the Gen specific nature of the Observability hardware and
95  * how userspace will sometimes need to combine i915 perf OA metrics with
96  * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97  * expecting the interface to be used by a platform specific userspace such as
98  * OpenGL or tools. This is to say; we aren't inherently missing out on having
99  * a standard vendor/architecture agnostic interface by not using perf.
100  *
101  *
102  * For posterity, in case we might re-visit trying to adapt core perf to be
103  * better suited to exposing i915 metrics these were the main pain points we
104  * hit:
105  *
106  * - The perf based OA PMU driver broke some significant design assumptions:
107  *
108  *   Existing perf pmus are used for profiling work on a cpu and we were
109  *   introducing the idea of _IS_DEVICE pmus with different security
110  *   implications, the need to fake cpu-related data (such as user/kernel
111  *   registers) to fit with perf's current design, and adding _DEVICE records
112  *   as a way to forward device-specific status records.
113  *
114  *   The OA unit writes reports of counters into a circular buffer, without
115  *   involvement from the CPU, making our PMU driver the first of a kind.
116  *
117  *   Given the way we were periodically forward data from the GPU-mapped, OA
118  *   buffer to perf's buffer, those bursts of sample writes looked to perf like
119  *   we were sampling too fast and so we had to subvert its throttling checks.
120  *
121  *   Perf supports groups of counters and allows those to be read via
122  *   transactions internally but transactions currently seem designed to be
123  *   explicitly initiated from the cpu (say in response to a userspace read())
124  *   and while we could pull a report out of the OA buffer we can't
125  *   trigger a report from the cpu on demand.
126  *
127  *   Related to being report based; the OA counters are configured in HW as a
128  *   set while perf generally expects counter configurations to be orthogonal.
129  *   Although counters can be associated with a group leader as they are
130  *   opened, there's no clear precedent for being able to provide group-wide
131  *   configuration attributes (for example we want to let userspace choose the
132  *   OA unit report format used to capture all counters in a set, or specify a
133  *   GPU context to filter metrics on). We avoided using perf's grouping
134  *   feature and forwarded OA reports to userspace via perf's 'raw' sample
135  *   field. This suited our userspace well considering how coupled the counters
136  *   are when dealing with normalizing. It would be inconvenient to split
137  *   counters up into separate events, only to require userspace to recombine
138  *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
139  *   for combining with the side-band raw reports it captures using
140  *   MI_REPORT_PERF_COUNT commands.
141  *
142  *   - As a side note on perf's grouping feature; there was also some concern
143  *     that using PERF_FORMAT_GROUP as a way to pack together counter values
144  *     would quite drastically inflate our sample sizes, which would likely
145  *     lower the effective sampling resolutions we could use when the available
146  *     memory bandwidth is limited.
147  *
148  *     With the OA unit's report formats, counters are packed together as 32
149  *     or 40bit values, with the largest report size being 256 bytes.
150  *
151  *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152  *     documented ordering to the values, implying PERF_FORMAT_ID must also be
153  *     used to add a 64bit ID before each value; giving 16 bytes per counter.
154  *
155  *   Related to counter orthogonality; we can't time share the OA unit, while
156  *   event scheduling is a central design idea within perf for allowing
157  *   userspace to open + enable more events than can be configured in HW at any
158  *   one time.  The OA unit is not designed to allow re-configuration while in
159  *   use. We can't reconfigure the OA unit without losing internal OA unit
160  *   state which we can't access explicitly to save and restore. Reconfiguring
161  *   the OA unit is also relatively slow, involving ~100 register writes. From
162  *   userspace Mesa also depends on a stable OA configuration when emitting
163  *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164  *   disabled while there are outstanding MI_RPC commands lest we hang the
165  *   command streamer.
166  *
167  *   The contents of sample records aren't extensible by device drivers (i.e.
168  *   the sample_type bits). As an example; Sourab Gupta had been looking to
169  *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
170  *   into sample records by using the 'raw' field, but it's tricky to pack more
171  *   than one thing into this field because events/core.c currently only lets a
172  *   pmu give a single raw data pointer plus len which will be copied into the
173  *   ring buffer. To include more than the OA report we'd have to copy the
174  *   report into an intermediate larger buffer. I'd been considering allowing a
175  *   vector of data+len values to be specified for copying the raw data, but
176  *   it felt like a kludge to being using the raw field for this purpose.
177  *
178  * - It felt like our perf based PMU was making some technical compromises
179  *   just for the sake of using perf:
180  *
181  *   perf_event_open() requires events to either relate to a pid or a specific
182  *   cpu core, while our device pmu related to neither.  Events opened with a
183  *   pid will be automatically enabled/disabled according to the scheduling of
184  *   that process - so not appropriate for us. When an event is related to a
185  *   cpu id, perf ensures pmu methods will be invoked via an inter process
186  *   interrupt on that core. To avoid invasive changes our userspace opened OA
187  *   perf events for a specific cpu. This was workable but it meant the
188  *   majority of the OA driver ran in atomic context, including all OA report
189  *   forwarding, which wasn't really necessary in our case and seems to make
190  *   our locking requirements somewhat complex as we handled the interaction
191  *   with the rest of the i915 driver.
192  */
193 
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197 
198 #include "i915_drv.h"
199 #include "i915_oa_hsw.h"
200 #include "i915_oa_bdw.h"
201 #include "i915_oa_chv.h"
202 #include "i915_oa_sklgt2.h"
203 #include "i915_oa_sklgt3.h"
204 #include "i915_oa_sklgt4.h"
205 #include "i915_oa_bxt.h"
206 #include "i915_oa_kblgt2.h"
207 #include "i915_oa_kblgt3.h"
208 #include "i915_oa_glk.h"
209 #include "i915_oa_cflgt2.h"
210 #include "i915_oa_cflgt3.h"
211 #include "i915_oa_cnl.h"
212 
213 /* HW requires this to be a power of two, between 128k and 16M, though driver
214  * is currently generally designed assuming the largest 16M size is used such
215  * that the overflow cases are unlikely in normal operation.
216  */
217 #define OA_BUFFER_SIZE		SZ_16M
218 
219 #define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))
220 
221 /**
222  * DOC: OA Tail Pointer Race
223  *
224  * There's a HW race condition between OA unit tail pointer register updates and
225  * writes to memory whereby the tail pointer can sometimes get ahead of what's
226  * been written out to the OA buffer so far (in terms of what's visible to the
227  * CPU).
228  *
229  * Although this can be observed explicitly while copying reports to userspace
230  * by checking for a zeroed report-id field in tail reports, we want to account
231  * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
232  * read() attempts.
233  *
234  * In effect we define a tail pointer for reading that lags the real tail
235  * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
236  * time for the corresponding reports to become visible to the CPU.
237  *
238  * To manage this we actually track two tail pointers:
239  *  1) An 'aging' tail with an associated timestamp that is tracked until we
240  *     can trust the corresponding data is visible to the CPU; at which point
241  *     it is considered 'aged'.
242  *  2) An 'aged' tail that can be used for read()ing.
243  *
244  * The two separate pointers let us decouple read()s from tail pointer aging.
245  *
246  * The tail pointers are checked and updated at a limited rate within a hrtimer
247  * callback (the same callback that is used for delivering POLLIN events)
248  *
249  * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
250  * indicates that an updated tail pointer is needed.
251  *
252  * Most of the implementation details for this workaround are in
253  * oa_buffer_check_unlocked() and _append_oa_reports()
254  *
255  * Note for posterity: previously the driver used to define an effective tail
256  * pointer that lagged the real pointer by a 'tail margin' measured in bytes
257  * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
258  * This was flawed considering that the OA unit may also automatically generate
259  * non-periodic reports (such as on context switch) or the OA unit may be
260  * enabled without any periodic sampling.
261  */
262 #define OA_TAIL_MARGIN_NSEC	100000ULL
263 #define INVALID_TAIL_PTR	0xffffffff
264 
265 /* frequency for checking whether the OA unit has written new reports to the
266  * circular OA buffer...
267  */
268 #define POLL_FREQUENCY 200
269 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
270 
271 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
272 static int zero;
273 static int one = 1;
274 static u32 i915_perf_stream_paranoid = true;
275 
276 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
277  * of the 64bit timestamp bits to trigger reports from) but there's currently
278  * no known use case for sampling as infrequently as once per 47 thousand years.
279  *
280  * Since the timestamps included in OA reports are only 32bits it seems
281  * reasonable to limit the OA exponent where it's still possible to account for
282  * overflow in OA report timestamps.
283  */
284 #define OA_EXPONENT_MAX 31
285 
286 #define INVALID_CTX_ID 0xffffffff
287 
288 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
289 #define OAREPORT_REASON_MASK           0x3f
290 #define OAREPORT_REASON_SHIFT          19
291 #define OAREPORT_REASON_TIMER          (1<<0)
292 #define OAREPORT_REASON_CTX_SWITCH     (1<<3)
293 #define OAREPORT_REASON_CLK_RATIO      (1<<5)
294 
295 
296 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
297  *
298  * The highest sampling frequency we can theoretically program the OA unit
299  * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
300  *
301  * Initialized just before we register the sysctl parameter.
302  */
303 static int oa_sample_rate_hard_limit;
304 
305 /* Theoretically we can program the OA unit to sample every 160ns but don't
306  * allow that by default unless root...
307  *
308  * The default threshold of 100000Hz is based on perf's similar
309  * kernel.perf_event_max_sample_rate sysctl parameter.
310  */
311 static u32 i915_oa_max_sample_rate = 100000;
312 
313 /* XXX: beware if future OA HW adds new report formats that the current
314  * code assumes all reports have a power-of-two size and ~(size - 1) can
315  * be used as a mask to align the OA tail pointer.
316  */
317 static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
318 	[I915_OA_FORMAT_A13]	    = { 0, 64 },
319 	[I915_OA_FORMAT_A29]	    = { 1, 128 },
320 	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
321 	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
322 	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
323 	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
324 	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
325 	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
326 };
327 
328 static struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
329 	[I915_OA_FORMAT_A12]		    = { 0, 64 },
330 	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
331 	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
332 	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
333 };
334 
335 #define SAMPLE_OA_REPORT      (1<<0)
336 
337 /**
338  * struct perf_open_properties - for validated properties given to open a stream
339  * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
340  * @single_context: Whether a single or all gpu contexts should be monitored
341  * @ctx_handle: A gem ctx handle for use with @single_context
342  * @metrics_set: An ID for an OA unit metric set advertised via sysfs
343  * @oa_format: An OA unit HW report format
344  * @oa_periodic: Whether to enable periodic OA unit sampling
345  * @oa_period_exponent: The OA unit sampling period is derived from this
346  *
347  * As read_properties_unlocked() enumerates and validates the properties given
348  * to open a stream of metrics the configuration is built up in the structure
349  * which starts out zero initialized.
350  */
351 struct perf_open_properties {
352 	u32 sample_flags;
353 
354 	u64 single_context:1;
355 	u64 ctx_handle;
356 
357 	/* OA sampling state */
358 	int metrics_set;
359 	int oa_format;
360 	bool oa_periodic;
361 	int oa_period_exponent;
362 };
363 
364 static void free_oa_config(struct drm_i915_private *dev_priv,
365 			   struct i915_oa_config *oa_config)
366 {
367 	if (!PTR_ERR(oa_config->flex_regs))
368 		kfree(oa_config->flex_regs);
369 	if (!PTR_ERR(oa_config->b_counter_regs))
370 		kfree(oa_config->b_counter_regs);
371 	if (!PTR_ERR(oa_config->mux_regs))
372 		kfree(oa_config->mux_regs);
373 	kfree(oa_config);
374 }
375 
376 static void put_oa_config(struct drm_i915_private *dev_priv,
377 			  struct i915_oa_config *oa_config)
378 {
379 	if (!atomic_dec_and_test(&oa_config->ref_count))
380 		return;
381 
382 	free_oa_config(dev_priv, oa_config);
383 }
384 
385 static int get_oa_config(struct drm_i915_private *dev_priv,
386 			 int metrics_set,
387 			 struct i915_oa_config **out_config)
388 {
389 	int ret;
390 
391 	if (metrics_set == 1) {
392 		*out_config = &dev_priv->perf.oa.test_config;
393 		atomic_inc(&dev_priv->perf.oa.test_config.ref_count);
394 		return 0;
395 	}
396 
397 	ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
398 	if (ret)
399 		return ret;
400 
401 	*out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
402 	if (!*out_config)
403 		ret = -EINVAL;
404 	else
405 		atomic_inc(&(*out_config)->ref_count);
406 
407 	mutex_unlock(&dev_priv->perf.metrics_lock);
408 
409 	return ret;
410 }
411 
412 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
413 {
414 	return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
415 }
416 
417 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
418 {
419 	u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
420 
421 	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
422 }
423 
424 /**
425  * oa_buffer_check_unlocked - check for data and update tail ptr state
426  * @dev_priv: i915 device instance
427  *
428  * This is either called via fops (for blocking reads in user ctx) or the poll
429  * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
430  * if there is data available for userspace to read.
431  *
432  * This function is central to providing a workaround for the OA unit tail
433  * pointer having a race with respect to what data is visible to the CPU.
434  * It is responsible for reading tail pointers from the hardware and giving
435  * the pointers time to 'age' before they are made available for reading.
436  * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
437  *
438  * Besides returning true when there is data available to read() this function
439  * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
440  * and .aged_tail_idx state used for reading.
441  *
442  * Note: It's safe to read OA config state here unlocked, assuming that this is
443  * only called while the stream is enabled, while the global OA configuration
444  * can't be modified.
445  *
446  * Returns: %true if the OA buffer contains data, else %false
447  */
448 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
449 {
450 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
451 	unsigned long flags;
452 	unsigned int aged_idx;
453 	u32 head, hw_tail, aged_tail, aging_tail;
454 	u64 now;
455 
456 	/* We have to consider the (unlikely) possibility that read() errors
457 	 * could result in an OA buffer reset which might reset the head,
458 	 * tails[] and aged_tail state.
459 	 */
460 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
461 
462 	/* NB: The head we observe here might effectively be a little out of
463 	 * date (between head and tails[aged_idx].offset if there is currently
464 	 * a read() in progress.
465 	 */
466 	head = dev_priv->perf.oa.oa_buffer.head;
467 
468 	aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
469 	aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
470 	aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;
471 
472 	hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
473 
474 	/* The tail pointer increases in 64 byte increments,
475 	 * not in report_size steps...
476 	 */
477 	hw_tail &= ~(report_size - 1);
478 
479 	now = ktime_get_mono_fast_ns();
480 
481 	/* Update the aged tail
482 	 *
483 	 * Flip the tail pointer available for read()s once the aging tail is
484 	 * old enough to trust that the corresponding data will be visible to
485 	 * the CPU...
486 	 *
487 	 * Do this before updating the aging pointer in case we may be able to
488 	 * immediately start aging a new pointer too (if new data has become
489 	 * available) without needing to wait for a later hrtimer callback.
490 	 */
491 	if (aging_tail != INVALID_TAIL_PTR &&
492 	    ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
493 	     OA_TAIL_MARGIN_NSEC)) {
494 
495 		aged_idx ^= 1;
496 		dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;
497 
498 		aged_tail = aging_tail;
499 
500 		/* Mark that we need a new pointer to start aging... */
501 		dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
502 		aging_tail = INVALID_TAIL_PTR;
503 	}
504 
505 	/* Update the aging tail
506 	 *
507 	 * We throttle aging tail updates until we have a new tail that
508 	 * represents >= one report more data than is already available for
509 	 * reading. This ensures there will be enough data for a successful
510 	 * read once this new pointer has aged and ensures we will give the new
511 	 * pointer time to age.
512 	 */
513 	if (aging_tail == INVALID_TAIL_PTR &&
514 	    (aged_tail == INVALID_TAIL_PTR ||
515 	     OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
516 		struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
517 		u32 gtt_offset = i915_ggtt_offset(vma);
518 
519 		/* Be paranoid and do a bounds check on the pointer read back
520 		 * from hardware, just in case some spurious hardware condition
521 		 * could put the tail out of bounds...
522 		 */
523 		if (hw_tail >= gtt_offset &&
524 		    hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
525 			dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
526 				aging_tail = hw_tail;
527 			dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
528 		} else {
529 			DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
530 				  hw_tail);
531 		}
532 	}
533 
534 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
535 
536 	return aged_tail == INVALID_TAIL_PTR ?
537 		false : OA_TAKEN(aged_tail, head) >= report_size;
538 }
539 
540 /**
541  * append_oa_status - Appends a status record to a userspace read() buffer.
542  * @stream: An i915-perf stream opened for OA metrics
543  * @buf: destination buffer given by userspace
544  * @count: the number of bytes userspace wants to read
545  * @offset: (inout): the current position for writing into @buf
546  * @type: The kind of status to report to userspace
547  *
548  * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
549  * into the userspace read() buffer.
550  *
551  * The @buf @offset will only be updated on success.
552  *
553  * Returns: 0 on success, negative error code on failure.
554  */
555 static int append_oa_status(struct i915_perf_stream *stream,
556 			    char __user *buf,
557 			    size_t count,
558 			    size_t *offset,
559 			    enum drm_i915_perf_record_type type)
560 {
561 	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
562 
563 	if ((count - *offset) < header.size)
564 		return -ENOSPC;
565 
566 	if (copy_to_user(buf + *offset, &header, sizeof(header)))
567 		return -EFAULT;
568 
569 	(*offset) += header.size;
570 
571 	return 0;
572 }
573 
574 /**
575  * append_oa_sample - Copies single OA report into userspace read() buffer.
576  * @stream: An i915-perf stream opened for OA metrics
577  * @buf: destination buffer given by userspace
578  * @count: the number of bytes userspace wants to read
579  * @offset: (inout): the current position for writing into @buf
580  * @report: A single OA report to (optionally) include as part of the sample
581  *
582  * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
583  * properties when opening a stream, tracked as `stream->sample_flags`. This
584  * function copies the requested components of a single sample to the given
585  * read() @buf.
586  *
587  * The @buf @offset will only be updated on success.
588  *
589  * Returns: 0 on success, negative error code on failure.
590  */
591 static int append_oa_sample(struct i915_perf_stream *stream,
592 			    char __user *buf,
593 			    size_t count,
594 			    size_t *offset,
595 			    const u8 *report)
596 {
597 	struct drm_i915_private *dev_priv = stream->dev_priv;
598 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
599 	struct drm_i915_perf_record_header header;
600 	u32 sample_flags = stream->sample_flags;
601 
602 	header.type = DRM_I915_PERF_RECORD_SAMPLE;
603 	header.pad = 0;
604 	header.size = stream->sample_size;
605 
606 	if ((count - *offset) < header.size)
607 		return -ENOSPC;
608 
609 	buf += *offset;
610 	if (copy_to_user(buf, &header, sizeof(header)))
611 		return -EFAULT;
612 	buf += sizeof(header);
613 
614 	if (sample_flags & SAMPLE_OA_REPORT) {
615 		if (copy_to_user(buf, report, report_size))
616 			return -EFAULT;
617 	}
618 
619 	(*offset) += header.size;
620 
621 	return 0;
622 }
623 
624 /**
625  * Copies all buffered OA reports into userspace read() buffer.
626  * @stream: An i915-perf stream opened for OA metrics
627  * @buf: destination buffer given by userspace
628  * @count: the number of bytes userspace wants to read
629  * @offset: (inout): the current position for writing into @buf
630  *
631  * Notably any error condition resulting in a short read (-%ENOSPC or
632  * -%EFAULT) will be returned even though one or more records may
633  * have been successfully copied. In this case it's up to the caller
634  * to decide if the error should be squashed before returning to
635  * userspace.
636  *
637  * Note: reports are consumed from the head, and appended to the
638  * tail, so the tail chases the head?... If you think that's mad
639  * and back-to-front you're not alone, but this follows the
640  * Gen PRM naming convention.
641  *
642  * Returns: 0 on success, negative error code on failure.
643  */
644 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
645 				  char __user *buf,
646 				  size_t count,
647 				  size_t *offset)
648 {
649 	struct drm_i915_private *dev_priv = stream->dev_priv;
650 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
651 	u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
652 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
653 	u32 mask = (OA_BUFFER_SIZE - 1);
654 	size_t start_offset = *offset;
655 	unsigned long flags;
656 	unsigned int aged_tail_idx;
657 	u32 head, tail;
658 	u32 taken;
659 	int ret = 0;
660 
661 	if (WARN_ON(!stream->enabled))
662 		return -EIO;
663 
664 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
665 
666 	head = dev_priv->perf.oa.oa_buffer.head;
667 	aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
668 	tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
669 
670 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
671 
672 	/*
673 	 * An invalid tail pointer here means we're still waiting for the poll
674 	 * hrtimer callback to give us a pointer
675 	 */
676 	if (tail == INVALID_TAIL_PTR)
677 		return -EAGAIN;
678 
679 	/*
680 	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
681 	 * while indexing relative to oa_buf_base.
682 	 */
683 	head -= gtt_offset;
684 	tail -= gtt_offset;
685 
686 	/*
687 	 * An out of bounds or misaligned head or tail pointer implies a driver
688 	 * bug since we validate + align the tail pointers we read from the
689 	 * hardware and we are in full control of the head pointer which should
690 	 * only be incremented by multiples of the report size (notably also
691 	 * all a power of two).
692 	 */
693 	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
694 		      tail > OA_BUFFER_SIZE || tail % report_size,
695 		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
696 		      head, tail))
697 		return -EIO;
698 
699 
700 	for (/* none */;
701 	     (taken = OA_TAKEN(tail, head));
702 	     head = (head + report_size) & mask) {
703 		u8 *report = oa_buf_base + head;
704 		u32 *report32 = (void *)report;
705 		u32 ctx_id;
706 		u32 reason;
707 
708 		/*
709 		 * All the report sizes factor neatly into the buffer
710 		 * size so we never expect to see a report split
711 		 * between the beginning and end of the buffer.
712 		 *
713 		 * Given the initial alignment check a misalignment
714 		 * here would imply a driver bug that would result
715 		 * in an overrun.
716 		 */
717 		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
718 			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
719 			break;
720 		}
721 
722 		/*
723 		 * The reason field includes flags identifying what
724 		 * triggered this specific report (mostly timer
725 		 * triggered or e.g. due to a context switch).
726 		 *
727 		 * This field is never expected to be zero so we can
728 		 * check that the report isn't invalid before copying
729 		 * it to userspace...
730 		 */
731 		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
732 			  OAREPORT_REASON_MASK);
733 		if (reason == 0) {
734 			if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
735 				DRM_NOTE("Skipping spurious, invalid OA report\n");
736 			continue;
737 		}
738 
739 		/*
740 		 * XXX: Just keep the lower 21 bits for now since I'm not
741 		 * entirely sure if the HW touches any of the higher bits in
742 		 * this field
743 		 */
744 		ctx_id = report32[2] & 0x1fffff;
745 
746 		/*
747 		 * Squash whatever is in the CTX_ID field if it's marked as
748 		 * invalid to be sure we avoid false-positive, single-context
749 		 * filtering below...
750 		 *
751 		 * Note: that we don't clear the valid_ctx_bit so userspace can
752 		 * understand that the ID has been squashed by the kernel.
753 		 */
754 		if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
755 			ctx_id = report32[2] = INVALID_CTX_ID;
756 
757 		/*
758 		 * NB: For Gen 8 the OA unit no longer supports clock gating
759 		 * off for a specific context and the kernel can't securely
760 		 * stop the counters from updating as system-wide / global
761 		 * values.
762 		 *
763 		 * Automatic reports now include a context ID so reports can be
764 		 * filtered on the cpu but it's not worth trying to
765 		 * automatically subtract/hide counter progress for other
766 		 * contexts while filtering since we can't stop userspace
767 		 * issuing MI_REPORT_PERF_COUNT commands which would still
768 		 * provide a side-band view of the real values.
769 		 *
770 		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
771 		 * to normalize counters for a single filtered context then it
772 		 * needs be forwarded bookend context-switch reports so that it
773 		 * can track switches in between MI_REPORT_PERF_COUNT commands
774 		 * and can itself subtract/ignore the progress of counters
775 		 * associated with other contexts. Note that the hardware
776 		 * automatically triggers reports when switching to a new
777 		 * context which are tagged with the ID of the newly active
778 		 * context. To avoid the complexity (and likely fragility) of
779 		 * reading ahead while parsing reports to try and minimize
780 		 * forwarding redundant context switch reports (i.e. between
781 		 * other, unrelated contexts) we simply elect to forward them
782 		 * all.
783 		 *
784 		 * We don't rely solely on the reason field to identify context
785 		 * switches since it's not-uncommon for periodic samples to
786 		 * identify a switch before any 'context switch' report.
787 		 */
788 		if (!dev_priv->perf.oa.exclusive_stream->ctx ||
789 		    dev_priv->perf.oa.specific_ctx_id == ctx_id ||
790 		    (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
791 		     dev_priv->perf.oa.specific_ctx_id) ||
792 		    reason & OAREPORT_REASON_CTX_SWITCH) {
793 
794 			/*
795 			 * While filtering for a single context we avoid
796 			 * leaking the IDs of other contexts.
797 			 */
798 			if (dev_priv->perf.oa.exclusive_stream->ctx &&
799 			    dev_priv->perf.oa.specific_ctx_id != ctx_id) {
800 				report32[2] = INVALID_CTX_ID;
801 			}
802 
803 			ret = append_oa_sample(stream, buf, count, offset,
804 					       report);
805 			if (ret)
806 				break;
807 
808 			dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
809 		}
810 
811 		/*
812 		 * The above reason field sanity check is based on
813 		 * the assumption that the OA buffer is initially
814 		 * zeroed and we reset the field after copying so the
815 		 * check is still meaningful once old reports start
816 		 * being overwritten.
817 		 */
818 		report32[0] = 0;
819 	}
820 
821 	if (start_offset != *offset) {
822 		spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
823 
824 		/*
825 		 * We removed the gtt_offset for the copy loop above, indexing
826 		 * relative to oa_buf_base so put back here...
827 		 */
828 		head += gtt_offset;
829 
830 		I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
831 		dev_priv->perf.oa.oa_buffer.head = head;
832 
833 		spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
834 	}
835 
836 	return ret;
837 }
838 
839 /**
840  * gen8_oa_read - copy status records then buffered OA reports
841  * @stream: An i915-perf stream opened for OA metrics
842  * @buf: destination buffer given by userspace
843  * @count: the number of bytes userspace wants to read
844  * @offset: (inout): the current position for writing into @buf
845  *
846  * Checks OA unit status registers and if necessary appends corresponding
847  * status records for userspace (such as for a buffer full condition) and then
848  * initiate appending any buffered OA reports.
849  *
850  * Updates @offset according to the number of bytes successfully copied into
851  * the userspace buffer.
852  *
853  * NB: some data may be successfully copied to the userspace buffer
854  * even if an error is returned, and this is reflected in the
855  * updated @offset.
856  *
857  * Returns: zero on success or a negative error code
858  */
859 static int gen8_oa_read(struct i915_perf_stream *stream,
860 			char __user *buf,
861 			size_t count,
862 			size_t *offset)
863 {
864 	struct drm_i915_private *dev_priv = stream->dev_priv;
865 	u32 oastatus;
866 	int ret;
867 
868 	if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
869 		return -EIO;
870 
871 	oastatus = I915_READ(GEN8_OASTATUS);
872 
873 	/*
874 	 * We treat OABUFFER_OVERFLOW as a significant error:
875 	 *
876 	 * Although theoretically we could handle this more gracefully
877 	 * sometimes, some Gens don't correctly suppress certain
878 	 * automatically triggered reports in this condition and so we
879 	 * have to assume that old reports are now being trampled
880 	 * over.
881 	 *
882 	 * Considering how we don't currently give userspace control
883 	 * over the OA buffer size and always configure a large 16MB
884 	 * buffer, then a buffer overflow does anyway likely indicate
885 	 * that something has gone quite badly wrong.
886 	 */
887 	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
888 		ret = append_oa_status(stream, buf, count, offset,
889 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
890 		if (ret)
891 			return ret;
892 
893 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
894 			  dev_priv->perf.oa.period_exponent);
895 
896 		dev_priv->perf.oa.ops.oa_disable(dev_priv);
897 		dev_priv->perf.oa.ops.oa_enable(dev_priv);
898 
899 		/*
900 		 * Note: .oa_enable() is expected to re-init the oabuffer and
901 		 * reset GEN8_OASTATUS for us
902 		 */
903 		oastatus = I915_READ(GEN8_OASTATUS);
904 	}
905 
906 	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
907 		ret = append_oa_status(stream, buf, count, offset,
908 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
909 		if (ret)
910 			return ret;
911 		I915_WRITE(GEN8_OASTATUS,
912 			   oastatus & ~GEN8_OASTATUS_REPORT_LOST);
913 	}
914 
915 	return gen8_append_oa_reports(stream, buf, count, offset);
916 }
917 
918 /**
919  * Copies all buffered OA reports into userspace read() buffer.
920  * @stream: An i915-perf stream opened for OA metrics
921  * @buf: destination buffer given by userspace
922  * @count: the number of bytes userspace wants to read
923  * @offset: (inout): the current position for writing into @buf
924  *
925  * Notably any error condition resulting in a short read (-%ENOSPC or
926  * -%EFAULT) will be returned even though one or more records may
927  * have been successfully copied. In this case it's up to the caller
928  * to decide if the error should be squashed before returning to
929  * userspace.
930  *
931  * Note: reports are consumed from the head, and appended to the
932  * tail, so the tail chases the head?... If you think that's mad
933  * and back-to-front you're not alone, but this follows the
934  * Gen PRM naming convention.
935  *
936  * Returns: 0 on success, negative error code on failure.
937  */
938 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
939 				  char __user *buf,
940 				  size_t count,
941 				  size_t *offset)
942 {
943 	struct drm_i915_private *dev_priv = stream->dev_priv;
944 	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
945 	u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
946 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
947 	u32 mask = (OA_BUFFER_SIZE - 1);
948 	size_t start_offset = *offset;
949 	unsigned long flags;
950 	unsigned int aged_tail_idx;
951 	u32 head, tail;
952 	u32 taken;
953 	int ret = 0;
954 
955 	if (WARN_ON(!stream->enabled))
956 		return -EIO;
957 
958 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
959 
960 	head = dev_priv->perf.oa.oa_buffer.head;
961 	aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
962 	tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
963 
964 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
965 
966 	/* An invalid tail pointer here means we're still waiting for the poll
967 	 * hrtimer callback to give us a pointer
968 	 */
969 	if (tail == INVALID_TAIL_PTR)
970 		return -EAGAIN;
971 
972 	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
973 	 * while indexing relative to oa_buf_base.
974 	 */
975 	head -= gtt_offset;
976 	tail -= gtt_offset;
977 
978 	/* An out of bounds or misaligned head or tail pointer implies a driver
979 	 * bug since we validate + align the tail pointers we read from the
980 	 * hardware and we are in full control of the head pointer which should
981 	 * only be incremented by multiples of the report size (notably also
982 	 * all a power of two).
983 	 */
984 	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
985 		      tail > OA_BUFFER_SIZE || tail % report_size,
986 		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
987 		      head, tail))
988 		return -EIO;
989 
990 
991 	for (/* none */;
992 	     (taken = OA_TAKEN(tail, head));
993 	     head = (head + report_size) & mask) {
994 		u8 *report = oa_buf_base + head;
995 		u32 *report32 = (void *)report;
996 
997 		/* All the report sizes factor neatly into the buffer
998 		 * size so we never expect to see a report split
999 		 * between the beginning and end of the buffer.
1000 		 *
1001 		 * Given the initial alignment check a misalignment
1002 		 * here would imply a driver bug that would result
1003 		 * in an overrun.
1004 		 */
1005 		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1006 			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1007 			break;
1008 		}
1009 
1010 		/* The report-ID field for periodic samples includes
1011 		 * some undocumented flags related to what triggered
1012 		 * the report and is never expected to be zero so we
1013 		 * can check that the report isn't invalid before
1014 		 * copying it to userspace...
1015 		 */
1016 		if (report32[0] == 0) {
1017 			if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
1018 				DRM_NOTE("Skipping spurious, invalid OA report\n");
1019 			continue;
1020 		}
1021 
1022 		ret = append_oa_sample(stream, buf, count, offset, report);
1023 		if (ret)
1024 			break;
1025 
1026 		/* The above report-id field sanity check is based on
1027 		 * the assumption that the OA buffer is initially
1028 		 * zeroed and we reset the field after copying so the
1029 		 * check is still meaningful once old reports start
1030 		 * being overwritten.
1031 		 */
1032 		report32[0] = 0;
1033 	}
1034 
1035 	if (start_offset != *offset) {
1036 		spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1037 
1038 		/* We removed the gtt_offset for the copy loop above, indexing
1039 		 * relative to oa_buf_base so put back here...
1040 		 */
1041 		head += gtt_offset;
1042 
1043 		I915_WRITE(GEN7_OASTATUS2,
1044 			   ((head & GEN7_OASTATUS2_HEAD_MASK) |
1045 			    OA_MEM_SELECT_GGTT));
1046 		dev_priv->perf.oa.oa_buffer.head = head;
1047 
1048 		spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1049 	}
1050 
1051 	return ret;
1052 }
1053 
1054 /**
1055  * gen7_oa_read - copy status records then buffered OA reports
1056  * @stream: An i915-perf stream opened for OA metrics
1057  * @buf: destination buffer given by userspace
1058  * @count: the number of bytes userspace wants to read
1059  * @offset: (inout): the current position for writing into @buf
1060  *
1061  * Checks Gen 7 specific OA unit status registers and if necessary appends
1062  * corresponding status records for userspace (such as for a buffer full
1063  * condition) and then initiate appending any buffered OA reports.
1064  *
1065  * Updates @offset according to the number of bytes successfully copied into
1066  * the userspace buffer.
1067  *
1068  * Returns: zero on success or a negative error code
1069  */
1070 static int gen7_oa_read(struct i915_perf_stream *stream,
1071 			char __user *buf,
1072 			size_t count,
1073 			size_t *offset)
1074 {
1075 	struct drm_i915_private *dev_priv = stream->dev_priv;
1076 	u32 oastatus1;
1077 	int ret;
1078 
1079 	if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
1080 		return -EIO;
1081 
1082 	oastatus1 = I915_READ(GEN7_OASTATUS1);
1083 
1084 	/* XXX: On Haswell we don't have a safe way to clear oastatus1
1085 	 * bits while the OA unit is enabled (while the tail pointer
1086 	 * may be updated asynchronously) so we ignore status bits
1087 	 * that have already been reported to userspace.
1088 	 */
1089 	oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
1090 
1091 	/* We treat OABUFFER_OVERFLOW as a significant error:
1092 	 *
1093 	 * - The status can be interpreted to mean that the buffer is
1094 	 *   currently full (with a higher precedence than OA_TAKEN()
1095 	 *   which will start to report a near-empty buffer after an
1096 	 *   overflow) but it's awkward that we can't clear the status
1097 	 *   on Haswell, so without a reset we won't be able to catch
1098 	 *   the state again.
1099 	 *
1100 	 * - Since it also implies the HW has started overwriting old
1101 	 *   reports it may also affect our sanity checks for invalid
1102 	 *   reports when copying to userspace that assume new reports
1103 	 *   are being written to cleared memory.
1104 	 *
1105 	 * - In the future we may want to introduce a flight recorder
1106 	 *   mode where the driver will automatically maintain a safe
1107 	 *   guard band between head/tail, avoiding this overflow
1108 	 *   condition, but we avoid the added driver complexity for
1109 	 *   now.
1110 	 */
1111 	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1112 		ret = append_oa_status(stream, buf, count, offset,
1113 				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1114 		if (ret)
1115 			return ret;
1116 
1117 		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1118 			  dev_priv->perf.oa.period_exponent);
1119 
1120 		dev_priv->perf.oa.ops.oa_disable(dev_priv);
1121 		dev_priv->perf.oa.ops.oa_enable(dev_priv);
1122 
1123 		oastatus1 = I915_READ(GEN7_OASTATUS1);
1124 	}
1125 
1126 	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1127 		ret = append_oa_status(stream, buf, count, offset,
1128 				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1129 		if (ret)
1130 			return ret;
1131 		dev_priv->perf.oa.gen7_latched_oastatus1 |=
1132 			GEN7_OASTATUS1_REPORT_LOST;
1133 	}
1134 
1135 	return gen7_append_oa_reports(stream, buf, count, offset);
1136 }
1137 
1138 /**
1139  * i915_oa_wait_unlocked - handles blocking IO until OA data available
1140  * @stream: An i915-perf stream opened for OA metrics
1141  *
1142  * Called when userspace tries to read() from a blocking stream FD opened
1143  * for OA metrics. It waits until the hrtimer callback finds a non-empty
1144  * OA buffer and wakes us.
1145  *
1146  * Note: it's acceptable to have this return with some false positives
1147  * since any subsequent read handling will return -EAGAIN if there isn't
1148  * really data ready for userspace yet.
1149  *
1150  * Returns: zero on success or a negative error code
1151  */
1152 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1153 {
1154 	struct drm_i915_private *dev_priv = stream->dev_priv;
1155 
1156 	/* We would wait indefinitely if periodic sampling is not enabled */
1157 	if (!dev_priv->perf.oa.periodic)
1158 		return -EIO;
1159 
1160 	return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
1161 					oa_buffer_check_unlocked(dev_priv));
1162 }
1163 
1164 /**
1165  * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1166  * @stream: An i915-perf stream opened for OA metrics
1167  * @file: An i915 perf stream file
1168  * @wait: poll() state table
1169  *
1170  * For handling userspace polling on an i915 perf stream opened for OA metrics,
1171  * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1172  * when it sees data ready to read in the circular OA buffer.
1173  */
1174 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1175 			      struct file *file,
1176 			      poll_table *wait)
1177 {
1178 	struct drm_i915_private *dev_priv = stream->dev_priv;
1179 
1180 	poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
1181 }
1182 
1183 /**
1184  * i915_oa_read - just calls through to &i915_oa_ops->read
1185  * @stream: An i915-perf stream opened for OA metrics
1186  * @buf: destination buffer given by userspace
1187  * @count: the number of bytes userspace wants to read
1188  * @offset: (inout): the current position for writing into @buf
1189  *
1190  * Updates @offset according to the number of bytes successfully copied into
1191  * the userspace buffer.
1192  *
1193  * Returns: zero on success or a negative error code
1194  */
1195 static int i915_oa_read(struct i915_perf_stream *stream,
1196 			char __user *buf,
1197 			size_t count,
1198 			size_t *offset)
1199 {
1200 	struct drm_i915_private *dev_priv = stream->dev_priv;
1201 
1202 	return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
1203 }
1204 
1205 /**
1206  * oa_get_render_ctx_id - determine and hold ctx hw id
1207  * @stream: An i915-perf stream opened for OA metrics
1208  *
1209  * Determine the render context hw id, and ensure it remains fixed for the
1210  * lifetime of the stream. This ensures that we don't have to worry about
1211  * updating the context ID in OACONTROL on the fly.
1212  *
1213  * Returns: zero on success or a negative error code
1214  */
1215 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1216 {
1217 	struct drm_i915_private *dev_priv = stream->dev_priv;
1218 
1219 	if (i915_modparams.enable_execlists)
1220 		dev_priv->perf.oa.specific_ctx_id = stream->ctx->hw_id;
1221 	else {
1222 		struct intel_engine_cs *engine = dev_priv->engine[RCS];
1223 		struct intel_ring *ring;
1224 		int ret;
1225 
1226 		ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1227 		if (ret)
1228 			return ret;
1229 
1230 		/*
1231 		 * As the ID is the gtt offset of the context's vma we
1232 		 * pin the vma to ensure the ID remains fixed.
1233 		 *
1234 		 * NB: implied RCS engine...
1235 		 */
1236 		ring = engine->context_pin(engine, stream->ctx);
1237 		mutex_unlock(&dev_priv->drm.struct_mutex);
1238 		if (IS_ERR(ring))
1239 			return PTR_ERR(ring);
1240 
1241 
1242 		/*
1243 		 * Explicitly track the ID (instead of calling
1244 		 * i915_ggtt_offset() on the fly) considering the difference
1245 		 * with gen8+ and execlists
1246 		 */
1247 		dev_priv->perf.oa.specific_ctx_id =
1248 			i915_ggtt_offset(stream->ctx->engine[engine->id].state);
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 /**
1255  * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1256  * @stream: An i915-perf stream opened for OA metrics
1257  *
1258  * In case anything needed doing to ensure the context HW ID would remain valid
1259  * for the lifetime of the stream, then that can be undone here.
1260  */
1261 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1262 {
1263 	struct drm_i915_private *dev_priv = stream->dev_priv;
1264 
1265 	if (i915_modparams.enable_execlists) {
1266 		dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1267 	} else {
1268 		struct intel_engine_cs *engine = dev_priv->engine[RCS];
1269 
1270 		mutex_lock(&dev_priv->drm.struct_mutex);
1271 
1272 		dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1273 		engine->context_unpin(engine, stream->ctx);
1274 
1275 		mutex_unlock(&dev_priv->drm.struct_mutex);
1276 	}
1277 }
1278 
1279 static void
1280 free_oa_buffer(struct drm_i915_private *i915)
1281 {
1282 	mutex_lock(&i915->drm.struct_mutex);
1283 
1284 	i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj);
1285 	i915_vma_unpin(i915->perf.oa.oa_buffer.vma);
1286 	i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj);
1287 
1288 	i915->perf.oa.oa_buffer.vma = NULL;
1289 	i915->perf.oa.oa_buffer.vaddr = NULL;
1290 
1291 	mutex_unlock(&i915->drm.struct_mutex);
1292 }
1293 
1294 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1295 {
1296 	struct drm_i915_private *dev_priv = stream->dev_priv;
1297 
1298 	BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
1299 
1300 	/*
1301 	 * Unset exclusive_stream first, it will be checked while disabling
1302 	 * the metric set on gen8+.
1303 	 */
1304 	mutex_lock(&dev_priv->drm.struct_mutex);
1305 	dev_priv->perf.oa.exclusive_stream = NULL;
1306 	mutex_unlock(&dev_priv->drm.struct_mutex);
1307 
1308 	dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
1309 
1310 	free_oa_buffer(dev_priv);
1311 
1312 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1313 	intel_runtime_pm_put(dev_priv);
1314 
1315 	if (stream->ctx)
1316 		oa_put_render_ctx_id(stream);
1317 
1318 	put_oa_config(dev_priv, stream->oa_config);
1319 
1320 	if (dev_priv->perf.oa.spurious_report_rs.missed) {
1321 		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1322 			 dev_priv->perf.oa.spurious_report_rs.missed);
1323 	}
1324 }
1325 
1326 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
1327 {
1328 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1329 	unsigned long flags;
1330 
1331 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1332 
1333 	/* Pre-DevBDW: OABUFFER must be set with counters off,
1334 	 * before OASTATUS1, but after OASTATUS2
1335 	 */
1336 	I915_WRITE(GEN7_OASTATUS2, gtt_offset | OA_MEM_SELECT_GGTT); /* head */
1337 	dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1338 
1339 	I915_WRITE(GEN7_OABUFFER, gtt_offset);
1340 
1341 	I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1342 
1343 	/* Mark that we need updated tail pointers to read from... */
1344 	dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1345 	dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1346 
1347 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1348 
1349 	/* On Haswell we have to track which OASTATUS1 flags we've
1350 	 * already seen since they can't be cleared while periodic
1351 	 * sampling is enabled.
1352 	 */
1353 	dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
1354 
1355 	/* NB: although the OA buffer will initially be allocated
1356 	 * zeroed via shmfs (and so this memset is redundant when
1357 	 * first allocating), we may re-init the OA buffer, either
1358 	 * when re-enabling a stream or in error/reset paths.
1359 	 *
1360 	 * The reason we clear the buffer for each re-init is for the
1361 	 * sanity check in gen7_append_oa_reports() that looks at the
1362 	 * report-id field to make sure it's non-zero which relies on
1363 	 * the assumption that new reports are being written to zeroed
1364 	 * memory...
1365 	 */
1366 	memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1367 
1368 	/* Maybe make ->pollin per-stream state if we support multiple
1369 	 * concurrent streams in the future.
1370 	 */
1371 	dev_priv->perf.oa.pollin = false;
1372 }
1373 
1374 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
1375 {
1376 	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1377 	unsigned long flags;
1378 
1379 	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1380 
1381 	I915_WRITE(GEN8_OASTATUS, 0);
1382 	I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1383 	dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1384 
1385 	I915_WRITE(GEN8_OABUFFER_UDW, 0);
1386 
1387 	/*
1388 	 * PRM says:
1389 	 *
1390 	 *  "This MMIO must be set before the OATAILPTR
1391 	 *  register and after the OAHEADPTR register. This is
1392 	 *  to enable proper functionality of the overflow
1393 	 *  bit."
1394 	 */
1395 	I915_WRITE(GEN8_OABUFFER, gtt_offset |
1396 		   OABUFFER_SIZE_16M | OA_MEM_SELECT_GGTT);
1397 	I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1398 
1399 	/* Mark that we need updated tail pointers to read from... */
1400 	dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1401 	dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1402 
1403 	/*
1404 	 * Reset state used to recognise context switches, affecting which
1405 	 * reports we will forward to userspace while filtering for a single
1406 	 * context.
1407 	 */
1408 	dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;
1409 
1410 	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1411 
1412 	/*
1413 	 * NB: although the OA buffer will initially be allocated
1414 	 * zeroed via shmfs (and so this memset is redundant when
1415 	 * first allocating), we may re-init the OA buffer, either
1416 	 * when re-enabling a stream or in error/reset paths.
1417 	 *
1418 	 * The reason we clear the buffer for each re-init is for the
1419 	 * sanity check in gen8_append_oa_reports() that looks at the
1420 	 * reason field to make sure it's non-zero which relies on
1421 	 * the assumption that new reports are being written to zeroed
1422 	 * memory...
1423 	 */
1424 	memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1425 
1426 	/*
1427 	 * Maybe make ->pollin per-stream state if we support multiple
1428 	 * concurrent streams in the future.
1429 	 */
1430 	dev_priv->perf.oa.pollin = false;
1431 }
1432 
1433 static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
1434 {
1435 	struct drm_i915_gem_object *bo;
1436 	struct i915_vma *vma;
1437 	int ret;
1438 
1439 	if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
1440 		return -ENODEV;
1441 
1442 	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1443 	if (ret)
1444 		return ret;
1445 
1446 	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1447 	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1448 
1449 	bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE);
1450 	if (IS_ERR(bo)) {
1451 		DRM_ERROR("Failed to allocate OA buffer\n");
1452 		ret = PTR_ERR(bo);
1453 		goto unlock;
1454 	}
1455 
1456 	ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
1457 	if (ret)
1458 		goto err_unref;
1459 
1460 	/* PreHSW required 512K alignment, HSW requires 16M */
1461 	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1462 	if (IS_ERR(vma)) {
1463 		ret = PTR_ERR(vma);
1464 		goto err_unref;
1465 	}
1466 	dev_priv->perf.oa.oa_buffer.vma = vma;
1467 
1468 	dev_priv->perf.oa.oa_buffer.vaddr =
1469 		i915_gem_object_pin_map(bo, I915_MAP_WB);
1470 	if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
1471 		ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
1472 		goto err_unpin;
1473 	}
1474 
1475 	dev_priv->perf.oa.ops.init_oa_buffer(dev_priv);
1476 
1477 	DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1478 			 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
1479 			 dev_priv->perf.oa.oa_buffer.vaddr);
1480 
1481 	goto unlock;
1482 
1483 err_unpin:
1484 	__i915_vma_unpin(vma);
1485 
1486 err_unref:
1487 	i915_gem_object_put(bo);
1488 
1489 	dev_priv->perf.oa.oa_buffer.vaddr = NULL;
1490 	dev_priv->perf.oa.oa_buffer.vma = NULL;
1491 
1492 unlock:
1493 	mutex_unlock(&dev_priv->drm.struct_mutex);
1494 	return ret;
1495 }
1496 
1497 static void config_oa_regs(struct drm_i915_private *dev_priv,
1498 			   const struct i915_oa_reg *regs,
1499 			   u32 n_regs)
1500 {
1501 	u32 i;
1502 
1503 	for (i = 0; i < n_regs; i++) {
1504 		const struct i915_oa_reg *reg = regs + i;
1505 
1506 		I915_WRITE(reg->addr, reg->value);
1507 	}
1508 }
1509 
1510 static int hsw_enable_metric_set(struct drm_i915_private *dev_priv,
1511 				 const struct i915_oa_config *oa_config)
1512 {
1513 	/* PRM:
1514 	 *
1515 	 * OA unit is using “crclk” for its functionality. When trunk
1516 	 * level clock gating takes place, OA clock would be gated,
1517 	 * unable to count the events from non-render clock domain.
1518 	 * Render clock gating must be disabled when OA is enabled to
1519 	 * count the events from non-render domain. Unit level clock
1520 	 * gating for RCS should also be disabled.
1521 	 */
1522 	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1523 				    ~GEN7_DOP_CLOCK_GATE_ENABLE));
1524 	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1525 				  GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1526 
1527 	config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1528 
1529 	/* It apparently takes a fairly long time for a new MUX
1530 	 * configuration to be be applied after these register writes.
1531 	 * This delay duration was derived empirically based on the
1532 	 * render_basic config but hopefully it covers the maximum
1533 	 * configuration latency.
1534 	 *
1535 	 * As a fallback, the checks in _append_oa_reports() to skip
1536 	 * invalid OA reports do also seem to work to discard reports
1537 	 * generated before this config has completed - albeit not
1538 	 * silently.
1539 	 *
1540 	 * Unfortunately this is essentially a magic number, since we
1541 	 * don't currently know of a reliable mechanism for predicting
1542 	 * how long the MUX config will take to apply and besides
1543 	 * seeing invalid reports we don't know of a reliable way to
1544 	 * explicitly check that the MUX config has landed.
1545 	 *
1546 	 * It's even possible we've miss characterized the underlying
1547 	 * problem - it just seems like the simplest explanation why
1548 	 * a delay at this location would mitigate any invalid reports.
1549 	 */
1550 	usleep_range(15000, 20000);
1551 
1552 	config_oa_regs(dev_priv, oa_config->b_counter_regs,
1553 		       oa_config->b_counter_regs_len);
1554 
1555 	return 0;
1556 }
1557 
1558 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1559 {
1560 	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1561 				  ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1562 	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1563 				    GEN7_DOP_CLOCK_GATE_ENABLE));
1564 
1565 	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1566 				      ~GT_NOA_ENABLE));
1567 }
1568 
1569 /*
1570  * NB: It must always remain pointer safe to run this even if the OA unit
1571  * has been disabled.
1572  *
1573  * It's fine to put out-of-date values into these per-context registers
1574  * in the case that the OA unit has been disabled.
1575  */
1576 static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx,
1577 					   u32 *reg_state,
1578 					   const struct i915_oa_config *oa_config)
1579 {
1580 	struct drm_i915_private *dev_priv = ctx->i915;
1581 	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
1582 	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
1583 	/* The MMIO offsets for Flex EU registers aren't contiguous */
1584 	u32 flex_mmio[] = {
1585 		i915_mmio_reg_offset(EU_PERF_CNTL0),
1586 		i915_mmio_reg_offset(EU_PERF_CNTL1),
1587 		i915_mmio_reg_offset(EU_PERF_CNTL2),
1588 		i915_mmio_reg_offset(EU_PERF_CNTL3),
1589 		i915_mmio_reg_offset(EU_PERF_CNTL4),
1590 		i915_mmio_reg_offset(EU_PERF_CNTL5),
1591 		i915_mmio_reg_offset(EU_PERF_CNTL6),
1592 	};
1593 	int i;
1594 
1595 	reg_state[ctx_oactxctrl] = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1596 	reg_state[ctx_oactxctrl+1] = (dev_priv->perf.oa.period_exponent <<
1597 				      GEN8_OA_TIMER_PERIOD_SHIFT) |
1598 				     (dev_priv->perf.oa.periodic ?
1599 				      GEN8_OA_TIMER_ENABLE : 0) |
1600 				     GEN8_OA_COUNTER_RESUME;
1601 
1602 	for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1603 		u32 state_offset = ctx_flexeu0 + i * 2;
1604 		u32 mmio = flex_mmio[i];
1605 
1606 		/*
1607 		 * This arbitrary default will select the 'EU FPU0 Pipeline
1608 		 * Active' event. In the future it's anticipated that there
1609 		 * will be an explicit 'No Event' we can select, but not yet...
1610 		 */
1611 		u32 value = 0;
1612 
1613 		if (oa_config) {
1614 			u32 j;
1615 
1616 			for (j = 0; j < oa_config->flex_regs_len; j++) {
1617 				if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1618 					value = oa_config->flex_regs[j].value;
1619 					break;
1620 				}
1621 			}
1622 		}
1623 
1624 		reg_state[state_offset] = mmio;
1625 		reg_state[state_offset+1] = value;
1626 	}
1627 }
1628 
1629 /*
1630  * Same as gen8_update_reg_state_unlocked only through the batchbuffer. This
1631  * is only used by the kernel context.
1632  */
1633 static int gen8_emit_oa_config(struct drm_i915_gem_request *req,
1634 			       const struct i915_oa_config *oa_config)
1635 {
1636 	struct drm_i915_private *dev_priv = req->i915;
1637 	/* The MMIO offsets for Flex EU registers aren't contiguous */
1638 	u32 flex_mmio[] = {
1639 		i915_mmio_reg_offset(EU_PERF_CNTL0),
1640 		i915_mmio_reg_offset(EU_PERF_CNTL1),
1641 		i915_mmio_reg_offset(EU_PERF_CNTL2),
1642 		i915_mmio_reg_offset(EU_PERF_CNTL3),
1643 		i915_mmio_reg_offset(EU_PERF_CNTL4),
1644 		i915_mmio_reg_offset(EU_PERF_CNTL5),
1645 		i915_mmio_reg_offset(EU_PERF_CNTL6),
1646 	};
1647 	u32 *cs;
1648 	int i;
1649 
1650 	cs = intel_ring_begin(req, ARRAY_SIZE(flex_mmio) * 2 + 4);
1651 	if (IS_ERR(cs))
1652 		return PTR_ERR(cs);
1653 
1654 	*cs++ = MI_LOAD_REGISTER_IMM(ARRAY_SIZE(flex_mmio) + 1);
1655 
1656 	*cs++ = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1657 	*cs++ = (dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1658 		(dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1659 		GEN8_OA_COUNTER_RESUME;
1660 
1661 	for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1662 		u32 mmio = flex_mmio[i];
1663 
1664 		/*
1665 		 * This arbitrary default will select the 'EU FPU0 Pipeline
1666 		 * Active' event. In the future it's anticipated that there
1667 		 * will be an explicit 'No Event' we can select, but not
1668 		 * yet...
1669 		 */
1670 		u32 value = 0;
1671 
1672 		if (oa_config) {
1673 			u32 j;
1674 
1675 			for (j = 0; j < oa_config->flex_regs_len; j++) {
1676 				if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1677 					value = oa_config->flex_regs[j].value;
1678 					break;
1679 				}
1680 			}
1681 		}
1682 
1683 		*cs++ = mmio;
1684 		*cs++ = value;
1685 	}
1686 
1687 	*cs++ = MI_NOOP;
1688 	intel_ring_advance(req, cs);
1689 
1690 	return 0;
1691 }
1692 
1693 static int gen8_switch_to_updated_kernel_context(struct drm_i915_private *dev_priv,
1694 						 const struct i915_oa_config *oa_config)
1695 {
1696 	struct intel_engine_cs *engine = dev_priv->engine[RCS];
1697 	struct i915_gem_timeline *timeline;
1698 	struct drm_i915_gem_request *req;
1699 	int ret;
1700 
1701 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
1702 
1703 	i915_gem_retire_requests(dev_priv);
1704 
1705 	req = i915_gem_request_alloc(engine, dev_priv->kernel_context);
1706 	if (IS_ERR(req))
1707 		return PTR_ERR(req);
1708 
1709 	ret = gen8_emit_oa_config(req, oa_config);
1710 	if (ret) {
1711 		i915_add_request(req);
1712 		return ret;
1713 	}
1714 
1715 	/* Queue this switch after all other activity */
1716 	list_for_each_entry(timeline, &dev_priv->gt.timelines, link) {
1717 		struct drm_i915_gem_request *prev;
1718 		struct intel_timeline *tl;
1719 
1720 		tl = &timeline->engine[engine->id];
1721 		prev = i915_gem_active_raw(&tl->last_request,
1722 					   &dev_priv->drm.struct_mutex);
1723 		if (prev)
1724 			i915_sw_fence_await_sw_fence_gfp(&req->submit,
1725 							 &prev->submit,
1726 							 GFP_KERNEL);
1727 	}
1728 
1729 	ret = i915_switch_context(req);
1730 	i915_add_request(req);
1731 
1732 	return ret;
1733 }
1734 
1735 /*
1736  * Manages updating the per-context aspects of the OA stream
1737  * configuration across all contexts.
1738  *
1739  * The awkward consideration here is that OACTXCONTROL controls the
1740  * exponent for periodic sampling which is primarily used for system
1741  * wide profiling where we'd like a consistent sampling period even in
1742  * the face of context switches.
1743  *
1744  * Our approach of updating the register state context (as opposed to
1745  * say using a workaround batch buffer) ensures that the hardware
1746  * won't automatically reload an out-of-date timer exponent even
1747  * transiently before a WA BB could be parsed.
1748  *
1749  * This function needs to:
1750  * - Ensure the currently running context's per-context OA state is
1751  *   updated
1752  * - Ensure that all existing contexts will have the correct per-context
1753  *   OA state if they are scheduled for use.
1754  * - Ensure any new contexts will be initialized with the correct
1755  *   per-context OA state.
1756  *
1757  * Note: it's only the RCS/Render context that has any OA state.
1758  */
1759 static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
1760 				       const struct i915_oa_config *oa_config,
1761 				       bool interruptible)
1762 {
1763 	struct i915_gem_context *ctx;
1764 	int ret;
1765 	unsigned int wait_flags = I915_WAIT_LOCKED;
1766 
1767 	if (interruptible) {
1768 		ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1769 		if (ret)
1770 			return ret;
1771 
1772 		wait_flags |= I915_WAIT_INTERRUPTIBLE;
1773 	} else {
1774 		mutex_lock(&dev_priv->drm.struct_mutex);
1775 	}
1776 
1777 	/* Switch away from any user context. */
1778 	ret = gen8_switch_to_updated_kernel_context(dev_priv, oa_config);
1779 	if (ret)
1780 		goto out;
1781 
1782 	/*
1783 	 * The OA register config is setup through the context image. This image
1784 	 * might be written to by the GPU on context switch (in particular on
1785 	 * lite-restore). This means we can't safely update a context's image,
1786 	 * if this context is scheduled/submitted to run on the GPU.
1787 	 *
1788 	 * We could emit the OA register config through the batch buffer but
1789 	 * this might leave small interval of time where the OA unit is
1790 	 * configured at an invalid sampling period.
1791 	 *
1792 	 * So far the best way to work around this issue seems to be draining
1793 	 * the GPU from any submitted work.
1794 	 */
1795 	ret = i915_gem_wait_for_idle(dev_priv, wait_flags);
1796 	if (ret)
1797 		goto out;
1798 
1799 	/* Update all contexts now that we've stalled the submission. */
1800 	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1801 		struct intel_context *ce = &ctx->engine[RCS];
1802 		u32 *regs;
1803 
1804 		/* OA settings will be set upon first use */
1805 		if (!ce->state)
1806 			continue;
1807 
1808 		regs = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1809 		if (IS_ERR(regs)) {
1810 			ret = PTR_ERR(regs);
1811 			goto out;
1812 		}
1813 
1814 		ce->state->obj->mm.dirty = true;
1815 		regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);
1816 
1817 		gen8_update_reg_state_unlocked(ctx, regs, oa_config);
1818 
1819 		i915_gem_object_unpin_map(ce->state->obj);
1820 	}
1821 
1822  out:
1823 	mutex_unlock(&dev_priv->drm.struct_mutex);
1824 
1825 	return ret;
1826 }
1827 
1828 static int gen8_enable_metric_set(struct drm_i915_private *dev_priv,
1829 				  const struct i915_oa_config *oa_config)
1830 {
1831 	int ret;
1832 
1833 	/*
1834 	 * We disable slice/unslice clock ratio change reports on SKL since
1835 	 * they are too noisy. The HW generates a lot of redundant reports
1836 	 * where the ratio hasn't really changed causing a lot of redundant
1837 	 * work to processes and increasing the chances we'll hit buffer
1838 	 * overruns.
1839 	 *
1840 	 * Although we don't currently use the 'disable overrun' OABUFFER
1841 	 * feature it's worth noting that clock ratio reports have to be
1842 	 * disabled before considering to use that feature since the HW doesn't
1843 	 * correctly block these reports.
1844 	 *
1845 	 * Currently none of the high-level metrics we have depend on knowing
1846 	 * this ratio to normalize.
1847 	 *
1848 	 * Note: This register is not power context saved and restored, but
1849 	 * that's OK considering that we disable RC6 while the OA unit is
1850 	 * enabled.
1851 	 *
1852 	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1853 	 * be read back from automatically triggered reports, as part of the
1854 	 * RPT_ID field.
1855 	 */
1856 	if (IS_GEN9(dev_priv) || IS_GEN10(dev_priv)) {
1857 		I915_WRITE(GEN8_OA_DEBUG,
1858 			   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1859 					      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1860 	}
1861 
1862 	/*
1863 	 * Update all contexts prior writing the mux configurations as we need
1864 	 * to make sure all slices/subslices are ON before writing to NOA
1865 	 * registers.
1866 	 */
1867 	ret = gen8_configure_all_contexts(dev_priv, oa_config, true);
1868 	if (ret)
1869 		return ret;
1870 
1871 	config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1872 
1873 	config_oa_regs(dev_priv, oa_config->b_counter_regs,
1874 		       oa_config->b_counter_regs_len);
1875 
1876 	return 0;
1877 }
1878 
1879 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
1880 {
1881 	/* Reset all contexts' slices/subslices configurations. */
1882 	gen8_configure_all_contexts(dev_priv, NULL, false);
1883 
1884 	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1885 				      ~GT_NOA_ENABLE));
1886 
1887 }
1888 
1889 static void gen10_disable_metric_set(struct drm_i915_private *dev_priv)
1890 {
1891 	/* Reset all contexts' slices/subslices configurations. */
1892 	gen8_configure_all_contexts(dev_priv, NULL, false);
1893 
1894 	/* Make sure we disable noa to save power. */
1895 	I915_WRITE(RPM_CONFIG1,
1896 		   I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE);
1897 }
1898 
1899 static void gen7_oa_enable(struct drm_i915_private *dev_priv)
1900 {
1901 	/*
1902 	 * Reset buf pointers so we don't forward reports from before now.
1903 	 *
1904 	 * Think carefully if considering trying to avoid this, since it
1905 	 * also ensures status flags and the buffer itself are cleared
1906 	 * in error paths, and we have checks for invalid reports based
1907 	 * on the assumption that certain fields are written to zeroed
1908 	 * memory which this helps maintains.
1909 	 */
1910 	gen7_init_oa_buffer(dev_priv);
1911 
1912 	if (dev_priv->perf.oa.exclusive_stream->enabled) {
1913 		struct i915_gem_context *ctx =
1914 			dev_priv->perf.oa.exclusive_stream->ctx;
1915 		u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1916 
1917 		bool periodic = dev_priv->perf.oa.periodic;
1918 		u32 period_exponent = dev_priv->perf.oa.period_exponent;
1919 		u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1920 
1921 		I915_WRITE(GEN7_OACONTROL,
1922 			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1923 			   (period_exponent <<
1924 			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1925 			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1926 			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1927 			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1928 			   GEN7_OACONTROL_ENABLE);
1929 	} else
1930 		I915_WRITE(GEN7_OACONTROL, 0);
1931 }
1932 
1933 static void gen8_oa_enable(struct drm_i915_private *dev_priv)
1934 {
1935 	u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1936 
1937 	/*
1938 	 * Reset buf pointers so we don't forward reports from before now.
1939 	 *
1940 	 * Think carefully if considering trying to avoid this, since it
1941 	 * also ensures status flags and the buffer itself are cleared
1942 	 * in error paths, and we have checks for invalid reports based
1943 	 * on the assumption that certain fields are written to zeroed
1944 	 * memory which this helps maintains.
1945 	 */
1946 	gen8_init_oa_buffer(dev_priv);
1947 
1948 	/*
1949 	 * Note: we don't rely on the hardware to perform single context
1950 	 * filtering and instead filter on the cpu based on the context-id
1951 	 * field of reports
1952 	 */
1953 	I915_WRITE(GEN8_OACONTROL, (report_format <<
1954 				    GEN8_OA_REPORT_FORMAT_SHIFT) |
1955 				   GEN8_OA_COUNTER_ENABLE);
1956 }
1957 
1958 /**
1959  * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1960  * @stream: An i915 perf stream opened for OA metrics
1961  *
1962  * [Re]enables hardware periodic sampling according to the period configured
1963  * when opening the stream. This also starts a hrtimer that will periodically
1964  * check for data in the circular OA buffer for notifying userspace (e.g.
1965  * during a read() or poll()).
1966  */
1967 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
1968 {
1969 	struct drm_i915_private *dev_priv = stream->dev_priv;
1970 
1971 	dev_priv->perf.oa.ops.oa_enable(dev_priv);
1972 
1973 	if (dev_priv->perf.oa.periodic)
1974 		hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
1975 			      ns_to_ktime(POLL_PERIOD),
1976 			      HRTIMER_MODE_REL_PINNED);
1977 }
1978 
1979 static void gen7_oa_disable(struct drm_i915_private *dev_priv)
1980 {
1981 	I915_WRITE(GEN7_OACONTROL, 0);
1982 }
1983 
1984 static void gen8_oa_disable(struct drm_i915_private *dev_priv)
1985 {
1986 	I915_WRITE(GEN8_OACONTROL, 0);
1987 }
1988 
1989 /**
1990  * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1991  * @stream: An i915 perf stream opened for OA metrics
1992  *
1993  * Stops the OA unit from periodically writing counter reports into the
1994  * circular OA buffer. This also stops the hrtimer that periodically checks for
1995  * data in the circular OA buffer, for notifying userspace.
1996  */
1997 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
1998 {
1999 	struct drm_i915_private *dev_priv = stream->dev_priv;
2000 
2001 	dev_priv->perf.oa.ops.oa_disable(dev_priv);
2002 
2003 	if (dev_priv->perf.oa.periodic)
2004 		hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
2005 }
2006 
2007 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2008 	.destroy = i915_oa_stream_destroy,
2009 	.enable = i915_oa_stream_enable,
2010 	.disable = i915_oa_stream_disable,
2011 	.wait_unlocked = i915_oa_wait_unlocked,
2012 	.poll_wait = i915_oa_poll_wait,
2013 	.read = i915_oa_read,
2014 };
2015 
2016 /**
2017  * i915_oa_stream_init - validate combined props for OA stream and init
2018  * @stream: An i915 perf stream
2019  * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2020  * @props: The property state that configures stream (individually validated)
2021  *
2022  * While read_properties_unlocked() validates properties in isolation it
2023  * doesn't ensure that the combination necessarily makes sense.
2024  *
2025  * At this point it has been determined that userspace wants a stream of
2026  * OA metrics, but still we need to further validate the combined
2027  * properties are OK.
2028  *
2029  * If the configuration makes sense then we can allocate memory for
2030  * a circular OA buffer and apply the requested metric set configuration.
2031  *
2032  * Returns: zero on success or a negative error code.
2033  */
2034 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2035 			       struct drm_i915_perf_open_param *param,
2036 			       struct perf_open_properties *props)
2037 {
2038 	struct drm_i915_private *dev_priv = stream->dev_priv;
2039 	int format_size;
2040 	int ret;
2041 
2042 	/* If the sysfs metrics/ directory wasn't registered for some
2043 	 * reason then don't let userspace try their luck with config
2044 	 * IDs
2045 	 */
2046 	if (!dev_priv->perf.metrics_kobj) {
2047 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2048 		return -EINVAL;
2049 	}
2050 
2051 	if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2052 		DRM_DEBUG("Only OA report sampling supported\n");
2053 		return -EINVAL;
2054 	}
2055 
2056 	if (!dev_priv->perf.oa.ops.init_oa_buffer) {
2057 		DRM_DEBUG("OA unit not supported\n");
2058 		return -ENODEV;
2059 	}
2060 
2061 	/* To avoid the complexity of having to accurately filter
2062 	 * counter reports and marshal to the appropriate client
2063 	 * we currently only allow exclusive access
2064 	 */
2065 	if (dev_priv->perf.oa.exclusive_stream) {
2066 		DRM_DEBUG("OA unit already in use\n");
2067 		return -EBUSY;
2068 	}
2069 
2070 	if (!props->oa_format) {
2071 		DRM_DEBUG("OA report format not specified\n");
2072 		return -EINVAL;
2073 	}
2074 
2075 	/* We set up some ratelimit state to potentially throttle any _NOTES
2076 	 * about spurious, invalid OA reports which we don't forward to
2077 	 * userspace.
2078 	 *
2079 	 * The initialization is associated with opening the stream (not driver
2080 	 * init) considering we print a _NOTE about any throttling when closing
2081 	 * the stream instead of waiting until driver _fini which no one would
2082 	 * ever see.
2083 	 *
2084 	 * Using the same limiting factors as printk_ratelimit()
2085 	 */
2086 	ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
2087 			     5 * HZ, 10);
2088 	/* Since we use a DRM_NOTE for spurious reports it would be
2089 	 * inconsistent to let __ratelimit() automatically print a warning for
2090 	 * throttling.
2091 	 */
2092 	ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
2093 			    RATELIMIT_MSG_ON_RELEASE);
2094 
2095 	stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2096 
2097 	format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
2098 
2099 	stream->sample_flags |= SAMPLE_OA_REPORT;
2100 	stream->sample_size += format_size;
2101 
2102 	dev_priv->perf.oa.oa_buffer.format_size = format_size;
2103 	if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
2104 		return -EINVAL;
2105 
2106 	dev_priv->perf.oa.oa_buffer.format =
2107 		dev_priv->perf.oa.oa_formats[props->oa_format].format;
2108 
2109 	dev_priv->perf.oa.periodic = props->oa_periodic;
2110 	if (dev_priv->perf.oa.periodic)
2111 		dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
2112 
2113 	if (stream->ctx) {
2114 		ret = oa_get_render_ctx_id(stream);
2115 		if (ret)
2116 			return ret;
2117 	}
2118 
2119 	ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2120 	if (ret)
2121 		goto err_config;
2122 
2123 	/* PRM - observability performance counters:
2124 	 *
2125 	 *   OACONTROL, performance counter enable, note:
2126 	 *
2127 	 *   "When this bit is set, in order to have coherent counts,
2128 	 *   RC6 power state and trunk clock gating must be disabled.
2129 	 *   This can be achieved by programming MMIO registers as
2130 	 *   0xA094=0 and 0xA090[31]=1"
2131 	 *
2132 	 *   In our case we are expecting that taking pm + FORCEWAKE
2133 	 *   references will effectively disable RC6.
2134 	 */
2135 	intel_runtime_pm_get(dev_priv);
2136 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2137 
2138 	ret = alloc_oa_buffer(dev_priv);
2139 	if (ret)
2140 		goto err_oa_buf_alloc;
2141 
2142 	ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv,
2143 						      stream->oa_config);
2144 	if (ret)
2145 		goto err_enable;
2146 
2147 	stream->ops = &i915_oa_stream_ops;
2148 
2149 	/* Lock device for exclusive_stream access late because
2150 	 * enable_metric_set() might lock as well on gen8+.
2151 	 */
2152 	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2153 	if (ret)
2154 		goto err_lock;
2155 
2156 	dev_priv->perf.oa.exclusive_stream = stream;
2157 
2158 	mutex_unlock(&dev_priv->drm.struct_mutex);
2159 
2160 	return 0;
2161 
2162 err_lock:
2163 	dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
2164 
2165 err_enable:
2166 	free_oa_buffer(dev_priv);
2167 
2168 err_oa_buf_alloc:
2169 	put_oa_config(dev_priv, stream->oa_config);
2170 
2171 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2172 	intel_runtime_pm_put(dev_priv);
2173 
2174 err_config:
2175 	if (stream->ctx)
2176 		oa_put_render_ctx_id(stream);
2177 
2178 	return ret;
2179 }
2180 
2181 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2182 			    struct i915_gem_context *ctx,
2183 			    u32 *reg_state)
2184 {
2185 	struct i915_perf_stream *stream;
2186 
2187 	if (engine->id != RCS)
2188 		return;
2189 
2190 	stream = engine->i915->perf.oa.exclusive_stream;
2191 	if (stream)
2192 		gen8_update_reg_state_unlocked(ctx, reg_state, stream->oa_config);
2193 }
2194 
2195 /**
2196  * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2197  * @stream: An i915 perf stream
2198  * @file: An i915 perf stream file
2199  * @buf: destination buffer given by userspace
2200  * @count: the number of bytes userspace wants to read
2201  * @ppos: (inout) file seek position (unused)
2202  *
2203  * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2204  * ensure that if we've successfully copied any data then reporting that takes
2205  * precedence over any internal error status, so the data isn't lost.
2206  *
2207  * For example ret will be -ENOSPC whenever there is more buffered data than
2208  * can be copied to userspace, but that's only interesting if we weren't able
2209  * to copy some data because it implies the userspace buffer is too small to
2210  * receive a single record (and we never split records).
2211  *
2212  * Another case with ret == -EFAULT is more of a grey area since it would seem
2213  * like bad form for userspace to ask us to overrun its buffer, but the user
2214  * knows best:
2215  *
2216  *   http://yarchive.net/comp/linux/partial_reads_writes.html
2217  *
2218  * Returns: The number of bytes copied or a negative error code on failure.
2219  */
2220 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2221 				     struct file *file,
2222 				     char __user *buf,
2223 				     size_t count,
2224 				     loff_t *ppos)
2225 {
2226 	/* Note we keep the offset (aka bytes read) separate from any
2227 	 * error status so that the final check for whether we return
2228 	 * the bytes read with a higher precedence than any error (see
2229 	 * comment below) doesn't need to be handled/duplicated in
2230 	 * stream->ops->read() implementations.
2231 	 */
2232 	size_t offset = 0;
2233 	int ret = stream->ops->read(stream, buf, count, &offset);
2234 
2235 	return offset ?: (ret ?: -EAGAIN);
2236 }
2237 
2238 /**
2239  * i915_perf_read - handles read() FOP for i915 perf stream FDs
2240  * @file: An i915 perf stream file
2241  * @buf: destination buffer given by userspace
2242  * @count: the number of bytes userspace wants to read
2243  * @ppos: (inout) file seek position (unused)
2244  *
2245  * The entry point for handling a read() on a stream file descriptor from
2246  * userspace. Most of the work is left to the i915_perf_read_locked() and
2247  * &i915_perf_stream_ops->read but to save having stream implementations (of
2248  * which we might have multiple later) we handle blocking read here.
2249  *
2250  * We can also consistently treat trying to read from a disabled stream
2251  * as an IO error so implementations can assume the stream is enabled
2252  * while reading.
2253  *
2254  * Returns: The number of bytes copied or a negative error code on failure.
2255  */
2256 static ssize_t i915_perf_read(struct file *file,
2257 			      char __user *buf,
2258 			      size_t count,
2259 			      loff_t *ppos)
2260 {
2261 	struct i915_perf_stream *stream = file->private_data;
2262 	struct drm_i915_private *dev_priv = stream->dev_priv;
2263 	ssize_t ret;
2264 
2265 	/* To ensure it's handled consistently we simply treat all reads of a
2266 	 * disabled stream as an error. In particular it might otherwise lead
2267 	 * to a deadlock for blocking file descriptors...
2268 	 */
2269 	if (!stream->enabled)
2270 		return -EIO;
2271 
2272 	if (!(file->f_flags & O_NONBLOCK)) {
2273 		/* There's the small chance of false positives from
2274 		 * stream->ops->wait_unlocked.
2275 		 *
2276 		 * E.g. with single context filtering since we only wait until
2277 		 * oabuffer has >= 1 report we don't immediately know whether
2278 		 * any reports really belong to the current context
2279 		 */
2280 		do {
2281 			ret = stream->ops->wait_unlocked(stream);
2282 			if (ret)
2283 				return ret;
2284 
2285 			mutex_lock(&dev_priv->perf.lock);
2286 			ret = i915_perf_read_locked(stream, file,
2287 						    buf, count, ppos);
2288 			mutex_unlock(&dev_priv->perf.lock);
2289 		} while (ret == -EAGAIN);
2290 	} else {
2291 		mutex_lock(&dev_priv->perf.lock);
2292 		ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2293 		mutex_unlock(&dev_priv->perf.lock);
2294 	}
2295 
2296 	/* We allow the poll checking to sometimes report false positive POLLIN
2297 	 * events where we might actually report EAGAIN on read() if there's
2298 	 * not really any data available. In this situation though we don't
2299 	 * want to enter a busy loop between poll() reporting a POLLIN event
2300 	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2301 	 * effectively ensures we back off until the next hrtimer callback
2302 	 * before reporting another POLLIN event.
2303 	 */
2304 	if (ret >= 0 || ret == -EAGAIN) {
2305 		/* Maybe make ->pollin per-stream state if we support multiple
2306 		 * concurrent streams in the future.
2307 		 */
2308 		dev_priv->perf.oa.pollin = false;
2309 	}
2310 
2311 	return ret;
2312 }
2313 
2314 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2315 {
2316 	struct drm_i915_private *dev_priv =
2317 		container_of(hrtimer, typeof(*dev_priv),
2318 			     perf.oa.poll_check_timer);
2319 
2320 	if (oa_buffer_check_unlocked(dev_priv)) {
2321 		dev_priv->perf.oa.pollin = true;
2322 		wake_up(&dev_priv->perf.oa.poll_wq);
2323 	}
2324 
2325 	hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2326 
2327 	return HRTIMER_RESTART;
2328 }
2329 
2330 /**
2331  * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2332  * @dev_priv: i915 device instance
2333  * @stream: An i915 perf stream
2334  * @file: An i915 perf stream file
2335  * @wait: poll() state table
2336  *
2337  * For handling userspace polling on an i915 perf stream, this calls through to
2338  * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2339  * will be woken for new stream data.
2340  *
2341  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2342  * with any non-file-operation driver hooks.
2343  *
2344  * Returns: any poll events that are ready without sleeping
2345  */
2346 static unsigned int i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2347 					  struct i915_perf_stream *stream,
2348 					  struct file *file,
2349 					  poll_table *wait)
2350 {
2351 	unsigned int events = 0;
2352 
2353 	stream->ops->poll_wait(stream, file, wait);
2354 
2355 	/* Note: we don't explicitly check whether there's something to read
2356 	 * here since this path may be very hot depending on what else
2357 	 * userspace is polling, or on the timeout in use. We rely solely on
2358 	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2359 	 * samples to read.
2360 	 */
2361 	if (dev_priv->perf.oa.pollin)
2362 		events |= POLLIN;
2363 
2364 	return events;
2365 }
2366 
2367 /**
2368  * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2369  * @file: An i915 perf stream file
2370  * @wait: poll() state table
2371  *
2372  * For handling userspace polling on an i915 perf stream, this ensures
2373  * poll_wait() gets called with a wait queue that will be woken for new stream
2374  * data.
2375  *
2376  * Note: Implementation deferred to i915_perf_poll_locked()
2377  *
2378  * Returns: any poll events that are ready without sleeping
2379  */
2380 static unsigned int i915_perf_poll(struct file *file, poll_table *wait)
2381 {
2382 	struct i915_perf_stream *stream = file->private_data;
2383 	struct drm_i915_private *dev_priv = stream->dev_priv;
2384 	int ret;
2385 
2386 	mutex_lock(&dev_priv->perf.lock);
2387 	ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2388 	mutex_unlock(&dev_priv->perf.lock);
2389 
2390 	return ret;
2391 }
2392 
2393 /**
2394  * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2395  * @stream: A disabled i915 perf stream
2396  *
2397  * [Re]enables the associated capture of data for this stream.
2398  *
2399  * If a stream was previously enabled then there's currently no intention
2400  * to provide userspace any guarantee about the preservation of previously
2401  * buffered data.
2402  */
2403 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2404 {
2405 	if (stream->enabled)
2406 		return;
2407 
2408 	/* Allow stream->ops->enable() to refer to this */
2409 	stream->enabled = true;
2410 
2411 	if (stream->ops->enable)
2412 		stream->ops->enable(stream);
2413 }
2414 
2415 /**
2416  * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2417  * @stream: An enabled i915 perf stream
2418  *
2419  * Disables the associated capture of data for this stream.
2420  *
2421  * The intention is that disabling an re-enabling a stream will ideally be
2422  * cheaper than destroying and re-opening a stream with the same configuration,
2423  * though there are no formal guarantees about what state or buffered data
2424  * must be retained between disabling and re-enabling a stream.
2425  *
2426  * Note: while a stream is disabled it's considered an error for userspace
2427  * to attempt to read from the stream (-EIO).
2428  */
2429 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2430 {
2431 	if (!stream->enabled)
2432 		return;
2433 
2434 	/* Allow stream->ops->disable() to refer to this */
2435 	stream->enabled = false;
2436 
2437 	if (stream->ops->disable)
2438 		stream->ops->disable(stream);
2439 }
2440 
2441 /**
2442  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2443  * @stream: An i915 perf stream
2444  * @cmd: the ioctl request
2445  * @arg: the ioctl data
2446  *
2447  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2448  * with any non-file-operation driver hooks.
2449  *
2450  * Returns: zero on success or a negative error code. Returns -EINVAL for
2451  * an unknown ioctl request.
2452  */
2453 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2454 				   unsigned int cmd,
2455 				   unsigned long arg)
2456 {
2457 	switch (cmd) {
2458 	case I915_PERF_IOCTL_ENABLE:
2459 		i915_perf_enable_locked(stream);
2460 		return 0;
2461 	case I915_PERF_IOCTL_DISABLE:
2462 		i915_perf_disable_locked(stream);
2463 		return 0;
2464 	}
2465 
2466 	return -EINVAL;
2467 }
2468 
2469 /**
2470  * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2471  * @file: An i915 perf stream file
2472  * @cmd: the ioctl request
2473  * @arg: the ioctl data
2474  *
2475  * Implementation deferred to i915_perf_ioctl_locked().
2476  *
2477  * Returns: zero on success or a negative error code. Returns -EINVAL for
2478  * an unknown ioctl request.
2479  */
2480 static long i915_perf_ioctl(struct file *file,
2481 			    unsigned int cmd,
2482 			    unsigned long arg)
2483 {
2484 	struct i915_perf_stream *stream = file->private_data;
2485 	struct drm_i915_private *dev_priv = stream->dev_priv;
2486 	long ret;
2487 
2488 	mutex_lock(&dev_priv->perf.lock);
2489 	ret = i915_perf_ioctl_locked(stream, cmd, arg);
2490 	mutex_unlock(&dev_priv->perf.lock);
2491 
2492 	return ret;
2493 }
2494 
2495 /**
2496  * i915_perf_destroy_locked - destroy an i915 perf stream
2497  * @stream: An i915 perf stream
2498  *
2499  * Frees all resources associated with the given i915 perf @stream, disabling
2500  * any associated data capture in the process.
2501  *
2502  * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2503  * with any non-file-operation driver hooks.
2504  */
2505 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2506 {
2507 	if (stream->enabled)
2508 		i915_perf_disable_locked(stream);
2509 
2510 	if (stream->ops->destroy)
2511 		stream->ops->destroy(stream);
2512 
2513 	list_del(&stream->link);
2514 
2515 	if (stream->ctx)
2516 		i915_gem_context_put(stream->ctx);
2517 
2518 	kfree(stream);
2519 }
2520 
2521 /**
2522  * i915_perf_release - handles userspace close() of a stream file
2523  * @inode: anonymous inode associated with file
2524  * @file: An i915 perf stream file
2525  *
2526  * Cleans up any resources associated with an open i915 perf stream file.
2527  *
2528  * NB: close() can't really fail from the userspace point of view.
2529  *
2530  * Returns: zero on success or a negative error code.
2531  */
2532 static int i915_perf_release(struct inode *inode, struct file *file)
2533 {
2534 	struct i915_perf_stream *stream = file->private_data;
2535 	struct drm_i915_private *dev_priv = stream->dev_priv;
2536 
2537 	mutex_lock(&dev_priv->perf.lock);
2538 	i915_perf_destroy_locked(stream);
2539 	mutex_unlock(&dev_priv->perf.lock);
2540 
2541 	return 0;
2542 }
2543 
2544 
2545 static const struct file_operations fops = {
2546 	.owner		= THIS_MODULE,
2547 	.llseek		= no_llseek,
2548 	.release	= i915_perf_release,
2549 	.poll		= i915_perf_poll,
2550 	.read		= i915_perf_read,
2551 	.unlocked_ioctl	= i915_perf_ioctl,
2552 	/* Our ioctl have no arguments, so it's safe to use the same function
2553 	 * to handle 32bits compatibility.
2554 	 */
2555 	.compat_ioctl   = i915_perf_ioctl,
2556 };
2557 
2558 
2559 /**
2560  * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2561  * @dev_priv: i915 device instance
2562  * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2563  * @props: individually validated u64 property value pairs
2564  * @file: drm file
2565  *
2566  * See i915_perf_ioctl_open() for interface details.
2567  *
2568  * Implements further stream config validation and stream initialization on
2569  * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2570  * taken to serialize with any non-file-operation driver hooks.
2571  *
2572  * Note: at this point the @props have only been validated in isolation and
2573  * it's still necessary to validate that the combination of properties makes
2574  * sense.
2575  *
2576  * In the case where userspace is interested in OA unit metrics then further
2577  * config validation and stream initialization details will be handled by
2578  * i915_oa_stream_init(). The code here should only validate config state that
2579  * will be relevant to all stream types / backends.
2580  *
2581  * Returns: zero on success or a negative error code.
2582  */
2583 static int
2584 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2585 			    struct drm_i915_perf_open_param *param,
2586 			    struct perf_open_properties *props,
2587 			    struct drm_file *file)
2588 {
2589 	struct i915_gem_context *specific_ctx = NULL;
2590 	struct i915_perf_stream *stream = NULL;
2591 	unsigned long f_flags = 0;
2592 	bool privileged_op = true;
2593 	int stream_fd;
2594 	int ret;
2595 
2596 	if (props->single_context) {
2597 		u32 ctx_handle = props->ctx_handle;
2598 		struct drm_i915_file_private *file_priv = file->driver_priv;
2599 
2600 		specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2601 		if (!specific_ctx) {
2602 			DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2603 				  ctx_handle);
2604 			ret = -ENOENT;
2605 			goto err;
2606 		}
2607 	}
2608 
2609 	/*
2610 	 * On Haswell the OA unit supports clock gating off for a specific
2611 	 * context and in this mode there's no visibility of metrics for the
2612 	 * rest of the system, which we consider acceptable for a
2613 	 * non-privileged client.
2614 	 *
2615 	 * For Gen8+ the OA unit no longer supports clock gating off for a
2616 	 * specific context and the kernel can't securely stop the counters
2617 	 * from updating as system-wide / global values. Even though we can
2618 	 * filter reports based on the included context ID we can't block
2619 	 * clients from seeing the raw / global counter values via
2620 	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2621 	 * enable the OA unit by default.
2622 	 */
2623 	if (IS_HASWELL(dev_priv) && specific_ctx)
2624 		privileged_op = false;
2625 
2626 	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2627 	 * we check a dev.i915.perf_stream_paranoid sysctl option
2628 	 * to determine if it's ok to access system wide OA counters
2629 	 * without CAP_SYS_ADMIN privileges.
2630 	 */
2631 	if (privileged_op &&
2632 	    i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2633 		DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2634 		ret = -EACCES;
2635 		goto err_ctx;
2636 	}
2637 
2638 	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2639 	if (!stream) {
2640 		ret = -ENOMEM;
2641 		goto err_ctx;
2642 	}
2643 
2644 	stream->dev_priv = dev_priv;
2645 	stream->ctx = specific_ctx;
2646 
2647 	ret = i915_oa_stream_init(stream, param, props);
2648 	if (ret)
2649 		goto err_alloc;
2650 
2651 	/* we avoid simply assigning stream->sample_flags = props->sample_flags
2652 	 * to have _stream_init check the combination of sample flags more
2653 	 * thoroughly, but still this is the expected result at this point.
2654 	 */
2655 	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2656 		ret = -ENODEV;
2657 		goto err_flags;
2658 	}
2659 
2660 	list_add(&stream->link, &dev_priv->perf.streams);
2661 
2662 	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2663 		f_flags |= O_CLOEXEC;
2664 	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2665 		f_flags |= O_NONBLOCK;
2666 
2667 	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2668 	if (stream_fd < 0) {
2669 		ret = stream_fd;
2670 		goto err_open;
2671 	}
2672 
2673 	if (!(param->flags & I915_PERF_FLAG_DISABLED))
2674 		i915_perf_enable_locked(stream);
2675 
2676 	return stream_fd;
2677 
2678 err_open:
2679 	list_del(&stream->link);
2680 err_flags:
2681 	if (stream->ops->destroy)
2682 		stream->ops->destroy(stream);
2683 err_alloc:
2684 	kfree(stream);
2685 err_ctx:
2686 	if (specific_ctx)
2687 		i915_gem_context_put(specific_ctx);
2688 err:
2689 	return ret;
2690 }
2691 
2692 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2693 {
2694 	return div_u64(1000000000ULL * (2ULL << exponent),
2695 		       dev_priv->perf.oa.timestamp_frequency);
2696 }
2697 
2698 /**
2699  * read_properties_unlocked - validate + copy userspace stream open properties
2700  * @dev_priv: i915 device instance
2701  * @uprops: The array of u64 key value pairs given by userspace
2702  * @n_props: The number of key value pairs expected in @uprops
2703  * @props: The stream configuration built up while validating properties
2704  *
2705  * Note this function only validates properties in isolation it doesn't
2706  * validate that the combination of properties makes sense or that all
2707  * properties necessary for a particular kind of stream have been set.
2708  *
2709  * Note that there currently aren't any ordering requirements for properties so
2710  * we shouldn't validate or assume anything about ordering here. This doesn't
2711  * rule out defining new properties with ordering requirements in the future.
2712  */
2713 static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2714 				    u64 __user *uprops,
2715 				    u32 n_props,
2716 				    struct perf_open_properties *props)
2717 {
2718 	u64 __user *uprop = uprops;
2719 	u32 i;
2720 
2721 	memset(props, 0, sizeof(struct perf_open_properties));
2722 
2723 	if (!n_props) {
2724 		DRM_DEBUG("No i915 perf properties given\n");
2725 		return -EINVAL;
2726 	}
2727 
2728 	/* Considering that ID = 0 is reserved and assuming that we don't
2729 	 * (currently) expect any configurations to ever specify duplicate
2730 	 * values for a particular property ID then the last _PROP_MAX value is
2731 	 * one greater than the maximum number of properties we expect to get
2732 	 * from userspace.
2733 	 */
2734 	if (n_props >= DRM_I915_PERF_PROP_MAX) {
2735 		DRM_DEBUG("More i915 perf properties specified than exist\n");
2736 		return -EINVAL;
2737 	}
2738 
2739 	for (i = 0; i < n_props; i++) {
2740 		u64 oa_period, oa_freq_hz;
2741 		u64 id, value;
2742 		int ret;
2743 
2744 		ret = get_user(id, uprop);
2745 		if (ret)
2746 			return ret;
2747 
2748 		ret = get_user(value, uprop + 1);
2749 		if (ret)
2750 			return ret;
2751 
2752 		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2753 			DRM_DEBUG("Unknown i915 perf property ID\n");
2754 			return -EINVAL;
2755 		}
2756 
2757 		switch ((enum drm_i915_perf_property_id)id) {
2758 		case DRM_I915_PERF_PROP_CTX_HANDLE:
2759 			props->single_context = 1;
2760 			props->ctx_handle = value;
2761 			break;
2762 		case DRM_I915_PERF_PROP_SAMPLE_OA:
2763 			props->sample_flags |= SAMPLE_OA_REPORT;
2764 			break;
2765 		case DRM_I915_PERF_PROP_OA_METRICS_SET:
2766 			if (value == 0) {
2767 				DRM_DEBUG("Unknown OA metric set ID\n");
2768 				return -EINVAL;
2769 			}
2770 			props->metrics_set = value;
2771 			break;
2772 		case DRM_I915_PERF_PROP_OA_FORMAT:
2773 			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2774 				DRM_DEBUG("Out-of-range OA report format %llu\n",
2775 					  value);
2776 				return -EINVAL;
2777 			}
2778 			if (!dev_priv->perf.oa.oa_formats[value].size) {
2779 				DRM_DEBUG("Unsupported OA report format %llu\n",
2780 					  value);
2781 				return -EINVAL;
2782 			}
2783 			props->oa_format = value;
2784 			break;
2785 		case DRM_I915_PERF_PROP_OA_EXPONENT:
2786 			if (value > OA_EXPONENT_MAX) {
2787 				DRM_DEBUG("OA timer exponent too high (> %u)\n",
2788 					 OA_EXPONENT_MAX);
2789 				return -EINVAL;
2790 			}
2791 
2792 			/* Theoretically we can program the OA unit to sample
2793 			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2794 			 * for BXT. We don't allow such high sampling
2795 			 * frequencies by default unless root.
2796 			 */
2797 
2798 			BUILD_BUG_ON(sizeof(oa_period) != 8);
2799 			oa_period = oa_exponent_to_ns(dev_priv, value);
2800 
2801 			/* This check is primarily to ensure that oa_period <=
2802 			 * UINT32_MAX (before passing to do_div which only
2803 			 * accepts a u32 denominator), but we can also skip
2804 			 * checking anything < 1Hz which implicitly can't be
2805 			 * limited via an integer oa_max_sample_rate.
2806 			 */
2807 			if (oa_period <= NSEC_PER_SEC) {
2808 				u64 tmp = NSEC_PER_SEC;
2809 				do_div(tmp, oa_period);
2810 				oa_freq_hz = tmp;
2811 			} else
2812 				oa_freq_hz = 0;
2813 
2814 			if (oa_freq_hz > i915_oa_max_sample_rate &&
2815 			    !capable(CAP_SYS_ADMIN)) {
2816 				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2817 					  i915_oa_max_sample_rate);
2818 				return -EACCES;
2819 			}
2820 
2821 			props->oa_periodic = true;
2822 			props->oa_period_exponent = value;
2823 			break;
2824 		case DRM_I915_PERF_PROP_MAX:
2825 			MISSING_CASE(id);
2826 			return -EINVAL;
2827 		}
2828 
2829 		uprop += 2;
2830 	}
2831 
2832 	return 0;
2833 }
2834 
2835 /**
2836  * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2837  * @dev: drm device
2838  * @data: ioctl data copied from userspace (unvalidated)
2839  * @file: drm file
2840  *
2841  * Validates the stream open parameters given by userspace including flags
2842  * and an array of u64 key, value pair properties.
2843  *
2844  * Very little is assumed up front about the nature of the stream being
2845  * opened (for instance we don't assume it's for periodic OA unit metrics). An
2846  * i915-perf stream is expected to be a suitable interface for other forms of
2847  * buffered data written by the GPU besides periodic OA metrics.
2848  *
2849  * Note we copy the properties from userspace outside of the i915 perf
2850  * mutex to avoid an awkward lockdep with mmap_sem.
2851  *
2852  * Most of the implementation details are handled by
2853  * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2854  * mutex for serializing with any non-file-operation driver hooks.
2855  *
2856  * Return: A newly opened i915 Perf stream file descriptor or negative
2857  * error code on failure.
2858  */
2859 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2860 			 struct drm_file *file)
2861 {
2862 	struct drm_i915_private *dev_priv = dev->dev_private;
2863 	struct drm_i915_perf_open_param *param = data;
2864 	struct perf_open_properties props;
2865 	u32 known_open_flags;
2866 	int ret;
2867 
2868 	if (!dev_priv->perf.initialized) {
2869 		DRM_DEBUG("i915 perf interface not available for this system\n");
2870 		return -ENOTSUPP;
2871 	}
2872 
2873 	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
2874 			   I915_PERF_FLAG_FD_NONBLOCK |
2875 			   I915_PERF_FLAG_DISABLED;
2876 	if (param->flags & ~known_open_flags) {
2877 		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
2878 		return -EINVAL;
2879 	}
2880 
2881 	ret = read_properties_unlocked(dev_priv,
2882 				       u64_to_user_ptr(param->properties_ptr),
2883 				       param->num_properties,
2884 				       &props);
2885 	if (ret)
2886 		return ret;
2887 
2888 	mutex_lock(&dev_priv->perf.lock);
2889 	ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
2890 	mutex_unlock(&dev_priv->perf.lock);
2891 
2892 	return ret;
2893 }
2894 
2895 /**
2896  * i915_perf_register - exposes i915-perf to userspace
2897  * @dev_priv: i915 device instance
2898  *
2899  * In particular OA metric sets are advertised under a sysfs metrics/
2900  * directory allowing userspace to enumerate valid IDs that can be
2901  * used to open an i915-perf stream.
2902  */
2903 void i915_perf_register(struct drm_i915_private *dev_priv)
2904 {
2905 	int ret;
2906 
2907 	if (!dev_priv->perf.initialized)
2908 		return;
2909 
2910 	/* To be sure we're synchronized with an attempted
2911 	 * i915_perf_open_ioctl(); considering that we register after
2912 	 * being exposed to userspace.
2913 	 */
2914 	mutex_lock(&dev_priv->perf.lock);
2915 
2916 	dev_priv->perf.metrics_kobj =
2917 		kobject_create_and_add("metrics",
2918 				       &dev_priv->drm.primary->kdev->kobj);
2919 	if (!dev_priv->perf.metrics_kobj)
2920 		goto exit;
2921 
2922 	sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr);
2923 
2924 	if (IS_HASWELL(dev_priv)) {
2925 		i915_perf_load_test_config_hsw(dev_priv);
2926 	} else if (IS_BROADWELL(dev_priv)) {
2927 		i915_perf_load_test_config_bdw(dev_priv);
2928 	} else if (IS_CHERRYVIEW(dev_priv)) {
2929 		i915_perf_load_test_config_chv(dev_priv);
2930 	} else if (IS_SKYLAKE(dev_priv)) {
2931 		if (IS_SKL_GT2(dev_priv))
2932 			i915_perf_load_test_config_sklgt2(dev_priv);
2933 		else if (IS_SKL_GT3(dev_priv))
2934 			i915_perf_load_test_config_sklgt3(dev_priv);
2935 		else if (IS_SKL_GT4(dev_priv))
2936 			i915_perf_load_test_config_sklgt4(dev_priv);
2937 	} else if (IS_BROXTON(dev_priv)) {
2938 		i915_perf_load_test_config_bxt(dev_priv);
2939 	} else if (IS_KABYLAKE(dev_priv)) {
2940 		if (IS_KBL_GT2(dev_priv))
2941 			i915_perf_load_test_config_kblgt2(dev_priv);
2942 		else if (IS_KBL_GT3(dev_priv))
2943 			i915_perf_load_test_config_kblgt3(dev_priv);
2944 	} else if (IS_GEMINILAKE(dev_priv)) {
2945 		i915_perf_load_test_config_glk(dev_priv);
2946 	} else if (IS_COFFEELAKE(dev_priv)) {
2947 		if (IS_CFL_GT2(dev_priv))
2948 			i915_perf_load_test_config_cflgt2(dev_priv);
2949 		if (IS_CFL_GT3(dev_priv))
2950 			i915_perf_load_test_config_cflgt3(dev_priv);
2951 	} else if (IS_CANNONLAKE(dev_priv)) {
2952 		i915_perf_load_test_config_cnl(dev_priv);
2953 	}
2954 
2955 	if (dev_priv->perf.oa.test_config.id == 0)
2956 		goto sysfs_error;
2957 
2958 	ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
2959 				 &dev_priv->perf.oa.test_config.sysfs_metric);
2960 	if (ret)
2961 		goto sysfs_error;
2962 
2963 	atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1);
2964 
2965 	goto exit;
2966 
2967 sysfs_error:
2968 	kobject_put(dev_priv->perf.metrics_kobj);
2969 	dev_priv->perf.metrics_kobj = NULL;
2970 
2971 exit:
2972 	mutex_unlock(&dev_priv->perf.lock);
2973 }
2974 
2975 /**
2976  * i915_perf_unregister - hide i915-perf from userspace
2977  * @dev_priv: i915 device instance
2978  *
2979  * i915-perf state cleanup is split up into an 'unregister' and
2980  * 'deinit' phase where the interface is first hidden from
2981  * userspace by i915_perf_unregister() before cleaning up
2982  * remaining state in i915_perf_fini().
2983  */
2984 void i915_perf_unregister(struct drm_i915_private *dev_priv)
2985 {
2986 	if (!dev_priv->perf.metrics_kobj)
2987 		return;
2988 
2989 	sysfs_remove_group(dev_priv->perf.metrics_kobj,
2990 			   &dev_priv->perf.oa.test_config.sysfs_metric);
2991 
2992 	kobject_put(dev_priv->perf.metrics_kobj);
2993 	dev_priv->perf.metrics_kobj = NULL;
2994 }
2995 
2996 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
2997 {
2998 	static const i915_reg_t flex_eu_regs[] = {
2999 		EU_PERF_CNTL0,
3000 		EU_PERF_CNTL1,
3001 		EU_PERF_CNTL2,
3002 		EU_PERF_CNTL3,
3003 		EU_PERF_CNTL4,
3004 		EU_PERF_CNTL5,
3005 		EU_PERF_CNTL6,
3006 	};
3007 	int i;
3008 
3009 	for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3010 		if (flex_eu_regs[i].reg == addr)
3011 			return true;
3012 	}
3013 	return false;
3014 }
3015 
3016 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
3017 {
3018 	return (addr >= OASTARTTRIG1.reg && addr <= OASTARTTRIG8.reg) ||
3019 		(addr >= OAREPORTTRIG1.reg && addr <= OAREPORTTRIG8.reg) ||
3020 		(addr >= OACEC0_0.reg && addr <= OACEC7_1.reg);
3021 }
3022 
3023 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3024 {
3025 	return addr == HALF_SLICE_CHICKEN2.reg ||
3026 		(addr >= MICRO_BP0_0.reg && addr <= NOA_WRITE.reg) ||
3027 		(addr >= OA_PERFCNT1_LO.reg && addr <= OA_PERFCNT2_HI.reg) ||
3028 		(addr >= OA_PERFMATRIX_LO.reg && addr <= OA_PERFMATRIX_HI.reg);
3029 }
3030 
3031 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3032 {
3033 	return gen7_is_valid_mux_addr(dev_priv, addr) ||
3034 		addr == WAIT_FOR_RC6_EXIT.reg ||
3035 		(addr >= RPM_CONFIG0.reg && addr <= NOA_CONFIG(8).reg);
3036 }
3037 
3038 static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3039 {
3040 	return gen8_is_valid_mux_addr(dev_priv, addr) ||
3041 		(addr >= OA_PERFCNT3_LO.reg && addr <= OA_PERFCNT4_HI.reg);
3042 }
3043 
3044 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3045 {
3046 	return gen7_is_valid_mux_addr(dev_priv, addr) ||
3047 		(addr >= 0x25100 && addr <= 0x2FF90) ||
3048 		(addr >= HSW_MBVID2_NOA0.reg && addr <= HSW_MBVID2_NOA9.reg) ||
3049 		addr == HSW_MBVID2_MISR0.reg;
3050 }
3051 
3052 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3053 {
3054 	return gen7_is_valid_mux_addr(dev_priv, addr) ||
3055 		(addr >= 0x182300 && addr <= 0x1823A4);
3056 }
3057 
3058 static uint32_t mask_reg_value(u32 reg, u32 val)
3059 {
3060 	/* HALF_SLICE_CHICKEN2 is programmed with a the
3061 	 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3062 	 * programmed by userspace doesn't change this.
3063 	 */
3064 	if (HALF_SLICE_CHICKEN2.reg == reg)
3065 		val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3066 
3067 	/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3068 	 * indicated by its name and a bunch of selection fields used by OA
3069 	 * configs.
3070 	 */
3071 	if (WAIT_FOR_RC6_EXIT.reg == reg)
3072 		val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3073 
3074 	return val;
3075 }
3076 
3077 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3078 					 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3079 					 u32 __user *regs,
3080 					 u32 n_regs)
3081 {
3082 	struct i915_oa_reg *oa_regs;
3083 	int err;
3084 	u32 i;
3085 
3086 	if (!n_regs)
3087 		return NULL;
3088 
3089 	if (!access_ok(VERIFY_READ, regs, n_regs * sizeof(u32) * 2))
3090 		return ERR_PTR(-EFAULT);
3091 
3092 	/* No is_valid function means we're not allowing any register to be programmed. */
3093 	GEM_BUG_ON(!is_valid);
3094 	if (!is_valid)
3095 		return ERR_PTR(-EINVAL);
3096 
3097 	oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3098 	if (!oa_regs)
3099 		return ERR_PTR(-ENOMEM);
3100 
3101 	for (i = 0; i < n_regs; i++) {
3102 		u32 addr, value;
3103 
3104 		err = get_user(addr, regs);
3105 		if (err)
3106 			goto addr_err;
3107 
3108 		if (!is_valid(dev_priv, addr)) {
3109 			DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3110 			err = -EINVAL;
3111 			goto addr_err;
3112 		}
3113 
3114 		err = get_user(value, regs + 1);
3115 		if (err)
3116 			goto addr_err;
3117 
3118 		oa_regs[i].addr = _MMIO(addr);
3119 		oa_regs[i].value = mask_reg_value(addr, value);
3120 
3121 		regs += 2;
3122 	}
3123 
3124 	return oa_regs;
3125 
3126 addr_err:
3127 	kfree(oa_regs);
3128 	return ERR_PTR(err);
3129 }
3130 
3131 static ssize_t show_dynamic_id(struct device *dev,
3132 			       struct device_attribute *attr,
3133 			       char *buf)
3134 {
3135 	struct i915_oa_config *oa_config =
3136 		container_of(attr, typeof(*oa_config), sysfs_metric_id);
3137 
3138 	return sprintf(buf, "%d\n", oa_config->id);
3139 }
3140 
3141 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3142 					 struct i915_oa_config *oa_config)
3143 {
3144 	sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3145 	oa_config->sysfs_metric_id.attr.name = "id";
3146 	oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3147 	oa_config->sysfs_metric_id.show = show_dynamic_id;
3148 	oa_config->sysfs_metric_id.store = NULL;
3149 
3150 	oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3151 	oa_config->attrs[1] = NULL;
3152 
3153 	oa_config->sysfs_metric.name = oa_config->uuid;
3154 	oa_config->sysfs_metric.attrs = oa_config->attrs;
3155 
3156 	return sysfs_create_group(dev_priv->perf.metrics_kobj,
3157 				  &oa_config->sysfs_metric);
3158 }
3159 
3160 /**
3161  * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3162  * @dev: drm device
3163  * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3164  *        userspace (unvalidated)
3165  * @file: drm file
3166  *
3167  * Validates the submitted OA register to be saved into a new OA config that
3168  * can then be used for programming the OA unit and its NOA network.
3169  *
3170  * Returns: A new allocated config number to be used with the perf open ioctl
3171  * or a negative error code on failure.
3172  */
3173 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3174 			       struct drm_file *file)
3175 {
3176 	struct drm_i915_private *dev_priv = dev->dev_private;
3177 	struct drm_i915_perf_oa_config *args = data;
3178 	struct i915_oa_config *oa_config, *tmp;
3179 	int err, id;
3180 
3181 	if (!dev_priv->perf.initialized) {
3182 		DRM_DEBUG("i915 perf interface not available for this system\n");
3183 		return -ENOTSUPP;
3184 	}
3185 
3186 	if (!dev_priv->perf.metrics_kobj) {
3187 		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3188 		return -EINVAL;
3189 	}
3190 
3191 	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3192 		DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3193 		return -EACCES;
3194 	}
3195 
3196 	if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3197 	    (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3198 	    (!args->flex_regs_ptr || !args->n_flex_regs)) {
3199 		DRM_DEBUG("No OA registers given\n");
3200 		return -EINVAL;
3201 	}
3202 
3203 	oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3204 	if (!oa_config) {
3205 		DRM_DEBUG("Failed to allocate memory for the OA config\n");
3206 		return -ENOMEM;
3207 	}
3208 
3209 	atomic_set(&oa_config->ref_count, 1);
3210 
3211 	if (!uuid_is_valid(args->uuid)) {
3212 		DRM_DEBUG("Invalid uuid format for OA config\n");
3213 		err = -EINVAL;
3214 		goto reg_err;
3215 	}
3216 
3217 	/* Last character in oa_config->uuid will be 0 because oa_config is
3218 	 * kzalloc.
3219 	 */
3220 	memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3221 
3222 	oa_config->mux_regs_len = args->n_mux_regs;
3223 	oa_config->mux_regs =
3224 		alloc_oa_regs(dev_priv,
3225 			      dev_priv->perf.oa.ops.is_valid_mux_reg,
3226 			      u64_to_user_ptr(args->mux_regs_ptr),
3227 			      args->n_mux_regs);
3228 
3229 	if (IS_ERR(oa_config->mux_regs)) {
3230 		DRM_DEBUG("Failed to create OA config for mux_regs\n");
3231 		err = PTR_ERR(oa_config->mux_regs);
3232 		goto reg_err;
3233 	}
3234 
3235 	oa_config->b_counter_regs_len = args->n_boolean_regs;
3236 	oa_config->b_counter_regs =
3237 		alloc_oa_regs(dev_priv,
3238 			      dev_priv->perf.oa.ops.is_valid_b_counter_reg,
3239 			      u64_to_user_ptr(args->boolean_regs_ptr),
3240 			      args->n_boolean_regs);
3241 
3242 	if (IS_ERR(oa_config->b_counter_regs)) {
3243 		DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3244 		err = PTR_ERR(oa_config->b_counter_regs);
3245 		goto reg_err;
3246 	}
3247 
3248 	if (INTEL_GEN(dev_priv) < 8) {
3249 		if (args->n_flex_regs != 0) {
3250 			err = -EINVAL;
3251 			goto reg_err;
3252 		}
3253 	} else {
3254 		oa_config->flex_regs_len = args->n_flex_regs;
3255 		oa_config->flex_regs =
3256 			alloc_oa_regs(dev_priv,
3257 				      dev_priv->perf.oa.ops.is_valid_flex_reg,
3258 				      u64_to_user_ptr(args->flex_regs_ptr),
3259 				      args->n_flex_regs);
3260 
3261 		if (IS_ERR(oa_config->flex_regs)) {
3262 			DRM_DEBUG("Failed to create OA config for flex_regs\n");
3263 			err = PTR_ERR(oa_config->flex_regs);
3264 			goto reg_err;
3265 		}
3266 	}
3267 
3268 	err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3269 	if (err)
3270 		goto reg_err;
3271 
3272 	/* We shouldn't have too many configs, so this iteration shouldn't be
3273 	 * too costly.
3274 	 */
3275 	idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3276 		if (!strcmp(tmp->uuid, oa_config->uuid)) {
3277 			DRM_DEBUG("OA config already exists with this uuid\n");
3278 			err = -EADDRINUSE;
3279 			goto sysfs_err;
3280 		}
3281 	}
3282 
3283 	err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3284 	if (err) {
3285 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3286 		goto sysfs_err;
3287 	}
3288 
3289 	/* Config id 0 is invalid, id 1 for kernel stored test config. */
3290 	oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3291 				  oa_config, 2,
3292 				  0, GFP_KERNEL);
3293 	if (oa_config->id < 0) {
3294 		DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3295 		err = oa_config->id;
3296 		goto sysfs_err;
3297 	}
3298 
3299 	mutex_unlock(&dev_priv->perf.metrics_lock);
3300 
3301 	return oa_config->id;
3302 
3303 sysfs_err:
3304 	mutex_unlock(&dev_priv->perf.metrics_lock);
3305 reg_err:
3306 	put_oa_config(dev_priv, oa_config);
3307 	DRM_DEBUG("Failed to add new OA config\n");
3308 	return err;
3309 }
3310 
3311 /**
3312  * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3313  * @dev: drm device
3314  * @data: ioctl data (pointer to u64 integer) copied from userspace
3315  * @file: drm file
3316  *
3317  * Configs can be removed while being used, the will stop appearing in sysfs
3318  * and their content will be freed when the stream using the config is closed.
3319  *
3320  * Returns: 0 on success or a negative error code on failure.
3321  */
3322 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3323 				  struct drm_file *file)
3324 {
3325 	struct drm_i915_private *dev_priv = dev->dev_private;
3326 	u64 *arg = data;
3327 	struct i915_oa_config *oa_config;
3328 	int ret;
3329 
3330 	if (!dev_priv->perf.initialized) {
3331 		DRM_DEBUG("i915 perf interface not available for this system\n");
3332 		return -ENOTSUPP;
3333 	}
3334 
3335 	if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3336 		DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3337 		return -EACCES;
3338 	}
3339 
3340 	ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3341 	if (ret)
3342 		goto lock_err;
3343 
3344 	oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3345 	if (!oa_config) {
3346 		DRM_DEBUG("Failed to remove unknown OA config\n");
3347 		ret = -ENOENT;
3348 		goto config_err;
3349 	}
3350 
3351 	GEM_BUG_ON(*arg != oa_config->id);
3352 
3353 	sysfs_remove_group(dev_priv->perf.metrics_kobj,
3354 			   &oa_config->sysfs_metric);
3355 
3356 	idr_remove(&dev_priv->perf.metrics_idr, *arg);
3357 	put_oa_config(dev_priv, oa_config);
3358 
3359 config_err:
3360 	mutex_unlock(&dev_priv->perf.metrics_lock);
3361 lock_err:
3362 	return ret;
3363 }
3364 
3365 static struct ctl_table oa_table[] = {
3366 	{
3367 	 .procname = "perf_stream_paranoid",
3368 	 .data = &i915_perf_stream_paranoid,
3369 	 .maxlen = sizeof(i915_perf_stream_paranoid),
3370 	 .mode = 0644,
3371 	 .proc_handler = proc_dointvec_minmax,
3372 	 .extra1 = &zero,
3373 	 .extra2 = &one,
3374 	 },
3375 	{
3376 	 .procname = "oa_max_sample_rate",
3377 	 .data = &i915_oa_max_sample_rate,
3378 	 .maxlen = sizeof(i915_oa_max_sample_rate),
3379 	 .mode = 0644,
3380 	 .proc_handler = proc_dointvec_minmax,
3381 	 .extra1 = &zero,
3382 	 .extra2 = &oa_sample_rate_hard_limit,
3383 	 },
3384 	{}
3385 };
3386 
3387 static struct ctl_table i915_root[] = {
3388 	{
3389 	 .procname = "i915",
3390 	 .maxlen = 0,
3391 	 .mode = 0555,
3392 	 .child = oa_table,
3393 	 },
3394 	{}
3395 };
3396 
3397 static struct ctl_table dev_root[] = {
3398 	{
3399 	 .procname = "dev",
3400 	 .maxlen = 0,
3401 	 .mode = 0555,
3402 	 .child = i915_root,
3403 	 },
3404 	{}
3405 };
3406 
3407 /**
3408  * i915_perf_init - initialize i915-perf state on module load
3409  * @dev_priv: i915 device instance
3410  *
3411  * Initializes i915-perf state without exposing anything to userspace.
3412  *
3413  * Note: i915-perf initialization is split into an 'init' and 'register'
3414  * phase with the i915_perf_register() exposing state to userspace.
3415  */
3416 void i915_perf_init(struct drm_i915_private *dev_priv)
3417 {
3418 	dev_priv->perf.oa.timestamp_frequency = 0;
3419 
3420 	if (IS_HASWELL(dev_priv)) {
3421 		dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3422 			gen7_is_valid_b_counter_addr;
3423 		dev_priv->perf.oa.ops.is_valid_mux_reg =
3424 			hsw_is_valid_mux_addr;
3425 		dev_priv->perf.oa.ops.is_valid_flex_reg = NULL;
3426 		dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer;
3427 		dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
3428 		dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
3429 		dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
3430 		dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
3431 		dev_priv->perf.oa.ops.read = gen7_oa_read;
3432 		dev_priv->perf.oa.ops.oa_hw_tail_read =
3433 			gen7_oa_hw_tail_read;
3434 
3435 		dev_priv->perf.oa.timestamp_frequency = 12500000;
3436 
3437 		dev_priv->perf.oa.oa_formats = hsw_oa_formats;
3438 	} else if (i915_modparams.enable_execlists) {
3439 		/* Note: that although we could theoretically also support the
3440 		 * legacy ringbuffer mode on BDW (and earlier iterations of
3441 		 * this driver, before upstreaming did this) it didn't seem
3442 		 * worth the complexity to maintain now that BDW+ enable
3443 		 * execlist mode by default.
3444 		 */
3445 		dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
3446 
3447 		dev_priv->perf.oa.ops.init_oa_buffer = gen8_init_oa_buffer;
3448 		dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
3449 		dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
3450 		dev_priv->perf.oa.ops.read = gen8_oa_read;
3451 		dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3452 
3453 		if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv)) {
3454 			dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3455 				gen7_is_valid_b_counter_addr;
3456 			dev_priv->perf.oa.ops.is_valid_mux_reg =
3457 				gen8_is_valid_mux_addr;
3458 			dev_priv->perf.oa.ops.is_valid_flex_reg =
3459 				gen8_is_valid_flex_addr;
3460 
3461 			if (IS_CHERRYVIEW(dev_priv)) {
3462 				dev_priv->perf.oa.ops.is_valid_mux_reg =
3463 					chv_is_valid_mux_addr;
3464 			}
3465 
3466 			dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3467 			dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set;
3468 
3469 			if (IS_GEN8(dev_priv)) {
3470 				dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
3471 				dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
3472 
3473 				dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);
3474 			} else {
3475 				dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3476 				dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3477 
3478 				dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3479 			}
3480 
3481 			switch (dev_priv->info.platform) {
3482 			case INTEL_BROADWELL:
3483 				dev_priv->perf.oa.timestamp_frequency = 12500000;
3484 				break;
3485 			case INTEL_BROXTON:
3486 			case INTEL_GEMINILAKE:
3487 				dev_priv->perf.oa.timestamp_frequency = 19200000;
3488 				break;
3489 			case INTEL_SKYLAKE:
3490 			case INTEL_KABYLAKE:
3491 			case INTEL_COFFEELAKE:
3492 				dev_priv->perf.oa.timestamp_frequency = 12000000;
3493 				break;
3494 			default:
3495 				break;
3496 			}
3497 		} else if (IS_GEN10(dev_priv)) {
3498 			dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3499 				gen7_is_valid_b_counter_addr;
3500 			dev_priv->perf.oa.ops.is_valid_mux_reg =
3501 				gen10_is_valid_mux_addr;
3502 			dev_priv->perf.oa.ops.is_valid_flex_reg =
3503 				gen8_is_valid_flex_addr;
3504 
3505 			dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3506 			dev_priv->perf.oa.ops.disable_metric_set = gen10_disable_metric_set;
3507 
3508 			dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3509 			dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3510 
3511 			dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3512 
3513 			/* Default frequency, although we need to read it from
3514 			 * the register as it might vary between parts.
3515 			 */
3516 			dev_priv->perf.oa.timestamp_frequency = 12000000;
3517 		}
3518 	}
3519 
3520 	if (dev_priv->perf.oa.timestamp_frequency) {
3521 		hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
3522 				CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3523 		dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
3524 		init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
3525 
3526 		INIT_LIST_HEAD(&dev_priv->perf.streams);
3527 		mutex_init(&dev_priv->perf.lock);
3528 		spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
3529 
3530 		oa_sample_rate_hard_limit =
3531 			dev_priv->perf.oa.timestamp_frequency / 2;
3532 		dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3533 
3534 		mutex_init(&dev_priv->perf.metrics_lock);
3535 		idr_init(&dev_priv->perf.metrics_idr);
3536 
3537 		dev_priv->perf.initialized = true;
3538 	}
3539 }
3540 
3541 static int destroy_config(int id, void *p, void *data)
3542 {
3543 	struct drm_i915_private *dev_priv = data;
3544 	struct i915_oa_config *oa_config = p;
3545 
3546 	put_oa_config(dev_priv, oa_config);
3547 
3548 	return 0;
3549 }
3550 
3551 /**
3552  * i915_perf_fini - Counter part to i915_perf_init()
3553  * @dev_priv: i915 device instance
3554  */
3555 void i915_perf_fini(struct drm_i915_private *dev_priv)
3556 {
3557 	if (!dev_priv->perf.initialized)
3558 		return;
3559 
3560 	idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3561 	idr_destroy(&dev_priv->perf.metrics_idr);
3562 
3563 	unregister_sysctl_table(dev_priv->perf.sysctl_header);
3564 
3565 	memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
3566 
3567 	dev_priv->perf.initialized = false;
3568 }
3569